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where <P m (x) is a fuzzy basis node for rule m and

11 m (x) is a membership value of rule m. Since we use a

product-inference, the fuzzy basis node 11 m (x) is in the

following form:

An adaptive fuzzy logic system (AFLS) is a fuzzy logic
system having adaptive rules. Its structure is the same as a
normal FLS but its rules are derived and extracted from
given training data. In other words, its parameters can be
trained like a neural network approach, but with its
structure in a fuzzy logic system structure. The AFLS is
one type of FLS with a singleton fuzzifier and centre
average defuzzifier. The centroid defuzzifier cannot be
used because of its computation expense and that it
prohibits using the Backpropagation (BP) learning
algorithm. The proposed in this research work AFLS
consists of an alternative to classical defuzzification
approaches, the area of balance (AOB) [2]. This AFLS has
the saIne approach as the system presented by Wang [3]
and its feed-forward structure is shown in Fig. 1 with an
extra "fuzzy basis" layer. The fuzzy basis layer consists of
fuzzy basis nodes for each rule. A fuzzy basis node has the
following form:

Fig. 1. AFLS concept

defuzzifier is that it suffers from not using the entire shape
of the consequent membership function. Regardless of
whether the max-min or max-product inference is used, the
result of the CA defuzzifier is still the same, regardless of
whether the shape is narrow or wide.

Index Terms-Neural Networks, Fuzzy systems, Vehicle
Classification.

where ym is the centre of gravity of the fuzzy set Bmand

M is the number of rules. The problem with the CA

I. INTRODUCTION

A Fuzzy Logic System (FLS) is a system utilizing fuzzy
set theory and its operations to solve a given problem. The
FLS can be classified into three broad types: pure fuzzy
logic systems, Takagi and Sugeno's fuzzy system and
fuzzy logic systems with fuzzifier and defuzzifier [1]. This
later type of FLS is the most widely used FLS. In this
study, a multi-input multi-output (MIMO) FLS will be used
as a composed FLS. In this way fewer rules are required.
Defuzzification converts this area to a real value. The
centroid calculation approach is a logical answer to
defuzzification because it uses all infonnation available to
compute the output. Centroid defuzzification can be put
into equation form as

_ [1 YllB(y)dy]
y=----=--~----[ill B (y)dy]

where S is the support of flB(Y)' One problem of the
centroid defuzzifier is intensive computation. The centre
average (CA) defuzzifier, on the other hand, is easy to
compute and use. The CA defuzzifier has the formula

ML ymflBm(ym)
Yc = -,,-,-m---,=~,---- _

L fl Bm (ym )
m=l

Abstract-Fuzzy systems are currently finding practical
applications, ranging from "soft" regulatory control in
consumer products to accurate modeling of non-linear
systems. A novel approach, based on adaptive fuzzy logic
systems, has been discussed in this paper. Its performance is
evaluated through a simulation study, using metered data
collected from a roadside microphone-array sensor at the
Valle d'Aosta highway in north-western Italy. The results
indicate that the fuzzy classifier based on the proposed
defuzzification method, namely area of balance (ADD),
provide more accurate classifications compared to other
classifiers.
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m(x)= IlJlFm(Xi )

i=1 '

where 11 Fjm (Xi) is a membership value of the ;/h input of

rule m. In case of a "Gaussian-shape" membership
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Fig. 2. Triangular shape membership function
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where y; is the pth output of the network corresponding to

the kth pattern in the training data, d; is the pth desired

output of the kth pattern and fl: is the membership value

Y,;'(n+1)=Y;(n) +n~,[Y,;'(n) - Y,;'(n -1)]-lly aJ Inay;
where

o

(fliLI yi + fl2L2yi + fl3L3yi)
y = (13)

(fliLI + fl2L2+ fl3L3)
In general form, the calculation of the output, y, will be

M

LflmL;y;
m=lyp = M (14)

LflmL;
m=l

A. AFLS training with AOB Defuzzification

Let us define the objective function as:
K

J = LJk (15)
k=l

where K is the number of training patterns, Jk is the sum of
squared error for the kth pattern. Then, Jk is defined as:

J k =!f(Y
P
(xk )-d p (Xk ))2 (16)

2 p=l

where P is the number of outputs and dp is the desired

response of the pth output. y p (xk ) is defined as in Eq. 14.

The update equation of y; is as in the fonn:

r-~-f)2-~h-3----I

Fig. 3 Consequent fuzzy set placed on mass-less beam

where
YP : the pth output of the network
11m: the membership value of the mth rule

L; : the spread parameter of the membership function in

the consequent part of the pth output of the mth rule

y;: the centre of the membership function in the

consequent part of the pth output of the mth rule.

~
I I I

(6)

(5)

(12)
1

Am = 21lmLm

From Eq. 11, the output, y will be

function, then, fl Ff1Jl (Xi) will be in the following form:

[
(x _c m )2]

X -ex - i i
Il F,7' ( i) - P 2(bt)2

Let assume that we use the same material and all shapes
have the same thickness, T, then

M = ATD (7)
where A is an area and T is a thickness. Let us suppose that
the shape of the membership function used in the
consequent part is symmetric, e.g., triangular, Gaussian or
bell-shape. The centre of gravity will pass through the
halfway point of the base of that shape. For example, if we
use a triangular shape and product-inference as at-norm,
then the shape of the consequent part of rule m will be
shown as in Fig. 2. The shaded area (A) is

1
2llmLm .

Imagine that we have the consequent part of each rule
placed on the mass-less beam having the pivot point at
origin as shown in Fig. 3. Then,

F=M1g+M2g+M3g=(Ml +M2 +M3)g (8)

For balance

Fy=~~+~cl+~cl=(~Y~+~Yb+~y~)g (9)

y (~y~+~Yi+~~)g (~y),+M2y;+~~)g (10)

F (~+~+~)g

+1
/,/'

./
//

./
./

/'/
//

,./

Assume that Din Eq. 12 is the same, thus,

Y=(4Y~ +~yi +A3y~)TD=(4Y~ +~yi + A3Y~) (11)

(4+ A2+ A3)TD (4+ A2+ A3)
The area, A, will be depended upon the membership
function used. Under the assumption of symmetric shape
this method will have comparable capability with the
centroid calculation method to approximate the output from
the fuzzy set in the consequent part. If the triangle is used
as a membership function and we use the max-product
inference (Larsen logic), then the shaded area, A, will be
derived as:

where c; and him are the centre and spread parameters,

respectively, of the membership function ith input of the mth

rule. The proposed in this paper defuzzification schemes
will utilise Kosko's method with product inference [4]. The
density (D) is defined as mass (M) per unit volume (V).

D=M
V
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where

(31)

All equations derived are used to update all parameters
during the training phase of the network. The initial centre,

C~ and Ypm are randomly selected from the kth training

data, xt and d; respectively. The initial spread parameter,

him , is determined by

b. = max( Xi) - min( Xi) (32)
z N

Where hi is a spread parameter of the ith input of all rules

and N is the nUlnber of rules. Since the desired output in
the classification problem is pritnarily a binary output
representing each class, therefore, the initial spread

parameter, L;, can be set to 0.75. This lnethod can be

interpreted that we have initially equal confidence in each
rule. This spread parameter will be adjusted during training.

aqm k=l

The definition of significant features plays an important
role in the classification problem. In the vehicle
classification problem, vehicles must be detected first
before they can be classified. The detection process is
designed to detect the presence of a passing vehicle and to
initialize and end the feature extraction process. Since
different classes of vehicles have different sizes, the ending
point of feature extraction was adapted according to an
initial prediction by a fuzzy logic system. The information
of duration and loudness are used as the inputs to this
prediction system. After a vehicle is detected significant
features are extracted. All features are time domain features
extracted directly from acoustic energy information. The
vehicle acoustic signals have a wide range in frequencies as

I.auIIl

Fig. 4. Vehicle Acoustic Classification System

II. EXPERIMENTAL CASE

The overall acoustic signal of a vehicle arises froln several
sources, which include the engine, gears, fan, cooling
system, road-tire interaction, exhaust, brakes, and
aerodynamics effects [5]. However of great importance is
not only the classification of acoustic signals, but also the
source that generates the acoustic signals, such as vehicle
classification and speaker verification. An acoustic
classification system design composes of the acoustic
sensor design and data acquisition, feature analysis and
extraction, classifier design, and implementation. The
vehicle acoustic classification system consists of several
sub-systems as shown in Fig. 4.

A S

i
I

•
a
1

K

(29)

(30)

(27)

(25)

(26)

(21 )

P Lm[ m _ k] (:t: _ m)
~( k _dk) p Yp Yp k i Ci
L.J Yp p M ~m ~
p=1 ",,\:,•• k Lm q

L,j"m p
m=1

K

oJ oJ oJm oep Byp

oL; oJm oep Byp oL;

Oflm _ nn
--- fly;

0fl F m ;=1 I

, ;*i

k=l

aJ _ aJ aim Bep Byp Oflm OflF;m
----------+
ab; aim rep Byp a~m t7J.tl't ab; ....

Again for the "Gaussian-shape" case,

afl m (x~ - C~)2Fj I I

abm =~ F,m bml
I i

Therefore

where

Thus,

c;(n+1) =c;(n)+mJc;(n)-c;(n-1)]-11c ::"In (23)
I

and

The update equation of the spread parameter, him , is in the

form:

aJ
~m(n+ 1) =b;(n)+"+,[~m(n)-~m(n-1)]-1Jb CbmIn (28)

I

oJ oJ oJmoep By p Oflm 0fl Fjm
-=--------+ (24)
ac; aJmaep Byp a~m a~ F,m ac; ....

In the present study, a "Gaussian-shape" function has been
adopted, hence

8~ F"' ( X ~ - C ~ )

-8~ = ~F:"' 'b m2 I

Cz i

where y; is interpreted as a centre of the membership

function of the pth output of the mth rule in the consequent
part of IF-THEN rule. The update equation of the centre

parameter, ci
m

, is in the form:

where

of the mth rule corresponding to the kth pattern in the

training data. The update equation of L; is in the following

form:
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shown in Fig. 5. Most of the acoustic energy is in low
frequencies. Incoming signals are processed one window at
a time.

x 10'"

one vehicle but also to initialize a feature extraction process
for vehicle classification. Although different vehicle classes
may have different sizes, the detection algorithm has to
overcome this problem and reduce an under count and over
count rate.

..,. "I.b

:!
.f 1

Fig. 5. Magnitude response of an acoustic signal

A rectangular window is used in this case. The size of the
window is 0.02 seconds. Since the sampling rate is 44100
Hz, therefore, there are 882 samples in one window. The
signal in this window is filtered by a high-pass filter having
a cut-off frequency of 2700 Hz. Then, the filtered signals
are filtered again by a low-pass filter having a cut-off
frequency of 5400 Hz. Using these filters, the circular
array ideally forms a beam pattern corresponding to the
signals having frequencies from 2700 Hz to 5400 Hz. The
energy (E) is calculated for each window. The energy (E) is
defined by

No' PIIPCd

Fig. 6. Passenger car information (a) the original signals sampled with
44.1 kHz, (b) energy (E), (c) filtered signals, (d) average energy (avE)

IJ~:---.r---]
o 1m 20J 3J()

i:[[]Xl0'(b)Window Number

UJ

1 4

l2
oo 1m 200 3JO(d) Window N!Jmber

N

Ls 2 (k)
E = k=l (33)

N
where E is the energy in the window, s(k) is the kth sampled
signal in that window, and N is the numbers of samples in
the window. The current window is designed to overlap
50% with the previous window. The energy envelope of a
typical passenger car is shown in Fig. 6. In Fig. 6(a), the
original signals sampled with 44.1 kHz are shown. The
filtered signals are shown in Fig. 6(c). In Fig. 6(b), the
energy calculated in each window is shown.

(~r"1·1 !
o 1 2

(a) Time (3econd!l)

~~::E±j~

1_1oo~ j
-2000 !

o 1 2
(c) TIMe (ucondt)

The average energy (avE) of the energy E in the current
window and five previous windows is shown in Fig. 6(d).
The average energy (avE) is used in the detection task,
while the energy E in each window is used mostly in the
classification task. Besides the energy E information in the
whole band of frequencies, the upper band of frequencies,
4500 to 5400 Hz, is selected. Fifth-order high-pass filter
filters the filtered signals used in the detection. The average
energies avE2 of this band of frequencies are also calculated
and used in the feature extraction process. Features will be
extracted from both frequency bands, e.g., from 2700 to
5400 Hz and from 4500 to 5400 Hz.
The detection algorithm was designed to detect not only

9-11

Fig. 7. Detection and feature extraction diagram

The under-count means that the algorithm does not detect
the presence of a vehicle. It happens often to a small
vehicle such as a passenger car. The over-count means that
the algorithm can detect one vehicle as two vehicles. It
happens often to a large vehicle such as a tractor-trailer
truck. The over-count affects not only on the vehicle count
information but also the classification performance. In the
over-count situation two different sets of features are
extracted for one vehicle. These two sets of features may
not be the same, as one set of features and the classifier
may not classify thelTI correctly. In the under count
situation the vehicle is definitely not classified.

In this study, the detection algorithm was designed to
operate under normal highway traffic operations. The
detection and feature extraction process is shown in Fig. 7.
There are three tests in the designed detection algorithm.
All tests are designed to overcome under and over count
problelTIs. For the first test three requirements should be
met. First, the average acoustic energy avE must be above a
pre-set threshold. This pre-set threshold is set such that
most of average energy avE of small vehicles in adjacent
lane is below this threshold. Second, the average acoustic
energy avE must be rising. The final requirement is that the
operation mode must be in reset mode. The reset mode is
the mode that the sensor is ready to detect a new vehicle.
After the first test is passed, the feature extraction process
begins. The initial starting extraction point is determined by
using the average energy avE information. The initial
starting point should be at the point the average energy avE
is across the threshold. All necessary information used in
feature extraction such as the energy avE2 in the upper band
must be initially gathered at this point. Then, the process
gathers information when at least 0.1 seconds after the
initial starting point have passed and when at least one of
following conditions is met:

• the first condition is that the average energy avE is

Authorized licensed use limited to: University of Westminster. Downloaded on June 8, 2009 at 06:09 from IEEE Xplore.  Restrictions apply.



halfway between the centroid and the ending line.
)( 10'"

The 3rd region is defined as the region from the halfway
line to the ending line. All features are derived
heuristically. Features number 7, 8, 9, 10, 11, 12, 13, 14,
15, 19,20,21,22,25,26 and 27 are features extracted from
each region. The others are from the whole region. The
ratio between the energy E in each window and the
averaged energy avE will indicate the fluctuation of
energy. The approximate location of these fluctuations in
each region indicates where the most fluctuation in that
region is. The maximum value of energy indicates how
loud it is. Most trucks are loud, but some passenger cars are
also loud. The features involving the amplitude of energy,
e.g., feature number 5, are transformed into log scale. Then,
all features are linearly transformed into a range from 0 to
2.

below 125% of the previously pre-set threshold
• the second condition is that the average energy

avE is decreasing
• the third condition is that the current window is

more than 0.3 seconds away from the found peak
These conditions are set to make sure that the peak is found
and there are few numbers of windows from the starting
point. The indication of the energy movement indicating
the energy rising or decreasing is calculated by the
following equation:

1 NavE (k - N + n) (34)Index = - L --..:...-----
N 11=1 avE (k - N + n - 1)

where avE represents the average energy, k the current
window and N the number of window used, (N = 8 in this
case). Once the first peak is found, the location of the
peak, the peak value and the number windows above the
pre-set threshold from the initial point are used in the
second test. If all following conditions are met, then the
second test is passed.
If any of them is not met, then the second test is failed and
the operation is placed in the reset mode again. At this
time, only features involving the energy envelope in titne
domain are considered. There are 30 features extracted as
shown in Table 1.

TABLE 1: FEATURE DESCRIPTIONS

I:
n:
i:
t:
I:
a:I:
s:
t:.:
r:
t:
i:
n:
g 1 ~

Fig. 8. Feature extraction regions.

2nd 3rd
Region Region

H

I
f

Y

Fnture Dumber Feature description

Maximum "altJe of averaged energy «(&I'E)
Appt-oximated Location of centroid ofenergy from startiug point

l Loeation oftbe peak ,..alue of avE from the starting poin.t
4 Difference ill centroid location and the peak location
5 Maximum valtJe ofenerllY (E) in each window
6 Number ofwindow.s from startinl point to ending point
1 Approximated Location of IDlIXinmm "..1tJe of E / avE in 1st region
8 Approximated Loc.tion of centroid of eneF8Y in 1st region
9 Mran ofenergy in 1st region
10 Approximated Location ofmaximum "..ltJe ofB IavE ~ 2nd region
11 Approximated Location ofcentroid ofeneF8Y 10 2nd rellon
12 Mean ofenerllY in 2nd region
13 Approximated Location of maxinmm valtJe ofE I (wB ~ lrd region
14 Approximated Location ofcentroid of eneF8Y 10 3rd felton
15 Mean ofenerllY in lrd region
16 Number ofwindows having E/avE > 1
17 Number ofwindows having at·E > 50% of maximum avE
18 Number ofwindows having m.E > 25% ofmaximwn al,E
19 Maximum ,'a1tJe of a,-erage energy. avE in 3rd region
20 Approximated Location of maximum ,-a1ue of E:~avE? in lstregion

.~~ ==:=:t::~: :~::::: ::::::~ ~/:::~~ :: i:::ee::::
23 Number ofwindows having Fh/avE2 > 1
24 Maximum 'lialtJe of m}E'J
25 Sum of number of zeros crossing for each window in 1st region
26 Sum ofsmmber ofzeros crossing for each window in 2nd region
27 Sum ofnumber of zeros crossing for each window in 3rd region
28 Number ofVl.'indows having at·E2 > 50'!-. ofmaximum at-·E2
29 Number ofwindows bn'ing avE'). > 25% of maximum av1JJ
30 Number ofwindows after peak approximated by FLS

Fig. 8 shows an example of feature extraction along with
the detection process. The "initial starting" shows the
beginning of process after the first test is passed. The
"centroid" is the centriod location of energy calculated as:

N

L kE (k) (35)
L = .:.::...k---:=;J:-.-_-

L E(k)
k=1

where L represents the approximated location of the
centroid of energy from starting point to the current

Position N the number of windows from the starting point
, ffl

to the current one and E(k) the energy of the k window.
This location serves as the focal point of the detected
vehicle's energies. The "starting" line is the beginning of
the region of windows from which the features are
extracted. The "ending" line is the end of the whole region.

. 11 . . 1st 2ndBesides the WIndows, there are three sma regIons. ,
and 3rd region to extract features. The 1st region is defined
as the region from the starting line to the centroid line. The
2nd region is defined as the region from the centroid line to

9-12

III. CLASSIFICATION WITH AFLS-AOB

Training and testing data used in this research are collected
from the roadside sensor station and processed using the
described detection and feature extraction. Metered data
were collected from a roadside microphone-array sensor at
the Valle d'Aosta highway in north-western Italy. The
whole dataset consists of five classes. Class 1 includes
passenger cars. Class 2 includes pickups, vans and mini­
vans. Class 3 includes all single unit trucks having two
axles, six tires. They are small trucks, small trucks with
flatbeds, small trucks with flatbeds including loads, trash
trucks, heavy-duty trucks, trucks with box, etc. Class 4
includes all single unit trucks having three axles, ten tires.
They are heavy-duty trucks, trash trucks, cement trucks,
trucks with box, etc. The last class, class 5, includes all
five-axle single trailer trucks that include tractor-trailer
trucks, gas trucks, flatbeds, and flatbeds with load. Class 1
has the most dominant number in the whole data and class
4, the fewest. Because of the weather during the data­
collecting period, there are few numbers in class 4. These
data were collected in various conditions, from cold to
warm weather, from cloudy to clear sky and from early
morning to late afternoon and represent 2440 passenger
cars, 1007 pickups or vans, 587 two-axle six-tire trucks,
309 three-axle single unit trucks, and 963 five-axle single
trailer trucks. The road surfaces are from dry to light wet
surface. Data during snow and raining are excluded. All
data are collected under normal highway traffic operations.

Vehicle acoustic data were collected, processed, and
extracted from raw acoustic data as explained in the
previous sections. For each vehicle, 30 features have been
extracted. The five-class problem was the hardest case in
this study. Each class consists of a variety of vehicles. For
example, the two-axle six-tire class includes all small
trucks having two axles and six tires. This class overlaps

Authorized licensed use limited to: University of Westminster. Downloaded on June 8, 2009 at 06:09 from IEEE Xplore.  Restrictions apply.



with other classes, e.g., pickups, heavy-duty trucks.
The standard MLP with the back-propagation learning

algorithm widely used for such an application was
considered in this work as a testbed case. This algorithm is
based on the gradient descent concept. The numbers of
MLP hidden nodes are determined by an increment method
procedure. The network starts with a small number of
hidden nodes then it is incremented until the outputs of the
network saturated. The final number of hidden nodes is
determined by the smallest network giving relatively the
same results as a bigger one. The optimum structure has
been determined to be with 2 hidden layers and with 20 and
12 nodes in the two layers [6].

However, the introduction of hybrid learning algorithms
imposed a new dimension to this specific problem. The
main advantage of the proposed AFLS method is the ability
to learn from experience and a high computation rate. The
average percentage relative error approaches its optimal
value after short time training. This is due to the fact that
the consequence parameters have converged. This implies
that the convergence of consequence parameters playa
dominant role in system estimation accuracy. The
remaining time is just for fine-tuning the premise
parameters. Thus the training required to achieve
acceptable accuracy was very fast cOlnpared to the MLP
method.

A. Five-Class Problem

The five-class probleln is the toughest problem in this
study. Each class consists of a variety of vehicles. For
example, the two-axle six-tire class includes all small
trucks having two axles and six tires. This class overlaps
with other classes, e.g., pickups, heavy-duty trucks. The
classifier learned well in certain classes, and it would
definitely classify well in those classes. The numbers of
MLP hidden nodes are determined by an increment method
procedure. The network starts with a small nUlnber of
hidden nodes then it is incremented until the outputs of the
network saturated. The final nUlnber of hidden nodes is
determined by the smallest network giving relatively the
same results as a bigger one. With the AFLS the numbers
of rules are determined by a similar increment method
procedure. The initial parameters of AFLS are initialized
by the training data picked randomly. The input feature
vector is used as the initial centers of the antecedent part.
The centers of the consequent part are initialized by the
corresponding desired output. In classification problems the
desired outputs are normally in binary form. The Gaussian
shape function is used as a membership function in AFLS.
Results are shown in Table 2.

TABLE 2
% % % % % Total

C1.1 C1. 2 C1. 3 C1.4 C1. 5 correct
74.26 65.87 70.07 71.43 89.63 74.83

MLP

AOD 83.11 59.13 75.51 85.71 93.78 79.80

B. Four-Class Problem

In a four-class problem, Classes 1 and 2 are combined as
one small vehicle class. The remaining classes are the same
as in previous problem. The number of rules is determined
with the same procedures as in the previous problem. The

9-13

number of rules is 14. In this problem the numbers of data
are 3447, 587, 309, and 963 for Class #1, #2, #3, #4,
respectively. Class 1 "dominates" the other classes. Again,
the AFLS-AOB has better results than the other classifiers
as illustrated in Table 3.

TABLE 3
% Class 1 % Class 2 % Class 3 % Class 4 Total

correct
95.82 59.86 76.62 88.38 89.37

MLP

AOD 95.59 79.59 79.22 92.12 92.24

C. Small versus Large Vehicle Classification

In this problem vehicles in Classes 1 and 2 are combined as
a small vehicle class and Classes 3, 4, and 5 are combined
as a large vehicle class. There will be 3447 in one class and
1859 in the other class. Again the AFLS-AOB has better
classification performances than the MLP. Table 4 shows
the related results.

TABLE 4
% % Total %

Cl.l Cl.2 correct
95.33 95.48 96.68

MLP

AOD 97.80 97.20 97.59

IV. CONCLUSIONS

This paper involves design of classification system design
for vehicles detection using their acoustic signature. This
study was focused mainly on features analysis and
extraction, and the classifier system design. A detection
algorithm has been developed to detect a presence of a
passing vehicle. This detection algorithm initialized and
ended the feature extraction process. After a vehicle was
detected significant features were extracted. The advantage
of using an AFLS over a MLP is that its parameters can be
initialized Inore effectively than MLPs. With good
initialization the AFLS trains much faster than a
corresponding MLP. It demonstrated possibility of an
acoustic sensor system with 97.59% correct classification
rate between small and large vehicles on 1327 vehicles,
92.24% correct classification rate in four-class problem on
1327 vehicles, and 79.80% correct classification rate in
five-class problelTI on 1327 vehicles.
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