Igbo-English Intrasentential Codeswitching and the Matrix Language Frame model
Ihemere, K.

This is an electronic author formatted version of a paper presented at the 46th Annual Conference on African Linguistics University of Oregon, Eugene, Oregon, USA 26-28 March 2015.

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: (http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk
Igbo-English Intrasentential Codeswitching and the Matrix Language Frame model

Kelechukwu Ihemere
University of Westminster, London UK

Abstract
This paper uses some data from Igbo-English intrasentential codeswitching involving mixed nominal expressions to test the Matrix Language Frame (MLF) model. The MLF model is one of the most highly influential frameworks used successfully in the study of grammatical aspects of codeswitching. Three principles associated with it, the Matrix Language Principle, the Asymmetry Principle and the Uniform Structure Principle, were tested on data collected from informal conversations by educated adult Igbo-English bilinguals resident in Port Harcourt. The results of the analyses suggest general support for the three principles and for identifying Igbo-English as a ‘classic’ case of codeswitching.

Key words: Igbo, Codeswitching, Matrix Language Frame model

1. Introduction

It goes without saying that CS is conceivably one of the most studied and discussed outcomes of language contact. Its study has been approached from two main dimensions: (i) the sociolinguistic; and (ii) the linguistic. Researchers concerned with the sociolinguistic aspects of CS tend to seek to identify patterns of occurrence of CS and the impact of social-psychological factors on this bilingual behaviour, whereas those working from a purely linguistic dimension focus on the structural aspects of CS, their aim being to uncover the syntactic and morphological characteristics of codeswitched utterances. Here, the focus is on the purely linguistic study of CS. Several constraints have been proposed by a number of researchers interested in the linguistic study of CS.

For instance, Poplack & Meechan (1998) and their associates are interested with formulating constraints on points in a sentence where CS can take place on the grounds of surface-level linear differences between the languages concerned. These researchers view restrictions on CS along the lines of dissimilarities in word order, either across clauses (intersentential) or on phrases within clauses (intrasentential). In particular, Poplack’s Equivalence Constraint (EC) is based on this premise that switching is not permitted when the syntax of two languages does not match at a potential switch point. Researchers such as Bhatt (2001) have put forward many counter-examples to such models1.

Another group of researchers look for explanations at a more abstract level than linear structure. These researchers (Belazi, Rubin & Toribio 1994; DiSciullo, Muysken & Singh 1986; MacSwan 2009) do this by structuring their explanations along the lines of what are considered generative theories of syntax. That is, they assert that the grammatical organisation of CS can be accounted for in terms of the principles of current syntactic theories, even though these theories were initially formulated to explain monolingual data. They do not recognise any theoretical (or useful) value in recognising the asymmetry between a Matrix Language (ML) and an Embedded

1 See also the examples from Igbo-English CS in sections 4-6 which appear to falsify the EC.
The MLF model makes the case for a distinction between the ML and the EL. The ML plays a dominant role in shaping the overall morphosyntactic properties of codeswitched utterances. In other words, the model posits two hierarchies in reference to mixed constituents: both languages do not participate equally; only one language is the source of the abstract morphosyntactic frame. This language (and the frame) is called the ML and the other language is called the EL. This idea is formalised as the Morpheme Order Principle (MOP) and the System Morpheme Principle (SMP) of the MLF model. These are testable hypotheses referring to the existence of asymmetry between the languages implicated in CS. On the basis of these principles only one language (the source of the frame) supplies both morpheme order and frame-building system morphemes to the frame (see section 3 below for more details on the MLF model).

Accordingly, this study assesses the veracity of this notion of asymmetry in the roles played by the languages participating in CS using some Igbo-English data involving mixed nominal expressions. The rationale for focusing on mixed nominal expressions for the analyses reported in this paper stems from the fact that both languages differ in the relative order of head (H) and complement (C) within the nominal argument phrase - NP (or what is now termed determiner phrase – DP, after Abney 1987). In so doing, this study contributes directly to the body of research on the linguistic analysis of CS by showing: (i) through exemplifications from Igbo-English bilingual discourse what happens to the grammatical structures when two languages are in contact in the same clause; (ii) that CS does not crash when the surface structures of two languages do not map onto each other; (iii) that CS is possible between a functional head and its complement; and (iv) that Igbo-English is a classic case of CS. Classic CS includes elements from two (or more) language varieties in the same clause, but only one of these varieties is the source of morphosyntactic frame for the clause (Myers-Scotton 2002: 8).

The rest of the paper is structured as follows. Section 2 introduces the type of CS that is the focus of our analysis. Section 3 focuses on the MLF model and its associated principles, which are tested in this paper. Section 4 introduces the speakers, sampling and transcription procedures, and the bilingual data. Sections 5-7 present the analysis and discussion of the mixed nominal expressions in Igbo-English CS. Section 8 is the conclusion to the paper.

2. Types of codeswitching

It is often the case that researchers make a distinction between intersentential and intrasentential switching (see Clyne 2003). Intersentential switching exemplifies the employment of different languages at sentence or clause boundaries, as in (1)\(^2\), whereas intrasentential switching involves the coding of different elements within a single clause in different languages, as in examples (2-5). All the examples are from Igbo-English CS; the switched element is in bold font.

\(^2\) The following abbreviations are used in the glosses of CS examples: AUX = auxiliary; BE = copular verb; CL = clitic; C = complementiser; D = determiner; DEM = demonstrative; FUT = future; IND = affirmative indicative; INF = infinitive; NEG = negation; PERF = perfective; PL = plural; PREP = preposition; PRN = pronoun; Q = quantifier.
In (1), the example includes full sentences in both Igbo and English. Each of these sentences is a single clause: that is, Did you see that? is a sentence in English and it is a single clause; Le nụ ihe o me-re ‘look at what he did’ is a sentence in Igbo and it is a single clause. Within each clause there is no switching of languages, but there is switching between the clauses. This type of CS is not particularly interesting for researchers concerned with the purely linguistic analysis of CS because the two languages are not in contact in the same clause.

In this study, we shall focus on mixed nominal expressions within a single clause, as illustrated in (2-5) above, and shall take as our unit of analysis the bilingual clause. This will be defined as a clause containing one or more morphemes from more than one language.

3. The Matrix Language Frame model

The MLF model was first articulated by Myers-Scotton in her book Duelling languages in 1993. The model posits that the key to understanding feature mismatches in CS is to recognise one of the asymmetries in language that is especially evident in CS: structural conflicts are resolved in favour of only one of the participating languages. According to Jake, Myers-Scotton & Gross (2002: 72), the model captures this generalisation in theoretical assumptions about the nature of linguistic competence and also about operations involved in language production. This view is conceptualised under what they term a Uniform Structure Principle (USP) and its corresponding two hierarchies that indicate how the model relates to linguistic competence.

The USP: A given constituent type in any language has a uniform abstract structure and the requirements of well-formedness for this type must be observed whenever the constituent appears. In bilingual speech, the structures of the ML are always preferred, but some
embedded structures are allowed if ML clause structure is observed (Myers-Scotton 2002: 8-9).

When this principle is applied to bilingual speech, it gives rise to the first hierarchy, which states that in bilingual speech, the languages involved do not participate equally: one language uniformly sets the morphosyntactic frame and this frame is referred to as the ML. The second of the two hierarchies of the USP is the distinction in the MLF model between the roles of content morphemes (similar to lexical elements) and system morphemes (similar to functional elements).

Content morphemes (e.g. nouns and verbs) are those that either assign or receive thematic roles; they refer to such relations within the sentence as whether a noun is the Agent or the Patient of the verb. Under this model, content morphemes along with one type of system morpheme called an early system morpheme, are specifically characterised as conceptually activated. Myers-Scotton (2002) explains that conceptually activated means that speaker pre-linguistic intentions activate (or select) content morphemes and any early system morphemes that may accompany them on the surface. This activation occurs at the first level of what is termed the mental lexicon.

The mental lexicon is said to consist of elements called lemmas3 that are tagged for specific languages; the speaker’s intentions call up language-specific lemmas, which contain the information necessary to produce surface-level forms. Furthermore, lemmas in the mental lexicon that underlie content morphemes are directly activated through the speaker’s intention. In turn, these lemmas activate the lemmas underlying early system morphemes. These early system morphemes flesh out the meaning of the lemmas of the content morphemes that call them. These system morphemes are called ‘early’ because of their early activation in the language production process. Examples of early system morphemes (Myers-Scotton 2006: 268) include plural markings, determiners (e.g. the definite article the and the indefinite articles a, an in English), and those prepositions (also called satellites) that change the meanings of phrasal verbs in certain contexts (e.g. out as in Alice looks out for her little brother or through in the actor ran through his lines before the performance).

The other two types of system morphemes (bridge late system morphemes and outsider late system morphemes) are called ‘late’ because the model claims that they are not activated until a later production level, at a second abstract level that is called the formulator. According to the model, the formulator is viewed as an abstract mechanism that receives directions from lemmas in the mental lexicon (those underlying content morphemes); the directions from the lemmas underlying content morphemes tell the formulator how to assemble larger constituents, such as combinations of noun phrases (NPs)/determiner phrases (DPs) and inflection (I)/verb phrases (VPs), resulting in a full clause.

Regarding bridge late system morphemes, they occur between phrases that make up a larger constituent and the best example of a bridge is the associative or possessive element that occurs between a possessor noun (N) and the element that is possessed in a number of languages. For instance, of is a bridge, as in the house of Gina. Also, the model considers the possessive –s in English to be a bridge morpheme, as in Gina’s house. A bridge morpheme depends on the well-formedness conditions of a specific

3 Lemmas are defined as the morphological and syntactic properties which a word is said to inherently possess, which determine its co-occurrence and selectional restrictions – after Levelt’s (1989) Speech Production model.
constituent in order for it to appear; such a constituent is not well-formed without the bridge morpheme.

Outsider late system morphemes like bridge late system morphemes also satisfy well-formedness conditions. However, they are said to differ from bridges in that the presence and form of an outsider depends on information that is outside the element with which it occurs and therefore outside its immediate constituent. That information is said to come from an element in another constituent or from the discourse as a whole. Myers-Scotton (2002; 2006; 2013) gives the clearest example of an outsider late system morpheme in English as the element that shows subject-verb agreement on the verb in many languages. She explains that the form of the agreement marker depends on the subject. Thus, English speakers would say *the dog like-s chewing bones*, but *dogs like-Ø chewing bones*. The suffix *-s* only occurs when there is a third person singular content element in the present tense to call that suffix; otherwise, in English, there is no suffix (*Ø = ‘zero’ marker*).

Crucially, the model claims that the frame-building system morphemes in mixed constituents come from only one language, the source of the ML. This theoretical notion is formalised as three testable hypotheses claimed to be universally applicable in cases involving classic CS:

- **The Matrix Language Principle (MLP):** according to this principle it is always possible in cases of classic CS to identify the ML in a bilingual clause. The ML will be the language supplying the morphosyntactic frame of the clause (Myers-Scotton 2002, 8).
- **The Asymmetry Principle (AP):** the principle states that bilingual speech is characterised by asymmetry in terms of the participation of the languages involved in CS (Myers-Scotton 2002, 9).
- **The Uniform Structure Principle (USP):** the principle states that in bilingual speech, the structures of the ML are always preferred (Myers-Scotton 2002, 8-9).

We shall offer more specific details about how the principles apply to the Igbo-English data in subsequent sections of this paper.

4. Methodology

4.1. Sampling procedure

The sampling was done through personal contacts among speakers who knew each other well and shared the same friendship network in Port Harcourt. Port Harcourt is the capital of Rivers State, and the metropolitan area has a population of over a million, composed of people from different parts of Nigeria, including a large Igbo population. Hence, through pre-existing contacts in the city it was possible to recruit 50 educated adult Igbo-English bilinguals of both sexes for the study. Thirty-eight out of the fifty speakers were university graduates, while twelve were undergraduates at the time of the fieldwork in the summer of 2011. Thus, all fifty speakers were educated and speak Nigeria Standard English (NSE) as their second language.

4.2. The speakers

The speakers involved ranged in age from 20 to 55, including secondary school teachers (N = 15), engineers (N = 10), physicians (N = 4), nurses (N = 5), business owners (N =
4), and undergraduate students (12). Table 1 below summarises the occupation and sex of the speakers.

Table 1: Distribution of speakers according to occupation and sex

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers</td>
<td>6</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Engineers</td>
<td>9</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Physicians</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Nurses/midwives</td>
<td>-</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Business owners</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Undergraduates</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>21</td>
<td>50</td>
</tr>
</tbody>
</table>

All the speakers were born and grew up in Nigeria and have Igbo as their first language; are bilingual, being native speakers of Igbo and proficient in English. The second language was learned at school age. Having studied in Nigeria, where English is the official language and the language of all advanced education, the speakers have all been educated almost entirely in English. To ensure their anonymity, the speakers’ real names are not used in the examples; where names appear in the examples, these are pseudonyms.

4.3. Data collection and transcription procedure

A number of studies on the grammatical aspects of CS still rely on data sourced from grammaticality judgements of native speakers (see MacSwan 2009). The problem with such studies is that it is possible for the judgements of two native speakers to vary with respect to a particular utterance; and as Treffers-Daller (1991) noted much earlier, such judgements tend to reflect attitudes towards language mixture rather than grammaticality or otherwise. This is mostly the case in communities where CS is stigmatised – most speakers have been known to judge ungrammatical or to deny the very utterances they have been captured on tape using (see MacSwan 1999: 99). Nevertheless, most studies on the grammar of CS continue to be based mainly on corpora of authentic everyday speech (as in Myers-Scotton and Jake 2014). The present study is based primarily on a corpus of naturally occurring speech involving the fifty men and women described in section 4.2. Specifically, the corpus consists of naturally occurring group conversations among members of a friendship network. From twenty minutes to one hour of tape-recorded informal conversations involving each of the speakers were recorded by this researcher in the summer of 2011.

The transcriptions use the normal orthography of Igbo and English respectively. However, after Echeruo (1998), instead of using subscript dots (.) for the three Igbo closed vowels i, o, and u, we will use umlauted ones (ï; ö; ü), which are readily available on standard word processing software. Also, since in Igbo there is no instance in which “ch” is in complementary distribution with “c”, we will use “c” in all Igbo words with a sound similar to the voiceless palato-alveolar affricate [ʧ].

4.4. The bilingual data

The resulting corpus contains substantial examples of different types of CS; however, this paper is concerned with the following CS structures attested in the Igbo-English data:
• Singly occurring EL nouns (Ns)/noun phrases (NPs) in mixed determiner phrases (DPs), (N = 1057/1599), as in (2-5) above.
• Multi-word nominal sequences framed by a ML element (N = 192/1599), as in (4-5) above.
• Singly occurring EL Ns/NPs + Igbo Ns/NPs in genitive/associative constructions (N = 165/1599), as in (6) below.

(6) a-si na a-ga-eme wedding Ngozi ma ö gbakee
 CL-said C CL-AUX-do wedding Ngozi C she recovers
 ‘They said that they will hold Ngozi’s wedding when she recovers.’

• Singly occurring EL Ns/NPs + Igbo adjectives (N = 73/1599), as in (7).

(7) ö na-cö ï-zü portmanteau òhìùù
 She AUX-want INF-buy portmanteau new
 ‘She wants to buy (a/the) new portmanteau.’

• EL single Ns that occur as bare forms in otherwise Igbo utterances (N = 112/1599), as in (8).

(8) ha fe-re exam na Abuja
 They pass-IND exam PREP Abuja
 ‘They passed (the) exam in Abuja.’

In the sections that follow, we shall test the application of the three principles of the MLF model outlined in section 3. This will involve exemplification and illustration of the principles, followed by the results of a quantitative analysis relating to each principle.

5. Testing the MLP

If the principle holds, it will be possible to identify a ML in all bilingual clauses in the Igbo-English data. Two specific criteria will be employed to identify the ML of each bilingual clause: (i) the morpheme order criterion; and (ii) the system morpheme criterion. These two criteria follow from two additional principles (the AP and the USP), which are tested in section 6 and 7.

5.1. The morpheme order criterion

The morpheme order criterion follows from the Morpheme Order Principle (MOP), which predicts that in ML+EL constituents consisting of singly occurring EL lexemes and any number of ML morphemes, surface morpheme order will be that of the ML (Myers-Scotton 2002: 59).

To operationalise this criterion, we will interpret it to mean that it will be applicable wherever the two languages involved in CS have distinct surface orders. This is true of Igbo and English, since both differ in the relative order of head (H) and complement (C) within the nominal argument phrase – NP/DP. The usual order in Igbo is C followed by H rather than the H–C order of English. To illustrate this difference in the configuration of the NP/DP in both languages, consider the monolingual Igbo sentence in (9):

In the sections that follow, we shall test the application of the three principles of the MLF model outlined in section 3. This will involve exemplification and illustration of the principles, followed by the results of a quantitative analysis relating to each principle.

5. Testing the MLP

If the principle holds, it will be possible to identify a ML in all bilingual clauses in the Igbo-English data. Two specific criteria will be employed to identify the ML of each bilingual clause: (i) the morpheme order criterion; and (ii) the system morpheme criterion. These two criteria follow from two additional principles (the AP and the USP), which are tested in section 6 and 7.

5.1. The morpheme order criterion

The morpheme order criterion follows from the Morpheme Order Principle (MOP), which predicts that in ML+EL constituents consisting of singly occurring EL lexemes and any number of ML morphemes, surface morpheme order will be that of the ML (Myers-Scotton 2002: 59).

To operationalise this criterion, we will interpret it to mean that it will be applicable wherever the two languages involved in CS have distinct surface orders. This is true of Igbo and English, since both differ in the relative order of head (H) and complement (C) within the nominal argument phrase – NP/DP. The usual order in Igbo is C followed by H rather than the H–C order of English. To illustrate this difference in the configuration of the NP/DP in both languages, consider the monolingual Igbo sentence in (9):
In (9), we observe that within the Igbo DP both the adjective (A) öhüü ‘new’ and determiner (D) ahü ‘that’ are typically post-posed to the nominal element (N) ülö ‘house’; the reverse order is usually the case in English.

Also, in Igbo a N can follow another N to form a genitival relationship, as in (10):

(10) Igbo

The situation in (10) is different from that of a language like English, where usually only the N in the genitive case is inflected. Igbo Ns are neither declined for case nor inflected for number like those of English. Therefore, in constructions like (10), it is the genitival N which comes second in the Igbo NP (see Emenanjo 1978; Uwalaka 1997). We can illustrate how the morpheme-order criterion would apply to utterance (3), repeated here as (11):

(11) Igbo-English CS

In this example the EL noun complement hospital precedes its Igbo D head ahü ‘that’, reflecting Igbo complement-head (C-H) order and we would thus identify the mixed DP hospital ahü as following Igbo order. A similar conclusion would be reached in the case of (7), repeated below as (12):

(12) Igbo-English CS

In (12), we observe that the Igbo true adjective öhüü ‘new’ is post-posed to the EL noun portmanteau. This configuration is in sharp contrast with the situation in English, where the order is reversed. Therefore, we would identify the mixed constituent as following Igbo order.

A few of the examples involve two Ns in genitival relationship, as in (6) repeated here as (13):

(13) Igbo-English CS

In (13), we observe that the Igbo true adjective öhüü ‘new’ is post-posed to the EL noun wedding. This configuration is in sharp contrast with the situation in English, where the order is reversed. Therefore, we would identify the mixed constituent as following Igbo order.

A few of the examples involve two Ns in genitival relationship, as in (6) repeated here as (13):
Firstly, we note that English also allows an analytic type genitive (e.g. ‘the wedding of Ngozi’) alongside the synthetic type, however our two languages differ in the following ways: (i) in Igbo, the N+N genitive construction does not make use of a bridge morpheme (like of) to link the two Ns/NPs; and (ii) Igbo N+N genitive constructions do not include the use of overt determiners; if determiners are used at all, they are always post-posed to the nominal elements. Secondly, looking at the bilingual genitive construction in (13) we observe that unlike what obtains in English, where usually only the N in the genitive case is inflected, in Igbo, the preceding N is said to be in a pre-genitival position (Uwalaka 1997), while the second N is the possessor. On the strength of this evidence, we will conclude that the word order reflects that of Igbo.

At first glance, the pre-posed Igbo N nnukwu ‘big/bigness’ in (14) appears to pose a problem for the morpheme order criterion:

\[
\text{obodo anyi nö na nnukwu trouble}
\]

Country our BE PREP big trouble

‘Our country is in big trouble’

Igbo → [NP [N nnukwu] [N nsogbu]] or [NP [N nsogbu] [N nnukwu]]

big/bigness trouble trouble big/bigness

It is important, however, to point out that the Igbo word nnukwu is described by Emenanjo (1978: 47-8) and Maduka-Durunze (1990: 237) as a ‘qualifactive’ noun. These Igbo grammarians argue that the Igbo true adjectives occur only post-nominally, as in (12). Notably, while the Igbo qualifactive nouns functioning as adjectives can occur pre-/post-nominally, in English, adjectives typically occur pre-nominally within DP. Therefore, we can submit that when Igbo Ns are used as adjectives, as in (14), they behave like the adjectives found in English which typically occur pre-nominally because they are in what may be termed associative constructions. Since the surface word order of the mixed NP in (14) is compatible with that of both languages, we have coded all instances (N = 37/1599) in the data corpus represented by this example as ‘either’ according to the morpheme order criterion.

Another seemingly problematic case for identifying morpheme order in the Igbo-English data involves English NP compounds framed by a post-posed Igbo functional element; example (5) is repeated here as (15):

\[
\text{ha küda-ra booth dum na polling station ahü}
\]

They break-IND booth Q PREP polling station DEM/D

‘They broke all (the) booths at that polling station.’

The EL NP polling station shows structural dependency relation that makes it well-formed in English. For instance, station heads the nominal sequence pre-modified by the N polling denoting the type of station. Myers-Scotton (2002) argues that such examples do not pose a problem for the MLF model since the other elements surrounding the EL materials follow the MOP. That is, we agree with Myers-Scotton (2002: 139) that such phrases do not pose a problem for the MLF model because the EL multi-word nominal sequence is part of a full DP headed by the post-posed Igbo demonstrative determiner ahü ‘that’ in (15). Thus, with the postposed Igbo functional element the full DP now has a C-H surface word order in-line with Igbo grammar.

Lastly, we consider the case of English Ns which occur in Igbo utterances with zero (Ø) determiners. Example (8) is repeated below as (16):
Looking at the example in (16), the NP exam seems to express some kind of specific reference but without using any determiner. In other words, the NP appears in a context that requires the use of an overt determiner obligatorily in English but not in Igbo. This claim is supported by the presence of a pre-posed determiner in the monolingual English translation of (16). According to Myers-Scotton & Jake (2001: 106), EL bare forms are content morphemes that occur in a mixed constituent frame prepared by the ML, but missing some or all of the required ML system morphemes. Therefore, a compromise strategy is activated and used with the result that the EL content morpheme is not placed in a slot projected by its ML counterpart; rather, it is realised as a bare form or as a part of an EL island.

We, however, disagree with this explanation for why EL bare forms occur with respect to Igbo-English CS. Firstly, the EL N in (16) is the direct equivalent of its Igbo counterpart which occurs as a bare form in similar contexts. For instance, the English N exam is congruent with its Igbo counterpart ule in ‘Ha fe-re ule na Abuja’. Secondly, the EL N is not inserted with any noticeable compromise strategy either as suggested by Myers-Scotton and Jake (2001: 106). Instead, the N occurs in exactly the same position as its Igbo counterpart. In fact, Igbo already permits ‘null determiners’ in its grammar (see Obiamalu 2013: 64-5). Given this state of affairs, an alternative explanation can be proffered for the occurrence of EL bare forms in Igbo-English CS.

As a first step, we must account for the variation observed in the bilingual determinate DPs in (2-5) which follow Igbo C-H order. By adopting the DP-analysis of mixed nominal expressions in Igbo-English CS, which assumes that the NP is headed by a functional element, the structures where the N/NP precedes the D seem problematic for a theory that assumes that the functional head is higher in the structure and has scope over the NP which it c-commands. According to Kayne (1994), heads must always precede their associated complement position, even though the surface word order in some languages may be H-C (e.g. English) and in some others like Igbo C-H. Under this view, in languages like Igbo, the C is said to undergo left adjunction to the specifier (Spec) position. The claim is that the universal ordering between a head and its dependents is Spec-Head-Complement, as represented in (17):

(17) XP

\[\text{Spec} \quad \overline{X} \quad X^0 \quad \text{YP}\]

(18) FP

\[\text{Spec} \quad \overline{F} \quad \text{NP}\]

If so, then the bilingual determinate DPs discussed earlier could be analysed as having the structure in (18). The structure in (18) says that the bilingual determinate DPs are headed by a functional head that takes an NP as C. The NP complement moves to the Spec position in surface syntax giving rise to the C-H order. For instance, the mixed DP in (11) will have the structure in (19) below.
In (19), the N ‘hospital’ is shown to move into its surface position where it appears before the demonstrative D ahü ‘that’; thus, creating two possibilities: (1) the N head could move to the head of the functional category in a head to head movement or, (2) the NP could move to the Spec position of the functional projection (FP). Given that there is no agreement morphology between the N and the associated functional category in Igbo, we assume the latter for the bilingual determinate DPs as illustrated in (18) and (19) above. Consequently, to maximise structural symmetry between determinate and indeterminate nominals, we shall assume that the latter are DPs headed by a following null determiner in line with Igbo grammar. If our supposition about the determinate DPs is correct, then the bare EL form in (16) will have the structure in (20) above. Bare nominals can be interpreted as definite, indefinite or generic which are features associated with the functional category D (Radford 2004). Consequently, we conclude that in languages like Igbo where there are bare nominals, there is a related null D head which carries the D-features. Moreover, the same analysis can be applied to account for the variation observed in all the mixed nominal expressions presented in this study.

Next, we consider our second criterion for identifying the ML of a bilingual clause.

5.2. The system morpheme criterion

The system morpheme criterion follows from the System Morpheme Principle (SMP), which predicts that in ML+EL constituents, all system morphemes which have grammatical relations external to their head constituent will come from the ML (Myers-Scotton 2002: 59). It is immediately apparent from the way the system morpheme criterion is stated that all system morphemes are not the same in terms of whether they have grammatical relations external to their heads. Recall that in section 3 we pointed out that the MLF model makes a distinction between content versus system morphemes. This distinction is on the grounds that content morphemes, such as the lone English origin noun hospital in (11) and the Igbo verb bïa ‘come’ in the same example can both assign or receive thematic roles, whereas system morphemes do not assign or receive thematic roles. Furthermore, system morphemes subdivide into early versus late system morphemes; according to whether or not they are conceptually activated or directly linked to the speaker’s intentions (see already section 3).

The early versus late distinction is predicated on assumptions about how early or late in the language production process the relevant morphemes are accessed. Hence, Myers-Scotton suggests that the lemmas underlying early system morphemes, like the post-posed Igbo demonstrative D ahü ‘that’ in (11), are activated when the lemmas supporting content morphemes (such as the EL N ‘hospital’) point to them. These indirectly elected lemmas further realise the conceptual content of the semantic/pragmatic feature bundles. For example, in (11) ahü adds definiteness/specificity to its complement hospital. In other words, the same semantic/pragmatic feature bundle activates both ahü and hospital.
Late system morphemes are then divided into bridge and outsider late system morphemes, the latter being co-indexed with forms outside the head of their maximal projection (Myers-Scotton 2002: 75), while the former are not. That is, outsider late system morphemes are the system morphemes mentioned in section 3 which have grammatical relations external to their head. Examples are subject-verb agreement, clitics and case affixes. For our purposes we shall re-define outsider late system morphemes in terms of such grammatical categories as auxiliary verb, tense, aspect, mood, and sentence negation, which are associated with the verb in both languages; rather than in terms of relations outside a morpheme’s maximal projection. This is because the concept of maximal projection tends to be theory-specific (cf. Fukui 2001), and also in the case of an analytic language like Igbo, there is no agreement morphology between verb and subject. Additionally, these grammatical categories are perhaps the most frequent kind of ‘outsider late morphemes’ that one can find in both languages, since they occur in most clauses which have finite verbs. Thus, the language source of the earlier mentioned grammatical categories in bilingual clauses containing the mixed nominal expressions should enable us to identify the ML, and this criterion should lead to the same result for each clause as the morpheme-order criterion discussed above.

To take an example, the ML of (15), repeated here as (21), was identified as Igbo in section 5.1 according to the morpheme order criterion:

(21) Igbo-English CS
 ha küda-ra booth dum na polling station ahü
 ‘They break-IND booth Q PREP polling station DEM/D
 ‘They broke all (the) booths at that polling station.’

We can see that it is also Igbo according to the system morpheme criterion, since the verbal inflectional morpheme (-ra, the affirmative indicative past tense suffix) also comes from Igbo. The same conclusion can be reached in the additional examples from Igbo-English CS below:

(22) ndï INEC wepüta-ra election results dum na TV
 People of INEC bring out-IND election results all PREP TV
 ‘The INEC released all the election results on TV.’

(23) returning officer ahü a-bü-ghï onye iberibe
 returning officer DEM V-BE-NEG person stupid
 ‘That returning officer is not a stupid person.’

(24) ma ceremony ahü fu-ru nïnukwu ego
 but ceremony D cost-IND big money
 ‘but that ceremony cost a lot of money’

(25) election afö a a-dì-ghï mfe m’ölï
 election year D V-BE-NEG easy at all
 ‘This year’s election is not easy at all.’

As can be observed in (22-25), all the verbal inflectional morphology (defined as outsider late system morphemes in this study) come from the language determined as the matrix language in section 5.1; Igbo. In addition, the nominal compounds in (21) polling station, (22) election results, and (23) returning officer are termed internal EL
islands. According to Myers-Scotton (2006: 265), internal EL islands are part of a larger phrase framed by the ML. All the EL elements qualify as islands because: (1) they are phrases within bilingual clauses (they are NPs); and (2) their words show structural dependency relations that make them well-formed in the EL (English). However, in all the examples, the EL morphemes are part of full DPs dominated by Igbo determiners: the demonstrative ahū ‘that’ (in 21 and 23), and the quantifier dum ‘all’ in (22). Crucially, all the mixed constituents support the morpheme order criterion because with the post-posed Igbo determiners the full DPs now have a complement-head order.

Also, we saw in section 5.1 that it was sometimes not possible to apply the morpheme order criterion where the word order of a mixed nominal expression was compatible with both Igbo and English (see example 14, repeated below as 26, and example 27).

(26) obodo anyi no na nnukwụ trouble
 Country our BE PREP big trouble
 ‘Our country is in big trouble’

Igbo → [NP[N nnukwụ] [N nsogbu]] or [NP[N nsogbu] [N nnukwụ]]

big/bigness trouble trouble big/bigness

(27) üfödü students a-na-ghị a-bịa na oge
 Q students V-BE-NEG V-come/arrive PREP time
 ‘Some students do not arrive on time.’

Igbo → [DP[Q üfödü] [N ümü akwụkwọ]] or [DP[N akwụkwọ] [Q üfödü]]

some students students some

In examples like (26-27) where there is no word order conflict between Igbo and English as far as the switched element is concerned (see already discussion in section 5.1 above), we shall consider the source language of the verbal inflectional morphology to identify the ML according to the system morpheme criterion only. It is equally important to underline that üfödü ‘some’ and the numeral otu ‘one’ are the only quantifiers in Igbo that may pre-modify their nouns. Üfödü is unique in that unlike otu, it can pre or post modify its noun. This is not the case in English, where some always occurs in pre-position to the element it modifies. In fact, Maduka-Durunze (1990: 239) observes that the Igbo words nnukwụ and üfödü are qualificative nouns which when they precede their nouns become emphatic in their descriptive meaning or ambiguously suggest an inherent as opposed to a descriptive meaning. Crucially, since the surface word order of the mixed constituents in (26-27) are compatible with that of both languages, we have coded all instances in the data corpus represented by these examples as ‘either’ according to the morpheme order criterion. However, examining the source language of the verbal inflectional morphology we observe that Igbo and not English is in charge of the outsider late system morphemes in the examples (e.g. the bridge late system morpheme nọ BE in (26) and the negative suffix –ghi in (27)).

As it turns out, there is no case in the sample data under consideration where English supplies the morpho-syntax and Igbo the EL elements. Therefore, if the MLP is correct, then all system morphemes in the same bilingual clause will come from the same source language; also, this source language will be the same as that identified by the first criterion, that of morpheme order (see already section 5.1).
5.3. Quantitative analysis of the MLP

In this section, we present the results of a quantitative analysis conducted in order to test the MLP. The two criteria for identifying the ML were applied to each bilingual clause in order to test the MLP, according to which it is always possible in classic CS to identify the ML in a bilingual clause. The combined results are given in Table 2 below.

Table 2: Identification of ML according to morpheme order and system morpheme criteria

<table>
<thead>
<tr>
<th>Nominal expressions</th>
<th>Source of morpheme order</th>
<th>Source of outsider late system morpheme</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. EL Ns/NPs + Post-posed Igbo Ds</td>
<td>+ Igbo</td>
<td>+ Igbo</td>
<td>1249 (78.1%)</td>
</tr>
<tr>
<td>2. EL Ns/NPs + Igbo Ns in genitival relationship</td>
<td></td>
<td>√</td>
<td>128 (8%)</td>
</tr>
<tr>
<td>3. EL Ns/NPs + Post-posed Igbo As</td>
<td>√</td>
<td>√</td>
<td>73 (4.6%)</td>
</tr>
<tr>
<td>4. EL Ns/NPs with zero determiner</td>
<td>√</td>
<td>√</td>
<td>112 (7%)</td>
</tr>
<tr>
<td>5. Pre-posed Igbo Ns + EL Ns in associative constructions</td>
<td>Either</td>
<td>√</td>
<td>37 (2.3%)</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td>1599 (100%)</td>
</tr>
</tbody>
</table>

Table 2 reveals that the source language of the system morphemes utilised to mark the grammatical categories of tense, aspect and mood is Igbo (100%). 78.1% (N = 1249/1599) of all English Ns/NPs occur with post-posed Igbo determiners. This finding seems to violate the Functional Head Constraint (FHC: Belazi et al 1994) and similar CS frameworks (see already section 1), which predict that the language feature of the complement f-selected by a functional head, like all other relevant features, must match the corresponding feature of that functional head. As is clear from the analysis in section 5.1, switching is not blocked between a functional head (D) and its complement (N/NP) in Igbo-English CS.

According to Myers-Scotton (2002: 59), only if the terms of the principles morpheme order and one type of system morpheme (outsider late system morpheme) are satisfied by one and the same language can the ML be identified as that language. On this basis, we determine that the ML of 97.7% of the bilingual clauses is Igbo unequivocally; whereas, the ML of only 2.3% of the bilingual clauses is Igbo according to just the system morpheme criterion. This finding in Igbo-English CS of one language as the overwhelming source of ML parallels the findings in Hungarian-English (Hungarian is the ML: Bolonyai 2005), Ewe-Kabiye (Ewe is the ML: Essizewa 2007) and Welsh-English (Welsh is the ML: Davies and Deuchar 2010). That is, the evidence from Igbo-English CS confirms that the two languages do not contribute equally in the creation of mixed utterances. In the abstract interaction between the two grammars, the matrix language (Igbo) is more activated than the embedded language (English), resulting in Igbo contributing the morpho-syntactic structure into which English elements are inserted.
6. Testing the AP

As we highlighted in section 3, this principle states that bilingual speech is characterised by asymmetry in terms of the roles played by the languages involved in CS (Myers-Scotton 2002: 9). This asymmetry is evident in the foregoing analysis reported in Table 1 above.

- Asymmetry in source of verb inflections (outsider late system morphemes): As the analysis reported in Table 1 clearly indicates, all verb inflections (100%) of the bilingual clauses come from only one of the participating languages, Igbo.
- Asymmetry in the resolution of conflict in word order: Again the analysis of the sample reveals that wherever there is a conflict in word order between the two languages, as in 97.7% (N = 1562/1599) of the examples, the order of Igbo (the ML) prevails over that of English (the EL).
- Asymmetry in the supply of content morphemes: The asymmetry in the roles played by both languages in the Igbo-English data extends even to the supply of content morphemes (words). A morpheme count indicates that over 90% of all the content words in the sample under consideration come from Igbo.

These findings illustrate the overwhelming influence of just one language, Igbo, as the source of the morphosyntactic frame in the CS examples.

7. Testing the USP

We have already seen that outsider late system morphemes can only come from the ML of a clause. However, this principle goes further to predict that other system morphemes, such as early system morphemes, which can come both from the ML and the EL, will be drawn preferentially from the ML of a bilingual clause (Myers-Scotton 2002: 8-9). As it turns out, Igbo (ML) contributes the overwhelming majority (98.7%) of all the early system morphemes (e.g. demonstratives, pronominal modifiers, quantifiers, numerals, pronouns, and so on); whereas English (EL) contributes only 1.3% of the early system morphemes in the form of the plural marker –s on the EL N

<table>
<thead>
<tr>
<th>(28) Igbo-English CS</th>
<th>tractor+s</th>
</tr>
</thead>
<tbody>
<tr>
<td>tractors ndi ahii emebi-ca-la</td>
<td></td>
</tr>
<tr>
<td>Tractors PRN/D DEM/D damage-ENCL-PERF</td>
<td></td>
</tr>
</tbody>
</table>

‘Those tractors have been damaged completely’

It is important to underline that there is no instance in the Igbo-English data where a lexical noun is in Igbo and the determiner is from English. Thus, the role of the EL is limited to supplying nearly only content morphemes. Broadly, the preceding analyses clearly show that the structures of Igbo (the ML) are preferred in the mixed constituents discussed in this paper.

8. Conclusion

In this study, we have evaluated the MLF model of CS with some Igbo-English data and have concluded that the data can indeed be considered a classic case of CS, in that a ML can be clearly identified in bilingual clauses. We have established this by a
qualitative and quantitative analysis, uncovering overwhelming supportive evidence for
the MLP, the AP and the USP. The findings also confirm that CS is not blocked when
the surface structures of two languages do not map onto each other; additionally, CS is
possible DP-internally between a functional head and its complement.

The overall implication for the MLF model is that its predictive power lies in its
recognition that there will be asymmetry between the ML and the EL in their roles in
setting the morphosyntactic frame of the bilingual clause. The regularity with which
Igbo supplies both the frame building elements (system morphemes) and sets
morpheme order wherever there is a conflict in word order in Igbo-English CS bears
this out.

Nevertheless, further research on a much larger corpus might reveal more
problematic examples than we have identified in the present study. Also, an aspect of
Igbo-English intrasentential CS that this study has not touched on concerns uncovering
what motivates the speakers to CS in the first place. A number of reasons have been
adduced in the literature as motivating factors for CS. These range from social-
pragmatic to grammatical considerations. Future research on Igbo-English CS will seek
to ascertain the particular motivations for why Igbo-English bilinguals engage in CS.

References

Mass: Massachusetts Institute of Technology. (Doctoral dissertation.)
Clyne, Michael. 2003. *Dynamics of Language Contact: English and Immigrant
Languages*. Cambridge: Cambridge University Press.
Davies, Peredur & Deuchar, Margaret. 2010. Using the Matrix Language Frame
Deuchar, Margaret. 2006. Welsh-English code-switching and the Matrix Language
Di Sciullo, Anne-Marie, Muysken, Pieter & Singh, Rajendra. 1986. Code-mixing and
Press.
University Press.
Essizewa, Komlan. 2007. Language contact phenomena in Togo: A case study of