
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

A New Fixed Point Noise Cancellation Method for Suppressing 

Power Line Interference in Electrocardiogram Signals

Faiz, Mohammed Mujahid Ulla, Reni, Saumya Kareem and Kale, 

Izzet

This is a copy of the author’s accepted version of a paper subsequently published in the 

proceedings of the 2022 E-Health and Bioengineering Conference (EHB). Iasi, Romania, 

17-18 Nov 2022, IEEE.

The final published version will be available online at:

https://doi.org/10.1109/ehb55594.2022.9991707

© 2022 IEEE . Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.

The WestminsterResearch online digital archive at the University of Westminster aims to 

make the research output of the University available to a wider audience. Copyright and 

Moral Rights remain with the authors and/or copyright owners.

https://doi.org/10.1109/ehb55594.2022.9991707


A New Fixed Point Noise Cancellation Method for
Suppressing Power Line Interference in

Electrocardiogram Signals

Mohammed Mujahid Ulla Faiz∗†
†ECE Department

†Presidency University
†Bengaluru, 560064, India

E-mail: mohammed.mujahid@presidencyuniversity.in

Saumya Kareem Reni∗ and Izzet Kale∗
∗Applied DSP and VLSI Research Group

∗Department of Computer Science and Engineering
∗University of Westminster

∗London, W1W 6UW, United Kingdom
E-mail: {S.Reni, kalei}@westminster.ac.uk

Abstract—In this article, a new fixed point Leaky Sign
Regressor Least Mean Mixed Norm (LSRLMMN) powered
adaptive noise cancellation technique is being used for elimi-
nating the Power Line Interference (PLI) noise embedded in the
ElectroCardioGram (ECG) signal. The fixed point LSRLMMN
powered noise cancellation technique used in this article has been
completely quantized. The intention for the extensive quantization
study and modeling approach was with a view to the physical
integrated circuit implementation. All the modeling and simula-
tion studies were carried out at the bit-level with various loss of
precision schemes to ensure compliance with the set specification.
The filter coefficients and all the data paths are quantized in order
to establish at a high-level behavioral level of the parameters for
a decreased complexity in integrated circuit implementation.
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I. INTRODUCTION

Several methodologies are reported in the open literature
for the elimination of PLI noise present in ECG signals.
A new methodology, which was based on the method of
Fourier decomposition was proposed to suppress both PLI and
baseline wander interference simultaneously in ECG signals
[1]. A novel algorithm comprising of detection, estimation, and
filtering was implemented to suppress the PLI noise in ECG
signals [2]. In [3], it was shown that the proposed improved
variational mode decomposition technique performs better than
the traditional variational mode decomposition technique for
the cancellation of various artifacts including PLI noise in ECG
signals.

A new technique to cancel both PLI and baseline wander
interference in ECG signals utilizing a mixture of Empirical
Mode Decomposition (EMD) and Empirical Wavelet Trans-
form (EWT) techniques was presented [4]. A comparison of
discrete wavelet transform, EMD, Kalman filter, and Kalman
filter smoother for the removal of PLI noise in ECG signals
showed that Kalman filter smoother method gives better per-
formance than the former three methods [5]. On the other
hand, the performance analysis of single stage and multistage
noise cancellation techniques using a total of eight adaptive
algorithms was analyzed in eliminating the 60-Hz PLI noise
and three other noises embedded in the ECG signal [6].

The MSE behavior of the Leaky Least Mean Square
(LLMS) adaptive algorithm has been studied [7], [8]. Addi-

tionally, the step size upper bounds of the LLMS algorithm
are derived [7], [8]. The transient analysis of the Leaky
Least Mean Fourth (LLMF) algorithm has been performed
[9], [10]. Additionally, the step size upper bounds of the
LLMF algorithm have been derived [9], [10]. The Leaky Least
Mean Mixed Norm (LLMMN) algorithm is a mixture of the
LLMS and LLMF algorithms. The transient analysis of the
LLMMN algorithm was performed [11]. Additionally, the step
size upper bounds of the LLMMN algorithm was derived
[11]. A new fixed point Leaky Sign Regressor Least Mean
Square (LSRLMS) powered noise cancellation technique was
proposed for eliminating the 60-Hz PLI noise embedded in
the ECG signal [12]. Additionally, the step size upper bound
of the LSRLMS algorithm was derived [12]. In this article,
a new fixed point Leaky Sign Regressor Least Mean Mixed
Norm (LSRLMMN) powered noise cancellation technique is
proposed for the removal of 60-Hz PLI noise present in the
ECG signal. Additionally, the step size upper bound of the
LSRLMMN algorithm has been obtained.

II. STABILITY BOUND OF THE LSRLMMN ALGORITHM

The proposed LSRLMMN algorithm is used in the fixed
point noise cancellation technique described in [12], [13].
The LSRLMMN algorithm is a mixture of the LSRLMS
and Leaky Sign Regressor Least Mean Fourth (LSRLMF)
algorithms as long as the mixing variable ∆ is in the range of
0 < ∆ < 1. The LSRLMMN algorithm becomes the LSRLMF
and LSRLMS algorithms as the mixing variable becomes 0 and
1, respectively. The update equation for the filter coefficients
of the LSRLMMN algorithm is described by:

ci = (1− εβ)ci−1 + ε sign[xi]
Tei[∆ + ∆̄e2i ], (1)

where ci are the filter coefficients, ε is the filter step size, β
is the leakage variable, xi is the secondary input, ∆ is the
mixing variable, ∆̄ = 1−∆, all these variables are quantized.
The ECG signal ei, which is expected to be clean from 60-Hz
PLI noise is also quantized.

Subtracting Equation (1) from co, the optimal filter coeffi-
cients vector, we have

c̃i = (1− εβ)c̃i−1 − ε∆ sign[xi]
Tei − ε∆̄ sign[xi]

Te3i
+εβco, (2)
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Fig. 1. (a) Clean ECG signal, (b) ECG signal contaminated with 60-Hz PLI
noise, and (c) ECG signal from floating point filtering technique using the
LSRLMMN algorithm.
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Fig. 2. (d) ECG signal from truncate quantization method using the
LSRLMMN algorithm and (e) ECG signal from round quantization method
using the LSRLMMN algorithm.

where the filter coefficients error vector c̃i = co − ci. By
applying the expectation operator on Equation (2) we get

E[c̃i] = (1− εβ)E[c̃i−1]− ε∆E
[
sign[xi]

Tei
]

−ε∆̄E
[
sign[xi]

Te3i
]

+ εβco. (3)

We have from [14],

E
[
sign[xi]

Tei
]

=

√
2

πσ2
x

RE[c̃i−1], (4)

E
[
sign[xi]

Te3i
]

= 3

√
2

πσ2
x

σ2
eRE[c̃i−1], (5)

where σ2
x is the input data variance, σ2

e is the variance of
the estimation error, and R = E[xT

i xi] is the input data
autocorrelation matrix. By using (4) and (5) in (3),

E[c̃i] =

[
I− εβ − ε∆

√
2

πσ2
x

R− 3ε∆̄

√
2

πσ2
x

σ2
eR

]
×

E[c̃i−1] + εβco. (6)

From (6), it can be shown that the mean performance of the
filter coefficients error vector converges to 0 for the step size
upper bound given by:

0 < ε <
2
√
πσ2

x

β
√
πσ2

x +
√

2∆λmax + 3
√

2∆̄σ2
eλmax

, (7)

where λmax is the largest eigenvalue of R. The step size
upper bounds of the LSRLMF and LSRLMS algorithms can be
obtained from (7) by equating ∆ as zero and one, respectively,
as given here:

0 < εLSRLMF <
2
√
πσ2

x

β
√
πσ2

x + 3
√

2σ2
eλmax

, (8)

0 < εLSRLMS <
2
√
πσ2

x

β
√
πσ2

x +
√

2λmax

. (9)

Note that the expression for the step size upper bound of the
LSRLMS algorithm in (9) is exactly the same as that derived
in [12].
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Fig. 3. (f) ECG signal from round-to-zero quantization method using the
LSRLMMN algorithm and (g) ECG signal from convergent quantization
method using the LSRLMMN algorithm.

III. SIMULATION RESULTS

We have taken 3600 samples of the noise free ECG
signal downloaded from the MIT-BIH Arrhythmia Database
Recording number 105 [15], and it was contaminated using
3600 samples of artificial PLI noise having an amplitude of
100 mV, a frequency of 60-Hz, and a sampling frequency of
360-Hz. The filter length has been set at N = 5, the iteration
count has been set at I = 10, the step size has been set at
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Fig. 4. MSE from floating point filtering technique using the LSRLMMN
algorithm.

ε = 0.01, the leakage variable has been set at β = 0.002, and
the mixing variable has been set at ∆ = 0.5.

The noise free ECG signal is depicted in Figure 1(a), the
ECG signal contaminated using 60-Hz PLI noise is depicted
in Figure 1(b), and the ECG signal from the floating point
filtering technique using the LSRLMMN algorithm is depicted
in Figure 1(c). As observed in Figure 1(c), the floating point
filtering technique using the LSRLMMN algorithm is found
to be successful in suppressing the 60-Hz PLI noise in the
contaminated ECG signal.
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Fig. 5. MSE from truncate quantization method using the LSRLMMN
algorithm.

The ECG signals from the truncate, round, round-to-zero,
and convergent quantization techniques using the LSRLMMN
algorithm are depicted in Figures 2(d), 2(e), 3(f), and 3(g),
respectively. As observed from Figures 2(d) and 3(f), the
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Fig. 6. MSE from round quantization method using the LSRLMMN
algorithm.
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Fig. 7. MSE from round-to-zero quantization method using the LSRLMMN
algorithm.

truncate and round-to-zero quantization techniques using the
LSRLMMN algorithm are unsuccessful in the suppression of
60-Hz PLI noise in the contaminated ECG signal, respectively.
As observed from Figures 2(e) and 3(g), the ECG signals from
the round and convergent quantization techniques using the
LSRLMMN algorithm are found to be similar in comparison
to the ECG signal from the floating point filtering technique
using the LSRLMMN algorithm as depicted in Figure 1(c).
This is also evident from the SNR calculated after the floating
point, round, and convergent quantization techniques, which is
found to be 14.09 dB, 13.97 dB, and 13.98 dB, respectively.

As can be seen from Figure 5, the MSE behavior of the
truncate filtering technique using the LSRLMMN algorithm is
inferior as compared to the other three types of quantization
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Fig. 8. MSE from convergent quantization method using the LSRLMMN
algorithm.

methods, which can also be seen from the quantized ECG
signal from the employment of this method as depicted in
Figure 2(d). As evident from Figure 7, the MSE behavior
of the round-to-zero filtering technique using the LSRLMMN
algorithm is also inferior as compared to the other two types
of quantization methods, viz. round and convergent, which
can also be seen in the quantized ECG signal from the
employment of this method as depicted in Figure 3(f). The
MSE behaviors of the floating point, round, and convergent
quantization techniques using the LSRLMMN algorithm are
found to be similar as depicted in Figures 4, 6, and 8, which
is also evident in the ECG signals from the application of
these three methods as depicted in Figures 1(c), 2(e), and 3(g),
respectively.

IV. CONCLUSIONS

The number of quantization bits needed for the primary
input, secondary input, mixing variable, filter step size, leakage
variable, adaptive filter output, filter coefficients, and puri-
fied ECG signal with respect to the fixed point LSRLMMN
powered noise cancellation technique are determined to be
8-bits for the round and convergent quantization methods.
Moreover, it is shown that the step size upper bound of the
LSRLMMN algorithm reduces to the step size upper bounds
of the LSRLMF and LSRLMS algorithms when ∆ becomes
zero and one, respectively.
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