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Abstract—The generation of significant power droop (PD) 

during at-speed test performed by Logic BIST is a serious concern 

for modern ICs. In fact, the PD originated during test may delay 

signal transitions of the circuit under test (CUT): an effect that 

may be erroneously recognized as delay faults, with consequent 

erroneous generation of test fails, and increase in yield loss. In this 

paper, we propose a novel, scalable approach to reduce the PD 

during at-speed test of sequential circuits with scan-based Logic 

BIST using the Launch-On-Capture scheme. This is achieved by 

reducing the activity factor of the CUT, by proper modification of 

the test vectors generated by the Logic BIST of sequential ICs. Our 

scalable solution allows us to reduce PD to a value similar to that 

occurring during the CUT in field operation, without increasing 

the number of test vectors required to achieve a target Fault 

Coverage (FC). We present a hardware implementation of our 

approach that requires limited area overhead. Finally, we show 

that, compared to recent alternative solutions providing a similar 

PD reduction, our approach enables a significant reduction of the 

number of test vectors (by more than 50%), thus the test time, to 

achieve a target FC.  

 
Index Terms— Logic BIST, Power Droop, Test, Microprocessor  

 

I. INTRODUCTION 

HE aggressive scaling of microelectronic technology is 

enabling the fabrication of increasingly complex ICs. 

Together with several benefits (improved performance, 

decreased cost per function, etc.), this poses serious challenges 

in terms of test and reliability [1, 2, 3, 4, 5, 6, 7]. In particular, 

during at-speed test of high performance microprocessors, the 

IC activity factor (AF) induced by the applied test vectors is 

significantly higher than that experienced during in field 

operation [5, 8, 9, 11, 13, 14, 15]. Consequently, excessive 

power droop (PD) may be generated, which will slow down the 

circuit under test (CUT) signal transitions. This phenomenon is 

likely to be erroneously recognized as due to delay faults. As a 

result, a false test fail will be generated, with consequent 

increase in yield loss [9, 13, 16]. 

At-speed test of logic blocks is nowadays frequently 

performed using Logic BIST (LBIST) [2, 8, 9, 10], which can 

take the form of either combinational LBIST, or scan-based 

LBIST, depending on whether the CUT is a combinational 

circuit, or a sequential one with scan [8, 12]. In case of scan-

based LBIST, two basic capture-clocking schemes exist [8, 12]: 

the launch-on-shift (LOS) scheme, and the launch-on-capture 

(LOC) scheme. In LOS schemes, test vectors are applied to the 

CUT at the last clock (CK) of the shift phase, and the CUT 

response is sampled on the scan chains at the following capture 

CK. In the LOC scheme, instead, test vectors are first loaded 

into the scan-chains during the shift phase; then, in a following 

capture phase, they are first applied to the CUT at a launch CK, 

and the CUT response is captured on the scan chains in a 

following capture CK [8].  

In this paper, we consider the case of sequential CUTs with 

scan-based LBIST adopting a LOC scheme, which is frequently 

adopted for high performance microprocessors. They suffer 

from the PD problems discussed above, especially during the 

capture phase, due to the high AF of the CUT induced by the 

applied test patterns.  

Solutions allowing designers to reduce PD during the 

capture phase in scan-based LBIST are therefore needed. While 

several approaches have been proposed to reduce PD for 

combinational LBIST (e.g., [8, 11, 13]), only a few solutions 

exist for scan-based LBIST [2, 9, 17-21].  

In [2], PD is reduced by a multi-cycle BIST scheme with 

partial observation. This approach does not impact FC (actually 

it presents a slight FC increase of 5% compared to conventional 

scan-based-LBIST), but enables to reduce PD by the 33% only, 

compared to conventional scan-based-LBIST. 

In [9], PD can be reduced of more than 50% by alternately 

disabling groups of scan chains during test. However, this 

approach implies an increase of more than 90% in the number 

of test vectors required to achieve a target FC, with consequent 

increase in test time (TT), compared to conventional scan-based 

LBIST. 

In [21], a test pattern generator with a pre-selected toggling 

level (PRESTO) is presented. It enables more than 50% 

reduction in the AF of the scan chains by preselecting the 

number of shift cycles during which the scan chains are loaded 

with constant logic values. However, it requires more than 60% 

increase in the number of test vectors (thus TT) to achieve the 

same FC as with conventional scan-based LBIST. 

The solution in [17, 18] relies on inserting an additional 

phase, namely a “burst” phase, between each shift and capture 
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phase. Such a burst phase aims at increasing the current drawn 

from the power supply, up to a value similar to that absorbed by 

the CUT during capture phases. This way, the inductive 

component of PD occurs during the burst phase, and vanishes 

before the following capture phase. This solution causes an 

increase in both the total power consumed during test and TT. 

In [19, 20], we recently proposed alternative approaches to 

reduce PD during scan-based LBIST, for the LOS scheme. They 

enable to reduce PD (up to 50% in [19], and up to 87% in [20]) 

by increasing the correlation between adjacent bits of the scan 

chains. However, these approaches do not increase the 

correlation between test vectors applied at following capture 

cycles, so that they are not effective in reducing PD during scan-

based LBIST adopting the LOC scheme.  

 In this paper, we propose a novel, scalable approach to 

reduce PD during capture phases of scan-based LBIST, thus 

reducing the probability to generate false test fails during test. 

Similarly to the solutions in [8, 11], our approach reduces the 

AF of the CUT compared to conventional scan-based LBIST, 

by properly modifying the test vectors generated by the LFSR. 

Our approach is somehow similar to re-seeding techniques 

(e.g., that in [22]), to the extent that the sequence of test vectors 

is properly modified in order to fulfill a given requirement that, 

however, is not to increase FC (as it is usually the case for re-

seeding), but to reduce PD. The basic idea behind our approach 

(in its non-scalable version) was introduced in [23].  

In our proposed scalable approach, one (or more) test 

vector(s) to be applied to the CUT according to conventional 

scan-based LBIST is (are) replaced by new, proper test 

vector(s), hereinafter referred to as substitute test (ST) 

vector(s). The ST vector(s) is (are) generated based on the test 

vectors to be applied at previous and future capture phases, in 

order to reduce the maximum number of transitions between 

any two following test vectors. This way, the CUT AF and PD 

are reduced compared to the original test sequence [11]. We 

consider the presence of a phase shifter (PS), which is usually 

adopted in scan-based LBIST to reduce the correlation among 

the test vectors applied to adjacent scan-chains [10]. As shown 

in [2], all test vectors to be applied at previous and future 

capture phases to any scan-chain are usually given at proper 

outputs of the PS, or the PS can be easily modified to provide 

them. In our approach, this property is exploited to enable its 

low cost hardware implementation. However, our approach can 

be adopted also if the PS does not provide the previous and 

future test vectors for all scan-chains, or if the scan-based 

LBIST does not present a PS. Indeed, as shown in Section IV, 

the previous and future test vectors of scan-chains can be 

obtained as a linear combination of proper LFSR outputs. 

Our approach is scalable in the achievable PD reduction. 

Therefore, test engineers could choose the proper AF in order 

to avoid that: a) faulty chips are tested as good (due to an 

induced too low AF, lower than that experienced during normal 

operation) and b) good chips are tested as faulty (due to an 

induced excessive AF, higher than that experienced during 

normal operation). PD scalability is obtained by scaling the 

number of ST vectors to be applied between original test 

vectors. We will prove that our approach can reduce the 

maximum AF between following capture phases from 50% (one 

ST vector only) to 89% (10 ST vectors) compared to 

conventional scan-based LBIST. This is achieved without 

increasing the number of test vectors (thus TT) over 

conventional scan-based LBIST, for a given target FC. 

Moreover, our approach requires a very limited area overhead 

compared to conventional scan-based LBIST, which ranges 

from approximately 1.5% (1 ST vector), to approximately 14% 

(10 ST vectors). Additionally, our solution requires 

substantially less test vectors (thus TT) to achieve a target FC 

compared to the alternative solutions in [9, 21].  

The remainder of this paper is organized as follows. In 

Section II, we describe the considered conventional scan-based 

LBIST. In Section III, we introduce our approach for PD 

reduction during capture phases. In Section IV, we show a 

possible hardware implementation of our approach. In Section 

V, we evaluate the cost of our approach and compare it to 

conventional scan-based LBIST and to the solutions in [9, 21]. 

Finally, some conclusions are drawn in Section VI.  

II. CONSIDERED SCENARIO 

We consider the conventional scan-based LBIST (Conv-

LBIST) architecture shown in Fig. 1 [8, 10, 11, 12, 14]. The 

state flip-flops of the CUT are scan flip-flops, arranged into 

many scan chains (s scan chains in Fig. 1).  

The Pseudo-Random Pattern Generator (PRPG) is 

implemented by an LFSR [10, 12, 14]. The PS, which reduces 

the correlation among the test vectors applied to adjacent scan-

chains [10], is composed by an XOR network expanding the 

number of outputs of the LFSR to match the number of scan 

chains s [10]. As discussed more in details in Section IV, the PS 

gives to its output the current LFSR output configuration, 

together with future/past configurations at each shift CK. 

The Space Compactor compacts the outputs of the s scan 

chains to match the number of inputs of the MISR. The MISR, 

the Test Response Analyzer (TRA) and the BIST Controller are 

the same as in combinational scan-based LBIST [8, 12]. 

As for the scan flip-flops, our approach requires that, during 

shift phases, they maintain the last test vector applied to the 

CUT at their outputs. This is guaranteed by the scan-flip flop in 

[24], which is frequently employed in microprocessors [24], 

and considered here as significant example. However, this can 

Fig. 1. Schematic representation of the considered scan-based LBIST 
architecture. 
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be also achieved with other different scan flip-flops. The 

internal structure of this flip-flop is shown in Fig. 2. It consists 

of two sub-blocks, namely the scan portion and the system 

portion, each consisting of a master-slave flip-flop composed 

by two latches (Latches LA and LB for the scan portion, and 

latches PH2 and PH1 for the system portion) [24]. The latches 

have two clocks, and sample one out of two input data lines, 

depending on which clock is active [24].  

 

 

Fig. 2. Considered scan flip-flop in [24] and signals’ timing. 
 

The clocking scheme adopted to implement a LOC strategy 

is also reported in Fig. 2. It consists of a shift phase (scan enable 

- SE=1) and a capture phase (scan enable - SE=0). During the 

shift phase, a new test vector is loaded in the scan chains after 

n shift CKs, where n is the number of scan flip-flops of the 

longest scan chain. At each shift CK, a new bit of the test vector 

present at the scan_in of latch LA is shifted to the scan_out of 

latch LB. We refer hereinafter to 𝑇𝑖
𝑚 as the part of the test vector 

that is loaded in the m-th scan chain (m = 1..s) and is applied to 

the CUT at the i-th capture phase. During the capture phase, a 

pulse is first applied on the Update clock (launch CK) to load 

the test vector (loaded on LB latches at the previous shift phase) 

on the PH1 latches. Thus, after the pulse on Update, the test 

vector 𝑇𝑖
𝑚 (m=1…s) is applied to the CUT. Then, a pulse is 

applied on CK (capture CK) to sample the CUT response on 

PH1 latches. Then, the CUT response is copied to the latches 

LA (to enable to shift it out at the following shift phase) by 

applying a pulse on the Capture clock (Fig. 2). Finally, another 

pulse is applied on Update to load 𝑇𝑖
𝑚 again on the latches PH1. 

Since Update is not asserted during the following shift phase, 

𝑇𝑖
𝑚 is maintained at the inputs of the CUT until the following 

test vector 𝑇𝑖+1
𝑚  is applied. Therefore, in the LOC clocking 

scheme in Fig. 2, the CUT AF (thus PD) that occurs between 

the launch and capture CKs (i.e., between Update and CK 

pulses) and that may generate false test fails during testing, is 

proportional to the number of transitions between following test 

vectors 𝑇𝑖
𝑚and 𝑇𝑖+1

𝑚 . 

III. PROPOSED SCALABLE APPROACH 

As we introduced in Section I, the goal of our approach is to 

reduce the PD that may generate false test fails during at-speed 

test with scan-based LBIST. Such a PD occurs after the 

application of a new test vector to the CUT. This occurs at the 

launch CK (Update pulse in Fig. 2) within capture phases. The 

generated PD is proportional to the CUT AF induced by the 

application of a new test vector, which in turn is depends on the 

AF of the scan flip-flops’ outputs [8]. For the considered scan 

flip-flops (Fig. 2), such an AF depends on the number of flip-

flops’ outputs switching when the new test vector is applied. 

Therefore, the target of our approach is to reduce the number of 

flip-flops’ outputs transitions occurring after the application of 

a new test vector to the CUT. 

In order to derive a mathematical description of our 

proposed solution, we make the following simplifying 

assumptions for Conv-LBIST: a) all scan chains have the same 

number of scan flip-flops; b) the maximum AF between two 

following test vectors  𝑇𝑖
𝑚 and 𝑇𝑖+1

𝑚  is the same for all scan 

chains (m=1..s). However, by logic level simulations performed 

by the Synopsys Design Compiler tool, we have verified that 

our approach can achieve the same AF reduction also if such 

simplifying hypotheses are not satisfied. 

A. Approach with 1 Substitute Test Vector  

For each scan chain m (m = 1...s), one ST vector 𝑆𝑇𝑖
𝑚  replaces 

the original test vector 𝑇𝑖
𝑚 to be applied to the CUT at the i-th 

capture phase according to Conv-LBIST (Fig. 3). It will be 

shown that this enables a 50% AF reduction compared to Conv-

LBIST.   

 

 
Fig. 3. Schematic representation of the: (a) sequence of test vectors filling each 
scan chain m; (b) bits in the ST vector 𝑆𝑇𝑖

𝑚, and in the test vectors applied/to be 
applied at the previous/following capture phase (𝑇𝑖−1 

𝑚  /𝑇𝑖+1 
𝑚 ). 

 

In our approach, the ST vector 𝑆𝑇𝑖
𝑚 to be charged in the SC 

m and applied to the CUT at the i-th capture phase is constructed 

based on the structure of test vectors 𝑇𝑖−1
𝑚  and 𝑇𝑖+1

𝑚  to be applied 

at the (i-1)-th and (i+1)-th capture phases. Assuming the 

presence of a generic PS, our solution exploits the fact that, 

during the shift phase preceding the i-th capture phase, test 

vectors 𝑇𝑖−1
𝑚  and 𝑇𝑖+1

𝑚  are given at proper outputs of the PS. 

Should some test vectors be not produced at the PS outputs, the 

PS could be easily modified to generate them.  

Denoting by 𝑆𝑇𝑖
𝑚(𝑗), 𝑇𝑖−1

𝑚 (𝑗) and 𝑇𝑖+1
𝑚 (𝑗) the logic value of 

the j-th bit in test vectors 𝑆𝑇𝑖
𝑚, 𝑇𝑖−1

𝑚  and 𝑇𝑖+1
𝑚 , respectively, 

𝑆𝑇𝑖
𝑚(𝑗) is chosen as follows: 

𝑆𝑇𝑖
𝑚(𝑗) = {

𝑇𝑖−1
𝑚 (𝑗),    𝑖𝑓 𝑇𝑖−1

𝑚 (𝑗) = 𝑇𝑖+1
𝑚 (𝑗)

𝑅,         𝑖𝑓 𝑇𝑖−1
𝑚 (𝑗) ≠ 𝑇𝑖+1

𝑚 (𝑗)
,  

where R denotes a random bit. Therefore, in all bit positions j 

in which test vectors 𝑇𝑖−1
𝑚  and 𝑇𝑖+1

𝑚  present the same logic value, 

𝑆𝑇𝑖
𝑚

  maintains the same logic value as in the previous test 
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vector 𝑇𝑖−1
𝑚 . Instead, in the bit positions j in which test vectors 

𝑇𝑖−1
𝑚  and 𝑇𝑖+1

𝑚  differ, 𝑆𝑇𝑖
𝑚

 assumes a random logic value R. The 

bit R can simply come from one of the outputs of the LFSR, as 

suggested in [8].  

Starting from the (i-1)-th capture phase (Fig. 3), the new test 

vector sequence in each scan chain m will be as follows:  

𝑇𝑖−1
𝑚  –  𝑆𝑇𝑖

𝑚 –  𝑇𝑖+1
𝑚  –  𝑆𝑇𝑖+2

𝑚  –  𝑇𝑖+3
𝑚   … 

Therefore, the number of bits changing logic value between 

following test vectors with the new sequence 𝑇𝑖−1
𝑚  - 𝑆𝑇𝑖

𝑚 - 𝑇𝑖+1
𝑚  

will be equal to, or smaller than, those with the original test 

sequence 𝑇𝑖−1
𝑚  - 𝑇𝑖

𝑚 - 𝑇𝑖+1
𝑚  of Conv-LBIST. 

In this regard, it is worth reminding that the considered scan-

flip-flops (Fig. 2) update their outputs only at capture phases, 

while maintaining them constant during the shift phases. 

Therefore, the AF between successive test vectors will 

determine the AF of the CUT at each capture cycle.  

The presence of a random bit R in 𝑆𝑇𝑖
𝑚 in the bit positions 

where 𝑇𝑖−1
𝑚  and 𝑇𝑖+1

𝑚  differ allows the new sequence 𝑇𝑖−1
𝑚  - 

𝑆𝑇𝑖
𝑚 - 𝑇𝑖+1

𝑚  to preserve the randomness of the original sequence 

[8]. Therefore, as shown in Section V, the number of test vectors 

required to achieve a target FC does not increase compared to 

the application of the original test sequence.  

The maximum AF between following test vectors loaded in 

each SC in Conv-LBIST (𝐴𝐹𝑐𝑜𝑛
𝑠𝑐 ) is reduced to a half (𝐴𝐹𝑐𝑜𝑛

𝑠𝑐 /2) 

by our approach. Consequently, denoting by 𝐴𝐹1𝑆𝑇
𝑡𝑜𝑡  the 

maximum AF between any two successive test vectors applied 

to the CUT at successive capture phases, for our approach with 

1 ST vector, it is: 

𝐴𝐹1𝑆𝑇
𝑡𝑜𝑡 = 𝐴𝐹𝑐𝑜𝑛

𝑡𝑜𝑡/2, 

where 𝐴𝐹𝑐𝑜𝑛
𝑡𝑜𝑡 is the max AF obtained with Conv-LBIST.   

B. Approach with N Substitute Test Vectors 

 In order to reduce further the AF during capture phases of 

scan-based LBIST, a higher number N of ST vectors, 𝑆𝑇𝑖
𝑚, 

𝑆𝑇𝑖+1
𝑚  … 𝑆𝑇𝑖+𝑁−1

𝑚 , with 𝑆𝑇𝑖+1
𝑚 = ⋯ =  𝑆𝑇𝑖+𝑁−1

𝑚 = 𝑆𝑇𝑖
𝑚, can be 

used to replace, for each scan chain m, N original test vectors 

𝑇𝑖
𝑚 up to 𝑇𝑖+𝑁−1

𝑚 .  

Similarly to the case of 1 ST vector, the ST vectors 𝑆𝑇𝑖
𝑚 … 

𝑆𝑇𝑖+𝑁−1
𝑚  to be applied at the i-th … (i+N-1)-th capture phases 

are constructed based on the test vector 𝑇𝑖−1
𝑚  to be applied at the 

(i-1)-th capture phase, and the test vector 𝑇𝑖+𝑁
𝑚  to be applied at 

the (i+N)-th capture phase.  

Denoting by 𝑆𝑇𝑖
𝑚(𝑗), 𝑇𝑖−1

𝑚 (𝑗) and 𝑇𝑖+𝑁
𝑚 (𝑗) the logic value of 

the j-th bit in test vectors 𝑆𝑇𝑖
𝑚, 𝑇𝑖−1

𝑚  and 𝑇𝑖+𝑁
𝑚 , respectively, 

𝑆𝑇𝑖
𝑚(𝑗) is determined as follows: 

 

𝑆𝑇𝑖
𝑚(𝑗) = {

𝑇𝑖−1
𝑚 (𝑗),    𝑖𝑓 𝑇𝑖−1

𝑚 (𝑗) = 𝑇𝑖+N
𝑚 (𝑗)

𝑅 ,          𝑖𝑓 𝑇𝑖−1
𝑚 (𝑗) ≠ 𝑇𝑖+N

𝑚 (𝑗)
,  

 

where, as before, R denotes a random bit.  

    The number of bits changing logic value between successive 

test vectors with the new sequence 𝑇𝑖−1
𝑚  - 𝑆𝑇𝑖

𝑚 - … - 

𝑆𝑇𝑖+𝑁−1
𝑚 −  𝑇𝑖+𝑁

𝑚  (Fig. 4) will be equal to, or smaller than in the 

original test sequence 𝑇𝑖−1
𝑚  - 𝑇𝑖

𝑚  - … - 𝑇𝑖+𝑁−1
𝑚  - 𝑇𝑖+𝑁

𝑚  of Conv-

LBIST. The presence of a random bit R in 𝑆𝑇𝑖
𝑚 in the bit 

positions where 𝑇𝑖−1
𝑚  and 𝑇𝑖+𝑁

𝑚  differ allows the new sequence 

𝑇𝑖−1
𝑚  - 𝑆𝑇𝑖

𝑚 - … - 𝑆𝑇𝑖+𝑁−1
𝑚 −  𝑇𝑖+𝑁

𝑚  to preserve the randomness 

of the original sequence in these bit positions [8]. As a result, as 

shown in Section V, the number of test vectors required by our 

approach to achieve a target FC is approximately the same as 

that in Conv-LBIST, even for the case of N=10 ST vectors. 

 

 

Fig. 4. Test vectors’ selection of our approach with N ST vectors: (a) sequence 
of test vectors filling each scan chain; (b) ST vectors 𝑆𝑇𝑖

𝑚… 𝑆𝑇𝑖+𝑁−1
𝑚 . 

 

     As represented in Fig. 5, we interleave the insertion of the N 

ST vectors, so that they are applied at different capture phases 

for the different SCs. Thus, between any two successive capture 

phases, the same ST vector is loaded in (N-1)-out-of-(N+1) scan 

chains, which consequently exhibit AFsc = 0. Instead, 2-out-of-

(N+1) scan chains present a transition between an original test 

vector and a ST vector, thus presenting an AFsc =  AF𝑐𝑜𝑛
sc 2⁄ .  

 

 
Fig. 5.  Interleaved test vectors’ application to the CUT and AF values for each 
capture phase, for the case with N ST vectors.  

 

     If the number of scan chains s is a multiple of N+1, the total 

AF between any two following test vectors is: 

AF𝑁 𝑆𝑇
tot = ∑ 𝐴𝐹𝑠𝑐_𝑚𝑠

𝑚=1 =
𝑠

𝑁+1
(

𝐴𝐹𝑐𝑜𝑛
𝑠𝑐

2
+

𝐴𝐹𝑐𝑜𝑛
𝑠𝑐

2
+ 0) =  

𝐴𝐹𝑐𝑜𝑛
𝑡𝑜𝑡

𝑁+1
,    (1) 

where, as before, 𝐴𝐹𝑐𝑜𝑛
𝑡𝑜𝑡 = 𝑠𝐴𝐹𝑐𝑜𝑛

𝑠𝑐 .  

     We have verified that, even if s is not a multiple of N+1, and 

s>>N  (e.g., s>10N), that is if the number of SCs s is much 

higher than the number of ST vectors N, (1) gives a good 
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approximation of the 𝐴𝐹𝑁 𝑆𝑇
𝑡𝑜𝑡 . 

From (1) we can also derive that, with our approach, it is 

𝐴𝐹𝑡𝑜𝑡 = 𝐴𝐹𝑐𝑜𝑛
𝑡𝑜𝑡/3 for N=2, 𝐴𝐹𝑡𝑜𝑡 = 𝐴𝐹𝑐𝑜𝑛

𝑡𝑜𝑡/4 for N=3, 

𝐴𝐹𝑡𝑜𝑡 = 𝐴𝐹𝑐𝑜𝑛
𝑡𝑜𝑡/5 for N=4, and so on. As will be shown later, 

such reductions are achieved at no increase in the number of 

TVs needed to reach a target FC, and with a limited cost in 

terms of area overhead.  

IV. POSSIBLE IMPLEMENTATION 

 To implement our approach, we assume the presence of a PS 

feeding the scan-chains of the CUT (Fig. 1). However, should 

a phase shifter not be present within the considered scheme, our 

approach can be implemented by adding an equivalent structure 

at the LFSR outputs. 

A. Case of 1 Substitute Test Vector  

Denoting by Om (m = 1..s) the PS output feeding the scan 

chain m, the logic value 𝑇𝑖
𝑚(𝑗) in the j-th position of the i-th  

test vector of the scan chain m is given by: 

𝑇𝑖
𝑚(𝑗) = 𝑂𝑚(), 

where  = 𝑛(𝑖 − 1) + 𝑗 is the total number of shift CKs from 

the beginning of the test. This way, the logic values loaded in 

the j-th position of SC m in the shift phases before the (i-1)-th, 

the i-th and the (i+1)-th capture phases will be equal to the logic 

value present at the output Om of the PS, after  − 𝑛, , and  +
𝑛 shift CKs, respectively, counted from the beginning of the 

test. Thus, for each SC m and capture phase i, we can express 

the logic values present in the j-th position of the previous and 

the next test vectors (𝑇𝑖−1
𝑚 (𝑗) and 𝑇𝑖+1

𝑚 (𝑗), respectively) as:  

𝑇𝑖−1
𝑚 (𝑗) = 𝑂𝑚( − 𝑛);    𝑇𝑖+1

𝑚 (𝑗) = 𝑂𝑚( + 𝑛).          (2) 

Since the PS gives to its outputs many past/future values of 

each output Om, we can determine the values of 𝑂𝑚( − 𝑛) and 

𝑂𝑚( + 𝑛) from the current value present at two proper PS 

outputs. Therefore, there exist two PS outputs Ok and Op, with 

k  p  m, such that: 

𝑂𝑚( − 𝑛) = 𝑂𝑘();   𝑂𝑚( + 𝑛) = 𝑂𝑝().              (3) 

We exploit the relations in (2) and (3) to derive a low cost 

hardware implementation of our approach. As described in 

Section III.A, our approach forges the ST vector 𝑆𝑇𝑖
𝑚 by 

comparing 𝑇𝑖−1
𝑚  and  𝑇𝑖+1

𝑚 . Thus, we can derive 𝑆𝑇𝑖
𝑚 by simply 

comparing the outputs Ok and Op of the PS at each shift CK j.   

As an example, Fig. 6(a) shows a possible implementation 

of our proposed scheme, for the case in which the depth of the 

longest chain(s) is n. Our approach requires 2 multiplexers (M1 

and M2) and an XOR gate for each scan chain m. M2 allows us 

to load in the scan chain m either: 1) the test vectors 𝑇𝑖−1
𝑚  and 

𝑇𝑖+1
𝑚  generated by the PS during the shift phases before the (i-

1)-th and (i+1)-th capture phases, by setting the selection signal 

int1=0; or 2) the ST vector 𝑆𝑇𝑖
𝑚 provided by M1 during the 

shift phases before the i-th capture phase, by setting int1=1. 

Particularly, the signal int1 is generated in such a way that it 

switches from 0 to 1 (and vice versa) at following capture 

phases. Fig. 6(b) depicts an example of int1 generation, where 

FF1 and FF2 denote D flip-flops (FF). Initially, FF1 is set to 1 

and FF2 is set to 0 (int1 =0). Both FF1 and FF2 are clocked by 

the Scan Enable (SE) signal. Thus, at each SE rising edge, int1 

switches from 0 to 1 alternately. 

 

 

Fig. 6. Schematic representation of: (a) a possible implementation of our 

approach; (b) a possible scheme to generate signal int1; (c) a strategy to generate 

the random bit R.   
 

 The XOR gate compares the logic value at the PS output 

𝑂𝑘() (equal to 𝑇𝑖−1
𝑚 (𝑗)) with the logic value at the PS output 

𝑂𝑝()  (equal to 𝑇𝑖+1
𝑚 (𝑗)) at each shift CK j. Thus, it is: sel=0, 

if 𝑂𝑘() = 𝑂𝑝(), indicating that 𝑆𝑇𝑖
𝑚(𝑗) should be equal to 

𝑂𝑘() = 𝑇𝑖−1
𝑚 (𝑗); sel=1, if 𝑂𝑘() ≠ 𝑂𝑝(), indicating that 

𝑆𝑇𝑖
𝑚(𝑗) should be a random value R.  

Finally, as described in [8], the bit R can be simply generated 

from any output of the LFSR. Since in our scheme we 

considered the same R value for the whole shift phase, we can 

simply generate R by sampling any output of the LFSR at the 

beginning of each shift phase. Fig. 6(c) shows a possible 

scheme to generate the bit R. One LFSR output feeds a FF 

(FF3), which is clocked by the int1 signal. At each rising edge 

of int1, FF3 samples on R a new value present at the considered 

LFSR output, and it keeps it till the following int1 rising edge. 

This way, the same R value is used during a whole shift phase. 

This strategy to generate R results in a highly unbalanced 

number of 0s or 1s in each ST vector, depending on whether R 

is 0 or 1. As also shown in [8], this feature increases the 

likelihood to detect hard to detect faults. 

Let us illustrate, by means of a simple example, how our 

approach exploits the PS to generate the required test vectors, 

and signals 𝑂𝑘() and 𝑂𝑝() in the circuit in Fig. 6. We 

consider a 4 bit LFSR (with characteristic polynomial 

p(x)=x4+x+1), and a PS with 4 inputs (the 4 LFSR outputs 

(𝑥1(). . 𝑥4()) and s=12 outputs (𝑂1(). . 𝑂12()) connected to 

12 scan chains (providing 𝑇𝑖
1(𝑗)..𝑇𝑖

12(𝑗)). For simplicity, we 

suppose that the longest scan chain is composed by n=3 scan 

FFs, so that each shift phase requires 3 CK cycles. 

The PS has been designed in order to provide, at every shift 

CK : i) the current state of the LFSR (i.e., 𝑥1(). . 𝑥4()) on 

𝑂2(), 𝑂5(), 𝑂8(), 𝑂11(); ii) the state of the LFSR at 3 shift 

CKs before the current state (i.e., 𝑥1( − 3). . 𝑥4( − 3)) on 

𝑂1(), 𝑂4(), 𝑂7(), 𝑂10(); iii) the state of the LFSR at 3 shift 

CKs after the current state of the LFSR (i.e., 𝑥1( + 3). . 𝑥4( +
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3)) on 𝑂3(), 𝑂6(), 𝑂9(), 𝑂12(). 

The logic operations performed by the PS to compute 

𝑂1(). . 𝑂12() as a function of the current state of the LFSR 

(𝑥1(). . 𝑥4()) are reported in the second column of Table I.  

As can be seen, all 𝑂𝑚() signals are expressed as linear 

combinations of the present state of the LFSR, and can be 

computed by simple XOR trees.  

 
TABLE I. PS PERFORMED FUNCTION AND GENERATED OUTPUTS. 

 
 

Our approach needs to identify 𝑇𝑖−1
𝑚 (𝑗) and 𝑇𝑖+1

𝑚 (𝑗) for each 

scan chain m (m=1..12) and at each shift CK j. Since it is n=3, 

to identify 𝑇𝑖−1
𝑚 (𝑗) we need to determine the value shifted-in the 

scan chain m at 3 previous shift CKs (i.e., 𝑂𝑚( − 3) =
𝑂𝑘()), while to identify 𝑇𝑖+1

𝑚 (𝑗) we need to determine the 

value shifted-in the scan chain m at 3 following shift CKs (i.e., 

𝑂𝑚( + 3) = 𝑂𝑝()). The third and fourth columns of Table I 

report the PS outputs, or output combinations, giving 

𝑂𝑚( − 3) = 𝑂𝑘() and 𝑂𝑚( + 3) = 𝑂𝑝(), for each 𝑂𝑚(). 

From Table I, we can observe that the past/future values of 

𝑂𝑚() (i.e., 𝑂𝑘() / 𝑂𝑝()), for m = 1, 2, 5, 8, 11 and 12, are 

equal to the values assumed by other outputs of the PS at the 

current shift CK . Instead, for m = 3, 4, 6, 7, 9 and 10, the 

past/future values of 𝑂𝑚() are not directly present on other 

outputs of the PS. However, as shown in Table I, they can be 

obtained as a linear combination of the current PS outputs. This 

mandates an extra area overhead (due to the required extra 

XORs), which is however negligible in realistic designs with a 

large number of PS outputs. 

B. Case of N Substitute Test Vectors  

In our scheme with N ST vectors, N original test vectors 

𝑇𝑖
𝑚… 𝑇𝑖+𝑁−1

𝑚 are replaced by N identical ST vectors (𝑆𝑇𝑖
𝑚 =

⋯ = 𝑆𝑇𝑖+𝑁−1
𝑚 ) in each scan chain m. Therefore, on the SC m, 

we first load 𝑆𝑇𝑖
𝑚 to be applied at the i-th capture phase, which 

is constructed based on 𝑇𝑖−1
𝑚  and 𝑇𝑖+𝑁

𝑚 . Then, we load 𝑆𝑇𝑖+1
𝑚  to 

be applied at the (i+1)-th capture phase, which is constructed 

based on 𝑇(𝑖+1)−2
𝑚  and 𝑇(𝑖+1)+𝑁−1

𝑚 . We proceed this way till the 

(i+N-1)-th capture phase.  

Similarly to the case with 1 ST, to generate a ST vector at 

each i-th … (i+N-1)-th capture phase between 𝑇𝑖−1
𝑚 (𝑗) and 

𝑇𝑖+𝑁
𝑚 (𝑗), we relate the values of the previous test vectors 𝑇𝑖−1

𝑚 … 

𝑇(𝑖+𝑁−2)
𝑚  and their respective future 𝑇𝑖+𝑁

𝑚  … 𝑇𝑖+1
𝑚  to the values 

of the PS output 𝑂𝑚 (at present i-th … (i+N-1)-th shift phase) 

as follows: the previous test vectors can be determined as 

𝑇𝑖−1
𝑚 (𝑗) = 𝑂𝑚( − 𝑛) …  𝑇(𝑖+𝑁−2)

𝑚 (𝑗) = 𝑂𝑚( − N𝑛), while the 

future test vectors can be determined as  𝑇𝑖+N
𝑚 (𝑗) = 𝑂𝑚( +

N𝑛) …  𝑇(𝑖+1)
𝑚 (𝑗) = O𝑚( + 𝑛). During each shift CK j, we can 

determine the logic value at 𝑂𝑚( − 𝑛)  and  𝑂𝑚( + N𝑛) …  

𝑂𝑚( − N𝑛) and 𝑂𝑚( + 𝑛) by using proper PS outputs. 

Should such outputs be not available, they can be generated by 

properly modifying the PS.  

     Fig. 7 shows a possible implementation of our scheme with 

N ST vectors. For each SC m, it requires two 2-input 

multiplexers (M1 and M2), two N-input multiplexers (M3 and 

M4) and an XOR gate.  

 

 
Fig. 7. Schematic representation of a possible implementation of our approach 

with N ST vectors.   

 

The multiplexer M2 allows us to load on the scan chain m: 

1)  The original test vectors 𝑇𝑖−1
𝑚  and 𝑇𝑖+𝑁

𝑚  generated by the 

PS, by setting int1=0, during the shift phases before the 

(i-1)-th and (i+N)-th capture phases; 

2)  The ST vectors 𝑆𝑇𝑖
𝑚 … 𝑆𝑇𝑖+𝑁−1

𝑚  provided by 

multiplexer M1, by setting int1=1, during the shift 

phases before the i-th … (i+N-1)-th capture phases. 

Instead, M3 and M4 enable the selection of XOR inputs. 

These are the PS outputs required to construct the ST vectors 

𝑆𝑇𝑖
𝑚 … 𝑆𝑇𝑖+𝑁−1

𝑚  to be applied at the i-th … (i+N-1)-th capture 

phases. As an example, in Fig. 7, M3 and M4 select as inputs 

for the XOR: 𝑂𝑘() (generating 𝑇𝑖−1
𝑚 (𝑗)), 𝑂𝑢() (generating 

𝑇𝑖+𝑁
𝑚 (𝑗)) … 𝑂𝑓() (generating 𝑇(𝑖+𝑁−1)−𝑁

𝑚 (𝑗)), 𝑂𝑝() 

(generating 𝑇(𝑖+𝑁−1)+1
𝑚 (𝑗)). This way, at each shift CK j of the 

shift phase prior to the i-th … (i+N-1)-th capture phase, the 

XOR compares 𝑂𝑘() = 𝑇𝑖−1
𝑚 (𝑗) with 𝑂𝑢() = 𝑇𝑖+𝑁

𝑚 (𝑗), ... 

𝑂𝑓() = 𝑇(𝑖+𝑁−1)−𝑁
𝑚 (𝑗) with 𝑂𝑝() =  𝑇(𝑖+𝑁−1)+1

𝑚 (𝑗). If the 

inputs of the XOR are equal, the XOR outputs sel=0, indicating 

that the logic value of bit 𝑆𝑇𝑖
𝑚(𝑗) … 𝑆𝑇𝑖+𝑁−1

𝑚 (𝑗) should be 

equal to 𝑇𝑖−1
𝑚 (𝑗) … 𝑇(𝑖+𝑁−1)−𝑁

𝑚 (𝑗)). Instead, if the inputs of the 

XOR differ, it is sel = 1, indicating that the logic value of 

𝑆𝑇𝑖
𝑚(𝑗) … 𝑆𝑇𝑖+𝑁−1

𝑚 (𝑗) should be a random value R. 

As for the control signals int1, int2,…, intk, with k= log2(N), 
they can be generated by expanding the shift register shown in 
Fig. 6(b) for the case of 1 ST vectors, to a shift register with 
log2(N)+1 FFs. Finally, the random bit R can be generated by 
the same scheme as for the case with 1 ST vector (Fig. 6(c)). 
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V. COMPARISON 

We compare our approach with Conv-LBIST [12] and the 

solutions in [9, 21]. We consider the PD reduction and the 

number of test vectors required to achieve a target FC as metrics 

for comparison. We consider the FC for stuck-at faults as in [9], 

and we evaluate the area overhead required by our approach 

over Conv-LBIST. Our approach has been validated logic level 

simulations, as the alternative solutions in [9, 21] that we 

consider for comparison purposes. 

A. Comparison with Conv-Scan-Based LBIST 

 As for the effectiveness in reducing PD during scan-based 

LBIST, we have evaluated the maximum AF between any two 

following test vectors (to be applied at following capture 

phases), which is proportional to the CUT AF, thus also to its 

PD. Our approach has been implemented with up to 10 ST 

vectors. For each CUT, we have considered the maximum 

stuck-at FC achievable with Conv-LBIST as target stuck-at FC. 

The number of test vectors required to achieve such a FC has 

been evaluated by means of the Synopsys TetraMAX tool. 

Finally, the area overhead (AO) required by our approach over 

Conv-LBIST has been evaluated by the Synopsys Design 

Compiler tool. It should be noted that our approach requires no 

hardware modification of the considered scan flip-flops.  

For comparison purposes, our approach has been applied to 

the largest four ISCAS’89 benchmarks considered in [9] 

(s38584, s38417, s13207 and s15850). For all circuits, we have 

used a 20-bit LFSR, with characteristic polynomial p(x)= 

x20+x17+1 [25]. As for the PS, it has been implemented in order 

to minimize area overhead, according to the rules in [10]. 

Figs. 8(a)-(d) show, for the four considered benchmarks, the 

AF of Conv-LBIST, as well as the AF and AO of our approach, 

as a function of the number of ST vectors. We can see that, for 

all benchmarks, our approach allows us to reduce noticeably the 

AF, thus also PD, with respect to Conv-LBIST. In this regard, it 

is worth noticing that the AF achieved by our solution reduces 

quickly as the number of ST increases for small number of ST 

vectors (i.e., from 1 ST to 5 ST), while it tends to saturate for 

more than 6 ST vectors. Particularly, with respect to the AF of 

Conv-LBIST, the AF achievable by our approach becomes 

approximately the 50% with 1 ST vector, the 33% with 2 ST 

vectors, the 25% with 3 ST vectors, and the 9% with 10 ST 

vectors.  

 Figs. 8(a)-(d) also report the relative AF reduction allowed 

by our approach over Conv-LBIST (∆AF =100*(AFOUR  – 

AFConv-LBIST) / AFConv-LBIST)) as a function of the number of ST 

vectors. We can observe that, for a number of ST vectors higher 

than 4, our approach enables an AF reduction higher than 80%. 

Moreover, we can note that, for all benchmarks, the AO of our 

approach over Conv-LBIST increases linearly with the number 

of ST vectors. A minimum of approximately 1.5% AO is 

achieved with 1 ST for s38584 benchmark, and a maximum of 

approximately 14% AO is reached with 10 ST vectors for the 

s13207 benchmark. 

 
Fig. 8. Simulation results showing the AF of Conv-LBIST, as well as the AF and 
AO of our approach with up to 10 ST vectors for the considered benchmark 
circuits: (a) s38584; (b) s38417; (c) s13207; (d) s15850. 
   

 
TABLE II 

NUMBER OF TEST VECTORS (#TV) REQUIRED BY CONV-LBIST AND BY OUR 

SOLUTION TO ACHIEVE A TARGET FC. 

Benchmark s38584 s38417 s13207 s15850 

# SCs 59 67 28 25 

Target FC 95.89% 95.53% 98.33% 94.00% 

Conv-LBIST #TV 32800 39104 30464 38112 

Our solution 

1 ST 
#TV 32660  38667 30436 37217 

#TV -0.43% -1.12% -0.09% -2.35% 

2 ST 
#TV 32657 38587 30514 37357 

#TV -0.44% -1.32% 0.16% -1.98% 

3 ST 
#TV 32660 38448 30601 37213 

#TV -0.43% -1.68% 0.45% -2.36% 

4 ST 
#TV 32759 38627 30588 37486 

#TV -0.12% -1.22% 0.41% -1.64% 

5 ST 
#TV 32790 38751 30607 37580 

#TV -0.03% -0.90% 0.47% -1.40% 

6 ST 
#TV 32869 38699 30859 37604 

#TV 0.21% -1.04% 1.30% -1.33% 

7 ST 
#TV 32934 38755 30891 37616 

#TV 0.41% -0.89% 1.40% -1.30% 

8 ST 
#TV 32962 38872 30955 37838 

#TV 0.49% -0.59% 1.61% -0.72% 

9 ST 
#TV 32989 38904 31019 37854 

#TV 0.58% -0.51% 1.82% -0.68% 

10 
ST 

#TV 32996 38917 31158 37866 

#TV 0.60% -0.48% 2.28% -0.64% 

  

Table II reports, for each benchmark, the number of test 

vectors (#TV) required by Conv-LBIST and by our solution to 

achieve the target FC. It also reports the relative variation in the 

#TV required by our approach over Conv-LBIST 

(∆#TV=100*(#TVOUR  – #TVConv-LBIST)/#TVConv-LBIST).  

 We can observe that, for all benchmarks, the #TV required 

by our solution with up to 10 ST vectors is very similar to that 

of the Conv-LBIST for the same FC. Therefore, our solution 

allows us to reduce considerably the AF (thus PD) compared to 

Conv-LBIST, with no increase in the number of test vectors 

(thus TT) required to achieve a target FC and with limited 

increase in area overhead. 
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B. Comparison to Alternative Solutions 

We compare our solution with the alternative techniques in [9, 

21]. For all solutions, we have evaluated: 1) the AF between 

following test vectors (which, as clarified before, determines 

the CUT AF, thus the PD, at each capture phase); 2) the number 

of test vectors (#TV) required to achieve the stuck-at FC 

reported in [9], here assumed as target FC for comparison 

purposes. They have been evaluated for the four benchmarks 

considered in the previous subsection. These are the 

benchmarks considered also in [9], to which we have also 

applied the approach in [21] for comparison purposes. It should 

be noted that the benchmarks in [21] have not been considered, 

since they are not available in the open literature. 

The solution in [9] is implemented considering the scan-

chains divided in groups of n=2 scan-chains [9], which enables 

50% AF reduction with respect to Conv-LBIST, thus allowing 

us to achieve an AF similar to that obtained with our approach 

with 1 ST vector. 

As for the solution in [21], we have implemented it 

considering the case of an AF reduction of 50% with respect to 

Conv-LBIST (i.e., a value of WTM = 25% in [21]), which is 

similar to that obtained with our approach with 1 ST vector. 

 The comparison results are reported in Tab. III. The AF and 

#TV relative variations are calculated as: ∆ = 100*(OUR – 

[9,21])/[9,21]. From Table III we can observe that the 

approaches in [9, 21] require a significantly higher number of 

test vectors (more than twice in most cases), than that required 

by our solution to achieve the same target FC. Additionally, our 

solution allows us to achieve a lower maximum AF.   

 
TABLE III. 

NUMBER OF TEST VECTORS (#TV) TO ACHIEVE A TARGET FC, AND MAXIMUM AF 

FOR OUR APPROACH WITH 1 ST VECTOR AND FOR THE SOLUTIONS IN [9, 21]. 

 s13207 s15850 s38417 s38584 

Target FC (%) [9] 96.8 91.71 95.37 95.24 

Solution in [9] with 

n=2 

#TV 54500 29500 80500 49000 

AF (%) 30.7 31.9 27.9 28.9 

Solution in [21] 

(WTM=25%) 
#TV 33618 31835 43449 37594 

AF (%) 30.5 31.9 31.2 31.1 

Our solution  

with 1 ST 

#TV 14006 2514 21534 18496 

#TV [9] (%) -74 -91 -73 -62 

#TV [21] 
(%) 

-58.9 -92.1 -50.4 -50.8 

AF (%) 27.9 28.5 27.0 27.5 

AF [9] (%) -9.3 -10.8 -3.4 -4.7 

AF [21] (%) -8.5 -10.7 -13.5 -11.6 

VI. CONCLUSIONS 

We have presented a novel approach to reduce PD during at-

speed test of sequential circuits with scan-based Logic BIST 

using the Launch-On-Capture scheme. The proposed solution 

enables designers to reduce the probability that the delay 

induced by PD exhibited during at-speed test is erroneously 

interpret as a delay fault, with consequent generation of a false 

test fail. This is achieved by reducing the activity factor of the 

CUT compared to conventional scan-based LBIST, by proper 

modification of the test vectors generated by the LFSR.  

We have shown that, compared to conventional scan-based 

LBIST, our approach allows us to achieve a scalable PD 

reduction (ranging from the 50% to the 89%), with no drawback 

on the required number of test vectors to achieve a target FC 

and with limited costs in terms of area overhead (ranging from 

the 1.5% to the 14%). We have also shown that, compared to 

the solutions in [9, 21], our solution allows us to reduce 

significantly (more than 50%) the number of test vectors (thus 

test time) to achieve the same target FC. 
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