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Highlights 

 

 HES1 is regulated by the NOTCH signalling pathway as well as the wnt and hedgehog 

pathways 

 HES1 plays an important role in T cell development and cancer.  

 HES1 represents a potent therapeutic target in cancer and leukaemia. 
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Abstract 

Hairy and enhancer of split homolog-1 (HES1) is a part of an extensive family of basic helix-

loop-helix (bHLH) proteins and plays a crucial role in the control and regulation of cell cycle, 

proliferation, cell differentiation, survival and apoptosis in neuronal, endocrine, T-

lymphocyte progenitors as well as various cancers. HES1 is a transcription factor which is 

regulated by the NOTCH, Hedgehog and Wnt signalling pathways. Aberrant expression of 

these pathways is a common feature of cancerous cells. There appears to be a fine and 

complicated crosstalk at the molecular level between the various signalling pathways and 

HES1, which contributes to its effects on the immune response and cancers such as 

leukaemia. Several mechanisms have been proposed, including an enhanced invasiveness and 

metastasis by inducing epithelial mesenchymal transition (EMT), in addition to its strict 

requirement for tumour cell survival. In this review, we summarize the current biology and 

molecular mechanisms as well as its use as a clinical target in cancer therapeutics.  
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Introduction 

 

The basic helix-loop-helix (bHLH) proteins are comprised of several proteins that function as 

transcription factors and play a regulatory role in several biochemical and physiological 

processes- differentiation, proliferation/cell-cycle arrest and survival/apoptosis. It was studies 

on neuronal cells that led to the cloning of two Hairy and Enhancer of Split (HES) proteins in 

1992 [1]. There are presently seven Hes proteins (HES1-7) and they all exhibit homology at 

the amino-acid level of the bHLH domain [1-7]. The Hes superfamily has a common proline 

residue within its basic motif, and the highly conserved tetrapetide domain: Trp-Arg-Pro-Trp 

(WRPW) at the C-terminus. Additionally, there is an ‘Orange Domain’ which is comprised of 

approximately 35 amino acids and this motif is located proximal to the C-terminus of the 

bHLH domain. The Orange domain thus provides an interface for protein-protein interaction 

[8]. HES1 is comprised of a basic DNA binding domain, followed by the helix-loop-helix 

(HLH) domain for dimerization (homo/hetero), the ‘Orange’ domain, a proline rich region 

and the WRPW domain.  

 

The bHLH domain of HES1 can form homo or hetero dimers with other members of the 

bHLH superfamily. HES1 binds to an N-box sequence (CACNAG) or a similar N-box 

sequence CACGCG (denoted as the class C site) present on the promoters of genes to 

regulate their expression. Widely recognised as a transcriptional repressor, HES1 mediates its 

actions by a feedback negative loop, regulating its own expression through a tetrameric N-

box site located within its promoter, to which it binds (Figure 1). Another suggested 

mechanism of transcriptional repression, is through the WRPW motif present at the C-

terminus [9]. Here, the transducin-like enhancer of split (TLE), which is a corepressor, 

interacts with the WRPW motif of HES1 and leads to the recruitment of histone deacetylases 

(HDAC) onto the promoters of the HES1 bound target genes. This results in repression of the 

target genes [10, 11]. 

Although well known as a transcriptional repressor of the NOTCH signalling pathway, HES1 

also functions as a transcriptional activator of some genes/targets and its dual role may be 

dependent on the interacting proteins that form the HES1 transcriptional complex.  Its 



activating potential has been demonstrated upon stimulation with the epidermal growth factor 

(EGF) where HES1 upon binding to STAT3, leads to an enhancement in gene expression 

[12]. Interaction between HES1 and Runt-related transcription factor 2 (Runx2) leads to an 

enhancement in the transcriptional activity of Runx2, inspite of HES1 being a repressor. 

HES1 also induces activation of PARP1 in B-cell acute lymphoblastic leukaemia (ALL) to 

induce apoptosis and tumor suppressive activity [13]. Thus, HES1 may function as either 

repressors or activators depending on the transcriptional complexes and thereby establishing 

a potential mechanism of cell specific dependent regulation. 

 

 

 

 

 

Figure 1: Schematic diagram of the HES1 protein.  

 

 

Regulation of HES1 

HES1 is activated by both canonical and non-canonical pathways and NOTCH represents one 

of the prominent canonical pathways. Signalling mediated by the NOTCH pathway plays an 

important role in cellular functions such as proliferation, differentiation, survival and 

apoptosis [14]. NOTCH plays complex opposing roles depending on the cellular context: in 

mammary adenocarcinoma and T-cell acute lymphoblastic leukaemia (ALL) it functions as 

an oncogene whereas, in contrast, it acts as a tumour suppressor in B cell and  neuroendocrine 

malignancies ([15-18]. Upon binding of the ligand (Jagged 1, 2, and Delta-like (Dll) 1, 3, 4) 

to the NOTCH receptor, there is a cascade of events which results in the exposure of cleaving 

sites for ADAM 10 and Y secretase resulting in the release of the intracellular domain of the 

NOTCH receptor (NICD). The NICD, then translocates within the nucleus and binds to 

transcription factors, primarily RBPjk, which leads to recruitment of co-activators/co-

repressors that results in the transcription of target genes, including HES1.  

The hedgehog pathway represents another mode of HES1 induction [19].  It was global gene 

expression studies using microarray in multipotent mesodermal cells that demonstrated the 

bHLH
Proline rich 
regionHes1 Orange WRPW



regulation of HES1 by overexpressing sonic hedgehog [19]. This was validated using the 

NOTCH pathway inhibitor DAPT and chromatin immunoprecipitation studies on Gli1 targets 

[20]. The hedgehog pathway is activated when the morphogen hedgehog binds to the patched 

receptor. This results in the catalytic activity of the transmembrane protein Smoothened and 

subsequent activation of transcription factors, including Gli (Figure 2).  

Thus, apart from the well-characterised, NOTCH and Sonic hedgehog pathways, HES1 can 

also be regulated by the c-Jun N-terminal kinase (JNK) signalling pathway in confluent 

growth arrested endothelial cells (EC) [21]. A previous study by Kim et al in 2005, had 

reported a link between the JNK and NOTCH signalling pathways and suggested that 

activation of NOTCH led to an inhibition of JNK signalling. In their study, they observed 

direct binding of NICD to JNK interacting protein-1 (JIP1), which resulted in inhibition of 

JNK [22]. The study of JNK activation in confluent EC cells, resulting in the upregulation of 

HES1 in a NOTCH independent manner validates the observation by Kim et al. Since 

NOTCH expression is suppressed in confluent EC, resulting in non existent NICD which 

subsequently results in the availability of JIP-1 to facilitate JNK activation.  

 

Furthermore Stockhausen et al (2005) demonstrated that HES1 was induced by transforming 

growth factor-α (TGF-alpha) in a neuroblastoma cell line SKNOBE(2)c [23]. They showed 

that induction of HES1 in this model was dependent on the MAP kinase ERK pathway. Thus, 

several pathways signal to control the expression of HES1. There appears to be a fine cross-

talk at the molecular level which is context and cell dependent, resulting in the regulation and 

expression of HES1. 

 



 

Figure 2: Regulation of HES1 at the molecular level.  

 

Role in immunity  

 

A crucial target of the NOTCH signalling pathway, HES1, is expressed in hematopoietic cells 

and thymic stroma and plays an important role in the development of T cells. This was 

confirmed in HES1 knockout mice, where 90% of HES1 deficient embryos presented with no 

thymus and <10% presented with an undeveloped thymus and here T cell development was 

blocked at the double negative stage (TCRβ- and TCRγδ-) [24]. A previous study in Rag1 

deficient mice had demonstrated that fetal liver cells deficient in HES1 had a defective 

reconstitution of T cells and a culture of the fetal thymus showed that there was a decrease in 

the cellularity in the lobes deficient in HES1 [25]. Again, a deletion of HES1 in the bone 

marrow progenitor cells, resulted in a reduction (80%) in thymic cellularity [26]. HES1 

deficient progenitor cells led to thymocyte differentiation being arrested at the early stages of 

clonal diversity, leading to a reduction in thymocyte numbers. Interestingly, NOTCH 

deficient mice, showed similar effects on thymocyte differentiation, leading to the notion that 

early stage hematopoietic cell differentiation was dependent on NOTCH mediated regulation 

of HES1 [27]. Kunisato et al, using alternative models reported that hematopoietic stem cell 

expansion could be maintained by upregulating HES1 [28]. One of the possible mechanisms 

by which HES1 promotes hematopoietic stem cell differentiation, is by suppressing Cdkn1b, 



which encodes the cell-cycle inhibitor p27
Kip1

 [29]. A recent study by Wong et al confirmed 

the role of NOTCH induced HES1 and its regulation of PTEN (phosphatase and tensin 

homolog), a PI3K/Akt inhibitor, during normal T cell development [30]. 

HES1 supports differentiation of αβ T cells into CD8+ T cells, by selectively suppressing the 

expression of the CD4 receptor [31]. Shibata et al, identified a unique role for HES1 in T cell 

development and showed that HES1 plays an important role in the development of IL-17 

producing γδ T cells in the thymus. It was observed that in HES1 deficient mice, the number 

of γδ T cells in the fetal thymus was slightly decreased and furthermore, inactivating the 

HES1 gene in the peripheral γδ T cells led to a reduction in IL-17 production [32]. 

 

Additionally, HES1 inhibits myeloid lineage differentiation by directly binding to and 

inhibiting C/EBP-α, a critical regulator of the development of myeloid and dendritic lineage 

cells [33]. Upon entry of progenitor cells into the thymus and subsequent signalling via the 

NOTCH pathway, differentiation into the myeloid lineage must be suppressed to allow for 

differentiation into the T cell lineages. Indeed, expressing C/EBP-α ectopically in the double-

negative (DN) thymocytes via the NOTCH pathway, results in apoptosis and failure in T cell 

development [34]. Thus, HES1 serves as a critical prerequisite for the commitment of 

hematopoietic cells into various lineages. 

 

Role in Cancer 

HES1 is one of the most studied targets of the NOTCH signalling pathway and its 

upregulation has been associated with the development of several cancers including breast 

cancer, lung cancers, rhabdomyosarcoma, meningiomas, ovarian cancer, medulloblastoma, 

cervical cancer, oral squamous cell carcinoma, head and neck, colon cancer, renal cancer, 

pancreatic cancer, prostate cancer and cutaneous T cell lymphoma [35-39]. One of the most 

important transcription factors involved in NOTCH induced T cell transformation, T-ALL is 

HES1. Thus, aberrant activation of the NOTCH-HES1 axis results in malignancy and 

maintenance of cancerous cells. Interestingly, the Hedgehog-HES1 axis has also been 

associated with the initiation of tumours and malignancy. Most importantly, recent reports 

suggest a critical role of HES1 in protecting cancer cells by blocking cell differentiation 

inducing pathways and signals, thereby supporting the proliferation of cancerous cells [40]. 

 



It was Mackillop in 1983 who suggested that most tumours are composed of a small 

population of cancer stem cells, which are resistant to apoptosis, are self-regenerating and 

have tumorigenic properties. Several cell surface markers have been identified to be 

associated with cancer stem cells, CD44, CD49, CD24 and CD133 are some of them and 

CD144 has been associated with HES1. Indeed, a number of studies provide evidence of a 

pivotal role for HES1 in the progression of cancer through the induction of cancer stem cells. 

In colon cancer, HES1 was found to be upregulated in poorly differentiated cancer samples 

when compared to well-differentiated tumour samples. Again, the expression level of HES1 

positively correlated with the level of CD133 in colon cancer samples and an increase in 

HES1 expression lead to a concomitant increase in the number of CD133 positive cells [36]. 

A previous study using lentiviral delivery of human CD133 into the rat C6 glioma cells 

(hCD133-C6) to produce genetically modified cell lines of rat glioma, were used  to study the 

role of CD133 in tumorigenicity. Here, NOTCH activation and an upregulation of HES1 was 

observed in C6 cells that were stably expressing hCD133. Downregulating HES1 expression, 

using shRNA mediated knockdown, led to a reduction in the colony forming ability of the 

hCD133-C6 cells. It was inferred from these studies that stably expressing hCD133 via 

activation of NOTCH, resulted in cell proliferation of C6 cells. This was reflected in-vivo, 

where tumour formation and progression was pronounced in the hCD133-C6 cells when 

compared to the untransfected C6 cells [41]. The importance of the NOTCH-HES1 axis was 

also studied in pancreatic cancer with similar observations [42]. An association of the 

NOTCH/HES1 role has also been reported in breast cancer and that there is an upregulation 

of the NOTCH receptors in breast cancer cells when compared to normal epithelia in the 

breast [43]. Cells expressing high CD44 but negatively stained for CD24 (CD44
+
/CD24

−/low
 

cells), were resistant to chemotherapy and were most commonly found in basal-like breast 

tumours and had a high frequency of early relapse [44]. Moreover, activation of the NOTCH 

pathway is essential in the maintenance of CD44
+
/CD24

−/low
 cancer stem cells in breast 

cancer [45]. A recent study showed that addition of BXL0124 (Gemin Vitamin D analog) led 

to a reduction in the CD44
+
/CD24

−/low
 tumour initiating cells and it was confirmed that the 

NOTCH-HES1 axis was inhibited by BXL0124 and a subsequent reduction in the 

CD44
+
/CD24

−/low
 cells in basal-like breast cancer. 

HES1 is involved in the tumorigenicity of stem cells in colon cancer [36]. HES1 is 

upregulated in metastatic prostate cancer cells, PC3 and PC3M. With the crucial role played 

by HES1 in tumour invasion and metastasis, it is imperative to study its role in epithelial-

mesenchymal transition (EMT), since EMT is considered to be the mechanism that promotes 



invasion and metastasis. Phosphatase and tensin homolog (PTEN) plays a crucial role in the 

regulation of EMT during embryogenesis and progression of cancer by downregulating the 

PI3K/AKT pathway [46]. Increasing evidence supports that inactivation or downregulation of 

the tumor suppressor PTEN triggers EMT in cancer, thereby promoting invasion and 

metastasis [47]. A recent study has demonstrated that HES1 promotes EMT related 

alterations by activating the AKT/PTEN axis in nasopharyngeal carcinoma (NPC) [48]. 

Again, HES1 has also been implicated in promoting cancer cell transformation and resistance 

to therapy (chemo/endocrine). One of the possible mechanisms of resistance to chemotherapy 

is through an upregulation of HES1, accompanied by an increase in STAT3 phosphorylation 

and activity [12]. 

 

HES1 is understood to promote cell proliferation by regulating factors involved in the cell 

cycle for example p21, p27 and CDK inhibitors of G1-S phase [29]. HES1 maintains cell 

quiescence by inhibiting p21 and thus preventing senescence [49]. Further mechanism is by 

repressing the CDK inhibitor, CDKN1C/P57,  involved in cell cycle arrest at the G1 phase, 

thereby hindering p57 mediated senescence [50]. Thus, HES1 promotes and maintains 

malignancy through several mechanisms with a central role played by the NOTCH-HES1 

axis.  

 

Cytokines in the regulation of HES1 

Cytokines play a crucial role in the regulation of immunity and cancer. One of the vital 

signalling pathway involved in these processes is the NOTCH pathway,  which, in concert 

with several other pathways, influences the regulation of HES1. Studies have shown an 

upregulation of NOTCH receptors and its target genes upon stimulation with cytokines in 

nucleus pulposus (NP) cells [51]. Another study highlighted the dependence of NOTCH on 

IFN-B in Dengue viral infection. Here, they detected an upregulation of NOTCH receptors, 

its ligands and the target genes in infected antigen presenting cells and that the NOTCH 

ligands, Dll1 and Dll4 played a role in the activation and differentiation of T-cells [52]. A 

role for the activation of the NOTCH –HES1 pathway in cancer was observed upon the 

stimulation of colorectal cancer stem cells with prolactin [53]. This was found to activate the 

JAK2- STAT3 and ERK1/2 pathways, and cause upregulation of the NOTCH ligand, Jagged 

1 and HES1. Another coactivator of interest is Maml1 which activates the NOTCH-HES1 

axis. Maml1 is also known to regulate the NK-kB pathway. A recent study demonstrated that 

knockdown of Maml1 in the melanoma cell line M537, led to an upregulation of IFN beta 



and greater migration of NK and CD8+ T cells [54]. Thus, various cytokines and 

transcription factors play an integrated role via the NOTCH-HES1 and target in these 

cytokines and pathways could serve as anticancer therapies by promoting cell differentiation 

and inhibiting cell proliferation  

 

Conclusion 

 

The NOTCH-HES1 axis plays a crucial role in the development, differentiation and 

proliferation of cells along with having a vital role in stemness, metastasis and endo/chemo 

resistance of tumour/cancer cells. The axis represents a complex cascade of events with 

activators and repressors playing an important role in the comprehensive crosstalk with and 

between pathways. Several mechanisms that influence HES1 regulation and its effects have 

been studied to an appreciable extent, although many still remain at large. There could be a 

possible role for the signal transducers and activators of transcription (STATs). HES1 

promotes and maintains the developmental proliferation of progenitor thymic T cells and 

various other cells, by constitutively repressing or activating transcription of cell cycle 

regulators. With its critical role in cancer cells, it serves as a biomarker and a very potent 

target for cancer therapy. 
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