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aCentre for Parallel Computing, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
bInstitute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN) Kende u. 13-17, Budapest, 1111, Hungary

cFraunhofer Institute for Computer Graphics Research IGD, Darmstadt, 64283, Germany
dclesgo GmbH, Stuttgart, 70197, Germany

eSchool of Computing, Engineering & the Built Environment, Edinburgh Napier University, Edinburgh, UK

Abstract

With the emergence of Internet of Things (IoT) devices collecting large amounts of data at the edges of the network, a new genera-
tion of hyper-distributed applications is emerging, spanning cloud, fog, and edge computing resources. The automated deployment
and management of such applications requires orchestration tools that take a deployment descriptor (e.g. Kubernetes manifest,
Helm chart or TOSCA) as input, and deploy and manage the execution of applications at run-time. While most deployment de-
scriptors are prepared by a single person or organisation at one specific time, there are notable scenarios where such descriptors need
to be created collaboratively by different roles or organisations, and at different times of the application’s life cycle. An example
of this scenario is the modular development of digital twins, composed of the basic building blocks of data, model and algorithm.
Each of these building blocks can be created independently from each other, by different individuals or companies, at different
times. The challenge here is to compose and build a deployment descriptor from these individual components automatically. This
paper presents a novel solution to automate the collaborative composition and generation of deployment descriptors for distributed
applications within the cloud-to-edge continuum. The implemented solution has been prototyped in over 25 industrial use cases
within the DIGITbrain project, one of which is described in the paper as a representative example.
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1. Introduction

The emergence of cloud computing, followed by the more
recent rise of Internet of Things (IoT) devices has reshaped the
way data can be collected and analysed. IoT devices collect
huge amounts of data at the edges of the network, close to the
data sources. However, the processing and storage capability
of such devices is typically limited or non-existent. As a result,
captured data is sent to more powerful computing environments
for further processing, such as the cloud. Sending all that data
to the cloud, though, introduces latency that may not be suitable
in application scenarios where fast response time is required
(e.g. in some manufacturing settings where quick response to
certain machine conditions is essential to initiate changes or
shut down the operation to avoid larger losses). To overcome
this limitation, edge and fog computing have recently appeared
as new paradigms, where computing capacity is placed closer
to IoT devices and data sources.

This multi-layered setup, which includes IoT devices, po-
tentially distributed edge and fog computing layers, and cloud
computing facilities spanning multiple cloud sites and providers,
offers new opportunities to process large amounts of data, but
raises the complexity to develop, deploy and manage such ap-
plications. Data processing applications in this cloud-to-edge
computing continuum are typically composed of a large num-
ber of interconnected microservices that need to be deployed,

executed and in some scenarios even migrated between various
layers and computing facilities.

In the last decade, several orchestration solutions have emerged
to support the automated deployment and run-time manage-
ment of microservices-based applications, first concentrating
on single and multi-clouds and more recently targeting the en-
tire cloud-to-edge continuum. These orchestrators typically re-
quire some form of deployment descriptor as input, detailing
the application topology and the various policies (e.g. scaling
or security) that govern the deployment and run-time opera-
tion of the application. The descriptors can be specific to the
cloud technology that is used (e.g. Amazon’s Cloud Forma-
tion Template [1]), specific to the actual orchestrator tool (e.g.
Helm Charts or manifests in case of Kubernetes [2]), or more
generic (e.g. TOSCA – Topology and Orchestration Specifica-
tion for Cloud Applications - an OASIS standard [3]). While
such deployment descriptors provide a relatively high-level ab-
straction for specialised developers, some scenarios require an
even higher-level and more modular approach.

One example of such a scenario is provided by the European
DIGITbrain project [4]. DIGITbrain develops a marketplace
(called the Digital Agora) and an associated execution platform
for manufacturing SMEs (small and medium-sized enterprises)
where digital twin applications can be built and executed in the
cloud-to-edge computing continuum. The digital twins, repre-
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senting the behaviour of manufacturing machines/lines (or In-
dustrial Products, as referred to in the project) are composed
of lower-level building blocks (or Assets), such as Data (D),
Model (M), and Algorithm (A). Each digital twin is composed
of these Assets, building a so-called DMA Tuple. Addition-
ally, each Algorithm can include multiple Microservices (Ms)
that are independently built and can be executed on any suit-
able and appropriate compute device in the cloud-to-edge con-
tinuum. (In this article, following the DIGITbrain convention,
names of DIGITbrain Assets (D, M, A, Ms) will always start
with capital letters).

Two key features of the DIGITbrain concept are modularity
and reusability. For such reasons, all Assets can be built (more
or less) independently from one another, potentially by differ-
ent providers, and then composed to a DMA Tuple representing
the digital twin. At the end of this composition the DMA Tuple
is described with a complex deployment descriptor that refers
to multiple Microservices, their input and output data (typically
including raw data coming from the factory floor) and a Model
file (e.g. simulation model or trained AI model) describing the
behaviour of the manufacturing machine/line. Microservices
need to be deployed on a heterogeneous and distributed set of
computing resources along the cloud to edge continuum, as de-
fined in the final deployment descriptor.

The specific problem in the type of scenario described above
is the authoring and composition of the deployment descriptor.
Since Assets in DIGITbrain are authored independently and put
together only in the final phase by the person composing the
DMA Tuple, the creation of the final deployment descriptor
needs to be automatic, based on information provided by the
various Asset providers. Moreover, Assets are usually provided
by experts of different profiles. While Microservices may be
built by developers with more understanding of container tech-
nologies or even clouds or edge/fog computing, Models are typ-
ically created by simulation or AI experts and Data is managed
by IT professionals close to the actual factory. Many of these
actors may struggle with creating the deployment descriptor di-
rectly, especially when considering future dependencies with
other - at that stage unknown - components of the DMA Tuple.

To overcome this problem, DIGITbrain adopts an approach
where Assets are described by a rich set of descriptive metadata
provided by the Asset developers as key/value pairs, followed
by the automated creation of the deployment descriptor during
the DMA composition phase. Asset developers need to provide
key/value pairs that describe their Assets both for the human
DMA Composer and also for the automated mechanism that
will generate the deployment descriptor. Please note, that as-
suring the compatibility of the various Assets when composing
a DMA Tuple is a complex task which requires the semantic
understanding of these Assets. Currently, DIGITbrain leaves it
to the human composer to understand and assess this compat-
ibility, based on the provided metadata. Therefore, the auto-
mated deployment descriptor generation is not considering this
semantic compatibility but only concentrates on the technical
creation and usability of the generated outcome.

The rest of this paper describes how deployment descrip-
tors are generated and composed automatically from key/value

metadata provided by Asset providers in DIGITbrain. The meta-
data is translated and composed into a TOSCA-based Appli-
cation Description Template (ADT) [5] that is consumed by a
cloud-to-edge application-level orchestrator called MiCADO [6].
The resulting deployment descriptor (ADT) is published in the
DIGITbrain Digital Agora and can be executed by the manu-
facturing company that wishes to simulate and analyse its man-
ufacturing processes. While this article discusses concrete tech-
nologies, such as a specifically defined metadata structure, TOSCA
and MiCADO, the solution itself is generic. The deployment
descriptor generator, called ADT Generator, uses a highly flex-
ible template-based structure that can be easily tailored or mod-
ified to other metadata formats or desired outputs.

This paper introduces a novel concept and solution for au-
tomatically composing and generating deployment descriptors
for the cloud-to-edge continuum from a rich set of metadata.
According to our knowledge, this is the first attempt to auto-
mate deployment descriptor generation while allowing for the
collaboration of multiple actors, with potentially different tech-
nical backgrounds. The main contributions of our work are as
follows.

• Demonstrate a generic and flexible approach to generat-
ing valid deployment descriptors from key-value pairs.

• Enable the composition of deployment descriptors for dif-
ferent tools with a focus on interoperability.

• Support the collaborative development of microservices
applications, where different actors can publish different
components of an application at different times.

The rest of this paper is structured as follows. Section 2
presents related work. Section 3 introduces background and
related technologies by providing a short introduction to the
DIGITbrain project, its metadata structure and the MiCADO
cloud-to-edge orchestrator. Section 4 describes the ADT Gen-
erator and explains how the deployment descriptor is composed
and created from the provided metadata. Section 5 presents an
application example where an ADT is composed, generated and
executed on cloud and edge computing resources. Finally, Sec-
tion 6 concludes the paper and outlines future research direc-
tions.

2. Related Work

Several solutions are available that enable the automatic
generation of deployment descriptors, however, none support
the collaborative nature of the kind of use case described in
Section 1. This section discusses the various existing solutions
in this space. The solutions are grouped depending on the com-
ponent or abstraction level which the automatic generation is
initiated from.

From GUI. One approach to producing deployment descrip-
tors is with easy-to-use graphical interfaces that automate as-
pects of descriptor generation. For example, Eclipse Winery [7]
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is a web-based environment for graphically modelling appli-
cations and subsequently generating TOSCA topologies and
plans managing them. Similarly, TOSCA Studio [8] is a model-
driven tool that allows modellers to graphically design cloud
applications to produce TOSCA models that conform to OCCI
standards. TOSCA Studio also provides a built-in orchestration
for deploying and managing applications at runtime.

From architectural models. Several research works facilitate
the automatic generation of deployment descriptors from differ-
ent architectural models. For example, Yussupov et al. [9] pro-
posed generating deployment descriptors from BPMN (Busi-
ness Process Model and Notation) [10] and TOSCA to model
orchestration of functions and their automatic deployment. This
solution, however, requires modellers to produce two differ-
ent models. Firstly, to produce a generic BPMN-based model
representing the function orchestrations, which could be trans-
formed into a provider-specific deployment descriptor model
(e.g., ASL model for AWS). Secondly, to produce a TOSCA
model to define a technology-agnostic function orchestration
deployment model, which can be executed (i.e., deployed and
orchestrated) by any TOSCA-compliant orchestrator. In the
same realm, the authors in [11] proposed Caml2Tosca — a
tool for automated generation of the TOSCA deployment model
from UML — to reduce the gap and combine the notion of ar-
chitecture modelling and application provisioning.

From TOSCA. The authors in [12, 13, 14] proposed solutions
for the automatic generation of executable management work-
flows from declarative deployment models such as TOSCA.
These solutions automatically transform TOSCA models into
multiple executable BPMN-based plans that are provided as in-
put to the orchestration engine responsible for the provisioning
and holistic management of applications in heterogeneous envi-
ronments. TORCH [15] is the underlying orchestration solution
that converts TOSCA models into the BPMN plans.

Different to the aforementioned proposals, some solutions
convert TOSCA to different resource-level orchestrator-specific
templates. For example, Puccini [16] is an open-source front-
end that translates TOSCA-based deployment models to a mid-
dle language called Clout and then Clout to an orchestrator-
specific language (e.g., Kubernetes manifests), before being piped
into the specific orchestration engine (e.g., Kubernetes CLI).
The authors in [17] aim to separate application components
from their hosting containers. For this purpose, their solution
automatically generates deployable artefacts directly from TOSCA-
based specifications. The artefact in this case could be a Docker
compose file that packages both the application components
and their solution-specific elements responsible for the component-
level management. The artefact is then directly deployable us-
ing a Docker-based orchestration engine such as Swarm or Ku-
bernetes. Similarly, the authors in [18] proposed TOSCA Light
aiming to bridge the gap between the standard TOSCA model
and production-ready deployment technologies such as Terraform
and Kubernetes. More specifically, TOSCA Light transforms
the TOSCA model to a corresponding representation that is
compliant with the EDMM (Essential Deployment Metamodel)

[19] — a set of core deployment modelling entities that are
understandable by the vast majority of deployment automation
technologies.

From application components. The AUTOGENIC [20] initia-
tive aims to decouple the development of microservices from
the underlying environment-specific runtime configurations. For
this purpose, the AUTOGENIC solution automatically trans-
forms the specific settings of microservices — provided by de-
velopers through a configuration model — to TOSCA-based
dynamic and self-configurable microservices, targeting specific
runtime environments.

Similarly, the SWITCH workbench [21], developed within
the scope of a European research project with the same name
SWITCH, provides an abstraction interface and infrastructure
environment that facilitate the specification and management
of the life-cycle of time-critical cloud applications. The vari-
ous related aspects of application life-cycle management, such
as user requirement specifications, application logic, and time-
critical constraints during an application’s deployment, execu-
tion and runtime, are handled independently by the different
subsystems of the SWITCH workbench. To achieve the re-
quired integration between the subsystems, SWITCH uses TOSCA
as the underlying modelling language to represent the informa-
tion concepts provided by the parts of the system. The final
output acts as the deployment descriptor used by one of the
subsystems responsible for infrastructure planning, provision-
ing, deployment and execution of applications.

Summary. To summarise, the discussed approaches are diverse
in their specificities. However, there is a common theme, i.e.
the scope is limited to the standalone nature of a single ap-
plication, where a deployment descriptor is transformed from
one modelling template to another for a specific objective. In
all cases, the components involved belong to one application,
owned or managed by a single actor. In contrast, in this pa-
per, we follow an approach for marketplace-oriented collabora-
tive environments, where the application and the corresponding
deployment descriptors are composed by combining multiple
independent components created at different times and belong-
ing to different owners. Such an environment raises specific
challenges as the description and specification of the indepen-
dent elements and components need to have the flexibility to
support composition and substitution into different deployment
descriptors at later stages of the process.

There is a scarcity of research into the collaborative author-
ing of application deployment descriptors. As such, it is not
possible to directly compare the solution presented here to oth-
ers; the contribution of this paper is in fact the enablement of
that collaborative authorship. Several earlier projects are de-
scribed in the following section and the work herein extends and
improves the approaches developed there. We have been able to
validate the effectiveness of this solution through its successful
application in the twenty-five real life use cases that feature in
the DIGITbrain project.
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3. Background Technologies

3.1. DIGITbrain and previous projects

The servitization of specialised software applications has
been a key driving factor in the software industry over the last
two and half decades. This effort was especially boosted by the
introduction of the service models: Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Ser-
vice (SaaS). One of the pioneering SaaS solutions was Sales-
force’s Customer Relationship Management (CRM) in 1999,
followed by Amazon Web Services introduction of IaaS in 2002
and Fotango’s launch of Zimki (first public PaaS) in 2005.

The European Commission also recognised this opportunity
and started to push this topic in the research funding, especially
in the manufacturing industry with the initiative “ICT Innova-
tion for Manufacturing SMEs” (I4MS). The first I4MS projects
(e.g. the CloudSME [22] and CloudFlow [23] projects) were fo-
cused on the cloudification of engineering applications like 3D
modelling or 3D simulation for specific use cases [24]. A next
batch of I4MS projects (e.g. the CloudiFacturing [25] project)
moved from the engineering to the production domain, aim-
ing to support the cloudification of software application and the
connection to factory processes and data. At this point in time,
it was recognised that the resulting cloudified solutions were too
specific to the concrete use case and that reusability was limited
and time consuming. Hence, the DIGITbrain project proposed
a novel approached by breaking down such cloudified solutions
into building blocks or modules that can be recombined or re-
composed according to the specific needs of the individual use
case, maximizing the reusability and increasing the flexibility
to support different scenarios.

DIGITbrain (”Digital twins bringing agility and innovation
to manufacturing SMEs by empowering a network of DIHs
with an integrated digital platform that enables Manufactur-
ing as a Service”) is a research project funded by the Euro-
pean Commission’s H2020 Programme. The primary aim of
the project is to extend the traditional digital twin concept to-
wards the Digital Product Brain that steers the behaviour and
performance of an Industrial Product (mechatronic system or
manufacturing machine) by coalescing its physical and digital
dimensions and by memorising the occurred (physical and dig-
ital) events throughout its entire lifecycle.

DIGITbrain provides two major advances beyond the state
of the art of digital twins. First, it enables constructing a digital
twin from its building blocks, such as Data, Model and Algo-
rithm, offering potential reusability of these Assets. Second, it
supports the further analysis of events that occur during the exe-
cution of a digital twin by collecting, memorising and analysing
these events and the specific conditions in which they occur
(e.g. under what conditions in the past did a certain temperature
exceed 100 degrees). The project aims to support digital twin
developers and end-user manufacturing companies to speed up
the development process by reusing already existing building
blocks, to construct and execute digital twin applications from
the convenience of a high-level graphical user interface, and
to enhance, inform and accelerate the decision-making process
with intelligence based on historical information collected over

the lifecycle of the Industrial Product. As a result, a better un-
derstanding of Industrial Products (manufacturing lines) can be
gained, leading to faster and more flexible reconfiguration and
adaptation of manufacturing facilities, and supporting the pro-
visioning of Manufacturing as a Service where the best manu-
facturing facility can be found and tailored to the specific re-
quirements of an industrial customer on-demand.

3.2. DIGITbrain Metadata Structure

The novel deployment descriptor generation process that is
described in this paper is primarily related to the composition
of digital twins from already published Assets. This composi-
tion is made possible and supported by a rich set of metadata
published and stored within the DIGITbrain Solution. There-
fore, in this section a short overview of the DIGITbrain meta-
data structure is provided. This metadata is partially used by
the ADT Generator during the automated process of generating
the deployment descriptor, and it is also utilised by the human
composer who creates the DMA Tuple and assures semantic
compatibility of the utilised Assets.

Figure 1: High-level structure of DIGITbrain Metadata

The DIGITbrain metadata specification (Figure 1 provides
a high-level overview of the metadata structure while more de-
tails can be found in [26]) describes ten different entities. Six of
these are Assets that are published and offered (potentially on
a commercial basis) by providers and applied in DMA Tuples
created and utilised by the targeted manufacturing end users.
The common characteristics of Assets is that these are all cre-
ated potentially independently from one another, keeping reusabil-
ity and commercialisation in mind. Assets are published in
a repository and can be found, selected and utilised by digi-
tal twin developers to create executable DMA Tuples. The six
DIGITbrain Assets are the following [27]:

Microservice (Ms): A DIGITbrain Microservice is an ex-
ecutable in a containerised form, provided as an Open Con-
tainer Initiative (OCI)-compliant container in a private or pub-
lic container registry. Its configuration can be specified by a
Docker-Compose file or a Kubernetes manifest (the appropriate
configuration needs to be included in the metadata of the Ms).
Microservices could have specific computational requirements
(e.g. requires a GPU or must run on an edge node) and can also
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have dependencies (e.g. requires some other Microservice to be
collocated on the same virtual machine).

Algorithm (A): An Algorithm is a combination of one or
more Microservices. At least one of the Microservices of an
Algorithm evaluates the Model, while the others can do addi-
tional tasks, for example map data from data sources into the
Model, provide a proxy server or a database server, implement
file transfer etc. The metadata of an Algorithm refers to all the
Microservices it is composed of.

Model (M): A Model is a description of a certain behaviour
of an Industrial Product, according to given characteristics and
operation conditions. Models are consumed as input files and
evaluated by Algorithms. The creation of a Model typically
requires domain specific knowledge related to the applied mod-
elling technique- (e.g. AI, reduced order modelling, co-simulation
etc. [28]) and the Industrial Product. The creation of a Model
could be done either by editing a description file (e.g. YAML or
XML) or processing/analysing data or simulation results to gen-
erate, derive or deduce a behaviour description (e.g. trained AI
model or reduced-ordered model). Models are intended to be
developed independently from the Algorithms, so that a given
Model can be potentially reused by different compatible Algo-
rithms.

Data (D): Data, typically sensor data collected from the
shop floor, are essential to digital twins. Such Data are pro-
cessed by the Algorithms, based on the specific behaviours de-
scribed by the Models. After processing, the output of the dig-
ital twin also needs to be reported back to the user or stored in
an appropriate format and location. Therefore, the digital twin
needs to know the location, format and specific protocol how
data can be accessed. When referring to Data as an Asset in
DIGITbrain, this refers to the actual data resource where input
and output data are stored and/or streamed from/to. Such Data
Assets are usually local to the manufacturing companies and lo-
cated within the factory. Data can also be stored in appropriate
private or public cloud resources.

MA Pair: An MA Pair is a combination of a Model and an
Algorithm that describes a specific behaviour of a specific type
of Industrial Product. Such specific types of Industrial Products
are called Industrial Product Families (IP Families). An MA
Pair describes the potential behaviour of every instance of the
same IP Family. However, it does not refer to Data Assets yet
and therefore it is not specific to any instance of that particular
IP Family. As MA Pairs are relevant to many instances of the
same IP Family, these can also be considered as reusable Assets
(i.e. companies operating the same type of IP can reuse the
same MA Pair and combine it with their own specific Data to
create their DMA Tuple).

IP Family: It describes the characteristics of a specific type
of Industrial Product (a type of manufacturing machine).

Besides Assets, the DIGITbrain metadata structure also iden-
tifies four additional entities that are required to describe digital
twins in the form of executable DMA Tuples. IP Instance char-
acterises an instance of an Industrial Product (a particular ma-
chine/manufacturing line). Person and Legal Entity (see Fig-
ure 1) refer to the individual and the organisation associated
with the registered entity (any of the six Assets, DMA Tuple,

and IP Instance), respectively. The final metadata entity is the
composed and executable DMA Tuple.

The above metadata structure was essential when design-
ing and implementing the ADT generator. The ADT Generator
specifically utilises the technical metadata provided with the
DIGITbrain Assets, and also the metadata, especially the de-
ployment information, from the DMA Tuple (shaded boxes in
Figure 1 show metadata that is utilised by the ADT Generator,
while metadata from the white boxes are for the human com-
poser only). Therefore, it needed to be assured that all informa-
tion required for the automated generation of the deployment
descriptor is available. On the other hand, due to the template-
based implementation of the ADT Generator, only the template
needs to be modified to tailor the ADT Generator to changes in
the metadata structure or to accommodate completely different
metadata. The core of the implementation remains the same.

Figure 2: Relationship of Assets with the DMA Tuple.

Table 1 summarises and provides details of the most signifi-
cant metadata fields and parameters that are utilised by the ADT
Generator. As visualised in Figure 2, the DMA Tuple is refer-
ring to the Model, the Algorithm and all Data Assets it is com-
posed of. In this figure, Assets that are composed of other As-
sets are shown in rounded rectangles, where atomic Assets are
shown in rectangles. Note how the DMA Tuple metadata also
contains information related to the Host(s) of the executable
digital twin it represents, for example the type and character-
istics of cloud and edge computing devices its Microservices
need to be deployed on. In the current DIGITbrain concept, ev-
ery DMA Tuple includes maximum one Model and Algorithm,
but it can include multiple Data Assets, clearly mapping these
Data between the Microservices of the Algorithm.

3.3. MiCADO Cloud to Edge Orchestrator

The DIGITbrain Digital Agora supports a pluggable exe-
cution engine for the deployment of DMA Tuples. Because
DIGITbrain is concerned with executing application contain-
ers on cloud resources, an execution engine that supports both
container orchestration and cloud resource provisioning was re-
quired. This higher-level orchestrator also had to support de-
ployment of containers to edge, as this was another requirement
within DIGITbrain.
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Field/Parameter Explanation Structure/Example
DMA /‘deployment” Describes a virtual machine

or an edge device where
microservices must be
deployed

"A_HOST": {

"type": "cloudbroker",

"cloudbroker": {

"deployment_id": ...,

"instance_type_id": ...,

"opened_port": "22, 8080",

}

DMA
/‘DataAssetsMapping”

Associates microservices
with their used Data Assets

"DataAssetsMapping": {

"MSID_FE": { "inputfile": "dataasset1" }

"MSID_BE": {

"input": "dataasset2",

"config": "dataasset3"

}

DATA /‘URI” Stores the location of any
data object

"http://host.com:8088/mydir/mydata"

MODEL /‘URI” Stores the location of any
model object

"http://host.com:8088/mydir/mymodel"

ALGORITHM
/‘listOfMicroservices”

Contains the list of ids for
microservices to be
deployed

["MSID_FE","MSID_BE"]

ALGORITHM
/‘deploymentMapping”

Associates microservices to
hosts to run on

{ "MSID_FE":"A_HOST", "MSID_BE":"A_HOST" }

MICROSERVICE
/‘deploymentFormat”

Selects the format of
specifying container
deployment details

"docker-compose" OR "kubernetes-manifest"

MICROSERVICE
/‘deploymentData”

Definition of compose or
manifest

{

"services": {

"gui": {

"image": "nginx:latest",

"ports": ["8080:8080"],

"restart": "always"

}

}

Table 1: Most significant metadata fields/ parameters utilised by the ADT Generator
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For the current implementation of the DIGITbrain Solu-
tion, MiCADO [29] was chosen as the primary execution en-
gine. MiCADO was originally developed in the European Hori-
zon 2020 COLA (Cloud Orchestration at the Level of Appli-
cation) Project. Built on the open-source Kubernetes orches-
tration platform, MiCADO started life as an application-level
cloud orchestrator, but over time it has been extended with sup-
port for edge [6], enabling orchestration across the cloud to
edge continuum. This section will briefly describe MiCADO,
insofar as is required for the reader to appreciate its role in this
work.

The MiCADO platform is a high-level orchestrator that of-
fers a simplified interface to a prepared Kubernetes cluster and a
cloud resource provisioning tool. MiCADO also adds a myriad
of its own features, from cloud-agnostic auto-scaling to addi-
tional layers of security. The Kubernetes cluster in MiCADO is
configured with sensible defaults and add-ons that are ready to
use, like the Kubernetes Dashboard and a Prometheus-Grafana
monitoring stack.

Two different cloud resource provisioning tools are avail-
able in MiCADO - Hashicorp’s Terraform, and a smaller tool
called Occopus [30]. These provisioning tools enable MiCADO
to dynamically provision cloud infrastructure to host deployed
applications. An internal component called the Policy Keeper
enforces user-defined scaling rules to dynamically scale both
containers and cloud resources at runtime. To bring orchestra-
tion to the edge, MiCADO relies on KubeEdge and K3S, two
open-source CNCF incubator projects that extend the Kuber-
netes cluster towards one or more edge devices.

The interface to MiCADO is the Application Description
Template (ADT) - a deployment descriptor that describes the
application containers, cloud and/or edge infrastructure, and
enforceable runtime decisions related to scalability, monitor-
ing, and security [5]. The ADT is based on v1.x of the OASIS
TOSCA (Topology and Orchestration Specification for Cloud
Applications) Specification. Because TOSCA and the ADT are
central themes in this paper, they are introduced in Section 4.1.1
below.

Figure 3: Architecture of the MiCADO Cloud to Edge Orchestrator

The architecture of MiCADO is visualised in Figure 3. An
internal component called the Submitter exposes a REST API
and is responsible for interpreting an ADT and communicat-

ing information to Kubernetes and the cloud orchestrators to
realise a successful deployment. The Submitter disseminates
information in the ADT to Kubernetes, the cloud provisioner,
the monitoring stack, the Policy Keeper and edge-related com-
ponents. The cloud provisioner deploys and manages cloud
worker instances, ensuring they are prepared with monitoring
components and a container runtime. Kubernetes deploys and
manages containers to these cloud workers. The Policy Keeper
enforces any scaling rules, calling Kubernetes or the cloud pro-
visioner as needed to scale a resource up or down. KubeEdge
connects any edge devices to the cluster, creating additional
workers where Kubernetes can deploy containers. Finally, the
monitoring stack visualises CPU, memory and network metrics
across the cluster, plus any application-specific metrics the user
may have configured.

3.4. Topology and Orchestration Specification for Cloud Appli-
cations

The Open Oasis TOSCA (Topology and Orchestration Spec-
ification for Cloud Applications) specification aims to provide
a generic language for describing applications in the cloud. It
is an ideal framework to support the automated composition of
deployment descriptors. TOSCA supports the description of all
elements of a cloud application, from containers to cloud re-
sources, meaning that different deployment descriptors could
be unified into a single interface. Our justifications for choos-
ing the TOSCA specification, including comparisons with other
alternatives, are detailed in a previously published paper [5].

A TOSCA deployment descriptor is called a service tem-
plate. The main component of this service template is the topol-
ogy template, where the application is described. The topology
consists of nodes, each one describing one element of an appli-
cation – be it a virtual machine instance, a storage volume, a
network interface, or some software. Nodes can express capa-
bilities and requirements to create a rich description of the inter-
relationships between all elements of the application. Nodes
also define properties and an interface that together instruct an
orchestrator what actions to take at different stages of the ap-
plication lifecycle. Policies that target one or more nodes can
further drive the runtime behaviour of the application once it
has been deployed.

TOSCA is strongly typed. Each concrete node in the topol-
ogy has a node type, and each policy has a policy type. These
types can define default relationships, properties, interfaces and
more, which are inherited by the node or policy that uses that
type. A rich hierarchy of types can be defined to help abstract
away complexity or provide re-usable structures for common
components of an application.

A collection of type definitions is called a profile. The Sim-
ple Profile in YAML v1.3 is the current accepted standard, pro-
viding a reference for creating other custom profiles. Service
templates will import one or more profiles, which are then used
in the description of the application. Profiles are often relied
upon by TOSCA orchestrators because they provide an easy
way for the orchestrator to interpret nodes and policies that are
described within a service template. MiCADO has a specific
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profile to support orchestration, which is introduced and elabo-
rated in Section 4.

4. Automated Composition and Generation of a Deployment
Descriptor

Deployment descriptors contain the specific details that are
required by an orchestrator or other tool involved in managing
aspects of an application’s lifecycle. They describe one or more
aspects of the application to help realise a deployment, prepare
some environment, dictate behaviour at runtime, or some other
important functionalities. When more than one orchestration
tool is required to realise the deployment of an application -
for example a container and cloud orchestrator - then multiple
deployment descriptors are needed too.

Authoring deployment descriptors is a complex task, re-
quiring not only intimate knowledge of the application to be
deployed, but also an understanding of each required orchestra-
tion tool, including the language, syntax and specification of its
descriptor. In a typical microservices architecture, the complex-
ity of this task increases with the number and requirements of
microservices (containers) and cloud or edge resources (com-
pute, storage, networking).

A microservices architecture may consist of many different
containers, but these will typically be described in a single de-
ployment descriptor, for example a Kubernetes manifest. Sim-
ilarly, a different single deployment descriptor might describe
all of the cloud resources that make up the cloud infrastructure
required by the application. These descriptors can have both
intra-dependencies (e.g. one container described to specifically
interact with another) and inter-dependencies (e.g. one cloud
resource intended to host a specific container). Because of these
complexities and constraints, composition of the set of deploy-
ment descriptors required for an application is commonly car-
ried out manually by the human person or team that owns that
application.

4.1. Collaborative Deployment Descriptors
Collaborative authoring of deployment descriptors, where

different actors are specifying different aspects of the applica-
tion at different times, is not compatible with this manual, hu-
man approach. In such cases, Microservices are single contain-
ers that are published individually and later assembled by a po-
tentially different actor to create an Algorithm. The Algorithm
is modular, in that it is composed of many potential reusable
Microservices. The configuration of a cloud resource, again by
a different actor, can take place long after a set of Microservices
has been composed into an Algorithm. Based on our reading
of the current state of the art, the collaborative authorship of
deployment descriptors at different times and by different in-
dividuals was a novel problem, and so it necessitated a novel
approach. A solution was needed that would automate the pro-
cess of creating one deployment descriptor that expressed the
overall structure of an application, but that was itself composed
of existing descriptions of application components that could
be orchestrated by different lower-level tools (Kubernetes and
Occopus).

This section describes the concepts and technologies adopted
to realise the automated composition and generation of deploy-
ment descriptors. The process that makes use of these concepts
and technologies begins when an actor publishes an asset by
providing the key-value metadata that describes it. The meta-
data for this single asset is stored, and this process is repeated
for any actor that wishes to publish an asset, at any time. The
next step of the process begins when a (potentially different)
actor wishes to combine already published assets to create their
digital twin. At this time, the actor selects the desired assets
and provides additional metadata to describe the specific inter-
actions in this combination of assets.

Here, the automated generation takes over. First, the meta-
data that describes the cloud or edge resources is used to popu-
late the fields of deployment descriptors that provisions a cloud
instance or connects to an edge device. The metadata that de-
scribes microservices is used to populate the fields of deploy-
ment descriptors that describe the configurations of containers,
referencing external sources for data or models according to
the metadata of the other assets that were selected. At this point
there are potentially multiple deployment descriptors saved as
individual files, each describing a component of the digital twin
that is to be deployed. The metadata that describes the specific
interactions in a given set of assets populates a final deploy-
ment descriptor that references all of the individual deployment
descriptors, with additional detail to describe any interactions
or interdependencies between microservices and cloud or edge
resources. All of these files are stored in a compressed archive
format, which can be interpreted by a cloud orchestrator to re-
alise the deployment of the digital twin.

The rest of this section provides details of the core con-
cepts and technologies applied for the automated composition
and generation of deployment descriptors.

4.1.1. Application Description Template
The Application Description Template (ADT) [5] is the Mi-

CADO specific name for a TOSCA service template. It adopts
a profile based on the TOSCA Simple Profile and uses and ex-
tends many of the types defined in the 1.x versions of the spec-
ification. The ADT profile defines types for MiCADO com-
ponents like Kubernetes, Terraform and Occopus, so that on
submission, the appropriate actions can be taken to deploy and
manage the different elements of the application. Nodes in the
ADT describe two broad aspects of the application: the cloud or
edge resources that make-up the compute and storage required
by the application, and the application itself, in one or more
OCI-compliant containers.

Historically, the ADT had always been authored as a single
file, in YAML as per the TOSCA Simple Profile. All the nec-
essary application components, such as cloud instances, edge
nodes, and containers were defined as nodes in the one file,
along with any relationships between nodes. At deployment
time, that single file alone was fed to the Submitter compo-
nent within MiCADO. Where the application description was
a collaborative effort though, the definition of the application
components and relationships were provided at different times
- so potentially well before the single file would be created.
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These definitions were also provided by different actors, who
would have no concept of what other components they should
be defining relationships with. Collating all of this information
together on-the-fly just before deployment would be a difficult
and messy operation, and would not reflect well the modularity
and reusability the solution was striving for.

Fortunately, TOSCA offered two key features that would
permit DIGITbrain to adopt an elegant solution of sound de-
sign. These are described below. Please note, that while these
features are widely applied in TOSCA, they were used in a dif-
ferent way and for different purposes than originally intended.

4.1.2. Cloud Service Archives and Substitution Mappings
For larger applications in TOSCA a single YAML file quickly

becomes bloated, disorganised, and difficult to manage. In-
stead, such applications can be described across multiple YAML
files, where one file acts as the point of entry and refers to other
files by importing them. These files are then all combined into
one TOSCA Cloud Service Archive (CSAR) [31]. The CSAR
is a zip-like archive providing a single, modular interface that
can be shared, stored, and submitted to a TOSCA orchestra-
tor. While the applications in our use case were not necessarily
large, this feature was key to our approach, because it meant
that individual components could be described in their own in-
dividual files.

Describing applications in a CSAR is made possible by an-
other feature of TOSCA called substitution mappings. Such
mappings were originally intended to allow for the substitu-
tion of an abstract node with a concrete node. For example,
some TOSCA might describe an application where a web server
runs on a cloud instance with some minimum hardware. Since
the exact specification of the cloud instance is not important, it
can be defined as an abstract node, with the requirement that it
meets the minimum hardware and serves the web server. When
the time comes, a file with a concrete node describing a suit-
able cloud instance can be added to the CSAR. Substitution
mappings will read the requirements on the abstract node and
then orchestrate the concrete node to realise a successful de-
ployment.

While not the original intention of the CSAR and substi-
tution mappings, these features together suited the unique re-
quirements of collaborative publishing very well. Published
microservices, cloud instances and edge nodes would all be de-
fined as concrete nodes, each within their own individual ADT.
Any relationships that were needed for the overall application
could be defined on the abstract nodes, and when substituted,
they would apply to the concrete nodes instead. Since each
ADT was a complete TOSCA-compliant file, they could each
be independently validated and reused as needed.

For DIGITbrain, this meant that when the Algorithm provider
had selected the Microservices that made up their Algorithm,
and had specified any relationships between them, the ADT de-
scribing the overall application could be generated and added
to the CSAR. This ADT contains abstract nodes that make ref-
erence to concrete ones, and any necessary relationships are de-
fined between the abstract nodes. Microservices would already
have their concrete descriptions in individual ADT files, and

Figure 4: Components of the DMA Tuple, with reference to their contribution
to the CSAR

these could be added to the CSAR to support substitution map-
pings at deployment time. When a concrete Host is defined at
the time the DMA Tuple is published, this too will be a concrete
node in an ADT file, and this too can be added to the CSAR.
This is visualised in Figure 4, where the role of each Asset with
respect to TOSCA is shown. At some time prior to the DMA
Tuple compilation, Microservices will have been defined each
as its own concrete TOSCA node, and the Algorithm will have
been defined with abstract nodes as placeholders for the Mi-
croservice(s) and Host(s).

All of these elements of TOSCA have been adopted in DIG-
ITbrain, resulting in a solution that uses the CSAR to provide a
unified interface, substitution mappings to support collaborative
publishing of Assets and a MiCADO-specific profile to ensure
the final descriptions are properly orchestrated by Kubernetes
and Occopus.

4.2. ADT Generator Architecture
The automated composition and generation of the deploy-

ment descriptors in DIGITbrain is one of the key challenges
described in the paper. Based on the principles and concept of
descriptor generation, a tool called the ADT Generator [32] has
also been implemented to realise the functionality as part of the
infrastructure.

The main purpose of the ADT Generator is to produce Mi-
CADO compliant ADT descriptors based on the DIGITbrain
Assets provided as input for a given application. The ADT
Generator has been designed as a RESTful service, where the
service receives the metadata for the Assets and produces and
returns an ADT that can be submitted to MiCADO. As reflected
in the architecture Figure 5, the ADT Generator service inte-
grates multiple components that will be described in the fol-
lowing paragraphs.

Compile module is the main component of the ADT Gener-
ator responsible to coordinate the steps of the ADT generation
and compilation. It implements a workflow by invoking the
necessary tools and libraries in the appropriate order.

Jinja templates as input for the jinja2 tool as a Python pack-
age is used to render the ADT, based on the key-value pairs
of the metadata to fill placeholder values in a skeleton tem-
plate specific to each Asset. By relying on Jinja, many changes
or updates to the final output of the ADT Generator can be
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Figure 5: Architecture of the ADT Generator

achieved simply by modifying the template, reducing the ne-
cessity for frequent changes to the codebase. Moreover, Jinja
enables the flexible replacement of the generated deployment
descriptor different from TOSCA in case another standard must
be supported by the ADT Generator in the future.

DocKubeADT [33] is a Python package developed by the
University of Westminster, which converts a Docker-Compose
or Kubernetes manifest file to a valid MiCADO ADT. Origi-
nally, it was a standalone command line tool where the main
goal was to ease the conversion of compose and manifest files
to MiCADO ADT. DocKubeADT as a library is invoked dur-
ing rendering of the Jinja template to produce a valid container
configuration for a Microservice Asset. The output of DocK-
ubeADT is then rendered into the generated ADT.

Puccini [16] is a TOSCA processor that makes available a
tool for packaging individual TOSCA templates into a com-
pressed TOSCA Cloud Service Archive (CSAR). The input to
this tool is the set of individual Assets, and the output is a
CSAR, or multi-file ADT, describing the overall architecture
of the application to be deployed by MiCADO which contains
the combination of microservices, algorithm, data, model, and
deployment.

MiCADO Parser [34] is a library and command-line inter-
face used inside the MiCADO platform for parsing and vali-
dating ADTs. To validate the generated output of the Com-
pile module, the micado-parser library is invoked as a final
step. This component wraps the functionality of the OpenStack
TOSCA Parser [35], extending it with functionalities and addi-
tional validation specific to the latest TOSCA versions used by
MiCADO. The OpenStack TOSCA Parser supports v1.2 of the
TOSCA Simple Profile in YAML to create an in-memory graph
of TOSCA nodes and their relationship.

REST API is the interface exposed by the ADT Generator.
Because of the independent nature of Assets, the API does not
return a traditional, single-file ADT for MiCADO. Instead, each

Asset is compiled down to a respective descriptor file that lever-
ages TOSCA’s Substitution Mappings to bring together these
separate pieces at deployment time. The API contains routes for
compiling metadata of the Microservice and Algorithm Assets
as well as the Deployment description, pulling values from Data
and Model metadata to complete these as required. Also, there
is a route for compiling all the incoming Assets and descrip-
tions into one comprehensive CSAR file describing the entire
application. The response contains the outcome of the compi-
lation, a filename for download, and a link to a detailed log of
the compilation processes and steps.

4.3. DockKubeADT Internal Operation

DocKubeADT is one of the most complex tools integrated
by ADT Generator and is considered as the heart of the ADT
generation. To understand the operation of ADT Generator, a
deeper insight of the DocKubeADT tool is necessary since con-
tainers, environment variables, arguments, ports, volumes, poli-
cies are all converted by this tool in several steps.

Figure 6: Internal operation of DocKubeADT

DocKubeADT is invoked by the ADT generator to trans-
late the container topology defined in the Microservice meta-
data (based on either a Docker Compose template or Kuber-
netes (K8s) manifest), to the format expected by the MiCADO
ADT. It can be used both as a standalone tool or a library. To
use it as a tool, we simply need to execute DocKubeADT while
passing the Compose or manifest file as an argument. It will
then provide the ADT file as an output. To use it as a library,
DocKubeADT provides an API, which requires the compose or
manifest as an input. Subsequently, it generates the relevant
portions of the ADT. Since DocKubeADT is used by the ADT
Generator as a library, we provide an overview of it, in Figure 6,
from this perspective.

In DocKubeADT the main strategy is to focus on convert-
ing Kubernetes manifest description into an ADT. As we use
manifest format as input for producing the ADT, different for-
mats can only be supported (e.g. docker compose) if interme-
diate conversion is also performed. As such, the conversion of
Docker Compose into Kubernetes manifest is handled by an ex-
ternal tool called Kompose. So, overall the Docker Compose is
converted in two steps, while manifest is directly converted as
one single step. As seen in Figure 6, DocKubeADT has three
main components to implement this strategy: Translator API,
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Docker Compose Translator and Kubernetes Manifest Transla-
tor.

Translator API is invoked during rendering of the Jinja tem-
plate to produce a valid container configuration for a Microser-
vice Asset. The API requires the container topology of the Mi-
croservice as an input. The topology can be defined as a Ku-
bernetes manifest or Docker Compose template. When using
a Kubernetes manifest format, both the single and multi-part
YAML files are accepted. Once the input is received, depend-
ing on its format, the topology is forwarded to either the Docker
Compose or K8s manifest translator component.

Docker Compose Translator converts a Compose template
to a Kubernetes Manifest. This is achieved using the open-
source Kompose tool [36]. However, before invoking Kom-
pose, the Docker Compose data is validated. The validation
process involves checking whether multiple services are defined
in the data. If multiple services are defined, the data is not pro-
cessed. That is, per invocation, only a single service defini-
tion is allowed in the template. This aligns with the process of
defining each Microservice Asset separately in the DIGITbrain
project.

After initial validation, some important information about
the volumes Compose file is captured. The Kompose tool does
not handle the concept of mount propagation, which is impor-
tant if two different containers on the same host need to share a
volume on the host. The relevant information is collected from
each defined volume in the Compose file, so alterations can be
made by the K8s Manifest Translator in the next step.

Once this validation is performed and information is gath-
ered, the template is converted to a Kubernetes manifest and
passed to the K8s manifest translator.

K8s Manifest Translator can be invoked by either the Trans-
lator API or the Docker Compose Translator. It expects K8s
manifest and converts them to the relevant portions of an ADT.
This translation process involves nesting each Kubernetes man-
ifest within its own node, using a custom TOSCA Node Type
that MiCADO identifies as a raw Kubernetes manifest during
deployment and execution.

After nodes are created, additional optional information might
be added. DIGITbrain Microservice providers have the option
to add static files, much in the same way they would by mount-
ing a local directory in the Docker Compose. If required by
the provider, files are created at this time as Kubernetes Con-
figMaps, which are simply static files mounted into a container
at runtime. Any required volume alterations that were identified
during the Docker-Compose Translator step are also applied at
this time. When done, the output of this step is then rendered
into the ADT by the ADT Generator, which invoked DocK-
ubeADT.

4.4. ADT Generator Internal Operation

The ADT Generator performs a sequence of steps in order
to convert/compile a complete DMA Tuple consisting of De-
ployments, Data/Model Assets, Algorithm and Microservices
into a MiCADO ADT. The steps to perform are implemented
by several tools mentioned in Figure 5 and can be grouped into

6 main phases as summarised in Figure 7. In the following, the
phases and their internal steps are introduced in detail.

Phase 1 (preparation). During the preparation phase, the
ADT Generator splits the incoming DMA Tuple into pieces of
different Assets and logical components for further processing.
For debugging purposes, the tool saves these components into
files locally. The next step is to validate the Assets and com-
ponents syntactically and semantically. The existence of the
required parameters as well as the format of the parameters are
checked to make sure no incorrect DMA Tuple has arrived.

Phase 2 (generate deployments). The entire compilation
starts with the compilation of the deployment description(s) as
it is independent from any other Assets in the DMA Tuple in
terms of conversion. Deployment description is located as the
value of “deploymentData” of the DMA Tuple. This parame-
ter should contain a valid definition of either a virtual machine
or an edge device that will host/execute Microservices as part
of the DMA Tuple. In this phase, after the compilation of de-
ployment description into MiCADO compute node, the result
is saved into a deployment file.

Figure 7: Workflow of compilation in ADT Generator

Phase 3 (generate algorithm). The Algorithm compila-
tion produces a node template for MiCADO ADT where the
Microservices and Deployments are listed. For Microservices,
the associated resource which will host the container is also de-
fined by referring to a deployment node (generated in phase 2)
through the ”host” parameter. The result is saved into the cor-
responding algorithm file.

Phase 4 (generate microservices). This is the most com-
plicated compilation phase. It iterates over the Microservice
definitions and generates a complete Microservice node defini-
tion substituted with its referenced Data and Model Assets, with
open parameter definitions and with container definition with
all the parameters such as name, command, arguments, envi-
ronment variables and so on. During the iteration the following
main steps are performed: First the referred Data Assets are
collected and their referred values are substituted in the meta-
data description, then the same is done for the Model Assets. At
this point all references to Model and Data Asset values in the
metadata description must be resolved. The compilation termi-
nates with error here when an unresolved reference (to Model
or Data Assets) is found, otherwise continues with compilation
of the Microservice Asset. The result is then saved into a file to
be linked by the Algorithm Asset in Phase 3.
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Phase 5 (packing). At this point all deployments (describ-
ing cloud or edge resources), all Microservices (describing the
containers) and the Algorithm (describing the mapping between
the resources and containers) are generated and stored in TOSCA
files. To pack them into a CSAR, first the definition of the Mi-
CADO ADT TOSCA types (referred to by the aforementioned
files) must be resolved. Due to MiCADO ADT parsing speed
considerations, this resolution is done by copying all MiCADO
type definitions into the CSAR archive. After the copy, the
CSAR zip file is created by a tool called puccini-csar and the
result is finally validated by micado-parser. Upon successful
CSAR creation and validation, the ready-to-run MiCADO ADT
is available in the working directory associated with the DMA
Tuple being processed.

Phase 6 (storing). Storing the generated CSAR can be con-
figured/requested from the ADT Generator. Currently, it sup-
ports uploading to S3 buckets predefined in the configuration
of the ADT Generator. Both, the CSAR and the log file (gener-
ated during the phases of compilation to keep track of the entire
workflow) are uploaded to the target bucket with appropriate
naming convention and the endpoints are returned as part of the
response to the REST API invocation.

4.5. ADT Generator Deployment

The initial setup and deployment of the tools described above
are integrated into the deployment process of the ADT Gener-
ator. The source code and installation package are available at
[32] which is a snapshot of the ADT Generator GitHub reposi-
tory. The deployment includes micado-parser and dockubeadt
as Python libraries listed as dependencies, while the kompose

binary and the MiCADO ADT TOSCA types are fetched by
the deployment script during the initialisation of the ADT Gen-
erator environment. Finally, the puccini-csar tool (a single
script) is added as part of the source repository. Overall, the
deployment process is fully automated to support the easy in-
stallation of the ADT Generator. The hardware requirements
are very low, with the ADT Generator service able to run on a
1CPU and 2GB RAM cloud virtual machine instance.

5. Digital Twin for Punching Machine

Within DIGITbrain (Db), more than 25 industry case stud-
ies have been implemented where digital twin applications were
developed by composing them from their fundamental building
blocks of Data, Models, Algorithms and Microservices. In all
cases, these building blocks have been published in the DIG-
ITbrain Solution by providing a set of metadata, as introduced
in Section 3.2, composed into DMA Tuples, and then the de-
ployment descriptors were automatically generated by the ADT
Generator. In this section, we demonstrate how these concepts
and methods were applied to a scenario around a metal punch-
ing machine.

In this case study, a new kind of digital twin for a subset of
the behaviour of the machine was created, namely a digital twin
for the structural behaviour of the stamp centred around a fast
GPU implementation of the finite element (FE) method which

achieves new levels of runtime performance. The idea/approach
behind this scenario is to equip a punching machine with force
sensors, send this information over the network via MQTT to
a numerical simulation for structural analysis, feed this simula-
tion with the forces, and predict the deformation of the stamp
given its simulation model and the real-time data from the shop-
floor.

The aim is to achieve new kinds of adapted control of ma-
chines in general and for the stamping machine in particular,
in order to reduce loads and wear of the machine by taking not
just the sensor information into account but also the effects on
(parts of) the machine. The scenario is depicted in Figure 8.
The actual simulation component in this scenario runs close to
the sensors and the data source on a GPU-equipped edge de-
vice. In the next subsection, the numerical solver RISTRA is
introduced, followed by describing the setup of the correspond-
ing DMA Tuple and the steps and extensions that were required
to facilitate the scenario. Finally, the automated generation of
the deployment descriptor and the run-time results of the simu-
lation are demonstrated.

5.1. General Introduction of RISTRA

The basis for the numerical simulation of the structural be-
haviour of the punching machine is RISTRA (Rapid Interactive
STRuctural Analysis) [37], a software library for fast structural
analysis. Structural analysis is one of the most frequently used
simulation domains in industry when designing parts of differ-
ent kinds of products, be it vehicles, buildings, household ap-
pliances, etc. Speeding up the simulation and optimisation loop
can contribute to finding better solutions in a shorter time, thus
reducing time to market.

RISTRA can be integrated into existing CAD / CAE (Com-
puter Aided Design / Computer Aided Engineering) packages
to deliver new levels of performance within such applications.
Benchmarking RISTRA against CPU-based commercial-off-the-
shelf (COTS) alternatives has shown performance benefits of
up to a factor of 100 times (two orders of magnitude), while
comparisons with GPU-based COTS indicated up to 30 times
speedup. These results have been achieved under the constraint
of not deviating from the reference solutions by more than 1
%. RISTRA’s speed is achieved by fully leveraging the massive
parallelism of GPUs by implementing the whole finite element
method completely on GPUs. In contrast, many other systems
only leverage the GPU for some steps of the FE method, and
slow memory transfers between CPU and GPU prevent fully
exploiting the benefits of GPUs. With sufficient GPU mem-
ory, RISTRA can solve problems with more than 10 million
degrees of freedom (DoF). RISTRA currently supports linear
structural analysis, tetrahedral meshes, linear, quadratic, and
cubic shape functions (TET4, TET10, TET20), linear isotropic
and anisotropic materials as well as time-dependent and modal
simulation.

5.2. RISTRA as Part of a DMA Tuple

To support the scenario illustrated in Figure 8 and described
above, the original implementation of RISTRA needed to be
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Figure 8: Digital Twin Scenario

extended to support execution on edge devices. As a starting
point, RISTRA was implemented for NVIDIA desktop GPUs
using CUDA. This initial version was able to read simulation
models as files from local storage. The simulation models con-
sist of tetrahedral meshes, boundary conditions, and loads. To
realise the scenario, two extensions needed to be made to RIS-
TRA: a) a possibility to feed it with (sensor) data via an API
and b) port it to NVIDIA edge devices with GPUs, resulting in
RISTRA@Edge, a variant of RISTRA for GPU-enabled edge
devices, in particular the NVIDIA Jetson platform which is, to
the best of our knowledge, the first GPU-accelerated FE simula-
tion software for embedded systems [37]. These two extensions
were prerequisites for publishing and executing RISTRA on the
DIGITbrain Solution.

Figure 9: Publishing Db Assets - Model, Microservice and Algorithm

The next step was the creation of the simulation model by
a domain expert and uploading it to a model repository. The
simulation model was created based on the CAD model, sim-
plifying some of the details and defining boundary conditions
and load cases. Although initial load cases (directions of force
and strength) were set, the actual amount of force is read later
from the sensor information and applied to the digital twin. The
simulation model then needs to be published in a repository as
a single zip file. Models consisting of more than one file always
need to be packaged into one zip file. The model repository is a
simple file storage where Model files can be stored and down-
loaded at run time by the associated Microservices. The Db
Solution does not require the use of a specific model reposi-
tory. Any file storage set up by Model providers is appropriate,
as long as it can be accessed remotely and the associated Mi-
croservice understands the file transfer protocol that the reposi-
tory uses.

Next, the Model needs to be made known to Db Solution
as a Db Asset. In this step, metadata for the Model, consist-
ing of a filename, path, repository URI, along with many other
optional metadata entries, needs to be entered to describe and
characterise the kind of Model (see left-hand side of Figure 9).

Unfortunately, RISTRA (as many other existing applica-
tions) cannot retrieve Models from repositories by default. In-
stead of modifying RISTRA, requiring access to the source
code, a less intrusive solution is to implement a dedicated Mi-
croservice to download the Model file from the model repos-
itory. RISTRA reads input from files and to make RISTRA
independent from sources, the Model Retriever microservice is
introduced as an additional component. Model Retriever col-
lects inputs regardless of the source and provides input files for
RISTRA. With this solution, we have the benefit of abstracting
the repository / source from the consumer (RISTRA), thus, the
consuming service does not need to know about the details of
the repository.

Additionally, if solvers shall be fed with data in real time, an
API is required. To feed RISTRA with data from the force sen-
sors, we decided to implement the Data Bridge Microservice.
Data bridges have the benefit of abstracting the data source
from the consumer, thus the consuming service does not need
to know the details of the data source. Instead, the Data Bridge
serves its API according to a specification.

Therefore, the Algorithm consists of the three Microser-
vices described above: RISTRA, Model Retriever and Data
Bridge. All three Microservices need to be published in the
Db Solution by providing their related metadata. The publish-
ing process creates IDs for each published Asset (see Figure 9
center). These IDs will be used when composing high-level Db
Assets (e.g, MA Pairs) and DMA Tuples.

Once the Microservices are published, an Algorithm can be
composed out of them by searching the Microservices from the
Digital Agora and referencing them by ID. In addition, further
metadata (e.g., author, date, name) for the Algorithm is speci-
fied while publishing it to DIGITbrain (see right-hand side of
Figure 9).

Figure 10: Creating an MA Pair, publishing a Data resource and composing the
DMA Tuple

By now, a Model and an Algorithm have been specified (see
left side of Figure 10) that can be combined to represent and
evaluate the behaviour of punching presses that are built around
the same stamp—a family of punching presses (or an Industrial
Product Family). Like the composition of an Algorithm, the
user can find Models and Algorithms via the Digital Agora and
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reference them when creating an MA Pair. As in the case of
Algorithms, additional metadata can also be specified during
this process.

The next step is to register/publish the data source (see the
middle of Figure 10). The data in this specific case comes from
sensors installed on the machine and delivered via an MQTT
broker. Like Models and Microservices, Data sources are pub-
lished to the Db Solution by providing a set of metadata.

The final step in the publication and composition workflow
is the creation of a DMA Tuple (see the right side of Figure 10)
out of previously published DIGITbrain Assets. This step is
carried out by a person acting in the role of the DMA Com-
poser, typically a person that belongs to or acts on behalf of
a manufacturing company, typically because of access restric-
tions to data sources within the factory. The DMA Tuple is
built by referencing a Data source and the MA Pair that uses
this Data together with a Model to evaluate / predict the be-
haviour of the respective manufacturing machine. Thus, DMA
Tuples are connected with certain instances of Industrial Prod-
ucts. One or many DMA Tuples represent a Digital Twin for
such an instance.

The above case study of a digital twin for a punching ma-
chine is one example of the possible scenarios that the proposed
approach could be applied to. Nevertheless, the approach is
general and the presented modularisation and reusability have
been successfully implemented in other case studies, such as
production optimisation, defect detection and quality control,
optimisation of injection moulding processes, monitoring and
optimisation of additive manufacturing processes, co-simulation,
or life cycle analysis [38]. The proposed approach was suc-
cessfully applied to all the above scenarios, which were cover-
ing different manufacturing sectors such as textile, automotive,
rubber and plastic products, metal products, agriculture, ma-
chinery and equipment, food production, among others. This
approach is also applicable beyond the manufacturing indus-
try, since the different building blocks (i.e. Data, Model, Algo-
rithm) could represent multiple industrial solutions, making it
generic for any kind of application that brings together software
experts (for the Algorithm), domain experts (for the Model) or
end users (for the Data).

5.3. Deployment

The steps described in Section 5.2, whereby metadata for
each of the required Assets is provided, happens in the Digital
Agora (see Figures 11 and 12). Digital Agora is a web-based
frontend and management framework for managing users, and
their Assets, compilation and execution of the DMA Tuples.
This environment interplays with the aformentioned ADT Gen-
erator as part of its portfolio in order to provide executables for
MiCADO.

Assets like Algorithms (in Figure 11), which are composed
of other Assets (Microservices in this case), are configurable
using a search function that can locate previously published As-
sets.

In the DMA Tuple configuration (see Figure 12), both Data
and the MA Pair (here called Behaviour) can be found using

Figure 11: View of Algorithm publishing in the Digital Agora

Figure 12: View of DMA Tuple publishing in the Digital Agora

Figure 13: Assets that make up the RISTRA DMA Tuple
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Figure 14: Compilation of all Assets in a DMA Tuple in the Digital Agora

the search, while the Host Configuration details are provided
via drop-down menus and text fields. In Figure 13, components
of the application are mapped to specific Assets.

With all of the metadata for RISTRA provided, a new option
becomes available in the DMA Tuple (here called Process) con-
figuration, which will trigger its compilation (see Figure 14).

Selecting this option will make a POST request to the ADT
Generator REST API and the payload will contain the complete
metadata of each Asset that is referenced within the DMA Tu-
ple, from the MA Pair down to the Microservice.

The ADT Generator generates the CSAR as described in
Section 4.1.2, stores it in an S3 bucket where it will be accessed
at execution time. A download link to the CSAR file, as well as
the logs of the generated operation are displayed after success-
ful compilation of the ADT.

Figure 15: An instance of the RISTRA DMA Tuple during execution

Once the ADT has been compiled for a DMA Tuple, it is
ready to be executed. A user within the organisational structure
of the DMA composer can licence an instance of the DMA Tu-
ple and launch it, as seen in Figure 15. This gets deployed to
EGI resources.

When the DMA Tuple is running, the users can interact with
their application, accessing it via the endpoints configured in

the Microservice and Host definitions. Advanced users have the
option to visit a dashboard where they can inspect information
about the status of their application.

Figure 16: Nodes and pods of RISTRA application deployed on DIGITbrain

These users have access to Occopus and Kubernetes plat-
form information, as well as a selection of metrics retrieved
by Prometheus and displayed by Grafana. The connected edge
node (deployment-websim-host) and running pods of the RIS-
TRA application can be seen in the Kubernetes Dashboard in
Figure 16.

6. Conclusion and Future Work

When different technical experts collaborate to develop com-
plex microservices-based applications for cloud and edge, an
approach is needed to support that collaboration and ensure
that whatever is described can be deployed. This paper has
presented one such approach, that leverages important features
within TOSCA to enable modularity and reusability throughout
the entire process. The result is the automated generation of
an overall application deployment descriptor that draws on in-
dividual descriptions of application components that can be au-
thored by different actors at different times. These descriptions
can be validated independently and the described components
can have flexible relationships with one another when finally
composed to the overall descriptor.

Advanced control over the run-time management of the var-
ious application components was not explored in this article,
but TOSCA policies could be introduced into specific descrip-
tors to give further fine-grained control. This approach remains
relevant as TOSCA approaches v2.0, and hopes to leverage fu-
ture features of the specification to further improve the auto-
mated generation of descriptors. Other future work will see
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this approach elaborated in the Horizon Europe Swarmches-
trate project [39], where abstract Host nodes can be fulfilled not
only by one specific concrete node, but intelligently matched to
a best choice cloud or edge resource.

Additionally, while the current solution focuses on digi-
tal twins in the manufacturing sector only, the applicability of
the approach has already been considered in other areas, such
as transport, logistics, management of critical infrastructures
or healthcare. Various funding proposals are currently under
preparation to further investigate these possibilities.

Finally, we are considering extending the solution, support-
ing semantic checking and decision making when composing
the digital twins. Utilising advanced AI techniques and already
existing and additional metadata, a decision maker or decision
support component could advise (or even substitute) the human
decision maker when combining data, model and algorithm into
a digital twin.
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