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Abstract: 

Many prior treatments of agglomeration explicitly or implicitly assume that all industries agglomerate 

for the same reasons. This paper uses UK establishment-level coagglomeration data to document 

substantial heterogeneity across industries in the microfoundations of agglomeration economies. It 

finds robust evidence of organizational and adaptive agglomeration forces as discussed by Chinitz 

(1961), Vernon (1960), and Jacobs (1969). These forces interact with the traditional Marshallian 

(1890) factors of input sharing, labor pooling, and knowledge spillovers, establishing a previously 

unrecognized complementarity between the approaches of Marshall and Jacobs, as well as others, to 

the analysis of agglomeration.  

 

EconLit Codes: A1; R00.   

mailto:G.Faggio1@lse.ac.uk
mailto:O.Silva@lse.ac.uk
mailto:wstrange@rotman.utoronto.ca


 

 

* This work was based on data from the Business Structure Database and the Quarterly UK Labour 

Force Survey, produced by the Office for National Statistics (ONS) and supplied by the UK Data 

Service Secure Lab. The data are Crown Copyright and reproduced with the permission of the 

controller of HMSO and Queen's Printer for Scotland. The use of the data in this work does not 

imply the endorsement of ONS or the UK Data Service Secure Lab in relation to the interpretation 

or analysis of the data. This work uses research datasets which may not exactly reproduce National 

Statistics aggregates. We thank the Economics and Social Research Council (ESRC) UK, the Social 

Sciences and Humanities Research Council of Canada, and STICERD-LSE for financial support. We 

also thank Simona Iammarino, William Kerr and Gianluca Tarasconi for sharing data. Finally, we are 

grateful for the helpful comments we received from three anonymous referees, Gordon Hanson, 

Steve Gibbons, Stephan Heblich, Antonio Miscio, Henry Overman, Michael Storper, Jacques Thisse, 

and conference and seminar participants at the AREUEA National Conference, the CESifo 

Conference on the Economics of Entrepreneurship, the IEB Workshop on Urban Economics, LSE, 

Manchester University, the NARSC Annual Meetings, Syracuse University, Tinbergen Institute, and 

Wilfrid Laurier University. We are responsible for any errors or omissions.  

 

 



 

1 

 

I. Introduction 

 This paper considers heterogeneity across industries in the microfoundations of 

agglomeration economies. Marshall (1890) notes the existence of three sources of agglomeration 

economies: labor pooling, input sharing, and knowledge spillovers. Many subsequent treatments of 

agglomeration either explicitly or implicitly suppose that all industries agglomerate for the same 

reasons, with the three Marshallian forces affecting all industries similarly. An important instance of 

this approach is the extrapolation of individual cases to the larger economy, such as the drawing of 

very general lessons about agglomeration from the specific case of the Silicon Valley. Another is the 

pooling of data to examine common tendencies in agglomeration even across industries that theory 

suggests would agglomerate differently. This paper documents the existence of significant 

heterogeneity and shows that the pattern of heterogeneity has important implications for our 

understanding of the nature of agglomeration economies. 

 The paper’s empirical analysis focuses on the relationship between the coagglomeration of 

industry pairs and Marshallian links between industries. The motivation for this approach is that the 

variation in the characteristics of industries that co-locate sheds light on the microfoundations of 

agglomeration economies. Ellison et al. (2010), who developed this approach, show that proxies for 

labor pooling, input sharing, and knowledge spillovers between an industry pair are positively and 

significantly related to co-location. Our paper explores how these results vary across industries, 

guided by classic non-Marshallian analyses of agglomeration. Jacobs (1969) stresses the unplanned 

nature of the creation of new work in cities, while Vernon (1960) discusses how cities help manage 

the instability involved in certain production processes. Chinitz (1961) argues for a positive role of 

small firms in the generation of agglomeration economies – another example of this non-Marshallian 

research. Similarly, Porter’s (1990) influential analysis of industry clusters identifies a positive role for 

competition. The pattern of heterogeneity that we document is consistent with these non-
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Marshallian microfoundations that focus on adaptive and organizational factors.1 

 Our analysis makes use of establishment-level data from the UK’s Business Structure 

Database (BSD) covering the years 1997-2008. We initially estimate benchmark models of the 

relationship between measures of industry links and coagglomeration across all manufacturing 

industries, as in Ellison et al. (2010). We then consider heterogeneity in ways suggested by Jacobs’ 

and Vernon’s notions of adaptation and Chinitz’s organizational approach, as well as by more recent 

research on the role of human capital in the agglomeration process (e.g., Rauch, 1993, Glaeser and 

Saiz, 2004, and Moretti, 2004). Using coagglomeration to look at these aspects of agglomeration is 

unique in the literature. Furthermore, we examine the interaction between Marshallian forces and 

other elements of agglomeration rather than looking at Marshall as a rival to Jacobs and others – 

which is also unique and in contrast with the previous literature. In this sense, the paper is an attempt 

to create a détente between Marshall and Jacobs.  

 The empirical analysis leaves no doubt that agglomeration works differently for different 

industries. The key empirical results are as follows. First, in a great variety of coagglomeration 

models, we show the robust predictive power of Marshall’s agglomeration forces. This confirms 

prior work and supports our focus on interactions between Marshallian and non-Marshallian 

approaches. Second, a quantile regression that differentiates pairs by their tendency to coagglomerate 

provides results that are consistent with Jacobs’ analysis of unplanned knowledge spillovers and labor 

                                                      
1The modern theoretical literature offers various formal results that are consistent with the informal 

treatments in the classics. Duranton and Puga (2001) model cities as “nurseries” for infant industries, 

while Strange et al. (2006) establish the attraction of cities for businesses facing uncertainty. Helsley 

and Strange (2001) is another treatment of adaptive organizational agglomeration economies. See 

Duranton and Puga (2004) for a survey of this theoretical literature. 
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pooling. Third, differencing by entry and industry age provides robust evidence of an adaptive 

element to agglomeration, consistent with Vernon. This manifests itself more strongly in labor 

pooling and in knowledge spillovers than in input sharing. Fourth, differentiation by the sector’s 

technology orientation and workforce education shows that agglomeration is not just a high-

technology phenomenon. However, high-technology sectors show stronger evidence of knowledge 

spillovers, while low-technology industries show stronger evidence of input sharing and labor 

pooling. These findings are broadly consistent with learning playing an important role in the 

agglomeration process as suggested by Jacobs and Vernon. Finally, agglomeration effects – in 

particular those related to input sharing – tend to be stronger when firms are smaller, consistent with 

Chinitz.  

 In addition to building on the classics in the agglomeration literature, the paper also builds on 

more recent econometric work on agglomeration.2 The line of research closest to this paper 

examines the relative importance of Marshallian forces using what might be called “horse race” 

models. For example, Audretsch and Feldman (1996) and Rosenthal and Strange (2001) regress 

levels of agglomeration on proxies for the presence of labor pooling, input sharing, and knowledge 

spillovers. Another recent approach is Jofre-Monseny et al. (2011), who estimate count models of 

new firms as functions of proxies for Marshallian forces. A related body of work consists of papers 

that separately consider Marshall’s three forces. See, among others, Fallick et al. (2006), Almazan et 

al. (2007) and Serafinelli (2015) on job hopping, Holmes (1999) on input sharing, and Jaffe et al. 

(1993), Arzaghi and Henderson (2008) and Lin (2012) on patents, networking and learning, and the 

creation of new work. This body of work presents persuasive evidence that the three Marshallian 

                                                      
2See Hanson (2001), Rosenthal and Strange (2004), Behrens and Robert-Nicoud (2014), and Combes 

and Gobillon (2014) for reviews of the agglomeration literature. 
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forces are present. Our paper provides further such evidence and extends this line of research by 

incorporating theories of organization and adaptation. 

 While the agglomeration literature has much to say about how agglomeration economies are 

generated, it has less to say about heterogeneity in microfoundations. Henderson et al. (1995) show 

that agglomeration economies differ between high- and low-technology industries in an analysis of 

urban growth. However, they consider whether agglomeration economies arise from own-industry 

activity or from urban diversity, rather than directly considering Marshall’s three forces. Together 

with Glaeser et al. (1992), this paper has spawned a literature that contrasts Marshall vs. Jacobs – 

rather than studying the interactions between Marshallian and non-Marshallian forces in 

characterising heterogeneous agglomeration, as we do. More recently, Hanlon and Miscio (2014) 

estimate a dynamic industry growth model, and establish the importance of input-output linkages 

and labor pooling. Their results show that smaller firms both benefit from and produce stronger 

agglomeration effects. Glaeser and Kerr (2009) and Rosenthal and Strange (2010) also consider the 

idea that agglomeration economies are stronger when there are many small firms. In these papers, 

agglomeration is organizational. Duranton and Puga (2001), although largely a theoretical exercise, 

present empirical evidence on location decisions over an industry’s life cycle that is consistent with a 

model of cities as nurseries that tend to young industries. Strange et al. (2006) show a systematic 

tendency for industries facing more uncertainty in Marshallian dimensions to agglomerate. In both of 

these papers, agglomeration is fundamentally adaptive. As a group, this literature suggests that there 

is reason to believe that agglomeration economies are heterogeneous. Our analysis systematically 

documents the pattern of this heterogeneity and what this implies for our understanding of 

agglomeration economies. 

 Taken as a whole, our results on heterogeneity argue for caution in extrapolation from 

individual cases of agglomeration. This is important because extrapolation from cases is a central part 
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of the justification for cluster policy.3 Unfortunately, as satisfying as it is to draw conclusions from 

interesting and highly salient examples of agglomeration such as the Silicon Valley and computers or 

Detroit and cars, our findings show clearly that different industries respond differently to 

agglomerative forces. Similarly, our results suggest that one should interpret horse race models on 

the relative strength of agglomeration effects with care since these specifications do not allow for 

heterogeneous effects across industries. All of this is consistent with the advice offered by the cluster 

policy review paper by Chatterji et al. (2013). Policymakers should recognize that agglomeration 

issues are complex, and there is much to recommend caution in cluster policies. Careful pilot 

projects have the potential to uncover what works and what does not for particular industries. 

Policies that are consistent with growth in general are likely to help clusters emerge. Conversely, 

policies targeting specific industries run the risk of picking losers rather than winners, given the 

uncertainties associated with heterogeneity in agglomeration economies. 

 The remainder of the paper is organized as follows. Section II discusses our empirical 

approaches. Section III presents the baseline Marshallian analysis. Section IV considers Jacobs’ 

unplanned interactions, while Section V presents the analysis where industries are heterogeneous. 

Section VI concludes. 

II. Coagglomeration and agglomeration forces 

A. Measuring coagglomeration 

 Our analysis of microfoundations is based on the tendency of industries to co-locate across 

metropolitan areas. We use the Ellison and Glaeser (1997) measure of coagglomeration, which is 

standard in the field. Let Ni denote total employment in industry i, and nmi denote employment in 

metropolitan area m and industry i. Let smi = nmi/Ni denote the share of a given industry i’s 

                                                      
3See, for instance, Porter (1990) and the critique in Duranton (2011). 
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employment in metropolitan area m, and let xm denote the metropolitan area’s share of national 

employment. For two industries i and j, the Ellison-Glaeser measure of coagglomeration can be 

written as (Ellison et al., 2010):  

  C
ij = 






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
M

1m

2

m

mmj
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)(x1
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This measure is related to the covariance of industries across metropolitan areas. 

We construct measures of coagglomeration of UK manufacturing industries using data from 

the Business Structure Database (BSD) for the period 1997 to 2008. The data come from 

administrative records covering 99 per cent of economic activity in the UK. We use BSD data at the 

local unit (i.e., plant or establishment) level including both single- and multi-plant enterprises. For 

each local unit, information is available on employment, industrial activity, year of birth (start-up 

date) and death (termination date), and postcodes. We use this detail to assign each local unit to a 

Travel-to-Work Area (TTWA, see below). The raw data include approximately three million local 

units every year. After a series of data cleaning procedures, our dataset comprises more than two 

million plants annually over 12 years.4  

To quantify coagglomeration we focus on three-digit industries of the UK Standard Industry 

Classification (SIC) 1992 and restrict our attention to manufacturing (SIC151-SIC372). In line with 

the literature, we do not consider other sectors (such as services) because measuring the extent of 

labor pooling, input sharing and, especially, knowledge spillovers in those industries is challenging. 

After excluding and recombining sectors that present a limited or erratic evolution in the number of 

plants and/or their employment, we are left with a final sample of 94 manufacturing three-digit 

                                                      
4We use data from England, Scotland and Wales but drop Northern Ireland because of poor data 

coverage. Full details on the data construction are provided in the Web Appendix. 
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industries. This gives a total of 4,371 unique pairs a year over twelve years (1997-2008) for an overall 

count of 52,452 observations.  

The level of geographical aggregation we use is the Travel-to-Work Area. TTWAs are 

geographical entities defined so that at least 75% of the resident population works in the area and 

75% of the people working in the area reside there. TTWAs were devised to delineate areas that are 

as self-contained labor markets and economically relevant aggregates. As of 2007, there were 243 

TTWAs in the United Kingdom. In our analysis, we focus on 84 urban TTWAs with population in 

excess of 100,000 residents. In some extensions, we also consider rural TTWAs and use other levels 

of aggregation such as regions. 

To measure coagglomeration, we compute Ellison et al.’s (2010) γC measure based on the 

total employment shares of the selected 94 three-digit industries contained in the 84 urban TTWAs. 

Descriptive statistics are presented in Table 1. The mean and median of γC are centered at zero, with 

a standard deviation of 0.005, a minimum of -0.028, and a maximum of 0.107. Relative to Ellison et 

al. (2010), UK coagglomeration displays less dispersion, although it is similarly skewed towards 

positive values. 

Table A1 in the Appendix lists the fifteen most coagglomerated sectors alongside the three 

top TTWAs where most of the coagglomeration takes place. Textiles, products of clay and ceramic, 

and basic metals are the most recurrent sector groupings. Some geographic patterns emerge. Textile-

related industries tend to co-locate in Bradford, Leicester, Manchester and Nottingham. Basic-metal 

activities cluster around Birmingham and Sheffield. Clay- and ceramic-product manufacturers group 

around Stoke-on-Trent. The publishing and printing sectors tend to locate in London.  

In extensions to our core analysis, we use variants of γC. In particular, we calculate: (i) a 

measure of coagglomeration constructed using the number of plants rather than their employment; 

(ii) a version of γC that excludes London; (iii) a measure that includes single-plant companies only; 
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(iv) a version that includes both urban and rural areas; and (v) a measure that excludes publishing 

(SIC221) and printing and reproduction of media (SIC222). Descriptive statistics of these alternative 

measures are very similar to those presented in Table 1. Furthermore, their correlation with our main 

measure is always high, between 0.76 (when only including single-plants firms) and 0.99 (when 

considering both urban and rural areas). 

B. Marshallian agglomeration forces 

Marshall attributed the spatial concentration of industry to three forces: labor pooling, input 

sharing, and knowledge spillovers. In this section, we discuss the variables we use in order to 

measure the flow of goods, people and ideas across industrial pairs. Our proxies are deliberately very 

similar to those used in Ellison et al. (2010), which we consider to be ‘best practice’ given available 

data.5 

To assess the potential for labor pooling, we use UK Labour Force Survey (LFS) data 

between 1995 and 1999. The LFS is a representative survey of households living in the UK. The data 

report a worker’s industry and Standard Occupation Classification (SOC) 1990. The UK SOC 

categorizes occupations on the basis of skill level and content. We use the 331 occupation groups 

defined by the three-digit SOC classification in conjunction with the 94 three-digit manufacturing 

industries to calculate Shareio and Sharejo. These measure the shares of employees of occupation o in 

industry i and j, respectively. Using this information, we measure the similarity of employment in 

industries i and j by computing the correlation between Shareio and Sharejo. Descriptive statistics are 

presented in Table 1. The mean value is 0.237 with a standard deviation of 0.188.  

                                                      
5The only other proxy that might be relevant is Fallick et al’s (2006) measure of job hopping as an 

alternative to the occupational similarity proxy for labor pooling employed by Ellison et al (2010). 

This, however, cannot be computed with the data currently available to us. 
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To assess input sharing, we use the ONS Input-Output Analytical Tables for 1995 to 1999.6 

We calculate the shares of inputs that each industry within a pair buys from the other as fractions of 

their total intermediate inputs and the shares of outputs that they sell to each other as fractions of 

their total output, excluding direct sales to consumers. We then construct three different proxies for 

input-output linkages. First, we consider the maximum between the share of inputs that sector i is 

buying from sector j, and vice versa. Next, we recover the maximum between the share of output 

that sectors i is selling to sector j, and vice versa. These capture upstream and downstream linkages, 

respectively. Finally, we consider the maximum of these two proxies as a synthetic measure of the 

linkages between pairs. The mean for all three proxies is close to zero (see Table 1), suggesting that 

most industries do not share intermediate goods to an important degree. In fact, 30% of the sector 

pairs do not share any input or output, while 75% of the pairs share less than 0.005.  

To construct a proxy for knowledge spillovers, we track patent citation flows using 

information on UK inventors contained in the European Patent Office (EPO) data for the years 

1997 to 2009. Approximately 144,000 patents were filed by UK inventors over this period generating 

more than 77,000 citations. Using this information, we measure the extent to which patents 

associated with industry i cite patents associated with industry j and vice-versa. The main difficulty 

lies with creating a mapping between sectors and patents – which are categorized using technological 

classes rather than a standard industrial classification. Following the literature, we adopt two 

approaches and use: (1) a probabilistic mapping based on the Industry of Manufacture (IOM); and 

(2) an alternative probabilistic mapping based on the Sector of Use (SOU). After applying these 

procedures, we investigate the number of citations that a patent in sector i is receiving from patents 

                                                      
6We refer to this as “input sharing” in line with prior usage even though there are both upstream and 

downstream elements to our measure, as in Krugman (1991). 
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in sector j, and the number of patents in sector j that a patent in sector i is citing. These measures are 

analogous to the input sharing proxies described above. Our two indicators consider the maximum 

patent-citation flow between sector i and sector j – normalized by total citations in that industry – 

using either the IOM or the SOU probabilistic mapping. Descriptive statistics in Table 1 show that 

the average knowledge spillover shares are 0.012 (SOU) and 0.016 (IOM). Both distributions are 

highly skewed with median values in the order of 0.003/0.004, and 75% of the industries having 

citation flows below 0.011/0.013.  

In addition to Marshallian agglomeration forces, we also control for access to resources and 

infrastructure that might impact location choices. Using the ONS 1995-1999 I-O Tables, we gather 

information on industries’ use of primary resources and other non-manufactured inputs in order to 

quantify industry-pair similarity in these respects.7 Specifically, we build a measure of the share of 

inputs that an industry is purchasing from the seven I-O primary “natural resource” industries 

(including agriculture, forestry and fishing, and mining and quarrying). We also control for usage of 

water and energy by separately considering the share of inputs bought from water-related service 

companies, and from energy-related industries (both electricity and gas). Further, we consider the 

share of inputs bought from transport-related sectors (including railways, air, water and other land 

transport) to control for the importance of transport costs. Finally, following Overman and Puga’s 

                                                      
7Ellison et al. (2010) address this issue by using the US spatial distribution of natural resources, 

transport costs and labor inputs to predict coagglomeration stemming only from differences in 

resource costs. This approach cannot be replicated in the UK because the geographical scale of the 

country makes the spatial distribution of resources and “natural infrastructure” – e.g. access to the 

sea – much more homogeneous, and because differences in the cost of resources – such as gas, oil, 

water and electricity – are negligible due to regulatory constraints. 
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(2010) analysis of labor pooling, we create a proxy for access to business services by considering the 

share of inputs bought from this sector.8 We construct our proxies for the dissimilarity of industry 

pairs by measuring (one half of) the absolute value of the difference in the shares of these various 

inputs used by the pair. Descriptive statistics are presented at the bottom of Table 1.  

C. Beyond Marshall: adaptive and organizational aspects of agglomeration  

 As discussed in the Introduction, there has been considerable empirical research on 

Marshall’s three forces. The literature on non-Marshallian aspects of agglomeration is much less 

developed. Within this literature, the approach that has received the most attention is Jacobs (1969), 

who focuses on adaptation, specifically on the unplanned nature of “the creation of new work.” It is 

common to treat Jacobs as proposing an alternative to Marshall, as in the Glaeser et al. (1992) and 

Henderson et al. (1995) papers on urban growth. There is a natural sense in which this is true. 

Marshall sees increasing-returns forces as promoting the spatial concentration of industry. Jacobs, in 

contrast, focuses primarily on knowledge spillovers, and sees the creation of new work as being 

enhanced by local diversity. There is another sense, however, in which Jacobs and Marshall ought 

not to be presented as polar opposites. Jacobs’ analysis of knowledge is certainly in the spirit of 

Marshall, and she clearly mentions the labor and input market aspects of the creation of new work. 

 In this spirit, this paper examines complementarities between Marshall and Jacobs and offers 

a novel approach to investigating these issues. Previous work has studied the ‘Marshall vs. Jacobs’ 

dichotomy by regressing measures of local productivity, growth, or wages on measures of local 

specialization or diversity – typically proxied by a Herfindahl index of industrial concentration. While 

                                                      
8This group includes, among others, computer services, R&D activities, legal consulting, accounting 

services, market research and management consulting, and advertising. Results do not depend on the 

inclusion of this variable. 
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the specialization measure is tightly tied to Marshall’s ideas, the diversity variable is only loosely 

linked to Jacobs. Her intuition is that a diverse city offers opportunities for unplanned, 

unpredictable, or otherwise unusual interactions between different industries, leading to increased 

creation of new work arising from these unexpected connections.  

 The idea behind our approach is to focus on differences between industry pairs that 

agglomerate frequently and those that do not. While there are many factors that determine whether 

agglomeration is more or less common, the unplanned, unpredictable, or unusual interactions at the 

heart of Jacobs’s analysis are more likely to be found among industry pairs that are infrequently co-

located. Conversely, planned or otherwise predictable interactions that arise from strategic migration 

decisions and entrepreneurial survival are likely to be found among industry pairs that co-locate 

frequently. Following this logic, we investigate heterogeneity in the response to Marshallian forces 

between more- and less-coagglomerated industry pairs using quantile regressions to identify Jacobs-

type agglomeration economies. 

 Jacobs is not Marshall’s only important successor in the study of agglomeration. In Chinitz 

(1961), New York differs from Pittsburgh because its industry is organized in a less-concentrated 

fashion, making it a friendlier environment for startups and innovation. Porter (1990) similarly argues 

that competition is healthy for a business cluster. Vernon (1960) writes about the importance of 

“instability” for increasing-returns industries, arguing that newer industries with more entry are the 

ones that benefit more from locating in a large city. Others have emphasized the importance of 

human capital (e.g., Rauch, 1993, and Glaeser and Saiz, 2004, Moretti, 2004) and creativity (Florida, 

2003), both of which are related to a city’s adaptive capacity. As with Jacobs, we believe these 

approaches to agglomeration should be seen as complements to Marshall rather than as substitutes 

or alternative explanations. This intuition informs our empirical work. 
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 In order to test these non-Marshallian mechanisms, we examine the pattern of heterogeneity 

in Marshallian agglomeration effects using a sectoral breakdown that captures the various non-

Marshallian approaches. To begin, we use information collected by the OECD in 1997 to classify 

sectors as ‘high-’ or ‘low-technology.’ Next, we gather data on the share of college graduates in each 

industry using the LFS and classify sectors as ‘high-’ or ‘low-education’ according to whether this 

share is above or below the median (at 0.078). Finally, we use information gathered from within the 

BSD to split our sample along the following dimensions: (a) sectors where the first year of opening 

of currently operating plants is above or below the median across all years and sectors (at 1967). 

These industries are labelled ‘new’ and ‘old’, respectively;9 (b) sectors where the share of entrants – 

i.e. the incidence of new firms at time t in the total number of firms in that year – is above or below 

the median across all years and industries (at 0.10). These are labelled ‘dynamic’ and ‘steady’ sectors; 

(c) sectors where the average size of the entrants – i.e. firms operating at time t that did not exist at 

time t-1 – is above or below the median size across all years and sectors (at 8.59). We label these as 

‘large entrant’ and ‘small entrant’ sectors; and (d) sectors where the average size of the incumbents – 

i.e. firms operating both at time t and t-1 – is above or below the median size across all years and 

sectors (at 18.95). These are labelled ‘large incumbent’ and ‘small incumbent’ sectors, respectively.  

 Given that the level of observation in our dataset is the industry pair, we use this information 

to classify combinations where both sectors belong to one group (e.g., both high-technology or both 

low-technology) and mixed pairs where the two sectors belong to different groups (e.g., one high- 

                                                      
9We rank industries by the age of the oldest currently operating plant, not the age of the industry itself. 

We believe that this captures the degree to which an industry’s operations are settled. However, 

given that our data refers to UK manufacturing from 1997 to 2008, it is hard to detect the births of 

new industries.  
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and one low-technology). More details about the construction of these groupings, number of 

observations in each block, and further descriptive statistics are presented in Table W1 in the Web 

Appendix. 

 We then study the pattern of heterogeneity in the intensity of the Marshallian forces across 

these groups to shed light on non-Marshallian approaches to agglomeration. In particular, we analyze 

heterogeneity along the ‘new’ vs. ‘old’ and ‘dynamic’ vs. ‘steady’ dimension to provide evidence about 

adaptive aspects of agglomeration, as in Vernon and Jacobs. We focus on the ‘high tech’ vs. ‘low 

tech’ and ‘high education’ vs. ‘low education’ spectrum to quantify the importance of related ideas 

about human capital and adaptive capacity. Finally, we study heterogeneity along the dimensions of 

entrants’ and incumbent’s size to shed light on the organizational aspects of agglomeration, as in 

Chinitz. 

III. Coagglomeration and Marshallian microfoundations: UK Evidence 

A. Univariate and multivariate OLS regression analysis 

In this section we study the microfoundations of agglomeration economies by linking the 

proxies for the three Marshallian forces discussed above to industry-pair coagglomeration. Our 

results come from regressions of the following kind: 

γC
ijt = α + βLP LPij + βIO IOij + βKS KSij + Σk=1

5 λk Dissij
k
 + εijt,    (2) 

where γC
ijt is the Ellison et al. (2010) measure of coagglomeration between sectors i and j at time t; 

LPij, IOij and KSij are proxies for labor pooling (LP), input sharing (IO) and knowledge spillovers 

(KS) between sectors i and j averaged over the relevant years (see Section II.C for details); and Dissij
k
 

is one of the five measures of dissimilarity between sectors i and j in terms of use of primary 

resources and non-manufacturing inputs. Finally, εijt is an error term uncorrelated with all other 

variables. We allow for an arbitrary degree of correlation in the shocks of sector pairs over the years 

and cluster standard errors at this level. The dataset consists of 4,371 unique combinations of 94 
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manufacturing sectors over 12 years, giving a total of 52,452 observations.10 Throughout the analysis, 

we standardize our variables to have unitary standard deviation. 

 As Ellison et al. (2010) note, the motivation for this approach is that the characteristics of 

industries that frequently co-locate can shed light on the microfoundations of agglomeration 

economies. For instance, if industries that frequently buy from and sell to each other coagglomerate 

to a large degree, this suggests that input sharing is an important agglomeration force. This in turn 

requires that coagglomeration is related to the strength of the agglomeration economies operating 

within the industry pair.  

In addition to being intuitively appealing, Ellison et al. (2010, Mathematical Appendix) prove 

this property formally in the context of a specific model of agglomeration with industries partitioned 

into groups that must co-locate in order to have positive profit. With sequential location choices, in 

this all-or-nothing agglomeration model industries that benefit from coagglomeration will 

coagglomerate. The authors note that it is likely that this result would hold in weaker form with 

somewhat weaker agglomeration economies. It is worth noting, however, that there is a fundamental 

coordination problem in the determination of city composition (Helsley and Strange, 2014), and it is 

possible that coagglomeration fails to occur even when it would be mutually beneficial or that 

coagglomeration does occur when it is not. Nonetheless, there are good reasons to believe that 

                                                      
10Our proxies for the Marshallian forces are measured at the beginning of the observation window 

and have no time variation. If we collapse γC
ijt to its average across all years and run regressions that 

exploit variation over 4,371 observations only, we find identical results to those reported here. This is 

expected as the two approaches produce identical point estimates and significance levels with 

clustered standard errors. The reason why we keep the dataset at the year × industry-pair level is that 

in some robustness checks we stagger and modify our observation window.  
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equilibrium coagglomeration does increase when the strength of the agglomeration effect is stronger. 

First, there is a robust empirical relationship between proxies for agglomeration forces within an 

industry pair and equilibrium coagglomeration. In addition to Ellison et al. (2010), a number of 

papers (Kolko, 2010; Jacobs et al., 2013; and Gabe and Abel, 2013) find evidence of this sort. Thus, 

it seems that the selection among the multiple equilibria noted by Helsley-Strange is skewed in favor 

of a positive relationship between the benefits of coagglomeration and the coagglomeration that 

occurs in equilibrium. Second, O’Sullivan and Strange (2015) use an agent-based model to select 

from multiple-equilibrium city compositions. They also show a positive relationship between the 

strength of the spillovers within an industry pair and equilibrium coagglomeration. 

 Focussing on coagglomeration, rather than on the cross-sectional pattern of industry 

clustering (as in Audretsch-Feldman, 1996, and Rosenthal and Strange, 2001), has additional 

advantages. First, this approach looks directly at links between industry pairs and thus sheds light on 

the mechanisms of agglomeration in a way that looking at the concentration of industries cannot. 

Second, studying the links between coagglomeration and pair-wise Marshallian forces helps dealing 

with unobservables that could bias the results when the unit of observation is the industry – but are 

less likely to be important when the analysis is carried out at the industry-pair level. We return to this 

point in Section III.B. Of course, the emphasis we put on these advantages does not imply that we 

consider coagglomeration as the only valid approach to studying the microfoundations of 

agglomeration economies. We simply argue that it is a valid approach and one we can flexibly use to 

study heterogeneous patterns by neatly characterising the nature of industry pairs. 

The first set of results is presented in Table 2. Columns (1) and (2) tabulate results from 

univariate regressions where we consider only one Marshallian force at the time (and include 

dissimilarity controls in Column 2). The results show that labor pooling has the largest and most 

significant association with coagglomeration. A one standard deviation increase corresponds to 19% 
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of a standard deviation increase in γC. For input sharing and knowledge spillovers, the corresponding 

increases are 14% and 10%, respectively. This pattern is consistent with the results by Ellison et al. 

(2010) who also document weaker agglomerative effects from knowledge spillovers. Interestingly, 

controlling for the dissimilarity proxies does not change in any meaningful way the three Marshallian 

coefficients, suggesting that access to natural resources and non-manufacturing industries does not 

bias the results in simple models without the additional controls.  

Columns (3) and (4) present coefficients from the multivariate regressions. We still find labor 

pooling to have the strongest relationship with coagglomeration with an estimated effect of 

approximately 0.16 of a standard deviation. On the other hand, the coefficients on input sharing and 

knowledge spillovers decline to 0.082 and 0.024-0.031, respectively. All in all, our findings are 

comparable to Ellison et al. (2010), with all three of Marshall’s forces showing a positive relationship 

with coagglomeration.11 

We carry out a number of robustness checks.12 First, we study whether upstream linkages are 

more important than downstream connections. We find that the effect of input sharing is twice as 

large as the effect of output sharing, but this distinction is not significant and does not affect the 

other coefficients. Second, we investigate whether focusing on a specific year in our sample changes 

the overall picture. To do so, we run regressions for 1997, 2002 and 2008 separately. We find a slight 

                                                      
11Note that we follow Ellison et al. (2010) and do not correct γC for differences in the variance of the 

area-industry employment shares. We assess the robustness of our findings against this issue by 

including in our specification industry i and industry j dummies. When we do this, we find very 

similar labor-pooling effects; slightly smaller, but still significant input-output effects; and larger and 

more precisely estimated knowledge-spillover effects. 

12Results can be accessed in the Web Appendix (Table W2). 
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attenuation in the effects of LP, IO and KS as we move towards more recent years, but the 

differences are not substantial. Third, we investigate whether using the proxy for knowledge 

spillovers based on the sector-of-use (SOU) probabilistic mapping affects the findings. The 

conclusions reached so far still hold: all three Marshallian forces matter, though the effect of labor 

pooling seems somewhat weaker. We also find that the link with knowledge spillovers is stronger 

with this proxy, while the effect of input sharing is weaker. Since the SOU mapping is partly based 

on the technology (and the related patents) contained in goods bought and sold as intermediates 

across industrial sectors, it incorporates some of the linkages stemming from input sharing and 

attenuates the effect of IO. Given this issue, our preferred proxy is the one based on the industry-of-

manufacture (IOM) mapping which we will use throughout the rest of the paper.13  

Finally, we check that our results are not affected if we change our measure of 

coagglomeration to: (a) be based on number of plants as opposed to total employment; (b) be based 

on local units belonging to single-plant enterprises only; (c) be based on both urban and rural areas. 

We also experiment with excluding publishing (SIC221) and printing and related activities (SIC222) 

                                                      
13One related concern is that input-output linkages partly capture knowledge spillovers because our 

KS proxy measures the latter imprecisely. To investigate this issue, we run specifications where we 

include two-way and three-way interactions of the Marshallian forces. The only significant interaction 

is the one between IO and KS, with a negative and significant coefficient of -0.009. The effects of 

IO and LP remain very similar, while the effect of KS rises to around 0.100 (significant). This 

suggests that the input-sharing and knowledge proxies do not capture similar effects. This pattern is 

consistent with the sectoral heterogeneity presented later in the paper, where we show many 

instances in which pairs that significantly respond to knowledge spillovers are less affected by input-

output links. 
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since these sectors are classified among services in the US industrial classification. None of these 

robustness checks affect our findings.  

B. Addressing endogeneity concerns 

The literature on the microfoundations of agglomeration economies has put forward two 

sources of possible bias in OLS estimation: (i) reverse causation; and (ii) sorting. In this section, we 

discuss these issues and provide a set of robustness checks and instrumental variable (IV) estimates 

to address them. 

The reverse causation argument is laid out in Ellison et al. (2010). Firms in industries with 

strong Marshallian links could choose to locate together in order to benefit from those links. 

Alternatively, firms that locate together for other reasons could later forge Marshallian links. In 

contrast to Ellison et al. (2010), we see the reverse phenomenon of coagglomeration leading to 

productive links as being itself a type of agglomeration economy. For instance, if two firms realize 

after choosing locations that they can hire from the same labor market, then they benefit from labor 

pooling. Similarly, if two firms learn from each other ex post, then the resulting technological 

improvement is an instance of knowledge spillovers. These agglomeration economies are in fact in 

the spirit of Jacobs (1969), who gives numerous examples of accidental agglomeration economies. 

Even so, we describe below a strategy to address this issue and arrive at estimates that capture the 

effect of Marshallian links on agglomeration, rather than the reverse.  

As for sorting, the main concern is that agglomeration – which increases productivity in 

possibly unobservable ways – might be correlated with coagglomeration. To clarify matters, consider 

two industries, e.g. apparel and printing/publishing, which are agglomerated for historical reasons in 

London. Assume that both industries are highly productive because of some advantages connected 

to this location. Further assume that more productive industries are able to use a wider range of 

workers because they are better at spotting the ‘right types’ in a large agglomerated market. 
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Conversely, think of two other industries, e.g. wood laminate and manufacturing of furniture, that 

operate in a small city, are low productivity and not efficient at sharing workers. Estimating the effect 

of labor pooling on coagglomeration by comparing these pairs would bias the results by conflating 

the true effect of LP with a productive advantage arising because of urbanization economies enjoyed 

by firms locating in more agglomerated places. Although this argument is logically correct, the 

unobservables that would give rise to these patterns would need to have a particular structure and 

imply that agglomeration is correlated to both coagglomeration and the strength of the linkages 

between sectors measured by our proxies. One of the advantages of the method developed by 

Ellison et al. (2010) is that, by studying the relation between co-location and industry-pair links, the 

approach deals with a number of unobservables that are not easily related to pair-specific linkages. 

Therefore, we believe the arguments brought forward in the literature are not sufficiently strong to 

undermine our findings. Nevertheless, we next provide a number of additional results that lend 

support to our conclusions.14
 

A first set of regression results is presented in Table A2 in the Appendix. Column (1) 

mitigates reverse causation by staggering our regressions and considering the effect of the three 

Marshallian forces measured up to 1999 on coagglomeration γC
 for the years 2000-2008. This check 

confirms our previous results. Columns (2) to (5) investigate whether any correlation between 

agglomeration and coagglomeration has the potential to bias our findings. To begin with, we exclude 

London – the biggest agglomeration in the UK – from the calculations of γC and re-estimate our 

                                                      
14The model in Davis and Dingel (2013) also predicts equilibria that are consistent with 

coagglomeration in the absence of sector-pair linkages. This is because in their framework labor 

supply reflects urbanization economies and sectors with similar skill intensities exhibit similar relative 

employment shares. Our robustness checks address this possibility. 
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empirical models. Although we find that the effect of KS is attenuated, our broad conclusions are 

unaffected. In Columns (3) and (4) of the table we include proxies for the extent of agglomeration of 

the areas where the two sectors in the pair are operating. In particular, we include: (i) the mean 

population density of all the TTWAs in which the sectors are operating, averaged across the pair 

(Column 3); and (ii) the mean employment density of all the areas where the sectors are operating, 

averaged across the pair (Column 4).15 Employment density is calculated as total employment across 

all sectors in a TTWA divided by the area size expressed in square kilometers, so this proxy captures 

general urbanization economies – much as population density – stemming from operating in a larger 

market.16 Adding these controls to our regressions has little effect on our estimates. Finally, in 

Column (5) we add to our specification the average Herfindahl index across the sector pair to check 

whether industrial concentration (as opposed to urbanization economies) affects our findings. Once 

again, we find no evidence that our results are sensitive to these considerations and confirm our 

previous conclusions. 

To conclude this section, we discuss a number of IV regressions where we instrument the 

three Marshallian forces using proxies constructed using US data. This approach follows Ellison et 

al. (2010). We instrument LP using a measure of the correlation between sector pairs in their use of 

different types of workers as categorized by the National Industrial-Occupation Employment Matrix 

(NIOEM) published by the Bureau of Labor Statistics. We instrument IO with an identical measure 

                                                      
15Controlling for the dissimilarity of employment/population density, instead of the mean, does not 

affect our results. 

16The correlation between the two urbanization proxies and coagglomeration is small and negative at 

-0.148 for population density and -0.082 for employment density. These numbers shrink to zero and 

0.007 if we exclude London. 
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obtained using the 1987 Benchmark Input-Output Accounts published by the Bureau of Economic 

Analysis (BEA). Finally, we instrument the flows of patent citations among UK inventors as 

recorded by the EPO using the flows of citations among US inventors as tracked by the NBER 

Patent Database. More information is provided in the Web Appendix.17 The validity of this approach 

relies on thoroughly controlling for co-location that is driven by natural advantages and shared use of 

non-manufacturing resources. Hence in all our IV specifications we control for the proxies for sector 

dissimilarities.  

Results are presented in Table 3. Following Ellison et al. (2010), we exclude pairs where the 

two three-digit industries fall in the same two-digit group and a number of sectors that were 

aggregated in the data construction process. Columns (1) and (3) show that OLS results do not 

change as a result of these exclusions. Column (2) presents IV regressions where we include and 

instrument one Marshallian force at the time. The IV coefficients are very close to their OLS 

counterparts in Column (1). Column (4) presents multivariate IV regressions where we enter and 

instrument all three Marshallian forces simultaneously. We find positive and significant effects for LP 

and IO. The size of the associations is similar to the OLS counterparts (see Column 3). However, KS 

loses its significance and turns slightly negative. We believe this is due to collinearity between 

measures that makes instrumented knowledge spillovers hard to disentangle from labor pooling and 

input sharing. A similar argument is put forward by Ellison et al. (2010) who report in their 

Appendix weak results when instrumenting KS. To partly address this issue, in Columns (5) to (7) we 

enter the proxies for Marshallian forces two at the time. In Column (5), we include LP and IO and 

confirm that both have a positive and significant association with γC. In Column (6), we consider IO 

and KS. We find that both measures are positively and significantly associated with coagglomeration 

                                                      
17We are extremely grateful to William Kerr for sharing his data and codes with us. 



 

23 

 

and that the KS estimate is very similar to the one documented using OLS (see Column 3). Finally, in 

Column (7) we instrument LP and KS and find that both are positively associated with 

coagglomeration. Although only LP is significant at conventional levels, the coefficient on KS points 

in the right direction and is reasonably sizeable – at about half of its OLS counterpart. All in all, the 

evidence in Table 3 confirms our previous findings and supports our claim that endogeneity is 

unlikely to significantly bias OLS results. 

IV. Heterogeneous agglomeration: Jacobs meets Marshall  

 This section begins the presentation of results that allow for heterogeneity across industries. 

Specifically, it takes a new approach towards examining Jacobs’ (1969) analysis of how new work is 

created by exploring complementarities between Jacobs and Marshall. The approach has at its core a 

simple idea: the coagglomeration of industries that only rarely co-locate is different from the 

coagglomeration of industries that are often found together. It is the former that captures the sorts 

of unplanned, unpredictable, or unusual interactions that Jacobs has in mind. To test this idea, we 

estimate the Marshallian models discussed in the previous section without constraining the 

Marshallian forces to have the same effect for all industry pairs. More precisely, we estimate equation 

(2) in a way that allows the effects to vary between the most and least coagglomerated pairs. This 

estimation is carried out using quantile regressions that simultaneously include all three Marshallian 

forces as well as controls for natural advantages. Figures 1.A–1.C present the results for labor 

pooling, input sharing, and knowledge spillovers, respectively. The confidence intervals on the 

figures come from bootstrapped standard errors clustered on industry pairs.18  

                                                      
18We performed a similar analysis where we investigate heterogeneity in the effect of the Marshallian 

forces by considering the quantiles of the unconditional coagglomeration distribution. This approach 

 



 

24 

 

 It is immediately clear that the pattern of aggregate results in Table 2 conceals considerable 

variation across industry pairs. Figure 1.A presents results for labor pooling. There is clear 

heterogeneity across pairs according to their coagglomeration. While labor pooling has a positive and 

statistically significant contribution to industry-pair coagglomeration across the board, the effect is 

much larger for the less coagglomerated pairs. Labor pooling has an association of around 0.22 and 

0.16 (both significant) for industry pairs in the two bottom deciles, declining to around 0.06-0.08 

(significant) in the top half of the coagglomeration distribution. Figure 1.B shows a pattern for input 

sharing that is exactly opposite. For this force, the association is larger for the most coagglomerated 

pairs. The input-sharing coefficient increases from approximately 0.03 (insignificant) for the bottom 

decile to 0.15 and 0.23 (both significant) for the top two deciles. Figure 1.C shows yet another 

pattern, with the effect of knowledge spillovers positive and significant up to the 60th percentile. The 

coefficient becomes smaller over the range, declining from 0.03 in the bottom decile to 0.02 at the 

median, and the estimation becomes increasingly imprecise for the most coagglomerated industries, 

for which the effect is no longer significantly different from zero. 

 The pattern of heterogeneity has interesting implications for Jacobs’ ideas. The input sharing 

results in Figure 1.B are contrary to Jacobs. They suggest that input sharing primarily is associated 

with the co-location of pairs that coagglomerate extensively. There is little to be gained from links 

between industries that are not very coagglomerated. In other words, there is strong evidence that 

interactions that are most typical and are likely to be planned have the largest association with 

coagglomeration. It is useful to consider an example from Marshall. He writes that:  

                                                                                                                                                                            

yields similar results. This is not surprising given that the effects of the three Marshallian variables 

are not significantly affected by the inclusion of controls as shown in Table 2.  
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“Many cutlery firms [in Sheffield] for instance put out grinding and other parts of their work, 

at piece-work prices, to working men who rent the steam power which they require, either 

from the firm from whom they take their contract or from someone else.” (Marshall, 1890, 

8th ed., p. 172). 

Our data show that Sheffield continues to be a center of cutlery production today. Moreover, cutlery 

and manufacturing of basic iron and steel is one of the most highly coagglomerated pairs. It is 

entirely understandable that a cutlery maker would deliberately plan its location in a way that secures 

its metal input supply. See Table A1 in the Appendix for other highly coagglomerated industry pairs, 

such as spinning of textiles and textile weaving – also discussed by Marshall in a similar fashion. 

 On the other hand, the results on labor pooling and knowledge spillovers are much more in 

the spirit of Jacobs. Regarding knowledge, the effects are not even significant for highly 

coagglomerated pairs. As for labor pooling, the effects diminish drastically as coagglomeration 

increases. In other words, both of these sorts of interactions between industries have a larger effect 

when the industries co-locate less frequently and interactions are more likely to be the sort of 

unexpected connections on which Jacobs focuses.19  

 Three issues are worth considering. First, working at the TTWA level of aggregation could 

affect our findings. 20 As noted previously, TTWAs are defined by commuter flows, which depend on 

the scale of labor markets. This could make it more likely to find a relationship between 

                                                      
19There is an interesting parallel here to the Duranton and Puga (2001) nursery-city phenomenon: 

certain interactions have greater effects with less frequent co-location; others have greater effects 

with more frequent co-location. 

20Rosenthal and Strange (2003) provide evidence that the Marshallian forces have different effects on 

agglomeration depending on the geographical scale of analysis. 
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coagglomeration and labor pooling than one between coagglomeration and input sharing, since 

input-output linkages could take place over greater distances. To address this issue, we replicate the 

analysis using 18 macro-regions (as defined in the BSD data). Our results are presented in Figure W1 

in the Web Appendix and fully confirm our findings. We also check whether our results change if we 

maintain the original TTWA geography, but focus only on the 28 biggest cities and conurbations out 

of 84, i.e. the top 30%. We find this is not the case.  

 Second, the labor pooling proxy is based on the correlation between the two industries’ 

occupation mixes, while the input sharing variable is constructed using maximum flows in the sector 

pair. This could imply that our approach is skewed towards picking up significant input-output 

linkages only for highly coagglomerated industries, while the labor pooling measure could be more 

significant in other parts of the distribution. We believe this issue does not affect our conclusion 

since we find that knowledge spillovers behave very much like labor pooling – despite being 

measured in the same way as input sharing (i.e. as the maximum flow of patent citations across 

pairs). This suggests that the pattern we observe is not mechanically driven by the way our proxies 

are constructed.  

 Third, we do not observe whether or not coagglomeration has arisen from unplanned or 

unpredictable accidents, as in Jacobs. Instead, we only observe the frequency of an industry-pair 

coagglomerating. Although this is likely to be related to whether coagglomeration is planned or 

unplanned, other forces also contribute to whether an industry pair coagglomerates. For instance, 

pollution controls could make it more difficult for heavy industries to co-locate. 

Agglomeration/dispersion forces such as these introduce noise into the process determining 

coagglomeration and create a sort of measurement error in the mapping between the 

planned/unplanned nature of agglomeration and co-location frequency. Presumably, this kind of 

measurement issues would make it more difficult to obtain the striking pattern that we see in the 
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quantile models – in particular the remarkable difference between labor pooling and input sharing. 

This suggests that our findings might understate the heterogeneity of Marshall’s agglomeration forces 

along the planned/unplanned dimension.  

V. Heterogeneous agglomeration: Adaptation and organization 

A. Non-Marshallian approaches 

 This section presents our empirical results on the adaptational and organizational aspects of 

agglomeration economies. We extend the traditional Marshallian approach by examining how the 

patterns of coagglomeration depend on the interaction between Marshallian forces and the nature of 

the industry in question. We therefore allow Marshall’s microfoundations to be complementary to 

other explanations.   

 As a preliminary step, we look directly at the relationship between industry characteristics and 

coagglomeration by including the industry variables discussed in Section II.C – i.e. year-of-opening, 

entry share, technology level, college graduate share and size of entrants/incumbents – as controls in 

equation (2). The variables are averaged across the industry pair, except for the technology variable, 

where it is not possible to use an average. In this case, we construct dummy variables indicating 

whether both sectors are high-technology or whether only one industry is. Table 4 presents the 

results from these models. The first important finding is that the coefficients of the Marshallian 

forces are fairly constant as different controls are introduced. The coefficients are also similar in 

magnitude to the corresponding effects in Table 2 showing that the estimates of the Marshallian 

forces are robust. 

 Turning to the non-Marshallian variables, some interesting patterns emerge. We find a 

positive and significant coefficient on year-of-opening (the inverse of age) in Column (1) and an 

insignificant coefficient on entry share in Column (2). The former result is consistent with the 

nursery city/unplanned interactions ideas discussed above. The latter is weakly supportive. The 



 

28 

 

dummies for high- and mixed-technology pairs in Column (3) are instead both negative and 

significant. Controlling for Marshallian forces, we see more coagglomeration of low-technology 

industries. This result is the opposite of what one might expect to find based on the predictions of a 

nursery city model. In Column (4), the coefficient of average college share is significant and negative. 

Given the strength of human capital effects in other models (e.g., Rauch, 1993, or Rosenthal and 

Strange, 2008), this is unexpected.21 Finally, entrant size has a positive and marginally significant 

coefficient in Column (5), as does incumbent size in Column (6). Controlling for Marshallian forces, 

we do not find much of a small firm effect. As shown in Column (7), jointly controlling for all the 

non-Marshallian factors does not affect our conclusions. All coefficients retain their sign, size and 

significance – with the exception of the proxy for the size of entrants. This is not surprising given its 

high correlation (0.712) with the proxy for the size of incumbents. In sum, simply including controls 

for non-Marshallian forces using industry-pair averages in a coagglomeration/microfoundation 

model, while failing to allow for heterogeneity, generates weak and sometimes puzzling results. We 

now therefore turn to less restrictive models that let the Marshallian effects differ across industries.22 

                                                      
21These results hold if we exclude London. Conversely, dropping the three Marshallian proxies from 

the specifications yields insignificant estimates of the effect of either human capital or technology on 

coagglomeration.  

22Our models are at the industry-pair level. Because of this, ‘binning’ provides a more straight-

forward approach to study complementarities between Marshallian and non-Marshallian theories 

than interacting Marshallian forces with industry characteristics. Consider, for example, firm size. We 

are interested in how Marshallian links between industry pairs relate to firm size, as in Chinitz. 

Following the ‘binning’ approach, we construct three groups of industry pairs. In the first, both 

industries are characterized by small firms; in the second, the pair is characterized by large firms. 
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B. New industries and entry 

 We begin to look at adaptation and nursery city ideas by estimating models based on two 

partitions of industry pairs. The first focuses on industry age, captured by the age of the oldest active 

plant. The second focuses on the share of new firm entry in the industry. This approach generates 

the partitions of pairs detailed in Section II. In the case of age, the new industries group includes 

pairs where both sectors are younger than the median age across industries. In the case of entry, the 

dynamic industries group includes pairs where both industries have an entrant share that is above the 

median. In both cases, we include additional controls for, respectively, age and entry share averaged 

across the two sectors in the pair. 

 Results are reported in Table 5. For industry age, we find the largest agglomeration effects 

for new industry pairs. This is true for all three Marshallian forces. For labor pooling, the effects are 

smaller for the mixed and the old industry pairs (at 0.153 and 0.081, respectively) than for new pairs 

(at 0.310). However, all coefficients are highly significant and the extent of variation in these effects 

is more muted than for the other two Marshallian forces. The knowledge spillover results are very 

much in the nursery city/unstable industry spirit discussed above. They show knowledge effects that 

are five to ten times stronger for young pairs, at 0.236 (significant), than for mixed and old pairs, at 

0.040 (significant) and 0.026 (insignificant), respectively. The same is true for the results on input 

sharing. The coefficients move from 0.270 (significant) for new industry pairs to 0.049 (insignificant) 

                                                                                                                                                                            

Chinitz makes sharp predictions about what we should expect for these groups. The third group has 

‘mixed’ pairs, with one characterized by small firms and the other by large firms. In this case, Chinitz 

does not make any predictions. While it would be possible to construct an average firm size variable 

and estimate an interactive specification, the presence of mixed pairs would compromise the 

interpretation of the results from such an approach. 
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for the mixed group, and finally to 0.041 (significant) for old pairs. While the pattern of effects on 

input sharing is not consistent with a nursery city model, the heterogeneity in the coefficients for 

knowledge spillovers clearly supports this theory.23 

 The results have a relatively similar pattern for industry dynamism. Labor pooling is always 

significant with the coefficients for the three groups fairly constant and ranging between 0.181 and 

0.144. We still find that the largest result for knowledge spillovers occurs for the dynamic industries 

at 0.181 (significant). This shrinks to 0.033 (significant) and -0.020 (insignificant) for mixed and 

steady industry pairs. Input-output linkages are closer to a nursery pattern in these dynamic-industry 

models than in the previous age grouping. Input sharing displays significant coefficients for the 

mixed and the steady pairs, at 0.103 and 0.052 respectively, and has no significant effect for dynamic 

industries.24 

C. High-technology and high-education 

 We now turn to the related issue of how the relationship between Marshallian forces and 

coagglomeration depends on the technological status of the industry in question. As noted above, we 

characterize an industry’s technological status (high-technology or not) according to the OECD 

                                                      
23We further investigate whether new/old pairs respond differently to Marshallian linkages when they 

are measured closer/further in time relative to coagglomeration. To do this, we run separate 

regressions for 1997, 2002 and 2008. The patterns presented in Table 5 are confirmed with no 

evidence of additional significant heterogeneity. 

24We checked that our results continue to hold if we focus on single-plant enterprises to identify the 

cut-offs used to define groups in Table 5 so that new entrants are stand-alone ventures, and not 

expansions of existing activities. 
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(1997) classification. This generates three types of industry pairs: both high-technology, both low- 

technology, or mixed. We estimate equation (2) for each type. 

 Results are reported in Table 6. We find that labor pooling is significant in all three groups, 

but its association with coagglomeration is much larger for the low-technology industry group (at 

0.332) than for the high-technology group (at 0.046). Input sharing also has the largest coefficient in 

the low-technology group, at 0.091. While this Marshallian force has positive coefficients for all three 

groups, the high-technology coefficient is small and insignificant. Knowledge spillovers display the 

opposite pattern. The largest coefficient is found for high-technology (significant at 0.053), while the 

effect becomes smaller and insignificant for low-technology (at 0.039). 

 These results clearly show that agglomeration economies are not simply a high-technology 

phenomenon. Labor pooling has a stronger effect in the low-technology group, while input sharing is 

stronger in the mixed- and low-technology groups of industry pairs. Knowledge spillovers, 

reassuringly, is different – with the largest effect for high-tech industries. This suggests that some of 

the weaker results for knowledge spillovers reported above, and also presented in Ellison et al. 

(2010), arise because the sample includes low-technology industries (as well as old and steady 

industries) where knowledge spillovers are not important. 

 Table 6 also presents results of a similar exercise where industries are partitioned according 

to the education levels of their workers. In these specifications, we further control for the average 

share of college graduates across the pair in order to control for direct effects of this variable within 

groups. The pattern of results is similar to the high-technology vs. low-technology heterogeneity 

discussed above. Knowledge spillovers have significant effects in high-education (at 0.048) and 

mixed-education (at 0.050) industry pairs, but not in low-education pairs (insignificant at 0.030). 

Conversely, input sharing and labor pooling have the largest and most significant effects in low-
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education pairs, at 0.123 and 0.391 respectively. These shrink to 0.007 (insignificant) and 0.046 

(borderline significant) for the high-education pairs. 

 Taken as a group, these findings are broadly consistent with learning playing an important 

role in the agglomeration process. Jacobs (1969) calls this phenomenon “the creation of new work”. 

Vernon (1960) instead discusses the process by which new products reach stability. The evidence is 

also consistent with Duranton and Puga’s (2001) nursery city phenomenon, where new products are 

created in diverse cities and move to specialized cities upon reaching maturity. They provide 

evidence of firm migration following this pattern in France to support their conclusions. To the best 

of our knowledge, our paper is the first to examine coagglomeration in this light. The observation 

that only high-technology/high-education pairs are found to have their coagglomeration associated 

with stronger knowledge links between the industries is consistent with the nursery city idea. So is 

the finding that low-technology/low-education pairs have coagglomeration associated with the 

somewhat more routine labor and input links. 

D. Industrial organization 

 The final set of results deals with industry structure. We consider both a partition based on 

the size of entrants and another one based on the size of incumbents. Both splits correspond to 

Chinitz (1961), who argues that the presence of small firms allows entry by other small firms.25 

                                                      
25Strictly speaking, Chinitz’s argument is about heterogeneity in the industrial organization of cities – 

not of sectors. However, we find that approximately 96% of the variation in the size of entrants and 

99% of the variation in the size of incumbents is within-TTWAs across sectors, with the remaining 

part being within-sectors across TTWAs. This suggests that our analysis that treats industrial 

composition as fixed across cities and only focuses on sectoral heterogeneity captures the most 

relevant variation. 
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Naturally, there are other treatments of agglomeration that similarly depend on industry structure, 

and they will be discussed as well. 

 Results are presented in Table 7. As above, the table reports results for the three Marshallian 

forces estimated over three groups of industry pairs. The models include controls for, respectively, 

entrant size and incumbent size averaged across the pair, alongside the usual controls for natural 

advantages. The results are consistent with a small-firm effect, with the largest coefficient found on 

input sharing for the small entrants’ and small incumbents’ models (significant at 0.193 and 0.159, 

respectively). It is worth noting that input sharing is significant for all groups in both models. 

However, the effects are substantially smaller for industries characterized by mixed- and large-

entrants and incumbents, and ranging between 0.068 and 0.082.26 The labor pooling coefficients are 

all significant and comparable in magnitude in the three entrant- and the three incumbent-size 

models. Estimates are above 0.10 for all but one grouping and mainly in the 0.15-0.20 range. Finally, 

as in all the regressions so far, knowledge is not a statistically significant predictor of 

coagglomeration in the universe of models. In this case, we find that knowledge flows are only 

significant and sizeable in the small-entrant sample (at 0.051) and in the mixed-entrant group (at 

0.028). They are instead insignificant and small, but always positive and between 0.020 and 0.040, for 

all three groups of incumbents. 

 Chinitz focused largely on input sharing among small firms as a driver of agglomeration. Our 

results are consistent with his approach. Conversely, Vernon and Jacobs offer anecdotes of 

knowledge spillovers generated by large and small firms alike. Our results on coagglomeration seem 

                                                      
26Once again, we checked that our results hold if we focus on single-plant enterprises to define 

groups in Table 7 to limit the possibility that spinoffs and expansions of existing activities affect the 

observed pattern. 
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to suggest, however, that the effect of knowledge flows is more systematic for small entrants. 

Regarding labor pooling, neither Vernon nor Jacobs directly engages with the implications of firm 

size for this agglomerative force. While the coefficients on labor pooling are significant for all sizes 

of entrants and incumbents, we find the smallest coefficients for small entrants and small 

incumbents. One factor that could potentially come into play is labor poaching, where firms hire 

away each other’s skilled workers (Combes and Duranton, 2006). If small firms are threatened to a 

greater degree by the possibility of poaching, they might be less likely to co-locate with firms hiring 

from the same labor pool. 

E. Robustness 

 In this section we discuss a number of issues that could affect the findings reported in Tables 

5-7 and report on a series of robustness checks to address them. First, we consider again whether the 

spatial scale used to construct γC affects our results. Following the approach taken in Section IV, we 

measure coagglomeration using regions instead of TTWAs and re-run our analysis. As shown in 

Table W3 in the Web Appendix, the patterns discussed above continue to hold. We also find that 

our results do not change if we calculate γC using both urban and rural TTWAs (results not 

tabulated). Second, in the regressions presented so far, we controlled for the attribute used to 

partition the sample averaged across the pair – e.g. the average entry share or the average size of 

incumbents. In some extensions (not tabulated for space reasons), we check whether controlling for 

the dissimilarity of the sector-pair’s characteristics affects our results. We measure dissimilarity as 

(half of) the absolute value of the difference in the shares of the relevant attribute across the pair. We 

find that controlling for dissimilarity produces very similar results to controlling for the average. A 

third issue is that the pattern documented above might be related to the extent of localization of the 

industry pairs in the different groups. To consider this possibility, we perform all the regressions as 

in Tables 5 to 7 adding a control for the average localization index (i.e., γfrom Ellison and Glaeser, 
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1997) across the pair. This does not affect the results in any significant way.27 Fourth, we assess the 

robustness of our findings relative to the details of the industrial classification we use. In particular, 

we consider whether our results are driven by the presence of two-digit sectors that are subdivided 

into many three-digit groupings. To do so, we exclude all two-digit industries partitioned in more 

than five three-digit sub-groups. Although this leaves us with a quarter of the original sample, this 

exclusion does not affect our results. Alternatively, we drop all pairs where the two sectors belong to 

the same two-digit industry (as we did in our IV estimation). This also does not affect our findings. 

 We also considered potential endogeneity issues. Our approach here is similar to our 

approach in Section III.B. To check whether any correlation between coagglomeration and 

agglomeration biases our findings, we estimate the models reported in Tables 5-7 excluding London. 

We also estimate specifications that control for density measured either as employment or 

population per land area. These extensions do not affect our conclusions. Furthermore, we estimate 

univariate and multivariate IV models which deal with both reverse causation and omitted variables. 

Our key results continue to hold.  

VI. Conclusions 

 This paper has considered heterogeneity in the microfoundations of agglomeration 

economies using patterns of coagglomeration of UK industries. The analysis has reached several key 

conclusions. First, there is notable heterogeneity between industries. Different industries agglomerate 

for different reasons. Second, this heterogeneity is consistent with Jacobs’ (1969) ideas about 

unplanned interactions being an important aspect of the agglomeration process for labor pooling and 

knowledge spillovers but not for input sharing. Third, the pattern also provides support for the idea 

                                                      
27The correlation between co-agglomeration and localization of industry pairs is small and negative at 

-0.028, so localization features of industries cannot explain the patterns of Figures 1.A-1.C. 
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of nursery cities (Duranton and Puga, 2001) in particular, and adaptive agglomeration economies 

more generally (Vernon, 1960). Last, the results are consistent with Chinitz’s (1961) idea that 

agglomeration effects are stronger in industries dominated by small firms.  

 Taken together, this suggests fairly strongly that Marshall’s treatment of the 

microfoundations of agglomeration should be treated as complementary to the analysis of Jacobs 

and others, rather than as an alternative and competing explanation. Recognizing and interpreting the 

pattern of heterogeneity through a framework that emphasises the synergies between Marshallian 

and non-Marshallian approaches has important implications for our understanding of the nature of 

agglomeration economies. 

A second reason why it is essential to recognize this heterogeneity is that there are numerous 

instances in the agglomeration literature where the circumstances of individual industries and clusters 

are presented as having broad relevance across industries. Without doubt, the computer industry is 

the most salient industry in the agglomeration literature. Saxenian (1994) offers an important and 

often quoted analysis of the Silicon Valley. The car industry is also highly salient in the agglomeration 

literature. In the US, this industry’s declining cluster centered around Detroit is often contrasted to 

the prosperous computer cluster in Great San Jose. A very informative discussion along these lines 

can be found in Glaeser (2011). Our evidence shows clearly that different industries respond 

differently to agglomerative forces. Therefore, while the detailed analysis of individual cases is often 

informative – as attested by the influence of this kind of extrapolation – it is important not to simply 

accept generalizations without further investigation. This point is all too often lost in discussions 

with policymakers who fail to recognize the uncertainties associated with heterogeneity in 

agglomeration economies. Given this complexity, cluster policies targeting specific industries are as 

likely to pick losers as winners. Conversely, policies that are likely to promote growth in general – 

such as better transport infrastructures, higher levels of education, better amenities and housing to 
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attract workers and entrepreneurs – are more likely to help the ‘right’ clusters to emerge as a result of 

the underlying local strength and agglomeration forces, even when these are heterogeneous and 

therefore difficult to identify ex ante. 
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Table 1: Descriptive statistics 

 Mean Std. Dev. Min Max 

Coagglomeration measures and Marshallian forces     

TTWA total employment coagglomeration (γC) 0.000 0.005 -0.028 0.107 

Labor pooling (correlation) 0.237 0.188 -0.022 0.968 

Input-output sharing (maximum) 0.009 0.033 0.000 0.547 

Input sharing (maximum) 0.007 0.029 0.000 0.547 

Output sharing (maximum) 0.005 0.021 0.000 0.546 

Knowledge spillovers – prob. mapping, industry of 

manufacture (IOM, maximum of inward/outward citation) 

0.016 0.037 0.000 0.413 

Knowledge spillovers – prob. mapping, sector of use (SOU, 

maximum of inward/outward citation) 

0.012 0.026 0.000 0.540 

Additional Controls     

Energy dissimilarity index 0.013 0.016 0.000 0.097 

Water dissimilarity index 0.001 0.001 0.000 0.006 

Transport dissimilarity index 0.014 0.018 0.000 0.084 

Natural Resources dissimilarity index 0.041 0.076 0.000 0.369 

Services dissimilarity index 0.018 0.016 0.000 0.082 

Note: All pairwise combinations of manufacturing SIC1992 3-digit industries are included except 

Manufacture of tobacco (SIC160). In addition, we combined: Manufacture of leather clothes 
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(SIC181) and Dressing and dyeing of fur (SIC183) with Manufacture of wearing apparel (SIC182); 

Manufacture of coke oven products (SIC231) and Processing of nuclear fuel (SIC233) with Refined 

petroleum products (SIC232); Manufacture of vegetable and animal oils and fats (SIC154) with 

Manufacture of other food products (SIC158); Manufacture of man-made fibers (SIC247) with 

Manufacture of other chemical products (SIC246); Manufacture of cement, lime and plaster (SIC265) 

with Manufacture of articles of concrete, plaster and cement (SIC266); Reproduction of recorded 

media (SIC223) with Printing (SIC222). The final sample consists of 94 manufacturing 3-digit sectors 

for a total of 4,371 unique pairwise correlations a year for twelve years (1997-2008). The complete 

dataset contains 52,452 observations. Labor correlation indices are computed from the UK Labour 

Force Survey 1995-1999. Input-Output measures are calculated ONS UK Input-Output Tables for 

1995-1999. Knowledge spillover measures are calculated using the UK data retrieved from the EPO-

PATSTAT dataset made available to us by Bocconi University. Cited patents sampled for the years 

1978 to 1997. Citing patents sampled for the years 1981 to 2000. Additional control measures are 

calculated using the UK Input-Output tables for 1995-1999.  
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Table 2: The relationship between coagglomeration γC  and Marshallian forces 

 (1) (2) (3) (4) 

Specification 

details: 

OLS – 

Univar. 

OLS – 

Univar. 

OLS – 

Multivar. 

OLS – 

Multivar. 

Labor pooling  

(LP) 

0.191 

(0.018)*** 

0.198 

(0.018)*** 

0.156 

(0.019)*** 

0.165 

(0.020)*** 

Input-output sharing  

(IO) 

0.138 

(0.026)*** 

0.137 

(0.027)*** 

0.083 

(0.025)*** 

0.082 

(0.025)*** 

Knowledge spillover  

– IOM (KS) 

0.106 

(0.015)*** 

0.099 

(0.014)*** 

0.031 

(0.013)** 

0.024 

(0.013)* 

Resource use diss. Controls No Yes No Yes 

Note: See note to Table 1 for details on variable definitions. Variables are standardized to have zero 

mean and unit standard deviation. Robust standard errors clustered on industry pairs are reported in 

parentheses. All regressions consider the period 1997-2008.  
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Table 3: Instrumental variable regressions 

 (1) (2) (3) (4) (5) (6) (7) 

 OLS – 

Univar. 

IV – 

Univar. 

OLS – 

Multivar. 

IV – 

Multivar. 

IV – 

Multivar. 

LP & IO 

IV – 

Multivar. 

IO & KS 

IV – 

Multivar. 

LP & KS 

Labor  

pooling (LP) 

0.161 

(0.017)*** 

0.113 

(0.020)*** 

0.133 

(0.018)*** 

0.116 

(0.032)*** 

0.100 

(0.024)*** 

-- 

0.116 

(0.030)*** 

Output 

sharing (IO) 

0.105 

(0.017)*** 

0.127 

(0.026)*** 

0.061 

(0.016)*** 

0.083 

(0.024)*** 

0.082 

(0.024)*** 

0.121 

(0.028)*** 

-- 

Knowledge spill.  

– IOM (KS) 

0.078 

(0.013)*** 

0.088 

(0.016)*** 

0.033 

(0.013)** 

-0.021 

(0.023) 

-- 

0.031 

(0.019)* 

0.017 

(0.022) 

First-stage statistics        

t-stat on LP -- 19.93 -- 16.91 18.78 -- 17.04 

t-stat on IO -- 6.39 -- 6.22 6.32 5.95 -- 
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t-stat on KS -- 6.83 -- 5.94 -- 6.45 6.56 

Kleinbergen-Paap  

F-Stat 

-- -- -- 18.17 33.10 23.26 23.94 

Note: See note to Table 1 for details on variable definitions. Specifications as in Column (4) of Table 2. Sample excludes 3-digit SIC sectors 

within the same 2-digit SIC sector and the following sectors (see note to Table 1 for more details). Number of observations 43,644 (3,637 

industry pairs). Instrumental variable regressions use labor correlation, input-output linkages and patent citations flows calculated using US 

data as instruments. See Web Appendix for more details. Cells in Column (1) and (2) come from separate regressions. Cells in Columns (3)-

(7) come from regressions that simultaneously enter Marshallian forces as detailed in the headings.  
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Table 4: The relationship between coagglomeration γC, Marshallian forces and non-Marshallian mechanisms 

 (1) (2) (3) (4) (5) (6) (7) 

Additional  

control details: 

Year of  

Opening 

Entry  

Share 

Tech. Education Size of  

Entrants 

Size of  

Incumbents 

Joint 

Controls 

        

Labor pooling  

(LP) 

0.166 

(0.020)*** 

0.165 

(0.020)*** 

0.188 

(0.022)*** 

0.176 

(0.021)*** 

0.164 

(0.020)*** 

0.161 

(0.019)*** 

0.189 

(0.023)*** 

Input-output sharing 

(IO) 

0.085 

(0.026)*** 

0.082 

(0.025)*** 

0.075 

(0.025)*** 

0.079 

(0.025)*** 

0.080 

(0.025)*** 

0.081 

(0.025)*** 

0.073 

(0.025)** 

Knowledge spill. –  

IOM (KS) 

0.028 

(0.013)** 

0.024 

(0.014)* 

0.027 

(0.014)** 

0.029 

(0.014)** 

0.023 

(0.014)* 

0.024 

(0.014)* 

0.036 

(0.014)*** 

Year of opening 0.046 

(0.014)*** 

   

  0.048 

(0.014)*** 
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Entry share 

 

0.003 

(0.012) 

  

  0.003 

(0.014) 

High tech 

  

-0.227 

(0.055)*** 

   -0.223 

(0.065)*** 

Mix tech 

  

-0.087 

(0.035)*** 

   -0.083 

(0.039)** 

Share college  

graduates 

  

 -0.059 

(0.018)*** 

  -0.045 

(0.021)** 

Size of entrants 

    

0.028 

(0.014)* 

 

0.009 

(0.020) 

Size of incumbents 

     

0.032 

(0.016)* 

0.058 

(0.025)** 

Note: See note to Table 1 for details on variable definitions. Specifications as in Column (4) of Table 2 plus the additional control variables 

listed in the leftmost column. See Appendix Table W1 and Section II.C for more detail. 
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Table 5: Heterogeneous agglomeration – Adaptation 

 (1) (2) (3) 

 New Mixed Old 

Labor pooling (LP) 0.310 

(0.058)*** 

0.153 

(0.026)*** 

0.081 

(0.021)*** 

Input-output sharing (IO) 0.270 

(0.083)*** 

0.049 

(0.030) 

0.041 

(0.018)** 

Knowledge spillovers – IOM (KS) 0.236 

(0.121)** 

0.040 

(0.017)** 

0.026 

(0.019) 

N of. Observations/Pairs 12972/1081 26508/2209 12972/1081 

 Dynamic Mixed Steady 

Labor pooling (LP) 0.181 

(0.059)*** 

0.144 

(0.026)*** 

0.180 

(0.028)*** 

Input-output sharing (IO) 0.113 

(0.095) 

0.103 

(0.031)*** 

0.052 

(0.021)** 

Knowledge spillovers – IOM (KS) 0.181 

(0.074)** 

0.033 

(0.018)* 

-0.020 

(0.015) 

N of. Observations/Pairs 12972/1081 26508/2209 12972/1081 

Note: See note to Table 1 for details on variable definitions. Specification as in Column (4) of Table 

2 plus one of the following variables averaged across sector pairs: first year of opening (top panel); 

entry share (bottom panel). Pairs refer to unrepeated sector combinations. 
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Table 6: Heterogeneous agglomeration – Technology and education 

 (1) (2) (3) 

 High-tech Mixed-tech Low-tech 

Labor pooling (LP) 0.046 

(0.017)*** 

0.110 

(0.019)*** 

0.332 

(0.049)*** 

Input-output sharing (IO)  0.020 

(0.012) 

0.064 

(0.020)*** 

0.091 

(0.045)** 

Knowledge spillovers – IOM (KS) 0.053 

(0.024)** 

0.031 

(0.016)* 

0.039 

(0.041) 

N of. Observations/Pairs 7140/595 24780/2065 20532/1711 

 High-educ. Mixed-educ. Low-educ. 

Labor pooling (LP) 0.046 

(0.023)* 

0.167 

(0.031)*** 

0.391 

(0.061)*** 

Input-output sharing (IO)  0.007 

(0.013) 

0.066 

(0.029)** 

0.123 

(0.057)** 

Knowledge spillovers – IOM (KS) 0.048 

(0.020)** 

0.050 

(0.021)** 

0.030 

(0.040) 

N of. Observations/Pairs 12972/1081 26508/2209 12972/1081 

Note: See notes to Table 5 for details. Regressions in the bottom panel further control for the share 

of college graduates averaged across sector pairs.  
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Table 7: Heterogeneous agglomeration– Organization 

 (1) (2) (3) 

 Small entrants Mixed entrants Large entrants 

Labor pooling 0.113 

(0.027)*** 

0.181 

(0.027)*** 

0.223 

(0.056)*** 

Input-output sharing 0.193 

(0.112)* 

0.068 

(0.034)** 

0.082 

(0.039)** 

Knowledge spillovers – IOM 0.051 

(0.030)* 

0.028 

(0.016)* 

-0.022 

(0.030) 

N of. Observations/Pairs 12972/1081 26508/2209 12972/1081 

 Small incumbents Mixed incumbents Large incumbents 

Labor pooling 0.065 

(0.026)** 

0.223 

(0.031)*** 

0.149 

(0.047)*** 

Input-output sharing 0.159 

(0.076)** 

0.071 

(0.035)** 

0.068 

(0.039)* 

Knowledge spillovers – IOM 0.034 

(0.024) 

0.020 

(0.018) 

0.040 

(0.031) 

N of. Observations/Pairs 12972/1081 26508/2209 12972/1081 

    

Note: See notes to Table 5 for details. Regressions further control for the following variables averaged 

across sector pairs: size of entrants (top panel); size of incumbents (bottom panel).  
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Figure 1: The effect of Marshallian forces at difference quantiles of γC 

Panel A Panel B 
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Note: See note to Table 1 for details on variable definitions. Variables are standardized to have zero mean and unit standard deviation. The 

figures plot regression coefficients and 95% confidence intervals from quantile regressions that simultaneously include all three Marshallian 

forces. Confidence intervals from bootstrapped standard errors clustered on industry pairs. All regressions control for dissimilarity in use of 

resources. Knowledge spillovers measure is based on probabilistic mapping – Industry of manufacturing (Knowledge Spillovers – IOM). 
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Appendix tables 

 

Table A1: Fifteen most co-agglomerated industry pairs – based on coagglomeration measure γC  in 1997  

Rank Industry 1 Industry 2 γC 1st TTWA 2nd TTWA 3rd TTWA 

1 

 

Ceramic goods other than 

construction  

Ceramic tiles & flags 0.105 Stoke-on-

Trent 

Exeter London 

2 Knitted & crocheted fabrics  Knitted & crocheted articles  0.086 Leicester Nottingham Derby 

3 Publishing  Jewellery & related articles  0.054 London Birmingham Sheffield 

4 Spinning of textiles  Textile weaving 0.054 Bradford Huddersfield Leeds 

5 Publishing Printing & reproduction of recorded 

media  

0.037 London Manchester Birmingham 

6 Finishing of textiles Knitted an&d crocheted articles  0.037 Leicester Manchester Nottingham 

7 Finishing of textiles Knitted & crocheted fabrics 0.035 Leicester Nottingham Manchester 

8 Ceramic goods other than 

construction 

Construction products in baked clay 0.033 Stoke-on-

Trent 

Crawley Peterborough 
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9 Basic iron & steel and ferro-

alloys 

Cutlery, tools & general hardware 0.033 Sheffield Birmingham Wolverhampton 

10 Basic iron & steel & ferro-

alloys 

Other first processing of iron and steel 0.033 Sheffield Dudley Swansea 

11 Other first processing of iron 

&steel 

Forging, pressing, stamping & roll 

forming of metal 

0.031 Dudley Birmingham Sheffield 

12 Tanning & dressing of leather Footwear 0.031 Northampton Hull Glasgow 

13 Knitted & crocheted articles Footwear 0.030 Leicester Northampton Blackburn 

14 Iron & steel tubes  Other first processing of iron & steel 0.029 Dudley Birmingham Sheffield 

15 Spinning of textiles Finishing of textiles 0.028 Bradford Manchester Huddersfield 

Note: γC is coagglomeration at TTWA level and based total employment. See note to Table 1 for more details.  
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Table A2: Further robustness checks and extensions 

 (1) (2) (3) (4) (5) 

 Staggered  

Marshallian  

forces 

γC  

excluding 

London 

Control for 

popul. 

density 

Control for 

empl. 

density 

Control for 

Herfind. 

Index 

Labor pooling  

(LP) 

0.160 

(0.019)*** 

0.139 

(0.022)*** 

0.142 

(0.018)*** 

0.158 

(0.020)*** 

0.165 

(0.020)*** 

Input-output sharing  

(IO)  

0.081 

(0.026)*** 

0.119 

(0.033)*** 

0.091 

(0.026)*** 

0.088 

(0.026)*** 

0.083 

(0.026)*** 

Knowledge spillovers  

– IOM (KS) 

0.023 

(0.014)* 

0.017 

(0.014) 

0.026 

(0.014)* 

0.023 

(0.014)* 

0.026 

(0.014)* 

Note: See note to Table 1 for details on variable definitions. All regressions control for dissimilarity 

in use of resources. Variables are standardized to have zero mean and unit standard deviation. 

Robust standard errors clustered on industry pairs are reported in parentheses. Knowledge spillovers 

measure is based on probabilistic mapping – Industry of manufacturing (KS – IOM). Column (1) 

considers γC for years from 2000 and Marshallian forces calculated up to 1999. Column (2) excludes 

London from the calculations of γC. Column (3) controls for the average (un-weighted) population 

density of the TTWAs in which the two sectors are operating, averaged across industry pairs. 

Column (4) controls for the average (un-weighted) employment density of the TTWAs in which the 

two sectors are operating, average across industry pairs. Column (5) controls for the Herfindahl 

index of the two sectors, average across industry pairs. 

 


