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Abstract

We propose a quantile regression approach to equity premium forecasting. Robust point fore-

casts are generated from a set of quantile forecasts using both �xed and time-varying weight-

ing schemes, thereby exploiting the entire distributional information associated with each

predictor. Further gains are achieved by incorporating the forecast combination method-

ology into our quantile regression setting. Our approach using a time-varying weighting

scheme delivers statistically and economically signi�cant out-of-sample forecasts relative to

both the historical average benchmark and the combined predictive mean regression mod-

eling approach.
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1 Introduction

Since the seminal contribution of Goyal and Welch (2008), equity premium predictability

has attracted the attention of both academics and practitioners in �nance.1 The early

contributions to equity premium predictability primarily focused on the in-sample pre-

dictive ability of the potential predictors and the development of the proper econometric

techniques for valid inference.2 Lately, interest has turned to the out-of-sample perfor-

mance of the candidate variables. Goyal and Welch (2008) showed that their long list

of predictors cannot deliver consistently superior out-of-sample performance. The au-

thors employed a variety of predictive regression models ranging from those with a single

variable to their �kitchen sink�model that contains all of the predictors simultaneously.

Campbell and Thompson (2008) showed that imposing simple restrictions suggested by

economic theory on several coe¢ cients improves the out-of-sample performance. Based

on this result, these authors argue that market timing strategies can deliver pro�ts to

investors (see also Ferreira and Santa-Clara, 2011). More recently, Rapach et al. (2010)

considered another approach for improving equity premium forecasts based on forecast

combinations. The authors �nd that combinations of individual single-variable predic-

tive regression forecasts, which help reduce the model uncertainty/parameter instability,

signi�cantly beat the historical average forecast. Finally, Ludvigson and Ng (2007) and

Neely et al. (2013) adopted a di¤usion index approach, which can conveniently track

the key movements in a large set of predictors, and found evidence of improved equity

premium predictability.

The empirical �ndings on equity premium predictability are mixed. The majority of

studies on this topic have been conducted within linear regression frameworks. However,

recent contributions to the literature have noted that the relationship between returns and

predictors is not linear, and several approaches have been proposed to capture this non-

linearity. Markov-switching models are among the most popular models for forecasting

stock returns (Guidolin and Timmermann, 2009; Henkel et al., 2011). Other well-known

nonlinear speci�cations include threshold models (Franses and van Dijk, 2000; Terasvirta,

2006; Guidolin et al., 2009) and neural nets (Franses and van Dijk, 2000; Terasvirta, 2006;

White, 2006). Non- or semi-parametric modeling represents another approach for approx-
imating general functional forms for the relationship between the expected returns and

the predictors (Chen and Hong, 2010; Ait-Sahalia and Brandt, 2001).

In this paper, we contribute to the equity premium predictability literature by con-

sidering predictive quantile regression models. We argue that due to nonlinearity and

non-normality patterns, a linear regression approach might not be adequate for exploring

the ability of various predictors to forecast the entire distribution of returns. Empir-

ically, the evidence against normally distributed stock returns is overwhelming. The

1Following the related literature, equity premium is proxied by excess returns.
2Rapach and Zhou (2013) o¤er a detailed review on the issue of equity return predictability.
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equity premium distribution exhibits time varying volatility, excess kurtosis (fat tails)

and negative skewness, possibly induced by extreme market movements, business cycle

�uctuations, institutional change, policy shocks, advances in information technology, and

investor learning (Rapach et al., 2010). In this respect, we consider predictive quantile

regression models, which enable us to have a more complete characterization of the con-

ditional distribution of returns through a set of conditional quantiles. This approach is

non-parametric, more �exible than other parametric approaches, such as linear regres-

sion, Markov-switching and threshold regression models, and is robust to deviations from

normality, including the presence of outliers. Moreover, modeling just the conditional

mean of the return series, through a standard or complex linear regression speci�cation,

may obscure interesting characteristics and lead us to conclude that a predictor has poor

predictive performance, while it is actually valuable for predicting the lower or/and the

upper quantiles of the returns. Our framework allows us to capture the asymmetric ef-

fect of candidate predictors (non-linear relationship) on the return distribution and as a

result track di¤erent types of predictability. For example, Cenesizoglu and Timmermann

(2008) �nd that high T-bill rates reduce the central and upper quantiles of the return

distribution, while they don�t have a similar e¤ect on lower quantiles. In this respect,

low T-bill rates are associated with strong market performance, while the converse is not

true. To the extent that candidate predictors contain signi�cant information for certain

parts of the return distribution, but not for the entire distribution, a methodology that

properly integrates this information would lead to additional bene�ts.

Since the seminal paper of Koenker and Bassett (1978), quantile regression models

have attracted a vast amount of attention. Both theoretical and empirical research has

been conducted in the area of quantile regression, including model extensions, new in-

ferential procedures and numerous empirical applications; see, for example, Buchinsky

(1994, 1995) and Yu et al. (2003) among others.3 The paper most closely related to the

present paper is that of Cenesizoglu and Timmermann (2008), who employ a quantile

regression approach to capture the predictive ability of a list of state variables for the

distribution of stock returns. The authors �nd quantile-varying predictability both in-

sample and out-of-sample, which can be exploited in an asset allocation framework. In a

follow-up paper, Cenesizoglu and Timmermann (2012) note that return prediction mod-

els that allow for a time-varying return distribution lead to better estimates of the tails

of the distribution of the returns and su¤er less from unanticipated outliers. Similar con-

clusions are reached by Pedersen (2010), who employs both univariate and multivariate

quantile regressions to jointly model the distribution of stocks and bonds.

In this paper, we construct equity premium point forecasts by combining quantile

forecasts obtained from a set of simple regressions (i.e., regressions with only one regres-

3Applications in the �eld of �nance include Bassett and Chen (2001), Engle and Manganelli (2004),
Meligkotsidou et al. (2009) and Chuang et al. (2009).
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sor). To begin, each regressor xi;t (i = 1; :::; N) is used to predict the quantile of order � j
(j = 1; :::; J) of the distribution of the excess return of the next period (rt+1). Next, two

approaches are explored to combine these quantile forecasts into a point forecast that

is robust to non-normality and nonlinearity. One approach, which we name the Robust

Forecast Combination (RFC), proceeds by �rst combining the quantile forecasts across

all values of � j into point forecasts for each predictor xi;t: This step yields N robust

point forecasts, which are combined into a �nal point forecast using either a �xed or a

time-varying weighting scheme. An alternative approach, which we name the Quantile

Forecast Combination (QFC), consists of �rst combining the predicted quantiles of the

same order � j across all regressors. This step yields J quantile forecasts (one for each

� j), which are then combined into a �nal robust point forecast using either a �xed or

a time-varying weighting scheme. Note that both approaches (RFC and QFC) produce

point forecasts of the expected value of rt+1; conditional on the information available at

time t:

For comparison purposes, we employ the updated Goyal and Welch (2008) dataset

along with the standard linear regression predictive framework, as well as existing meth-

ods for combining individual forecasts from single predictor linear models. All di¤erent

forecasts are evaluated against the benchmark of a constant equity premium, using both

statistical and economic evaluation criteria. To anticipate our key results, we �nd consid-

erable heterogeneity among the candidate variables, as far as their ability to predict the

return distribution is concerned. More importantly, no single predictor proves successful

in forecasting the entire return distribution. Overall, a superior predictive performance,

both in terms of statistical and economic signi�cance, is achieved under the QFC ap-

proach with time-varying weighting schemes. One might expect the latter approach to

outperform the competing approaches considered, since it produces accurate quantile

forecasts �rst, by synthesizing information from di¤erent predictors, thus producing an

accurate estimate of the entire predictive distribution of the equity premium, and then it

combines the quantile forecasts using an optimal scheme to produce a �nal point forecast.

The remainder of the paper is organized as follows. Section 2 describes the econometric

models considered in this study, including the predictive mean and quantile regression

models. Section 3 presents our forecasting approaches, and Section 4 discusses how these

approaches can be combined. The framework for forecast evaluation, both in statistical

and economic evaluation terms, is presented in Section 5, while our empirical results are

reported in Section 6. Section 7 summarizes and presents the paper�s conclusions.

2 Predictive Regressions

In this section we present the predictive regression models we employ to forecast the

equity premium, denoted by rt, using a set of N predictive variables.
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2.1 Predictive mean regressions

First we consider all possible predictive mean regression models with a single predictor

of the form:

rt+1 = �i + �ixi;t + "t+1; i = 1; : : : ; N; (1)

where rt+1 is the observed excess return on a stock market index in excess of the risk-free

interest rate at time t+1, xi;t are the N observed predictors at time t and the error terms

"t+1 are assumed to be independent with mean zero and variance �2. Equation (1) is the

standard equity premium prediction model (see, for example, Rapach et al. 2010) and is

estimated using the Ordinary Least Squares (OLS) method. Based on the least squares

estimation, the expectation of a random variable r with distribution function F arises

as the point estimate of r corresponding to the quadratic loss function �(u) = u2, i.e., it

arises as the value of �r; which minimizes the expected loss:

E�(r � �r) =
Z
�(r � �r)dF (r):

Therefore, the OLS estimators �̂i; �̂i of the parameters in the predictive mean regression

models in (1) can be estimated by minimizing the sample estimate of the quadratic

expected loss,
PT�1

t=0 (rt+1 � �i � �ixi;t)
2, with respect to �i; �i.

4 Then, the point forecast

of the equity premium at time t+1, based on the ith model speci�cation, is obtained as:

r̂i;t+1 = �̂i + �̂ixi;t:

2.2 Predictive quantile regressions

The model speci�cation above is primarily devised to predict the mean of rt+1, not its

entire distribution. Hence, this model may fail to correctly predict the quantiles of the

distribution of rt+1; if the true relationship between rt+1 and xi;t is nonlinear or if rt+1
and xi;t are not jointly Gaussian. Following the literature on the nonlinear relationship

between returns and predictors (Guidolin and Timmermann, 2009; Guidolin et al., 2009;

Chen and Hong, 2010; Henkel et al., 2011), we adopt a more sophisticated approach to

equity premium forecasting by employing predictive quantile regression models (Koenker

and Bassett, 1978; Buchinsky, 1998; Yu et al., 2003). Quantile regression estimators are

more e¢ cient and more robust than mean regression estimators in cases that nonlinear-

ities and deviations from normality, including the presence of outliers, exist. The fact

that quantile regression estimators are not sensitive to outliers is particularly important

in our forecasting context. It implies that the quantile forecasts are still accurate in

the presence of extreme positive or negative returns in the sample and, therefore, the

respective combined point forecasts are robust.

4The sample size T denotes any estimation sample employed in our recursive forecasting experiment.
Details on the forecasting design are given in Section 3.
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We consider single predictor quantile regression models of the form:

rt+1 = �
(�)
i + �

(�)
i xi;t + "t+1; i = 1; : : : ; N; (2)

where � 2 (0; 1) and the errors "t+1 are assumed independent from an error distribution

g� (") with the �th quantile equal to 0, i.e.,
R 0
�1 g� (")d" = � . Model (2) suggests the

�th quantile of rt+1; given xi;t is Q� (rt+1jxi;t) = �
(�)
i + �

(�)
i xi;t, where the intercept and

the regression coe¢ cients depend on � . The �(�)i values are likely to vary across the �

values, revealing a larger amount of information about returns than the predictive mean

regression model.

Similar to the expectation of the random variable r, the �th quantile arises as the

solution to a decision-theoretic problem; that of obtaining the point estimate of r corre-

sponding to the asymmetric linear loss function, usually referred to as the check function:

�� (u) = u (� � I(u < 0)) =
1

2
[juj+ (2� � 1)u] : (3)

More speci�cally, minimization of the expected loss:

E�� (r � �r(�)) =
Z
�� (r � �r(�))dF (r);

with respect to �r(�) leads to the �th quantile. In the symmetric case of the absolute

loss function (� = 1=2), we obtain the median. Estimators of the parameters of the

linear quantile regression models in (2), �̂i
(�); �̂

(�)

i , can be obtained by minimizing the

sum
PT�1

t=0 ��

�
rt+1 � �i

(�) � �
(�)
i xi;t

�
; where the check function �� (u) has been given in

(3). Then, the forecast of the �th quantile of the distribution of the equity premium at

time t+1, based on the ith model speci�cation, is obtained as r̂i;t+1(�) = �̂i
(�)+ �̂

(�)

i xi;t:

3 Forecasting Approaches

In this section, we describe the forecasting approaches we follow. To facilitate the expo-

sition of our approaches, we �rst describe the design of our forecast experiment, which

is identical to the one employed by Goyal and Welch (2008) and Rapach et al. (2010),

in order to ensure comparability of our results. Speci�cally, we generate out-of-sample

forecasts of the equity premium using a recursive (expanding) window. In this way, all

the data available at a point in time are used and the precision of the estimates increases

as time evolves. We divide the total sample of T observations into an in-sample portion

of the �rst K observations and an out-of-sample portion of P = T �K observations used

for forecasting. The estimation window is continuously updated following a recursive

scheme, by adding one observation to the estimation sample at each step. As such, the

coe¢ cients in any predictive model employed are re-estimated after each step of the re-

5



cursion. Proceeding in this way through the end of the out-of-sample period, we generate

a series of P out-of-sample forecasts for the equity premium. The �rst P0 out-of-sample

observations serve as an initial holdout period for the methods that require one. In this

respect, we evaluate T�(K+P0) = P�P0 forecasts of the equity premium fr̂i;t+1gT�1t=K+P0

over the post-holdout out-of-sample period.

3.1 Forecasting approach based on mean regressions

Following Rapach et al. (2010), we exploit information across individual forecasts via

forecast combinations.5 Out-of-sample equity premium forecasts are generated in two

steps. The �rst step generates forecasts by employing the N individual predictive re-

gression models (1), i.e., each model is based on one of the candidate predictors. The

next step expands into combinations of these forecasts by means of the schemes analyzed

below. We refer to this forecasting approach as the Mean Forecast Combination (MFC)

approach.

More speci�cally, the combination forecasts of rt+1, denoted by r̂
(C)
t+1, are weighted

averages of the N single predictor individual forecasts, r̂i;t+1, i = 1; : : : ; N , of the form

r̂
(C)
t+1 =

NP
i=1

w
(C)
i;t r̂i;t+1; where w

(C)
i;t ; i = 1; :::; N; are the a priori combination weights at time

t. The simplest combination scheme is the one that attaches equal weights to all individual

models, i.e., w(C)i;t = 1=N , for i = 1; :::; N , called the Mean combination scheme. This

scheme is typically found to be a good forecast combination scheme as it reduces forecast

variance and bias through averaging out individual model biases. Moreover, weights are

known and don�t su¤er from estimation error. However, by attaching equal weights, little

chance is given for a better model to work dominantly against bad models. One way

to robustify the mean combination scheme and reduce its sensitivity to outlier forecasts

is by employing either the Trimmed Mean or the Median combination schemes. The

Trimmed Mean combination scheme sets w(C)i;t = 0 for the smallest and largest forecasts

and w(C)i;t = 1=(N � 2) for the remaining ones, while the Median combination scheme
employs the median of the fr̂i;t+1gNi=1 forecasts.
The second class of combination methods we consider, proposed by Stock and Watson

(2004), suggests forming weights based on the historical performance of the individual

models over a holdout out-of-sample period. Speci�cally, their Discount Mean Squared

Forecast Error (DMSFE) combination method suggests forming weights as follows:

w
(C)
i;t = m�1

i;t =

NX
j=1

m�1
j;t ; mi;t =

t�1X
s=K

 t�1�s(rs+1 � bri;s+1)2; t = K + P0; :::; T;

5Combining the forecasts of the individual models can reduce uncertainty risk associated with a single
predictive model and display superior predictive ability (Bates and Granger, 1969, Hendry and Clements,
2004).
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where  is a discount factor that attaches more weight to the recent forecasting accuracy

of the individual models in the cases where  2 (0; 1). The values of  we consider are
1:0 and 0:9. When  equals one, there is no discounting and the combination scheme

coincides with the optimal combination forecast of Bates and Granger (1969) for the case

of uncorrelated forecasts. Given that the performance of competing models changes over

time, this method may improve on the equal weighting scheme by weighting improved

forecasts progressively more heavily.

In a similar spirit, Aiol� and Timmermann (2006) develop conditional combining

methods exploiting persistence in forecasting performance. The authors argue that while

it is di¢ cult to identify the top model among forecasting models, it is possible to identify

clusters of good and bad models. The Cluster combination scheme is the third class of

combination schemes we employ. To create the Cluster combination forecasts, we form L

clusters of forecasts of equal size based on past MSFE performance. To avoid estimation

error of individual weights, each combination forecast is the average of the individual

model forecasts in the best-performing cluster. This procedure begins over the initial

holdout out-of-sample period and goes through the end of the available out-of-sample

period using a rolling window of P0 observations. In our analysis, we consider L = 2; 3.

The rolling holdout window employed adds �exibility and ensures quick incorporation of

good models in the forecast pool.

Finally, the Principal Components combination method of Chan et al. (1999) and of

Stock andWatson (2004) is considered. In this case, a combination forecast is based on the

�tted n principal components of the uncentered second moment matrix of the individual

model forecasts, bF1;s+1, ..., bFn;s+1 for s = K; :::; t � 1 and t = K + P0; :::; T . The OLS

estimates of '1; :::; 'n of the following regression: rs+1 = '1 bF1;s+1 + :::+ 'n bFn;s+1 + �s+1
can be thought of as the individual combination weights of the principal components.

The advantage of this method is that a large number of forecasts from individual models

are reduced to a few principal components. As such it provides a convenient method

for allowing some estimation of factor weights, yet reduces the number of weights that

must be estimated. On the other hand, the performance of this method depends on the

selection criterion for the number of principal components and the precision with which

weights are estimated. To select the number n of principal components, we employ the

ICp3 information criterion developed by Bai and Ng (2002) and set the maximum number

of factors to 5.

3.2 Forecasting approaches based on Quantile Regressions

In this section, we describe two alternative quantile-based forecasting approaches. Both

approaches generate a set of quantile forecasts of the distribution of the excess return

of the next period (rt+1), employing simple regressions (i.e., regressions with only one

regressor, Equation 2). These approaches di¤er in the way that these quantile forecasts
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are combined into a point forecast.

3.2.1 The RFC approach (Robust Forecast Combination)

Our �rst approach, the RFC approach, proceeds by �rst combining the quantile forecasts,

r̂i;t+1(�); � 2 S; where S denotes the set of quantiles considered, into point forecasts for
each predictor xi;t; i = 1; :::; N: These combinations are constructed via both �xed and

time-varying schemes.

With respect to �xed weighting schemes, robust point forecasts are formed as follows:

r̂i;t+1 =
X
�2S

p� r̂i;t+1(�);
X
�2S

p� = 1:

Here the weights, p� ; represent the probabilities attached to di¤erent quantile forecasts,

suggesting how likely it is for each regression quantile to predict the return in the next

period. We consider Tukey�s (1977) trimean and the Gastwirth (1966) three-quantile

estimator given, respectively, by the following formulae:

FW1: bri;t+1 = 0:25r̂i;t+1(0:25) + 0:50r̂i;t+1(0:50) + 0:25r̂i;t+1(0:75)
FW2: bri;t+1 = 0:30r̂i;t+1(1=3) + 0:40r̂i;t+1(0:50) + 0:30r̂i;t+1(2=3):

Furthermore, we use the alternative �ve-quantile estimator, suggested by Judge et al.

(1988), which attaches more weight to extreme positive and negative events as follows:

FW3: bri;t+1 = 0:05r̂i;t+1(0:10) + 0:25r̂i;t+1(0:25) + 0:40r̂i;t+1(0:50)

+ 0:25r̂i;t+1(0:75) + 0:05r̂i;t+1(0:90):

The above three estimators have been proposed in the literature as methods to obtain

robust point estimates of the central location of a distribution based on small sets of

quantile estimates. To incorporate information from a larger set of quantiles, trying to

obtain a more complete characterization of the distribution of interest, we also consider

a fourth estimator of the form:

FW4: bri;t+1 = 0:05r̂i;t+1(0:50) + 0:05X
�2S

r̂i;t+1(�); where S = f0:05; 0:10; :::; 0:95g:

The above estimators belong to the class of L-estimators, consisting of estimators occur-

ring as linear combinations of order statistics (here, linear combinations of quantiles).

The weights re�ect speci�c beliefs about how certain quantile estimates should a¤ect the

estimate of the central location. As Koenker and Bassett (1978) show, estimators of

this type have high e¢ ciency over a large class of distributions. A subset of the above

speci�cations has been employed by Taylor (2007) and Ma and Pohlman (2008), among
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others.

Relaxing the assumption of a constant weighting scheme seems to be a natural exten-

sion. A number of factors, such as changes in regulatory conditions, market sentiment,

monetary policies, institutional framework or even changes in macroeconomic interre-

lations (Campbell and Cochrane, 1999; Menzly et al., 2004; Dangl and Halling, 2012)

can motivate the employment of time-varying schemes in the generation of robust point

forecasts. The variable of interest, ri;t+1, is predicted by minimizing the mean squared

forecast errors, i.e., Et(rt+1 � r̂i;t+1)
2 = 1

t�K

t�1P
s=K

(rs+1 � bri;s+1)2; t = K + P0; :::; T over a

continuously updated (by one observation at each step) holdout out-of-sample period. In

this way, an optimal linear combination pt=[p�;t]�2S of the quantile forecasts r̂i;t+1(�) is

obtained recursively under an appropriate set of constraints. This is given by:

r̂i;t+1 =
X
�2S

p�;tr̂i;t+1(�);
X
�2S

p�;t = 1:

Our optimization procedure is the analogue of the constrained Granger and Ra-

manathan (1984) method for quantile regression forecasts (see also Timmermann, 2006;

Hansen, 2008; Hsiao and Wan, 2014). Speci�cally, we employ constrained least squares

using the quantile forecasts as regressors in lieu of a standard set of predictors. The time-

varying weights on the quantile forecasts bear an interesting relationship to the portfolio

weight constraints in �nance. In this sense, we constrain the weights to be non-negative,

sum to one and to not exceed certain lower and upper bounds to reduce the volatility of

the weights and stabilize the forecasts.

In our empirical application, we employ three time-varying speci�cations that may be

viewed as the time-varying counterparts of our FW1-FW3 schemes.6 More speci�cally,

FW1 with time-varying coe¢ cients becomes:

TVW1: bri;t+1 = p0:25;tr̂i;t+1(0:25) + p0:50;tr̂i;t+1(0:50) + p0:75;tr̂i;t+1(0:75);

where p�;t; � 2 S = f0:25; 0:50; 0:75g are estimated by the optimization procedure:

pt = argmin
pt

Et[rt+1 � (p0:25;tr̂i;t+1(0:25) + p0:50;tr̂i;t+1(0:50) + p0:75;tr̂i;t+1(0:75))]
2

s:t: p0:25;t + p0:50;t + p0:75;t = 1; 0:20 � p0:25;t � 0:40;
0:40 � p0:50;t � 0:60; 0:20 � p0:75;t � 0:40:

6Since our methodology requires a holdout out-of-sample period during which the optimal linear
combination pt is estimated, a fourth speci�cation based on FW4 is not employed due to the increased
parameter space.
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Similarly, the FW2 scheme with time-varying coe¢ cients becomes:

TVW2: bri;t+1 = p1=3;tr̂i;t+1(1=3) + p0:5;tr̂i;t+1(0:50) + p2=3;tr̂i;t+1(2=3);

where p�;t; � 2 S = f1=3; 0:50; 2=3g are estimated by the following optimization proce-
dure:

pt = argmin
pt

Et[rt+1 � (p1=3;tr̂i;t+1(1=3) + p0:5;tr̂i;t+1(0:50) + p2=3;tr̂i;t+1(2=3))]
2

s:t: p1=3;t + p0:50;t + p2=3;t = 1; 0:15 � p1=3;t � 0:45;
0:30 � p0:5;t � 0:50; 0:15 � p2=3;t � 0:45:

Finally, the FW3 scheme with time-varying coe¢ cients becomes:

TVW3: bri;t+1 = p0:10;tr̂i;t+1(0:10) + p0:25;tr̂i;t+1(0:25) + p0:5;tr̂i;t+1(0:50)

+ p0:75;tr̂i;t+1(0:75) + p0:90;tr̂i;t+1(0:90);

where p�;t; � 2 S = f0:10; 0:25; 0:50; 0:75; 0:90g are estimated by the following optimiza-
tion procedure:

pt = argmin
pt

Et[rt+1 � (p0:10;tr̂i;t+1(0:10) + p0:25;tr̂i;t+1(0:25)+

+p0:5;tr̂i;t+1(0:5) + p0:75;tr̂i;t+1(0:75) + p0:90;tr̂i;t+1(0:90))]
2

s:t: p0:10;t + p0:25;t + p0:50;t + p0:75;t + p0:90;t = 1

0:00 � p0:10;t � 0:10; 0:15 � p0:25;t � 0:35;
0:40 � p0:50;t � 0:60; 0:15 � p0:75;t � 0:35; 0:00 �; p0:90;t � 0:10:

Employing one of the weighting schemes outlined yields N robust point forecasts for

each predictor xi;t; i = 1; :::; N , which are then combined into a �nal point forecast using

the combination schemes outlined in Section 3.1.

3.2.2 The QFC approach (Quantile Forecast Combination)

Our second approach, the QFC approach, proceeds by �rst combining the predicted

quantiles r̂i;t+1(�) of the same order � across all candidate predictors N: To do so, we

adjust the combination methods outlined in Section 3.1 to our quantile setting. TheMean,

Trimmed Mean and Median combination schemes retain their validity in our framework

because they do not rely on some measure of past performance. On the other hand, the

DMSFE, Cluster and Principal Components combination methods, which are formed on

the basis of past performance as measured by the MSFE, have to be modi�ed. To do so,

we replace the MSFE metric by a metric based on the asymmetric linear loss function

10



(Equation 3).

The combined quantile forecasts, r̂(C)t+1(�), are weighted averages of the form r̂
(C)
t+1(�) =

NP
i=1

w
(C)
i;t r̂i;t+1(�); where w

(C)
i;t denotes the combination weights. First, we introduce the

Discount Asymmetric Loss Forecast Error (DALFE) combination method which suggests

forming weights as follows:

w
(C)
i;t = m�1

i;t =

NX
j=1

m�1
j;t ; mi;t =

t�1X
s=K

 t�1�s�� (rs+1 � bri;s+1(�)); t = K + P0; :::; T

where  2 (0; 1) is a discount factor. Similarly to the DMSFE combination method, the
combination weights are computed based on the historical performance of the individual

quantile regression models over the holdout out-of-sample period, and  is set equal to

0.9 and 1. In a similar manner, we modify the Cluster combination method by forming

L clusters of forecasts based on their performance as measured by the asymmetric loss

forecast error. The Asymmetric Loss Cluster (AL Cluster) combination forecast is the

average of the individual quantile forecasts in the best performing cluster, which contains

the forecasts with the lowest expected asymmetric loss values. We consider forming

L = 2; 3 clusters.

Next, we introduce the Asymmetric Loss Principal Components method (AL Principal

Components), under which the combination of forecasts is based on the �tted n principal

components of the uncentered second moment matrix of the individual quantile forecasts,bF (�)1;s+1, ..., bF (�)n;s+1; for s = K; :::; t�1 and t = K+P0; :::; T , where the combination weights

are computed by minimizing the sum:

t�1X
s=K

�� (rs+1 � '1 bF (�)1;s+1 � :::� 'n bF (�)n;s+1):

The ICp3 information criterion is used to select the number n of the principal components.

Finally, we put forward two combination methods, under which optimal quantile fore-

casts, r̂(C)t+1(�), are obtained by minimizing an objective function based on the asymmetric

linear loss. More speci�cally, we �rst consider the following optimization scheme, which

is an analogue of the lasso quantile regression:

wt = argmin
wt

X
t

��

 
rt+1 �

NX
i=1

w
(C)
i;t r̂i;t+1(�)

!
s:t:

NX
i=1

w
(C)
i;t = 1,

NX
i=1

jw(C)i;t j � �1;

where the parameter �1 is used as a control for the amount of shrinkage. We refer to this

combination quantile forecast as the Asymmetric Loss Lasso (AL Lasso). We also consider

the Asymmetric Loss Ridge (AL Ridge) optimization scheme, which is an analogue of the
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ridge quantile regression:

wt = argmin
wt

X
t

��

 
rt+1 �

NX
i=1

w
(C)
i;t r̂i;t+1(�)

!
s:t:

NX
i=1

w
(C)
i;t = 1;

NX
i=1

�
w
(C)
i;t

�2
� �2;

where the parameter �2 is used as a control for the amount of shrinkage. In our study,

the parameters �1; �2 are set equal to 1.4 and 0.4, respectively.7

Once we obtain the set of combined quantile forecasts, we calculate a �nal robust point

forecast using one of the �xed or time-varying weighting schemes outlined in Section 3.2.1.

4 Forecast Combinations

We now consider an amalgamation of the approaches considered so far, namely the MFC,

RFC and QFC approaches.8 To check whether potential bene�ts can arise from combining

the three approaches, we employ the multiple forecast encompassing tests of Harvey and

Newbold (2000). In the event that our three approaches contain distinct information

about future excess returns, we suggest forming equally weighted composite forecasts.

The notion of forecast encompassing was developed by Granger and Newbold (1973)

and Chong and Hendry (1986) through the formation of composite forecasts as weighted

averages of the forecasts of two competing models.9 Harvey and Newbold (2000) extend

the pairwise encompassing tests (see Section 5.1) developed by Harvey et al. (1998) to

compare three or more forecasts. We consider forming a composite forecast, r̂c;t+1; as an

optimal combination of the forecasts of the predictive mean regressions, the robust fore-

cast combinations and the quantile forecast combinations, i.e., r̂c;t+1 = �MFC r̂MFC;t+1 +

�RFC r̂RFC;t+1 + �QFC r̂QFC;t+1; where �MFC + �RFC + �QFC = 1: If �MFC = 1; and

�RFC = �QFC = 0; the MFC forecasts encompass the RFC and QFC ones, as the RFC

and QFC forecasts do not contain information useful for forecasting the equity premium

other than that already employed in the linear model. In a similar manner, we can

test whether the RFC model encompasses QFC and MFC and whether the QFC model

encompasses the MFC and the RFC model.

Harvey and Newbold developed two test statistics, namely the F � test statistic and

the MS� statistic, to test the null hypothesis of multiple forecast encompassing.10 The

authors show that the F � test exhibits signi�cant size distortions in small and moder-

ate samples with non-normal errors, while the MS� test exhibits good size and power

7The above two optimization schemes can be written equivalently using the L1 norm for the lasso
quantile regression and the L2 norm for the ridge quantile regression in the objective function. More
details on the lasso regression can be found in Tibsirani (1996), on the lasso quantile regression in Wu
and Liu (2009) and on the ridge regression can be found in Hastie et al. (2009).

8The term �amalgamation�is employed by Rapach and Strauss (2012) when considering combining
three di¤erent econometric approaches to forecast US state employment growth.

9See also Clements and Hendry (1998).
10To save space, we do not report the explicit formulae of the tests.
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properties in moderately large samples. To gain a more thorough understanding on the

relationship between the rival models, we must employ each one of the models as the

reference model and conduct the test as many times as the models considered. Failure to

reject the null hypothesis does not necessarily imply that the reference model is strictly

dominant to the competing forecasts. Rather, the forecasts may be highly correlated, in

which case a combination of nearly identical or similar forecasts cannot improve upon

any individual forecast. On the other hand, rejection of the null hypothesis in the en-

compassing test suggests that the forecasts of the reference model can be improved by

combining them with the forecasts of the rival model.

5 Evaluation of forecasts

5.1 Statistical evaluation

The natural benchmark forecasting model is the historical mean or prevailing mean (PM)

model, according to which the forecast of the equity premium coincides with the estimate,b�i, in the linear regression model (1) when no predictor is included. As a measure of the
forecast accuracy, we employ the ratio MSFEi

MSFEPM
; whereMSFEi =

PT�1
t=K+P0

(rt+1�bri;t+1)2
is the Mean Square Forecast Error associated with each of our competing models and

speci�cations, and MSFEPM is the respective value for the PM model, both of which

are computed over the out-of-sample period. Values lower than 1 are associated with the

superior forecasting ability of the respective models/speci�cations.

To compare the information content in our proposed models/speci�cations relevant

to the benchmark PM model, we use encompassing tests. Speci�cally, consider forming a

composite forecast, r̂c;t+1; as a convex combination of model A forecasts, r̂A;t+1; and the

ones of model B, r̂B;t+1; in an optimal way so that r̂c;t+1 = �Ar̂A;t+1+�B r̂B;t+1; �A+�B = 1:

If the optimal weight attached to model A forecasts is zero (�A = 0), then model B

forecasts encompass model A forecasts in the sense that model B contains a signi�cantly

larger amount of information than that already contained in model A. Harvey et al.

(1998) developed the encompassing test, denoted as ENC � T , based on the approach

of Diebold and Mariano (1995) to test the null hypothesis that �A = 0; against the

alternative hypothesis that �A > 0: Let uA;t+1 = rt+1 � r̂A;t+1; uB;t+1 = rt+1 � r̂B;t+1

denote the forecast errors of the competing models A and B, respectively and de�ne

dt+1 = (uB;t+1 � uA;t+1)uB;t+1: The ENC � T statistic is given by:

ENC � T =
p
(P � P0)

dqdV ar(d) ;
where d is the sample mean, dV ar(d) is the sample-variance of fds+1gT�1s=K+P0

and P �P0 is
the length of the out-of-sample evaluation window. The ENC�T statistic is asymptoti-
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cally distributed as a standard normal variate under the null hypothesis. To improve the

�nite sample performance, Harvey et al. (1998) recommend employing Student�s t distri-

bution with P � P0 � 1 degrees of freedom. To render a model as superior in forecasting
ability, one also needs to test whether model A forecasts encompass model B forecasts

(�B = 0) by employing the ENC � T statistic based on dt+1 = (uA;t+1 � uB;t+1)uA;t+1:

When both null hypotheses are rejected, then the competing models contain discrete in-

formation about the future and an optimal convex (�A; �B 2 (0; 1)) combination forecast
can be formed. In the event that none of the hypotheses of interest is rejected, both

models contain similar information and the competing models are equivalent in terms

of forecasting ability. When one of the null hypotheses is rejected, then the respective

model forecasts dominate the forecasts of the competing model.

5.2 Economic evaluation

While MSFE is the most popular measure of forecast accuracy, it is not necessarily the

most relevant metric for assessing stock return forecasts, since it does not account for

the risk borne by the investors over the out-of-sample period. To address this issue,

we calculate realized utility gains for a mean-variance investor in real time. Following

Campbell and Thompson (2008) and Rapach et al. (2010) we employ a mean-variance

utility for an investor with relative risk aversion parameter 
 who allocates her wealth

between the safe (risk-free Treasury Bill) and the risky asset (stock market) quarterly

employing equity premium forecasts based on the competing models/ speci�cations.11

The investor decides at the end of each period t to allocate the following share (wt) of

her wealth to the risky asset:

wt =
Et(rt+1)


V art(rt+1)
=

bri;t+1

V art(rt+1)

; (4)

where Et and V art denote the conditional expectation and variance of the equity pre-

mium (rt+1) (Campbell and Viceira, 2002). The conditional expectation of each model/

speci�cation is given by the forecast from the speci�c model and the variance is calculated

using a ten-year rolling window of quarterly returns. Over the forecast evaluation period

the investor with an initial wealth of W0 realizes an average utility of:

U =
W0

(P � P0)

"
P�P0�1X
t=0

(Rp;t+1)�



2

P�P0�1X
t=0

(Rp;t+1 �Rp)
2

#
; (5)

11This utility-based approach, initiated by West et al. (1993), has been extensively employed in the
literature as a measure for ranking the performance of competing models in a way that captures the
trade-o¤ between risk and return (Fleming et al., 2001; Marquering and Verbeek, 2004; Della Corte et
al., 2009, 2010; Wachter and Warusawitharana, 2009). Alternative utility speci�cations may be employed
such as power or log utility.
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where Rp;t+1 is the gross return on her portfolio at time t + 1:12 In a similar manner,

the investor can form her portfolio on the basis of the PM model, i.e. the historical

average forecast. The utility gain is the di¤erence between the average realized utility

over the out-of-sample period of any of our i competing models/speci�cations (U i) and

the respective value for the prevailing mean (PM) model (UPM). The utility gain can be

interpreted as the portfolio management fee that an investor would be willing to pay to

have access to the additional information available in our proposed speci�cations relative

to the information in the historical equity premium. Following Campbell and Thompson

(2008) and Rapach et al. (2010) we set 
 equal to three and calculate this performance

fee as follows:13

� = �U = U i � UPM : (6)

If our proposed model does not contain any economic value, the performance fee is neg-

ative (� � 0); while positive values of the performance fee suggest superior predictive

ability against the PM benchmark. � is reported in annualized basis points.

6 Empirical Application

6.1 The data

The data we employ are from Goyal and Welch (2008), who provide a detailed description

of transformations and datasources.14 The equity premium is calculated as the di¤erence

of the continuously compounded S&P 500 returns, including dividends, and the Treasury

Bill rate. Our forecasting experiment is conducted on a quarterly basis and the data span

1947:1 to 2010:4. Our out-of-sample forecast evaluation period corresponds to the �long�

one analyzed by Goyal and Welch (2008) and Rapach et al. (2010), covering the period

1965:1-2010:4.15

The 15 economic variables employed in our analysis are related to stock-market char-

acteristics, interest rates and broad macroeconomic indicators. With respect to stock

market characteristics, we employ the dividend�price ratio, D/P (di¤erence between the

log of dividends paid on the S&P 500 index and the log of stock prices (S&P 500 index),

where dividends are measured using a one-year moving sum), the dividend yield, D/Y

(di¤erence between the log of dividends and the log of lagged stock prices), the earnings�

12We standardize the investor problem by assuming that W0 = 1 and constrain the portfolio share on
the risky asset to lie between 0% and 150% each month, i.e. 0 � wt � 1:5:
13A value of 
 = 3 represents medium risk aversion. Alternatively, values of 
 ranging from 1 (low risk

aversion) to 10 (very high risk aversion) could be employed.
14The data are available at http://www.hec.unil.ch/agoyal/. We thank Prof. Goyal for making them

available to us.
15Please note that the out-of-sample period refers to the period used to evaluate the out-of-sample

forecasts. We use the ten years 1955:1 to 1964:4 (40 quarters) before the start of the out-of-sample
evaluation period as the initial holdout out-of-sample period, required for both constructing our time-
varying robust forecasts and for several forecast combination schemes.
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price ratio, E/P (di¤erence between the log of earnings on the S&P 500 index and the log

of stock prices, where earnings are measured using a one-year moving sum), the dividend�

payout ratio, D/E (di¤erence between the log of dividends and the log of earnings), the

stock variance, SVAR (sum of squared daily returns on the S&P 500 index), the book-

to-market ratio, B/M (ratio of book value to market value for the Dow Jones Industrial

Average) and the net equity expansion, NTIS (ratio of twelve-month moving sums of net

issues by NYSE-listed stocks to total end-of-year market capitalization of NYSE stocks).

This set of variables, consisting mainly of valuation ratios, aims to capture some measure

of �fundamental�value to market value since these ratios are widely used to relate stock

valuation to actual cash �ows, pro�ts or �rm values.

Turning to interest-rate related variables, we employ six variables ranging from short-

term government rates to long-term government and corporate bond yields and returns

along with their spreads; namely the Treasury bill rate, TBL (Interest rate on a three-

month Treasury bill), the long-term yield, LTY (Long-term government bond yield),

the long-term return, LTR (return on long-term government bonds), the term spread,

TMS (di¤erence between the long-term yield and the Treasury bill rate), the default

yield spread, DFY (di¤erence between BAA- and AAA-rated corporate bond yields), the

default return spread, DFR (di¤erence between long-term corporate bond and long-term

government bond returns). These variables capture level or slope stock market e¤ects

from the term structure, since for example the short term rate is linked with �rms�

�nancing costs, while the long term interest rate is associated with long term growth

prospects. A positive term spread is associated with future expansions, while a widening

default spread is linked to increased equity default risk and recessions. In this respect,

they act as business cycle variables along with the the in�ation rate, INFL (calculated

from the CPI- all urban consumers) and the investment-to-capital ratio, I/K (ratio of

aggregate -private nonresidential- �xed investment to aggregate capital for the entire

economy), which aim to capture the overall macroeconomic environment.

6.2 Empirical results

6.2.1 A motivating illustration

Before presenting our empirical results, we provide an illustration of the sources of the

potential bene�ts of our proposed methodology. The aim of this exercise is to assess the

predictive ability of the individual predictor variables, xi;t; to forecast the �th quantile.

To this end, we generate forecasts employing a single predictor at a time, br(�)i;t+1 = b�(�)i +b�(�)i xi;t; i = 1; :::; N; and calculate the expected asymmetric loss,
P

t ��

�
rt+1 � br(�)i;t+1�,

associated with each model speci�cation. Next, we calculate the expected loss associated

with the quantile forecasts, br(�)t+1 = b�(�); obtained from the Prevailing Quantile (PQ)

model, i.e., the model that contains only a constant. This prevailing quantile model serves
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as a benchmark in the same fashion as the historical average (prevailing mean) serves

as a benchmark in typical predictive mean regressions. Table 1, Panel A illustrates our

�ndings with highlighted (in grey) cells suggesting a superior predictive ability, i.e., lower

out-of-sample values of the expected asymmetric loss. Overall, we observe considerable

heterogeneity among the candidate variables as far as their ability to predict the return

distribution is concerned. For example, the D/P and D/Y variables display predictive

ability for the 10th and 15th quantile, but mainly for the central and some right-tail

quantiles of the distribution of returns, i.e., from the 45th to the 80th quantiles. On

the other hand, DFR, INFL and I/K are valuable predictors for the left-tail and central

quantiles of the return distribution. Finally, D/E, SVAR and DFY help in predicting

some upper quantiles and TBL the 30th to 45th quantiles. It is apparent that no single

predictor proves successful in predicting the entire distribution of returns.

[TABLE 1 AROUND HERE]

We now examine whether combining the information from di¤erent predictors to pre-

dict each quantile enhances our ability to forecast the quantiles of the return distribution.

For this purpose, we employ the appropriate combination methods for combining quantile

forecasts, as described in Section 3.2.2. The potential predictive ability of the combination

schemes considered is outlined in Table 1, Panel B. Our results suggest that combination

methods outperform single variable models over the whole range of the future return

distribution. The Mean, Trimmed Mean, DALFE and AL Ridge methods cover the full

range of the distribution, while the Median and the AL Cluster methods are successful in

all parts of the distribution, with the exception of the 90th and the 5th quantile, respec-

tively. The AL Principal Components combination method does not outperform the PQ

model in terms of predictive ability, except for the 30th and 40th quantile. Finally, the

AL Lasso method is superior to the PQ model at forecasting the left part of the return

distribution and some right-tail quantiles.

6.2.2 Statistical evaluation of alternative approaches

Table 2 reports the out-of-sample performance of both the single predictor mean regres-

sion forecasts and forecasts obtained using the MFC approach. In particular, Table 2

presents the MSFE ratios of each of the individual predictive regression models relative

to the historical average benchmark model for the out-of-sample period 1965:1-2010:4.

Values lower than 1 indicate a superior forecasting performance of the predictive models

with respect to the historical average forecast. We observe that only four out of the

15 individual predictors, namely D/P, D/Y, DFR and I/K, have lower than one MSFE

ratios, indicating superior predictive ability.

To assess the statistical signi�cance of the out-of-sample forecasts of the various com-

peting models with respect to the PM forecasts, we use the encompassing test. In Table

2, �A denotes the parameter associated with the test that examines whether the PM
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forecasts encompass the forecasts taken from the individual predictive models, whereas

�B denotes the parameter associated with the test that examines whether the individual

predictive model forecasts encompass the PM ones. Our �ndings suggest that the D/P,

D/Y and I/K predictors contain useful forecasting information beyond what is already

contained in the PM model. On the other hand, the PM forecasts dominate the D/E,

B/M, NTIS, LTY, LTR and DFY forecasts. Our �ndings with respect to the MFC ap-

proach suggest that all of the combination schemes (except for the Principal Components

method) produce lower than unity MSFE ratios. The encompassing test con�rms the

statistical signi�cance of our forecasts obtained by this approach (with the exception of

the Principal Components method). Overall, the results of Table 2 are in agreement

with the �ndings of Rapach et al. (2010), who found that D/P, D/Y and I/K have sig-

ni�cant forecasting ability and that the combination methods outperform the individual

predictive regression models.

[TABLE 2 AROUND HERE]

Table 3 reports the MSFE ratios and the results of the encompassing test for the RFC

approach forecasts (Panel A) and the QFC approach forecasts (Panel B), under both �xed

and time-varying weighting schemes, relative to the historical average (PM) benchmark

model.16 Based on Panel A of Table 3, we may draw the following conclusions. First,

regarding the results of the RFC approach under �xed weighting schemes (FW1-FW4),

we observe that almost all of the combination methods, except for the Principal Com-

ponents method, and in some cases the Cluster 3 method, provide MSFE ratios below

unity and, hence, their forecasts dominate the PM forecast. The related encompassing

tests con�rm the statistical signi�cance of these forecasts. A comparison of the di¤erent

combination techniques suggests that the DMSFE methods rank �rst, followed by the

mean combination method. Among the four �xed weighting schemes, the FW4 scheme

produces, in most of the cases, lower MSFE ratios, indicating improved predictive per-

formance, most likely because it utilizes distributional information obtained from a �ner

grid of return quantiles. Second, the results of the RFC approach under time-varying

weighting schemes (TVW1-TVW3) are more striking. The MSFE ratios in this case are

all below unity, ranging from 0.976 for the Median-TVW2 combination method to 0.963

for the Mean-TVW3 combination method.17 Moreover, all of the MSFE ratios for the

RFC approach that are based on time-varying weights are lower than the corresponding

MSFE ratios of both the MFC (Table 2) and the �xed weighting RFC approach (Table 3,

Panel B). The encompassing tests suggest that the RFC forecasts dominate the forecasts

of the PM model.
16The respective results for single predictor robust point forecasts are available from the authors upon

request. These results indicate superior forecasting ability of four predictors over the historical average,
namely D/P, D/Y, DFR and I/K and they show improved out-of-sample performance over the mean
regression approach, especially in the case of time-varying weighting schemes.
17Since the time-varying weighting schemes require a holdout out-of-sample period, they can only be

used together with combination methods that do not require a holdout period.
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Panel B of Table 3 presents the out-of-sample performance of the QFC robust point

forecasts obtained under �xed (FW1-FW4) and time-varying weighting schemes (TVW1-

TVW3). The results of Panel B suggest that the QFC forecasts that are based on �xed

weighting schemes, with the exception of the AL Principal Components combination

method, provide MSFE ratios below unity, indicating a superior performance relative to

the historical average benchmark. A comparison of the di¤erent combination methods

reveals that the AL Ridge method ranks �rst, followed by the DALFE, the Mean and

the AL Cluster 2. It is interesting to observe that more promising results arise from the

use of time-varying weighting schemes of the proposed QFC approach. Speci�cally, the

QFC-TVW approach generates MSFE ratios below unity, and in many cases, the lowest

ratios among the di¤erent forecasting approaches considered in our analysis. The results

of Table 3 suggest that the best out-of-sample performance is obtained by applying the

Mean QFC approach using time-varying weights.

[TABLE 3 AROUND HERE]

Pairwise Encompassing Tests

Our analysis so far has shown that the proposed forecasting methods based on quan-

tile regression (i.e., the RFC and QFC approaches) using time-varying weighting provide

superior forecasts compared to the standard MFC approach. Below, we present and dis-

cuss a more formal comparison of the MFC approach with the two alternative approaches

proposed in this paper via a series of encompassing tests. Speci�cally, we compare all

pairs of forecasts obtained by the MFC, the time-varying RFC and the time-varying QFC

approaches using pairwise encompassing tests. The results of these tests are shown in

Table 4 (Panel A). The comparison of MFC with RFC shows that the MFC forecasts are

dominated by the RFC forecasts under the �rst weighting scheme, if either the Mean or

the Trimmed Mean combination method is used, and under the third weighting scheme,

if the Median combination method is used. Similarly, the MFC forecasts are dominated

by the QFC forecasts under both the �rst and the second weighting schemes for all the

combination methods considered. Quite importantly, the MFC forecasts do not prove

more accurate than any of the proposed forecasting approaches based on quantile regres-

sion. Finally, the comparison of the two robust forecasting approaches with each other

shows that the QFC forecasts are superior to the RFC forecasts for the Mean and Median

combination methods under the third time-varying weighting scheme.

[TABLE 4 AROUND HERE]

Multiple Encompassing Tests and an Amalgam Forecast

To check whether potential bene�ts can arise from combining the three approaches,

namely the MFC, the RFC and the QFC approach, we employ the multiple forecast

encompassing tests of Harvey and Newbold (2000). Given the abundance of the models

we have considered so far, we only report multiple forecast encompassing tests for the

models employed in the pairwise encompassing tests. Table 4, Panel B (columns 2-4)

19



reports the respective MS� test statistics. Overall, non-rejections of the null dominate

our �ndings, pointing to similarities in the forecasting ability of our competing models

and possibly non-gains from considering forming composite forecasts. More speci�cally,

the only case that the MS� test rejects the null of multiple encompassing is when the

Mean combination scheme is employed and the robust point forecasts are generated by the

TVW3 scheme. Forming composite forecasts of the three approaches considered can help

us gain more insight into the nature of our forecasts. Given that our experiment should

be in real time, we do not estimate the weights in forming our composite forecasts, rather

we attach a weight of 1/3 to each of our competing models. Table 4, Panel B (column 5)

reports the MSFE ratio of our amalgam forecasts along with the related encompassing

tests (columns 6-7). Overall, the MSFE ratio ranges from 0.964 for the amalgam forecast

formed on the basis of Mean combination schemes and TVW1 robust forecasts to 0.983

for the forecasts formed based on the Median combination schemes and TVW3. More

importantly, all amalgam forecasts dominate the benchmark forecasts of the historical

average as indicated by the encompassing tests. However, no amalgam forecast proves

more accurate than the forecasts of the QFC and/or RFC methods, lending support

to the superiority of our proposed approaches. Even in the case that the MS� test

pointed to bene�ts to combining methods, namely the Mean combination scheme with

the robust point forecasts generated by TVW3, the amalgam forecast is superior to the

MFC forecasts but not superior to the RFC or QFC forecasts.

6.2.3 Economic evaluation of alternative approaches

We begin our analysis with the economic evaluation of the MFC approach (Table 5,

Panel A, column 2). Our results suggest that, regardless of the method employed, an

investor enjoys utility gains ranging from 145 (Median) to 321 (DMSFE(0.9)). Quite

interestingly, while the Principal Components method is not statistically superior to the

benchmark model, its employment can generate pro�ts to an investor amounting to 236

bps. The combination methods with the highest ability to time the market are the

DMSFE methods, followed by the Mean and the Trimmed Mean. Next, we turn our

attention to the economic performance of the �xed weighting RFC approach (Table 5,

Panel A, columns 3-6). Overall, our results suggest that an investor who employs the

RFC approach will always generate positive abnormal returns, which are nearly as good

as the MFC ones. The lowest utility gains are observed in the Median method ranging

from 18 bps to 108 bps, whereas the highest utility gains are attained by the Principal

Components, Cluster 2 and DMSFE(0.9). A comparison of the four weighting schemes

reveals that FW4, which aggregates information of quantiles over a �ner grid, provides the

investor with more utility gains, and the highest performance fee of 275 bps is achieved

when the investor employs FW4 with DMSFE(0.9). Turning to our time-varying RFC

approach (Table 5, Panel A, columns 7-9), our �ndings indicate that the time-varying
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RFC approach outperforms both the MFC and the �xed weighting RFC approaches. The

utility gains range from 159 bps (TVW2 Median) to 395 bps (TVW3 Mean), which is

the highest value of the utility gain attained so far.

[TABLE 5 AROUND HERE]

Panels B and C (Table 5) address the issue of the economic evaluation of the QFC

approach and the amalgam forecasts, respectively. The overall picture that emerges

con�rms the robustness of our proposed methodology. More speci�cally, the performance

fee that an investor would be willing to pay to utilize our proposed models (with the

exception of the FW-Median combination method) ranges from 158 bps for the Trimmed

Mean QFC-FW1 to 425 bps for QFC-TVW1 and the Mean combination method. When

considering the �xed weighting schemes, the best performance is achieved by AL Lasso

(QFC-FW1), AL Cluster 3 (QFC-FW2) and AL Ridge (QFC-FW3 and QFC-FW4).

More importantly, when an investor employs any of the QFC-TVW models, she can

enjoy bene�ts ranging from 243 bps to 425 bps. Superior performance is achieved by the

QFC-TVW1 scheme, regardless of the combination method employed. Comparing our

QFC to the RFC time-varying approaches, we �nd that when employing either TVW1

or TVW2, QFC is to be preferred, while the opposite holds for TVW3. Finally, it is

interesting to note that the amalgam forecasts attain a satisfactory performance ranging

from a fee of 236 bps to 375 bps, with the exception of TVW3 and the Median combination

scheme.

The key �ndings and implications of both the statistical and economic evaluation of

our approaches can be summarized as follows. First, equity premium forecasts generated

by combining quantile forecasts outperform both the mean forecast combination approach

and the historical average by statistically and economically meaningful margins. Second,

combining predictor information �rst, in order to produce accurate quantile forecasts of

the equity premium distribution which are then employed in the point forecast construc-

tion seems to be the optimal approach. Bene�ts are more pronounced when these point

forecasts are generated in a time-varying weighting manner. Finally, the robustness of

our �ndings suggests that even simple combination schemes, such as the mean, combined

with the employment of as few as three quantile forecasts can generate signi�cant bene�ts.

7 Conclusions

In this study, we propose a quantile regression approach to equity premium prediction.

We develop two forecasting approaches that produce robust to nonlinearity, non-normality

and outliers point forecasts of the equity premium. Both approaches combine quantile

forecasts obtained from a set of single-variable regressions. The �rst approach (RFC

approach) proceeds by �rst combining a set of quantile forecasts into robust point fore-

casts, one for each candidate predictor, by employing either a �xed or a time-varying
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scheme. Next, these forecasts are combined into a �nal point forecast using existing fore-

cast combination schemes. The second approach that we propose (the QFC approach)

�rst combines predictor information to produce a composite quantile forecast using suit-

ably modi�ed combination schemes. Next, this set of quantile forecasts is combined into

a �nal robust point forecast via a �xed or a time-varying scheme.

Our approaches are able to capture the nonlinear relationship of returns with predic-

tors and to identify potential di¤erences in the ability of predictors to forecast various

quantiles of returns. While no single predictor proves successful in forecasting the entire

return distribution, our analysis suggests that predictors exist with superior predictive

ability for lower or/and upper quantiles of returns. Overall, a superior predictive per-

formance, in terms of both statistical and economic signi�cance, is achieved under the

QFC approach with time-varying weighting schemes. Our �ndings suggest that in order

to approximate the equity premium process, which is a highly uncertain, complex, and

constantly evolving one, quantile forecasts should be generated by the combination of

information contained in a rich set of predictors. Then, time varying weighting schemes

aimed at capturing the evolution of the equity premium should be employed in order

to produce robust point forecasts. Our approach reduces uncertainty associated with a

candidate predictor through combination of forecasts, addresses the complexity of the

return process by forecasting various parts of the return distribution and �nally weighs

these constantly evolving parts by time-varying schemes.

Rapach et al. (2010) state that �applied asset pricing models could bene�t from the

consideration of more complex data-generating processes with more variables that better

mimic time varying �uctuations in expected returns related to the real economy�. Simi-

larly to their combination strategy, the approaches used in the present paper provide a

tractable way of doing this. Our asset allocation experiment showed that a mean-variance

investor who adopts our framework can gain sizable bene�ts that range from 243 bps to

425 bps per year relative to a naive strategy based on the historical mean benchmark.

What is more promising is the fact that our methodology can be easily extended to reveal

predictable patterns in the higher order moments of the equity premium distribution like

the variance, skewness and kurtosis. We expect that quantile forecasts of higher mo-

ments will be more precise than conventional ones and will enable the investor to gain

a relatively complete picture of the expected return distribution which can be used for

portfolio selection and asset pricing.
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   Table 1. Conditional Quantile Predictive Ability 

Panel A: Individual predictive models 

Predictor Q5 Q10 Q15 Q20 Q25 Q30 Q35 Q40 Q45 Q50 Q55 Q60 Q65 Q70 Q75 Q80 Q85 Q90 Q95 

D/P                    

D/Y                    

E/P                    

D/E                    

SVAR                    

B/M                    

NTIS                    

TBL                    

LTY                    

LTR                    

TMS                    

DFY                    

DFR                    

INFL                    

I/K                    

Panel B: Combination Methods 

Mean                    
Median                    

Trimmed Mean                    
DALFE(1)                    

DALFE(0.9)                    

AL Cluster 2                    

AL Cluster 3                    

AL Principal Components                    

AL Lasso                    
AL Ridge                    

Notes: Q5- Q95 denote the 5% to 95% quantiles of the return distribution. Grey cells denote superior predictive ability, i.e. lower out-of-sample values of the expected asymmetric loss, 

   
t

tt rr )(

11
ˆ 

 , associated with the quantile forecasts of  each model specification or combination method (shown in the first column of the table), than  the value associated with the 

forecasts of the prevailing quantile (PQ) model.



 

Table 2. Out-of-sample performance of individual predictive mean regression models and Mean Forecast Combination (MFC) approach  

     

Predictor MSFE 

Ratio 
A  B

 MFC approach MSFE 

Ratio 
A  B

 

D/P 0.9928 0.580
** 

0.420 Mean  0.9703 2.597
***

 -1.597 

D/Y 0.9900 0.590
**

 0.410 Median 0.9781 3.209
***

 -2.209 

E/P 1.0109 0.287 0.713 Trimmed Mean 0.9715 2.943
***

 -1.943 

D/E 1.0160 0.177 0.824
*
 DMSFE(1) 0.9704 2.463

***
 -1.463 

SVAR 1.0665 0.110 0.890 DMSFE(0.9) 0.9702 2.444
***

 -1.444 

B/M 1.0180 0.089 0.911
**

 Cluster 2 0.9766 1.244
**

 -0.244 

NTIS 1.0210 -0.192 1.192
**

 Cluster 3 0.9878 0.766
*
 0.234 

TBL 1.0243 0.406
**

 0.594
**

 Principal Components 1.0169 0.347 0.653
*
 

LTY 1.0259 0.360 0.640
**

     

LTR 1.0115 0.261 0.739
*
     

TMS 1.0265 0.373
*
 0.627

***
     

DFY 1.0271 -0.398 1.398
**

     

DFR 0.9909 0.627 0.373     

INFL 1.0076 0.340 0.660     

I/K 0.9768 0.693
***

 0.307 
 

   

Notes: The table reports the MSFE ratios of the individual predictive mean regression models and of the Mean Forecast Combination (MFC) approach with respect to the prevailing mean 

(PM) benchmark model for the out-of-sample period 1965:1-2010:4. The MSFE of the PM model is equal to 0.0071. Values of the MSFE ratio below unity indicate superior forecasting 

performance of the predictive models with respect to the historical average forecast. Statistical significance of the out-of-sample forecasts is assessed by pairs of encompassing tests: (i) one for 

testing if the PM model forecasts encompass the forecasts of the individual predictive models or the MFC approach (associated with the parameter A ), and (ii) a second one for testing if the 

individual predictive models’ or the MFC approach’s forecasts encompass the PM model forecasts (associated with the parameter B ). *, **, *** indicate significance at the 10%, 5% and 1% 

confidence levels, respectively. 

 



Table 3. Out-of-sample performance of the Robust Forecast Combination (RFC) approach and the Quantile Forecast Combination (QFC) approach  

Panel A: Robust Forecast Combination (RFC) approach 

 

MSFE 

Ratio 
A  B

 MSFE 

Ratio 
A  B

 MSFE 

Ratio 
A  B

 MSFE 

Ratio 
A  B

 

 RFC-FW1 RFC-FW2 RFC-FW3 RFC-FW4 

Mean  0.9761 2.050
**

 

-1.050 

-0.458 

-1.255 

-1.081 

-1.022 

-0.802 

-0.446 

0.608 

0.683 
 

-1.050 0.9768 1.861
**

 

-2.144 

-2.600 

-2.757 

-1.986 

-1.842 

-1.101 

-0.317 

0.209 

0.705 
 

-0.861 0.9741 2.456
***

 -1.456 0.9720 3.144
***

 -2.144 

Median 0.9865 1.458
*
 -0.458 0.9893 1.257

*
 -0.257 0.9848 1.850

**
 -0.850 0.9794 3.600

***
 -2.600 

Trimmed Mean 0.9778 2.255
**

 -1.255 0.9786 2.057
**

 -1.057 0.9761 2.751
***

 -1.751 0.9737 3.757
***

 -2.757 

DMSFE(1) 0.9755 2.081
**

 -1.081 0.9763 1.878
**

 -0.878 0.9737 2.441
***

 -1.441 0.9719 2.986
***

 -1.986 

DMSFE(0.9) 0.9747 2.022
**

 -1.022 0.9760 1.814
**

 -0.814 0.9731 2.343
**

 -1.343 0.9716 2.842
***

 -1.842 

Cluster 2 0.9726 1.446
**

 -0.446 0.9778 1.280
**

 -0.280 0.9744 1.394
**

 -0.394 0.9769 1.317
**

 -0.317 

Cluster 3 1.0059 0.393 0.608 0.9992 0.517 0.484 1.0017 0.466 0.534 0.9861 0.791
*
 0.209 

Prin. Components 1.0289 0.317 0.683
**

 1.0256 0.332 0.668
**

 1.0284 0.318 0.682
**

 1.0287 0.295 0.705
**

 

 RFC-TVW1 RFC-TVW2 RFC-TVW3    

Mean  0.9635 2.829
***

 

-0.817 

-0.660 

-0.730 
 

-1.829 0.9654 2.907
***

 -1.907 0.9633 1.817
***

 -0.817    

Median 0.9718 3.756
***

 -2.756 0.9760 5.199
***

 -4.199 0.9669 1.660
***

 -0.660    

Trimmed Mean 0.9650 3.037
***

 -2.037 0.9677 3.314
***

 -2.314 0.9667 1.730
***

 -0.730    

Panel B: Quantile Forecast Combination (QFC) Approach 

 QFC -FW1 QFC -FW2 QFC -FW3 QFC -FW4 

Mean  0.9761 2.050
**

 -1.050 0.9768 1.861
**

 -0.861 0.9741 2.456
***

 -1.456 0.9720 3.144
***

 -2.144 

Median 0.9886 1.354
*
 -0.354 0.9903 1.208 -0.208 0.9866 1.768

**
 -0.768 0.9830 3.498

***
 -2.498 

Trimmed Mean 0.9785 2.214
**

 -1.214 0.9791 2.044
**

 -1.044 0.9768 2.727
***

 -1.727 0.9746 3.808
***

 -2.808 

DALFE(1) 0.9758 2.047
**

 -1.047 0.9766 1.846
**

 -0.846 0.9738 2.430
***

 -1.430 0.9719 3.043
***

 -2.043 

DALFE(0.9) 0.9752 2.011
**

 -1.011 0.9760 1.825
**

 -0.825 0.9731 2.419
***

 -1.419 0.9711 3.092
***

 -2.092 

AL Cluster 2 0.9768 1.331
**

 -0.331 0.9809 1.115
**

 -0.115 0.9754 1.489
**

 -0.489 0.9733 1.864
**

 -0.864 

AL Cluster 3 0.9798 0.965
*
 0.035 0.9753 1.084

**
 -0.084 0.9787 1.051

**
 -0.051 0.9785 1.237

**
 -0.237 

AL Prin. Comp. 1.0079 0.448
*
 0.552

*
 1.0160 0.417

*
 0.583

**
 1.0062 0.456

*
 0.544

*
 1.0181 0.383

**
 0.617

**
 

AL Lasso 0.9777 0.747
**

 0.253 0.9899 0.592
**

 0.408 0.9782 0.755
**

 0.245 0.9866 0.657
**

 0.343 

AL Ridge 0.9696 1.157
**

 -0.157 0.9719 1.022
**

 -0.022 0.9680 1.234
**

 -0.234 0.9705 1.215
**

 -0.215 

 QFC -TVW1 QFC -TVW2 QFC -TVW3    

Mean  0.9594 2.138
***

 -1.138 0.9619 2.553
***

 -1.553 0.9677 1.387
**

 -0.387    

Median 0.9669 2.748
***

 -1.748 0.9717 3.736
***

 -2.736 0.9746 1.495
**

 -0.495    

Trimmed Mean 0.9619 2.216
***

 -1.216 0.9648 2.799
***

 -1.799 0.9702 1.382
**

 -0.382    

Notes: The table reports the MSFE ratios of the Robust Forecast Combination (RFC) and the Quantile Forecast Combination (QFC) approach, under fixed weighting (FW) and time-varying 

weighting (TVW) schemes, with respect to the prevailing mean (PM) benchmark model for the out-of-sample period 1965:1-2010:4. Values of the MSFE ratio below unity indicate superior 

forecasting performance of the predictive models with respect to the historical average forecast. Statistical significance of the out-of-sample forecasts is assessed by pairs of encompassing 

tests: (i) one for testing if the PM model forecasts encompass the RFC or QFC forecasts (associated with the parameter A ), and (ii) a second one for testing if the RFC or QFC forecasts 

encompass the PM model forecasts (associated with the parameter B ). *, **, *** indicate significance at the 10%, 5% and 1% confidence levels, respectively. 



Table 4. Encompassing tests and amalgam forecasts 

Panel A: Encompassing tests for pairs of forecasts from the MFC, RFC and QFC approaches 

 

 

Mean 

Combination 

Method
 

Median Combination 

Method 

Trimmed Mean 

Combination Method 

 
A  B

 

A  B
 

A  B
 

MFC, RFC-TVW1 6.262
**

 -5.262 3.069 -2.069 5.492
*
 -4.492 

MFC, RFC-TVW2 2.373 -1.373 1.291 -0.291 1.964 -0.964 

MFC, RFC-TVW3 1.704 -0.704 1.194
*
 -0.194 1.174 -0.174 

MFC, QFC-TVW1 3.625
**

 -2.625 3.647
**

 -2.647 3.179
*
 -2.179 

MFC, QFC-TVW2 4.552
**

 -3.552 3.280
*
 -2.280 3.520

*
 -2.520 

MFC, QFC-TVW3 0.723 0.277 0.771 0.229 0.606 0.394 

RFC-TVW1, QFC-TVW1 1.827 -0.827 2.509 -1.509 1.672 -0.672 

RFC-TVW2, QFC-TVW2 2.250 -1.250 2.611 -1.611 2.102 -1.102 

RFC-TVW3, QFC-TVW3 -3.394 4.394
*
 -1.573 2.573

*
 -3.023 4.023 

Panel B: Multiple encompassing tests and amalgam forecasts 

 MS*  

MFC 

MS*  

RFC-TVW 

MS*  

QFC-TVW 

MSFE 

Ratio 
A  B

 

Mean Combination Methods 

 

 

MFC, RFC-TVW1, QFC-TVW1 1.981 1.644 1.310 0.9640 2.577
**

*
 

-1.577 

MFC, RFC-TVW2, QFC-TVW2 1.418 1.174 0.875 0.9655 2.807
**

*
 

-1.807 

MFC, RFC-TVW3, QFC-TVW3 3.549
**

 3.381
**

 3.669
**

 0.9661 1.907
**

*
 

-0.907 

Median Combination Methods 

 

 

MFC, RFC-TVW1, QFC-TVW1 1.642 1.293 0.880 0.9676 3.176
**

*
 

-2.176 

MFC, RFC-TVW2, QFC-TVW2 0.999 0.744 0.489 0.9683 1.940
**

*
 

-0.940 

MFC, RFC-TVW3, QFC-TVW3 1.486 0.522 1.329 0.9827 2.529
**

 -1.529 

Trimmed Mean Combination Methods 

 

 

MFC, RFC-TVW1, QFC-TVW1 1.553 1.194 0.944 0.9746 3.172
**

*
 

-2.172 

MFC, RFC-TVW2, QFC-TVW2 0.955 0.729 0.495 0.9737 3.508
**

*
 

-2.508 

MFC, RFC-TVW3, QFC-TVW3 1.209 0.920 1.229 0.9728 3.760
**

*
 

-2.760 

Notes: The table reports results on the encompassing tests for all pairs of forecasts obtained by the Mean 

Forecast Combination (MFC) approach, the Robust Forecast Combination (RFC) approach and the Quantile 

Forecast Combination (QFC) approach, as well as results on multiple encompassing tests employed to 

compare the forecasts obtained by the MFC, the RFC and the QFC approach, under the three time-varying 

weighting schemes (TVW1-TVW3). In Panel A, for each pair of approaches, shown in the first column, 

statistical significance of the out-of-sample forecasts is assessed by pairs of encompassing tests: (i) one for 

testing if the forecasts produced by the first approach encompass the forecasts produced by the second 

(associated with parameter A ), and (ii) a second one for testing if the forecasts produced by the second 

approach encompass the forecasts produced by the first (associated with parameter B ). In Panel B, columns 

(2) - (4) report the MS* statistics to test the null of multiple forecast encompassing. The test is conducted three 

times for every triad by employing the model in the first row as the reference model. Columns (5) - (7) report 

the MSFE ratios of an amalgam forecast constructed by averaging the forecasts of the three approaches, 

shown in the first column. Statistical significance of the out-of-sample forecasts is assessed by pairs of 

encompassing tests: (i) one for testing if the amalgam forecasts encompass the PM forecasts (associated with 

the parameter A ), and (ii) a second one for testing if the PM forecasts encompass the amalgam forecasts 

(associated with the parameter B ). *, **, *** indicate significance at the 10%, 5% and 1% confidence levels, 

respectively. 



Table 5. Economic evaluation  

Panel A: Mean Forecast Combination & Robust Forecast Combination 

 MFC 
RFC-

FW1 

RFC-

FW2 

RFC-

FW3 

RFC-

FW4 

RFC-

TVW1 

RFC-

TVW2 

RFC-

TVW3 

Mean  297.41 186.79 190.6 207.32 236.59 371.49 338.90 394.85 

Median 145.30 59.01 18.42 76.89 108.40 231.73 158.60 327.55 

Trimmed Mean 270.86 159.17 162.38 178.16 216.80 352.71 306.40 373.76 

DMSFE(1) 304.75 204.59 206.26 223.17 249.46    

DMSFE(0.9) 320.79 245.70 242.50 258.98 275.16    

Cluster 2 248.87 252.01 229.06 236.64 217.11    

Cluster 3 242.84 175.07 224.49 216.39 263.24    

Principal Components 235.71 250.88 255.38 252.54 238.68    

Panel B: Quantile Forecast Combination 

  
QFC-

FW1 

QFC-

FW2 

QFC-

FW3 

QFC-

FW4 

QFC - 

TVW1 

QFC - 

TVW2 

QFC - 

TVW3 

Mean   186.79 190.60 207.32 236.59 424.97 383.53 358.33 

Median  28.75 14.76 45.79 83.49 314.28 242.92 294.50 

Trimmed Mean  157.37 161.32 176.63 211.95 405.73 356.23 342.67 

DALFE(1)  195.92 197.97 215.21 242.23    

DALFE(0.9)  220.51 223.47 240.17 263.13    

AL Cluster 2  250.28 243.45 248.28 261.00    

AL Cluster 3  276.53 338.32 270.11 257.20    

AL Principal  

Components 

 262.00 289.17 217.64 173.78    

AL Lasso  328.87 317.67 292.53 226.94    

AL Ridge  316.86 310.97 314.81 295.4    

Panel C: Amalgam Forecasts 

   

Mean 

Combination 

Method 

Median 

Combination 

Method 

Trimmed Mean 

Combination 

Method 

MFC, RFC-TVW1, QFC-TVW1  372.38 316.12 198.58 

MFC, RFC-TVW2, QFC-TVW2  346.79 352.95 214.42 

MFC, RFC-TVW3, QFC-TVW3  374.93 79.06 235.60 

 

Notes: The table reports the performance fee,  , which is the difference between the realized utilities of 

competing models, ,
PMi UUU   where 

PMi
UU , denote the average mean-variance utility of 

an investor with a risk aversion coefficient of three over the forecast evaluation period from using the ith 

model/specification and the historical average benchmark model (PM), respectively. The weight on stocks in 

the investor’s portfolio is restricted to lie between zero and 1.5. The mean-variance utility for the ith 

model/specification is given by: 
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where 0PP   is the number of out-of-sample forecasts, 0W  is the initial wealth of the investor and γ denotes 

the coefficient of relative risk aversion.   is reported in annualized basis points. 

 

 




