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Incorporating Spatial Context into Remaining-Time Predictive 

Process Monitoring 

 

ABSTRACT 

Predictive process monitoring aims to accurately predict a 

variable of interest (e.g. remaining time) or the future state of the 

process instance (e.g. outcome or next step). The quest for models 

with higher predictive power has led to the development of a 

variety of novel approaches. However, though the location of 

events is a crucial explanatory variable in many processes, as yet 

there have been no studies which have incorporated spatial 

context into the predictive process monitoring framework. This 

paper seeks to address this problem by introducing the concept of 

a spatial event log which captures trace and event location details. 

The predictive utility of spatial contextual features is evaluated 

vis-à-vis other contextual features. An approach is proposed to 

predict the remaining time of an in-flight process instance by 

calculating the buffer distances between the location of events in a 

spatial event log to capture spatial proximity and connectedness. 

These distances are subsequently used to construct a regression 

model which is used to predict the remaining time for events in 

the test data. The proposed approach is benchmarked against 

existing approaches using five real-life event logs and 

demonstrates that spatial features improve the predictive power of 

process monitoring models. 

CCS CONCEPTS 

• Information systems → Information systems application→ 

Spatial-temporal systems → Geographic information systems; 

Robotics • Applied Computing → Operations research → 

Forecasting 

KEYWORDS 
Operational business process management, Process monitoring, 

Remaining time predictive modelling, Spatial context, Distributed 

processes. 

1 INTRODUCTION 

Effectively predicting process outcomes in operational business 

management is essential for Customer Relationship Management 

(e.g. 'will this customer's order be completed on time?'), 

Enterprise Resource Planning (e.g. 'what level of resourcing will 

be required to manage running cases/process instances?') and 

Operational Process Improvement (e.g. 'what are the common 

attributes of cases that consistently complete late?'), among 

others. Predicting the remaining time of a process instance is also 

very useful. It is essential for effective scheduling of sequentially 

dependent processes and is a crucial determinant of consumer 

choice (e.g. where two or more services are identical in price and 

quality). 

 

Reference [0] highlights the importance of contextual factors in 

predictive process monitoring and identifies four pertinent 

contextual types:   

• Case context - the properties or attributes of a case.  

• Process context – similar cases that may be competing for 

the same resources.  

• Social context - the way human resources collaborate in an 

organisation to work on the process of interest.  

• External context – factors in the broader ecosystem that 

impacts the process. e.g. weather, legislation, location, etc.  

 

That study makes the point that "although … external context can 

have a dramatic impact on the process being analysed; it is 

difficult to select the relevant variables." This study aims to 

address the problem of incorporating spatial context into the 

process mining workflow by introducing the idea of a spatial 

event log which includes the locations of process traces and 

events 

 

Figure 1: Contextual Factors and Relationship – (Adapted 

from [0]) 

Even though every event occurs at a location, event logs do not 

typically capture spatial data. As shown by figure 1, this 

contextual type overlaps with the other types. For example, 

relevant process legislation (external context) and the manner 

process performers interact (social context) are both a function of 

location. Incorporating the spatial context enables process analysts 

to determine whether processes outcome exhibit spatial patterns. 

This is a question of interest particularly with distributed 

processes and one that has increased in salience with the COVID-

19 pandemic which has necessitated the distribution of process 
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execution, for example, due to the requirement for process 

performers to work from home. If it can be established that 

process outcomes display spatial pattern(s), location becomes a 

key explanatory variable. The first law of geography (Tobler's 

Law) states that "all objects are related, but nearer objects are 

more related than further objects"[0]. The concept of spatial 

autocorrelation, which attempts to 

"measure…simultaneously…the similarities in the location of 

spatial objects and their attributes", explains this relationship [0]. 

Besides, incorporating the spatial dimension into event logs 

facilitates the discovery of the trajectory of process artefacts 

which could help detect motion waste. 

 

Furthermore, it would be possible to construct a de jure process 

model for different locations (e.g. because of legislative 

requirements) and check whether discovered processes (stratified 

by location) conforms. However, for this paper, the focus will be 

on utilising the spatial context to improve the prediction of the 

remaining time. In addition to a contribution to the knowledge 

base by proposing a novel way to incorporate the spatial context 

into the predictive process mining workflow, we demonstrate by 

empirical evaluation, the importance of these contextual features. 

We show that our proposed approach performs comparably with 

start-of-the-art predictive process monitoring techniques. 

 

The remainder of the paper is structured as follows: Section 2 

details preceding studies which have provided the motivation and 

methodological basis for this study. Section 3 defines vital terms 

built on throughout the paper. Section 4 describes the proposed 

approach, while Section 5 details the evaluation results of the 

proposed approach. The penultimate section describes the threats 

to the validity of the study while the final section summarises the 

findings and proposes further research areas for extending these.  

 

2 RELATED WORKS 

A review of the literature reveals three primary predictive 

process monitoring approaches: Model-based approaches Error! 

Reference source not found.Error! Reference source not 

found., sequence-to-feature encoding (STEP) approaches  Error! 

Reference source not found. Error! Reference source not 

found.[0] and simulation-based approaches Error! Reference 

source not found.Error! Reference source not found.. 

 

STEP approaches encode event log into feature-outcome pairs 

using a variety of approaches such as last state, aggregation, 

index-based or tensor encodingError! Reference source not 

found.[Error! Reference source not found.]. However, it is 

worth mentioning a subset of STEP approaches that have become 

popular in recent years .i.e. neural-network-based approaches 

0000. These state-of-the-art models make it relatively easy to 

include additional features into the prediction model. While the 

majority of these approaches focus on the next activity as the 

prediction target, the approach proposed by 0 utilises an LSTM (a 

particular type of a Recurrent Neural Network) to iteratively 

predict the remaining activities till case completion and associated 

timestamps. This enables estimation of the remaining time of the 

process instance. 

With regards to spatial analysis, as mentioned earlier [0] proposed 

the law which laid the foundation for spatial dependence and 

autocorrelation. Numerous studies have built on this foundation, 

and it is commonly accepted as a "reasonable regularity that 

generally holds true". Reference [0] argues that rather than merely 

being a confounding variable, spatial autocorrelation "is 

information-bearing since it reveals the spatial association among 

geographic entities”. 

 

Reference [0] proposes an approach for spatial prediction that 

utilises buffer distances from observation points as features to 

build a spatial machine learning model. Their approach offers 

advantages over traditional geostatistical approaches (e.g. kriging) 

because it makes "no rigid statistical assumptions about the 

distribution and stationarity of the target variable, it is more 

flexible towards incorporating, combining and extending 

covariates of different types, and it possibly yields more 

informative maps characterising the prediction error." 

 

In this paper, we utilise the STEP approach combined with the 

approach proposed by [0] to build a spatial predictive process 

monitoring framework. 

3 BACKGROUND 

3.1 Definitions 

1.  Event, Traces and Event Logs 

 Several key terms to be built on throughout this review are 

formally defined. We adopt the standard attribute notation defined 

in [0]. 

  

Definition 3.1 (Event). Let ε represent the event universe and Τ 

the time domain, A represent the set of activities and P represent 

the set of performers (i.e. individuals and teams). 

An event e is a tuple (#case_identifier(e), #activity(e), 

#start_time(e),#completion_time(e),#attribute1(e)..#attributen(e)). 

The elements of the tuple represent the attributes associated with 

the event. Though an event is minimally defined by the triplet 

((#case_identifier(e), #activity(e), # completion_time(e)), it is 

common and desirable to have additional attributes such as 

indicating the performer associated with the event and #trans(e) 

indicating the transaction type associated with the event, amongst 

others. For each of these attributes, there is a function which 

assigns the attribute to the event .e.g. attrstart_time  assigning 

a start time to the event, attrcompletion_time  assigning a 

completion time to the event, attractivity  assigning an 

activity label to the event and attrperformer , a partial 

function assigning a performer (or resource) to events. Note that 

attrperformer is a partial function as some events may not be 

associated with any performers. 
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An event is often identified by the activity label (#activity(e)) 

which describes the work performed on a process instance (or 

case) that transforms input(s) to output(s). 

 

Definition 3.2 (Terminal activities) Let    represent the set of 

valid terminal activity labels.  

en is a valid terminal event if #activity_label(en) This event 

indicates a 'clean' completion of the process instance. Otherwise, 

the process instance is still in-flight or abandoned.  

 

Definition 3.3 (Event log) An event log is set of traces (full and 

partial) L  for a particular process such that each event 

appears at least once in the log .i.e for any σ1, σ2 

 

 

Definition 3.4 (Remaining time) Let σf represent a full trace, τ.en 

represent the completion time associated with the terminal event, 

#completion_time(en), and t represents the prediction point. For t 

< τ.en ,the remaining time τrem = t - τ.en. It indicates the remaining 

time to completion of case/process instance. Note that predicting 

at or after the completion time (i.e. t  τ.en) is pointless. 

 

Definition 3.5 (Elapsed time) Let σf represent a full trace, τ.e1 

represent the start time associated with the start event, 

#start_time(e1), and t represents the prediction point. For t > τ.e1 , 

the elapsed time τela  = t - τ.e1. It indicates the elapsed time from 

the start of case/process instance to the prediction time. 

 

Definition 3.6 (Cycle time) Let σf represent a full trace, τ.e1 

represent the start time associated with the start event, 

#start_time(e1) and τ.en represent the completion time associated 

with the terminal event, #completion_time(en), The trace cycle 

time τcyc  = . It indicates the time taken to complete 

the process instance from start to finish 

 

2. Spatial Objects and Event Logs.  

 

Definition 3.7 (Point) Let R2 represent a two-dimensional 

Euclidean space. A point is a zero-dimensional geographical 

object used to indicate a spatial occurrence in R2.  

A point's coordinates can be specified as longitude, and latitude or 

Northing N and Easting E offsets relative to a specified origin, 

depending on the defined Coordinate Reference System (CRS - 

see Def 3.10-iii) 

 

Definition 3.8 (Spatial Point Process) Let  for some 

distance d. A spatial point process is a stochastic model for a 

random scattering of points on X for d which  describe the 

occurrence over time of points {#location(x,y)(e1), 

#location(x,y)(e2)….#location(x,y)(en)}over time 

{#completion_time(e1), #completion_time(e2)… 

#completion_time(en)} 

 

Definition 3.9 (Buffer Distances) Let #location(x,y)(ez) represent 

the location attribute for event Z. Dz =(d(#location(x,y)(e1), 

d(#location(x,y)(e2)…. d(#location(x,y)(en)) represents the buffer 

distance between #location(x,y)(ez) and the other events. It captures 

the spatial relationship between the location of events in the log. 

 

Definition 3.10 (Spatial event log) An event log where all events 

are associated with a location attribute (#location(x,y)(e)). For 

example, we could define a function attrlocation(x,y) , to 

assign a location to each performer (or resource) who execute 

events. However, it could represent some other location that is 

meaningful to the process; e.g., for a process to report and track 

the resolution of a defect, the location could represent the location 

of the reported defect. We recommend providing the following 

attributes at the event log metadata level: 

i. Location scope attribute (#location_scope(L)) to 

indicate whether the scope of the location attribute is 

trace- or event-wide. 

ii. Location function (#location_function(L)) to describe 

the nature of the location attribute in the log. 

iii. Coordinate Reference System (#CRS(L)) to indicate the 

Coordinate Reference System for the event location 

attribute 

 

To illustrate the terms above, consider a process for reporting and 

remediating defects to public goods, e.g. potholes, street light 

outages. An event in this process would be any from the valid set: 

{‘Create Service Request', 'Initial Review', 'Assign Service 

Request', 'Assign Crew', 'Contact Citizen', 'Put Service Request 

On Hold', 'Close Service Request'}. Each event will be associated 

with a start and end time and the resource who performed the 

activity, amongst others. An example of a full trace for a process 

instance would be {‘Create Service Request', 'Review', 'Assign 

Service Request', 'Assign Crew', 'Contact Citizen', 'Close Service 

Request'}. Note that 'Create Service Request' and 'Close Service 

Request' are the start and terminal events, respectively. An 

example of a partial trace for a process instance would be {‘Create 

Service Request', 'Initial View', 'Assign Service Request'}. Note 

the absence of a valid terminal event indicating that the process is 

in-flight. This event log could be transformed into a spatial event 

log by, for example, associating the location of the appropriate 

performer with each event (see Table 1). 

 

4 APPROACH 

4.1 Overview 

Figure 2 provides an overview of the proposed approach 

used in the evaluation of our proposed approach (see 

section 5).  The initial step is the creation of a spatial event 

log which associates the events in the log with spatial 

context. Subsequently, we create measures of spatial 

proximity by calculating buffer distances for each point in 

the training data set to all the other points. These distances 

are used to build a spatial regression model. We improve 

runtime performance by performing these steps offline. 
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After that, in the online phase, the remaining time for test data are 

predicted using the regression models based on the location of the 

event/trace 

 

Figure 2: Overview of the proposed approach 

4.2 Spatial Event Log 

 

An event log can be transformed into a spatial event log by 

associating the coordinates of a meaningful location to each event 

in the log. A location is considered meaningful if it facilitates the 

discovery of spatial patterns in the event log. A typical choice is 

the location for the performer associated with each event.  

Another example is the location of reported defects (coded 

as longitude and latitude) in a service management 

application. This approach is considered meaningful for 

these processes as the location of defects is expected to 

demonstrate evidence of a spatial point process. For 

example, for road defects, the spatial process will likely 

depend on the weather, maintenance schedule, 

organisational process, regulation, among others. 
  

Table 2: Event Log Overview 

4.3 Predictive Modelling 

 

The approach consists of two phases: offline (training) and online 

(testing). In the training phase, the traces in the event log are 

encoded. For the event-level logs, we used indexed based 

encoding to encode the traces while we utilised a combination of 

aggregation and last state encoding for the trace level logs.  

We subsequently utilised the approach proposed by [0] to build a 

Random Forest spatial predictive monitoring model as described 

below. 

We transformed the event location from the longitude-latitude 

CRS to the Universal Transverse Mercator (UTM) CRS. We 

subsequently converted the event log into the spatial data frame to 

efficiently handle the spatial data. We then calculated the 

Euclidean buffer distances for each event location in the spatial 

training set to capture the spatial relationship between the 

locations.   We then spatially overlaid the dependent variable over 

the spatial window (.i.e. the area where the process was executed). 

The output of the overlay function and buffer distances are used 

as the input to build the spatial predictive monitoring model. 

In the testing phase, the in-flight traces are encoded utilising the 

same approach as in the training phase.  The spatial model built in 

the training phase was used to estimate remaining time directly for 

the event level logs. However, for trace-level logs, the total cycle 

time for the trace was estimated and the remaining time for the 

trace is computed by subtracting the elapsed time from the 

estimated cycle time 

 

Figure 3 details the spatial predictive modelling algorithm 

Service 

Request 
ID 

Service 

Category 
Longitude Latitude Activity Start Time End Time 

XY4567 Roads 51.3161 0.06047 
Create Service 

Request 

22/10/2017 

18:34 

22/10/2017 

18:38 

XY4567 Roads 51.2425 0.06132 
Accept 

Ownership 

25/10/2017 

10:16 

25/10/2017 

10:17 

XY4567 Roads 51.2557 0.06156 Assign Crew 
25/10/2017 

16:01 
25/10/2017 

16:22 

XY4567 Roads 51.2557 0.06132 
Contact 

Citizen 

27/10/2017 

11:04 

27/10/2017 

11:09 

XY4567 Roads 51.2557 0.06114 
Close Service 

Request 

27/10/2017 

11:45 

27/10/2017 

11:55 

Input: An event log L over some trace universe σ with a 

location scope attribute #location_scope(L), an associated target 

measure remaining time τrem, time τela, cycle time τcyc, a spatial 

window B,a spatial overlay method O and a spatial regression 

method (REGR) method 

Output: A spatial predictive model (S-PM) model for L 

Method:  Perform the following steps: 

i. Associate a point spatial object #location(x,y)(e) with 

each trace σ ϵ L (see definition 3.7) 

ii. Encode each trace using a suitable encoding function 

iii. For each #location(x,y)(ei), calculate Di 

=(d(#location(x,y)(e1), d(#location(x,y)(e2)…. 

d(#location(x,y)(en)) 

If attribute #location_scope(L) = ‘event’  

iv. Overlay  τrem over B using method O to return b  

v. Induce a regression model s-pm out of L using method 

REGR using {#location(x,y)(ei),{ Di … Dn}, b} as input 

value and τrem(σ) as target value 

vi. Estimate the remaining time for each trace τi.rem_pred :  
s-pm(σi) 

If attribute #location_scope(L) = ‘trace’,  

vii. overlay  τcyc over B using method O to return b  

viii. Induce a regression model pst-pm out of L using 

method using {#location(x,y)(ei),{ Di … Dn}, b} as 

input value and τcyc (σ) as target value 

ix. Estimate the cycle time for each trace τi.cyc_pred : s-

pm(σi) 
x. For each σi do 

xi. Estimate the remaining time for each trace τi.rem_pred :  
τi.cyc_pred  - τela 

xii. End 

xiii. Return c{τ1.rem_pred……. τn.rem_pred } 
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Figure 3: S-PM algorithm 

5 EVALUATION 

In this section, we detail our approach to evaluate the importance 

of spatial features in the predictive process mining workflow. We 

evaluated the proposed spatial predictive monitoring techniques 

against similar predictive monitoring techniques which are based 

on other features. Specifically, we sought to address the following 

research questions:  

RQ1. Do spatial features contribute to the predictive power of 

remaining-time predictive approaches vis-à-vis other features? 

RQ2. How does spatial-based remaining-time predictive process 

monitoring approaches compare with existing approaches? 

In the following section, we provide further details about the 

experimental setup and how we answer the research questions. 

5.1 Datasets 

We used five real-life events for our experiments (see Table 2). 

For four logs we enriched the event log with synthetic spatial data 

as follows: Traffic Fines [0], BPI Challenge 2017 [0],  BPI 

Challenge 2019 [0], BPI Challenge 2020[0]. We simulated the 

synthetic data to reflect as faithfully as possible the spatial 

patterns we expect to be present in the process. For example, all 

the event locations were simulated within the territory of the 

country where the event log was generated. Besides for each 

event, we approximated the expected distribution. To illustrate, 

for the traffic fine event log, the expectation is that traffic fines 

are predominantly issued in urban areas; hence we simulated 

spatially clustered locations for these events. For these logs, the 

location for each event is the simulated location of the performer 

executing each event. We subsequently refer to these logs as the 

event-level logs.  

The fifth event log included real-life spatial data. This log is from 

a cloud-based request management platform currently used by 

public service providers (i.e. municipalities and regions) in 

Canada and the US. Citizens or service provider staff can raise 

service requests (i.e. requests for information or work to be 

carried out, application for permits, etc.) via an app on hand-held 

devices or through a web interface. Functionality exists for the 

public service provider (typically a municipal agency) to manage 

these requests through to completion as well as a suite of 

supporting functionality, e.g. analytics, work management, etc. 

The scope of the locations in this log are at a trace level .i.e. every 

event has the same location and the coordinates indicate the 

location of the reported defects; hence we hereafter refer to this as 

the trace-level log. We filter the log to extract defects related to 

road-related defects. However, we are unable to make the data 

available as doing so will create privacy concerns due to the 

location coordinates representing observed locations of real 

people. We considered robust anonymisation of the data; 

however, we concluded that doing so without loss of accuracy 

was not achievable 

 We added additional features such as elapsed time, remaining 

time, the number of requests raised on the same day as the service 

request (a measure of workload) and a couple of temporal features 

to each log.   

 Table 2: Event Log Overview 

 

5.2 Experimental Setup 

For the evaluation, we implemented an approach named spatial in 

R for the spatial approach described in section 4.3, respectively. 

This approach enables assessment of the importance of the spatial 

features by building a predictive model from these features and 

evaluating them vis-à-vis predictive models based on non-spatial 

features. We evaluated the spatial approaches against a couple of 

approaches which used a zero prefix-bucketing combined with a 

gradient boosting machine (gbm) and multilayer perceptron (mlp) 

neural network regressors respectively to predict the remaining 

time for each trace Error! Reference source not found.. Both of 

these models were built using non-spatial features in the event 

log. We blend each of these approaches with the spatial model 

using the arithmetic mean of the predictions to create a couple of 

ensemble models for evaluation purpose. To ensure completeness, 

we also create a blended ensemble of the non-spatial models. The 

code and data for the experiments are located in the following 

Github repository(see 

https://github.com/etioro/SpatialProcessMonitoring)  

 
 

Traffic 
Fines  

BPIC 
17  

BPIC 
19 

BPIC 
20 

Road 
Defects 

# of events 149354 55358 140056 56437 9392 

# of cases 26633 3084 306 10500 1324 

# of traces 215 1126 305 99 413 

# of distinct 
activities 

11 25 34 17 29 

Mean trace 
length  

5.61 17.95 457.7 5.37 7.09 

Mean 
throughput 
time (days) 

528.96 21.87 156.78 11.53 82.3 

Throughput 
time SD 
(days) 

346.62 12.94 529.98 17.02 244.78 

Location 
Scope 

Event Event Event Event Trace 

https://github.com/etioro/SpatialProcessMonitoring
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For the event-level logs, we used indexed based encoding to 

encode the traces as it is "lossless and has been shown to achieve 

relatively high accuracy and reliability" [0]. However, for the 

trace-level log, we utilise a combination of the aggregation and 

last state encoding technique Error! Reference source not 

found. where the aggregation function computes the trace length, 

throughput time and set of activity labels for each trace 

We split each event log into test and training sets. We further 

subdivided the training set, using only the spatial features for 200 

data points to build the spatial model and the non-spatial features 

for the remaining data points to construct the non-spatial models. 

We subsequently used the test set for making remaining-time 

predictions which are then evaluated.  

 

As with the methodology used in [Error! Reference source not 

found.], the training & test set were not temporally disjoint. 

We chose to utilise the Mean Absolute Error (MAE) to evaluate 

the accuracy as other measures such as the Root Mean Square 

Error (RSME) are susceptible to outliers and Mean Percentage 

Error (MAPE) would be skewed towards the end of a case where 

remaining time tends towards zero [0]. 

To achieve the best performance from both the spatial and non-

spatial models, we tuned the relevant model hyperparameters. For 

the spatial-based model, we utilise the approach proposed in [0], 

while for the non-spatial methods, we use the tuning capabilities 

inbuilt into the caret package.  

 

5.3 Results 

Table 3 details the global MAE and Standard Deviation (SD) for 

each dataset/algorithm pair. The performance of the algorithms 

visualised in figure 4, which displays the average ranking of each 

algorithm over the datasets with associated error bars. Over the 

five datasets, the ensemble model gbm+spat performed best. In 

general, blending the spatial model with a non-spatial model 

improved the performance of the non-spatial model. This is 

explained by the fact that the spatial features explained as much as 

30% of the dependent variable (i.e. remaining time) in the spatial 

models. It is also worth mentioning that the spatial model 

outperformed the ensemble non-spatial models (.i.e. gbm+mlp). 

This confirms the valuable contributions of the spatial features  

Table 3: Global MAE ± SD 

 

 

Figure 4: Average Algorithm Ranking with associated error 

bars. 

Figures 5 show the aggregated error values obtained by dividing 

the Global MAE and SD by the average throughput time for each 

event log. Normalising these values enables them to be directly 

comparable (see Error! Reference source not found.). 

gbm+spat has the lowest normalised median and mean MAE 

(0.43 and 0.62 respectively)  

To determine which algorithms, differ from the others, we utilise 

the Quade post-hoc test to perform a pair-wise comparison 

between the various algorithms. Table 4 shows the results of the 

pair-wise comparisons (with the value(s) statistically significant at 

the 95% confidence level in bold font). For most of the pairs, 

there is insufficient evidence to reject the null hypothesis that they 

are significantly different. However, the results indicate that the 

gbm+spat method significantly outperforming the existing 

method(s) (see results in bold). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 spatial mlp gbm gbm+mlp gbm+spat mlp+spat 

Traffic 

Fines 

183.09 ± 

180.22 

276.86 ± 

173.20 

255.96 ± 

206.70 

259.97 ± 

115.24 

216.52 ± 

156.45 

224.38 ± 

151.92 

BPIC 17 
11.68 ± 

10.71 

14.62  ± 

8.93 

8.79 ± 

9.51 
11.44 ± 

8.05  

9.86 ± 

9.72 

12.62 ± 

9.07 

BPIC 19 
81.47 ± 

62.45 

 156.13 ± 

86.91 

69.29 ± 

57.87 

100.39 ± 

62.67 

60.92 ± 

40.08 

98.64 ± 

69.37 

BPIC 

20 

6.12 ± 

22.95 

6.55 ± 

22.06 

4.61 ± 

21.94 

5.38 ± 

21.94 

4.98 ± 

21.94 

6.07 ± 

22.04 

Road 

Defects 

114.64 ± 

214.17 

109.06 ± 

224.99 

126.25 ± 

208.65 

113.36 ± 

208.77 

115.81 ± 

203.14 

111.21 ± 

219.17 
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Table 4:  Quade post-hoc test of approach rankings across all 

datasets

 

Figure 5(a): Average Normalised MAE 

 

Figure 5(b): Average Normalised Standard Deviation 

6 THREATS TO VALIDITY 

The main threat to validity was the absence of real-life 

spatial data at the desired level of granularity. For the four 

event-level logs for which spatial data was simulated, even 

though care was taken to reflect the spatial distribution of 

the process in the simulated data, the spatial effect is likely 

under-estimated vis-à-vis real-life spatial data.  
For the real-life spatial data, the available spatial data was at trace 

level. In other words, a single location (i.e. service request 

location) was associated with each completed trace. However, in 

reality, the location for events are typically dispersed, i.e. e1 may 

occur at location A, e2 at location B, etc. For example, a citizen 

may raise the service request at location A, reviewed by 

supervisor based in the field location (at location B) and assigned 

to a work crew based at location C. Lower granularity of location 

at event level is expected to produce better results as this captures 

more of the spatial variation present in the data 

Another threat to validity is related to the real-life spatial data is 

geo-referencing uncertainty [0]. For that dataset, the request 

creator may introduce uncertainty by specifying the incorrect 

location for the service request or by the service request 

submission platform. Hence a point may be incorrectly positioned. 

We assume that this uncertainty is minimal as the relevant public 

service provider was able to locate and complete all the service 

requests we selected for our experiment.  

Finally, we recognise that not all processes will possess a 

significant amount of spatial variation. For example, for 

centralised processes, the process performers may all be co-

located. For these processes, spatial features are not likely to 

significantly contribute to the accurate prediction of the remaining 

time  

7 CONCLUSION AND FUTURE WORK 

This study has proposed an approach to incorporate spatial 

context into event logs and performed a comparative analysis of 

spatial features against other contextual features. It found that 

spatial features improve the predictive power of the model and 

that spatial ensemble approaches yielded the best result for 

processes that are likely to exhibit spatial point processes 

As mentioned in section 1, incorporating the spatial context into 

the event log facilitates research opportunities which extend 

beyond predictive process monitoring. Referencing the refined 

process mining framework (see [Error! Reference source not 

found.]), it 'opens the door' to performing spatial process 

discovery (process models by location) and conformance testing. 

For 'Recommend', it would be possible to incorporate spatial 

context into the recommendation (i.e. The model recommends a 

user in location A performs activity X; however, suggests a user 

in location B performs activity Y).  

 

Besides, a spatio-temporal extension to Tobler's law is proposed 

as follows: "everything is related to everything else but near and 

recent things are more related than distant things" [1]. As a result, 

 spatial mlp mlp+spat gbm gbm+spat 

mlp 0.183     

mlp+spat 0.865 0.241    

gbm 0.61 0.072 0.498   

gbm+spat 0.399 0.036 0.313 0.734  

gbm+mlp 0.734 0.313 0.865 0.399 0.241 
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we expect that a spatio-temporal model will make a more 

significant contribution to remaining-time predictive monitoring.  

In future work, we intend to attempt to tackle a number of these 

opportunities. 
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