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ABSTRACT 
 
 
 

Radio frequency (RF) power amplifiers (PAs) represent the most challenging 

design parts of wireless transmitters. In order to be more energy efficient, PAs should 

operate in nonlinear region where they produce distortion that significantly degrades the 

quality of signal at transmitter’s output. With the aim of reducing this distortion and 

improve signal quality, digital predistortion (DPD) techniques are widely used. This 

work focuses on improving the performances of DPDs in modern, next-generation 

wireless transmitters. A new adaptive DPD based on an iterative injection approach is 

developed and experimentally verified using a 4G signal. The signal performances at 

transmitter output are notably improved, while the proposed DPD does not require large 

digital signal processing memory resources and computational complexity. Moreover, 

the injection-based DPD theory is extended to be applicable in concurrent dual-band 

wireless transmitters. A cross-modulation problem specific to concurrent dual-band 

transmitters is investigated in detail and novel DPD based on simultaneous injection of 

intermodulation and cross-modulation distortion products is proposed. In order to 

mitigate distortion compensation limit phenomena and memory effects in highly 

nonlinear RF PAs, this DPD is further extended and complete generalised DPD system 

for concurrent dual-band transmitters is developed. It is clearly proved in experiments 

that the proposed predistorter remarkably improves the in-band and out-of-band 

performances of both signals. Furthermore, it does not depend on frequency separation 

between frequency bands and has significantly lower complexity in comparison with 

previously reported concurrent dual-band DPDs. 
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1. INTRODUCTION 

 
There are two persons without whom today’s modern wireless communications 

would have never been possible, the first one being Nikola Tesla, the second one being 

Claude Shannon. On the one hand, it was Nikola Tesla who invented the radio and thus, 

for the first time, introduced us to the idea to wirelessly transfer communication 

messages [1.1]. On the other hand, Claude Shannon showed us how to transmit 

information through a channel reliably by describing his theory in “A Mathematical 

Theory in Communication" [1.2]. This work was fundamental for modern, stable 

communication.  

Wireless communications represent one of the most developing areas nowadays. 

Moreover, the main trend in the future will be a rapid increase in network capacity 

requirements by users. As can be seen from Cicso forecast, shown in Figure 1-1, mobile 

data traffic will grow exponentially in the next few years [1.3]. On the whole, mobile 

data traffic is expected to grow to 11.2 exabytes per month by 2017. This is a 13-fold 

increase over 2012. 

 

Figure 1-1:  Cisco Forecasts 11.2 Exabytes per Month of Mobile Data Traffic by 

2017 [1.3] 
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High capacity requirements require radio network solutions that have improved 

energy-efficiency. These energy-efficiency improvements without enduring the loss of 

signal quality are becoming an emerging goal of mobile operators and equipment 

designers.  Energy cost accounts for as much as a half of mobile operators’ operational 

expenses. Not only are solutions that improve energy-efficiency environmentally 

friendly, but they support sustainable, profitable business as well [1.4]. A lot of energy 

is consumed every year by the telecom infrastructures. The global Information 

Communication Technology (ICT) industry accounts for about 2% of the total human 

CO2 footprint [1.5], [1.6]. Of that 2% CO2 emission, 30% are accounted for by the 

world-wide telecom infrastructures and devices. A general block diagram of Radio Base 

Station (RBS), an essential part of mobile networks, is shown in Figure 1-2. 

 

Figure 1-2: General block diagram of a radio base station 
 

 

 

However, RBSs consume most of the power. The main question is where this 

power goes. Figure 1-3 shows the energy consumption pertaining to the different parts 

of a RBS [1.7]. From this figure, it is clear that Power Amplifiers (PAs) are the 

heaviest energy consumer in RBSs, consuming more than three quarters of the total 

power. On one hand, in order to achieve high efficiency and saving energy, PAs need to 

work in the highly nonlinear peak power regime. On the other hand, in that regime, PAs 

exhibit nonlinear distortion that creates problems related to preserving high signal 

quality [1.5]. 
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Figure 1
 

 

Modern, emerging mobile radio systems such as Wideband Code Division 

Multiple Access (WCDMA), High Speed Packet Access 

Evolution (LTE), and Mobile Worldwide Interoperability for Microwave Access 

(WiMAX), which all require radio transceivers able to support high data rates and 

throughput, have strong linearity requirements [1.

researchers and transmitter

introduced by utilizing high

techniques in transmitter design.

PA. The high linearity of PA, high output power and high power efficiency are 

conflicting requirements. One can see from Figure 1

near saturation region to satisfy the exacting requirements on spectrum and power 

efficiency [1.12]-[1.1

peak to average power 

Aiming at solving the

of wireless transmitter

digital signal processing (DSP). 
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Figure 1-3: Radio base station energy consumption [1.

emerging mobile radio systems such as Wideband Code Division 

Multiple Access (WCDMA), High Speed Packet Access (HSPA), 3GPP Long

Evolution (LTE), and Mobile Worldwide Interoperability for Microwave Access 

(WiMAX), which all require radio transceivers able to support high data rates and 

throughput, have strong linearity requirements [1.8]-[1.11]. A lot of 

researchers and transmitter-design engineers in Vendor Companies have been 

introduced by utilizing high-capacity modulation schemas and multiple access 

techniques in transmitter design. The biggest problem during the transmitter design is 

. The high linearity of PA, high output power and high power efficiency are 

conflicting requirements. One can see from Figure 1-4 that the PA must operate in a 

near saturation region to satisfy the exacting requirements on spectrum and power 

[1.14]. However, the PA that amplifies the wideband signals with high 

ower ratio (PAPR) produces high distortion level in that region. 

Aiming at solving the efficiency-linearity dilemma, one of the main trends in the design 

transmitters remains to provide enhanced transmitter functionalities utilising

digital signal processing (DSP).  

Power Amplifier 50

Power Supply 5

Signal Processing 

(Analog+Digital) 5

Air Conditioning 10
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Radio base station energy consumption [1.7]. 

emerging mobile radio systems such as Wideband Code Division 

(HSPA), 3GPP Long-Term 

Evolution (LTE), and Mobile Worldwide Interoperability for Microwave Access 

(WiMAX), which all require radio transceivers able to support high data rates and 

A lot of challenges for 

design engineers in Vendor Companies have been 

capacity modulation schemas and multiple access 

The biggest problem during the transmitter design is 

. The high linearity of PA, high output power and high power efficiency are 

4 that the PA must operate in a 

near saturation region to satisfy the exacting requirements on spectrum and power 

]. However, the PA that amplifies the wideband signals with high 

produces high distortion level in that region. 

linearity dilemma, one of the main trends in the design 

ransmitter functionalities utilising 

Power Amplifier 50-80%

Power Supply 5-10%

Signal Processing 

(Analog+Digital) 5-15%

Air Conditioning 10-25%
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Figure 1-4: The transfer characteristics of an ideal and a real power amplifier 

 

 

1.1. Overview of Recent Research 
 

Current state-of-the-art linearisation techniques include feed-forward [1.15], RF 

feedback [1.16], and RF-based predistortion [1.17]; amongst them digital predistortion 

(DPD) implemented into DSP is the most cost effective method [1.18]-[1.23]. 

Functional block diagram of digital predistorter is shown in Figure 1-5. The DPD 

linearisation techniques for different wireless transmitters will be described in detail in 

Chapter 3. These techniques minimise the output distortion and reduce spectrum 

regrowth, and at the same time maximise power efficiency by digitally pre-processing 

the input signal in order to achieve a highly linear overall transfer function. However, 

current DPD solutions have a high computational complexity of predistorter design as 

well as high complexity and numerical instability of DPD model identification. These 

problems can be mitigated by employing novel advanced signal processing techniques 

based on injections of distortion products in the baseband block. The proposed 

approaches applied in adaptive 4G single input single output (SISO) and concurrent 

dual-band transmitters notably improve output signal quality and reduce high DSP 

computational complexity of DPD, which is the main problem of the state-of-the-art 

DPD solutions. Moreover, the proposed solutions for modern wireless transmitters have 
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many additional advantages in comparison with previously reported DPDs. These 

advantages will be discussed in detail in this PhD thesis. 

 

 
 

Figure 1-5: Functional block diagram of digital predistortion for power amplifiers 

 

1.2. Aims and Objectives of the Research 
 

The main goal is to develop the DPD technique which can deal with PA 

nonlinear distortion in modern wireless transmitters such as 4G SISO and multiband 

transmitters. In addition to PA nonlinear distortion, multiband and multi-branch MIMO 

transmitters have other side effects that researchers/engineers should be aware of. 

Cross-modulation (CM) as a most dangerous problem specific to multiband (multi-

frequency MIMO) and nonlinear crosstalk specific to multi-branch MIMO transmitters 

will be investigated in detail. The entire PhD project is comprised of two major parts: to 

develop adaptive and low-complexity DPD technique for 4G SISO transmitters and to 

extend current DPD theory to be applicable in multiband wireless transmitters. These 

goals will be achieved by analysing existing solutions, studying phenomena that limit 

their functioning and developing methods to overcome them. Accomplishing these 

goals will result in improving the in-band and out-of-band performances of transmitting 

signals with significantly lower complexity of DPD. 

 

1.2.1. Aims 
 

This thesis has the following aims: 

 

• Distortion analysis and behavioural modelling of power amplifiers in modern 

wireless transmitters such as 4G SISO, multi-frequency and multi-branch 

MIMO transmitters 
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• Theoretical development of novel adaptive DPD solution for 4G SISO 

transmitters  

• Practical implementation and experimental validation of the proposed digital 

predistortion method using 4G signal and real power amplifier. 

• Theoretical development of the new DPD theory for concurrent dual-band 

transmitter 

• Practical implementation of the new digital predistortion method for concurrent 

dual-band wireless transmitters and its validation on experimentally emulated 

concurrent dual-band transmitter’s test-bed. 

 

1.2.2. Objectives 
 

The individual research objectives to achieve these aims can be summarised as 

follows:  

 

1. Investigation of several approaches for behavioural modelling of RF power 

amplifiers for the development of digital predistortion systems  

2. Investigation of different adaptation methods to find the best compromise 

between accuracy and complexity for overcoming degradation in linearity of PA 

caused by variations in environmental conditions 

3. Providing a comparative overview of existing digital predistortion techniques  

4. Detailed investigation of digital predistortion based on baseband injection of 

distortion components  

5. Providing a literature overview of recent advancements in the area of concurrent 

dual-band DPD and revealing the unresolved problems in this field. 

6. Setting up the experimental test-bed for developing as well as testing new 

predistortion methods. Setup contains two real power amplifiers such as Mini 

Circuits ZFL-500 and CFH 2162-P3, Agilent ESG-D Series Signal Generator 

E4433B, Agilent MXG Vector Signal Generator N5182A, Agilent VSA Series 

Transmitter Tester and finally, MATLAB, ADS, Agilent Signal Studio Toolkit, 
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Agilent Distortion Suite 89604 and Agilent VSA 89601 Software as software 

tools  

7. Creating LAN and GPIB connections between PC and instruments: ESG 

E4433B, MXG N5182A and VSA Series Transmitter Tester for faster offline 

and online data processing and developing of adaptive system that require all 

components of experimental test bed to be connected  

8. Studying the nonlinear analysis of different power amplifiers and applying 

models for distortion behaviour analytical prediction in different types of 

wireless transmitters 

9. Developing of new adaptive nonlinearity compensation technique for 4G 

wireless transmitters with online prediction of the PA distortion behaviour and 

calculating the predistorter parameters 

10. Experimental verification of this technique 

11. Developing baseband injection methodology applicable for concurrent dual-

band transmitters 

12. Theoretical derivation of the fundamental frequency model for concurrent dual-

band transmitters 

13. Studying the impact of each IM and CM distortion components by means of 

baseband simulation analysis 

14. Developing of the new DPD using the simultaneous injection of IMs and CMs 

based on derived fundamental frequency model 

15. Experimental validation of this DPD 

16. Investigating computational complexity and linearising performances of the 

proposed DPD technique 

17. Studying memory effects of power amplifiers, their influence on distortion as 

well as their influence on the performances of digital predistortion 

18. Quantifying PA memory effects by concurrent two-tone test 

19. Studying distortion compensation limit phenomena in concurrent dual-band 

transmitters and proposal for overcoming this phenomena 
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20. Experimental verification of complete linearity enhancement architecture using 

different signal sets and highly nonlinear PA exhibits memory effects 

21. Comparative review of this work with recent works on concurrent dual-band 

wireless transmitters   

 

1.3. Outline of the Thesis 
 

Recent expansion of wireless and mobile technologies with high data rates 

imposes more stringent requirements on electronic devices. High linearity of wireless 

transmitters is a key goal in order to provide users with required quality and range of 

services. As it was mentioned previously, efficiency and linearity of wireless 

transmitters are mutually exclusive characteristics. The common way of dealing with 

this is to enhance the efficiency at the price of linearity and to provide linearisation by 

an external unit. Therefore, linearisation of different types of wireless transmitters has 

become one of the main concerns for the design of high-speed wireless communication 

systems. This research work focuses on the topic of linearising modern wireless 

transmitters such as 4G SISO and concurrent dual-band transmitters by injection-based 

DPD methods implemented using DSP, which are cost effective, easily integrated and 

highly efficient. The thesis presents the work carried out over the period of three years 

aimed at contributing to the development of 4G and beyond-4G mobile wireless 

technologies. 

 

Chapter 2 covers the system parameters of RF PA as well as PA memory effects 

and evaluation of PA behavioural modelling. The main signal quality metrics to 

quantify in-band and out-of-band signal performances are also presented. Orthogonal 

frequency division multiplex (OFDM) as a basis of next generation wireless 

communications systems is explained. Some of the features of 4G LTE important for 

the thesis topic are reviewed. Also, other effects that cause distortion such as crosstalk 

specific to multi-branch MIMO transmitters as well as cross-modulation specific to 

multi-frequency MIMO transmitters are introduced and discussed.  

 

Chapter 3 presents a comparative overview of existing DPD linearisation 

techniques including the LUT-based DPD, Volterra-based DPD, memory polynomial 
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DPD and DPD based on artificial neural networks (ANN). The theoretical concept, 

main advantages and drawbacks of each DPD are presented and discussed. The most 

commonly used DPD extraction architectures such as direct learning architecture (DLA) 

and indirect learning architecture (ILA) are depicted in the Chapter. The extensions of 

DPD approaches to be applicable in multi-branch and multi-frequency MIMO 

transmitters are depicted also. The recent developments and existing problems in the 

area of DPD linearisation have been highlighted. 

 

Chapter 4 overviews state-of-the-art linearisation techniques based on injection 

of distortion products. The main focus of the Chapter is on digitally implemented 

baseband injection-based techniques, especially on technique based on IM3 and IM5 

injections as well as technique based on iterative injection approach. The injection-

based methodology is a basis of the original developments of the thesis presented in 

Chapter 5, 6 and 7. 

 
       The adaptive, low-complexity DPD for 4G SISO wireless transmitters is 

introduced in Chapter 5.  The PA linearisation is demonstrated by means of this DPD 

based on iterative injection of the in-band distortion components. This method has three 

important advantages. First, it uses real multiplications and real additions only and 

avoids complex Volterra, LUT or polynomials for nonlinearity compensation.  Second, 

in contrast with existing injection-based DPD, the technique uses adaptive architecture, 

and therefore, is adaptive to the variation of PA nonlinear transfer function in real 

environmental conditions. The nonlinear PA model extraction method based on 

AM/AM least-squares polynomial regression approximation is explained and used in 

experiments. Third, the proposed DPD is verified experimentally using more than 10 dB 

peak-to-average power ratio (PAPR) 5-MHz downlink Long Term Evolution (LTE) 

signal. This is the first time that one injection-based technique is experimentally 

verified using a high PAPR signal such as real LTE signal. Also, this is the first 

adaptive, injection-based DPD. 

 
Chapter 6 presents the proposed memoryless digital predistortion technique for 

concurrent dual-band transmitters based on simultaneous injection of IM and CM 

distortion components. The theoretical concept of the proposed DPD technique and 

verification of its feasibility and linearising performances by experiments are presented 
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in this Chapter. It has been demonstrated the linearisation of low-power ZFL-500 PA in 

experimentally emulated concurrent dual-band transmitter using this new 2-D DPD. 

The mathematical model of the proposed technique is derived for fifth-order 

polynomial. The PA nonlinear characterisation in single band and concurrent dual-band 

transmitter mode is described and discussed. The advantage of the proposed approach is 

its simplicity in comparison with state-of-the-art. Furthermore, the performances of the 

proposed DPD architecture do not depend on frequency separation between bands in 

concurrent dual-band transmitter. 

 
In Chapter 7, the proposed technique described in Chapter 6 is further extended 

and new advancements are introduced. The technique is further generalised to any 

degree of nonlinearity. Also, an initial injection approach presented in Chapter 6 is 

extended to generalised iterative injection approach in Chapter 7, which is used to 

overcome distortion compensation limit phenomena in concurrent dual-band wireless 

transmitters caused by initial injection. In other words, the proposed approach is based 

on simultaneous iterative injection of the in-band IM and CM products. Moreover, in 

comparison with memoryless ZFL-500 PA, it is shown in experiments that CFH 2162-

P3 PA exhibits memory effects that degrade the performances of the proposed DPD at 

the output of concurrent dual-band transmitter. The CFH 2162-P3 PA nonlinear 

characterisation in single band and concurrent dual-band mode are presented. The 

presence of memory effects are detected by concurrent two-tone test, which is also 

described in this Chapter. These memory effects are minimised in frequency domain by 

using baseband symbol adjustable normalised inverse S21-parameter parallel 

multiplication. As it will be described, this procedure is done separately for both bands 

of concurrent dual-band transmitter. The experiments are done using different signal 

sets (LTE 1.4 MHz, LTE 3 MHz and LTE 5 MHz at 880 MHz and WCDMA at 2.14 

GHz). To sum up, this Chapter brings theoretical background and experimental 

verification of the complete DPD system named “A Generalised Linearity Enhancement 

Architecture for Concurrent Dual-band Transmitters”. Numerous advantages of the 

proposed DPD in comparisons with previously reported concurrent dual-band DPDs are 

discussed in detail.  
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Chapter 8 presents the overall conclusions of the research work, including the 

thesis summary, original contributions to knowledge followed by the potential 

directions for the future work. 
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2. Nonlinear Distortion in Power Amplifiers for Wireless 

Transmitters 
 

2.1. Introduction 
 

This Chapter describes the main system parameters of wireless transmitters 

specific for the transmitter’s most challenging block such as PA. The main signal 

quality parameters and the PA modelling metrics in time and frequency domain are 

overviewed in this Chapter. Moreover, OFDM as a basis of modern wireless 

communications and 4G LTE technology are briefly presented because the PA 

nonlinear behaviour problems are much more noticeable in 4G in comparison with 

previous generations. This Chapter also introduces next-generation wireless transmitters 

such as multi-branch and multi-frequency MIMO transmitters. The Crosstalk and 

Cross-modulation are transmitter design problems specific for these wireless transmitter 

types. These problems and their impacts on the output signal degradation are explained 

in this Chapter.   

 
 

2.2. PA System Parameters 
 
 

The following subsections bring the definitions of the main PA system 

parameters [2.1], [2.2]. 

    

2.2.1. Gain 
 

The gain of a PA is the ratio of the output power to the input power. It is usually 

expressed in decibels (dB) with the following relation: 

����� = 10 log �������  

                       (2.1) 

where ��� is the input power and  ���� is the output power. 
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2.2.2. Bandwidth 
 

The bandwidth of the power amplifier is the range of frequencies for which the 

power amplifier delivers acceptable performance. Typically, the bandwidth is defined as 

the difference between the lower and upper half power points and is also called 3-dB 

bandwidth (Figure 2-1). 

 

Figure 2-1: 3-dB bandwidth of the PA 

2.2.3. Power efficiency 
 

Power efficiency is the metric to quantify the ability of a system to transform the 

given input power to useful output power. The most power-consuming component of a 

wireless transmitter is the PA. Therefore, the PA is dominant component in determining 

the overall power efficiency of a wireless transmitter. There are three different 

definitions of power amplifier efficiency in literature, which are total efficiency, drain 

efficiency, and power added efficiency [2.1]. 

 

Total efficiency is defined as �� =	 � !"�#$%�&' , where �� is the total efficiency of the PA, 

�(), ��� and ���� are the DC and RF powers at the input and output of the PA, 

respectively. 

 

Drain efficiency is defined as �*	 =	 �+,	-./&'�#$	-./&'   , where �()	*�0�� and �12	*�0�� are the 

DC and RF powers at the drain level of the transistor. 
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Power added efficiency is defined as ��34 =	 � !"5�&'�#$  , where ��34 is the total power 

added efficiency of the PA, �(), ��� and ���� are the DC and RF powers at the input 

and output of the PA, respectively. 

 

2.2.4. P1dB Compression Point 
 

The typical PA input-output and gain characteristics are shown in Figure 2-2. 

The 1dB compression point (P1dB) is a measure of PA linearity. The gain of an 

amplifier compresses when the output signal level enters the compression region before 

it reaches saturation. Higher output power corresponds to a higher compression point. It 

is an input (or output) power for which the gain of the PA is 1 dB less than the small-

signal gain (ideal linear gain). 

The maximum saturation point corresponds to the point where the PA reaches its 

maximum output power. This maximum power is called the saturation power	�60�[809]. 
The 3 dB saturation power �60�[(;] corresponds to the power for which the gain of the 

PA is 3 dB less than the small-signal gain.  

 

2.2.5. Third Order Intercept Point (IP3) 
 

Figure 2-3 brings graphical derivation of second and third order intercept points. 

The third order intercept point (IP3) is a widely used metric in PAs, which gives 

information about the linearity of an amplifier. A higher IP3 means better linearity and 

lower distortion generation. It is the theoretical point at which the desired output signal 

and undesired third-order IM signal are equal in levels considering an ideal linear gain 

for the PA. The theoretical input point is the input IP3 (IIP3) and the output point is the 

output IP3 (OIP3). 

 

 

 

 

 



Digital Predistortion of RF Amplifiers Using Baseband Injection for Mobile Broadband Communications 
 

PhD Thesis Page 17 

 

 

 

 

 
 

Figure 2-2: The input-output and gain characteristics of a PA 
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Figure 2-3: The second and third order intercepts points 

 
 

2.2.6. Power Back-off 
 

The power back-off is defined as the ratio between the PA’s saturation power to 

the RF signal’s mean power. There are three types of power back-off: input back-off, 

output back-off and peak back-off [2.1], [2.2]. The back-off at the input of the PA (IBO) 

is obtained by: 

 <�=���� = 	��,60� −	��,8�0�                                               (2.2) 

 

where  ��,60� and ��,8�0� are the saturation power and mean signal power at the input of 

the PA, respectively. Similarly, the back-off at the output of the PA (OBO) is given by: 

 =�=���� = 	��,60� −	��,8�0�                                             (2.3) 

 

where ��,60� and ��,8�0� are the saturation power and mean signal power at the output 

of the PA, respectively.   

Finally, the Peak Back-Off (PBO) is given as follows: 

 ��=���� = 	��,60� −	��,��0@                                            (2.4) 
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This is the ratio of saturated output power (��,60�) to peak output power (��,��0@).  It 

should be noted that an increase of the back-off increases the linearity of the PA and 

vice versa. 

 

 

Figure 2-4: The output back-off, peak back-off and peak-to-average power ratio for 
power amplifiers 

 

2.2.7. Peak to Average Power Ratio (PAPR)  
 

A very important signal parameter in terms of linearity is signal’s peak-to-

average power ratio (PAPR), which is the ratio between the peak power ���0@ (related 

to peak amplitude) and the average power �8�0� (related to mean amplitude) of a 

signal. It is also called the crest factor and is given by [2.1]: 

 

�A�B���� = 	10 log C DEF�|F�H�|I�DJEK�|F�H�|I�L = 10 log M���0@�8�0�N 
                  (2.5) 

 

As shown in Figure 2-4, when the power is logarithmically transformed in dBm, the 

PAPR is the difference between signal peak and average powers. 
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2.3. Memory Effects 
 

Memory effects can be explained as time lags between amplitude (AM/AM) and 

phase (AM/PM) responses of PA [2.1]. Electrical and thermal are two types of memory 

effects. The electrical memory effects are dominant in wideband systems and they are 

produced by poor gate and drain decoupling in FET and base and collector decoupling 

in BJT. Also, they are generated by non-constant, frequency-dependent envelope 

impedances within frequency bands of interest. The time response of power amplifiers 

with memory depends not only on the instantaneous input signal, but on the previous 

inputs as well. These memory effects result in the frequency-dependent gain and phase 

shifts of the signal passing through the PA. Consequently, the memory effects cause 

distortion of the output signal and result in IMD asymmetry. The presence of memory 

effects also degrades the performances of DPD. 

The two-tone measurement was proposed in [2.3] and widely used to evaluate 

PA memory effects [2.4]-[2.6]. The amplitudes of lower and upper intermodulation 

distortion were measured. The PA that exhibits memory effects causes an imbalance 

between lower and upper IM3, lower and upper IM5, etc. Typical IMD characteristics 

of the highly nonlinear, high-power PA with memory effects are shown in Figure 2-5. 

 
 
Figure 2-5: Typical IMD characteristics of the PA with memory effects evaluated using 

two-tone tests with different tone spacing 

 
In this thesis, the PA memory effects in much more complex, concurrent dual-

band transmitters are evaluated and compensated. This will be described in detail in 

Chapter 7. 
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2.4. Signal Quality Parameters 
 

2.4.1. Spectrum Regrowth 
 

The spectrum regrowth is the energy from the modulated signal that spreads into 

adjacent channels due to the PA nonlinearity. It can be defined at different offset 

frequencies from the operational carrier frequency and is measured in decibels relative 

to the carrier (dBc). Typically, the spectrum regrowth is measured at the offset 

frequency from the carrier equal to the half of modulated signal bandwidth, or 

sometimes 1.5 times the half of signal bandwidth. The spectrum regrowth 

improvements at the output of PA at lower and upper adjacent bands are graphically 

demonstrated in Figure 2-6. 

 
 
Figure 2-6: Improvements in spectrum regrowth in lower and upper adjacent channels 

 

2.4.2. Adjacent Channel Power Ratio (ACPR) 
 

The adjacent channel power ratio (ACPR) is one of the main figures of merit in 

the evaluation of IM distortion performance of RF PAs. It is a measure of spectrum 

regrowth that appears at the signal adjacent bands. ACPR is defined as the ratio of 

power in a bandwidth adjacent to the main channel to the power within the main signal 
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bandwidth. The ACPR for the right side of the power spectrum density (PSD) can be 

defined as [2.1]: 

 

AO�B�PQRℎH� = 	T �UV�����W$%∆W%;IW$%∆W5;I
T �UV�����W$%;IW$5;I

 

                                              (2.6) 

 

Similarly, the ACPR for the left side of the PSD can be obtained as: 

 

AO�B�YJ�H� = 	T �UV�����W$5∆W%;IW$5∆W5;I
T �UV�����W$%;IW$5;I

 

                                                   (2.7) 

 

where �) is the carrier frequency, � is the bandwidth of the modulated signal, and  �UV��� is the power spectrum density at frequency �.  

 

2.4.3. Error Vector Magnitude (EVM) 
 

The in-band signal quality can be analysed based on its error vector magnitude 

(EVM) measurement in time domain. The EVM is a common metric for the fidelity of 

the constellation of information symbols. This is a measure of how far the actual 

(measured) points are from the ideal locations [2.1].  In other words, the EVM is the 

ratio of the power of the error vector to the power of the reference vector related to the 

ideal constellation. The EVM can be defined in decibels (dB): 

 

Z[����� = 10 log\] M��������(�0�N
=	 10 log\] ^DJEK C�<0)��0� − <�(�0��I + �`0)��0� − `�(�0��I<�(�0�I + `�(�0�I La	 

             (2.8) 
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or in percentage (%): 

 

Z[��%� = 	c��������(�0� ∗ 100% 

                   (2.9) 

 

where ������ and ��(�0� are the power of the error vector and highest power point in the 

reference signal constellation, <�(�0� and ̀ �(�0� are the ideal in-phase and quadrature 

signals, and <0)��0� and ̀ 0)��0� are the transmitted in-phase and quadrature signals.  

 

 

2.5. Performance Evaluation of PA Modelling 
 
 

The PA behavioural modelling is one of the crucial steps in developing of DPD 

with satisfied linearisation performances [2.7]. For the quantitative measure of an 

accuracy of the PA behavioural modelling, a mean squared error (MSE), a normalised 

mean squared error (NMSE) and an adjacent channel error power ratio (ACEPR) are 

typically used [2.8]. MSE and NMSE are used as accuracy metrics in time domain, 

whereas ACEPR is used in frequency domain. 

 

2.5.1. Mean Squared Error 
 

The simplest metric used to assess the accuracy of the chosen PA mathematical 

model is MSE defined as: 

  

�UZ(; = 10	log\] ^1ef|g8�06�K� − g�6��K�|Ih
�i\ a 

                            (2.10) 
 

 
where g8�06	and g�6�	are the measured and estimated output waveforms, respectively, 

and e is the number of samples of the output waveform. 
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2.5.2. Normalised Mean Squared Error 
 

The second time-domain metric is NMSE defined as: 

  

j�UZ(; = 10 log\] C∑ |g8�06�K� − g�6��K�|Ih�i\∑ |g8�06�K�|Ih�i\ L 

(2.11) 
 
where, similarly as in MSE, g8�06	and g�6�	are the measured and estimated output 

waveforms, and e is the number of samples of the output waveform. 

 

2.5.3. Adjacent Channel Error Power Ratio 
 

As a measure of accuracy of PA behavioural model in frequency domain, 

ACEPR is widely used. It can be defined as maximum of both lower and upper band 

ACEPR: 

 

AOZ�B = max8i\,I oT |p8�06��� − p�6����|I�0(q�8T |p8�06���|I)r s 
(2.12) 

 

or as an average ACEPR: 

 

AOZ�B = 	12^T|Z���|
I�������	0(q	)r + T|Z���|I�������	0(q	)r	T|p8�06���|I ��)r a 

(2.13) 

 

where p8�06���, p�6���� and Z��� are the discrete Fourier transforms of g8�06, g�6� 
and the error signal J�K�, defined as 

 J�K� =	gDJEu�K�− gJuH�K�.                                          (2.14) 
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2.6. OFDM Modulation System 
 

 
Orthogonal frequency-division multiplexing (OFDM) is a basis of modern 

wireless communications. Using OFDM based signals, which have high PAPR, brings a 

lot of challenges for researchers and engineers. This is mainly because the PA that 

amplifies such high PAPR signals causes very high distortion level at the output of 

transmitter.  

OFDM is realised using spectrum overlapping concept, where each substream is 

transmitted through a separated subcarrier [2.1], [2.9]. Substreams are orthogonal and 

they can be separated in demodulator. OFDM is implemented using an inverse fast 

Fourier transformation (IFFT) on transmitter side and FFT on receiver side. It also 

contains a cyclic prefix. OFDM is basically a multicarrier modulation technique. The 

centre frequencies of the overlapping channels are: 

 �� =	�) + Q∆�  ,   Q = 0,… .j − 1                                    (2.15) 

 

where �) is carrier frequency. The data rate for each substream is j times lower than the 

data rate of initial stream. The modulated signal related to all subcarriers is presented 

as: u�H� = 	∑ u�R�H�JqIx�∆W�Jq�IxW$�%y&�z5\�i]                                    (2.16) 

 

where R�H� is the pulse-shaping filter, u� is the complex symbol associated with Qth 

subcarrier, {� is the phase of the Qth subcarrier and ∆� = 1 |z} . The subcarriers 

Jq�Ix�W$%�∆W��%y&� provide a set of orthogonal basis functions over the OFDM symbol 

interval	|z.  

OFDM implementation using IFFT and FFT is shown in Figure 2-7. The input 

data is first de-multiplexed into N parallel substreams. Each substream is then mapped 

to a real or complex symbol stream using some modulation constellation, e.g., QAM. 

An IFFT is computed on each set of symbols, giving a set of complex time-domain 

samples [2.1]. These samples are then up-converted to passeband. The real and 

imaginary components are first converted to the analogue domain using digital-to-

analogue convertors (DACs). These analogue signals are then used to modulate cosine 
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and sine waves at the carrier frequency	�), respectively. Finally, these signals are 

summed and amplified to give the transmission signal,u�H�. 
 

 
 

Figure 2-7: Block diagram of OFDM transmitter and receiver 
 

The receiver pick up the signal P�H�, which is then down-converted to baseband 

using cosine and sine waves at the carrier frequency. This also creates signals centred 

on 2�), so low-pass filters are used to reject these unwanted signals. The baseband 

signals are then sampled and digitised using analogue-to-digital convertors (ADCs). In 

order to convert these signals back to the frequency domain, FFT is utilised. After this 

FFT procedure, N parallel streams are obtained. They are converted to a binary stream 

using an appropriate symbol detector. These streams are then re-combined into a serial 

stream, which is an estimate of the transmitted information stream. 

Due to the dispersive effects of the radio channel, intersymbol interference (ISI) 

of the adjacent OFDM symbol degrades the bit error rate (BER) performances. A cyclic 

extension is appended to the OFDM symbol to compensate for ISI. The cyclic prefix 

(CP) is typically created by copying the end of the OFDM symbol and placing that copy 

at the beginning of the symbol, for every symbol. The length of the CP is selected 

according to the impulse response of the radio channel [2.1], [2.9].  

 

2.7. LTE Technology 
 

The LTE radio transmission and reception specifications for the UE and the 

eNodeB RBS are documented in [2.10]. 
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2.7.1. Transmission Bandwidths 
 

LTE must support the international wireless market and regional spectrum 

regulations and spectrum availability. The specifications include variable signal 

bandwidths selectable from 1.4 to 20 MHz, with subcarrier spacing of 15 kHz. 

Subcarrier spacing is constant regardless of the signal bandwidth. 3GPP has defined the 

LTE radio interface to be adaptable to different signal bandwidths with minimum 

impact on system operation [2.11].  

The smallest amount of resource that can be allocated in the uplink or downlink 

is called a resource block (RB). An RB is 180 kHz wide and lasts for one 0.5 ms 

timeslot. For standard LTE, a RB includes 12 subcarriers at 15 kHz spacing. Optionally, 

if 7.5 kHz subcarrier spacing is utilised, a RB comprises 24 subcarriers for 0.5 ms. The 

maximum number of RBs supported by each transmission bandwidth and the minimum 

total power dynamic range of different LTE signals are given in Table 2-1. The PAPR 

of the signal is one half of its dynamic range and directly depends on the signal 

bandwidth and the number of allocated resource blocks [2.12]. 

TABLE 2-1:  Transmission bandwidth configuration 

Signal bandwidth (MHz)   1.4       3         5         10        15         20 

Transmission bandwidth configuration (RB)    6        15       25        50        75        100 

Total power dynamic range (dB)   7.7     11.7    13.9     16.9      18.7      20 

 

2.7.2. Supported Frequency Bands  
 

The LTE specifications include all the frequency bands defined for UMTS, 

which is a list that continues to grow. There are 15 FDD operating bands and 8 TDD 

operating bands listed in Table 2-2. There is no consensus on which LTE band will first 

be deployed, since the answer is highly dependent on local variables. This lack of 

consensus is a significant complication for equipment designers and manufacturers. 

This is in contrast with the start of GSM and WCDMA, when both were specified for 

only one band. What is now established is that one may no longer assume that any 

particular frequency band is reserved for any radio access technology [2.11].  
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TABLE 2-2:  E-UTRA operating bands 
 

E-UTRA 
operating 

band 

Uplink (UL)  
operating band 
RBS receives 
UE transmits ~��_��� − ~��_���� 

Downlink (DL)  
operating band 
RBS transmits 

UE receives ~��_��� − ~��_���� 

 
 

Duplex mode 

1 1920-1980 MHz 2110-2170 MHz FDD 
2 1850-1910 MHz 1930-1990 MHZ FDD 
3 1710-1785 MHz 1805-1880 MHz FDD 
4 170-1755 MHz 2110-2155 MHz FDD 
5 824-849 MHz 869-894 MHz FDD 
6 830-840 MHz 875-885 MHz FDD 
7 2500-2570 MHz 2620-2690 MHz FDD 
8 880-915 MHz 925-960 MHz FDD 
9 1749.9-1784.9 MHz 1844.9-1879.9 MHz FDD 
10 1710-1770 MHz 2110-2170 MHz FDD 
11 1427.9-1452.9 MHz 1475.9-1500.9 MHz FDD 
12 698-716 MHz 728-746 MHz FDD 
13 777-787 MHz 746-756 MHz FDD 
14 788-798 MHz 758-768 MHz FDD 
…    
17 704-716 MHz 734-746 MHz FDD 
…    
33 1900-1920 MHz 1900-1920 MHz TDD 
34 2010-2025 MHz 2010-2025 MHz TDD 
35 1850-1910 MHz 1850-1910 MHz TDD 
36 1930-1990 MHz 1930-1990 MHz TDD 
37 1910-1930 MHz 1910-1930 MHz TDD 
38 2570-2620 MHz 2570-2620 MHz TDD 
39 1880-1920 MHz 1880-1920 MHz TDD 
40 2300-2400 MHZ 2300-2400 MHZ TDD 

 

 

2.8. Multi-branch and Multi-frequency MIMO Transmitters 
 
 

Multiple-input multiple-output (MIMO) is a promising technique that can 

improve the spectrum efficiency of wireless systems (see [2.13] and references therein). 

In fact, MIMO techniques can increase data rates, coverage of service area as well as 

communication reliability. Moving from single-input single-output (SISO) to MIMO 
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communication systems could theoretically multiply the capacity of the system or the 

system data rate by the number of outputs integrated in the MIMO transceiver. Majority 

of wireless systems have been reconsidered regarding the usage of MIMO. Its MIMO 

feature is intended for high-speed applications, and it covers both space-time codes and 

spatial multiplexing [2.1], [2.13]. In order to increase the data rate, MIMO is also 

utilised in 4G LTE standard. 

The conventional definition of MIMO is that of a system with multiple inputs 

and multiple outputs. This definition is extended to Wireless communication topologies 

in which multiple modulated signals, separated in space or frequency domain, are 

simultaneously transmitted through a multiple/single branch radio frequency (RF) front-

end [2.14]. 

MIMO systems, with modulated signals separated in space domain, refer to 

wireless topologies with multiple branches of RF front-ends, with all branches 

concurrently utilised in signal transmission. These types of MIMO systems are named 

Multi-branch MIMO systems [2.14]. 

MIMO systems, with modulated signals separated in frequency domain, refer to 

systems where multiple signals modulated in different carrier frequencies are 

simultaneously transmitted through a single branch RF front-end. These types of MIMO 

systems are named Multi-frequency MIMO systems. Typical examples of multi-

frequency MIMO systems are concurrent dual-band and multi-carrier transmitters. The 

system in frequency domain comprises two independent baseband signals as the 

multiple inputs and two up-converted and amplified signals at two carrier frequencies as 

the multiple outputs. This type of MIMO system uses a single branch RF front-end to 

transmit multiple signals separated in frequency domain [2.14]. 

 

2.8.1. Distortion in Multi-branch MIMO Transmitters 
 

In addition to possibly increasing the data rate without additional spectrum 

resources, multi-branch MIMO topology introduces numerous implementation 

challenges, which can be categorised into two groups. The first group are problems 

related to general transceiver design, such as transmitter linearity, receiver dynamic 

range, and imbalance and leakages in mixers, and is not specific to MIMO systems. On 

the transmitter side of 2 × 2 multi-branch MIMO systems shown in Figure 2-8, there are 

two independent RF chains including PAs. As it was mentioned previously, PAs have 
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nonlinear characteristics in general, which leads to two major problems: one is spectrum 

regrowth, and the other is in-band signal distortion. The former can cause an increase of 

inter-channel interference, and the latter can degrade signal quality at transmitter output 

and therefore, bit error rate (BER) performance at the receiver side.  

 

 
Figure 2-8: Dual-input wireless transmitter for 2x2 MIMO communication system 

 

However, in order to reduce transceiver size, today’s trend is to implement 

complete multi-branch MIMO transceiver on the same chipset. In that case, there are no 

independent signals’ paths in multi-branch MIMO transceiver and crosstalk between 

them is unavoidable. This crosstalk between the multiple paths is one of the main 

issues. This problem belongs to the second group of problems specific to MIMO 

transceivers. Crosstalk or coupling effects are the result of signal interferences from two 

or more sources. Due to the fact that the signals in different paths use the same 

operating frequency and have equal transmission power, crosstalk is more likely 

between the paths [2.13], [2.15]. Furthermore, the crosstalk impact would be more 

noticeable in integrated circuit (IC) design, especially when the small size is very 

important. As shown in Figure 2-8, crosstalk in MIMO transceivers can be classified as 

linear or nonlinear. Crosstalk is considered linear when its effect at the output of the 

transmitter (at the antenna) can be modelled as a linear function of the interference and 

desired signals. In other words, the signal affected by linear crosstalk does not pass 

through nonlinear components. In contrast, nonlinear crosstalk affects the signal before 

it passes through a nonlinear component. Since the PA is the main source of 

nonlinearity, crosstalk that occurs in the transmitter circuit before the PA is the main 
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source of nonlinear crosstalk, while antenna crosstalk is considered linear. These two 

types of crosstalk seriously deteriorate the quality of the signal at transmitter output. In 

fact, they produce distortion that seriously degrades EVM metric [2.13], [2.15], [2.16]. 

Linear crosstalk can be easily mitigated on receiver side using matrix inversion 

algorithm [2.13], [2.16]. The nonlinear crosstalk is a much bigger problem and should 

be carefully considered during DPD design [2.13], [2.16]. If it is not taken into account, 

the performances of DPD can be seriously degraded. 

 

2.8.2. Distortion in Multi-frequency MIMO Transmitters 

 

The nonlinear behaviour is much more noticeable in multi-frequency MIMO 

systems. When considering concurrent dual-band transmitter shown in Figure 2-9, the 

two modulated signals at different operating frequencies are transmitted simultaneously.  

LPF

LPF

X

X

ω1

1

2

OUTPUT

INPUTS
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POWER 
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Figure 2-9: Block diagram of concurrent dual-band transmitter 

 

 

In these concurrent dual-band transmitters, the distortion products at the 

transmitter output can be categorised into three major groups [2.17]. Figure 2-10 shows 

these three types of unwanted modulation products for a dual-band transmitter excited 

with a two-tone signal in each band. 
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Figure 2-10: Power spectrum of the signal at: (a) the input and (b) output of a dual-

band transmitter 
 

The first group, dubbed in-band intermodulation, consists of the intermodulation 

products around each carrier frequency that are only due to the intermodulation between 

the tones within each band. This effect is similar to what it is case in single-band 

transmitters. 

The second group, which includes the cross-modulation products, appears 

within the same frequency range as the in-band intermodulation. This distortion is the 

result of interaction between the signals in both frequency bands. 

Finally, the last group, which is dubbed out-of-band intermodulation, is the 

intermodulation products between the two signals in both frequency bands. These out-

of-band terms are located far away from the lower and upper frequency bands and can 

be easily filtered out. However, the in-band intermodulation and cross-modulations 

must be eliminated and compensated for. 

There are problems in using conventional DPD techniques for compensation of 

the in-band intermodulation and cross-modulation distortion. Using a single digital 

predistorter to compensate for all the distortion requires capturing the whole dual-band 

signal spectrum at the output of the nonlinear dual-band or wideband PA. The 

bottleneck of this approach is the sampling rate limitation of the analogue-to-digital 

convertors (ADCs) and digital-to-analogue converters (DACs), especially in case when 

frequency separation between bands is very large. Additionally, using two independent 

conventional DPDs for compensation of distortion in each carrier frequency is also not 

appropriate since the effect of cross-modulation products is not considered [2.17]. 
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2.9. Conclusion 
 

The fundamental parameters of power amplifier as the most challenging part of 

wireless transmitters, the main signal quality parameters and the main PA behavioural 

modelling metrics have been presented in this Chapter. In addition to this, the distortion 

problem in modern wireless transmitters has been described. The transmitters are 

characterised by their efficiency and linearity, which mostly depend on the PA mode of 

operation. As it has been outlined in Introduction, a PA is designed to operate in a 

nonlinear mode, and an additional device, usually implemented into DSP, is used for its 

linearisation. In order to successfully designed and implemented this device, the 

detailed analysis of different distortion types are becoming indispensable. It should be 

noted that the nonlinear distortion is significantly stronger in 4G SISO wireless 

transmitters because 4G signals have very high PAPR. Moreover, there are other sided 

negative effects such as cross-modulation and crosstalk in multi-frequency and multi-

branch MIMO transmitters, respectively. Therefore, the additional distortion appears at 

transmitter output. If it is not taken into account, the linearisation quality will be 

seriously degraded. In consequence of that, the linearisation techniques should be 

specially designed for these wireless transmitters. 
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3. Digital Predistortion Linearisation Techniques 
 

3.1. Introduction 
 

In order to achieve high capacity requirements of modern mobile wireless 

systems (WCDMA, HSPA, LTE and mobile WiMAX), high linearity is required in the 

entire signal path of both transmitter and receiver. As it was mentioned previously, the 

most rapidly developing power amplifier linearisation technique is Digital Predistortion 

(DPD) [3.1]-[3.8]. With the aim of being more energy efficient, PAs should operate in 

the highly nonlinear region close to saturation. However, when they operate in that 

region, PAs produce high level of in-band and out-of-band distortion. In order to reduce 

these distortions and improve signal quality, a baseband signal should be passed 

through DPD lineariser implemented into Digital Signal Processing (DSP) that, in an 

ideal case, is the PA’s inverse transfer function (Figure 3.1). As can be seen, the overall 

transmitter’s response is linear in that case.  

 

Figure 3-1: The fundamental concept of digital predistortion 
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The current chapter presents an overview of all the major DPD techniques used 

to increase the linearity of different types of wireless transmitters, describing the 

concepts of the techniques and highlighting their advantages and drawbacks. 

 

3.2. DUT Model Extraction 
 
 

Digital predistortion applies a complementary nonlinearity upstream of the PA 

so that the cascade of the digital predistorter and the PA behaves as a linear 

amplification system [3.9]. Behavioural modelling is essential to predict the 

nonlinearity of the PA and the transmitter in general. The synthesis of the predistortion 

function can be considered equivalent to behavioural modelling of the PA’s inverse 

transfer function obtained by substitution of the PA’s input and output signals with 

appropriate small-signal gain normalisation [3.9]. 

 

Figure 3-2:  Behavioural model extraction procedure. Key steps from measurements to 

model validation 

Behavioural modelling of DUT is very important in order to accurately quantify 

PA nonlinearities and memory effects [3.9]-[3.13]. Typically, DPD is considered 

closely together with Behavioural Modelling procedure [3.9]. This procedure is shown 

in Figure 3.2. The propagation delay through the DUT will introduce a mismatch 
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between the data samples used to calculate the instantaneous AM/AM and AM/PM 

characteristics of the DUT. This mismatch will translate into dispersion in the AM/AM 

and AM/PM characteristics that can be wrongly considered as memory effects. 

Therefore, the captured PA output signal must be time-aligned with the captured input 

signal [3.9]. The time-aligned input and output waveforms are then used to identify the 

behavioural model/digital predistorter of the DUT as well as its performance. 

 

To sum up, one can say that the behavioural modelling procedure can be divided 

into two major parts: the observation and the formulation.  

 

• The observation refers to the accurate acquisition of the signals at the 

input and output of the PA. This part includes experimental capturing of the 

signals and delay estimation and compensation procedure [3.9]. 

• The formulation corresponds to the choice of a suitable mathematical 

relation that describes all the significant interaction between the PA’s input and 

output signals, its identification and validation [3.9]. 

 

Various mathematical representations of the model (“formulations”) have been 

proposed for behavioural modelling and digital predistortion of RF PAs and transmitters 

[3.9]-[3.13]. The following section brings the description of the most widely used 

models. 

 

3.3. Mathematical Representation of the Models 
 

3.3.1. Look-up-table Models 
 

The look-up-table model is the basic behavioural model for memoryless 

AM/AM and AM/PM nonlinearities firstly introduced in [3.14]. The complex gain of 

the DUT is stored in two look-up tables. The output signal is given by: 

 F����K� = ��∣ F���K� ∣� ⋅ F���K�                                              (3.1) 
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where ��∣ F���K� ∣� is the instantaneous complex gain of the DUT. The AM/AM and 

AM/PM characteristics of the DUT are derived from the measured data using averaging 

or polynomial fitting techniques. The nested look-up-table model was proposed to adapt 

the conventional look-up-table-based model to include memory effects [3.9]. The output 

waveform is given by 

 F����K� = ��∣ ����K� ∣� ⋅ F���K�                                             (3.2) 
 

where  ��∣ ����K� ∣�  is the instantaneous complex gain of the DUT, and ����K� is the 

input vector including the present and the M-1 preceding samples defined as 

 ����K� = [F���K�, F���K − 1�,… , F���K − ��]                                (3.3) 

 

To clarify, if the memory depth of nested look-up table is � = 1, there are eI 
extracted and stored values of ��∣ ����K� ∣� , where e is a size of conventional LUT. In 

general case, there are e�%\ extracted and stored values of ��∣ ����K� ∣�. For instance, 

if = 2� = 128 , there will be 128 possible regions of amplitude ∣ F���K� ∣. For each of 

these regions, there will be 128 possible regions of amplitude	∣ F���K − 1� ∣. Therefore, 

the instantaneous complex gain � should be extracted and indexed in two levels 

depending on amplitudes ∣ F���K� ∣ and	∣ F���K − 1� ∣. This is conventionally written as ��∣ ����K� ∣� =		��∣ F���K� ∣, ∣ F���K − 1� ∣�. 
 

3.3.2. Volterra Models 
 

Volterra Model  is the most comprehensive model for dynamic nonlinear 

system. In this model, the relationship between the input and output waveforms is: 

 

g�K� = ff…�
��i]

f ℎ��Q\, QI, … , Q���F�K − Q���
qi\

�
��i]

h
@i\  

                (3.4) 

 

where ℎ��Q\, QI, … , Q�� are the parameters of the Volterra model, e is the nonlinearity 

order of the model, and � is the memory depth. In fact, the number of parameters in 
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conventional Volterra model increases exponentially with nonlinearity order and 

memory depth. This limits the practical use of the Volterra series. To decrease this 

complexity, several techniques have been proposed to simplify the Volterra model. 

These include the pruning techniques and the dynamic deviation reduction technique 

[3.15], [3.5]. The Volterra-based models have demonstrated high accuracy in modelling 

mildly nonlinear PAs and transmitters. 

To overcome the limitation of the classical Volterra series, a Volterra-like 

approach, called a modified Volterra series or dynamic Volterra series is developed, in 

which the input/output relationship for nonlinear system with memory is described as a 

memoryless nonlinear term plus a purely dynamic contribution. This was based on 

introducing dynamic deviation function 

 J�K, Q� = 	F�K − Q� − F�K�                                            (3.5) 

 

which represents the deviation of the delayed input signal F�K − Q� with the respect to 

the current input signal F�K�. This dynamic deviation function modifies (3.4) as 

follows: 

 

g�K� = ff …�
��i]

f ℎ��Q\, QI, … , Q����F�K� + 	J�K, Q����
qi\

�
��i]

h
@i\  

                 (3.6) 

 

In order to take advantage of the modified Volterra series, but also keep the model 

extraction as simple as possible, the following representation of the Volterra series is 

derived in [3.5]: 

 

g�K� = 	fℎ�,]�0, … .0�F��K��
�i\ + 

f�f�F�5��K�f …�
��i\

f ℎ�,��0…0, Q\… Q���F�K − Qq��
qi\

�
�.�	&.��

��
�i\ ��

�i\  

        (3.7) 
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where ℎ�,��0…0, Q\… Q�� represents �th order Volterra kernel where the first � − P 
indices are “0”, corresponding to the input item F�5��K�F�K − Q\�,… F�K − Q��. In this 

representation P is the possible number of product terms of the delayed inputs in the 

input items. 

 

3.3.3. Memory Polynomial Models 
 

The memory polynomial model is widely used for behavioural modelling and 

digital predistortion of PAs/transmitters exhibiting memory effects. It corresponds to a 

reduction of the Volterra series in which only diagonal terms are kept [3.6]. The output 

waveform of the model is 

 

g�K� = f f E@8 ∙ F�K −D� ∙ |F�K − D�|@5\�5\
8i]

h5\
@i\  

                        (3.8) 

 

where K and M are the nonlinearity order and the memory depth of the DUT, 

respectively, and E8@ are the model coefficients. 

Several variations of the memory polynomial model have been proposed in the 

literature. These include the orthogonal memory polynomial model [3.16], the envelope 

memory polynomial [3.9] and the memory polynomial model with cross-terms also 

referred to as the generalised memory polynomial model [3.6]. 

The Envelope Memory Polynomial Model can be seen as a combination 

between the memory polynomial model and the nested look-up model [3.9]. The output 

signal of the envelope memory polynomial model is given by 

 

g�K� = f fE@8 ∙ F�K�	∙ |F�K − D�|@5\h
@i\

�
8i]  

                           (3.9) 

where K and M are the nonlinearity order and the memory depth of the DUT, 

respectively, and E@8 are the model coefficients. This formulation is similar to that of 

the memory polynomial model, except that only the magnitude information of the 

memory terms [F�K − 1�, F�K − 2�, … , F�K − ��] is required and their complex values 
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are not used. This makes this model simple to use for DPD implementation. It can be 

seen as an implementation of the nested look-up table model that takes advantage of the 

compact formulation and simple identification of memory polynomial model, where 

 

��|��K�|� = 	 f fE@8 ∙ |F�K − D�|@5\h
@i\

�
8i]  

                   (3.10). 

 

The Generalised Memory Polynomial Model introduces cross-terms using the 

alternative Volterra formulation [3.6]. Thus, a generalised form of the 	¡-th memory 

polynomial component is written in 

 

f f¢@8 ∙ F�K�	F�K − D�@h
@i\

�
8i]  

                                         (3.11), 

 

where a delay of samples between the signal and its exponentiated envelope is inserted. 

Taking multiple such delayed versions of (3.11) using both positive and negative cross-

term time shifts and combining with (3.8) results in the generalised memory polynomial 

 

	g�K� = f f E@�F�K − Y�£/5\
�i]

h/5\
@i]

|F�K − Y�|@
+f f f ¢@�8F�K − Y�|F�K − Y −D�|@�¤

8i\
£¤5\
�i]

h¤
@i\

+f f f ¥@�8F�K − Y�|F�K − Y + D�|@�$

8i\
£$5\
�i]

h$
@i\  

                    (3.12)  

 

Here, e0¦0 are the number of coefficients for aligned signal and envelope (memory 

polynomial); e§¦§�§  are the number of coefficients for signal and lagging (delaying) 

envelope; and e)¦)�) are the number of coefficients for signal and leading envelope. 

The main advantage of this cross-term model is that the coefficients, like those of the 
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memory polynomial, appear in linear form. Therefore, all of the coefficients can be 

simply and robustly estimated using any least-squares type of algorithm. This has 

positive implications for algorithm stability and computational complexity. 

 

3.3.4. Wiener Model 
 

The Wiener model is a two-box model composed of a linear finite impulse 

response (FIR) filter followed by a memoryless nonlinear function (see [3.9] and 

references therein). The output of this model is given by  

 F����K� = ��∣ F\�K� ∣� ⋅ F\�K�                                     (3.13) 

 

 

and 

F\�K� =fℎ�¨� ⋅ F���K − ¨��
qi]  

                                                        (3.14) 

 

where � is the memoryless instantaneous gain function implemented in the look-up 

table model and F\�K�	designates the output of the FIR filter, ℎ�¨�	are the coefficients 

of the FIR filter impulse response, and M is the memory depth of the DUT. 

 
 

3.3.5. Hammerstein Model 
 

In the Hammerstein model, the static nonlinearity is applied before the linear 

filter (see [3.9] and references therein). Thus, the output waveform is given by: 

 

F����K� =fℎ�¨� ⋅ F\�K − ¨��
qi]  

                             (3.15) 

and 

 F\�K� = ��∣ F���K� ∣� ⋅ F���K�                                   (3.16) 
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where F\�K�, ℎ�¨�, and ��∣ F���K� ∣	�	refer to the output of the first box (look-up table 

model), the impulse response of the FIR filter, and the instantaneous gain of the      

look-up table model, respectively, and M is the  memory depth of the DUT. 

 

3.4.  Behavioural Modelling Based Digital Predistortion 
 

Over the years, many different approaches have been proposed to identify the 

coefficients of a digital predistorter [3.17]. In [3.18], a random search method based on 

a simple parameter perturbation was applied to identify a predistorter directly. 

However, it suffered from very slow convergence rate. The characteristic of a nonlinear 

PA was first estimated, and an analytical solution was then found to derive the inverse 

function of the PA in [3.19]. This approach is only feasible when the nonlinear order is 

low, since when the order becomes higher it will involve high computational 

complexity. Recently, many other identification structures have been proposed to 

identify the predistorter more efficiently and accurately. These identification structures 

are based on direct and indirect learning methods in general.  

 

3.4.1. Identification of DPD Functions – Direct and Indirect Learning 
Architectures 

 
 

In order to identify digital predistorter, the methodology named Direct Learning 

has been widely proposed [3.20]-[3.22]. This technique is done by first constructing a 

direct model of the transmitter and then inverting this model. Direct learning means that 

the model of the input-output relation of the power amplifier is estimated first, and the 

predistortion is obtained directly by “pre-inverting” this PA characteristic. It should be 

noticed that an inverse of the power amplifier behavioural model is used directly to 

construct the DPD. This architecture commonly utilises the iterative procedures to 

optimise the parameter of DPD in order to minimise the error [3.21]. Figure 3-3 shows 

the block diagram of direct learning identification methodology. In order to minimise 

the errors between the output signal and the desired signal, the coefficients of the 

predistorter are estimated using adaptive algorithms [3.21]. In general, the direct 

learning method can have better performance than the indirect learning method. 
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However, the computational complexity of direct learning is higher and it usually 

converges more slowly.  

 

DPD

PA model +Calculate 

inverse

PA
x(n) xdpd(n) y(n)

 

Figure 3-3: Direct learning DPD architecture 

 

 

A large number of digital predistorters are based on indirect learning 

architecture (ILA) [3.1], [3.4], [3.23]. The method is named the indirect learning due to 

the post-inverse coefficients are first identified and then copied to work as a digital 

predistorter [3.23]. This post-compensator models the output into the desired input, and 

after that, can be used as a pre-inverting model for the DPD. This technique is shown                   

in Figure 3-3.  

 

 

Figure 3-4: Indirect learning DPD architecture 

 

Indirect learning means that a postdistorter first derives a postinverse of the 

nonlinear model without any predistorter and then the postdistorter is used as a 
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predistorter. The ILA typically uses block based least square solution [3.24], [3.25]. It 

has been shown that when a good behavioural model is obtained, a good inverse model 

can also be obtained [3.4]. Although this was verified in some cases, this is not a 

general fact. In some cases, the inversion of a nonlinear system may not be possible. In 

other words, not all nonlinear systems possess an inverse, and many systems can be 

inverted only for a restricted amplitude range of input [3.21].  

The pros and cons of direct and indirect learning identification structures have 

been compared and summarised in [3.22] and [3.24]. 

 

3.5. Digital Predistortion Based on Artificial Neural Networks 
 

Recently, the novel technique of artificial neural networks (ANNs) has attracted 

researchers in the field of PA modelling due to its successful implementation in signal 

processing, system identification, and control [3.26], [3.27]. The ANN approach has 

also been investigated as one of the DPD techniques for PAs and transmitters. Using 

ANN in this context is attractive because of its adaptive nature and the claim of a 

universal approximation capability. The real-valued recurrent neural network (RVRNN) 

shown in Figure 3-5 is one of the possible solutions of network topology. However, the 

real-valued focused time-delay neural network (RVFTDNN), also shown in Figure 3-5, 

was found to be the most suitable, accurate, and robust model for DPD-based 

linearisation of mildly as well as strongly nonlinear PAs [3.28]. This ANN is presented 

with input vectors of the length	2�D + 1�, including real values of present and past 

inputs 

 ��� = [<���K�, <���K − 1�… <���K − D�, `���K�, `���K − 1�…`���K − D�] ,                     
(3.17) 

 
where D is the memory depth. The outputs of ANN are expressed as follows: 
 
 <����K� = �\�����K��                                           (3.18) 

 
 `����K� = �I�����K��                                         (3.19) 
 

 
where �\ and �I are functions modelled by RVFTDNN at any time instant K. 
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Figure 3-5: RVFTDNN and RVRNN schematics [3.28] 

 

The net at any layer is given by 

 

KJHq��K� =f©q�� F��,��5\�K�ª
�i\ + ¢q� 

                                                      (3.20) 
 

where ¨ denotes a neuron in hidden layer	Y, and ©q�� denotes the synaptic weight 

connecting the i-th input to the j-th neuron of layer	Y. The output of any layer is given as 

 «q� = ��KJHq��K��.                                            (3.21) 
 

The output of any layer works as an input for the next layer. The output layer has a 

purelin activation function, which sums up the outputs of hidden neurons and linearly 

maps them at the output. The activation function for two hidden layers is typically the 

tansig function, which maps nonlinearity between -1 and 1 and is mathematically 

equivalent to hyperbolic tangent given as 

tanh�F� = exp�F� − exp	�−F�exp�F� + exp	�−F� 
                                                          (3.22) 
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Training is carried out in batch mode, supervised with a back-propagation 

learning algorithm (BPLA). During one epoch or iteration, two passes are made. During 

the forward pass, the cost function is calculated by 

 

Z = 12jf[±<����K� − <²����K�³I + ±`����K� − `́����K�³I]z
�i\  

(3.23) 
 

where <����K� and ̀ ����K� are the desired outputs, and	<²����K� and ̀´����K� are the 

outputs from the ANN. Based on the error signal, backward computation is done in 

(3.20) to adjust the synaptic weights of the network in layer according to 

 ©�K + 1� = ©�K� + µ©�K�                                                   (3.24) 
 

In (3.24), ©�K� denotes the weights at a previous time instant, ©�K + 1� is the updated 

weight, and µ©�K� is calculated using the 1-D Levenberg–Marquardt algorithm form 

with the aim of minimizing the cost function. This algorithm was selected from among 

various algorithms because of its fast convergence properties [3.28]. For updated 

weights, the cost function is calculated in the forward pass; and, the whole procedure is 

carried out again until the desired performance is met or the ANN starts failing the 

validation procedure, drifting away from the generalisation criterion. 

The RVFTDNN was trained to extract the normalised inverse characteristics 

according to 

 ��� =	�5\�g���8�                                           (3.25) 

 

where g���8	denotes the vector containing the I and Q components for the PA output at 

that instance and previous instances after normalizing it with a small-signal gain, and ��� denotes the vector containing the I and Q components of the input to the PA at that 

instance. The memory length was decided by an optimisation process. Finally, the 

initial input signal is passed through this trained ANN which actually acts as digital 

predistorter. 

This solution can be further extended and Figure 3-6 depicts the ANN structure, 

where the in-phase (I) and quadrature (Q) components of the PA input and output 
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signals are used as network inputs [3.29]. This ANN model can be seen as a generalised 

version of the model described previously.  

 

 

Figure 3-6: A generalised real-valued two hidden layers ANN model for a PA [3.29] 

 

The following two sections describe the extensions of the previously presented 

solutions to be applicable in multi-branch and multi-frequency MIMO transmitters. 

However, these advanced solutions are followed by dramatic increase of the complexity 

that precludes their practical implementation. 

 

3.6. Digital Predistortion for Multi-branch MIMO Transmitters 
 
 

As it was discussed previously, the compensation of the PA nonlinearity is the 

main goal of DPD. However, there are other side effects such as quadrature 

modulation/demodulation (QM/QDM) errors [3.30], Local Oscillator (LO) self-

coupling problem [3.31] or crosstalk specific to multi-branch MIMO systems [3.32], 

[3.33] to be aware of.  The description of the crosstalk problem is given in Chapter 2. 

This section describes DPD models specifically designed for multi-branch MIMO 

transmitters to jointly compensate nonlinear crosstalk and PA nonlinearity. 
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3.6.1. Crossover Digital Predistortion (CO-DPD) 
 

Conventional DPDs are not able to compensate for transmitter nonlinearity in 

the presence of nonlinear crosstalk. Therefore, the crossover digital predistorter        

(CO-DPD) model that can jointly compensate for both nonlinear crosstalk and 

transmitter nonlinearities was developed [3.32]. It can be assumed that there is only one 

major nonlinear component (PA) in the transmitter chain, and therefore, all the crosstalk 

terms from different sources could be added up before the PA to represent the nonlinear 

crosstalk. The linear crosstalk appears after the PA and is named the antenna crosstalk. 

Its effect can be compensated together with the effect of the wireless fading channel at 

the receiver side [3.32]. 

In the CO-DPD model, the entire MIMO transmitter is considered as a nonlinear 

system with two inputs (F\, FI) and two outputs (g\, gI). The relation between the inputs 

and outputs is shown in matrix form as follows: 

 [g\	gI] = ¶[F\	FI]·                                               (3.26) 

 

where ¶ is a nonlinear matrix function representing the nonlinear behaviour of the 

transmitter, which is composed of the PAs nonlinearity and the nonlinear crosstalk. 

The conventional memory polynomial model is used to characterise the static 

and dynamic (memory effects) nonlinear behaviour of the transmitter. The closed-form 

expression relating the complex signals at the input and output of the nonlinear 

transmitter can be written as follows: 

 

g�K� = ffℎ@,ª|F�K − ¸�|@5\h
@i\

¹
ªi] F�K − ¸� 

                         (3.27) 

 

where F�K�  and g�K�  are the input and output complex signals, ℎ@,ª  are the polynomial 

coefficients, e and ` are the maximum polynomial order and memory depth, 

respectively. The memory polynomial model can be rewritten into the matrix form as 

follows:  

 

gº = A9ºℎ»º                                                  (3.28) 
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where each symbol is defined as follows: 

• gº = [g�1�…g�j�]· is j × 1  an vector representing j samples of 

the output signal. 

• ℎ»º = �ℎ\,]	ℎI,]…	ℎh,]…	ℎ\,¹	ℎI,¹…	ℎh,¹� is a e�` + 1� vector of 

the polynomial coefficients. 

• A9º = �½9º]…	½9ºª …	½9º¹� is an j × e�` + 1� matrix 

•  

½9ºª = ¾¿¿
¿À 0\9ª																									0\9ª 												…															0\9ª½\�F�1��														½I�F�1��							…									½h�F�1��⋮½\�F�j − ¸��	½I�F�j − ¸��…	½h�F�j − ¸�� ÂÃÃ

ÃÄ	 is a j × e matrix 

and ½@�F�K�� is   defined as		½@�F�K�� = F�K�@5\F�K� .          
• Fº = [F�1�…F�j�]· is an j × 1 vector representing j samples of 

the input signal. 

 

The ℎ@,ª coefficients can be determined by the pseudoinversing A9º matrix as follows: 

 

ℎ»º = �QKÅ�A9º�gº                                                (3.29) 

 

where �QKÅ�A9º� = �A9ºÆ	A9º�5\A9ºÆ is the pseudo-inverse of matrix A9º. The memory 

polynomial model can be extended for the MIMO case, where there are two inputs and 

two outputs. The expression in (3.28) is extended for the dual-input dual-output system 

as follows: 

 

[g\»»»»º	gI»»»»º] = �	A9�»»»»º	A9Ç»»»»º� Èℎ\,\»»»»»»»º ℎI,\»»»»»»»ºℎ\,I»»»»»»»º ℎI,I»»»»»»»ºÉ                                    (3.30) 

 

where A9�»»»»º and A9Ç»»»»º are the matrices defined for inputs F\»»»»º and FI»»»»º, ℎÊ,Ë»»»»»º  are the polynomial 

coefficients between input FË»»»º and output gÊ»»»º. Therefore the polynomial coefficients for 

the 2x2 MIMO model will be: 
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Èℎ\,\»»»»»»»º ℎI,\»»»»»»»ºℎ\,I»»»»»»»º ℎI,I»»»»»»»ºÉ = �QKÅ��	A9�»»»»º	A9Ç»»»»º��[g\»»»»º	gI»»»»º].                            (3.31) 

 

Similarly, to extract the DPD coefficients, È�\,\»»»»»»»º �I,\»»»»»»»º�\,I»»»»»»»º �I,I»»»»»»»ºÉ the vector [g\»»»»º	gI»»»»º] will be 

swapped with	[F1»»»º	F2»»»º], and the AÌ�»»»»º and AÌÇ»»»»º are defined based on output data g\»»»»º  and  gI»»»»º. 
Therefore, the DPD coefficients are:  

 

È�\,\»»»»»»»º �I,\»»»»»»»º�\,I»»»»»»»º �I,I»»»»»»»ºÉ = �QKÅ��AÌ�»»»»º	AÌÇ»»»»º��[F\»»»»º	FI»»»»º].                          (3.32) 

 

The application of the calculated DPD functions is illustrated in Figure 3-7 

where the DPD outputs	\ and I depend on both input signals F\ and FI . 
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Figure 3-7: CO-DPD model for dual-branch transmitters 

 

3.6.2. Digital Predistortion for Multi-branch MIMO Transmi tters Based on 
Combined Feedback 
 

When it is needed to apply previously described, conventional CO-DPD in 

transmitter with M transmitter’s chains, M independent feedback paths are required 

(Figure 3-8(a)). To overcome multiple feedback paths, the two possible solutions were 

described in [3.34]. The first solution, shown in Figure 3-8(b), uses only one feedback 
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and time-sharing method among M PA outputs. In this case, crosstalk between different 

outputs is unavoidable and can seriously degrade the DPD linearisation performances. 

The second solution instead of constructing a separate feedback path at the output of 

each PA uses combined feedback which adds all the PAs’ outputs to form a single 

feedback [3.34]. This solution is shown in Figure 3-8(c). 

 

(a) 

 

(b) 

 

(c) 

Figure 3-8: Multi-branch MIMO transmitter model: (a) with multiple feedbacks 

(b) with selector based shared feedback (c) with combiner based shared feedback 
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The DPD methodology shown in Figure 3-8(c) consists of two steps. The first 

step is PA identification procedure, and the second step is DPD parameters calculation 

from the identified PA characteristic.  

The combined feedback signal E�K� can be written as follows: 

 

E�K� = \�K��] + I�K��] +⋯+ ��K��] 	≈ �·Ò�K� 
                             (3.33) 

 

where � = [�\·	ÓI·…	��· ]· and Ò = [Ò\·	ÒI·…	Ò�· ]·. It should be noted that � and Ò�K� are the �-times augmented vectors by stacking up Ô��Õ and ÔÒ��K�Õ, respectively. 

Therefore, the size of � is �-times bigger than that of	��, and by estimating	�, � PA 

parameters �� for Q	 = 	1, . . . , �	 can be obtained. To identify the characteristic 

coefficients of the PAs, the error is defined as follows: 

 J�K� = E�K� − �Ö×	Ò�K�                                         (3.34) 

 

where �Ö  is the PA parameter vector. To find the PA parameter �Ö  that minimises	J�K�, 
the least squares (LS) is employed. If j samples for	K	 = 	0, ...,j are available and the 

PA characteristics are not changed during the j-sample period, the LS cost function can 

be expressed as: 

 

Ø = 	f|J�K�|Iz
�i] =	f|E�K� − �Ö×	Ò�K�|Iz

�i]  

                                              (3.35) 

 

The LS estimate of �Ö  that minimises (3.35) can be obtained as: 

 �Ö =	 �ÙÆÙ�5ÚÙÛÜ                                            (3.36) 

 

where Ü	 = 	 [E�1�, E�2�,・	・	・	, E�j�]· and Ù	 = 	 [Ò�1�, Ò�2�,・	・	・	, Ò�j�]· . 
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The next step is calculation of DPD functions. The parameters of DPDs can be 

calculated independently at each path because the � PA parameters are estimated. To 

find the DPD parameters, a cost function is defined for the ̈ -th PA as follows: 

 ε�q 	= 	Z[|J�q	(K)|I]                                         (3.37) 

 

where 

 

J�q	(K) = 	Fq(K) − q(K) �]Þ .                               (3.38) 

As there is only one combined feedback path, q(K) cannot be used directly. Therefore, 

the ̈ -th estimated PA parameter is used instead. Specifically, the error signals can be 

rewritten as: 

 

J�q	(K) = 	Fq(K) − �Öq·Òq(K).                             (3.39) 

 

Using (3.39), the adaptive algorithm that minimises (3.37) can be applied (see 

[3.34] and references therein). 

 

 

3.6.3. Simplified Crossover Digital Predistortion (Simplified CO-DPD)  

 
This subsection is based on the author’s publications [3.35] and [3.36]. The 

baseband equivalent transmitter model shown in Figure 3-9 is used to explain this 

concept like in [3.30], [3.31]. Undesired effects and the technique are explained in 

example of the MIMO transmitter with N RF front ends. Parameters		ß�q are used for 

crosstalk modelling between Q-th and j-th RF front ends (	Q, ¨ = 1,… ,j, where j is 

crosstalk source branch, i is affected branch and		ß�q = ßq�). The affected signal with 

nonlinear crosstalk effects at the PA output of the i-th RF front end g�	is: 

 

g� = ��3(ß�\ ∗ \ +⋯+ � +⋯+ ß�z ∗ z)                            (3.40) 
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where ��3 is nonlinear PA transfer function, the predistored signal 	� = F� when there 

are no additional blocks for DPD purposes (framed with green lines), and 	F� 	(Q =1, … , j) is the discrete time-domain OFDM signal at time instant K given as follows:  

 

																									F�(K) = ∑ �@(�)JqÇπà@�h5\@i] 																																									(3.41)  

 

 

Figure 3-9: The baseband equivalent N-MIMO OFDM transmitter with simplified    

CO-DPD 

 

The time-domain, PA input signal on carrier frequency 	© = 2á�	with variable 

amplitude [6(H) and variable phase	{(H)	can be written as: 

 

Åâz(H) = [6(H) cos�©H + {(H)� = 		 (Å<(H) cos©H − Å`(H) sin©H)[           (3.42) 

 

where [ = æ[6(H)ççççççæ		is the average value of the amplitude, normalised in-phase and 

quadrature components are Å<(H) = èé(�)è cos�{(H)�, Å`(H) = èé(�)è sin�{(H)�,	and 
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Å<(H)I + Å`(H)Iççççççççççççççççççççç = 1. The PA nonlinear behaviour can be described with the 

quadrature Taylor-series amplifier model [3.37] given with the following equations: 

 

g� = ��<(Å<�) + ¨�`(Å`�)�[�                                          (3.43) 

 

g<� = �<(Å<�) = ∑ A@Å<�@�@i]                                            (3.44) 

 

g`� = �`(Å`�) = ∑ �@Å`�@�@i]                                           (3.45) 

 

where g� 	is a complex signal at the output of PA in Q-th transmitter’s branch  (Q =1, … , j), A@ and �@ are polynomial coefficients and � is a polynomial order of the PA 

model.  

 The proposed MIMO DPD block is shown in Figure 3-9. In order to suppress 

crosstalk effects from other branches, the predistored signal at Q-th transmitter’s branch 

is a sum of signals from N branches: 

 

�(K) = ∑ <�@ + ¨∑ `�@z@i\z@i\ ,					Q = 1,… ,j                     (3.46) 

 

By substituting <�@ = �<�@(F<@)		and `�@ = �`�@(F`@) , signal �(K)	becomes: 

 �(K) = ∑ �<�@(F<@) + ¨z@i\ ∑ �`�@(F`@),z@i\ 	Q = 1,… ,j             (3.47) 

 

where �< and �` are �Hℎ-order polynomial functions with coefficients E� and ¢�: 

 �<(F<) = ∑ E���i\ F<�                                         (3.48) 

 �`(F`) = ∑ ¢���i\ F`�                                       (3.49) 

 

The polynomial functions �<�� and �`�� (Q=1, … , j) are DPD functions which 

deal with PA nonlinearity. In contrast, �<�q and �`�q (Q, ¨ = 1,… ,j and		Q ≠ ¨) functions 
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have a goal to eliminate nonlinear crosstalk between Q-th and ̈ -th MIMO transmitter’s 

paths. The equation (3.47) can be re-written into matrix form for the blocks of ¦ 

samples as follows:  

 

ëº = ��<\\»»»»»»»º… �<\z»»»»»»»»º⋮									⋱								⋮�<z\»»»»»»»»º… �<zz»»»»»»»»»º� o
íî\	⋮íîz	s + ¨ �

�`\\»»»»»»»»»º … �`\z»»»»»»»»»»º⋮									⋱								⋮�`z\»»»»»»»»»»º… �`zz»»»»»»»»»»»º� o
íï\	⋮íïz	s                    (3.50) 

 

where �<»»»»º�q and �`»»»»»º�q are vector representations of MIMO DPD polynomial coefficients 

for �<�q and �`�q (Q, ¨	=1, … , j) polynomial functions;	ëº = �ë<»»»»º\…ë<»»»»ºz�· +
¨�ë`»»»»»º\. . . ë`»»»»»ºz�·; ë<»»»»º� = 7<�(1)… <�(¦)] and ë`»»»»»º� = 7`�(1)… `�(¦)] are the 1 × ¦ 

vectors;  

íî� = ��<\�F<(1)�			…	�<\�F<(¦)�⋮�<��F<(1)�	…	�<��F<(¦)� �            
and 

íï� = ��`\�F`(1)�			…	�`\�F`(¦)�⋮�`��F`(¦1)�	…	�`��F`(¦)�� 
 

are � × ¦ matrices in which each element represents polynomial term �<��F<(K)� =
�F<(K)�� or �`��F`(K)� = �F`(K)��,	(� = 1 for linear and � = 2,… , �	for nonlinear 

terms), for matrices íî�	and		íï�, respectively. The symbol � is a polynomial order 

and Q denotes Q-th MIMO transmitter’s branch. 

The coefficients of DPD polynomial functions �<�q and �`�q	(Q, ¨ = 1,… ,j) are 

extracted in feedback block named “Adaptive MIMO DPD coefficients extraction”. 

This block calculates coefficients of DPD functions using modified expression (11). 

Namely, in (11), for the DPD extraction purpose, the terms F<(K)	and	F`(K), K =
1, … , ¦, in matrices íî� and íï� are replaced with	Ìâ(�)ñ   and 

Ì¹(�)ñ , where � is a linear 

PA gain and K is sample’s index. The solution of (3.50) given with the following 

equations 
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� �<\\»»»»»»»º… �<\z»»»»»»»»º⋮									⋱								⋮�<z\»»»»»»»»º… �<zz»»»»»»»»»º� = �QKÅ(7íî\	…òò	íîz])�ë<»»»»º\…	òò	ë<»»»»ºz	�                       (3.51) 

 

� �`\\»»»»»»»»»º …�`\z»»»»»»»»»»º⋮									⋱								⋮�`z\»»»»»»»»»»º…�`zz»»»»»»»»»»»º� = �QKÅ(7íï\	…òò	íïz])�ë`»»»»»º\…	òò	ë`»»»»»ºz	�                  (3.52) 

 

calculates the coefficients of the MIMO DPD polynomial functions. The function �QKÅ(ó) = (ó·	ó)5\ó represents Moore-Penrose pseudo inverse based on inverting 

matrix using singular value decomposition and yields the well-known least square 

solution [3.38]-[3.40]. After this step, the extracted DPD functions are copied in 

“MIMO DPD Block” and applied to initial OFDM signals using (3.46). Therefore, this 

technique satisfies indirect learning adaptive DPD scheme [3.1], [3.4], [3.23] which is 

extended for the application in MIMO transmitters. As it was explained above, an 

excellent feature of the indirect learning is that it enables the estimation of the 

predistorter coefficients without need for a priori knowledge of the PA transfer 

functions. 

 

 

3.7. Digital Predistortion for Multi-frequency MIMO Transmitters 
 

The rapid development of multi-standard/multiband wireless communication 

systems has caused an urgent need for research on multi-frequency MIMO transmitters. 

The first step in developing transmitters of this kind is the design of dual-band 

transmitter and solving the problems specific to it. There have been frequent efforts to 

design transmitters to concurrently support two standards in different frequency bands 

(see [3.41] and references therein). The nonlinear PA that concurrently amplifies high 

peak-to-average power ratio (PAPR) wideband signals in two frequency bands produces 

distortion that significantly degrades signal quality. The distortion level is much higher 

in the case of dual-band transmitters than in the case of conventional single-band. 

Therefore, the baseband DPD have to be specifically designed for concurrent dual-band 

transmitters. In order to suppress distortion introduced in these transmitters, the various 

DPD techniques were proposed [3.41]-[3.52]. They are based on generalised frequency-



Digital Predistortion of RF Amplifiers Using Baseband Injection for Mobile Broadband Communications 
 

PhD Thesis Page 60 

 

selective DPD architecture [3.42], dual-band IF DPD architecture [3.43], widely spaced 

carriers’ DPD architecture [3.44], 2-D complex polynomials [3.41], [3.45], 2-D 

complex polynomials with subsampling feedback loop [3.46], 2-D complex cross-

modulation (CM) basis functions [3.47], 2-D modified memory polynomials [3.48], 2-D 

augmented Hammerstein [3.49], 2-D Enhanced Hammerstein [3.50], dual-band memory 

polynomials based look-up tables (LUTs) [3.51] or extended real-valued focused time 

delay artificial neural networks (ANN) [3.52]. The linearisation performances of the 

solutions [3.42]-[3.44] depend on frequency separation between bands in concurrent 

dual-band transmitters. The solutions [3.41], [3.45]-[3.52] overcome this problem by 

using two identical DPD processing stages for two bands, two local oscillators and a 

combiner before the PA. This 2-D-DPD methodology based on dual-cell architecture 

was firstly presented in [3.41], where the RF signals in each band are captured and 

digitised separately. This architecture is shown in Figure 3-10. The model has been 

developed in such a way that two modulated signals contribute to the linearisation of 

each band. To clarify, in this architecture, there are two DPD blocks. The first one is 

used to compensate for the distortion at Band 1, whereas the second one is used to 

compensate for the distortion at Band 2. The outputs of both predistorter is than up-

converted and combined together. The feedback signals are used in “Analyzing Stage” 

to train each DPD block separately. 

 

 
 

Figure 3-10: 2-D dual-cell DPD architecture 
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The solutions based on dual-cell architecture suffer from a high run-time 

computational complexity of predistorter design as well as a high computational 

complexity and numerical instability of DPD identification. However, these approaches 

were experimentally verified and widely used nowadays. The following subsections 

describe 2D-DPDs based on dual-cell architecture. 

 

3.7.1. 2-D DPD Based on Memory Polynomials 
 

         The extension of the conventional memory polynomial model for an application in 

concurrent dual-band wireless transmitter is possible [3.41]. If the transmitter is 

modelled as memoryless fifth-order nonlinearity  

 g = F + F ∣ F ∣I+ F ∣ F ∣ô                                              (3.53) 

 

and the discrete-time baseband equivalent input signal as 

 F = u\ + uI = F\J5qõ�· + FIJqõ�·                                  (3.54) 

 

the model output will be 

 g = ( F\ + F\ ∣ F\ ∣I+ F\ ∣ FI ∣I+ F\ ∣ F\ ∣ô+ 4F\ ∣∣ F\ ∣I∣∣ FI ∣I+ F\ ∣ FI ∣ô )J5qõ�· +(FI + FI ∣ F\ ∣I+ FI ∣ FI ∣I+ FI ∣ F\ ∣ô+ 4FI ∣∣ F\ ∣I∣∣ FI ∣I+ FI ∣ FI ∣ô )Jqõ�· +� F\IFI∗ + 2F\I ∣∣ F\ ∣I FI∗ + 3F\I ∣∣ FI ∣I FI∗ �J5÷qõ�· +(F\∗FII + 2F\∗ ∣∣ FI ∣I FII + 3F\∗ ∣∣ F\ ∣I FII )Jq÷õ�· + (F\÷FI∗I)J5qøõ�· +(F\∗IFI÷)Jqøõ�·  

                                                               

(3.55) 

 

To clarify, K in F\(K) and FI(K) is omitted to simplify the notations.  If it is assumed 

that the frequency offset between the two carrier frequencies is large enough, the output 

signals around each carrier frequency can be approximated as: 
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g(−©)= ( F\ + F\ ∣ F\ ∣I+ F\ ∣ FI ∣I+ F\ ∣ F\ ∣ô+ F\ ∣∣ F\ ∣I∣∣ FI ∣I+ F\ ∣ FI ∣ô )J5qõ�· 

                                                                                                               

(3.56) 

 

 g(©) = ( FI + FI ∣ F\ ∣I+ FI ∣ FI ∣I+ FI ∣ F\ ∣ô+ FI ∣∣ F\ ∣I∣∣ FI ∣I+ FI ∣ FI ∣ô )Jqõ�· 

                                                                                                                             

(3.57) 

 

For the nonlinear system with dual baseband complex input signals with Nth-order 

nonlinearity and (M-1)th-order memory depth, the generalised formulations for each 

output complex signal associated with the each of the input signals are as follows: 

 

g\(K) = fff¥@,q,8(\) F\(K − D)x ∣ F\(K −D) ∣@5q∣ FI(K − D) ∣q@
qi]

z
@i]

�5\
8i]  

               (3.58) 

 

gI(K) = fff¥@,q,8(I) FI(K − D)x ∣ F\(K − D) ∣@5q∣ FI(K − D) ∣q@
qi]

z
@i]

�5\
8i]  

               (3.59) 

 

Equations (3.58) and (3.59) can be developed in matrix form as 

 

                     gº = A9º(�)Oº                                                       (3.60) 

where 

 

• gÊ»»»º = 7g(K) ⋅⋅⋅ g(K + ¦ − 1)]· is an ¦x1 vector representing the ¦ samples of the 

output signal at i-th output;  

• Oº = 7¥],],](�) ¥\,],](�) ¥\,\,](�) ⋅⋅⋅ ¥�,q,](�) ⋅⋅⋅ ¥z,z,](�) ⋅⋅⋅ ¥z,z,�5\(�) ]·		is a						±\I³ ±�(z%\)(z%I)I ³ x1    

vector of polynomial coefficients; 
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•  

A9º(�) = ù¢9º&(])…¢9º&(�)…¢9º&(�5\)ú			  is a ¦x ±�(z%\)(z%I)I ³ matrix; 

 

• ¢9º&(�) =

¾¿
¿¿
À F�(K − �)																⋮⋮⋮F�(K − � + ¦ − 1)												

			
									F�(K − �)|F��K − ��|@5q	|F���K − ��|q															⋮⋱⋮F��K − � + ¦ − 1�|F��K − � + ¦ − 1�|@5q	|F���K − � + ¦ − 1�|q

																						F��K − ��|F���K − ��|z																	⋮⋮⋮																	F��K − � + ¦ − 1�|F���K − � + ¦ − 1�|z
		
ÂÃ
ÃÃ
Ä
,  

where Q&QQ = 1,2	and	Q ≠ QQ,	 is  a ¦x�±�z%\��z%I�I ³� matrix that has its elements 

extracted from (3.60); 

 

• Fº = [F�K� ⋅⋅⋅ F�K + ¦ − 1�]· is an ¦x1 vector  

 

The 2-D DPD functions can be determined using the indirect learning 

architecture and least square to solve (3.60) when F and g are swapped. After this step, 

these functions are applied to initial signals as follows: 

 

F\�K� = f ff¥@,q,8�\� \�K − D�x ∣ \�K − D� ∣@5q∣ I�K − D� ∣q@
qi]

z
@i]

�5\
8i]  

                 (3.61) 

 

FI�K� = f ff¥@,q,8�I� I�K − D�x ∣ \�K − D� ∣@5q∣ I�K − D� ∣q@
qi]

z
@i]

�5\
8i]  

                (3.62) 

 

3.7.2. Low-complexity 2-D DPD 
 

In order to simplify previously described model, the approach named 2-D DPD 

was developed [3.47]. For instance, if the seventh-order memoryless model 

 

		g = E\]���F + E÷]���F ∣ F ∣I+ Eø]���F ∣ F ∣ô+ Eü]���F ∣ F ∣ý ,					Q = 1,2           (3.63) 

 

is used, the output signals around each carrier frequency look like as follows: 
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g\(K) = E\](\)F\ + E÷](\)F\(∣ F\ ∣I+ 2 ∣ FI ∣I) + Eø](\)F\(∣ F\ ∣ô+ 6 ∣ F\ ∣I∣ FI ∣I+3 ∣ FI ∣ô) + Eü](\)F\(∣ F\ ∣ý+ 12 ∣ F\ ∣ô∣ FI ∣I+ 18 ∣ F\ ∣I∣ FI ∣ô+ 4 ∣ FI ∣ý)                                  
                                                                                                                               (3.64) 

 
 gI(K) = E\](I)FI + E÷](I)FI(∣ FI ∣I+ 2 ∣ F\ ∣I) + Eø](I)FI(∣ FI ∣ô+ 6 ∣ FI ∣I∣ F\ ∣I+3 ∣ F\ ∣ô) + Eü](I)FI(∣ FI ∣ý+ 12 ∣ FI ∣ô∣ F\ ∣I+ 18 ∣ FI ∣I∣ F\ ∣ô+ 4 ∣ F\ ∣ý)                                  

                                                                                                                                (3.65) 
 
where g\(K) and gI(K) are the complex baseband output signals around each carrier 

frequency, and K in F\(K) and FI(K) is omitted to simplify the notations. By including 

the memory terms, it leads to the model named low-complexity 2D model: 

 

g\(K) = f fℎ@8(\)F\(K − D)�@%\(∣ F\(K −D), FI(K − D)) ∣h
@i]

�5\
8i]  

                 (3.66) 
 

 

gI(K) = f fℎ@8(I)FI(K − D)�@%\(∣ FI(K − D), F\(K − D)) ∣h
@i]

�5\
8i]  

                 (3.67) 
 

 

where ℎ@8(\)   and ℎ@8(I)are the model coefficients of each band, � is the memory depth 

and e + 1 is the nonlinearity order. For odd-order terms (odd numbers of ¡ + 1), �@%\(∣ F\(K − D), FI(K − D)) is derived from (3.64) and (3.65) and has the following 

form: 

 
 �@%\(∣ F� ∣, ∣ Fq ∣)

= 	
���
��1,																																																																																																									¡ = 0∣ F� ∣I+ 2 ∣ Fq ∣I 																																																																												¡ = 2∣ F� ∣ô+ 6 ∣ F� ∣I∣ Fq ∣I+ 3 ∣ Fq ∣ô 																																														¡ = 4∣ F� ∣ý+ 12 ∣ F� ∣ô∣ Fq ∣I+ 18 ∣ F� ∣I∣ Fq ∣ô+ 4 ∣ Fq ∣ý 											¡ = 6���

��
 

         (3.68) 
 
 
For even-order terms �@%\(∣ F\(K − D), FI(K − D)) can be simply written as: 

 �@%\� 	 ∣∣ F� ∣∣, ∣∣ Fq ∣∣ 	 � =	∣∣ F� ∣ +¨ ∣ Fq ∣∣@ ,																			¡ = 1,3,5, …                       (3.69) 
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where Q, ¨ ∈ 1,2 and Q ≠ ¨. This model can be also identified using least square 

algorithm. In comparison with previously described 2-D memory polynomials, this 

model uses two summations. The total number of coefficients is decreased from ��e + 1��e + 2	) to 2�(e + 1). 
 

3.7.3. 2-D Augmented Hammerstein 
 

As it is known, for the single-band case, the Hammerstein model consists of a 

static nonlinearity block cascaded by a linear FIR filter. A block diagram of the 

Hammerstein model for dual-band transmitters named 2-D Augmented Hammerstein 

model is depicted in Figure 3-11 [3.49]. 

 

 
 

Figure 3-11: Block diagram of 2D augmented Hammerstein (2D-AH) model 
 

 

As can be seen, the 2-D AH model consists of the 2-D Hammerstein model in parallel 

with nonlinear FIR-based filter (NFF). A 2-D Hammerstein model is described with 

following two equations: 

 

	�(K) = ff¢@�(�)F�(K) ∣ F�(K) ∣@5�∣ Fq(K) ∣� ,															Q, ¨ ∊ Ô1,2Õ	EK�	Q ≠ ¨@
�i]

h
@i]  

                     (3.70) 
 

	g�I*5Æ(K) = fℎ8(�)	�(K − D)																																Q, ¨ ∊ Ô1,2Õ	EK�	Q ≠ ¨h
@i]  

                     (3.71) 
The output signal of the NFF is given as follows: 
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g�z22 = fRª(�)F�(K − ¸) ∣ Fq(K − ¸) ∣I¹5\
ªi] ,																				Q, ¨ ∊ Ô1,2Õ	EK�	Q ≠ ¨ 

                    (3.72) 
 

It should be noted that the NFF in (3.72) only considers the third-order nonlinear 

memory effect. Finally, the output of the 2-D AH model is sum of the (3.71) and (3.72): 

 			g�(K) = g�I*5Æ(K) + g�z22(K),								Q, ¨ ∊ Ô1,2Õ	EK�	Q ≠ ¨                    (3.73) 
 

 

3.7.4. 2-D Enhanced Hammerstein 
 

The Enhanced Hammerstein (EH) behavioural model consists of a memoryless 

polynomial followed by a Volterra filter [3.50]. Therefore, this model is capable to 

predict both the static nonlinearities and memory effects. The 2-D version of this model 

is expressed as follows: 

 

	\(K) = ffℎ@,ª\ \(K) ∣ \(K) ∣@5ª∣ I(K) ∣ª5\		@
ªi\

z
@i\  

               (3.74) 
 

	I(K) = ffℎ@,ªI I(K) ∣ \(K) ∣@5ª∣ I(K) ∣ª5\		@
ªi\

z
@i\  

               (3.75) 
 

where ℎ@,ª\ and ℎ@,ªI  are the kernels of the 2-D memoryless polynomials, \ and I are 

the complex envelopes of the input signals of the PA at the carrier frequencies ©\and ©I	and 	\ and 	I are the complex envelopes of the output signals of the PA at the 

carrier frequencies ©\and ©I. N corresponds to the nonlinear order of the 2-D 

memoryless polynomials. The Volterra model is approximated by a simplified model as 

follows: 

F\(K) = fF\.@(K)�
@i\  

                                                        (3.76) 
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where 
 
 F\.@�K�
=
���
��
�� f ℎ8�(\,@)	\(K − D\),																																																																																																																		�«P	¡ = 1		

��
8�i\
f f f fℎ8�,8Ç,8�(\,@,ª) 	\(K − D\)x ∣ 	\(K − DI) ∣@5ª∣ 	I(K − D÷) ∣ª5\, �«P	¡ > 1@

ªi\
��

8�i\
�Ç

8Çi\
��

8�i\ ���
��
��

 

          (3.77) 
 

and 
 
 

FI(K) = fFI.@(K)�
@i\  

                              (3.78) 
 

 
where 
 
 FI.@(K)

=
���
��
�� f ℎ8�(I,@)	I(K − D\),																																																																																																																		�«P	¡ = 1		

��
8�i\
f f f fℎ8�,8Ç,8�(I,@,ª) 	I(K −D\)x ∣ 	\(K − DI) ∣@5ª∣ 	I(K − D÷) ∣ª5\, �«P	¡ > 1@

ªi\
��

8�i\
�Ç

8Çi\
��

8�i\ ���
��
��

 

                (3.79) 

 
 

3.7.5. Dual-band DPD Based on Look-up-tables 
 

A single band LUT model can be implemented efficiently as 

 

g(K) = f F(K − ¸)¦|ª7∣ F(K − ¸) ∣I]¹5\
ªi]  

                            (3.80) 

 

where the term   ∑ EI@%\,ª ∣ F(K − ¸) ∣I@h5\@i] 	used in conventional memory polynomial 

model is swapped by ¦|ª7∣ F(K − ¸) ∣I]. This model can be extended to be applicable 

in dual-band transmitters [3.51]. In that case, the output signal at Band 1 looks like: 
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g\(K) = f F\(K − ¸)¦|\ª[∣ F\(K − ¸) ∣I, ∣ FI(K − ¸) ∣I]¹5\
ªi]  

                            (3.81) 

 

Two-dimensional LUTs are required here to represent all the product terms between∣F\(K − ¸) ∣I and ∣ FI(K − ¸) ∣I	in (3.81). This leads to the high complexity of real-life 

implementation. However, this model can be simplified as follows: 

 

g\(K) = f F\(K − ¸)�¦|\ª7∣ F\(K − ¸) ∣I] + ¦|Iª7∣ FI(K − ¸) ∣I]�¹5\
ªi]  

                     (3.82) 

or 

g\(K) = f F\(K − ¸)�¦|\ª7∣ F\(K − ¸) ∣I]¹5\
ªi] + ¦|Iª7	∣ F\(K − ¸) ∣I+ FI(K − ¸) ∣I]� 

          (3.83) 

The LUT-based 2-D DPD structure (3.83) is more accurate than the structure (3.82), but 

more complex and therefore, less efficient [3.51]. 

 

3.7.6. Extended-RVFTDNN for Dual-band Transmitters 
 

An extended real-valued focused time-delay neural network (extended-

RVFTDNN) was proposed to approximate the nonlinear behaviour of concurrent dual-

band transmitters [3.52]. The topology of extended-RVFTDNN is illustrated in Figure 

3-12. One can see that two single-band RVTDNNs are combined with mutual coupling; 

thus, the conventional ANN model is extended to a new neural network with four inputs 

and four outputs. Therefore, the outputs of this extended-RVFTDNN are all functions of 

the two input signals: 

 <���\(K) = R\7<��\(K), <��\(K − 1),⋅⋅⋅ 	 <��\(K − �\);`��\(K),⋅⋅⋅ `��\(K − ¸\) <��I(K), <��I(K − 1),⋅⋅⋅ <��I(K − �I); 	`��I(K), `��I(K − 1),⋅⋅⋅ `��I(K − ¸\)	] 
(3.84) 
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`���\(K) = RI7<��\(K), <��\(K − 1),⋅⋅⋅ 	 <��\(K − �\);`��\(K),∙∙∙ `��\(K − ¸\) <��I(K), <��I(K − 1),⋅⋅⋅ <��I(K − �I); 	`��I(K), `��I(K − 1),⋅⋅⋅ `��I(K − ¸\)	] 
(3.85) 

 <���I(K) = R÷7<��\(K), <��\(K − 1),⋅⋅⋅ 	 <��\(K − �\);`��\(K),⋅⋅⋅ `��\(K − ¸\) <��I(K), <��I(K − 1),⋅⋅⋅ <��I(K − �I); 	`��I(K), `��I(K − 1),⋅⋅⋅ `��I(K − ¸\)	] 
(3.86) 

 `���I(K) = Rô7<��\(K), <��\(K − 1),⋅⋅⋅ 	 <��\(K − �\);`��\(K),⋅⋅⋅ `��\(K − ¸\) <��I(K), <��I(K − 1),⋅⋅⋅ <��I(K − �I); 	`��I(K), `��I(K − 1),⋅⋅⋅ `��I(K − ¸\)	] 
 

(3.87) 
 

 
Figure 3-12: The topology of extended-RVFTDNN for concurrent dual-band 

behavioural modelling [3.52] 
 

 

 
Due to the coupling of two single-band ANNs, the modelling of cross-modulation 

products as a result of the two input signals is automatically integrated into the ANN. 

The four ANN outputs can be expressed as: 
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<���(�%\) =fÓ(I�%\)@I `@\(K) + ¢I�%\I ,										Q = 0,18
@i\  

                            (3.88) 
 

`���(�%\) =fÓ(I�%I)@I `@\(K) + ¢I�%II ,										Q = 0,18
@i\  

                          (3.89) 
 

where 
 
 `@\(K) = �±KJH@\(K)³									¡ = 1,2,3, …D                              (3.90) 

 
and 
 
 

KJH@\(K) =f �@�\ <��\(K − Q)��
�i] +f	@�\ `��\(K − Q)ª�

�i] +fF@�\ <��I(K − Q)
�Ç
�i]

+fg@�\ `��I(K − Q)
ªÇ
�i] + ¢@\ 

(3.91) 

 

As in the RVFTDNN case [3.28], the chosen activation function for the hidden 

layer and the training algorithm was the tansig and Levenberg-Marquart (LM), 

respectively [3.52].  

 

3.8. Band-limited Digital Predistortion 
 
 

The constantly increasing demands for wide bandwidth create great difficulties 

in employing DPD in future ultra-wideband systems. This is mainly because the 

existing DPD system requires multiple times the input signal bandwidth in the 

transmitter and receiver chain, which is impractical to implement in practice. For 

instance, in the extremely wideband system such as LTE-Advanced, 100-MHz 

modulation bandwidth is required, which means that 500-MHz linearisation bandwidth 

will be required if the existing DPD techniques are utilised. Therefore, there is a new 

need for band-limited DPD research and development. This section describes pioneer 
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DPD technique in this direction [3.53]. A band-limiting function is inserted into the 

general Volterra operators in the DPD model to control the signal bandwidth under 

modelling, which logically transforms the general Volterra series-based model into a 

band-limited version. This approach eliminates the system bandwidth constraints of the 

conventional DPD techniques. It allows users to arbitrarily select the bandwidth to be 

linearised in the PA output according to the system requirements without sacrificing 

performances.  

As shown in Figure 3-13, a band-limiting function is cascaded with the Volterra 

operator.  

 
 

 
 

Figure 3-13: Band-limited Volterra series model 
 
 
It was mentioned previously that the conventional Volterra model is represented as: 
 
 

g(K) = ff⋅⋅⋅ f ℎ��Q\, … , Q��V�7F�K�]�

��i]
�

����

�

�i\  

                                   (3.92) 
 

where 
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V�7F�K�] =�F(K − Qq)�
qi\  

                              (3.93) 
 

The band-limiting function can be a linear filter, and it can be predesigned in the 

frequency domain with an effective bandwidth chosen according to the bandwidth 

requirement of the system output. It is then converted into the time domain and 

represented by a finite impulse response. The pth-order band-limited Volterra operator 

can be represented by 

 |�7F�K�] = V�7F�K�] ∗ Ó�K�                                   (3.94) 
 

where ∗		represents the convolution operation. The general Volterra series can thus be 

transformed into a band-limited version as 

 

g(K) = ff⋅⋅⋅ f ℎ�,;£�Q\, … , Q��|�7F(K)]�

��i]
�

����

�

�i\ = 

																																ff⋅⋅⋅ f ℎ�,;£�Q\, … , Q���V�7F(K)] ∗ Ó(K)��

��i]
�

����

�

�i\ = 

ff⋅⋅⋅ f ℎ�,;£�Q\, … , Q���

��i]
�

����

�

�i\  

x �f��F�K − Qq − ¡�Ó(¡)�
qi\ �h

@i] � 

                                                                                                                             (3.95), 
 

where |� is the pth-order band-limited Volterra operator, Ó(K) is the band-limiting 

function with length K, ℎ�,;£�Q\, … , Q��	is the pth-order band-limited Volterra kernel, 

and F(K) and g(K)	represent the input and output signals, respectively. Due to the fact 

that the signal is filtered by the band-limiting function after it passes each Volterra 

operator, the bandwidth of the output from each Volterra operator is limited within a 

certain frequency range (BW in Figure 3-13). After being linearly scaled by the 

coefficients and recombined together, the final output is logically band-limited to BW 

[3.53]. 
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3.9. Conclusion 
 

First of all, an overview of existing PA behavioural models and DPD techniques 

based on these models has been presented in this Chapter. In fact, the previously 

proposed DPDs do not require additional RF components and can be considered as 

being simple in implementation and integration. However, these Volterra, LUT, 

polynomial and ANN-based DPD techniques have high DSP computational complexity 

as well as high complexity and numerical instability of DPD model identification. 

Second, the DPD techniques applicable in dual-input MIMO transmitters as well as in 

concurrent-dual band transmitters were described. The complexity of these DPDs is 

additionally increased and their implementation in real transmitters is impractical. A 

high bandwidth constraints problem was discussed and band-limited DPD used to 

mitigate these constraints was presented. This thesis is focused on overcoming 

numerous problems of existing DPD solutions in modern wireless transmitters’ 

applications.  
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4. Injection-based Linearisation Techniques  

 

4.1. Introduction 
 

The linearisation methods based on injection were developed in [4.1]-[4.10]. For 

injection-based RF predistortion methods, the authors used second harmonic injection 

[4.1]- [4.3], frequency difference injection [4.2], [4.4], [4.5], low-frequency even-order 

intermodulation (IM) components injection [4.6], a combined second harmonic and 

frequency difference injection [4.7], a combined IM3 and envelope injection [4.8], a 

combined low frequency difference and third harmonic injection [4.9] or  a combined 

RF-baseband injection [4.10]. The shortcoming of [4.1]-[4.10] is the adding of 

additional RF hardware components. Quite the opposite, the third-order IM component 

injection [4.11], the third- and fifth- order IM components injection [4.12], a brick wall 

injection [4.13], a combined LUT-injection [4.14] or an iterative injection [4.15] were 

proposed to be implemented as DPD. In general, these predistorters have significantly 

lower computational complexity in comparison with other DPD approaches based on 

Volterra, LUT, polynomials or ANN described in previous Chapter.  

Nonetheless, they usually suffer from compensation limit introduced by new 

components that appear after injections [4.12]. Moreover, the existing injection-based 

techniques were tested in open loop and due to that fact, are not adaptive and have 

limited usage in real transmitters. In addition, there was no experimental proof of how 

these techniques behave with 4G signals which have very variable amplitude.  

Furthermore, as will be shown in this thesis, the mentioned injection-based DPDs 

cannot be used in concurrent dual-band transmitters because of their impractical 

sampling rate requirements for the digital-to-analogue convertors (DAC). Also, all they 

have limited error vector magnitude (EVM) and power spectrum density (PSD) 

performance due to the fact that the distortion caused by cross-modulation (CM) 

products is not taken into consideration.  

To sum up, the injection-based DPD methodology has a potential of achieving 

high linearising performance, while maintaining relatively low complexity. For this 
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reason, this methodology is assumed as a basis for the advanced DPD techniques for 

modern wireless transmitters developed in this thesis. 

 

4.2. RF Injection Techniques 
 

The mostly used RF injection techniques use an injection of the distortion 

products generated by the second-order nonlinearity of the PA, which are either the 

difference frequency component or the second harmonic of the nonlinear PA output 

[4.1]-[4.5]. If these products are mixed with the initial signal, they can improve the 

intermodulation distortion (IMD) of the PA. Under a two-tone test, the difference 

frequency component is the one containing	cos(©\ − ©I) H, which after being mixed 

with the fundamental-frequency signal at cos(©\H) produces an additional IMD 

component at cos(2©\ − ©I) H. If the phase shift is carefully selected, this added IMD 

component can decrease the initial one, and hence improve PA linearity. Similarly, the 

second harmonic at	cos(2©\H) after mixing with the fundamental harmonic at cos(©IH) 
generates an IMD term at	cos(2©\ − ©I) H. This component interferes with the IMD 

term produced by the amplifier’s nonlinearity, and, if the phase is adjusted properly, 

decreases it. Consequently, the second-order products injection techniques are divided 

into two groups: second-harmonic and difference-frequency injection techniques. 

  

4.2.1. Second Harmonic Injection 
 

The general block diagram illustrating operation of the second-order products 

injection technique is presented in Figure 4-1.  

 

 
Figure 4-1: Second-order products injection system 
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The output voltage [���(H) of the PA can be represented by the power series of the 

input voltage	[âz(H): 
 [���(H) = R\[âz(H) + RI[âzI (H) + R÷[âz÷ .                                          (4.1) 

 
For a two-tone input signal, given by 

 [âz(H) = [ ⋅ (cos(©\H) + cos(©IH)),                                         (4.2) 

 
the analytical expression for the IM3 component, obtained by substituting of (4.2) into 

(4.1) and completing trigonometric transformations, looks like: 

 

[â�÷(H) = ÷ôR÷[÷7(cos(2©\ −©I) H) + (cos(2©I − ©\) H)]                  (4.3) 

 
In the obtained expression each summand represents an IM3 component placed on 

either side of the output signal.  If second harmonics at 2©I and 2©\ are injected, the 

input signal may be re-written as: 

 [âz(H) = [\	 ⋅ (cos(©\H) + cos(©IH)) + [I	(cos(2©\H + {\) + cos(2©IH + {I))                 
(4.4) 

 
where {\ and {I are the corresponding phase shifts. By substituting (4.4) into the 

expression (4.1), the new IM3 is obtained: 

 	 [â�÷(H) = 34 ⋅ R÷ ⋅ [\	÷7(cos((2©\ − ©I) H) + (cos((2©I − ©\) H)] +RI[\	 ⋅ [I7(cos((2©\ − ©I) H + {\) + (cos((2©I − ©\) H + {I)] +32 ⋅ R÷ ⋅ [\	 ⋅ [II7(cos((2©\ − ©I) H + {\ − {I) + (cos((2©I − ©\) H + {I − {\)] 
                  (4.5) 

 

The derived expression contains the new IM3 components, which can influence the 

original one. If the phase shifts are {\ = {I = 180° and the magnitude of the injected 

second harmonic is adjusted as: 

           	 [I = 3R÷4RI [\I 
         (4.6), 
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the IM3 is reduced. The linearisation performances are limited by the third term in (4.5) 

as well as the accuracy of practical gain and phase adjustments that are done into RF. 

The source of the second-order injected products can be a feedback chain of the PA 

[4.16], as shown in Figure 4-2.  

 

 
Figure 4-2: Feedback-based second-order products injection circuit 

In Figure 4-2, the band-pass filter is used to select the necessary injected 

component, auxiliary amplifier acts as a gain controller in order to achieve the proper 

relation between the amplitudes of the fundamental signal and the injected signal, and 

the phase shifter controls the phase of the injected IM3 to be opposite to the original one 

produced by the main PA. The benefit of using such a system is its simplicity of 

implementation. In contrast, the inability to linearise a wideband PA is its main 

disadvantage [4.16]. This is because the signals with large frequency differences cause 

large phase differences in the created IMD products. Consequently, it is difficult to 

adjust the phase of the injected signals and the injected IMD components do not have a 

180-degree phase shift. In order to avoid the mentioned problem, the injected signals 

can be obtained from other external resource instead from a feedback loop. For 

instance, they can be generated by another nonlinear component, which precedes the PA 

[4.3], [4.16].  
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4.2.2. Frequency Deference Injection 
 

If a difference-frequency component at ©\ − ©I is injected into the fundamental 

one, the input signal may be written as: 

 														[âz(H) = [\	 ⋅ (cos(©\H) + cos(©IH)) + [I ⋅ (cos	( ©I −©\)H + {)          (4.7) 

 

where { is the phase of the phase shifter. Substituting of (4.7) into (4.1) and completing 

trigonometric transformations gives the expression for the new IM3 products: 

       	 [â�÷(H) = 34 ⋅ R÷ ⋅ [\÷7cos((2©\ − ©I) H) + cos((2©I −©\) H)] +RI ⋅ [\	 ⋅ [I7cos((2©\ − ©I) H − {) + cos((2©I − ©\) H + {)] +32 ⋅ R÷ ⋅ [\	 ⋅ [II7cos((2©\ − ©I) H − 2{) + cos((2©I − ©\) H + 2{)]. 
                      (4.8) 

 
From the obtained expression one can see that the injected difference-frequency 

component results in the appearance of the new IM3 terms at the output. In (4.8), the 

first line represents the primary IM3 produced by the PA whereas the second line 

represents the additional IM3 components obtained as a result of mixing the initial 

signal with the difference-frequency distortion product. If the phase of the phase shift          

are	{ = 180°, and the magnitude of the injected component is adjusted as 	[I = 3R÷4RI [\I, 
                             (4.9) 

 
the terms in the first and second line of (4.8) will compensate each other. One can see 

this is the same expression of adjusted amplitude as in (4.6) for second harmonic 

injection. However, the last line in (4.8) contains the components which limit the 

performance of this frequency deference predistortion system. They are smaller than the 

original IMD and have a minor effect when the PA works into high back-off region. 

However, they significantly degrade the difference-frequency predistortion performance 

when the PA operates into high compression region [4.2], [4.16]. Moreover, the 

practical implementation has a problem to control the magnitude and phase adjustments, 

and thus the overall expected linearity is deteriorated. This is a result of the 

imperfections of the circuits’ realisation. 
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4.2.3. Combined Frequency Deference and Second Harmonic Injection 
 

Figure 4-3 shows the block diagram of the approach used in [4.7]. The 

predistorter consists of three paths: linear path, nonlinear path I and nonlinear path II. 

When two signals at frequencies ©\ and ©I, with respective amplitudes A\ and	AI, is 

applied at the input of the RF predistorter, the output signal can be written as shown in 

(4.10) 

 F\(H) = A\ cos(©\H + ф\) + AIcos	(©IH + фI)                          (4.10) 
 

 
Figure 4-3:  RF injection technique using second harmonic and frequency difference 

 
 

The output signal in the nonlinear path I can be expressed by 

 ¢(H) = A\\ cos(2©\H + 2ф\) + AII cos(2©IH + 2фI)                       (4.11) 
 

 
where  A\\ = �1 2} �A\I, AII = �1 2} �AII.	 The output signal in the nonlinear path II can 
be expressed as 
 ¥(H) = A÷÷ + A÷÷ cos(2©IH − 2©\H + ф÷)                              (4.12) 
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where A÷÷ = �1 2} �A\IAII. The input signal of the main amplifier becomes 
 ��H� = F\(H) + ¢(H) + ¥(H)  .                                         (4.13) 

 

 Finally, if the PA is modelled as power series: 

 g(H) = ℎ\�(H) + ℎI�(H)I + ℎ÷�(H)÷                                (4.14), 

 

and if (4.13) is substituted into (4.14), the obtained third-order IMD products can be 

written as 

 ℎIA\AII cos(2©IH − ©\H + 2фI) +34 ℎ÷A\AII cos(2©IH − ©\H) 
                   + ÷IAIAIIA÷÷ℎ÷ cos(2©IH − ©\H + фI − ф\)                    (4.15)  

 
 
 ℎIAIA\\ cos(2©IH − ©\H + 2ф\) +34ℎ÷AIA\I cos(2©\H − ©IH) 																				+ ÷IA\A\\A÷÷ℎ÷ cos(2©\H − ©IH + ф\ − фI)  ,               (4.16) 

 
 
while the obtained fifth-order IMD products can be written as  

 12 ℎIA\A÷÷ cos(2©IH − 3©\H + ф÷) 
+58ℎøA\÷AII cos(2©IH − 3©\H) 

                                                                                                                             
(4.17) 

 
 
 12 ℎIAIA÷÷ cos(2©\H − 3©IH + ф÷) 

+58ℎøAI÷A\I cos(2©\H − 3©IH). 
                                                                                                                             

(4.18) 
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The third terms in (4.15) and (4.16) are small in comparison to the others and can be 

omitted. When 

 

           ∣ ф\ ∣=∣ фI ∣= 90°                                              (4.19), 

 

the 3rd-order IMD products are cancelled. The 5th-order IMD products cancellation can 

also be achieved by the condition 

 

                 ∣ ф÷ ∣= 180°                                                    (4.20). 
 

 
 
 

4.2.4. Combined Frequency Deference and Third Harmonic Injection 
 
 

It is assumed again that the main amplifier is related to its input through a power 

series as follows: 

 [��� = E[�� + ¢[��I + ¥[��÷ + �[��ô + J[��ø …                               (4.21) 

 

The distorter in Figure 4-4 has the purpose of creating signals at both the frequency 

difference and triple frequency, from the fundamental frequencies [4.9]. The �\ and �I 
are the fundamental frequencies, �(�WW = �I − �\ is the frequency difference, [(�WW is 

the amplitude of frequency difference signal and [������ is the amplitude of the triple 

frequency signal. 
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Figure 4-4:  RF injection technique using third harmonic and frequency difference 
 

 

The amplitudes of the difference and triple frequency signals at the input of the main 

amplifier are: 

 [80��_(�WW = �[(�WWJqф#&��                                                 (4.22) 
 
and  
 [80��_������_� = ½[������_�Jqф".&���                                        (4.23) 
 

where � and ½ are the variable gain of the difference and triple frequency phasors, ф(�WW	and	ф������ are the variable phase shifts of the difference and triple frequency 

signals, respectively. Symbol Q = 1,2 in (4.23) refers to one of the two triple frequency 

signals. If the fundamental frequency signals are assumed to have 

amplitudes	[80��_W��(_�, then the signal at the input of the main amplifier can be 

expressed as 

 [�� = [80��_W��(_\ cos(2á�\H) + [80��_W��(_I cos(2á�IH) 
                                                   			+�[(�WWcos	7(2á(�I − �\)H + ф(�WW] 
                                                     	+½[������_\cos	7(2á(3�\)H + ф������] 																												+½[������_Icos	7	(2á(3�I)H + ф������] 

                                                                                                                            (4.24) 
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where	�I > �\ . When the expression (4.24) is inserted in (4.21), two conclusions can be 

derived. First, the IM3 component due to the fundamental frequency mixing can be 

compensated by the second order mixing of the low frequency injected signal with the 

fundamental frequency signals. By assuming that the fundamental frequency signals 

have the same amplitude	[80��_W��(, the condition for zero IM3 is 

 

� = 3¥([80��_W��()I2¢[(�WW 	and	ф(�WW = 180° 

                                                                                                                        (4.25) 
 

The second conclusion is that the injection of the difference frequency signal also 

produces some unwanted signals which fall at the frequency of IM5. The condition for 

total IM5 cancellation is 

 

½ = ∣ 3¥�I[(�WWI − 12��I[80��_W��(I [(�WW + 10J[80��_W��(ô ∣3¥[80��_W��([������  

                                                                                                                           (4.26) 
 

and 

 

ф������ = 180°	or	0                                            (4.27) 
 

where ф������ is selected depending on the sign of the nominator in (4.23). 

 
To summarise, if conditions (4.25) and (4.26, 4.27) are met, both IM3 and IM5 

can be eliminated theoretically. Condition (4.25) can be met independent of condition 

expressed in (4.26) and (4.27). In other words, when (4.26) and (4.27) are adjusted by 

the triple frequency signal, it does not affect IM3 cancellation. 
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4.3. Baseband Components Injection Digital Predistortion 
 
 

The baseband components injection is a relatively novel DPD methodology 

initially proposed in [4.12] where the idea of injecting of the third- and fifth-order in-

band distortion components in a baseband block is proposed and investigated for a 

hardware implementation. This technique is described in this Section.  

The PA nonlinearity is modelled by a fifth-order polynomial expression as 

follows: 

 	[���(H) = R\[âz(H) + RI[âzI + R÷[âz÷ + Rô[âzô + Rø[âzø ,                   (4.28) 
 
 

where [âz(H) is the input voltage of the PA and R\, RI, R÷, Rô, Rø are coefficients of the 

nonlinear polynomial function. A cosine input signal with the amplitude [6(H) and 

phase {(H) looks like: 

 

[âz(H) = [6(H) cos�©H + {(H)�                              (4.29) 
 

 

The input signal (4.29) can be re-written into the Cartesian form as follows: 

 [âz(H) = [(<(H) cos©H − `(H) sin©H)                 (4.30) 
 
 

where [ = æ[6(H)ççççççæ, <(H) = èé(�)è cos�{(H)�, `(H) = èé(�)è sin�{(H)�,	and 

<(H)I + `(H)Iççççççççççççççççç = 1. After substituting (4.30) into (4.28) and completing trigonometric 

transformations, the fundamental-frequency part of the output signal can be written: 

 

[��·2�z*(H) = R\[��(H) + 3[IR÷�<I(H) + `I(H)�4 [âz(H)
+ 5[ôRø�<I(H) + `I(H)�I8 [âz(H) 

         (4.31) 
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In the obtained expression, the first summand is the linear amplified input signal, 

whereas the second and the third terms are the in-band distortion components produced 

by the 3rd- and 5th-order nonlinearity, respectively. The main idea of this approach is to 

inject those components in the baseband block with the same amplitude and 180o phase 

shift in order to compensate for the in-band distortion of the PA. For a baseband DPD 

system injecting the 3rd-order distortion component, the input signal can be written as: 

 [âz*�*(H) = [ ⋅ �1 + E�<I�H� + `I�H��� ⋅ 7<�H� cos(©H) − `(H) sin(©H)]  
(4.32) 

 
 

Figure 4-5 shows the schematic of the predistorter based on injecting the 3rd-order 

distortion component [4.12]. The I, Q, and I2+Q2 signals are generated in the baseband 

block and used for creating the predistorted signal according to (4.32). The amplitude 

and phase of the injected component can be obtained by the amplitude adjustment 

blocks E and phase shifters { correspondingly. The predistorted signal is then up-

converted and passed through the PA. After substituting (4.32) into (4.28), the new 

fundamental-frequency output signal can be written as: 

 [��·2�z*(H) = R\[âz(H) + R\E[<I(H) + `I(H)][âz(H) +34 ⋅ R÷ ⋅ [I7<I(H) + `I(H)] ⋅ [âz(H) +94 ⋅ R÷ ⋅ E ⋅ [I7<I(H) + `I(H)] ⋅ [âz(H) +94 ⋅ R÷ ⋅ EI ⋅ [I7<I(H) + `I(H)] ⋅ [âz(H) 
        (4.33) 

 
where E should be adjusted as 

 

E = −3[IR÷4R\  

          (4.34) 
 

 
in order to compensate for the IM3 distortion. 
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Figure 4-5: Block diagram of a third-order baseband component injection 

 
In (4.33), the second and third terms compensate each other, whereas the fourth and 

fifth terms appear as the new distortion introduced by the injection. These new 

distortion components are smaller than the original distortion. However, they limit the 

potential linearisation performance of this technique especially in case of highly 

nonlinear PA. This phenomenon is known as the distortion compensation limit [4.12], 

[4.15], [4.16]. 

The advantages of the described method are small size and low computational 

complexity as well as simple integration and practical realisation compared to the 

Volterra-based, ANN-based, LUT-based and polynomial-based DPD. The main 

disadvantage is limited linearising performance due to the distortion compensation limit 

and memory effects. Moreover, due to the fact that the technique is implemented in 

open-loop, an adaptation algorithm should be developed in such a way, that it will not 

dramatically increase the overall complexity of realisation. 

 

4.4. Iterative Injection Digital Predistortion 
 

This method was developed with the idea to overcome previously described 

distortion compensation limit of injection [4.15], [4.16]. Non-linearity of a power 

amplifier (PA) is expressed in a polynomial form: 

 
[��·(H) = ∑ R@[âz@ (H)I�%\@i\                                                  (4.35) 
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where [âz(H) is the input voltage of PA written in Cartesian form (4.30). After 

substituting (4.30) into (4.35), the distorted output signal at the fundamental frequency 

can be expressed as: 

 

[��·
2�z*(H) = R\ ⋅ [âz(H) + [f¢I@%\[I@RI@%\[<I(H) + `I(H)]@�

@i\ ] ⋅ [âz�H� 
(4.36) 

 
 

where 2� + 1 is the order of the polynomial model (4.35);  ¢I@%\ is an element of the 

mathematical series described in [4.15]. The first summand in (4.36) is the desired linear 

signal, whereas the second one is the sum of the in-band distortion components produced 

by the odd-order polynomial terms.  In order to compensate for the nonlinearity, the in-

band distortion components are injected into the input signal with the same amplitude, 

but out of phase: 

[âz�\��H� = [âz(H) − ∑ �I@%\�H��@i\ R\ ⋅ [âz�H� 
                                                                                                                                  (4.37) 

 

where [âz�\��H� is the input signal predistorted with one injection of the in-band 

distortion components, and �I@%\�H� is defined as: 

 �I@%\�H� = ¢I@%\[I@RI@%\[<I(H) + `I(H)]@ 
      (4.38) 

 

After substituting (4.37) into the general 2� + 1-order nonlinear model (4.35), the 

output signal can be written as: 

 

[��·�\� = R\ ⋅ [âz(H) −f �I@%\�H��
@i\ ⋅ [âz�H� + RI ⋅ C1 − ∑ �I@%\�H��@i\ R\ LI [âzI �H� + R÷

⋅ C1 − ∑ �I@%\�H��@i\ R\ L÷ ⋅ [âz÷ �H� + Rô ⋅ C1 − ∑ �I@%\�H��@i\ R\ Lô ⋅ [âzô �H� 
+Rø ⋅ C1 − ∑ �I@%\�H��@i\ R\ Lø ⋅ [âzø �H� + ⋯ 

 (4.39) 
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where [��·(\)  is the total output signal after predistortion of the input signal with one 

injection of the in-band distortion components. The even-order terms of the polynomial 

model do not produce in-band distortions. In contrast, the odd-order terms generate in-

band distortions components at the fundamental frequency, which are described 

analytically as the following mathematical operator:  

 

RI@%\[âz
I@%\(H) → �I@%\�H�[âz�H�                                      (4.40) 

 

This notation indicates that the in-band distortion component �I@%\�H�[âz�H� is 

produced by the odd-order polynomial term RI@%\[âz
I@%\(H). In other words, �I@%\�H�[âz�H� has a one-to-one correspondence with the term RI@%\[âz

I@%\(H). 
Therefore, each odd-order term of (4.35) produces the corresponding distortion 

component at the fundamental frequency: 

 (RI@%\[âzI@%\(H))2�z* = �I@%\�H�[âz�H�                              (4.41) 
 
 

Using (4.37), the output signal at the fundamental frequency after predistortion of the 

input signal with one injection of the in-band distortion components can be expressed: 

[��·�\�2�z* = R\ ⋅ [âz(H) −f �I@%\�H��
@i\ ⋅ [âz�H� 

+�÷�H� ⋅ C1 − ∑ �I@%\�H��@i\ R\ L÷ [âz�H� 
+�ø�H� ⋅ C1 − ∑ �I@%\�H��@i\ R\ Lø [âz�H� 

  (4.42) 

 

As can be seen from (4.42), after completing one injection, the original distortion 

components are compensated for. Indeed, the obtained expression can be re-written as: 

 

[��·�\�2�z* = R\ ⋅ [âz(H) + �÷�H� ⋅ o−1 + C1 − ∑ �I@%\�H��@i\ R\ L÷s [âz�H� 
+�ø�H� ⋅ o−1 + C1 − ∑ �I@%\�H��@i\ R\ Løs [âz�H�… 

   (4.43) 
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After expanding the brackets in (4.43), it can be easily shown that the initial distortion 

components are compensated for. However, the new distortion components caused by 

the initially injected signal appear. Therefore, it is necessary to recalculate the new in-

band distortion components and to compensate for them during the next iteration. The 

new predistorted input signal at the second iteration looks like: 

    

[âz
(I)(H) = [âz(H) − ∑ �I@%\�\� �H��@i\ R\ ⋅ [âz�H� 

(4.44) 

 

where �I@%\�\� �H� is the magnitude factor of the (2¡ + 1)–order in-band distortion 

component after the first iteration. It is obtained from (4.43) as follows: 

 

�I@%\�\� �H� = �I@%\�H� ⋅ o−1 + C1 − ∑ �I�%\�H���i\ R\ LI@%\s 
           (4.45) 

 

When the procedure is repeated once again, the new in-band distortion 

components are calculated and the expressions for the injected signals in next iteration 

are obtained. Deductively, on the m-th iteration, the predistorted input and the 

corresponding output signals can be written as: 

 

[âz�8��H� = [âz(H) − ∑ �I@%\�85\��H��@i\ R\ ⋅ [âz�H�, 
                   (4.46) 

 

[��·�8�2�z* = R\ ⋅ [âz(H) + (f�I@%\�8� ��
@i\ ⋅ [âz�H�, 

           (4.47) 

 

�I@%\�8� �H� = �I@%\�85\��H� ⋅ �−1 + ^1 − ∑ �I�%\�85\��H���i\ R\ aI@%\� 
            (4.48) 
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where K = 2� + 1 – is the order of the polynomial model and �I@%\�8� �H� is the 

magnitude factor of an odd in-band distortion component at the m-th iteration. 

Equations (4.46)-(4.48) represent the general mathematical model for the proposed 

baseband iterative injection DPD technique for n-order polynomial model and m 

iterations [4.15], [4.16].  

The described baseband digital predistorter incorporates iterative injection of the 

in-band distortion components, which are generated using the following parameters: 

number of iterations m, polynomial coefficients	RI@%\, of the n-order nonlinear model, 

and derived coefficients	¢I@%\. The latter is fixed, whereas the parameters m and RI@%\ 
depend on the particular PA and can be adjusted. The proposed DPD requires iterative 

updates of the magnitude factors of the injected signals for each injection, which can be 

accomplished in a DSP block.  

Figure 4-6 illustrates the operation of the proposed digital baseband predistorter 

with iterative injection algorithm [4.15], [4.16]. The signal source generates input data, 

which are mapped to the required modulation type and divided into the I and Q 

components. These I and Q signals are used to calculate the mean value [ of the input 

signal magnitude. The I and Q are then multiplied by 1/V for normalisation. This 

procedure is done in order to achieve [ = æ[6(H)ççççççæ and not to affect the mean power level 

by predistortion. The proposed baseband predistortion described in (4.46)-(4.48) are 

applied to the normalised signal components Inorm and Qnorm. After this step, the signals 

are multiplied by [ for de-normalisation, filtered with low-pass raised-cosine filters, 

and transferred to the I/Q modulator. Finally, the obtained RF signal is passed thought 

the PA to the output of the transmitter. 
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Figure 4-6: Block diagram of the digital predistorter using iterative injection of the in-
band distortion components 

 
 

4.5. Conclusion 
 

The injection-based linearisation approaches were described in this Chapter. 

Firstly, the initially proposed solutions implemented in RF were depicted. Secondly, a 

description of the injection-based techniques implemented as DPD was given. In 

general, linearisation methods based on injection approach have smaller complexity 

compared with the other proposed techniques for nonlinearity compensation purposes. 

Due to this fact, these techniques are used as a basis for developing of advanced DPD 

linearisation methods and this separated Chapter is dedicated to them. However, there 

are number of problems that seriously deteriorate the practical implementation of these 

techniques in modern wireless transmitters. The existing injection-based techniques 

were tested in open loop and due to that fact, are not adaptive and have limited usage in 

real transmitters. In addition to this, there was no experimental evidence how these 

techniques behave with 4G signals having very variable amplitudes. Also, there are no 

injection-based solutions for multi-frequency and multi-branch MIMO transmitters. As 

will be shown later, the application of the previous solutions in these transmitters is 

impractical for several reasons. The advanced solutions that overcome these problems 

will be presented in the following Chapters.  
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5. Adaptive DPD for 4G Wireless Transmitters 
 

5.1. Introduction 
 

A new adaptive DPD technique for 4G SISO wireless transmitters is described 

in this Chapter [5.1]. The technique is based on adaptive iterative injections of the      

in-band distortion components. In comparison with the previously proposed DPDs, this 

method has two important advantages. First, it uses real multiplications and real 

additions only and avoids complex Volterra, LUT or polynomials [5.2]-[5.4] for 

nonlinearity compensation. Secondly, in contrast with existing injection-based DPD 

[5.5]-[5.7], the technique uses adaptive architecture [5.3], and therefore, is adaptive to 

the variation of PA nonlinear transfer function in real environmental conditions. The 

proposed DPD is verified experimentally using more than 10 dB peak-to-average power 

ratio (PAPR) 5-MHz downlink Long Term Evolution (LTE) signal. This is the first 

injection-based technique experimentally verified utilising high PAPR signal such as 

LTE. 

 

5.2. Proposed Approach 
 

The nonlinear behaviour of a PA is modelled by a polynomial expression [5.7]: 

 
   [��·(H) = ∑ R@[âz@ (H)�@i\                                        (5.1) 

 
where [âz(H) is the input voltage, R\, RI, R÷,… are polynomial coefficients, and M is 

the order of the polynomial model.  For a digitally modulated signal with variable 

amplitude [ (H) and phase {(H), the input signal can be written using the in-phase <(H) 
and quadrature ̀(H) components: 

 
[âz(H) = [ (H) cos�©H + {(H)� = [(<(H) cos©H − `(H) sin©H)             (5.2) 

 
where the average value of the amplitude  is  [ = æ[6(H)ççççççæ , and <(H)I + `(H)Iççççççççççççççççç = 1 . 
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The total output signal is obtained after substituting (5.2) into (5.1). It can be 

written as a sum of cos(Q ∙ ©H) terms, where i = 0, 1, 2… . The term containing cos(©H) 
is the fundamental-frequency part of the output signal, derived as follows: 

 
[��·

2�z*(H) = ±R\ + ∑ ¢I@%\[I@RI@%\�<I(H) + `I(H)�@�@i\ ³[âz�H�                (5.3) 

 
 
where ¢I@%\ are the mathematical series of the in-band distortion coefficients presented 

in [5.7] and 2p+1 is polynomial order of PA. Apart from the desired linear 

part  R\[âz(H), the output signal (5.3) contains in-band distortion components from all 

the odd-order terms of the polynomial model. To compensate for these distortions, an 

injection of the odd-order distortion components with opposite phases is used here. The 

injected components generate new distortion products while compensating for the initial 

distortion. That new distortion is suppressed by the following steps: 

1.   injecting the opposite odd-order distortion components into the initial input 

signal at baseband;  

2.   re-calculating the new in-band distortions;  

3.    repeating injection until the specified linearisation degree is achieved.  

   

  The steps mentioned previously can be applied to any order of PA nonlinearity 

and injections’ number depends on required performances. The mathematical model of 

the proposed iterative predistortion technique for (2p+1)-order nonlinearity and m 

iterations is given by the following equations: 

 

     [âz
(8)(H) = [âz(H)(1 − \!�∑ �I@%\�85\��H���@i\                                 (5.4) 

 

�I@%\�85\��H� = �I@%\�85I��H� "−1 + ±1 − \!�∑ �I�%\�85I��H���i\ ³I@%\#                   (5.5) 

 

where 

 

                  �I@%\(H) = ¢I@%\ ∙ RI@%\|[6(H)|I@                                    (5.6) 
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represents the magnitude factor of a (2k+1)-order in-band distortion component and �I@%\�8� �H� is the value of �I@%\�H� on the m-th iteration. The proposed predistorter 

shown in Figure 5-1 consists of two parts: feedback (FB) and feedforward (FF). The 

coefficients of PA transfer function are extracted in FB block using least square 

regression (LSR) methodology [5.8]-[5.10]. An initial DPD signal and down-converted 

PA output signal are used as LSR input and LSR target, respectively.  

 

 
 

Figure 5-1: Functional block diagram of the proposed predistorter 

 

After that, the obtained coefficients are copied to FF block and used for 

generation of predistorted  Idpd and Qdpd signal components which are baseband 

equivalent of (5.4)-(5.6). Therefore, the proposed predistorter is based on adaptive 

architecture [5.3] and as such is adaptable to instantaneous variations of PA transfer 

function. It should be noted that the direct learning based adaptive architecture [5.3] is 

used here only for the extraction of the PA’s polynomial coefficients. In other words, 

the calculation of the digitally predistorted signal is independent of the adaptive direct 

learning architecture. Therefore, it can be concluded that the used adaptive DPD is 

based on simplified direct learning architecture. As can be observed from (5.4)-(5.6), 

the mathematical operations are restricted to real multiplications and additions only 

which is significant DPD complexity reduction in comparison with using complex 

Volterra, LUT, or polynomials for nonlinearity compensation purposes.  
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5.3. Least Square Regression (LSR) 
 

The LSR approximation can be described as follows. Let us suppose that a set of 

experimental data is obtained as n pairs of an input xi and the corresponding output yi 

variables: (x1, y1), (x2, y2), (x3, y3),…, (xn,yn), where n is number of samples. 

Then, the sum of squared residuals between the measured and modelled down-

converted data samples can be written as: 

 

U = 	f7g� − g$�]I�
�i\  

                                                  (5.7) 

 

where {g�} and {g$�} are the measured and modelled output data respectively. In relation 

(5.7), the approximating function is given in the form of: 

  

g� =	fEI@%\F�I@%\�
@i]  

                                                    (5.8) 

An example of the measured set of data {F�, g� } for a ZFL-500 PA is illustrated in 

Figure 5-2. 

 

Figure 5-2: AM/AM characteristic used to extract the memoryless model for          

ZFL-500 PA 
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Then, (5.8) can be re-written as: 

U =f�g� − �E\F� + E÷F�÷ + EøF�ø +⋯+ E�F����I�
�i\  

                                                   (5.9) 

or U = [g\ − (E\F\ + E÷F\÷ + EøF\ø +⋯+ E�F\�)]I+ [gI − (E\FI + E÷FI÷ + EøFIø +⋯+ E�FI�)]I+ [g÷ − (E\F÷ + E÷F÷÷ + EøF÷ø +⋯+ E�F÷�)]I +⋯+ [g� − (E\F� + E÷F�÷ + EøF�ø +⋯+ E�F��)]I 
 

  (5.10) 

 

The partial derivatives of S with respect to EI@%\ look like: �U�E\ = 2F\[g\ − (E\F\ + E÷F\÷ + EøF\ø +⋯+ E�F\�)]
+ 2FI[gI − (E\FI + E÷FI÷ + EøFIø +⋯+ E�FI�)]…+ 2F�[g� − (E\F� + E÷F�÷ + EøF�ø +⋯+ E8F�8)] 

          (5.11) 

 �U�E÷ = 2F\÷[g\ − (E\F\ + E÷F\÷ + EøF\ø +⋯+ E�F\�)]
+ 2FI÷[gI − (E\FI + E÷FI÷ + EøFIø +⋯+ E�FI�)]…+ 2F�÷[g� − (E\F� + E÷F�÷ + EøF�ø +⋯+ E�F��)] 

 

                          (5.12) 

   …………………………………………… �U�E� = 2F\8[g\ − (E\F\ + E÷F\÷ + EøF\ø +⋯+ E�F\�)]
+ 2FI8[gI − (E\FI + E÷FI÷ + EøFIø +⋯+ E�FI�)]…+ 2F�8[g� − (E\F� + E÷F�÷ + EøF�ø +⋯+ E�F��)] 

 

              (5.13) 



Digital Predistortion of RF Amplifiers Using Baseband Injection for Mobile Broadband Communications 
 

PhD Thesis Page 105 

 

 

After equating the obtained derivatives to zero	 ( (0� = 0 
( (0� = 0 … 

( (0% = 0, the 

following linear system of equations with respect to EI@%\	can be written: 

 F\g\ +	FIgI +⋯+	F�g� 	= E\(F\I +	FII +	…+ F�I) +	E÷(F\ô +	FIô +	…+ F�ô)+	Eø(F\ý +	FIý +	…+ F�ý) + ⋯+ E�(F\�%\ +	FI�%\ +	…+ F��%\)	 
              (5.14) 

F\÷g\ +	FI÷gI +⋯+	F�÷g� 	= E\(F\ô +	FIô +	…+ F�ô) +	E÷(F\ý +	FIý +	…+ F�ý)+	Eø(F\& +	FI& +	…+ F�&) + ⋯+ E�(F\�%÷ +	FI�%÷ +	…+ F��%÷)	 
            (5.15) 

   …………………………………………… F\�g\ +	FI�gI +⋯+	F��g� 	= E\(F\�%\ +	FI�%\ +	…+ F��%\) +	E÷(F\�%÷ +	FI�%÷ +	…+ F��%÷)+	Eø(F\�%ø +	FI�%ø +	…+ F��%ø) + ⋯+ E�(F\I� +	FII� +	…+ F�I�) 
           (5.16) 

 

As {F�} and {g�} are the known sets of data, where		Q = 1, 2, … , K, the system of 

equations (5.14)-(5.16) can be written in a compact form:  

 

          uIE\ + uôE÷ + uýEø +⋯+ u�%\E� = H\																														                                                   
(5.17) 

     uôE\ + uýE÷ + u&Eø +⋯+ u�%÷E� = H÷                                                    

(5.18) 

                        …………………………………..…… 

                         u�%\E\ + u�%÷E÷ + u�%øEø +⋯+ uI�E� = H�                                   

(5.19) 

 

 

 

where 
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uq = fF��
�i\  

                                     (5.20) 

 

Hq =fg�F��
�i\  

                                       (5.21) 

 

In the system (5.17)-(5.19), the number of equations corresponds to the degree 

of the model. After solving this system, the values	EI@%\	are obtained. Then, RI@%\ are 

calculated as:  

 

RI@%\ = EI@%\¢I@%\ 

                                                  (5.22) 

 

The method of extracting R-coefficients described above offers an excellent 

accuracy of approximation, which will be verified experimentally. 

 

5.4. Experimental Results 
 

Experimental setup used in this work is shown in Figure 5-3. At first, 5-MHz 

downlink LTE signal with 300 data subcarriers and FFT size 512 was created in Matlab. 

Created signal was download to the Agilent MXG N5182A signal generator via General 

Purpose Interface Bus (GPIB) where it was up-converted to RF (downloading process 

was performed by Agilent Signal Studio Toolkit assistance). MXG RF output signal is 

passed through Device Under Test (DUT) Mini-Circuits ZFL-500 PA (21 dB gain, 

output P1dB +10 dBm, IP3 +19 dBm) which was driven in hard compression region. 

Finally, signal is down-converted by Agilent Vector Signal Analyser and captured on 

PC by Agilent Distortion Suite software. Following that, the captured signal was used 

for further processing and analysis. MXG Event 1 out and 10 MHz reference were used 

for VSA analyser synchronisation with MXG signal source. The described DPD 
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approach has been implemented in Matlab. After each iteration, the predistored I and Q 

signal components were downloaded to MXG signal generator again and whole 

experimental process was repeated until transmitter reached the specified performance. 

  

 

 
 

Figure 5-3: Experimental setup 
  

 

 The spectrums of linear PA output signal, PA output signal without DPD and 

PA output signal obtained after using three iterations of 7�r-order polynomial adaptive 

baseband iterative injections DPD are shown in Figure 5-4. As can be seen, the 

spectrum regrowth suppression of about 10 dB was achieved. The PA output spectrum 

in case of using proposed DPD technique is almost the same as linear PA output 

spectrum whereas the measurement system noise level is achieved. Also, the measured 

Error Vector Magnitude (EVM) is significantly reduced from 7.4% to 0.8%. 
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Figure 5-4: Spectrum regrowth improvement of PA downlink LTE signal 
 

5.5. Conclusion 
 

The proposed nonlinearity compensation technique based on iterative injection 

approach has been successfully attested by means of experiments. This is the first time 

that injection-based DPD technique is experimentally corroborated with very high peak-

to-average ratio 4G LTE signal. Furthermore, compared to previously introduced open-

loop injection methods, this technique uses adaptive closed-loop DPD architecture. The 

proposed DPD approach has low memory requirements and computational complexity. 

Therefore, it should be considered as a serious candidate to become a predistorter part 

for nonlinearity compensation in modern wireless transmitter applications. 
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6. 2-D DPD for Concurrent Dual-band Transmitters 

 

6.1. Introduction 
 

In this Chapter, a new memoryless two-dimensional (2-D) DPD technique for 

concurrent dual-band wireless transmitters is explained [6.1]. As will be shown, the 

existing injection-based techniques [6.2]-[6.8] cannot be used in concurrent dual-band 

wireless transmitters. For that reason, the injection-based DPD theory is expanded to be 

applicable in concurrent dual-band transmitters. The proposed DPD approach is based 

on simultaneous injection of the in-band IM and CM products, and intentionally 

avoiding using complex polynomials, LUTs, Volterra, or ANN approaches for 

nonlinearity compensation purposes [6.9]-[6.14]. The advantage of the proposed 

approach lies in its simplicity in comparison with state-of-the-art approaches. 

Furthermore, the performances of the proposed DPD architecture do not depend on 

frequency separation between bands in concurrent dual-band transmitter. The proposed 

DPD is experimentally verified using ZFL-500 PA as DUT. The real WCDMA signal at 

400 MHz and 3-MHz LTE signal at 500 MHz are used as testing signals in 

experimentally emulated concurrent dual-band transmitter. The technique presented in 

this Chapter presents an excellent basis for developed complete, general DPD approach 

described in Chapter 7.  

     

6.2. Proposed 2-D DPD 
 

The nonlinear behaviour of a PA is modelled by a polynomial expression in both 

frequency bands of concurrent dual-band transmitter: 

 

                     				[��·(\) (H) = ∑ R@(\)[âz@ (H)z@i\                                               (6.1) 

 

																												[��·(I) (H) = ∑ R@(I)[âz@ (H)�@i\                                              (6.2) 
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where [âz(H) is the PA input signal, R@(\) and R@(I)are the coefficients of the polynomial 

models with N and M order in each band, respectively. The PA input signal can be 

represented as a sum of digitally modulated signals in each band: 

																																		[âz(H) = [âz(\)(H) + [âz(I)(H) =																																							 											[ \(H)¥« u�©\H + {\(H)� + [ I(H)¥« u�©IH + {I(H)�                   (6.3) 

 

For these digitally modulated signals with variable amplitudes [ \(H) and [ I(H) 
and variable phases {\(H)	and {I(H), the input signal can be written using the in-phase <\(H) and <I(H) and quadrature ̀\(H)	and ̀ I(H)components: 

 

[âz(H) = [\(<\(H) ¥«u ©\H − `\(H) uQK ©\H) + [I(<I(H) ¥«u ©IH − `I(H) uQK©IH)       
           (6.4) 

 

where the average value of the amplitudes are		[\ = æ[6\(H)ççççççççæ, [I = æ[6I(H)ççççççççæ, and  

<\(H)I + `\(H)Iççççççççççççççççççç = 1, <I(H)I + `I(H)Içççççççççççççççççççç = 1. 

The total output signal is obtained after substituting (6.4) into (6.1) and (6.2) 

with	j = � = 5. It can be written as a sum of cos(Q©\ ± ¨©I)H terms, where i,	¨ = 0, 1, 

2… . The terms containing cos(©\H) and cos(©IH)	are the unwanted fundamental-

frequency parts of the output signal related to each band. The other terms are considered 

to be far enough from the concurrent operating bands, and therefore can be easily 

filtered out. The fundamental-frequency parts of the output signal related to each band 

are: 

 

[��·2�z*(\)(H) = [âz(\)(H)7R\(\) + ÷ôR÷(\)[\I(<\I + `\I) + 

ø&Rø(\)[\ô(<\I + `\I)I + ÷IR÷(\)[II(<II + `II) + 

									\ø& Rø(\)[Iô(<II + `II)I + \øô Rø(\)[\I[II(<\I + `\I)(<II + `II)]                (6.5) 

 

and 
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 [��·2�z*(I)(H) = [âz(I)(H)[R\(I) + ÷ôR÷(I)[II(<II + `II) + 

ø&Rø(I)[Iô(<II + `II)I + ÷IR÷(\)[\I(<\I + `\I) +  

\ø& Rø(I)[\ô(<\I + `\I)I + \øô Rø(I)[\I[II(<\I + `\I)(<II + `II)]             ( 6.6). 

 

Apart from the desired linear parts 	R\(\)[âz(\)(H)	and R\(I)[âz(I)(H), the fundamental-

frequency output signals (6.5) and  (6.6) contain distortion components from all the 

odd-order terms of the polynomial models. In addition to IM distortion specific for the 

conventional transmitters, the (6.5) and (6.6) contain CM products caused by interaction 

between frequency bands in concurrent dual-band transmitters. To explain, the second 

and third terms in (6.5) and (6.6) are related to third- and fifth-order in-band IM 

products (IM3 and IM5), the fourth term is related to third-order CM product (CM3) 

and fifth and sixth terms are related to fifth-order CM products (CM5).  In order to 

compensate for these distortions, a simultaneous injection of the in-band IM3 and IM5 

together with CM3 and two CM5 products, all with opposite phases, is proposed for 

both frequency bands in concurrent dual-band transmitter. The total predistorter output 

signal with injected in-band IM and CM distortion components consists of the two 

terms related to each frequency band:  

 

																														[*�*(H) = [*�*(\) (H) + [*�*(I) (H)                                           (6.7) 

 

where 

 

[*�*(\) (H) = [âz(\)(H)71 + E\(<\I + `\I) + ¢\(<\I + `\I)I + 

				¥\(<II + `II) + �\(<II + `II)I + J\(<\I + `\I)(<II + `II)]                  (6.8) 

 

and 

 

[*�*(I) (H) = [âz(I)(H)71 + EI(<II + `II) + ¢I(<II + `II)I + 

			¥I(<\I + `\I) + �I(<\I + `\I)I + JI(<\I + `\I)(<II + `II)]                    (6.9) 
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When substituting (6.7) instead of (6.4) in (6.1) and (6.2), the new fundamental-

frequency signals, in addition to in-band IM and CM terms from (6.5) and (6.6), contain 

the same in-band IM and CM components with coefficients E\, ¢\, ¥\, �\, J\ and EI, ¢I, ¥I, �I, JI, for each band, respectively. Therefore, the initial distortion from (6.5) 

and (6.6) can be suppressed by proper tuning of the mentioned coefficients. If the 

coefficients are set as follows: 

E\ = − ÷!�(�)ô!�(�) [\I, ¢\ = − ø!)(�)&!�(�) [\ô, ¥\ = − ÷!�(�)I!�(�) [II 

																																														�\ = − \ø!)(�)&!�(�) [Iô, J\ = − \ø!)(�)ô!�(�) [\I[II                              (6.10), 

 

EI = − ÷!�(Ç)ô!�(Ç) [II, ¢I = − ø!)(Ç)&!�(Ç) [Iô,  ¥I = − ÷!�(Ç)I!�(Ç) [\I 
																					�I = − \ø!)(Ç)&!�(Ç) [\ô, JI = − \ø!)(Ç)ô!�(Ç) [\I[II                             (6.11), 

 

the initial distortion from (6.5) and (6.6) will be compensated for,  and 			[��·(\) (H)→ R\(\)[âz	(\)(H), 			[��·(I) (H)→ R\(I)[âz	(I)(H). The described simultaneous injection DPD 

architecture is shown in Figure 6-1. The predistorted  <*�*	(\) , `*�*	(\) , <*�*	(I)  and ̀ *�*	(I)  

signals’ components are the baseband equivalent of (6.8) and (6.9). The mathematical 

operations in these equations are restricted to real multiplications and additions only 

which is significant DPD complexity reduction in comparison with state-of-the-art. 

Also, the proposed approach requires memory for only six PA polynomial coefficients, 

three for each frequency band in case of using odd-order polynomial terms. One can see 

that the technique is derived here for fifth-order polynomial model. In case of using 

third-order polynomials, it will be only two polynomial coefficients to be adjusted 

during the characterisation procedure and the performance of PA modelling will be 

seriously degraded. This was proved in experiments (Section 6.4).  It should be noted 

that even-order polynomial terms can be used in order to increase PA behavioural 

modelling performances and they do not have a direct impact on fundamental frequency 

response of the PA. Also, the proposed theory can be extended to be applied for any 

degree of nonlinearity as will be discussed in Chapter 7. 
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 Figure 6-1: Functional block diagram of proposed predistorter as a part of concurrent 
dual-band transmitter 

 

 

6.3. Experimental Setup of Concurrent Dual-band Transmitter 
 

 

The experimental setup is shown in Figure 6-2. It is consisted of the two signal 

generators, ESG E4433B and MXG N5182A, used to emulate concurrent dual-band 

transmitter. The 5-MHz wideband code division multiple access (WCDMA) and 3-MHz 

long term evolution (LTE) signals were created in Matlab and downloaded to ESG by 

using Advanced Design System (ADS) and to MXG by using Agilent Signal Studio 

Toolkit. The combiner was utilised to combine the signals on different frequencies 

(�\ = 400��, �I = 500��). The combined signals were passed through Device 

Under Test (DUT) Mini-Circuits ZFL-500 PA (21 dB gain, P1dB +10 dBm, IP3 +19 

dBm) which was driven in hard compression region. The PA output signals were down-

converted with Vector Signal Analyzer (VSA) and captured on PC by 89600 VSA 

software in two steps, one for each band separately. These signals were then time-

aligned with corresponding input signals. 
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Figure 6-2: Measurement setup of concurrent dual-band transmitter 

 

6.4. Proposed Dual-band PA Characterisation 
 

 

The polynomial models (6.1) and (6.2) of considered DUT were obtained for 

both frequency bands using continuous wave (CW) measurement procedure. To show 

difference in nonlinear characteristic, the procedure is applied in both, single and 

concurrent dual-band transmitter mode. To clarify, when both generators are ON, an 

experimentally emulated transmitter operates in concurrent dual-band mode. A least 

square regression (LSR) is used for polynomial fitting of measured data. In case of 

using third-order polynomials for ZFL-500 PA modelling, mean square error (MSE) 

was above -30 dB in both frequency bands. These unacceptable PA modelling 

performances lead to poor DPD performances at the output of concurrent dual-band 

transmitter. Therefore, the fifth-order polynomials were used in order to decrease MSE 

bellow -40 dB. The measured and modelled transfer characteristics as well as measured 

and modelled PA gain in single band and concurrent dual-band modes are compared in 

Figure 6-3 and Figure 6-4, respectively. As can be seen, when the PA operates in dual-

band mode, the P1dB compression point is notably decreased. In other words, PA 

nonlinear behaviour will be significantly stronger in dual-band mode. Therefore, PA 

must be characterised in dual-band mode. Otherwise, using of standard CW 

characterisation for both bands separately will seriously degrade the performances of 

proposed DPD. The obtained polynomial coefficients of PA extracted in transmitter 

dual-band mode were then used for calculating of coefficients of injected IMs and CMs. 
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(a) 

 

(b) 
Figure 6-3: Comparisons of measured and modelled ZFL-500 PA transfer 

characteristics in single and dual-band transmitter mode:  (a) operating frequency 400 
MHz (b) operating frequency 500 MHz 
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(a) 

 

(b) 
Figure 6-4: Comparisons of measured and modelled Gain in single and dual-band 

transmitter mode:  (a) operating frequency 400 MHz (b) operating frequency 500 MHz 
 

 

 

-35 -30 -25 -20 -15 -10 -5 0
10

12

14

16

18

20

22

Input Power (dBm)

G
ai

n
 (

d
B

)

 

 

measured gain - single band
modeled gain - single band
measured gain - dual-band
modeled gain - dual-band

-35 -30 -25 -20 -15 -10 -5 0
8

10

12

14

16

18

20

22

Input Power (dBm)

G
ai

n
 (

d
B

)

 

 

measured gain - single band
modeled gain - single band
measured gain - dual-band
modeled gain - dual-band



Digital Predistortion of RF Amplifiers Using Baseband Injection for Mobile Broadband Communications 
 

PhD Thesis Page 118 

 

 
 
 

6.5. Experimental 2-D DPD Results 
 

 

The described DPD approach has been implemented in Matlab. The predistored 

I and Q components for each signal were downloaded to ESG and MXG signal 

generators. In order to show the effectiveness of the proposed simultaneous injection 

approach, the existing injection-based DPDs [6.3], [6.7] are also considered. These 

techniques have not been tested in their original forms due to impractical sampling rate 

requirements for the DA convertors. In other words, their sampling rates depend on 

frequency separation in concurrent dual-band transmitter. However, for the testing 

purpose in this type of transmitter, the approaches [6.3], [6.7] were modified in such a 

way that they were applied in each band separately. The spectrums of PA output in 

single-band case without DPD (short dash blue), PA output in concurrent dual-band 

case without DPD (thicker solid red), and PA output after using modified DPD [6.3] 

(dash doted black), modified DPD [6.7] (long dash green) and proposed simultaneous 

injection DPD (solid brown) are shown in Figure 6-5. As can be seen, the distortion 

level is significantly higher in concurrent case (both generators ON) in comparison with 

conventional single-band (one generator OFF). This CM distortion caused by 

interaction between frequency bands, does not allow using of modified [6.3] and [6.7] 

in concurrent dual-band transmitters. They cannot compensate for even in-band IM 

distortion and, worse yet, can degrade performances in some cases. The proposed 

simultaneous injection of in-band IM and CM distortion products approach improves 

EVM more that 17 dB and spectrum regrowth more than 10 dB in both operating 

frequency bands of concurrent dual-band transmitter. 
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(a) 

 
(b) 

Figure 6-5: The PSD responses in both operating frequencies of concurrent dual-band 
transmitter: 

(a) ������ = 400��, (b)	������ = 500�� 
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6.6. Conclusion 
 

A new 2-D DPD based on simultaneous injection of the in-band IM and CM 

distortion components was presented and verified through experiments. To the best 

knowledge of the author, this is the first 2-D injection-based DPD technique. It has been 

clearly shown that the technique outperforms conventional injection-based techniques 

in terms of EVM and PSD performances when they were tested in emulated concurrent 

dual-band transmitter. The proposed technique does not depend on frequency separation 

between bands and has low complexity in comparison with state-of-the-art techniques. 

According to the obtained results, the method can be a serious candidate to be utilised 

for nonlinearity compensation in modern concurrent dual-band wireless transmitters. 
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7. A Generalised Linearity Enhancement Architecture for 

Concurrent Dual-band Transmitters 
 

7.1. Introduction 
 

A novel generalised iterative 2-D DPD architecture for concurrent dual-band 

wireless transmitters is described in this Chapter. This generalised injection-based 

linearisation solution for concurrent dual-band transmitters represents the main 

contribution of the thesis and was published in [7.1]. This methodology is an extension 

of the technique described in Chapter 6. The technique is further generalised to any 

degree of nonlinearity and iterations’ number. More specifically, an initial injection 

approach presented in Chapter 6 is extended here to generalised iterative injection 

approach, which is used to overcome distortion compensation limit phenomena in 

concurrent dual-band wireless transmitters caused by initial injection. In other words, 

the proposed approach is based on simultaneous iterative injection of the in-band IM 

and CM products. Moreover, in comparison with previously tested memoryless ZFL-

500 PA, it has been shown in the experiments that CFH 2162-P3 PA (14 dB gain, P1dB 

+37 dBm) exhibits memory effects that degrade the performances of the proposed DPD 

at the output of concurrent dual-band transmitter. The presence of memory effects are 

detected by concurrent two-tone test and it is reflected as an imbalance between lower 

and upper third-order in-band IM, near CM and far CM distortion components in both 

frequency bands. These memory effects caused by frequency dependent behaviour of 

PA are minimised in frequency domain by using baseband symbol adjustable 

normalised inverse S21-parameter parallel multiplication. This procedure is performed 

separately for both bands of concurrent dual-band transmitter. 

 

The advantages of the proposed linearity enhancement architecture are: 

1. simplicity in comparison with state-of-the-art solutions because the proposed 

one intentionally avoids using of complex polynomials, LUTs, Volterra, or 

ANN approaches for nonlinearity compensation purposes;  
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2. capability to deal with distortion compensation limit caused by an initial 

injection; 

 

3. capability to deal with memory effects; 

 

4. independency on frequency separation between bands. 

 

This Chapter is organised as follows. For the first time, a general     

fundamental-frequency model for concurrent dual-transmitter was analytically derived 

and the impact of each distortion component at transmitter output was discussed and 

demonstrated through baseband equivalent simulations. Next, this chapter describes in 

detail the proposed linearity enhancement architecture. It explains simultaneous 

injection of IM and CM distortion products for nonlinearity compensation purposes, 

overcoming distortion compensation limit phenomena by iterative simultaneous 

injection of IMs and CMs, as well as memory effects’ mitigation part of the proposed 2-

D DPD. The experimental results verifying the proposed linearity enhancement 

architecture are then presented. Finally, the numerous advantages of this 2-D DPD in 

comparison with the existing 2-D DPD solutions are summarised and discussed. 

 

7.2. Fundamental Frequency Model for Concurrent Dual-band 
Transmitters 

 

The nonlinear behaviour of a PA is modeled by a polynomial expression in both 

frequency bands of concurrent dual-band transmitter: 

 

                     				[��·(\) (H) = ∑ R@(\)[âz@ (H)z@i\                                            (7.1) 

 

																												[��·(I) (H) = ∑ R@(I)[âz@ (H)�@i\                                           (7.2) 
 

 

where [âz(H) is the PA input signal, R@(\) and R@(I)are the coefficients of the polynomial 

models with N and M orders in each band, respectively. The PA input signal can be 

represented as a sum of digitally modulated signals in each band: 
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 																												[âz(H) = [âz(\)(H) + [âz(I)(H) =																																				 		[ \(H)¥« u�©\H + {\(H)� + [ I(H)¥« u�©IH + {I(H)�                     (7.3) 

 

For these digitally modulated signals with variable amplitudes [ \(H) and [ I(H) 
and variable phases {\(H)	and {I(H), the input signal can be written using the in-phase <\(H) and <I(H) and quadrature ̀\(H)	and ̀ I(H)components: 

 [âz(H) = [\(<\(H) ¥«u©\H − `\(H) uQK©\H)*++++++++++,++++++++++-9 + [I(<I(H) ¥«u ©IH − `I(H) uQK©IH)*++++++++++,++++++++++-Ì                      

(7.4) 

 

where the average value of the amplitudes are		[\ = æ[6\(H)ççççççççæ, [I = æ[6I(H)ççççççççæ, and  <\(H)I + `\(H)Içççççççççççççççççççç = 1, <I(H)I + `I(H)Içççççççççççççççççççç = 1. 
 

The total output signal is obtained after substituting (7.4) into (7.1) and (7.2) and 

applying binomial formula and trigonometric transformations. It can be written as a sum 

of	cos(Q©\ ± ¨©I)H terms, where i,	¨ = 0, 1, 2… . The terms containing cos(©\H) and cos(©IH)	are the undesired fundamental-frequency parts of the output signal related to 

each band. The other terms are considered to be far enough from the concurrent 

operating bands, and therefore can be easily filtered out. An analytical form of the each 

term containing cos(©\H) and cos(©IH) caused by PA nonlinearity up to order 9 is 

given in Table 7-1. To demonstrate which term after applying binomial expansion is 

cause of each distortion component, the graphical representation in Figure 7-1 is used. 

The first triangle is a Pascal triangle of binomial coefficients. The nonlinear terms after 

algebraic expansion of powers of a binomial are given in second triangle. Finally, the 

third triangle gives position of each distortion component in terms of its cause. For 

instance, term 1∙ F÷ causes third-order IM component in first band (<�÷(\)), while 

3	∙ xgI causes third-order CM component	(O�÷\(\)). Apart from the desired linear parts 

	R\(\)[âz(\)(H)	and R\(I)[âz(I)(H), the fundamental-frequency output signals contain sum of 

distortion components from all the odd-order terms of the polynomial models. In 

addition to IM distortion specific for the conventional transmitters, they contain CM 

products caused by interaction between frequency bands in concurrent dual-band 

transmitters. A general fundamental frequency model for concurrent dual-band 

transmitter can be derived deductively from Table I. 
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TABLE 7-1: Analytical forms of IM and CM distortion components 

Distortion Component Analytical Form (RF) <�÷�\� 34R÷(\)[\I(<\I + \̀I)[âz(\)(H) <�÷(I) 34R÷(I)[II(<II + `II)[âz(I)(H) O�÷\(\) 32R÷(\)[II(<II + `II)[âz(\)(H) O�÷\(I) 32R÷(I)[\I(<\I + \̀I)[âz(I)(H) <�ø(\) 58Rø(\)[\ô(<\I + \̀I)I[âz(\)(H) <�ø(I) 58Rø(I)[Iô(<II + `II)I[âz(I)(H) O�ø\(\) 154 Rø(\)[\I[II(<\I + \̀I)(<II + `II)[âz(\)(H) O�øI(\) 158 Rø(\)[Iô(<II + `II)I[âz(\)(H) O�ø\(I) 154 Rø(I)[\I[II(<\I + \̀I)(<II + `II)[âz(I)(H) O�øI(I) 158 Rø(I)[\ô(<\I + \̀I)I[âz(I)(H) <�ü(\) 3564Rü(\)[\ý(<\I + \̀I)÷[âz(\)(H) <�ü(I) 3564Rü(I)[Iý(<II + `II)÷[âz(I)(H) O�ü\(\) 1058 Rü(\)[\ô[II(<\I + \̀I)I(<II + `II)[âz(\)(H) O�üI(\) 1054 Rü(\)[\I[Iô(<\I + \̀I)(<II + `II)I[âz(\)(H) 
O�ü÷

(\) 3516Rü�\�[Iý�<II + `II�÷[âz�\��H� O�ü\�I� 1058 Rü(I)[\I[Iô(<\I + \̀I)(<II + `II)I[âz(I)(H) O�üI(I) 1054 Rü(I)[\ô[II(<\I + \̀I)I(<II + `II)[âz(I)(H) O�ü÷(I) 3516Rü(I)[\ý(<\I + \̀I)÷[âz(I)(H) <��(\) 63128R�(\)[\&(<\I + \̀I)ô[âz(\)(H) <��(I) 63128R�(I)[I&(<II + `II)ô[âz(I)(H) O��\(\) 31532 R�(\)[\ý[II(<\I + \̀I)÷(<II + `II)[âz(\)(H) O��I(\) 94532 R�(\)[\ô[Iô(<\I + \̀I)I(<II + `II)I[âz(\)(H) O��÷(\) 31516 R�(\)[\I[Iý(<\I + \̀I)(<II + `II)÷[âz(\)(H) O��ô(\) 207128R�(\)[I&(<II + `II)ô[âz(\)(H) O��\(I) 31532 R�(I)[\I[Iý(<\I + \̀I)(<II + `II)÷[âz(I)(H) O��I(I) 94532 R�(I)[\ô[Iô(<\I + \̀I)I(<II + `II)I[âz(I)(H) O��÷(I) 31516 R�(I)[\ý[II(<\I + \̀I)÷(<II + `II)[âz(I)(H) O��ô(I) 207128R�(I)[\&(<\I + \̀I)ô[âz(I)(H) 
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It looks as follows: 
 

 

[��·2�z*(\)(H) = R\(\)[âz(\)(H) + .f EI@%\(\)/z I} 0
@i\ [\I@RI@%\(\) (<\I + `\I)@1[âz(\)(H)

+ .f f¢I@%\,�(\) [\I(@5�)[II�(<\I + `\I)@5�@
�i\

/z I} 0
@i\ (<II + `II)�1[âz(\)(H) 

                                                  (7.5) 
 

 
and 
 
 

[��·2�z*(I)(H) = R\(I)[âz(I)(H) + .f EI@%\(I)/� I} 0
@i\ [II@RI@%\(I) (<II + `II)@1[âz(I)(H)

+ .f f¢I@%\,�(I) [II(@5�)[\I�(<II + `II)@5�@
�i\

/� I} 0
@i\ (<\I + `\I)�1[âz(I)(H) 

                                                 (7.6). 
 

 

 

To explain, the second terms in (7.5) and (7.6) are a sum of in-band IM products 

up to order N and M, whereas the third terms are a sum of CM products also up to order 

N and M, for each band respectively. The coefficients near IMs (EI@%\(\) and EI@%\(I) ) and 

CMs (¢I@%\,�(\)  and ¢I@%\,�(I) ) can be calculated as a multiplication of related binomial 

coefficient (see Pascal triangle in Figure 7-1) and rational number appeared after 

trigonometric transformations. 
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Figure 7-1: The cause of IM and CM distortion components 
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7.3. Baseband Simulation Analysis 
 

The two-tone stimulus and response in concurrent dual-band transmitter are 

given in Figure 7-2. As can be seen, there are four types of undesired distortion 

products on discrete frequencies: in-band IM and CM distortion in lower and upper 

band, respectively. However, an analysis of undesired distortion products in case of two 

digitally modulated signals is much more complex. An in-band and out-of-band impacts 

of each distortion component can be determined using baseband analysis in frequency 

domain. For comparison, PSDs of third- and fifth- order distortion components from 

Table 7-1 are calculated. Baseband simulations for four different signal sets with 

variable ratio between occupied bandwidths of signals (BW1 and BW2) and their 

powers (PW1 and PW2) are performed. The calculated PSDs are shown in Figure 7-3. 

As can be seen, the CM distortion products are dominant for the signals with narrower 

bandwidth and lower power, and vice versa, in-band IM distortion products are 

dominant for the signals with wider bandwidth and higher power. In other words, an 

increase of bandwidth or power of signal in one frequency band is reflected as an 

increase of CMs impact in another one. Additionally, it is noted during the simulations 

that an increase of bandwidth dominantly rise an out-of-band impact of CMs whereas 

an increase of power dominantly rise an in-band impact of CMs. It is interesting that 

when two signals with equal bandwidth and power are transmitted (Figure 7-3a), CM 

components have a greater impact than IM components in the output signals of 

concurrent dual-band transmitters. This analysis can be very useful in order to simplify 

design of predistorter for each band of concurrent dual-band transmitter.  

 
 

 
Figure 7-2: Power spectrum at the input and output of a dual-band transmitter 

(concurrent two-tone test) 
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                                                                    (d) 

 
Figure 7-3: Comparisons of simulated IM and CM distortion components for OFDM 

signals with variable ratio between occupied bandwidths of signals (BW1 and BW2) 

and their powers (PW1 and PW2): (a) BW1/BW2 = 1, PW1/PW2 = 1 (b) BW1/BW2 = 

2, PW1/PW2 = 2 (c) BW1/BW2 = 4, PW1/PW2 = 4 (d) BW1/BW2 = 8, PW1/PW2 = 8. 

 

 

7.4. Proposed Generalised DPD System 
 
 

The proposed DPD system implies a separate compensation of nonlinear 

distortion and memory effects. In this paper, the presented predistorter is designed 

according to Wiener structure where memory mitigation block is in front of nonlinearity 

compensation (Figure 7-4). 

 

 

Figure 7-4: Functional block diagram of proposed predistorter as a part of concurrent 

dual-band transmitter 
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7.4.1. Nonlinearity Compensation by Simultaneous Injection 
 

In order to compensate for these distortions, a simultaneous injection of the in-

band IM together with CM products, all with opposite phases, is proposed for both 

frequency bands in concurrent dual-band transmitter. The total predistorter output signal 

with injected in-band IM and CM distortion components consists of the two terms 

related to each frequency band:  

 																														[*�*(H) = [*�*(\) (H) + [*�*(I) (H)                                        (7.7) 
 

where 
 

[*�*(\) (H) = [âz(\)(H).1 + f f¥I@%\,�(\) (<\I + `\I)@5�@
�i]

/z I} 0
@i\

(<II + `II)�1 

                      (7.8)                                                                                          
 

 

[*�*(I) (H) = [âz(I)(H).1 + f f¥I@%\,�(I) (<II + `II)@5�@
�i]

/� I} 0
@i\

(<\I + `\I)�1 

                      (7.9)                                                                           
 

 

To clarify, the coefficients ¥I@%\,](\) 	and ¥I@%\,](I)  are related to injected in-band 

IMs while ¥I@%\,�(\)  and	¥I@%\,�(I) , with 0l ≠  are related to injected CMs. When substituting 

(7.7) instead of (7.4) in (7.1) and (7.2), the new fundamental-frequency signals, in 

addition to in-band IM and CM terms from (7.5) and (7.6), contain the same in-band IM 

and CM components with coefficients ¥I@%\,�(\)  and ¥I@%\,�(I)  for each band, respectively. 

Therefore, the initial distortion from (7.5) and (7.6) can be suppressed by proper tuning 

of the mentioned coefficients. If the coefficients are set as follows: 

 

¥I@%\,](\) = − 0Ç23�(�) !Ç23�(�)
!�(�) [\I@,    ¥I@%\,](I) = − 0Ç23�(Ç) !Ç23�(Ç)

!�(Ç) [II@, 

								¥I@%\,�(\) = − §Ç23�(�) !Ç23�(�)
!�(�) [\I(@5�)[II�, 0l ≠ 					¥I@%\,�(I) = − §Ç23�(Ç) !Ç23�(Ç)

!�(Ç) [II(@5�)[\I� , 0l ≠               

(7.10) 
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the initial distortion from (7.5) and (7.6) will be compensated for. The described 

nonlinearity compensation part of the proposed DPD architecture based on 

simultaneous injection is shown in Figure 7-4. The injected in-band IM and CM 

distortion components are created and passed to “Amplitude and Phase Adjustment” 

block where ¥I@%\,�(\)  and ¥I@%\,�(I)  are tuned using (7.10). The predistorted	<\	(*�*), `\	(*�*), 
<I	(*�*) and ̀ I	(*�*) signals’ components are the baseband equivalent of (7.8) and (7.9) 

and they are created as follows: 

<\(*�*) = <\.1 + f f¥I@%\,�(\) (<\I + `\I)@5�@
�i]

/z I} 0
@i\ (<II + `II)�1 

`\(*�*) = `\.1 + f f¥I@%\,�(\) (<\I + `\I)@5�@
�i]

/z I} 0
@i\ (<II + `II)�1 

<I(*�*) = <I.1 + f f¥I@%\,�(I) (<II + `II)@5�@
�i]

/� I} 0
@i\ (<\I + `\I)�1 

`I(*�*) = `I.1 + f f¥I@%\,�(I) (<II +`II)@5�@
�i]

/� I} 0
@i\ (<\I + `\I)�1 

                                                                                                                             
(7.11) 

 
   The mathematical operations in these equations are restricted to real 

multiplications and additions only, which is significant DPD complexity reduction in 

comparison with state-of-the-art. 

 

7.4.2. Iterative Simultaneous Injection 
 

The injected components generate new distortion products while compensating 

for the initial distortion. This phenomenon is known as the distortion compensation 

limit and its impact could degrade performances of injection-based predistorter [7.2]. 

To demonstrate this phenomenon in concurrent dual-band transmitter, an injection of 

third-order in-band IM in first band and third-order CM in second band will be applied. 

The predistorted signals can be written as follows: 
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 [*�*(\) (H) = [âz(\)(H)(1 + ¥÷,]�\��<\I + `\I�		)                                     (7.12) 

 

and 

 

[*�*(I) (H) = [âz(I)(H)(1	 + ¥÷,\(I)(<\I + `\I)	)                                   (7.13). 

 

 

By substituting (7.12) and (7.13) into (7.7), and (7.7) into (7.1) with N=3, the 

distorted PA output at fundamental frequency of first band can be expressed as in (7.14) 

 

[��·2�z*(\)(H) = R\(\)[âz(\)(H) + (÷ôR÷(\)[\I+R\(\)¥÷,](\))(<\I + `\I)[âz(\)(H)+÷IR÷(\)[II(<II +`II)[âz(\)(H) + �ôR÷(\)[\I¥÷,](\)(<\I + `\I)I[âz(\)(H)+3R÷(\)(\I ¥÷,](\) + ¥÷,\(I))[II(<\I + `\I)(<II +`II)[âz(\)(H)                                   
(7.14) 

As can be seen, in addition to third-order IM and CM, two fifth-order distortion 

components appear. They are results of initial injected signal and have only different 

coefficients in comparison with fifth-order IM and CM. These two components are 

distortion compensation limit. To clarify, there are another five distortion components 

(three seven-order and two nine-order) that are omitted from (7.14) because they have 

very low amplitudes and their impact is negligible. Therefore, distortion compensation 

limit in concurrent dual band transmitter can be defined as distortion components of 

order 2k+3, which are results of initial injection and appear at fundamental frequency, 

where 2k+1 is the order of initially injected components. The main idea of the iterative 

injection approach is to recalculate new distortion products at fundamental frequency of 

PA that result from the initial injected signal. After this step, an injection of these 

products together with initial injected signals is applied. Tuning of the amplitudes and 

phases of these new injected distortion products depends on coefficients that are tuned 

in the initial step to compensate for initial distortions that are a result of PA nonlinear 

behaviour.  

As can be seen from (7.14), new distortion components in the first band, which 

are results of initial injection, depend on injected components in both bands. Therefore, 
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tuning of the amplitudes and phases of these new distortion products depends on both, ¥I@%\,�(\)  and ¥I@%\,�(I) . The generalised model of the tuned coefficients at first frequency 

band of concurrent dual-band transmitter in the m-th iteration,	¥I@%\,�,8(\) , in addition to 

calculated EI@%\,8(\)  and ¢I@%\,�,8(\) ,  is a function of ¥I@%\,�,85\(\)  and ¥I@%\,�,85\(I) . To 

explain, the distortion compensation limit in concurrent dual-band transmitter can be 

overcome using general iterative procedure described by following steps: 

 

1. injecting the odd-order IM and CM distortion components into the original input 

signal at baseband and calculate fundamental frequency response in each band;  

2. injecting calculated new distortions caused by initial injection together with 

previously injected one and tuning of their ¥I@%\,�,8(\) and ¥I@%\,�,8(I)  where m is iteration 

index;  

3. repeating steps 1 and 2 until the performance improvement could be observed.  

 

The steps mentioned previously can be applied to any degree of PA nonlinearity 

and iterations’ number depends on PA model and specified performances in concrete 

case.  

 

 

7.4.3. Memory Effects Mitigation 
 

For the compensation of memory effects in concurrent dual-band transmitter, the 

memory mitigation technique in frequency domain is incorporated in the proposed 

predistorter shown in Figure 7-4. As can be seen, the same procedure is done for both 

frequency bands separately. The memory effects of concurrent dual-band transmitter are 

represented by linear filters, which are characterised by the frequency responses  �\(�, �in) and �I(�, �in) dependent on the PA instantaneous power level because PAs 

exhibit different frequency-dependent behaviour at different power levels, which are a 

direct consequence of memory effects (see [7.3] and references therein). To compensate 

for this frequency dependent behaviour, the proposed approach uses multiplying the 

complex baseband symbols by the complex coefficients 1/�\(�, �in) and 1/�I(�, �in) 
for each frequency band, respectively. Complex values of the frequency response can be 
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obtained directly from the gain and phase dependences on the modulation frequency. 

The PA frequency responses should be normalised in order not to affect the mean power 

levels. In other words, the mentioned complex coefficients are actually normalised 

inverse UI\(\) and UI\(I) parameters of PA related to each band of interest and 

instantaneous PA input power level. That power level depends on baseband power level 

of modulation point. To make the system adaptive to the input power level, the complex 

values of the  1/�\��, �in) and 1/�I(�, �in) at all power levels are calculated: 

 

1. For BPSK, the baseband power level is constant, and hence the number of 

stored coefficients equals to the number of frequency points used for 

algorithm K.  

2. For QPSK, there is also one power level (Figure 7-5a), and hence the 

number of stored coefficients also equals to the number of frequency points 

K.  

3. For 16-QAM, three baseband power levels are utilised (Figure 7-5b), which 

means the number of stored coefficients equals 3K. 

4. For 64-QAM, 10K coefficients are required because 64-QAM has 10 

different baseband power levels. 

 

The PA instantaneous input amplitude of each baseband modulation point can 

be easily determined as follows: 

 

																						[âz(H) = [£��5<I(H) + `I(H)�                                     (7.15) 

 

where [£� is carrier voltage of local oscillator and average input power of PA depends 

on its adjustment. The following four tables show the baseband voltage levels of in-

phase and quadrature signal components for different modulation mappings [7.4]. 

 

In case of BPSK modulation, a single bit is mapped to a complex-valued 

modulation symbol x=I+jQ according to Table 7-2. 
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Figure 7-5: Baseband voltage levels of I and Q components: (a) QPSK (b) 16-QAM 
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TABLE 7-2: BPSK modulation mapping 6(�) î ï 
0 1 √2⁄  1 √2⁄  
1 −1 √2⁄  −1 √2⁄  

 

 

In case of QPSK modulation, pairs of bits are mapped to complex-valued 

modulation symbols x=I+jQ according to Table 7-3. 

 

                                      TABLE 7-3: QPSK modulation mapping 6���, 6�� + Ú� î ï 
          00 1 √2⁄  1 √2⁄  
          01 1 √2⁄  −1 √2⁄  
         10 −1 √2⁄  1 √2⁄  
         11 −1 √2⁄  −1 √2⁄  

 

 

In case of 16-QAM modulation, quadruplets of bits are mapped to complex-

valued modulation symbols x=I+jQ according to Table 7-4. 

 

                          TABLE 7-4: 16-QAM modulation mapping 6���, 6�� + Ú�, 6�� + 9�, 6�� + :� î ï 
                          0000 1 √10⁄  1 √10⁄  
                          0001 1 √10⁄  3 √10⁄  
                          0010 3 √10⁄  1 √10⁄  
                          0011 3 √10⁄  3 √10⁄  
                          0100 1 √10⁄  −1 √10⁄  
                          0101 1 √10⁄  −3 √10⁄  
                          0110 3 √10⁄  −1 √10⁄  
                          0111 3 √10⁄  −3 √10⁄  
                          1000 −1 √10⁄  1 √10⁄  
                          1001 −1 √10⁄  3 √10⁄  
                          1010 −3 √10⁄  1 √10⁄  
                          1011 −3 √10⁄  3 √10⁄  
                          1100 −1 √10⁄  −1 √10⁄  
                          1101 −1 √10⁄  −3 √10⁄  
                          1110 −3 √10⁄  −1 √10⁄  
                          1111 −3 √10⁄  −3 √10⁄  

 

In case of 64QAM modulation, hextuplets of bits are mapped to complex-valued 

modulation symbols x=I+jQ according to Table 7-5.  
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TABLE 7-5: 64-QAM modulation mapping 

6(�),6(� + Ú),6(� + 9),6(� +
:),6(� + ;),6(� + <)  î ï 6(�),6(� + Ú),6(� + 9),6(� +

:),6(� + ;),6(� + <)  î ï 
000000 3 √42⁄  3 √42⁄  100000 −3 √42⁄  3 √42⁄  
000001 3 √42⁄  1 √42⁄  100001 −3 √42⁄  1 √42⁄  
000010 1 √42⁄  3 √42⁄  100010 −1 √42⁄  3 √42⁄  
000011 1 √42⁄  1 √42⁄  100011 −1 √42⁄  1 √42⁄  
000100 3 √42⁄  5 √42⁄  100100 −3 √42⁄  5 √42⁄  
000101 3 √42⁄  7 √42⁄  100101 −3 √42⁄  7 √42⁄  
000110 1 √42⁄  5 √42⁄  100110 −1 √42⁄  5 √42⁄  
000111 1 √42⁄  7 √42⁄  100111 −1 √42⁄  7 √42⁄  
001000 5 √42⁄  3 √42⁄  101000 −5 √42⁄  3 √42⁄  
001001 5 √42⁄  1 √42⁄  101001 −5 √42⁄  1 √42⁄  
001010 7 √42⁄  3 √42⁄  101010 −7 √42⁄  3 √42⁄  
001011 7 √42⁄  1 √42⁄  101011 −7 √42⁄  1 √42⁄  
001100 5 √42⁄  5 √42⁄  101100 −5 √42⁄  5 √42⁄  
001101 5 √42⁄  7 √42⁄  101101 −5 √42⁄  7 √42⁄  
001110 7 √42⁄  5 √42⁄  101110 −7 √42⁄  5 √42⁄  
001111 7 √42⁄  7 √42⁄  101111 −7 √42⁄  7 √42⁄  
010000 3 √42⁄  −3 √42⁄  110000 −3 √42⁄  −3 √42⁄  
010001 3 √42⁄  −1 √42⁄  110001 −3 √42⁄  −1 √42⁄  
010010 1 √42⁄  −3 √42⁄  110010 −1 √42⁄  −3 √42⁄  
010011 1 √42⁄  −1 √42⁄  110011 −1 √42⁄  −1 √42⁄  
010100 3 √42⁄  −5 √42⁄  110100 −3 √42⁄  −5 √42⁄  
010101 3 √42⁄  −7 √42⁄  110101 −3 √42⁄  −7 √42⁄  
010110 1 √42⁄  −5 √42⁄  110110 −1 √42⁄  −5 √42⁄  
010111 1 √42⁄  −7 √42⁄  110111 −1 √42⁄  −7 √42⁄  
011000 5 √42⁄  −3 √42⁄  111000 −5 √42⁄  −3 √42⁄  
011001 5 √42⁄  −1 √42⁄  111001 −5 √42⁄  −1 √42⁄  
011010 7 √42⁄  −3 √42⁄  111010 −7 √42⁄  −3 √42⁄  
011011 7 √42⁄  −1 √42⁄  111011 −7 √42⁄  −1 √42⁄  
011100 5 √42⁄  −5 √42⁄  111100 −5 √42⁄  −5 √42⁄  
011101 5 √42⁄  −7 √42⁄  111101 −5 √42⁄  −7 √42⁄  
011110 7 √42⁄  −5 √42⁄  111110 −7 √42⁄  −5 √42⁄  
011111 7 √42⁄  −7 √42⁄  111111 −7 √42⁄  −7 √42⁄  

 

 

The general memory effects’ mitigation procedure is illustrated in Figure 7-4. K 

symbols of M-range are generated for the chosen modulation type and mapped to M-

QAM in both frequency bands. Obtained complex symbols are transformed into the 

frequency domain using Fast Fourier Transform (FFT). Baseband power calculation is 

used to determine modulation point in order to find related complex coefficients for that 

modulation point. After multiplying by 1/�\(�, �in) and 1/�I(�, �in) for each band 

respectively, the symbols are subjected to inverse FFT (IFFT). Obtained complex 

signals are further divided into <\, `\ and <I, `I components, which are used in the 
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nonlinearity compensation part of the predistorter. In general case, the mathematical 

operations required for the proposed method include two K-points FFT and two K-

points IFFT procedures, and multiplying the frequency points by related complex-

valued coefficients in both frequency. Specifically, in case of using orthogonal 

frequency division multiplex (OFDM) signal, the memory mitigation part of proposed 

predistorter does not need FFT and IFFT procedures. This is because the IFFT block is 

a part of OFDM creation, and therefore, the proposed complex multiplication by 

1/���, �in) can be easily incorporated in OFDM creation. As can be seen from Figure 

7-6, the proposed procedure is realised as parallel multiplications before OFDM IFFT. 

  

Figure 7-6: Proposed memory mitigation in case of OFDM signal 

 

7.5. Experimental Setup 
 

The experimental setup is shown in Figure 7-7. It is consisted of two signal 

generators, ESG E4433B and MXG N5182A, used to emulate concurrent dual-band 

transmitter. The long term evolution (LTE) signals with various bandwidth (1.4 MHz, 3 

MHz and 5 MHz) and 5-MHz wideband code division multiple access (WCDMA) signal 

were created in Matlab and downloaded to MXG by using Agilent Signal Studio Toolkit 

and to ESG by using Advanced Design System (ADS). The combiner was utilised to 

combine the signals on different frequencies (�\ = 880	��, �I = 2.14	��). The 

combined signals were passed through the Device Under Test (DUT), which consists of 

the two-stages driver and CFH 2162-P3 PA (14 dB gain, P1dB +37 dBm) that was 

driven in a hard compression region. The PA output signals were down-converted with 
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Vector Signal Analyser (VSA) and captured on PC by 89600 VSA software in two steps, 

one for each band separately. These signals were then time-aligned with corresponding 

input signals. 

 

 

Figure 7-7: Measurement setup of concurrent dual-band transmitter  

(CFH 2162-P3 PA was used as DUT) 

 

7.6. PA Characterisation 
 
 

The polynomial models (7.1) and (7.2) of considered DUT were obtained for 

both frequency bands using dual-band CW measurement procedure presented in 

Chapter 6. To show difference in nonlinear characteristic of high power PA, the 

procedure is applied in both, single and concurrent dual-band transmitter mode. The 

seventh-order polynomials were used in order to decrease MSE bellow -40 dB. The 

measured and modelled transfer characteristics in single band and concurrent dual-band 

modes are compared in Figure 7-8. As can be seen, when the PA operates in dual-band 

mode, the P1dB compression point is notably decreased. In other words, PA nonlinear 

behaviour is significantly stronger in dual-band mode. Therefore, the theory related to 

dual-band nonlinear PA characterisation was verified here using high power PA as a 

DUT. To reiterate conclusion from the previous Chapter, PA must be characterised in 

dual-band mode. Otherwise, using of standard CW characterisation for both bands 

separately will seriously deteriorate the performances of the proposed DPD. The 
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obtained polynomial coefficients of CFH 2162-P3 PA extracted in transmitter dual-band 

mode were then used for calculating of coefficients of injected IMs and CMs. 

 
   (a) 

 
(b) 

Figure 7-8: Comparisons of measured and modelled PA transfer characteristics in 

single and dual-band transmitter mode:  (a) operating frequency 880 MHz (b) operating 

frequency 2.14 GHz 

 
 

7.7. Concurrent Two-tone Test 
 
 

To evaluate memory effects in concurrent dual-band transmitter, a concurrent 

two-tone test is used [7.5]. In this test, the amplitudes of left and right IM3, far CM3 
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and near CM3 are measured. The frequencies of these components are shown in      

Table 7-6.  

TABLE 7-6:  The frequencies of intermodulation and cross-modulation products 

Modulation 

Products 
Intermodulation 

Far Cross-

modulation 

Near Cross-

modulation 

Lower Band 
2©£\ − ©£I 2©£I − ©£\ 

©£\ − ∆©� ©£I + ∆©� 

©£I − ∆©� ©£\ + ∆©� 

Upper Band 
2©�\ − ©�I 2©�I − ©�\ 

©�\ − ∆©£ ©�I + ∆©£ 
©�I − ∆©£ ©�\ + ∆©£ 

 

Memory effects metric was defined as an imbalance between right and left 

distortion products [7.5]. The tones were swept in one band, and imbalances were 

measured in both bands. The results shown in Figure 7-9 and Figure 7-10, prove the 

presence of memory effects. 

 
                                            (a)                                                            (b) 
Figure 7-9: Memory effects as sweep frequency spacing in lower band (a) lower band, 

(b) upper band 
 

 

 
                                     (a)                                                              (b) 
Figure 7-10: Memory effects as sweep frequency spacing in upper band (a) lower band, 

(b) upper band 
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7.8. Experimental Extraction of Memory Mitigation Coefficients 
 
 

To compensate for PA memory effects, 1/�\��, �in) and 1/�I(�, �in) need to 

be extracted. In order to calculate these coefficients, magnitude and phase of  UI\(\) 
and		UI\(I) were measured using a vector network analyser (VNA) measurement for 

different power levels. These levels were determined for each baseband modulation 

point using (7.15). The normalised frequency responses’ magnitude and phase for three 

power levels in both operating bands are shown in Figure 7-11 and Figure 7-12. 

 

 
 

Figure 7-11: Magnitude and phase of the normalised frequency response for three 
power levels (lower band) 

 
 

 
 

Figure 7-12: Magnitude and Phase of the normalised frequency response for three 
power levels (upper band) 
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7.9. Experimental DPD Results 
 
 

The described DPD approach has been implemented in Matlab and tested in 

three diferent scenarios. The predistored I and Q components for each signal sets were 

downloaded to ESG and MXG signal generators. In order to show the effectiveness of 

the proposed simultaneous injection approach, the existing injection-based DPDs [7.6], 

[7.7] were also considered. These techniques have not been tested in their original 

forms due to impractical sampling rate requirements for the DACs. In other words, their 

sampling rates depend on frequency separation in concurrent dual-band transmitter. 

However, for the testing purpose in this type of transmitter, the approaches [7.6], [7.7] 

were modified in such a way that they were applied in each band separately. 

The PA output spectra in three different scenarios are shown in Figure 7-13. As 

can be seen, the distortion level is significantly higher in concurrent case (both 

generators ON) in comparison with conventional single-band (one generator OFF). The 

CM distortion components do not allow using modified [7.6] and [7.7], which inject IM 

distortion components in concurrent dual-band transmitter. In case of LTE at 880 MHz, 

these approaches have substantially degraded performances at transmitter output. In 

contrast, the proposed approach can successfully model and reduce the distortion in 

concurrent dual-band transmitter in every considered scenario. 

One can see that performance of initial injection is improved in second iteration. 

This performance degradation of initial injection is result of distortion compensation 

limit in concurrent dual-band transmitter. It can be observed from experimental results 

that additional iteration improves spectrum regrowth 3-5 dB depending on scenario. The 

calculated EVM for different scenarios is shown in Table 7-7. If memory mitigation 

technique is incorporated before injection, an additional improvement of about 4 dB in 

spectrum regrowth and 5 dB in EVM can be observed in most demanding scenario III. 

An overall EVM improvement of more than 20 dB and spectrum regrowth 

improvements of more than 10 dB in case of LTE and about 20 dB in case of WCDMA 

were achieved when proposed approach is fully implemented. Moreover, an adjacent 

channel leakage ratio (ACLR) is also measured at 5 and 10 MHz frequency offsets in 

the most demanding scenario III. The 8- and 4-dBc improvements were achieved for 

LTE at band 1 whereas 9- and 4-dBc improvements were achieved for WCDMA at 

band 2. 
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                                                                     (a) 

  

                                                                     (b) 

  

                                                                                             (c) 

Figure 7-13: The PSD responses of concurrent dual-band transmitter (a) Scenario I, 
LTE 1.4 MHz – lower band, WCDMA – upper band (b) Scenario II, LTE 3 MHz – 

lower band, WCDMA – upper band (c) Scenario III, LTE 5 MHz – lower band, 
WCDMA – upper band 
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The spectrum regrowth and EVM improvements in scenario III have also been 

tested where either an injection of IMs (IM DPD) or an injection of CMs (CM DPD) 

was applied together with a memory mitigation procedure. As can be seen in Figure 7-

13(c), the different results can be observed at band 1 and at band 2. One can see from 

the PSD responses that the PA output power at band 2 is higher than the power at band 

1. Therefore, the CMs are dominant at band 1 whereas the IMs are dominant at band 2. 

Due to these facts, the IM DPD notably reduces distortion at band 2 whereas the CM 

DPD notably reduces distortion at band 1. This is in agreement with the baseband 

simulation analysis from Section 7-3. The IM DPD and CM DPD can be useful in some 

cases where a very low DPD computational complexity is required. The detailed 

investigation related to this will be a part of the author’s future work. 

 
TABLE  7-7: EVM Results 

 Signal 

Without 
Linearisation 

With 
 Linearisation 

single band 
mode 

dual-band 
mode 

without 
memory 

mitigation 

with 
memory 

mitigation 

S
ce

na
rio

 I
 

LTE 
1.4 MHz  

-21.27 dB -19.49 dB -40.76 dB -40.91 dB 

WCDMA -31.23 dB -19.44 dB -37.88 dB -40.78 dB 

S
ce

na
rio

 II
 

LTE  
3 MHz 

-21.13 dB -19.23 dB -37.97 dB -40.46 dB 

WCDMA -31.23 dB -19.09 dB -37.12 dB -40.36 dB 

S
ce

na
rio

 II
I 

LTE 
5 MHz 

-20.72 dB -17.75 dB -33.28 dB -38.41 dB 

WCDMA -31.23 dB -18.66 dB -36.26 dB -39.72 dB 

 

7.10. Extension of the Proposed DPD for Multi-band Wireless 
Transmitters 

 

The extension of the fundamental frequency model for the concurrent dual-band 

transmitter for modelling of the transmitters with more than two concurrent bands is 

also possible. In the case of tri-band transmitters and third-order PA nonlinearity, there 
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will be four undesired products in each band: one in-band IM product, two CM products 

which are the results of signal interactions with other signals separately and one CM 

product which depends on all three signals as a result of interaction between them. 

Deductively, in case of quad-band transmitters, there will be <�÷�\�, O�÷\�\I�, O�÷\�\÷�, O�÷\�\ô�, O�÷\�\I÷�, O�÷\�\Iô�, O�÷\�\÷ô�and O�÷\�\I÷ô�in the first band. In addition to the in-

band IM, for the general N-band fundamental frequency model, there will be �z5\\ �+�z5\I �+…+�z5\z5\� CM undesired products. However, it can be expected that the �z5\\ � CMs which are the results of the signal j − 1 interactions with j − 1 other 

signals will have a dominant impact together with the in-band IM. This is just a brief 

introduction of the potential extended methodology and the detailed theoretical 

derivation and verification will be a part of the future work. 

 

7.11. Discussion 
 

It was proved by experiments that the concurrent dual-band DPDs [7.8]-[7.17] 

can successfully model and reduce the distortion in concurrent dual-band transmitters. 

However, the key features of the proposed approach in comparison with state-of-the-art 

DPDs for concurrent dual-band transmitters have been highlighted in this Section. This 

comparative analysis has been summarised in Table 7-8.  

TABLE 7-8: Comparisons of this work with recent works on concurrent dual-band 
wireless transmitters 

 
Method 

DPD run-
time 

complexity 

DPD 
identification 
complexity 

Dependency 
on freq. 
offset 

System 
bandwidth 
constraints 

Adaptive 
closed-
loop 

Extension 
for multi-

band 
Volterra-

based 
[7.8]-
[7.14] 

High 
High + 

numerical 
instability 

No 

High, can 
be reduced  

[7.10], 
[7.18] 

Yes 
Very 

Complex 

LUT-
based 
[7.15] 

High 
High + 

numerical 
instability 

No 

High, can 
be reduced  

[7.10], 
[7.18] 

Yes 
Very 

Complex 

ANN-
based 
[7.16] 

High Very High No 
High, can 
be reduced 

[7.10] 
Yes 

Very 
Complex 

Freq.- 
selective 

DPD 
[7.17] 

High Moderate Yes Moderate No Impractical 

This 
Work 

Low Moderate No 
High, can 
be reduced 

No Moderate  
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The main advantage of the proposed DPD is low complexity of predistorter. To 

explain, an overall complexity of DPD is a sum of DPD run-time complexity in 

transmitter’s feedforward path and complexity of DPD estimation performed online or 

offline. One should keep in mind that DPD estimation of the parameters is occasional 

and thus, is not a continuous load on the processing unit. Therefore, from the overall 

transmitter operation point of view, the computations carried out by the feedforward 

DPD block itself are much more important. In other words, the operations needed per 

sample are the main source of complexity. The number of floating point operations 

(FLOPs) is parameter for the DSP computational complexity estimation of DPD. Table 

7-9 shows operation-FLOPs conversion for every particular operation performed into 

DSP [7.18]. 

TABLE 7-9: Number of FLOPs for different operations performed into DSP  

Operation Number of FLOPs 

Conjugate 0 

Delay 0 

Real addition 1 

Real multiplication 1 

Complex addition 2 

Complex-real multiplication 2 |∙|I 3 

Complex-complex multiplication 6 

Square root 7 

 

 The proposed 2D-DPD predistorter has significantly lower DSP run-time 

computational complexity in comparison with existing 2D-DPD predistorters for 

concurrent dual-band transmitters mainly because the proposed simultaneous injection 

uses real additions and real multiplications only. To demonstrate the effectiveness of the 

proposed method in terms of DSP run-time computational complexity, the number of 

operations and FLOPs number needed for the proposed method and most widely used 

2-D DPD based on complex polynomials are calculated. In memoryless case, for the 

Nth-order nonlinearity, these methods need the following numbers of operations: 
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• complex polynomials 2-D DPD: j(j + 1� complex multiplications; j�j +1� − 2 complex additions; j�j + 1� − 2 complex-real multiplications; j�j + 1� − 6	 real multiplications; 2 square modulus; 2 square roots; 

• proposed approach: 2=j/2>(=j/2> + 1) − 4 real additions; 4=j/2>(=j/2> +1) − 12	 real multiplications; 2 square modulus. 

Using Table 7-9 and these calculated numbers of operations, the number of FLOPs 

needed for these approaches can be easily calculated. The proposed approach needs 6=j/2>(=j/2> + 1) − 10 FLOPs whereas the 2-D DPD approach based on complex 

polynomials needs 11j(j + 1) + 6 FLOPs. Therefore, the proposed approach has 

considerably lower run-time complexity because it requires about 4 times less FLOPs. 

The same conclusion will be derived after comparison of the proposed approach with 

other state-of-the-art approaches in terms of run-time complexity. This is mainly 

because the other approaches have comparable or higher complexity when compared 

with 2-D DPD complex polynomials [7.11]-[7.16]. Moreover, in memory case, the 

proposed approach is even less complex than 2-D DPD memory polynomials. To 

clarify, the number of FLOPs is increased � times in case of 2-D DPD memory 

polynomials, where � is memory depth. In contrast, it should be noticed that memory 

mitigation part of the proposed method uses complex multiplications, but K parallel 

multiplications for K symbols. In other words, the proposed approach uses only one 

complex multiplication per sample. Moreover, the additional FFT and IFFT procedures 

can be omitted in case of OFDM signals.  

The approaches [7.8]-[7.16] identify predistortion functions in an adaptive 

closed-loop online, but suffer from a potential numerical instability of the identification 

process as demonstrated in [7.19]-[7.21]. The application of the digital predistorter 

[7.17] is impractical when considering the wide bandwidth of the dual-band signal (the 

sum of bandwidths of both signals and frequency offset between bands), but this 

methodology is frequency selective and can be useful for wide-bandwidth signals that 

do not have large frequency separation. This method also needs offline large-signal-

network-analyser (LSNA) measurements, but has a simpler transmitter hardware 

architecture in comparison with the others. The proposed predistorter is also 

implemented in open-loop and needs dual-band CW and VNA offline measurements. 

The presented baseband simultaneous IM and CM injection methodology is much more 

suitable for extension and application in transmitters with more than two concurrent 
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bands. The main reason is the fact that the complexity of the extensions of state-of-the-

art approaches will be dramatically increased and their application in multi-band 

transmitters will be impractical. In order to reduce high bandwidth constraints, the 

band-limited DPD is desirable [7.22]. The proposed approach discriminates an impact 

of IMs and CMs, and its extension in this direction will probably be simpler than the 

extensions of state-of-the-art dual-band DPDs.  Also, using multi-tone or realistic 

digitally modulated signals for the dual-band PA characterisation process will increase 

model accuracy and improve distortion reduction especially in the case of ultra-

wideband signals. 

 

7.12. Conclusion 
 

A new 2-D linearity enhancement architecture based on simultaneous injection 

of the in-band IM and CM distortion components together with memory mitigation was 

presented and verified through experiments. A nonlinear fundamental frequency model 

was derived for concurrent dual-band transmitter for the first time. It was proved that 

proposed simultaneous injection of in-band IM and CM distortion products can improve 

the signals’ performances in concurrent dual-band transmitters. Additionally, it was 

demonstrated that the proposed iterative approach can successfully deal with distortion 

compensation limit. The proposed technique successfully minimises memory effects, 

does not depend on frequency separation between bands and has low computational 

complexity in comparison with previously proposed DPDs for concurrent dual-band 

transmitters. To the best knowledge of the author, this is the first 2-D injection-based 

linearisation architecture. It was clearly shown that the technique outperforms 

conventional injection-based DPDs in terms of EVM and PSD performances when they 

were tested in emulated concurrent dual-band transmitter. According to the obtained 

results, the method can be a serious candidate for distortion compensation in modern 

concurrent dual-band wireless transmitters’ applications. Table 7-8 compares the 

performance of the proposed 2D-DPD with recently reported 2D-DPDs for concurrent 

dual-band transmitters. Furthermore, the author feels that the presented theory can be 

very useful for researchers and engineers who design PAs for developing of RF 

lineariser incorporated in dual-band PA design to achieve high linearity and efficiency 

of PA.  
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8. CONCLUSION 
 

This Chapter presents overall conclusions related to the performed research 

work, including the thesis summary, original contributions to knowledge and 

suggestions for the future work.  

 

8.1. Thesis Summary  
 

In recent years, the design of linear and efficient transmitters for base stations 

and terminals has become one of the major tasks for researchers and engineers. A great 

concern has been expressed so far with regard to enhancing the PA performances due to 

the fact that the most challenging part of a transmitter is the power amplifier. A 

common approach for achieving both the high linearity and efficiency is to design a PA 

operating in a nonlinear efficient mode and to provide its linearisation by an external 

DSP device.  

In this thesis, a comprehensive research work on the topic of linearisation of 

power amplifiers in modern wireless transmitters such as 4G SISO and dual-band 

transmitters has been presented. The advanced digital predistortion linearisation 

techniques for these transmitters have been developed during this research work. The 

theoretical concept, practical implementation and validation of the proposed techniques 

by simulations and experiments have been outlined in the thesis. 

The research work included the following areas. Initially, the PA system 

parameters, a signal quality metrics, the PA behavioural modelling metrics, OFDM as a 

basis of 4G wireless communications and the main parameters of 4G LTE standard 

were described. Also, the distortion problem in multi-branch and multi-frequency 

MIMO transmitters was discussed. A comparative overview of the existing digital 

predistortion techniques in different types of transmitters was accomplished, 

accompanied by a brief summary of their advantages and shortcomings. Since digital 

predistortion is one of the most cost-effective, easily integrated and flexible 

linearisation methods, it was selected as a basis for the development of the proposed 

technique. One of the major tasks of this work was to reduce high complexity of 

existing digital predistorters. Consequently, injection-based linearisation techniques 
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have been investigated and their advantages and disadvantages were described. These 

techniques have been chosen as a basis for developing of advanced injection-based 

digital predistortion techniques. In this thesis, the adaptive nonlinearity compensation 

technique for 4G wireless transmitters was proposed and verified experimentally using 

developed test bed for adaptive DPD. This is the first time that one injection-based 

technique is experimentally verified using high PAPR signal such as real LTE signal. 

On top of that, this is the first adaptive, injection-based DPD. Furthermore, for the first 

time, the injection-based theory is expanded to be applicable in concurrent dual-band 

transmitters with different PAs. To the best knowledge of the author, the proposed DPD 

is the first injection-based DPD for concurrent dual-band transmitter. It has been clearly 

shown that the technique outperforms conventional injection-based techniques in terms 

of EVM and PSD performances when they were tested in emulated concurrent dual-

band transmitter. During this work, the proposed theory is further expanded and 

generalised DPD for concurrent dual-band transmitters was developed. A general 

fundamental frequency model for concurrent dual-band transmitter was derived. The 

generalised DPD based on this theory was proposed. This DPD was experimentally 

attested using highly nonlinear PA that exhibits memory effects. In addition to this, the 

reduction of distortion compensation limit phenomena in concurrent dual-band 

transmitter was considered theoretically and verified in experiments.  

 

Chapter 2 has covered the PA system parameters, nonlinear behavioural 

modelling metrics and PA memory effects. The main signal quality metrics in time and 

frequency domain have been defined, while OFDM technology, as a basis of recent and 

future wireless communications systems, has been explained. Some of the important 

features of 4G LTE were given in this Chapter. Also, the other problems that cause 

distortion such as crosstalk specific to multi-branch MIMO transmitters as well as 

cross-modulation specific to multi-frequency MIMO transmitters were discussed.  

 

Chapter 3 has presented a comparative overview of existing, behavioural model 

based DPD linearisation techniques including LUT-based DPD, Volterra-based DPD, 

memory polynomial DPD and DPD based on artificial neural networks (ANN). The 

theoretical concept, main advantages and drawbacks of these DPDs were discussed. The 

adaptive DPD architectures such as direct learning architecture (DLA) and indirect 

learning architecture (ILA) were depicted in the Chapter. The DPD approaches for 
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multi-branch and multi-frequency MIMO transmitters were depicted also. Recent 

developments and existing problems in the area of DPD linearisation were discussed. 

 

The injection-based linearisation concept has been described in Chapter 4. This 

Chapter provides an overview of state-of-the-art linearisation techniques based on 

injection of distortion products either in RF or baseband. This Chapter focuses on 

digitally implemented baseband injection-based techniques, particularly on technique 

based on IM3 and IM5 injection as well as technique based on iterative injection 

approach. It was shown that these injection-based techniques have tolerable complexity 

and therefore, they were chosen as a basis of the original developments of the thesis 

explained in Chapter 5, 6 and 7. 

 
In Chapter 5, the adaptive, low-complexity DPD for 4G SISO wireless 

transmitters is introduced.  PA linearisation was demonstrated using this DPD based on 

iterative injections of the in-band distortion components. This method has three 

important advantages in comparison with existing solutions. First, the proposed DPD 

was verified experimentally using more than 10 dB peak-to-average power ratio 

(PAPR) 5-MHz downlink LTE signal. Secondly, it uses real multiplications and real 

additions only and avoids complex Volterra, LUT or polynomials for nonlinearity 

compensation. Third, in contrast with existing injection-based DPD, the technique uses 

adaptive architecture, and therefore, is adaptive to the variation of PA nonlinear transfer 

function in real environmental conditions. The nonlinear PA modelling extraction 

method based on AM/AM least-squares polynomial regression approximation was 

explained and used in experiments. The adaptive experimental test-bed was described. It 

was shown that the technique achieves about 10 dB improvements in spectrum regrowth 

and about 7 % in EVM. 

 
Chapter 6 presents the first injection-based memoryless digital predistortion 

technique for concurrent dual-band transmitters. It is based on simultaneous injection of 

IM and CM distortion components. The theoretical concept of the proposed DPD 

technique and verification of its feasibility and linearisation performances by 

experiments were presented in this Chapter. The mathematical model of the proposed 

technique was derived for the fifth-order polynomial. The PA nonlinearity 

characterisation in single band and concurrent dual-band transmitter mode were 
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described and discussed. The linearisation of the low-power ZFL-500 PA was 

demonstrated in experimentally emulated concurrent dual-band transmitter using this 

new 2-D DPD.  

 
In Chapter 7, the proposed technique, described in Chapter 6, has been further 

expanded and new advancements have been introduced. The technique has been further 

generalised to any degree of nonlinearity. Also, an initial injection approach presented 

in Chapter 6 was extended in Chapter 7 to generalised iterative injection approach, 

which was used to overcome distortion compensation limit phenomena in concurrent 

dual-band wireless transmitters caused by initial injection. In other words, this approach 

is based on simultaneous iterative injection of the in-band IM and CM products. 

Moreover, in comparison with memoryless ZFL-500 PA, it was shown in experiments 

that CFH 2162-P3 PA exhibits memory effects that degrade the performances of DPD 

at the output of concurrent dual-band transmitter. The CFH 2162-P3 PA nonlinear 

characterisation in single band and concurrent dual-band mode were presented. The 

presence of memory effects were detected by concurrent two-tone test which was also 

described in this Chapter. These memory effects have been minimised in frequency 

domain by utilising baseband symbol adjustable normalised inverse S21-parameter 

parallel multiplication. This procedure has been carried out separately for both bands of 

concurrent dual-band transmitter. The experiments were conducted using different 

signal sets (LTE 1.4 MHz, LTE 3 MHz and LTE 5 MHz at 880 MHz and WCDMA at 

2.14 GHz). On the whole, this Chapter has introduced the theoretical background and 

experimental verification of the complete DPD system for concurrent dual-band 

wireless transmitters. The numerous advantages of this DPD in comparisons with 

existing concurrent dual-band DPDs were discussed in detail. 

 
 

8.2. ORIGINALITY and CONTRIBUTIONS to KNOWLEDGE 
 
 

The thesis focuses on novel solutions for distortion reduction of power 

amplifiers in modern wireless transmitters such as 4G SISO and concurrent dual-band 

transmitters. The adaptive injection-based DPD was developed and experimentally 

verified using 4G signal. In addition to this, the injection-based DPD theory was 
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extended for application in concurrent dual-band wireless transmitters. The proposed 

DPDs have adjustable nature and can be tuned to achieve the best ratio of linearisation 

degree to computational complexity for every particular wireless application. The 

proposed solutions reduce implementation costs and the overall complexity of the 

design of modern wireless transmitters without sacrificing performance of power 

amplifiers. The author believes that this research work will considerably contribute to 

the international academic research on digital predistortion of power amplifiers suitable 

for 4G and beyond wireless transmitters’ applications. There are three main 

contributions, which resulted from the completed project: 

 

• The proposed baseband adaptive DPD that has lower computational 

complexity in comparison with state-of-the-art adaptive DPDs. It was 

experimentally verified using 4G signal and ZFL-500 PA as a DUT.  

 

• The proposed and experimentally verified memoryless 2-D DPD based on 

simultaneous injection of IM and CM distortion products. The technique 

does not depend on frequency separation between frequency bands in 

concurrent dual-band transmitter and has low complexity in comparison with 

existing solutions.  

 

• This proposed theory on concurrent dual-band DPD has been further 

extended to be applicable in concurrent dual-band transmitter with highly 

nonlinear PAs that exhibit memory effects. A general fundamental frequency 

model for concurrent dual-band transmitter was developed theoretically and 

proved experimentally. An individual impact of each IM and CM distortion 

component was theoretically derived and analysed. It was clearly proved by 

experiments that the proposed predistorter improves the in-band and out-of-

band performances of both signals. The proposed generalised 2-D DPD 

architecture based on derived fundamental frequency model does not depend 

on frequency separation between bands and has low complexity in 

comparison with concurrent dual-band DPD’s state-of-the-art. In addition to 

this, it was clearly shown in experiments that when using iterative 

simultaneous injections of IM and CM distortion products, a phenomenon 
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known as distortion compensation limit can be reduced in concurrent dual-

band wireless transmitters. The presence of memory effects and their 

mitigation in frequency domain for each band of concurrent dual-band 

transmitter were also demonstrated in experiments. Furthermore, the 

potential extension of the proposed DPD to be applicable in concurrent 

multi-band wireless transmitters will be much more suitable than the 

extension of the other 2-D DPD solutions. 

 

 

8.3. Future Work 
 
 

One of the directions for the future work would be the extension of current work 

on digital processing technique with baseband injection with the aim of improving 

linearity of real-life device under test (power amplifier) in multi-branch MIMO 

transmitters that have nonlinear crosstalk problem which degrade the quality of existing 

DPD solutions.  

The proposed solutions would be further validated by involving the new high-

power, high-efficiency types of power amplifiers (Doherty, class F, inverse class F or 

class J PAs that exhibit strong memory effects and PM/AM and PM/PM distortions) as 

DUTs into system and carrying out experimental tests of proposed algorithms in 4G 

SISO, dual-band and dual-input MIMO transmitters. Comparative analysis of DPD 

solutions for different types of transmitters and PAs in the same experimental 

conditions is another possible area of future work. 

Another area of the suggested future work is to investigate the performances and 

limitations of the developed adaptive lineariser for different OFDM digitally modulated 

signals in different transmitter types using computer modelling, analysis and 

optimisation by ADS and Matlab as well as using of real, adaptive test-bad for  

experimental validation. Carrying out experimental tests of the created predistortion 

systems with OFDM signals that have different bandwidth will bring some new 

problems and a novel band-limited DPD will be needed. The extension of the proposed 

DPD in this direction is a potential area of the future work.  The experimental testing 

would be done in different types of transmitters.  
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The variations in environmental conditions cause degradation of the lineariser 

performances. Consequently, the proposed predistorter’s adaptive implementation for 

multi-band and multi-branch MIMO transmitters would be preferable. However, the 

receiver at feedback adaptation significantly increases the transmitter’s complexity and 

there is a trade-off between transmitter complexity and signal quality at transmitter’s 

output. This trade-off should be solved for every particular wireless transmitter’s 

application.  

The extension of the fundamental frequency model for the concurrent dual-band 

transmitter for modelling of the transmitters with more than two concurrent bands is 

also possible. The presented baseband simultaneous IM and CM injection methodology 

is much more suitable for the extension and application in transmitters with more than 

two concurrent bands. This is mainly because the fact that the proposed approach has 

significantly smaller run-time complexity in comparison with state-of-the-art 

approaches. In contrast, the extensions of the previously proposed concurrent dual-band 

DPDs for transmitters with more than two concurrent bands would be very complex and 

impractical. The baseband equivalent simulations would be very useful in these multi-

band transmitters in order to find an individual impact of each distortion component. In 

this way, a significant complexity reduction of DPD would be achieved. Generally, the 

further complexity reduction of DPD in different kind of modern wireless transmitters 

would be a very interesting direction of the future work. Further experiments with IM 

DPD and CM DPD would be performed in experimentally emulated concurrent dual-

band transmitter.  

The simultaneous injections of IMs and CMs are excellent because the 

additional manual tuning of the DPD coefficients would be performed in order to 

suppress distortion as much as possible in any type of PAs. Therefore, the additional 

phase adjustment procedure of the proposed digital predistorter might be used in order 

to improve performances at transmitter output. It would be especially useful when using            

highly-efficient PA structures as DUTs.   

Moreover, one of the directions for the future work would be developing and 

applying the extension of the proposed DPD for compensating real-life I/Q 

imperfections in different types of wireless transmitters. Upon achieving successful 

results, the injection-based methodology would be investigated for improving the 

linearity and jointly compensating real-life imperfections introduced by PA, modulator 

and other components.  
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Generally, the polynomial model can include both the AM/AM and AM/PM 

distortions if the coefficients are obtained in the complex form. It will be interesting to 

test injection methodology when using much more complex models. This will increase 

run-time complexity of the predistorter, but possibly have some advantages. For 

instance, the memory mitigation procedure and VNA measurement might be omitted in 

that case. 

The developed theory on concurrent dual-band DPD would be very useful for 

researchers and engineers who design PAs for developing of RF lineariser incorporated 

in dual-band PA design to achieve high linearity and efficiency of PA. This would also 

be a very interesting direction for the future work. 

Finally, a real-life implementation of the designed DPDs using FPGA would 

become a part of further studies. The real-life experiments with the FPGA design of the 

proposed predistorter would evaluate the overall performance of the system before mass 

production.  
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