

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

WapMetrics: a tool for computing UML design metrics for
Web applications.

Emad Ghosheh
Sue E. Black

School of Electronics and Computer Science

Copyright © [2009] IEEE. Reprinted from the IEEE/ACS International
Conference on Computer Systems and Applications (AICCSA 2009). IEEE,
pp. 682-689. ISBN 9781424438075.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. By
choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

WapMetrics: a tool for computing UML Design Metrics for Web Applications

Emad Ghosheh
University of Westminster

Department of Information and Software Systems
London HA1 3TP, UK

e.ghosheh@student.westminster.ac.uk

Sue Black
University of Westminster

Head of Department of
Information and Software Systems

London HA1 3TP, UK
s.e.black@westminster.ac.uk

Abstract

Many companies are still asking how to assess and pre-
dict the maintenance cost of their software. Measures of
software maintenance cost can be taken either late or early
in the development process. Early measures of software
maintenance cost are beneficial because they can help in
allocating project resources efficiently, predicting the effort
of maintenance tasks and controlling the maintenance pro-
cess. This paper describes a tool for computing early met-
rics from UML class diagrams based on the Web Applica-
tion Extension (WAE) for UML. A case study is used to show
the usefulness and effectiveness of the tool.
Keywords: Web applications, metrics, maintainability,
UML.

1 Introduction

It has been measured that in the maintenance phase soft-
ware professionals spend at least half of their time analyz-
ing software to understand it [10]. In addition, the cost of
software maintenance accounts for a large proportion of the
overall cost of a software system [33]. It is very important
for companies to assess and predict the maintenance cost of
their software. In this paper a tool called WapMetrics for
measuring UML design metrics for web applications is in-
troduced. WapMetrics provides an automated way to mea-
sure UML metrics and has the ability to show the results
in different output formats. We decided to use UML de-
sign metrics rather than source code metrics for measuring
maintainability as many studies have shown that early met-
rics are much more useful [5, 7]. Design metrics can be use-
ful in the following ways. Firstly, by predicting the main-
tenance effort and cost of maintenance tasks which helps
by providing accurate estimates that can help in allocat-
ing the correct project resources to maintenance tasks [13].
Secondly, by comparing design documents which can help

in choosing between different designs based on the main-
tainability of the design. Thirdly, by identifying the risky
components of a system since some studies show that most
faults occur in only few components of a software system
[12, 28]. Fourthly, by establishing design and programming
guidelines for software components. This can be done by
establishing values that are acceptable or unacceptable and
taking action on the components with unacceptable values.
This means providing a threshold of software product met-
rics to provide an early warnings of the system [11]. Fifthly,
by making system level prediction where the maintainabil-
ity of all components can be predicted by aggregating main-
tainability of single components. This can be used to predict
the effort it will take to develop the whole software system
[11]. Design metrics have been used by [4, 27, 25, 32, 22]
for measuring the quality of software systems.

This paper describes a tool for computing early metrics
from UML class diagrams based on Web Application Ex-
tension (WAE) for UML. The remainder of this paper is or-
ganized as follows: Section 2 gives a review of web appli-
cation modeling using UML and discusses related research.
Section 3 describes the different components of the Wap-
Metrics tool. Section 4 shows the usefulness and effective-
ness of the tool by conducting a case study. Finally, section
5 provides some conclusions and describes future work to
be undertaken.

2 Background & Related Work

2.1 Web Application Modeling using the
Unified Modeling Language(UML)

Modeling is a technique used to represent complex sys-
tems at different levels of abstraction, and helps in man-
aging complexity. UML is an object-oriented language [9]
that can be used to model object-oriented systems. Web ap-
plications are not inherently object-oriented, therefore, it is

978-1-4244-3806-8/09/$25.00 © 2009 IEEE 682
Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 06:10:37 EST from IEEE Xplore. Restrictions apply.

difficult to use UML to model web applications, but UML
has now been enhanced with extensions to capture the var-
ious elements of web applications. Conallen proposed an
extension of UML for web applications [9], The important
elements of Conallen’s model are as follows: [9]:

• Web Page: A web page is the primary element of a web
application. It is modeled with two separate stereo-
typed classes, the client page and the server page. The
client page contains client side scripts and user inter-
face formatting. The server page contains server meth-
ods and page scoped variables.

• Relationships: The model defines the following rela-
tions between different components: builds, redirects,
links, submit, includes, and forwards. The builds re-
lationship is a directional relationship from the server
page to the client page. It shows the HTML output
coming from the server page. The redirects relation-
ship is a directional relationship that requests a re-
source from a another resource. The links relationship
is an association between client pages and server or
client pages. It models the anchor element in HTML.
The links relationship can have parameters which are
modeled as attributes in the relationship. The submit
relationship is a relationship between the form and the
server page that processes it. The include relationship
is a directional association between a server page and
another client or server page. The forward relationship
is a directional relationship between a server page and
a client or server page. This presents delegating the
server request to another page.

• Forms: Forms are defined to separate the form process-
ing from the client page. The form element contains
field elements. Forms are contained in client pages.
Each form submits to a different action page.

• Components: Components run on the client or server
page. ActiveX controls and Applets are examples of
components.

• Scriplet: A scriplet contains references to components
and controls that are re-used by client pages.

• Framesets: A frameset divides the user interface into
multiple views each containing one web page. Frames
can contain more than one client page, but they must
contain at least one client page.

• XML: An XML element is a hierarchical data represen-
tation that can be passed back and forth between client
and server pages.

Table 1 shows the different metrics that are used in
the WapMetrics tool. The metrics use the different com-
ponents of Conallen’s model as units of measurement.

They are categorized into the following categories: Size
metrics(NServerP, NClientP, NWebP, NFormP, NFormE),
Complexity metrics
(NLinkR, NSubmitR, NBuildsR, NForwardR, NIncludeR),
Coupling metrics(WebControlCoupling, WebDataCou-
pling), Reusability metrics(WebReusability). All the
metrics are direct metrics except for WebControlCoupling,
WebDataCoupling, and WebReusability which are indirect
metrics. All these metrics were defined in the authors
previous study [17], while the following (NC, NA, NM,
NAssoc, NAgg) metrics were defined in the study carried
by Genero [14] on class diagram metrics for object ori-
ented applications. We have used the metrics in several
studies: In [17] the pet store web application version
1.3.1 was used. The pet store web application is available
at the Sun web site [2]. It is a sample application that
provides customers with online shopping. A customer
can browse the pet store site, look at the catalog and
add shopping items to the shopping cart. The pet store
application is an example of a typical e-commerce web
application. The subjects were taking a summer course
in 2006 at the Information Technology department at the
university of Illinois. We used two sub-characteristics of
maintainability, understandability time and modifiability
time to measure maintainability. The study showed the
usefulness, and simplicity of using the UML metrics in
measuring maintainability. In [18] a web application from
the telecommunication Operational Support System (OSS)
domain is used to study the relationships between the met-
rics and maintenance effort measured by number of Lines
of Code(LOC). The exploratory experiment showed that
higher size metrics, higher structural complexity metrics,
and higher coupling metrics result in higher maintenance
effort

2.2 Related Work

One of the main concerns of system stakeholders is to
increase the maintainability of the software system. Main-
tainability can be defined as:

The ease with which a software system or
component can be modified to correct faults, improve per-
formance or other attributes, or adapt to a changed envi-
ronment [3].
Maintainability can be assessed by measuring some of
the sub-characteristics of maintainability such as under-
standability, analyzability, modifiability and testability.
Kiewkanya et al [25] measured maintainability by measur-
ing both modifiability and understandability. In Coleman et
al [8] the maintainability has been quantified in the Main-
tainability Index . The Maintainability Index is measured as
a function of directly measurable attributes A1 through An

as shown in Equation 1:

683
Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 06:10:37 EST from IEEE Xplore. Restrictions apply.

Metric Type Description
Size Total number of server pages (NServerP)

Total number of client pages (NClientP)
Total number of web pages
(NWebP)=(NServerP + NClientP)
Total number of form pages (NFormP)
Total number of form elements (NFormE)
Total number of client scripts components
(NClientC)

Structural Com-
plexity

Total number of link relationships (NLinkR)

Total number of Submit relationships
(NSubmitR)
Total number of builds relationships
(NbuildsR)
Total number of forward relation-
ships(NForwardR)
Total number of include relation-
ships(NIncludeR)
Total number of use tag relation-
ships(NUseTagR)

Control Coupling Number of relationships over number of web
pages: WebControlCoupling = (NLinkR +
NSubmitR + NbuildsR + NForwardR + NIn-
cludeR + NUseTagR)/ NWebP)

Data Coupling Number of data exchanged over number of
server pages: WebDataCoupling = (NFormE
/ NServerP)

Reusability Number of include relationships over num-
ber of web pages: WebReusability = (NIn-
cludeR / NWebP)

NC Total number of classes
NA Total number of attributes
NM Total number of methods
NAssoc Total number of associations
NAgg Total number of aggregation relationships

Table 1. Web Application Design Metrics

M = f(A1, A2,, An) (1)

The measure (M) is called a Maintainability Index which
can differ depending on the attributes being used in the mea-
surement, Fioravanti et al [13] used effort for measuring
maintainability. In our research we have used the metrics
defined in Table 1 for measuring maintainability of web ap-
plications. For the authors previous research on this topic
please refer to [21, 15, 17, 18, 20, 19, 16]. There are several
UML metric tools that have been built for measuring met-
rics from UML diagrams. UML Metrics Producer (UMP)
[26] was developed to measure some early metrics to predict
various characteristics at the earlier stages of the software
life cycle. UMP measures four categories of UML metrics:
model, class, use case and message metrics. UMP is only
1152 lines of code including comments. UMP has a report

generating facility that details all the four kinds of metrics
data in the XML format. UMP is built on top of Rational
Rose and uses the BasicScript language [24]. Fast&Serious
[6] estimates the size of a project in terms of source lines of
code. Fast&Serious starts by analyzing the class diagrams
to determine the estimation method to be used: rough (Fast)
or a detailed (Serious) estimation method. This is deter-
mined using other UML diagrams such as use cases, se-
quence diagrams, and state diagrams. Both tools, can only
be applied to Rational Rose models. In addition, there is no
way to add new metrics without reprogramming the tools.
Metrics from XMI [30] measures object oriented metrics
from XMI [29] representations. The tool does not support
user defined metrics and the results of the measurement can
not be exported in an easy to use format. Their approach is
similar to our approach in computing UML class diagram
metrics from XMI [29] representations. But it is not possi-
ble to measure our metrics with their tool. Our tool differs
in the type of metrics used, it computes metrics based on
Conallen’s model for web applications. In addition, our tool
presents the results in the following output formats: XML,
pdf, excel, rtf and csv.

3 WapMetrics Tool

It is important to have an automated tool for computing
UML metrics from design diagrams. WapMetrics is a web
tool that takes UML diagrams in XMI [29] format as input
and produces the results in HTML format. The WapMetrics
tool has the following features:

• WapMetrics tool is independent form the CASE tool
used to build the models. It takes an XMI file as input.
The XMI file describes the UML model in a standard
way. The XMI input allows the exchange of model
information in a standard way regardless of the CASE
tool used to create the XMI file.

• WapMetrics can measure and calculate web appli-
cation metrics from UML diagrams based on the
Conallen model. Most of the other tools concentrate
on UML metric for object-oriented applications.

• WapMetrics is a web application that can be deployed
on a central server and used by many users without in-
stalling it on the client machines. This makes it easy to
maintain and deploy enhancements to the WapMetrics
tool.

• An important feature of WapMetrics tool is interoper-
ability. The outcome of WapMetrics is user friendly
and easy usable by other tools. WapMetrics allows
the output to be exported in several formats: HTML,
XML, pdf, excel, rtf and csv. This allows the output

684
Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 06:10:37 EST from IEEE Xplore. Restrictions apply.

to be used for statistical reporting and the results to be
presented in graphs and other formats.

The WapMetrics tool architecture is composed of three
components:

1. Presentation Component

2. Controller Component

3. Business Component

The Presentation Component is responsible for getting
the input from the user and displaying the results in HTML.
The Controller Components is mainly responsible for com-
municating back and forth between the Presentation Com-
ponent and the Business Component. The Business Com-
ponent is responsible for the parsing and computation of the
metrics. Figure 1 shows the architecture components of the
WapMetrics tool.

Figure 1. WapMetrics Tool Architecture

3.1 Presentation Component

The presentation component provides the user interface
for starting the WapMetrics tool. The presentation com-
ponent has been implemented with Java, JSP, JavaScript,
HTML and stylesheets. Figure 2 shows the main screen
which has two inputs: XMI [29] input and email input. The
XMI input is the input file that contains the design of the

Figure 2. WapMetrics MainScreen

Figure 3. WapMetrics Results Screen

model in XML [29] format. Many UML design tools are
able to export their design to the XMI format which makes
the tool interoperable with a wide range of UML design
tools. The email input allows the user to get an email with
the results once processing is done. The user does not need
to wait for the processing to complete in case it takes long
time. The email input is validated on the client side using
JavaScript to make sure the email has the correct format.
Figure 3 shows part of the results screen which is imple-
mented using JSP [23] and the display tag [31]. The results
screen allows the user to export the result in different output
formats. The result can be exported in XML, pdf, excel, rtf
and csv formats.

3.2 Controller Component

The controller component is the communication medium
between the presentation component and business compo-
nent. The controller component is implemented totally in
Java and provides some validation on the input data. The
controller component carries out the validation on the XMI
input file to make sure it is well formatted. If it finds errors
in the format, it displays an error message to the presenta-
tion component, otherwise it passes the data to the business
component for further processing.

3.3 Business Component

The business component is the main component of the
application. It is responsible for the extraction, analysis and

685
Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 06:10:37 EST from IEEE Xplore. Restrictions apply.

display of the results of the metrics computation. The busi-
ness component is composed of three parts: the parser, met-
rics processor, and metric computor. The parser is a wrap-
per of the SAX parser. It extracts the data from the XMI
input file and puts the data in object classes. It creates an
Array which has all the diagrams as elements. The array
is passed to the metric processor which extracts all the di-
agrams and calls the corresponding method on the metric
computor. The metric computor implements the algorithms
for computing all the metrics defined in Table 1.

4 Case Study

Figure 4. Claros Home Screen [1]

Figure 5. Claros Contacts Screen [1]

4.1 Introduction

We will use Claros [1]in our case study. Claros is an
open source project with the goal of providing an easy to
use personal information suite for its users. This case study
uses Claros inTouch version 2.1 [1]. Claros inTouch is
an Ajax communication suite having the following compo-
nents: webmail, address, book, post-it notes, calendar, web-
disk, built-in instant messenger and rss reader. It is an open
source web application using web 2.0 technologies.

Figure 4 shows the home screen for Claros which has
tabs for the Mail, Contacts, Notes, and chat components.
In our study we will use the Contacts component shown in
Figure 5. The Contacts component allows the user to add a
new contact, save contact, send mail to contact, delete con-
tact and save contact as vCard. The Contacts components
stores general information about the user, home address and
work address.

4.2 Data Collection

The WapMetrics tool takes as input class diagrams in
XMI format. Unfortunately, there were no preexisting class
diagrams for the Claros web application. So, we decided
to set up a running claros web application to help us un-
derstand, and reverse engineer the Contacts component of
Claros. To run Claros successfully we had to install the fol-
lowing components: Java 1.5 or higher which can be down-
loaded from the SUN website [2], Tomcat5.x webserver
which can be donwloaded from the apache website [1],
MySQL for the database which can be downloaded from
the MySQL download center [1]. After setting up all the
software components, Claros source code was downloaded
and added to the web folder in Tomcat. Finally, we started
the webserver and opened the home page for the Claros web
application.

For generating the class diagram for the Claros web
application we used IBM Rational Rose Enterprise Edi-
tion [24]. Rational Rose has a visual modeling compo-
nent. It can create the design artifacts of a software sys-
tem. The Web Modeler component in Rational Rose sup-
ports Conallen’s extension for web applications. The Web
Modeler component was used to generate the class diagram
for the Contacts components in the Claros web application.
Appendix Figure 6 shows the class diagram for the Con-
tacts component. The generated class diagram was vali-
dated by comparing the running Claros web application and
the source code with the class diagram. After the class di-
agram was validated, Unisys Rose XML [24] was used to
export the UML class diagrams into XML Metadata Inter-
change (XMI) [29]. The WapMetrics tool was used to com-
pute the metrics defined in Table 1 from the XMI input file.

686
Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 06:10:37 EST from IEEE Xplore. Restrictions apply.

4.3 Results

Metric Name Value
NServerP 4
NClientP 1
NWebP 5
NFormP 1
NFormE 36
NClientC 19
NLinkR 7
NSubmitR 1
NbuildsR 1
NForwardR 0
NIncludeR 3
NUseTagR 0
WebControlCoupling 2.4
WebDataCoupling 9
WebReusability 0.6
NC 14
NA 60
NM 130
NAssoc 26
NAgg 2

Table 2. Claros Contacts Component Results

Table 2 shows the results of applying the WapMetrics
tool on the class diagram shown in Figure 6. Our results
have been validated by computing the metrics manually
from the class diagrams and comparing the output to re-
sults from the WapMetrics tool. As shown in Table 2 the
Contacts component has four server pages (NServerP). The
number of form elements (NFormE) is thirty six which is
quite high for a single form page. The number of client
components (NClientC) is nineteen. This is expected since
Claros is an Ajax application and uses a lot of Javascript.
The number of methods and attributes in the controller,
model and service classes is also high. The Claros Con-
tacts component has many classes with sixty attributes and
one hundred and thirty methods. This means that there is
a considerable amount of development effort needed on the
Java side of the Contacts component. The metrics results
from WapMetrics were as expected since the Contacts com-
ponent is one of the biggest components in Claros. In our
research the metrics are used to measure maintainability us-
ing:

• Understandability and Modifiability: Maintainability
is measured using two important characteristics of
maintainability namely understandability and modifi-
ability. We have conducted several empirical studies
to show the relationship between our metrics and un-
derstandability time and modifiability time.

• Lines of Code Changed: The total number of lines
added and deleted during a maintenance task is used
to measure maintainability. We have conducted sev-
eral case studies to show the relationship between our
metrics and Lines of Code Changed.

• Fault-Proneness: Fault-proneness is defined as the
probability of detecting a fault in a UML class dia-
gram. We have conducted case studies using open
source web applications to study the relationship be-
tween our metrics and fault-proneness.

We are using statistical analysis to determine the rela-
tionship between our metrics and the different maintainabil-
ity measurements defined above. In the development pro-
cess the software analyst can allocate more resources for
those class diagrams that have high maintenance cost.

5 Conclusion and Future Work

Web applications have evolved into complex applica-
tions that have high maintenance cost. The high cost is
due to the inherent characteristics of web applications, to
the rapid evolution of the Internet, and to the pressing mar-
ket which imposes short development cycles and frequent
modifications. In order to control the maintenance cost of
web applications, we have defined several design metrics
for web applications as shown in Table 1. We also have con-
ducted several empirical case to show the usefulness of the
metrics [15, 17, 18, 20, 19, 16]. Our main goal in this paper
is to show how the WapMetrics tool can be used to compute
UML design metrics for web applications. We provide an
automated way for measuring the metrics from UML class
diagrams so that project managers, team leaders and devel-
opers can have an early warning on any delays or potentially
risky software components. This study has introduced Wap-
Metrics, a tool for measuring UML design metrics for web
applications. The tool has been validated through a case
study showing the usefulness of the tool. The results give a
first indication of the usefulness of the WapMetrics tool.

In the future, we will consider extending our tool to com-
pute user defined metrics. We will carry out further testing
and validation and provide the source online for the benefit
of the research community.

References

[1] Claros. Website. http://www.claros.org/web/
home.do.

[2] Sun. Website. http://www.java.sun.com.
[3] P. Bhatt, G. Shroff, and A. Misra. Dynamics of software

maintenance. ACM SIGSOFT Software Engineering Notes,
29(4):1–5, 2004.

687
Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 06:10:37 EST from IEEE Xplore. Restrictions apply.

[4] L. Briand, C. Bunse, and J. Daly. A controlled experiment
for evaluating quality guidelines on the maintainability of
object-oriented designs. IEEE Transactions on Software En-
gineering, 27(06):513–530, 2001.

[5] L. Briand and J. Wurst. Modeling development effort
in object-oriented systems using design properties. IEEE
Transactions on Software Engineering, 27(11):963–986,
2001.

[6] M. Carbone and G. Santucci. Fast&serious: a UML based
metric for effort estimation. In 6th ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engi-
neering, 2002.

[7] D. Card, K. El-Emam, and B. Scalzo. Measurement of
object-oriented software development projects. Software
Productivity Consortium NFP, 2001.

[8] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using met-
rics to evaluate software system maintainability. IEEE Com-
puter, 27(8):44–49, 1994.

[9] J. Conallen. Building Web Applications with UML. Addison-
Wesley, 2 edition, 2003.

[10] T. Corbi. Program understanding: challenge for the 1990s.
IBM Systems Journal, 28(2):294–306, 1989.

[11] K. EL-Emam. A methodology for validating software prod-
uct metrics. Technical Report NRC 44142, National Re-
search Council Canada, 2000.

[12] N. Fenton and N. Ohlsson. Quantitative analysis of faults
and failures in a complex software system. IEEE Transac-
tions on Software Engineering, 26(8):797–814, 2000.

[13] F. Fioravanti and P. Nesi. Estimation and prediction metrics
for adaptive maintenance effort of object-oriented systems.
IEEE Transactions on Software Engineering, 27(12):1062–
1084, 2001.

[14] M. Genero, M. Piattini, and C. Calero. Empirical validation
of class diagram metrics. In Proceedings of the 2002 In-
ternational Symposium on Empirical Software Engineering,
pages 195–203. IEEE Computer Society Press, 2002.

[15] E. Ghosheh and S. Black. An introduction of UML de-
sign metrics for web applications. In Proceedings of the
Annual Mphil-PhD Research Workshop, pages 38–41. Har-
row School of Computer Science University of Westmin-
ster, 2007.

[16] E. Ghosheh and S. Black. Empirical validation of UML class
diagram metrics through an industrial case study. Journal
of Electronics & Computer Science (JECS), 10(4):63–74,
2008.

[17] E. Ghosheh, S. Black, and J. Qaddour. An introduction
of new UML design metrics for web applications. In-
ternational Journal of Computer & Information Science,
8(4):600–609, 2007.

[18] E. Ghosheh, S. Black, and J. Qaddour. Design metrics for
web application maintainability measurement. In Proceed-
ings of the 6th IEEE/ACS International Conference on Com-
puter Systems and Applications, pages 778–784. IEEE Com-
puter Society Press, 2008.

[19] E. Ghosheh, S. Black, and J. Qaddour. A general evalua-
tion criteria for web applications maintainability models. In
Proceedings of the IEEE Region 5 Technical, Professional,
and Student Conference, pages 1–6. IEEE Computer Society
Press, 2008.

[20] E. Ghosheh, S. Black, and J. Qaddour. An industrial study
using UML design metrics for web applications. In Com-
puter and Information Science, volume 131 of Studies in
Computational Intelligence, chapter 20, pages 231–241.
Springer-Verlag, 2008.

[21] E. Ghosheh, J. Qaddour, M. Kuofie, and S. Black. A com-
parative analysis of maintainability approaches for web ap-
plications. In Proceedings of the 4th IEEE/ACS Interna-
tional Conference on Computer Systems and Applications,
page 247. IEEE Computer Society Press, 2006.

[22] T. Gymothy, R. Ferenc, and I. Siket. Empirical validation
of object-oriented metrics on open source software for fault
prediction. IEEE Transactions on Software Engineering,
31(10):897–910, 2005.

[23] M. Hall. Core Servlets and Java Server Pages. Upper Saddle
River, 1 edition, 2000.

[24] IBM. Rational Rose Enterprise Edition. Web-
site. http://www-306.ibm.com/software/
awdtools/developer/rose/index.html.

[25] M. Kiewkanya, N. Jindasawat, and P. Muenchaisri. A
methodology for constructing maintainability model of
object-oriented design. In Proceedings of the 4th Inter-
national Conference on Quality Software, pages 206–213.
IEEE Computer Society Press, 2004.

[26] H. Kim and C. Boldyreff. Developing software metrics ap-
plicable to UML models. In Proceedings of QAOOSE’2002.
QAOOSE 2002, 2002.

[27] M. Mario, E. Manso, and G. Cantone. Building UML class
diagram maintainability prediction models based on early
metrics. In Proceedings of the 9th International Software
Metrics Symposium, pages 263–278. IEEE Computer Soci-
ety Press, 2003.

[28] K.-H. Moller and D. Paulish. An empirical investigation of
software fault distribution. In Proceedings of the 4th Inter-
national Software Metrics Symposium, pages 82–90. IEEE
Computer Society Press, 1993.

[29] OMG. Xml Metadata Interchange. Website. http://
www.omg.org/.

[30] T. Paterson, C. Russell, and R. Dewar. Object-oriented soft-
ware design metrics from XMI. Technical Report HW-
MACS-TR-0008, School of Mathematical and Computer
Sciences, Heriot-Watt University, Edinburgh, Scotland, UK,
2003.

[31] O. Source. Display tag. Website. http://displaytag.
sourceforge.net/11/.

[32] R. Subramanyam and M. Krishnan. Empirical analysis of
ck metrics for object-oriented design complexity: Implica-
tions for software defects. IEEE Transactions on Software
Engineering, 29(04):297–310, 2003.

[33] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs. IEEE Transactions on Software Engi-
neering, 18(12):1038–1044, 1992.

6 Appendix

688
Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 06:10:37 EST from IEEE Xplore. Restrictions apply.

Figure 6. Claros Contacts Class Diagram

689
Authorized licensed use limited to: University of Westminster. Downloaded on March 11,2010 at 06:10:37 EST from IEEE Xplore. Restrictions apply.

