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1 INTRODUCTION 

ComplexWorld is the SESAR Workpackage E Research Network for the theme 'Mastering Complex 
Systems Safely'. 

ComplexWorld brings together researchers from academia, research establishments, industry and SMEs 
that share common interests and expertise in the field of ATM Complexity Management, providing them 
with a structured way and a stable forum for the development, exchange, and dissemination of research 
knowledge. 

The purpose of the present document is to define the high-level, strategic scientific vision for the 
Complex World Network and to provide an orderly and consistent scientific framework for the WP-E 
Complexity theme. 

 

1.1 The SESAR Programme 

The SESAR (Single European Sky ATM Research) programme is one of the most ambitious research 
and development projects ever launched by the European Community. The programme is the 
technological and operational dimension of the Single European Sky initiative to meet future capacity and 
air safety needs. 

The SESAR vision is to have an affordable, seamless European ATM system, enabling all categories of 
airspace users to conduct their operation with minimum restrictions and maximum flexibility. The SESAR 
Concept of Operations (ConOps) describes the ATM operation envisaged in Europe in 2020 and 
beyond in order to achieve this vision. The SESAR ConOps covers the complete ATM process from early 
planning through flight execution to post flight activities. The ConOps builds on ICAO Global Air Traffic 
Management Operational Concept, endorsed by the ICAO Eleventh Air Navigation Conference in 2003, 
which establishes a globally harmonized set of concepts and international requirements for the future 
ATM system, thus constituting a key input for all major ATM development programmes. The SESAR 
ConOps represents a specific application of the global concept, adapted and interpreted for Europe with 
due regard to the need for global interoperability. 

The main features of the SESAR ConOps are summarized below: 

• Performance-orientation: the concepts are driven by a performance-based approach. The 
ConOps has been built on a Service Orientated Performance Partnership (ATMPP), based on the 
participation and buy-in from the different stakeholders (Civil Airspace Users, Military, Air 
Navigation Service Providers, Airports, Supply Industry and Social Partners). An ATM performance 
based approach is considered essential to express the general expectations about the future ATM 
system in terms of precise performance targets. ICAO defines the Performance Based Approach 
as being based on the following three principles: 

-­‐ Strong focus on desired/required results. 

-­‐ Informed decision making, driven by the desired/required results. 

-­‐ Reliance on facts and data for decision-making. 

The SESAR performance framework will: 

-­‐ translate the expectations of the ATM stakeholders into a shared set of values and 
priorities; 
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-­‐ define operational requirements in performance terms rather than specific 
technology/equipment; 

-­‐ be the basis for impact assessment and trade-off analysis for decision-making. 

• Trajectory-based Operations (TBO): the ConOps is centered on the TBO paradigm, which 
aims to ensure that the Airspace User flies its trajectory as close as possible to its intent, safely 
and cost efficiently, within the infrastructure and environmental constraints. In highly congested 
areas, however, it is foreseen the possibility of establishing route structures, if required to enable 
the required capacity (trade-off between flight efficiency and capacity). 

The trajectory is owned by the airspace user. Trajectories will be expressed in all 4 dimensions 
(4D) and will be flown with much higher precision than today. 4D precision data will be shared 
throughout the system, increasing predictability and improving decision making. A major 
requirement is therefore to change the current ICAO Flight Plan into a 4D Trajectory with a 
common definition and exchange format. 

The Business/Mission Trajectory evolves out of a layered planning process. The different 
development phases of the trajectory are the: 

-­‐ Business Development Trajectory (BDT). 

-­‐ Shared Business Trajectory (SBT). 

-­‐ Reference Business Trajectory (RBT). 

• Flexible and dynamic airspace organization. In managed airspace a separation service will 
be provided but the role of the separator may be delegated to the flight crew. In unmanaged 
airspace the separation task lies solely with the pilot. 

• Automation support, together with new ground and airborne separation modes, will be 
used to provide additional capacity. Procedures will change significantly and future situational 
awareness needs will differ from today. 

• Integrated airport operations. Airports will be fully integrated into the system, with particular 
emphasis being placed on turn around management, runway throughput and improved 
environmental performance. 

• Collaborative Decision Making (CDM) will allow members of the ATM community to 
participate in the decision-making process and lead to high-quality decisions. 

• System Wide Information Management (SWIM). Information sharing in a secure 
environment is an essential enabler of the foreseen concepts. The current information 
management, based on fixed network connection and custom, point-to-point, application-level 
data interfaces, will be replaced by a net-centric operation where the ATM network is considered 
as a series of nodes, including the aircraft, providing or consuming information. SWIM will 
provide an open, flexible, secure, service-oriented architecture that will allow for easier addition 
of new systems and connections. SWIM will support CDM processes using efficient end-user 
applications to exploit the power of shared information. 

• Interoperability between civil and military systems will be a key enabler to enhance the 
overall performance of the ATM network. Mutual consideration and full integration of both civil 
and military needs in planning of operations will ensure the overall efficiency of the ATM network. 
The ConOps aims at safeguarding military requirements regarding the access to and the flexible 
use of airspace. 

In order to plan a stepped approach for creating the future ATM system, increasing levels of ATM 
capability have been defined. The ATM Master Plan provides a plan for implementing these capabilities 
addressing deployment and R&D planning in terms of roadmaps for Operational Evolutions, Enabler 
Development & Deployment, and Supporting Aspects. The European ATM Master Plan is a "rolling" plan 
that will be regularly updated, while continuous performance monitoring will be undertaken to ensure 
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that the future ATM activities will deliver the agreed benefits defined within an agreed performance 
framework. 

After the completion of SESAR Definition Phase, the ATM Master Plan was handed over to the SESAR 
Joint Undertaking (SJU), who is responsible for its execution and updates for the coming years. The 
SJU was created under European Community law on 27 February 2007, with EUROCONTROL and the 
European Community as founding members, in order to manage and supervise all projects and activities 
to be undertaken during the SESAR Development Phase, as defined in the SESAR Programme. 

The SJU is responsible for "carrying out specific activities aimed at modernizing the European air traffic 
management system by coordinating and concentrating all relevant research and development efforts in 
the Community". This includes long-term and innovative research. 

 

1.2 WorkPackage E – SESAR Long Term and Innovative Research 

It is commonly agreed, and clearly reflected into the Lisbon Agenda and other EU declarations and 
treaties, that knowledge development and innovation shall be two of the cornerstones of the European 
economy. A strong collaboration between business, research centers, universities, and the public sector is 
acknowledged as a key requirement for a successful research and innovation strategy. These principles 
are also true for ATM: to remain competitive in the global market, long-term research and innovation are 
as vital for the European ATM industry as they are for any other industry. 

Taking into account that ATM innovation cycles are typically between 15 and 20 years, the ATM 
community must look for "quick wins" that take advantage of already existing concepts and technologies, 
but also keep an eye on long-term, high-risk, potentially disruptive research that may bring the concepts 
and technologies that will be implemented 20 years from now. 

As indicated in the previous section, all European-funded ATM research and development                              
is now consolidated into SESAR. Whilst most of the SESAR programme is devoted to                         
developing and putting in place the concepts outlined in the SESAR Concept of Operations, in most cases 
making use of technologies that are already (or almost) ready for implementation, the SESAR Programme 
also includes a work package specifically devoted to long-term and innovative research: 
WorkPackage E (WP-E). 

The key contribution from WP-E will be twofold: 

• Firstly, it will be a catalyst to create a healthy European research capability for ATM and related 
CNS that will persist beyond the lifetime of the current SESAR development programme. To 
achieve this goal, WP-E will have to stimulate creativity and innovation, develop new scientific 
and technical challenges beyond those currently identified, facilitate the sustainable development 
of ATM research capabilities, and promote ATM and air transport as a serious and challenging 
topic for study, encouraging graduates to seek careers in the discipline. 

• Secondly, it will make provision and provide funding for research activities that are not 
currently planned within the 'mainstream' SESAR development work packages. Such research will 
address applications to become operational beyond the current SESAR timeframe (nominally 
2020), as well as innovation that may have application in the nearer term and provide 'quick 
wins' for SESAR. 
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WP-E makes use of two main instruments: 

• Research networks provide a structured way to build research knowledge, competence and 
capability, through a stable forum allowing the development, exchange and dissemination of 
knowledge among multidisciplinary groups of organisations (academia, industry, research 
establishments...) that share a common interest in a relevant domain. 

• Research projects will explore new ideas falling outside the other SJU work packages. These 
will be mainly long-term, high-risk and/or high-potential research ideas, but there may be also 
room for innovative projects with application in the shorter term. 

The number of WP-E research themes is initially limited to four. These research themes were defined 
following broad consultation with experts from academia, industries and various research organisations, 
the SESAR Scientific Committee and the European Commission. WP-E networks and projects are 
expected to address the following research themes: 

• Legal Aspects of Paradigm Shift; 

• Towards Higher Levels of Automation in ATM; 

• Mastering Complex Systems Safely; and 

• Economics and Performance. 

ComplexWorld is the Research Network for the theme 'Mastering Complex Systems Safely'. 

 

1.3 ComplexWorld Research Network - Mastering Complex Systems Safely 

Complex Systems Science is one of a number of names given to the study of Complex Systems, also 
known as Complexity Theory, Complex Systems Theory or Complexity Science. This kind of systems can 
be defined as the collection of a high number of parts (elements, individuals, agents...) that interact with 
and adapt to each other, such that the system exhibits behaviours at the system-wide level that emerge 
from the combined actions of individuals (emergent behaviour) and cannot be understood only from the 
information stored at the individual level. Understanding how these interactions create the collective 
emerging behavior is not a trivial task, as emergence carries with it the additional implication that these 
phenomena typically cannot be predicted by examining the individuals' behaviour alone. 

Complexity Science is not a single theory, but it is highly interdisciplinary and encompasses a set of 
ideas, methodologies and tools from different fields, such as nonlinear dynamics, statistical physics, 
artificial intelligence, or numerical simulation, among others. 

Complexity Science has been applied with success to the study of physical (e.g. turbulent fluids) and 
biological phenomena (e.g. the interactions of the components of living cells) [Har99, And79]. More 
recently, the insights gained from the study of complex physical systems have begun to be applied to 
complex sociotechnical systems [Man05, Axe81, Bor03]. 

ATM system exhibits some characteristics that make it suitable to be analysed from a Complexity Science 
approach. Let us enumerate the most relevant: 

• large number of components; 

• heterogeneous components: airports, regulations, flights, natural conditions, etc.; 

• multiple temporal and spatial scales; 
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• highly structured system: there is an airport network structure, on the one side, and many 
different layers (commercial, regulation, passengers, traffic) on the other; 

• complex structure of the interactions between pairs or groups of different components; 

• adaptive to the changing external environment; 

• system of systems, i.e. single components as airports may also exhibit complex features; 

• self-organization; 

• non-determinism. 

All these characteristics together give rise to emergent behaviours, a fingerprint of complex systems. 
However, most effort done so far in air traffic modelling has not taken into account this paradigm. The 
WP-E research theme 'Mastering Complex Systems Safely' will explore how Complexity Science can 
contribute to understand, model, and ultimately drive and optimise the behaviour and the evolution of 
the ATM system that emerges from the complex relationships between its different elements. 

The ComplexWorld Network is an open partnership between universities, research centers, and 
industry, aiming at: 

• fostering the interaction and cross-fertilization between the Air Transport and the Complex 
Systems research communities; 

• identifying the state-of-the-art in the relevant disciplines; 

• defining and describing the main research challenges and their potential benefits for the ATM 
system, in order to set direction for future research and create a momentum of research in the 
field; 

• attracting talented Complex Systems researchers towards ATM; and 

• defining, developing and maintaining a clear roadmap for establishing and consolidating a 
research community at the intersection of Complexity and ATM of clear added value for the 
European ATM sector. 

 

1.4 The Complex ATM White Paper 

The Complex ATM White Paper is the common research vehicle that defines the high-level, strategic 
scientific vision for the Complex World Network. The specific objectives of the White Paper are to: 

• analyze the state-of-the-art within the different research areas relevant to the Network, 
identifying the major accomplishments and providing a comprehensive set of references, 
including the main publications and research projects; 

• include a complete list of tools and techniques from the field of Complex Systems, a list of 
application topics, and an analysis of which techniques are best suited to each one of those 
applications; 

• identify and perform an in-depth analysis of the most promising research avenues and the major 
research challenges lying at the junction of ATM and Complex Systems domains, with 
particular attention to their impact and potential benefits for the ATM community; 

• develop an indicative roadmap on how those research challenges should be tackled; 

• identify areas of common interest and synergies with other SESAR activities, with 
special attention to the research topics covered by other WP-E networks. 
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2 STRUCTURE OF THE DOCUMENT 

In the elaboration of this White Paper, three different levels are envisaged: foundations, modelling and 
applications (the scope of these notions is explained below), as sketched in the following figure: 

 

Figure 1. Complex White Paper Structure 

These three levels will define the three main parts of the White Paper. The first part (foundations) is 
formed by Section 3, entitled “Foundations for studying and understanding ATM from a Complex Systems 
perspective”. In this section the characteristics of Complex Systems that can be found in ATM are 
analyzed; among others, the following: multiple spatio-temporal scales (sub-section 3.1), non-
determinism and uncertainty (sub-section 3.2), and emergent behaviour (sub-section 3.3). 

The second part (modelling) is formed by Section 4 entitled “Modelling and managing ATM complex, 
systemic behaviour”, in which it is described how the tools and techniques identified in section 3 can be 
put together to model the ATM system (sub-section 4.1), how these models can be calibrated and 
validated (sub-section 4.2), and used for the design, control and optimization of the system (sub-section 
4.3). A section on information management and decision making is also included (sub-section 4.4). 
Additional material for this part has been included (provisionally) in Annex 2, called “Resilience and 
system stability”. 

As indicated, sections 3 and 4 are divided into sub-sections, according to the different research themes 
being analyzed. Each sub-section includes a review of the state of the art (definitions and concepts, tools 
and techniques, gaps, challenges, and barriers), and an identification of related research lines. 
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With respect to the third part (applications), the objective is to apply the tools described in sections 3 and 
4 to tackle specific problems of the ATM system, aiming at the final goal of improving its performance. 
This part is still at a preliminary stage, and will be completed during the lifetime of the Network (as well 
as the White Paper itself). At this stage, all the material related to applications is collected into Annex 3, 
called “Potential applications for complexity science in ATM”, in which a total of ten potential applications 
are described. 

One of the objectives of the White Paper is the identification of open research questions linked to 
complexity applications. A list of such questions, related to the potential applications presented in annex 
3, is given in Section 5, called “Open research questions”. 

The document ends with a final section, Section 6: Conclusions, and with several annexes: Annex 1: 
Glossary; Annexes 2 and 3, already described; Annex 4: Data Requirements, with a technical description 
of the data necessary for the identified research threads that are currently missing; and Annex 5: 
References. 
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3 LAYING THE FOUNDATIONS FOR STUDYING AND 
UNDERSTANDING ATM FROM A COMPLEX SYSTEMS 
PERSPECTIVE 

As explained in section 1.3, the ATM system exhibits some characteristic features of complex systems 
(large number of heterogeneous components, complex structure of interactions...). The purpose of this 
section is to discuss more in depth some of these properties, in particular multiple-scales, non-
determinism, and emergent behaviours. 

 

3.1 Multiple Spatio-Temporal Scales 

3.1.1 State of the Art 

3.1.1.1 Definition and Concepts 

The ATM system exhibits different regimes of operation. The relevant temporal and spatial scales vary 
depending on the phenomenon within the ATM one is interested in. 

For example, regarding the spatial scaling one finds different needs of granularity: European network 
level, to study phenomena such as network congestion or ATFM algorithms; FABs or National airspace 
level, e.g. for benchmarking on cost efficiency of different ANSPs; airport level, e.g. to study runway 
delay. Moreover, there are some events which are space-independent, like adopting regulations or more 
generally policy making. 

In the same way, one identifies different temporal scales. Indeed, conflict resolution takes place within 
flight times, adaptations of the network to external conditions such as volcanic ash or pilots' strikes 
occurs over a scale of weeks, and (airport) slot assignment happens twice a year, at the IATA Schedules 
Conferences (see also Section 3.2). 

Modelling systems at a microscopic level may demand huge amounts of computational resources. Given 
that no every single aspect turns out to be crucial for the study of a given problem, one can gain in 
efficiency by using a multi-scale approach, in which every question is addressed within the proper level of 
detail. 

There are some basic concepts associated to the problem of having multiple scales. The most relevant 
among them are the following: 

• Multiscale Modeling is the fact of solving problems which show important features at several 
scales. 

• Granularity is the extent to which a system is broken down into pieces for its observation or 
modelization. 

• Coarse-graining is the process of reducing the granularity of a system, lessening the number of 
degrees of freedom of the system by grouping elements together and losing microscopic detail. 

• Slow and fast variables refer to those variables of the problem which vary at slow or fast 
rates, respectively. 

The problem of having multiple scales in a system has already been tackled in other disciplines, mainly in 
physics or biology. To address multiple spatial scales different levels of coarse-graining have been 
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applied. The quantum properties of the atomic nucleus are considered in particle physics, but 
approximated as a single structure if the object of research is at the atomistic level. Atoms, or even sets 
of them are taken as individual entities in molecular dynamics [All89, Fre01], for instance.  

In the same way, since the nuclear movement is much slower than that of the electrons, the former is 
considered in a fixed (equilibrium) state to describe the electronic wave function which constitutes the 
so-called Born-Oppenheimer or adiabatic approximation [Bor27]. 

Another beautiful example of multiple scales comes from biology: the DNA [Bec07]. The chemical 
composition beyond the nucleotides is responsible for the ester bonds between the two antiparallel 
chains, the nucleotide as an entity suffices to codify the genetic sequence, and only groups of nucleotides 
(genes) are relevant when studying Mendelian genetics. 

3.1.1.2 Tools and Techniques 

Different tools are commonly used to model and solve multi-scale problems. 

Spatial multiple scales 

• Division of the system: there is no need to consider the whole system to understand the 
dynamics of those systems composed of repeated units. Often it suffices with studying a fraction 
of the system because increasing the size does not alter the dynamics. This is the case for 
instance in some problems of molecular dynamics, where the whole system is subdivided in grids 
or cells and the dynamics of some of them with the appropriate boundary conditions properly 
captures the dynamics of the whole system. 

• Coarse-graining: the details of a system needed to solve a given problem depending on the 
nature of the latter. By coarse-graining one reduces the granularity and the degrees of freedom, 
making it easy to tackle the problem. The simplest unit is changed and the interactions between 
them must be modified accordingly. The number of interactions involved is largely reduced 
[Bec07]. 

Temporal multiple scales 

When more temporal scales (say two) are involved in a problem, one can analyze it by looking at both 
scales separately, using the singular perturbation method [Kev96, Smi09]. In this method, first, the 
constant rates (parameters) associated to both scales must be identified and a small variable is defined 
as their ratio. The parameters of the problems are redefined in a dimensionless way. So it is the time 
variable, once for every time scale giving rise to two different sets of equations, one for the fast variable 
and the other for the slow variable. The slow variable is considered constant and the evolution of the fast 
variable is analyzed. Then, the slow variable is studied considering that the previously analyzed fast 
variable evolves instantaneously. Thus a typical behavior of such a system is composed of sudden jumps 
followed by slow changes. 

A prototypical system analyzed using this technique is the Van der Pol oscillator. The method can also be 
used for studying spatial multiple scales, for instance when investigating the boundary layer in fluid 
mechanics. An application closer to ATM arises in the equations of flight mechanics, where the flight-path 
angle is usually considered a fast variable. The method is usually applied to two-scale problems, but it 
can be generalized to three or even more. 

If instead of an analytical solution one is performing a simulation of the problem, it must be paid 
attention to assure that different phenomena take place at different rates. The equations describing this 
type of systems are usually stiff (meaning that most numerical methods would produce unstable solutions 
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unless the step size is taken extremely small) [Mir01], thus specially adapted solvers are needed to 
produce accurate simulations. 

For some systems the problem is far less complicated, because the temporal scales are very different and 
therefore one can consider some properties of the system to be fixed (long time scale, slow variables) to 
investigate the evolution of other (fast) variables operating in a faster scale. However, the interplay of 
fast and slow variables is also present in some chaotic systems. In those systems, the evolution of the 
slow variable moves the system between regions where the fast variables have very different behaviors, 
producing a non-trivial evolution of the global system. 

Statistical modelling 

In systems which show multiple scales, some of them are often neglected to address a particular 
problem. However, the questions pursued might demand information of the neglected spatial details or 
time variations. Statistical modelling allows capturing the behaviour or states of finer structures and 
temporal scales with a level of detail sufficient to the problem that is the object of research. A detailed 
evaluation at the microscopic level can be used to select the most appropriate model for a certain 
variable, which is then incorporated into the macroscopic model e.g. in the form of a probability 
distribution. 

Therefore, it is important to find the proper statistical modelling which enables to identify the salient 
features of parts of the system relevant for the scales separation. The first effort to follow this scheme is 
to find out which are the salient features of system components to properly conduct further 
investigations within other scales. 

3.1.1.3 Gaps, Challenges, Barriers 

• Reducing the graining eliminates possible applications of models. 

• Using parts of the systems and specially applying boundary conditions to reproduce the influence 
of the surroundings may introduce ad-hoc effects for very small samples. 

• It is difficult to evaluate the loss when approximating parts or events in a system. 

3.1.2 Research Threads 

• Identify the relevant temporal scales associated to single phenomena within the ATM. 

• Identify the spatial scope, if any, in which the dynamics of different ATM phenomena take place. 

• Investigate how to apply the scale separation to interrelated phenomena in the ATM context. 

• Design suitable coarse-graining of different elements of the ATM for single specific purposes and 
research topics. 

• Estimate the loss of accuracy in the global performance of specific purposes due to coarse-
graining processes of single ATM elements or time averages of slow processes within the ATM. 

 

3.2 Non-Determinism and Uncertainty 

3.2.1 State of the Art 

3.2.1.1 Definition and Concepts 

Disturbances and perturbations 
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Disturbance and perturbation are often used as synonyms. Both refer to activities or phenomena that 
represent a malfunction, intrusion or interruption in a system. They are also defined as a “secondary” 
influence on a system that causes it to deviate slightly from its nominal behaviour. 

Mathematically speaking, when describing a system by a set of equations (usually nonlinear), 
perturbations or disturbances are usually regarded as extra terms (sometimes unknown, sometimes 
impossible to model, or just difficult to study analytically) that play a role in the equations modifying the 
solution. To be mathematically tractable (given the nonlinear behaviour of such systems), these terms 
are usually assumed “small” and perturbation theory can be used to analyse the behaviour of the 
perturbed system. Historically, perturbation theory was born in the field of celestial mechanics; for 
instance, when computing orbits of a planet around the Sun, the influence of other planets (or moons) 
can be thought of as a perturbation on the nominal orbit (which does not take into account the other 
planets or moons). This perturbation is perfectly known (and unavoidable), however it is difficult to 
describe (due to the complex movement of the planets and moons viewed from the point of view of 
another planet). 

In systems theory, disturbances and perturbations are studied as extra inputs entering the system. When 
designing control mechanisms for a system, it is frequent to consider “disturbance attenuation” as an 
objective. That is, to minimize the impact that the disturbances entering the system have in the system 
output. The use of feedback is the main tool to diminish the sensitivity of the system to disturbances. 
Robust control theory is a subfield of control theory that concerns itself with the design of feedback laws 
that guarantee a desired performance of a system even for a wide set of disturbances. 

In the context of ATM, we consider a disturbance or perturbation as any influence that causes the ATM 
system (as a whole, or any of its parts) to deviate from its nominal behaviour. For instance, considering 
an individual aircraft, we consider a disturbance any effect that makes the aircraft trajectory differ from 
its nominal (preferred) trajectory. Since the ATM system is subject to an enormous quantity of 
perturbations and disturbances, it never functions in nominal conditions; for instance, flights seldom 
depart and arrive at the exact scheduled times. However, the ATM system incorporates many robust 
control mechanisms (in the form of procedures, regulation and human intervention) that help minimize 
the impact of the disturbances and make the ATM system robust. 

Uncertainty 

Uncertainty is defined as the condition of being partially unknown or in doubt. The sources of uncertainty 
can be several. A distinction between objective uncertainty and subjective uncertainty should be done. 

In the first case (objective uncertainty) the system is intrinsically non-deterministic. Even if the present 
and past states of the system are perfectly known, the mathematical laws of evolution are perfectly 
known, and one has an infinite computing capability, the future state of the system cannot be predicted. 
For instance, quantum systems are non-deterministic. 

Subjective uncertainty can have different sources. The first case is when the system state is known, the 
mathematical laws of evolution are deterministic and known, but the system is chaotic. Chaotic systems 
are those where small variations in the initial conditions may lead to large variations in output. Even 
though these systems are deterministic, in practice they give rise to uncertainty since the initial 
conditions can never be perfectly known. Small discrepancies grow in unexpected ways, producing 
uncertainty in the output for the long term. 

The second form of subjective uncertainty arises when the present state of the system is known (possibly 
with some uncertainty), but more important the mathematical laws of evolution, and the forces (inputs) 
that affect the dynamics of the system are known only probabilistically. This might be due to the fact that 
the inputs are themselves the result of the common action of a very large number of individual inputs. To 
quote an important example, consider the Brownian motion. A small particle (a grain of pollen, for 
example) fluctuates randomly when it is immersed in a fluid. The reason is that its motion is determined 
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by the collision with a huge number of fluid molecules. Despite the fact that one could describe 
deterministically these collisions, the large number of molecules involved and the lack of knowledge of 
their initial state lead to a different type of description. To analyse an uncertain system of this type it is 
useful to consider it as if it were a non-deterministic system. 

This leads to a mathematical approach based on stochastic processes, i.e. mathematical laws of evolution 
where the inputs are random variables, rather than deterministic functions. The use of stochastic 
equations to cope with systems characterized by subjective uncertainty is extremely successful in a huge 
variety of disciplines, including from physics, chemistry, biology, medicine, economics, social sciences and 
many other disciplines. 

In physics the probabilistic approach has also proven extremely successful when a large collection of 
particles (as opposed to a single particle interacting with many others) needs to be described. The typical 
example is the description of a gas. Despite the fact that the deterministic mathematical laws of evolution 
for individual molecules are known, the large number of particles needed to be described makes 
impossible to use a deterministic approach. Therefore a probabilistic approach should be used, which is 
the core of statistical mechanics. Note that statistical mechanics has been applied in the recent years to a 
large number of "non-physical" systems. In fact, the characteristic of being composed by many 
interacting units is a common feature in society, ecological systems, or economy, among others. Finally, 
it is worth mentioning the Knightian uncertainty. While uncertainty defined above assumes that the 
inputs of the system are known in probabilistic terms, in the Knightian case this knowledge is absent or 
partial. 

In the ATM system these definitions of uncertainty have an important role. Most likely objective 
uncertainty (or non-determinism) is not relevant for ATM. On the other hand subjective uncertainty is key 
to model and control properly the ATM system. The sources of uncertainty are disparate, ranging from 
the weather, to operational problems, logistic delays, etc... Each source of uncertainty introduces a 
disturbance in the planning and in the functionality of the system. A careful characterization of the 
different possible sources of uncertainty is therefore extremely important in ATM. This characterization 
has at least three components: 

• First, it is important to characterize the statistical properties of these disturbances. In risk 
management, for example, it is of paramount importance to characterize carefully the probability 
of extreme disturbances, because they are likely to have a devastating effect on the system. 

• Second, it is important to characterize the dependence structure between different sources of 
uncertainty. Very often in a large variety of systems (for example in economics or finance) this 
dependence structure is severely underestimated, especially because it is computed in "normal" 
times, while the dependence becomes significantly larger during extreme events. 

• Finally it is important to characterize the effect of a disturbance (or a combination of 
disturbances) on the system or subsystem of interest. At the simplest level this entails to know 
the response of the system (or subsystem) to a disturbance. At a higher level the response of the 
system or subsystem (e.g. an aircraft that must change route because of adverse weather 
condition) can affect other elements (e.g. other aircraft or airports) and the way in which other 
elements respond to the disturbance (in the example, the weather). These two forms of 
propagation of disturbance, direct and indirect, are very important in any complex system and 
are likely to be very important in ATM. 

Relationship between disturbance and uncertainty 

Relating the concept of uncertainty with the concept of perturbation and disturbance, it can be said that 
disturbances and perturbations are sources of uncertainty for a system or subsystem. Disturbances are 
usually also uncertain, in the sense that they cannot be known a priori. For instance, wind is an uncertain 
disturbance since it cannot be perfectly described (but can be statistically modelled) which causes 
uncertainty in the aircraft position. 
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An open question is whether emergent behaviour is to be considered a disturbance or not. For instance, 
an emergent phenomenon at a certain scale might be thought of as a disturbance for larger scales. 

Example of the evolution of uncertainty for a single flight 

 

 

Figure 2. Evolution of uncertainty for a flight 

The concept of uncertainty and its evolution is illustrated for a single flight. Figure 2 shows uncertainty 
evolution (measured as standard deviation of time) associated with a typical IFR flight, as a function of 
time. Each stage is discussed next. 

• Strategic planning stage. Temporal variability is at its greatest during this stage, covering from 
months before the flight up to two hours before the off-block time. This includes the filing of 
flight plans but not the ATFM slot allocation process. 

• Pre-departure stage. This stage begins with slot allocation (commencing two hours beforehand) 
and continues up to the aircraft off-block time. Based on intra-European flights in 2008, the 
standard deviation of delay during this two hour timeframe is 17 minutes [EUR10]. 

• Gate-to-gate stage: This stage covers the flight. Figure 1 illustrates temporal uncertainty 
associated with taxi-in and -out phases and how it is slighter greater during the airborne phase 
(with a standard deviation of around 5 minutes for intra-European flights [EUR10]). A 15 minute 
take-off slot tolerance is available (-5 minutes to +10 minutes in relation to CTOT) for ATC 
departure sequencing purposes [EUR10c], however 18.5% of regulated flights in 2008 took-off 
outside this tolerance [EUR09]. In Europe, delays tend not to be exacerbated during the gate-to-
gate stage. The main driver of arrival delay is departure delay. 

• Post-arrival stage. This stage commences once the aircraft is on-block. The point estimates ‘pax 
a’ and ‘pax f’  in Figure 2 represent uncertainty relating to the arrival time of passengers without 
and with connecting flights, respectively. Temporal uncertainty for ‘pax a’ has a standard 
deviation of around 19 minutes for intra-European flights [EUR10]. The corresponding temporal 
uncertainty for ‘pax f’ is more difficult to estimate. 

Propagation and network effects 
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Delay propagation and its effect on the network follows on from the post-arrival stage. The late arrival of 
an aircraft (causing ‘primary’ delays) can trigger ‘knock-on’ effects in the rest of the network (known as 
‘secondary’ or ‘reactionary’ delays). Longer primary delays generally lead to worse reactionary delays, as 
do primary delays that occur earlier in the day. How the delay is propagated through the network can 
depend on internal factors such as the airline’s ability to recover from the delay and external factors such 
as bad weather [Coo10b].  

3.2.1.2 Tools and Techniques 

The basic methods to describe and quantify non-deterministic systems are those coming from probability 
and statistics, in particular from the theory of stochastic process (Markov chains, stochastic differential 
equations). Some classical methods are the following: 

• Monte Carlo methods [Has70] 

• Sequential Monte Carlo methods [Liu98] 

• Polynomial chaos expansions [Pra10] 

• Queing analysis [Kim09] 

3.2.1.3 Gaps, Challenges, Barriers 

Gaps: 

• Uncertainty and its propagation have not been widely studied in ATM. 

• Different parts of the ATM system modelled in very different ways; no unified model 

Challenges: 

• Finding a set of performance metrics that incorporate uncertainty in its definition. 

• Measuring the robustness of the ATM system. 

• Identifying and quantifying all the sources of uncertainty in the ATM system. 

• Finding the right stochastic models that allow describing the ATM system with sufficient accuracy 
while being tractable enough. 

• Describing human performance in the ATM system as a non-deterministic model. 

• Studying the cost of delay, using passenger-centered metrics. 

• Developing new tools and techniques beyond classical methods. 

Barriers: 

• Not enough data from the ATM system. 

• Lack of computational power for some of the proposed techniques (e.g. Monte Carlo). 

3.2.2 Research Threads 

(a) Impact of Uncertainty and Accuracy on the System's Behaviour 

The goal of this research thread is to investigate and understand how sensitive the system is to 
measurement errors, lack of precise data, and the uncertainties introduced by intrinsically unpredictable 
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phenomena present in ATM. This research will help build a true performance-driven ATM system, by 
allowing the development of a set of performance metrics that incorporate uncertainty and accuracy as 
part of their definition. It will also address how robust the ATM system is and how to built a robust ATM 
system in relation to the propagation of uncertainty. 

(b) Trajectory Uncertainty 

This thread includes analysis of trajectory uncertainties and how they propagate upstream through the 
larger scales of the ATM system. Uncertainty also propagates along the different phases of the flight; 
thus, climb trajectory uncertainty impacts the descent phase operations and descent trajectory 
uncertainty further impacts the terminal area operations. Any uncertainty that would cause an aircraft to 
deviate from its nominal (preferred) trajectory should be considered: 

• Uncertainties in the departure airport: ATFM slot delays, uncertainty in taxy times. See for 
instance [Kwa07]. 

• Uncertainties in the arrival airport: delays due to sequencing and traffic. See for instance 
[Kim09]. 

• Wind. See for instance [Mat09], [Yen03], or [Nil01]. 

• Uncertainty in the initial conditions. See for instance [Pra10]. 

• Uncertainty in the aircraft performance. See for instance [Pra10]. 

• Navigational errors. See for instance [Gre00]. 

• FMS errors. See for instance [Kim09]. 

• Changes in aircraft intent. See for instance [Pep03]. 

(c) Propagation of Disturbances 

This thread includes analysis of system dynamics, analysis of ATM system in terms of integration versus 
segregation, identification of core links and connections, etc. Techniques developed in the Complex 
Networks domain can be adapted and applied effectively. The understanding of how the effects of a 
disturbance propagates after the disturbance is "resolved" by the system will shed light on the robustness 
of the system and on the scale of the optimization method used to resolve the disturbance. Thus 
understanding disturbance propagation could help to improve disturbance resolution methods. 

(d) KPAs 

An often-used, useful and intuitive performance metric for ATM is average flight delay. However, the 
cost of delay is not a linear function of the length of delay, so the cost of delay may often be a better 
metric than average delay (reducing the total system delay does not necessarily reduce the associated 
total cost - it depends on the distribution of the delays).  Also, passengers with connecting flights may 
be subject to (further) delay, or experience delay recovery, during onward flights.  A better metric for 
these passengers is their time of arrival at their final airport (or, ideally, at their final destination).  The 
objective of this research thread is to develop KPAs that include the cost of delay and that extend the 
scope to passenger-based metrics. 

(e) New Tools and Techniques to study uncertainty in ATM 

The tools and techniques described above are of great utility if one wishes to analyze a simple, isolated 
system. However, new specific methods have to be developed if non-determinism and uncertainty is to 
be analyzed taking into account all aspects of ATM. These new techniques might be based on classical 
approaches but need to capture complex, non-classical phenomena such as the emergent behaviour of 
the ATM system. 
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3.3 Emergent Behaviour 

3.3.1 State of the Art 

3.3.1.1 Definition and Concepts 

The concept of emergence is a key concept in complexity theory. Emergence occurs when several 
interacting parts self-organize in structures or interrelations presenting a collective state, some patterns 
and/or performing coherent actions. The pattern, the collective state and/or the coherent action cannot 
be explained in terms of the properties of the constituent parts of the system. 

The concept of emergence has a long history. The first use of the term emergence with the above 
meaning occurred in philosophy. The term was used by G.H. Lewes [Lew74] to synthesize the 
philosophical concept introduced by J.S. Mill and illustrated with an example about water. Mill [Mil72] 
stated that "The chemical combination of two substances produces, as it is well known, a third substance 
with properties different from those of either of the two substances separately, or for both of them taken 
together". 

The overall system arising from the interaction of the different parts is therefore essentially different from 
just the collection of the parts. New properties, patterns and processes emerge from a set of interacting 
elements. When emergence is possible, a basic question concerns the way an observer is able to 
recognize the existence of patterns, phases, coherent structures, processes and properties of the 
considered system, especially under the unavoidable presence of exogenous or endogenous sources of 
randomness. The detection of emergence requires an observer. Different observers can conclude 
differently and therefore emergence detection is relative to specific observers and might present a 
subjective nature [Cru94]. 

3.3.1.2 Tools and Techniques 

The modelling of emergent behaviour in complex systems requires a multi-disciplinary approach. Tools 
and techniques are borrowed and adapted from disciplines such as computer science, mathematics and 
physics. Other disciplines like biology, economic and social sciences, engineering sciences, medical 
sciences, etc, provide the framework to better focus on the constituent aspects of the investigated 
systems. In the case of recent new research areas the multidisciplinary approach is observed in the 
process of the setting and development of the research community and in the selection of the research 
topics. Examples are the development of network theory [Alb02,New03] and system biology [Bor05]. 

Main classic conceptual tools used to describe and model emergent behaviour in complex systems are:  
1) phase transitions and critical phenomena [Sta71,Bin92]; 2) hierarchical organization [Sim62]; 3) 
self-similar structures, scaling [Kad90, Sta99] and fractals [Man77]. 

The concept of phase transition and criticality is probably the most important one when a physically 
oriented modelling of emergent behaviour is accomplished. In the simplest setting, a model (often a 
highly stylized toy model such as the Ising model [Hua87]) of many elementary elements interacting 
locally, presents a collective state (called phase of the system), whose properties are controlled by the 
temperature of the system and are characterized by a variable named order parameter. By changing the 
temperature of the system (or any variable that can play its role in complex systems) the system 
presents an abrupt transition between different phases of the system (e.g. a transition from a 
paramagnetic to a ferromagnetic phase). The nature of the phase of the system cannot be related to the 
microscopic nature of the basic element composing the system (a two state up or down variable in the 
Ising model). Different phases are separated by a critical state. The physical properties of the system 
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near the critical state can belong to universality classes characterized by the nature of the order 
parameter of the system [Bin92]. 

Statistical physics has also developed the concept of self-organized criticality [Bak87]. This is a concept 
showing that a critical state is not only encountered when a system switches between two distinct 
macroscopic phases but that criticality can also be observed for complex systems that naturally converge 
to a critical state without an external tuning. 

The modelling of emergent behaviour in biological and social sciences has pointed out the importance of 
the hierarchical structure of complex systems. In the classic setting of this concept H.A. Simon stated 
that a hierarchic system is "a system that is composed of interrelated subsystems, each of the latter 
being, in turn, hierarchic in structure until we reach some lowest level of elementary subsystem" 
[Sim62]. The presence of a hierarchical organization with different levels makes natural to observe that 
intrinsically different scientific descriptions are needed in the modelling of different levels of the system. 
Anderson pointed out this concept by stating "the behaviour of large and complex aggregates of 
elementary particles, it turns out, is not to be understood in terms of a simple extrapolation of the 
properties of a few particles. Instead, at each level of complexity entirely new properties appear, and the 
understanding of the new behaviors requires research which I think is as fundamental in its nature as any 
other" [And72]. In other words, at different hierarchical levels, emergent properties set up and they 
might need a scientific explanation, which cannot be given in terms of the scientific laws describing the 
constituent parts of the lower hierarchical level. 

When the hierarchy of the system is of self-similar nature the concepts of scaling and fractal geometry 
naturally apply. Scaling [Kad90, Sta99] is a concept that has originated in different areas of 
mathematics and physical sciences. It is observed in: (i) the absence of a specific scale for some 
variables of a system, which is at a critical state; (ii) the allometric laws [Wes97] observed between 
variables characterizing a system. Deviation from isometric scaling is often due to dimensional constraint 
as it is observed, for example, in turbulence; (iii) the relationships among observables which are 
functions of random variables (for example linear sum, maximum or minimum value, etc.) and their 
number. In all the cases the presence of a scaling relation implies a power-law relation or a power-law 
distribution of some of the investigated variables. 

Some techniques used to characterize and model complex systems are briefly summarized hereafter. 

Real or model complex systems are usually empirically or numerically characterized in terms of statistical 
regularities of some macroscopic indicators of the system. For example in a financial market basic 
indicators are asset return and its volatility, which is the standard deviation of asset return. The statistical 
regularities of these indicators observed in empirical systems are then compared with the statistical 
regularities predicted or simulated by agent based models describing the system of interest. Agent based 
model [Tes01, Hea09] is a broad term addressing both simplified "toy" analytical models and numerical 
models where each single agent has a defined set of rules controlling agent's action as a function of the 
state of the system and agent rule. 

Analytical (when feasible) and numerical investigations of an agent-based model can highlight the 
presence of an order parameter describing different phases of the system. A paradigmatic example of an 
agent based model describing agents' decisions in a framework of inductive reasoning of economic 
agents extensively investigated both analytically and numerically is the so-called El Farol bar problem 
[Art94] and the corresponding formalized version of the minority game [Cha97]. 

Statistical regularities observed in complex systems are often described in terms of non Gaussian 
processes obeying to a generalized central limit theorem [Lev37, Gne54]. Power-law distributions are 
therefore quite ubiquitous in complex systems and their presence can originate from several different 
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reasons ranging from aggregation of independent random variables, to the presence of specific 
heterogeneities, to random multiplicative processes with specific constraints [Mit04, New05, Gab09]. 

Another quite ubiquitous characteristic of complex systems is the presence of a multiplicity of scales. In 
the presence of multiplicity of scales some properties of the complex system can become long-range 
correlated [Ber94] and therefore their evolutions cannot be described in terms of Markovian processes. 

3.3.1.3  Gaps, Challenges, Barriers 

• Need for tools which are effective in the analysis and modeling of heterogeneous complex 
systems. 

• Modelling of out of equilibrium, self-organized, self-assembling systems. 

• Development of effective and flexible complexity quantitative indicators. 

3.3.2 Research Threads 

• Characterization and estimation of the field and limit of application of different classes of Agent 
based models to the ATM, suitable for the specific issue of investigation addressed. 

• Adaptation and development of theoretical and data mining tools effective in the empirical 
analysis and modeling of the ATM system understood as a heterogeneous complex system. 

• Development of statistical mechanics models which are stylized versions of agent based models 
and can be treated with analytical and/or simulation approaches. 
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4  CARRYING THEORY INTO ACTION: MODELLING AND 
MANAGING ATM COMPLEX, SYSTEMIC BEHAVIOUR. 

The purpose of this section is to show how the tools/techniques/methodologies/etc. described in section 
3 can be combined and customise to (first) model and (second) manage the ATM system. The following 
issues are addressed: intelligent modelling; calibration and validation of complex systems models; design, 
control and optimization; and information management and decision-making mechanisms. 

 

4.1 Intelligent Modelling 

4.1.1 State of the Art 

4.1.1.1 Definition and Concepts 

Intelligent modelling is a term which has been coined in many different contexts and refers, thus, to an 
ample variety of techniques. 

• Bio-inspired models and techniques. Nature is probably the most perfect system. Mimicking it 
turns out often to be the best way to address several problems. Both, robotics and the 
development of (mostly computational) algorithms find in nature inspiration to achieve their 
goals. 

• Auto-regulated processes as those of control theory are said to be intelligent. The outputs of the 
system feedback the algorithm and inputs are modified until the desired outputs are met. 

• Decision-making algorithms based on logic bifurcations as decision trees or neural networks, are 
considered as intelligent algorithms. 

• Simulation methods and techniques in which some components have the ability to learn, as 
machine learning or agent-based models are also often referred to as intelligent. 

4.1.1.2 Tools and Techniques 

To intelligently model a new approach of the ATM, accounting for operational and technological 
improvements, a great many of the methods which have been used to adequately describe complex 
systems and (some) described in Section 3 should be properly combined. In addition, other tools coming 
from close disciplines may be very helpful. 

• Adaptive and complex networks 

• Genetic algorithms and artificial immune systems 

• Control theory 

• Pattern recognition 

• Cause-effect identification 

• Decision theory 

• Agent-based models together with game theory 

• Influence analysis: Bayesian networks 
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• Multi-scaling: identifying the right scale to investigate specific problems, accounting for those 
which are neglected by averaging their essential features 

4.1.1.3 Gaps, Challenges, Barriers 

Gaps 

• To apply the methods and tools of Complex Systems and Data Mining in a context that has not 
been dealt as a quantifiable system in this sense. 

Challenges 

• To investigate a very complex system within the novel approach of Complexity Science by 
integrating elements of different disciplines at different levels of the modelling and research 
process. 

Barriers 

• The interdisciplinary character of the approach makes it difficult to coordinate members and 
integrate techniques of different research communities. 

4.1.2 Research Threads 

Intelligent modelling lately aims to improve the current models of ATM to improve the understanding and 
prediction power. A thorough research on this direction making use of the techniques and tools discussed 
above should work out some or (preferably) all of the following points: 

• Analysis of the behaviour of the actual system: patterns, relations between elements, multi-
scales. 

• Modelling of the ATM system or parts of it within the framework of agent-based models on a 
network structure. One must take into account the right scale for the issue of investigation. 
Several questions may be addressed (they may require different models): assessment of the 
SESAR-defined KPIs, evaluation and propagation of delays, passenger-oriented metrics, etc. 

• Evaluation of different scenarios issued within the context of the model. 

• Use of Data Mining techniques as neural or Bayesian networks to assess the existence of 
behavioral patterns as well as cause-effect relations under different problems and scenarios 
investigated. 

 

4.2 Calibration and Validation of Complex System Models 

The problem of validating and calibrating a complex system model is still an open issue and a variety of 
approaches have been proposed [Tes07]. As detailed below there are many reasons for this. A 
foundational reason is the fact that the concept of "complex system models" is vague and includes a 
large heterogeneity of model types. Despite the fact that generally complex system models are 
constructed with a bottom-up approach, i.e. starting by modeling the microscopic elements of the 
system, the main source of heterogeneity is the level of detail of the model. On one side of the spectrum 
statistical physicists (but sometimes also prominent economists like Thomas Schelling or mathematicians 
like John von Neumann) tend to build minimal models that are able to reproduce a given set of empirical 
facts. These models are sometimes called "toy models". On the other side other scholars, such as 
economists, believe that a model that does not take into account some important characteristics of the 
agents is not well posed and probably useless. This is in part a response to the Lucas critique that 
economic models should be carefully micro-founded. Given this wide spectrum it is difficult to find 
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universal standards for the validation and calibration of models. The other reasons why the problem of 
validation/calibration is still an open issue do not pertain to the nature of the models and will be detailed 
in the following. 

It is however important to stress that the problem of calibration and validation of complex system models 
is of timely interest due to the recent availability of detailed datasets of many complex systems. As a 
consequence of the digital revolution between the 80s and the 90s, more and more data have become 
available for investigating new empirical facts and for finding stronger support to models. Therefore the 
recent availability of large data sets on the behavior of agents in different complex systems is opening up 
the development of modeling which is more empirically grounded and therefore a greater need for 
techniques of calibration and validation is expected. 

4.2.1 State of the Art 

There is a significant and rapidly growing literature on calibration and validation of complex system 
models. Axtell et al. [Axt96] develop the basic concepts and methods of an alignment process for agent-
based models to test whether two different computational models can be considered similar. In Carley 
[Car96], there is a first stress on model validation with a focus on computational modeling in general. 
Gilli and Winker [Gil03] present an agent-based exchange market model and introduce a global 
optimization algorithm for calibrating the model’s parameters via simulation. Troitzsch [Tro04] 
enumerate many issues concerning the validation of simulation models to describe and predict real world 
phenomena. Fagiolo et al. [Fag07a, Fag07b, Win07] present a review of the ways agent-based 
modelers have tried to face the empirical validation of their models. Finally, without any presumption of 
being complete and exhaustive, we cannot forget the mainly theoretical and methodological contributions 
by Kleijnen [Kle95], Sargent [Sar98], Kleijnen [Kle98], Klevmarken [Kle98b], Epstein [Eps99], 
Barreteau et al [Bar03], Judd [Jud06], and Marks [Mar07]. 

4.2.1.1 Definition and Concepts 

When one builds a model, there is the underlying assumption that the real world can be considered a 
causal data generating process. The modeling effort is aimed to find a parsimonious description of this 
causal process. An important assumption is that the model must be simpler than the reality under 
investigation. It is therefore clear that there is always a tradeoff between accuracy and parsimony of the 
model. A more complicated model will often be able to model better the reality simply because of the 
increased number of degrees of freedom. However this statistical effect can misguide the modeler in the 
direction to follow. 

An important dichotomy on the role of the model is the one between instrumentalism and realism. Some 
scholars believe that the final aim of any model (and in particular complex system models, such as, for 
example, agent based models) is the ability to forecast the behavior of the system even if the causal 
process of the model might be very different from the real causal process. The other point of view posits 
that forecasting is not the main purpose of complex system model. On the contrary, these models serve 
to understand causal relations between micro and macro phenomena or the origin of relations between 
macro variables. Models are useful to test counterfactual proposition and to answer "what if" type 
questions. The validation and calibration of these models is done primarily in the setting of the model 
rather than by comparing the output with the reality. 

4.2.1.2  Tools and Techniques 

According to Fagiolo et al. [Fag07a] the validation/calibration approaches to complex adaptive system 
models can be divided in three categories. 
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• Indirect calibration approach. The main steps are: i) identification of the (macro level) 
stylized facts or statistical regularities that one is interested in reproducing with the model, ii) 
model building taking the microscopic description as close as possible to the empirical evidence, 
iii) restriction of the parameter space (and the initial conditions) by using the comparison of 
stylized facts in reality and in the model as a guide. 

• Werker-Brenner approach to calibration [Wer04,Wer07]. The main steps are: i) use of 
empirical knowledge to calibrate the parameters and the initial conditions of the model; if no data 
are present on an aspect, leave the model as general as possible, ii) use Bayesian inference 
procedure to validate the model reducing the space of possible parameters; this is done by 
retaining only model specifications associated to the highest likelihood, iii) recalibrate the model 
on the surviving set of parameters. 

• History friendly approach [Mal99]. This modeling approach seeks to bring modeling in line 
with empirical evidence by using specific historical case studies to model parameters, 
interactions, and rules. 

A different classification of validation schemes of complex system models is the following [Bia08]: 

• Descriptive output validation. This is an ex-post comparison between the output of the 
model and the real data (similar to 1 above) . 

• Predictive output validation. In this case the main objective of the validation/calibration 
scheme is to forecast out of sample the behavior of the real system modeled. This out of sample 
forecasting can be done on yet-to-be generated data or by using hind casting. This amounts to 
pretending to be at a given reference point in time and forecasting known “future” values. 
(Forecasts are made for points that are in the future relative to the reference point, but in the 
past relative to the present, and therefore known). This is a specific instance of the statistical 
technique known as cross-validation. It is a much more reliable measure of the forecasting ability 
of a model than goodness of fit, even with parsimony measures such as Akaike Information 
Criterion. 

• Input validation. This can also be called ex-ante validation and it focuses on the calibration of 
the input parameters rather than on the final output of the model. 

4.2.1.3  Gaps, Challenges, Barriers 

There are many problems in the properties of complex system models that makes difficult their validation 
and calibration compared to other types of models [Fag07a]. 

First of all, as mentioned in the introduction, complex system models are very heterogeneous in their 
properties, level of sophistication, number of parameters, etc. The spectrum ranges from toy models 
often inspired by Statistical Mechanics and that aim to capture the essence of the phenomena with the 
smallest number of parameters, to carefully micro-founded models where most of the effort is placed in 
the proper characterization of the behavior of the simplest entities (agents) of the model. Given this large 
heterogeneity of complexity it is very difficult to ascertain the connection between different models. This 
difficulty is often present also when models of similar complexity are compared. 

The second problem is related to the calibration/validation process itself. As we (will) see, very often the 
calibration/validation process is done by comparing the output of the model with some statistical 
properties observed in the real system under investigation. These statistical properties, sometimes 
termed "stylized facts" (especially in economics) are regularities (e.g. distributional and correlation 
properties) observed in different realizations of the complex system. Now while the stylized facts can be 
often parameterized with few parameters (or qualitative behaviors), complex system models depend on 
many more parameters and therefore there is typically a strong degeneracy in the number of model 
parameter sets that are able to reproduce the empirical facts (overfitting). 



 
D3.5 Complex ATM White Paper Issue 1 15/07/2011 

 

Page 27 of 60 
 

A third issue concerns the lack of standard techniques for analyzing complex system models. [Leo06] 
Different modelers have different standards of what they consider a proper calibration/validation of a 
complex system model and how to perform a sensitivity analysis of the model. 

A fourth point concerns the ergodicity of the model and the role of initial conditions. If the model is not 
ergodic the output of the model is strongly dependent on the initial conditions also after a long simulation 
time. In this case the calibration/validation process must be performed also on the initial conditions and 
not only on the parameters of the model. 

As we have seen above an important role is played by the process of model calibration. Calibration is 
important but presents several critical issues [Fag07a]. First, calibration is not helpful in establishing if 
the model is correct. In other words, a calibration always gives optimal values of the parameters, even if 
the model is profoundly wrong. Second, calibration affects the type of models that we are able to build. If 
some variable is impossible to calibrate for lack of data, there might be a tendency to develop models in 
which this variable is excluded. Related to this point there is the problem of biases and censorship in the 
calibration process due to the available data. Third initial conditions, time dependent parameters, and the 
possible existence of multiple regimes in the calibration window can affect severely the quality of the 
calibration. 

4.2.2  Research Threads 

• Development of techniques for validating and calibrating complex system models of ATM 
through: 

(i) descriptive output validation, i.e. validation/calibration obtained by matching the model output 
with the aggregate empirical statistical regularities, 

(ii) input validation,  i.e. calibration of the model parameters from survey data and interviews of 
ATM stakeholders, 

(iii) predictive output validation, i.e. validation obtained by considering the predictive power of 
the model. 

• Construction of empirically based agent based models [Jan06], i.e. agent based models 
constructed starting from the statistical regularities of individual agents observed in ATM data. 

• Development of statistical mechanics models of the ATM and their validation/calibration with 
analytical and/or simulation approaches. 

 

4.3 Design, Control and Optimisation 

4.3.1 State of the Art 

4.3.1.1 Definition and Concepts 

It has been shown in previous sections that the ATM system requires unconventional modelling 
techniques to be able to capture its full behavior as a complex system. This also implies that classical 
methods of design, control and optimisation are not well suited to be directly applied to the ATM system. 
This section presents some ideas of how the previously derived (and verified) complex models can be 
managed to improve the performance of the ATM system. 

In the context of complex ATM, the concepts of design, control and optimisation are defined as follows: 
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• Design refers to the use of the complexity tools and complex models when planning changes or 
new additions to the ATM system. For instance, tasks such as the design of new procedures, the 
planning of routes or the assignment of resources can benefit from the application of techniques 
and models that capture the complex behavior of the ATM system and include aspects such as 
emergent phenomena or uncertainty. 

• Control refers to the management of the ATM system. This management might be automatic or 
human-based, but in any case involves the use of procedures or mechanisms that modify some 
of the available inputs of the system, based on measurements or estimations of its states, to get 
the system to behave in a desirable fashion (with features such as robustness, safety, stability, 
and good performance). These procedures or mechanisms are usually known as control laws. 
The complexity of the ATM system requires the use of advanced techniques of control that will be 
described next. 

• Optimisation refers to the adjustment of some of the tunable parameters of the system, in a 
way that the behavior of the system is the best possible (or at least, close to the best possible) 
with respect to some measurable cost index. Optimisation and control can be blended together in 
what is known as optimal control, where the inputs of the system are used not only to get a well-
behaved system but also an optimally-behaved system (with respect to some cost index). 
Regular optimisation techniques are not able to deal with complex aspects of the ATM system 
such as uncertainty, therefore special methods have to be used. 

4.3.1.2 Tools and Techniques 

There are several advanced methods from the field of control and optimisation that are able to cope with 
some of the complex aspects of the ATM system. For instance: 

• Stochastic optimisation: this includes optimisation methods that incorporate probabilistic 
elements, either in the optimisation algorithm (e.g. random optimisation techniques), in the 
problem data (e.g. the cost index to minimize or maximize is the expected value of some random 
variables) or both [Spa03]. 

• Stochastic control: this is a subfield of control theory than considers uncertainty in the system 
to be controlled, which can be in the form of parameter uncertainty, random noise entering the 
system, or unmodelled dynamics. Techniques of stochastic control include robust control (dealing 
with bounded modelling errors and noise), non-linear stochastic control (dealing with non-linear 
systems with uncertainties), Kalman filtering (to estimate the states of uncertain systems), etc  
[Ast06]. 

• Hybrid control: this area of control theory deals with hybrid systems, which are systems 
described by both continuous and discrete states [Cas06]. 

• Distributed (decentralized) control: for systems (such as ATM) which are composed of many 
parts, it is not possible to design a unique, centralized controller that manages the whole system. 
Instead, it is more desirable to design a network of distributed controllers that locally manage 
parts of the system and coordinate through a communication network. Distributed control deals 
with all the issues raised by the design of these types of control laws [Lav08]. 

• Multi-agent planning and optimisation: this involves coordinating the resources and 
activities of multiple objects that interact among themselves and with the environment, so that 
some common objective is fulfilled [Ned10]. 

• Stochastic optimal control: a blend of stochastic optimisation and stochastic control, this area 
encompasses a set of techniques (such as dynamic programming, stochastic programming, 
particle methods, differential games) that design optimal control laws for uncertain or non-
deterministic systems with deterministic or probabilistic constraints [Ste86]. 



 
D3.5 Complex ATM White Paper Issue 1 15/07/2011 

 

Page 29 of 60 
 

• Singular perturbation control methods: this involves the use of singular perturbation theory 
for multiple-scale systems, which allows order reduction and the separate design of control laws 
for the different scales of the system [Kok87]. 

4.3.1.3  Gaps, Challenges, Barriers 

Gaps: 

• Most applications of the previously described techniques to the ATM system have been very 
limited (with very simplified models). 

Challenges: 

• Develop method that are implementable in the ATM system, i.e., technologically feasible and that 
can be accepted by all the agents present (ATCs, users, etc.). 

• Develop real-time algorithms for tactical planning. 

• Modelling and taking into account users' preferences. 

• Guaranteeing safety. 

Barriers: 

• Lack of knowledge of all parameters involved. 

• Many algorithms too slow to be used even for strategical planning. 

• Distrust of the ATM community (based on safety-related concerns). 

4.3.2  Research Threads 

• Reduction of the impact of uncertainty in the ATM system: Including re-design parts of 
the ATM system and/or use control methods in its management in order to reduce the impact of 
uncertainty in the system, making the ATM system more robust and predictable. 

• ATM process optimisation: For instance, analysis and design of algorithms for ATM processes 
such as pre-departure flight planning, (tactical) algorithms for trajectory re-planning during flight, 
tactical or strategical conflict resolution, etc. Such algorithms should take into account all known 
information and uncertainty models. 

 

4.4 Information Management and Decision-making Mechanisms 

4.4.1 State of the Art 

4.4.1.1 Definition and Concepts 

Although the current ATM system is highly mechanized and automated, the role of humans in the design 
and management of the system, and in particular the role of humans as sender, receiver and handlers of 
information, is not to be disregarded. Flights, airlines, air traffic control, or airports are all ruled by 
persons who interact with each other to ensure a smooth running of the ATM as a whole. Many daily 
operations, unexpected events, or changes are the result of human failures and decisions. Accounting for 
the human factor, first in the system design, through predictive models, and lately in the daily activity of 
ATM, is a promising path to improve the performance of the system. 
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Characterization of actors 

The dynamics of the ATM is shaped, among other factors, by the actions and interactions of a 
heterogeneous set of actors standing for different key groups. Their decisions play an important role in 
several and different temporal scales; from the reaction of a pilot to an unexpected and hazardous event 
in tens of seconds, the substitution of a crew in a period of hours, up to the assignation of a slot in a 
scale of months, to name a few. 

A suitable characterization of the actors taking part in the dynamics is the first requisite to develop a 
reliable model based on the simulation of agents' interactions. 

Some open, exciting questions to be investigated, related with the characterization of agents are listed 
below: 

• Is it possible to classify the behaviour of the agents involved in ATM processes along the 
following three abstraction dimensions: 

o temporal dimension (i.e., transitions between subsequent time points vs. emerging 
patterns over longer time periods), 

o process abstraction dimension (i.e., from physiological functioning of agents via cognitive 
and affective processes to behaviours), and 

o clustering dimension (i.e., from individuals to subgroups to teams as a whole)? 

• How do behavioural or cultural constraints condition expectations and commitment in different 
cultures? For instance, are there any differences between North and South Europe? What are the 
foundations to achieve cooperation? 

• How do persons, passengers or service providers, react in case of risk, threat, or crisis? 

• To what extent is the cost of image important and how does it depend on the origin of the 
receiver? This is related with what has been referred to as reputation in game theory, a 
mechanism that enhances cooperation. 

• Let's assume that individual behaviour depends on the reward and that interactions could be 
modelled by game theoretical algorithms. Within this context, how does the strategies space 
vary, depending on the number of players, their nature, and the information available? What is 
the role of noise in single actions, does it change potential choices? We refer to noise as the lack 
of information about others' reactions to own actions. 

• How are 'norms' established in many persons games and how do the mechanisms differ from 
each other for an increasing number of players? What is the role of punishment, policing, and 
self-policing in changing the agents' behaviour if they interact more than once? 

• What is the impact of agents' emotions on the dynamics of the ATM process? This may include 
both intra-agent aspects (e.g., interaction between affective and cognitive aspects) and inter-
agent aspects (e.g., contagion of emotional states between individuals in a team). 

The role of information 

The last years have provided us with many examples in which unexpected events have stricken the ATM 
system, such as the Eyjafjallajokull eruption, the unusual strong snowfalls in central Europe in the last 
winters, or the controllers strike in Spain in December 2010. All these examples may be classified as 
black swan, irregular or unexampled events, which probed the resilience of the system. Furthermore, in 
all of these cases the time the system has needed to recover and go back to normal conditions of 
operation has been very long, sometimes longer than the crisis period itself. When facing such threats, it 
is of utmost importance for responsible stakeholders to count on efficient and available flows of 
information, in order to make timely decisions. Moreover, a proper information system may reduce the 
problems for passengers, as unnecessary waits at the airport terminals. 
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Improving this shortage is finely related with the access and flow of information, and particularly how this 
conditions the decision making process. Some questions of research regarding this issue have been 
identified and are listed below: 

• Application of advanced modelling for processing and managing stochastic information (e.g., 
trajectory prediction and performance management). Agent based modelling and game theory 
principles may be used to model and analyse interactions among different stakeholders and to 
design robust CDM protocols. 

• How to estimate and represent the uncertainty related to the information exchanged by 
stakeholders? How confidence intervals can be narrowed down? How uncertain information 
affects decision making and performances at the different phases? 

• How does the available information modify the strategies of the stakeholders? In particular, what 
are the differences between the information to which stakeholders are aware they don't have 
access (inherent restrictions), and the information which may or may not arrive depending on the 
efficiency of propagation and the uncertainty related to it (circumstantial restrictions)? 

The dynamics of the decision making process 

Once agents and information flows are modelled, they must be brought together to understand their 
impact on the system dynamics as a whole. Some interesting related questions and research threads 
regarding this point are: 

• Multi-agent situation awareness [Str03]. Due to measurement imperfection, or processing and 
communication delays, different aircraft can see the same situation differently. These differences 
can be related to aircraft states and intents and can result in different situation awareness, in 
particular conflict detection. 

• Appealing questions related to this problem are: how can a consensus (i.e. an agreement on 
what all the involved aircraft perceive) be achieved with minimum additional information 
exchange? How stable is this consensus in time? How does the lack of information condition the 
nature of this consensus? 

• How to implement collaborative decision making with several stakeholders having asymmetric 
access to information? To what extent is an agent-based modelling able to capture and 
reproduce this dynamics? 

• Modelling collaborative decision making, for scheduling, ATFM, optimization, resource allocation. 

 



 
D3.5 Complex ATM White Paper Issue 1 15/07/2011 

 

Page 32 of 60 
 

5 OPEN RESEARCH QUESTIONS 

No order of prioritisation is implied. 

 

Question 1 

SESAR’s performance-based approach measures outcomes through KPIs.  Inherent contradictions exist 
between these KPIs, however, in that it is not possible to optimise all of them simultaneously. For 
example, over multiple scales, fundamental conflicts may arise between efficiency (minimising the cost 
function) and equity (the absence of systematic bias against certain flights, airlines or origin-destination 
pairs). How can complexity science help to optimise these scales on a metric-by-metric basis, and deliver 
needed insights into the complex interactions between them?  Is it possible to derive better KPI 
classifications (through data reduction, for example) to reduce such conflicts? 

(See also Annexes: 3.3, 3.5, 3.6, 3.8 and 3.9) 

 

Question 2 

Thousands of elements have to be considered at an airport, e.g. aircraft, fuelling vehicles, push back 
cars, passenger buses, and gates. Depending on the task and desired resolution not all of them are 
always relevant. Different views and levels of abstraction exist. Small perturbations in on view, however, 
may affect another view and may have consequences on the whole system. 

How can complexity science help to model the system in the right way? How can we predict the future 
behaviour of the system and last but not least how can be influence its behaviour although disturbances 
are present and we have only incomplete knowledge of the system? 

(See also Annexes: 3.3) 

 

Question 3 

Adverse weather represents a challenging limiting factor of the capacity of the ATM system. In practice, it 
requires traffic managers to reroute all flights affected. Today’s methods for rerouting traffic are such 
that the reroute alternatives provided are limited, leading to high air traffic congestion. An open research 
question is how and which complexity science tools can be used to widen the set of operationally 
acceptable reroutes (selected according to a set of metrics that must be defined), so that the available 
airspace capacity is maximized, while maintaining a safe airspace throughput, taking into account the 
inherent uncertainty that characterizes adverse weather. 

(See also Annexes: 3.4, 3.7 and 3.9) 

 

Question 4 

Which complexity techniques seem best suited to differentiate 'resolvable' uncertainty (which arises due 
to lack of appropriate data and enabling technologies) from ‘irresolvable’ (or ‘residual’) uncertainty (which 
arises through factors such as weather) and estimate their corresponding contributions to KPA outcomes 
(an example discussed is airport emissions)?  Such research needs to embrace the multiple scales 
involved (e.g. remote actions impacting ground movements at the airport) and the multiple stakeholder 
objectives (e.g. airline cost minimisation c.f. ANSP capacity utilisation c.f. airport LAQ targets). 

(See also Annexes: 3.4 and 3.6) 
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Question 5 

The ATM systems will face a massive increase of the air transport in the next years. The quantitative 
characterization of the way disturbances and delays propagates across the airspace sectors will be more 
and more relevant. Related to this point are the questions: is it possible to identify early warning signals 
of critical events in air traffic? How does the propagation depend on the ATM (for example actual vs 
SESAR scenario)? Is it possible to design ATM schemes, which are robust and resilient to disturbances? 

(See also Annexes: 3.2, 3.3, 3.4 and 3.7) 

 

Question 6 

Safety events are typically considered and studied in isolation. However in an heavily congested traffic 
situation, single safety events (and their resolution by the ATM system) might trigger other safety events 
in a cascade fashion, eventually leading to catastrophic events. This is the result of a local optimization 
and a lack of sharing of information among stakeholders. Is it possible to quantify and characterize the 
propagation of safety events? Is it possible to design a robust safety control system? 

(See also Annexes 3.7, 3.8 and 3.10) 

 

Question 7 

In ATM decision-making, how do we evaluate the worth of obtaining further information and of 
evaluating the cost of providing such information (e.g. through SWIM) as the multiple scales evolve (with 
increasing uncertainty over greater scales)? Classical statistical decision theory informs rational choices 
when information is incomplete and uncertain. Bayesian decision theory allows us to evaluate the 
expected value of ‘best’ information. How can we develop Bayesian network models (apply Bayesian 
statistics in the context of graph theory) to identify new ATM optima, using revised probabilities, as 
additional, empirical information becomes available? 

(See also Annexes: 3.3, 3.5 and 3.7) 

 

Question 8 

Resilience is widely recognized as one of the tenets of the future ATM system, and is defined by its 
capacity of tolerate disturbances without dramatically reducing its performance. Within this wide field of 
research, the first problem to be solved is the assessment of the resilience of the actual ATM system, i.e., 
the estimation of the sensitivity of the system to some standard perturbations, in terms of reduced 
capacity, predictability, or safety, by using historical data. 

(See also Annexes: 2 and 3.2) 

 

Question 9 

Although the main objective of air transportation systems is to cover people’s needs, which usually 
measure large distances in time and money, rather than kilometers, this aspect is not always taken into 
account when the problem of routes and scheduling optimization is tackled. In this context, deeper 
studies are needed to focus this problem from a citizens’ mobility perspective, using Complex Systems’ 
tools as random, time-dependent graphs, as well as Stochastic Optimization and Stochastic Optimal 
Control. 

(See also Annexes: 3.1, 3.4, 3.7 and 3.9) 
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Question 10 

Another proposed research question is how to use the complexity science techniques for the provision of 
safety analysis feedback to advanced Air Traffic Management (ATM) designs. Advanced ATM design 
involves much more demanding changes than those commonly addressed by established safety case 
practices: because of the many interactions, such safety analysis is expected to greatly benefit from using 
complexity science techniques. 

(See also Annexes: 3.8 and 3.10) 
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ANNEX I. GLOSSARY 

ABM  Agent-Based Models  

ACC  Area Control Centre  

AMAN  Arrival Manager  

ANSP  Air Navigation Service Provider  

ATC  Air Traffic Control  

ATFM  Air Traffic Flow Management  

ATM  Air Traffic Management  

BDT  Business Development Trajectory  

CDA  Continuous Descent Approach  

CDM  Collaborative Decision Making  

CTOT  Calculated Take-Off Time  

DLR  German Aerospace Centre  

DMAN  Departure Manager  

DNA  Deoxyribonucleic Acid  

FAA  Federal Aviation Administration  

FAB  Functional Airspace Block  

IATA  International Air Transport Association  

ICAO  International Civil Aviation Organisation  

KPA  Key Performance Area  

KPI  Key Performance Indicator  

RBT  Reference Business Trajectory  

SAM  Safety Assessment Methodology  

SBT  Shared Business Trajectory  

SES  Single European Sky  

SESAR  Single European Sky ATM Research  

SJU  SESAR Joint Undertaking  

SWIM  System Wide Information Management  

TBO  Trajectory-Based Operations  

TMA  Terminal Manoeuvring Area  
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ANNEX II. RESILIENCE AND SYSTEM STABILITY 

 

The concept of resilience in the literature 

In literature, resilience is well studied in the following four fields: 

• Ecology 

• Sociology 

• Organization Science 

• Safety Science 

In each of these fields the topic of resilience has been (and is still being) the focus of a high number of 
research activities. In order for ATM to take maximal advantage of earlier resilience developments, this 
section provides a short overview of these four fields. 

Ecology has been one of the first fields of research where the concept of resilience has been successfully 
developed: see, for instance, the first works of [Bed76] and [Pim84], up to more recent reviews of 
[Gun02], or [Ber03]. In this context, resilience is defined as the capacity of an ecosystem to tolerate 
disturbance without collapsing into a qualitatively different state, which is controlled by a different set of 
processes. For instance, an ecosystem may be shocked by the entrance of a new animal, which may 
interact with the original species and change the availability of foods and of other resources inside the 
region; if the original species are able to react and survive the change, the ecosystem is defined as 
resilient. Therefore, a resilient ecosystem is characterized by its ability to withstand shocks and rebuild 
itself when necessary. When these shocks are unexpected, they are usually called black swans [Tal07]. 
Regarding ecosystems, black swans have three interesting characteristics: they are treated as outliers 
(that is, extremely rare events), they have a high impact in the way the system is functioning, and finally 
they are usually retrospectively viewed as predictable [Mur09]. It is also interesting to note the positive 
effect of these events: they do not only modify the way the system works, but also the way we 
understand the system; in other words, they usually trigger a learning process. 

A complementary approach toward resilience has been developed in social sciences, and specifically by 
sociology [Ber03] and human development [Lut00]. Resilience was defined here as the dynamic process 
encompassing positive adaptation, i.e., leading to an improvement of the social and personal conditions 
of the individual, within the context of significant adversity. Implicit within this notion are two critical 
conditions: (1) exposure to significant threat or severe adversity; and (2) the achievement of positive 
adaptation despite major assaults on the developmental process. Although this definition may seem 
equivalent to the one presented above, social systems have an added capacity with respect to ecological 
ones: the humans' ability to anticipate and plan for the future. This ability allows the human being to act 
proactively, and improve resilience before the adverse events impact the system. 

The third development of resilience concerns organizations. The building of resilient organizations has 
been proposed by [Rob00b], integrating ideas on the structure and dynamics of organizations that 
successfully survive and develop in complex and turbulent environments ([Arg96], [Sta96]). In order to 
construct a Resilient organization, the numerous parts or units composing its complex structure should be 
organized in two intermingled and integrated streams. The first one, called Performance System, is in 
charge of pursuing excellent performances in the short term, which are of course essential for the 
organization to survive in the market. While in classical organizations this Performance System is static, 
within this new view to resilient organizations it is dynamically created and dissolved to respond to the 
continuous changes in the environment: the management and coordination of this creation / dissolution 
process is performed by the Adaptation System. Although both systems must work together and be 
integrated in the whole organization, each one of them should be characterized by a different set of 
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Architectures, Skills and Culture. Performance systems are oriented toward production and tasks, with 
clear procedures and analytical and rational thinking, in order to obtain a competitive advantage in the 
market in the short term. On the other hand, adaptation systems prime innovation, experimentation and 
learning for the long term, focusing on the outside of the organization to detect uncertainties and 
changes in the environment. 

In safety sciences, [Hol06] introduced the concept of resilience engineering with the aim to address the 
human and organizational aspects well in the design of safety critical socio-technical systems. In a Socio-
technical system, introduced in [Eme60], there are complex interactions between humans, machines and 
environmental aspects. More recently, interaction of a socio-technical system with its environment has 
been identified as an essential ingredient (e.g. [Bad00]) of an open socio-technical system. Typically, 
these interactions are bidirectional: an open socio-technical system adapts to the environment, in order 
to be able to fulfill its objective in an ever-changing context, but at the same time it influences that 
environment with its actions. In safety science it is commonly recognized that established safety 
engineering approach falls short in adequately handling the challenges posed by the design of safety 
critical socio-technical systems, especially if open. 

In order to fill this gap, resilience engineering is aiming at the human ability to manage performance 
variability to positively afford disturbance, or, in other words, on the active capacity of a socio-technical 
system to tolerate perturbations that are originating either internally, or from the environment. [Hol06] 
propose a categorisation of three types of these disturbances: 

• Regular threats; 

• Irregular threats; and 

• Unexampled events. 

[Hol06] also propose guidelines for improving resilience in (open) socio-technical systems, such as: 

• Managing for sustainability: that is, not pushing the system to its limits, but maintaining diversity 
and variability; this implies that one should not optimize some parts of the system in an isolated 
fashion: instead of that, the whole system should be taken into account, thus maintaining 
redundancy, even if this may result in a higher cost. 

• Assess types and sources of uncertainties, and also identify sources of flexibility. 

• Importance of learning: resilience is built out of a broad repertoire of action and experience, the 
ability to recombine fragments of past experience into novel responses, and knowledge of how 
the system functions. 

[Hol11] presented an integrated view of resilience, where it is understood as the intrinsic ability of a 
system to adjust its functioning prior to, during, or following changes and disturbances, so that it can 
sustain required operations under both expected and unexpected conditions. According to the authors of 
that paper, resilience is provided by four abilities: 

• Responding: this ability includes the knowledge of what to do, that is, how to adjust the normal 
functioning of the system to minimize disruptions. This includes two main complementary 
abilities: first, the system should be able to decide whether it is necessary to react to a given 
situation, because it is a threat, or on the contrary if it does not require any special action; 
second, the system should be able to allocate enough resources, that is, a buffer of extra 
resources should be available when needed. 

• Monitoring: monitoring the performance of the system, and even monitoring the external 
environment, is essential to detect incoming threats. Two kinds of mechanisms may be 
implemented: lagging indicators (that is, indicators that represent the past) and leading 
indicators (anticipating what may happen, before it will happen). Leading indicators also use 
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information of the past, but the difference is that lagging indicators determine e.g. an existing big 
delay or an unbalanced capacity-demand-ratio whereas leading indicators predict e.g. a future 
unbalanced capacity-demand-ratio As resilience also includes an adjustment prior to the 
disturbance, it is proposed that the main monitoring activity of the resilient system should be 
performed via leading indicators. 

• Learning: although this ability seems straightforward, learning toward resilience should take into 
account several specific aspects. First of all, the learning process should be focussed on 
understanding how the system works, and not just why it has failed. Second, and as a 
consequence of the previous point, it should be a continuous process, not triggered just by 
adverse events. Finally, it is not enough to link causes with effects; instead of that, dependencies 
among different functions of the system should be unveiled. 

• Anticipating: as monitoring refers to the analysis of the system and its environment in the near 
future, anticipating refers to the same activity, but focusing on a longer time horizon. 

 

Resilience in ATM 

As already introduced, the Air Transport System is constantly influenced by internal and external events. 
Every day, several times each day, and in different locations at the same time, the operation of the 
system is perturbed by the small disturbances that have been described in Section 3.2. Even worse, these 
disturbances may interact with each other, creating a cascade of adverse events that may span over 
different spatial and time scales, from affecting only one aircraft or a crew, up to a group of airways 
crossed by a thunderstorm; but, at the same time, they usually have small impact in the overall 
performance of the system, thanks to its own resilience – aircraft and crews may be rescheduled, flights 
may be rerouted, and so forth. 

A complementary problem is represented by those events that push the dynamics of the Air Transport 
System far away from its normal point of operation. For instance, a large strike, the eruption of a 
volcano, or the closure of an airport dramatically affect the performance of the system. Note that these 
events are not small disturbances, affecting a single or a limited number of aircraft: they have system-
wide consequences; moreover, these events were not predicted nor expected, and the process to go 
back to a normal operation is not trivial. Luckily, these black swan events are quite rare: but this low 
probability of occurrence also makes any analysis more difficult. 

Air Transportation and ATM have experienced an important and fast evolution in the last decades, with a 
constant growth in the number of flights, aircraft and airports. Also, the market itself has changed 
significantly: from being composed by a small number of national airlines, up to the recent appearance of 
many companies with new business models. 

In this context, the optimization of common airspace resources, along with more strict safety regulations, 
has reduced the flexibility of some actors, as well as their capacity to react to a changing environment, in 
turn, reducing the resilience of the system. Even the definition of which events are "normal", that is, 
taken into account in the design of the system, is not a trivial problem: and this is worsened by the ever 
changing nature of the ATM – an event may be extremely rare today, but not so rare tomorrow. 

In order to continue having Air Transport one of the pillars of our society, allowing the connectivity and 
mobility of European citizens, and to be both competitive and complementary to other alternative 
transportation modes, resilience should be clearly included in future ATM research and engineering. 
Network-based operational techniques to absorb extraordinary and "black swan" events should be 
developed, trying to retain acceptable performance metrics in any condition. 
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Resilience as a strategic policy priority 

The importance for the future Air Transport system of sustainability in general, and of resilience in 
particular, has been recently recognized in policy-making context. The Commission's new roadmap 
(White Paper) to a Single European Transport Area for 2050 [Eur11], opens with the following text: 

Transport is fundamental to our economy and society. Mobility is vital for the internal market 
and for the quality of life of citizens as they enjoy their freedom to travel. Transport enables 
economic growth and job creation: it must be sustainable in the light of the new challenges 
we face. 

Once the Air Transport is recognized as one of the tenet of our society, it is necessary to identify which 
elements are central for its development; the same document goes on to stress the important role of 
airports: 

A Single European Transport Area should ease the movements of citizens and freight, reduce 
costs and enhance the sustainability of European transport. The Single European Sky needs 
to be implemented as foreseen, and already in 2011 the Commission will address the 
capacity and quality of airports. 

Recent events have also stressed the importance of combining the growth of the Air Transport with 
strategies focused in improving its long-term resilience. Of particular interest, this White Paper specifically 
cites the issue of resilience: 

The EU has already established a comprehensive set of passengers’ rights which will be 
further consolidated. Following the ash cloud crisis and the experience of extreme weather 
events in 2010, it has become evident that Mobility Continuity Plans may be required to 
preserve the mobility of passengers and goods in a crisis situation. These events also 
demonstrated the need for the increased resilience of the transport system through scenario 
development and disaster planning. 

Another recently issued, high-level document from the European Commission addressing European 
transportation, specifically aviation, Flightpath 2050 - Europe’s Vision for Aviation [Eur11b], cites 
resilience both in its foreword and many times in the main document: 

The strategy addresses customer orientation and market needs as well as industrial 
competitiveness and the need to maintain an adequate skills and research infrastructure 
base in Europe. By 2050, passengers and freight should enjoy efficient and seamless travel 
services, based on a resilient air transport system thoroughly integrated with other transport 
modes and well connected to the rest of the world. This will be necessary in order to meet 
the growing demand for travel and to cope more easily with unforeseeable events. 

It is apparent that the concept of resilience is receiving more attention in policy planning than was 
previously the case. 
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ANNEX III. POTENTIAL APPLICATIONS FOR COMPLEXITY 
SCIENCE IN ATM 

 

1. Airline routing and European Mobility 

Nowadays most of the European citizens measure large distances in time and money, rather than 
kilometers. Airline routes are more than a business; they are covering people’s needs. We should think 
out about European citizens mobility needs as a huge time-dependent random graph. This is a potential 
application for the techniques covered by the White Paper section XX. In particular Stochastic 
Optimization and Stochastic Optimal Control would help to build a decision making tool showing which 
paths are particular interesting in terms of European passenger mobility. 

There are two remarkable keystones in this approach. On one hand one should be able to produce a 
time-dependent random graph catching the true demand (including non-accommodated demand). It is 
obvious that this is a highly valuable information, which is currently not available. Even it is not clear how 
to build up the true demand from the partial information given by the accommodated demand, a further 
step combining Complexity Science and Stochastic Approximation will be needed to do so. This 
breakthrough has been carried out in other fields. For instance, recently the application of Complex 
Sciences to the social networks have lead to well-known Complex Networks models, like the p*-models 
[1]. Population of these models has been largely studied [2] and in some cases with a considerable 
success. At this moment it is not clear whenever an existing model will fit in, or a completely new model 
will need to be developed. 

Once the random graph -or a sufficiently rough approximation- is built, the Complex Systems Science will 
play again a fundamental role. This time Stochastic Optimization and Optimal Control might be used to 
evaluate the benefits of each path. The basics for Stochastic Control and Optimization are already wide 
known. There exist some accessible texts on the topic, like [3] and [4]. The challenge will be to conform 
those tools and use them to produce a single decision tool to detect key paths. 

A successful implementation of this potential application would lead to a powerful tool, which will be able 
to identify promising new paths, in terms of EU citizens’ connectivity and mobility. For instance this 
criteria may be used in any further regulation of the airline business.  
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2. Assessment of European Air Transport Resilience 
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As developed in the ComplexWorld Network’s White Paper, the Air Traffic System is a highly complex and 
complicated socio-technical system, composed by (and interacting with) a plethora of different 
heterogeneous elements, both technical, human and environmental. A high number of small 
perturbations are generated by these elements: coming both from the external environment, both from 
internal dynamics, these shocks push the system away from its normal point of operation. Along with this 
small-scale noise, some black-swan events may appear (like, for instance, a large strike or the eruption of 
a volcano), creating important disruptions and drastically reducing the utility perceived by customers. 

Following this idea, one of the most promising research topics identified by the Participants of the 
Network through the Working Groups has been the assessment and improvement of the resilience of the 
system (see D3.4). Policy makers are also aligned with this view, and define resilience of the Air 
Transport System, that is, its capacity to tolerate disturbance without collapsing into a qualitatively 
different state, as one of the most important research lines in the next years (European Commission, 
2011). 

As a first step toward a more comprehensive management of resilience, the ATM community should 
develop a scientific and sounded methodology for the quantification of the resilience of the present 
system, that is, the quantification of the historical reactions of the system when faced to perturbations. 
In other words, it is recommended to estimate the sensitivity of the system to some standard 
perturbations, in terms of reduced capacity, predictability, or safety, by using only historical data. This 
estimation will be then used as a ground situation, against which new operational concepts should be 
compared. 

An assessment of the sensitivity of the Air Transport system to perturbations should take into account the 
two main characteristics of its dynamics. First of all, the dynamics is embedded in different spatial and 
temporal scales: small perturbations, acting only in a small scale, may affect the behavior of a different 
scale, and may have consequences on the whole system. Also, there are uncountable sources of 
uncertainty: any analysis should exclude this background noise when estimating the system’s reaction. 
Both characteristics should be tackled within a Complex Systems perspective, and with the tools and 
techniques described in the Section 3 of the Network’s White Paper. 

Furthermore, it is expected that the analysis of the relation between the magnitude of perturbations, and 
of the response of the system, will also shed new light on the importance of emergent behaviors in ATM. 
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3. Complexity Science Techniques Applied to Total Airport Management 

In this section we describe no Complex Science techniques and search for suitable ATM application of 
them. We try the opposite approach.  
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We describe a concrete ATM problem instance, scheduling of the limited resource at an airport. We 
search for the best Complex Science techniques to model the airport resources in order to predict future 
behavior and to enable what-if prediction to influence the future in the desired way. 

Planning, particularly scheduling of limited resources is one of the main tasks of ATM. Previous 
approaches concentrate on the tactical layer, i.e. ad hoc scheduling of the next 30 minutes. This 
approach is more a reactive than an active approach. Applications are e.g. the xMAN systems (AMAN, 
DMAN, SMAN etc.).  

Performance based ATM, however, requires a more holistic approach. TAM, Total Airport Management, is 
a first answer to this ATM challenge airports by collaborative airport planning, resulting in the Airport 
Operations Plan (AOP), which has to fulfill a defined service level agreement. For using collaborative 
airport planning, information has to be shared, which is supported by SWIM (System Wide Information 
Management). 

Thousands of resources have to be considered at an airport: 

• Aircraft: Acft1, Acft2, … 

• Fuelling vehicles: FV1, FV2, … 

• Fuel companies: FC1, FC2, .. 

• Cleaning staff members: CleanS1, CleanS2, 

• Push back cars, PBC1, PBC2, … 

• Passengers buses: Bus1, Bus2, … 

• Gates: G1, G2, … 

• Pilots: P1, P2 

• Etc. 

A single flight, e.g. IBE453, consists of the clean staff (CleanS3), fuelling vehicle (FV1), aircraft (Acft2) 
and so on. The dispatcher of the passenger buses only considers the buses, and gates and the aircraft. 
The dispatcher of the first fuel company considers the aircraft his company his responsible for and the 
company’s fuelling vehicles with the drivers. Using different views and levels of abstraction is one way to 
master complexity. Small perturbations in on view, however, may affect another view and may have 
consequences on the whole system. 

Different temporal scales exist: Considering assignment of a specific runway we need an accuracy of 
seconds. If we however consider the runway usage strategy (runway only for departures or arrivals or 
used in mixed mode, close a runway, use direction 34 instead of 16) the planning accuracy is much 
broader, i.e. minutes and hours. 

An assessment of the sensitivity of the Air Transport system to perturbations should take into account the 
two main characteristics of its dynamics. First of all, the dynamics is embedded in different spatial and 
temporal scales: small perturbations, acting only in a small scale, may affect the behavior of a different 
scale, and may have consequences on the whole system. 

Many of the challenges that TAM is facing today have their origin in the large number of interactions 
between the different elements in the airport system. We have to consider 

inbound and outbound flights with the runways and taxiways they use 

the turnaround as linkage between arrivals and departures, containing of sub-processes like 
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o cleaning 

o fuelling 

o deboarding/boarding, needing resources like 

• check-in counters 

• security 

• baggage belts 

• stands and gates 

• de-icing, 

• passengers 

Scheduling and managing thousands of flight operations per day in a safe, punctual, fair, reliable and 
efficient manner has proved very challenging. When disturbances to the day-planned schedule occur, the 
involved people have already to do a very challenging job to keep things going. With TAM they get the 
knowledge about deviations earlier and a re-optimisation of the remaining day-plan can take place, based 
on the new constraints. This is the point where complex science comes into the game to investigate the 
question, how can we model this complex system and how can we predict the future behaviour of the 
system and last but not least how can be influence its behaviour. 

Traditional simulation approaches already used for years in ATM have reached its limits. Are results from 
queuing theory a suitable tool to model the arrival rate to a resource and the service rate of the 
resource? 

Agent-based modelling or gaming theory may help to capture the behaviour of the different involved 
decision makers (stakeholders), e.g. airlines, airport, turnaround dispatchers etc. 

Semantic nets or dynamic network theory can help to model the relations between all the involved 
elements and the different views and to predict the future behaviour. 

Even if the interactions between stakeholders and processes will be optimized with TAM, the airport 
system will keep complex with all its interdependencies between processes and lots of influencing 
variables. The airport with its TAM-advanced processes could be modeled, taking into account the 
interdependencies and the constraints (e.g. amount of resources). The next step could be an optimization 
of the AOP to fulfill the defined service level. The results could be compared to the results got by 
collaborative airport planning, which involves human experts, who negotiate and decide. 

Modelling techniques already successfully used in other applications of Complex Systems Science should 
be applied to TAM, e.g. agent modelling, application of control theory. These results have to be 
compared with present TAM results obtained from traditional ATM approaches. 

 

4. Impact of Unpredictable Adverse Weather on ATM Performance 

Adverse weather represents one of the major challenges for future aviation, being a challenging limiting 
factor of the capacity of the ATM system, especially at the airport scale. Currently, it is responsible for 
more than 50% of all delays, no matter how, where and when that is accounted for, and it is a 
contributing factor to all accidents and incidents in more than 10% of all cases.  

Weather is characterized by uncertainty. This is due to insufficient resolution of observational tools or 
measurement errors when e.g. retrieving satellite information. Furthermore, weather, beyond a forecast 
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range of approximately seven days, becomes chaotic. Thunderstorm development still appears as a non-
deterministic problem, at least partially.  

Thus, there is a need for modelling the impact of weather on ATM taking into account all those uncertain 
factors and their interaction with all relevant actors. 

Hazardous weather requires traffic managers to reroute flights that plan to pass through the area 
affected by the adverse weather, while balancing demand through sectors with reduced capacity or 
increased traffic volumes (resulting from other flights deviated from their original routes). 

Today’s methods for rerouting traffic are mostly manual, and have been historically employed due to the 
complexity of defining an operationally acceptable route in real time; thus, the reroute alternatives 
provided are limited. As the need to maximize all available airspace capacity is imperative, it is necessary 
to widen the set of operationally acceptable reroutes provided so that the impact of adverse weather on 
air traffic congestion is decreased. 

The management of congestion due to severe weather events, while maintaining a safe airspace 
throughput, can benefit from the use of complexity science tools and techniques, providing improved 
methods for assisting decision makers and increasing operational efficiency. 

The approach to be developed must be capable of providing a larger solution space of operationally 
acceptable reroutes, and of modeling the impact on congestion due to weather taking into account the 
uncertainties and the effects of the different interactions. Operational acceptability must be defined in 
terms of a given set of metrics; these metrics can then be used to select alternatives and to assess the 
improvement over traditional reroute options. 

Classical approaches can be found in the literature. For example, an approach based on network 
optimization for dynamically generating operationally acceptable reroutes is presented in Ref. 1, where 
individualized reroutes for multiple flights under the same weather constraint are developed; the problem 
of solving multiple flights simultaneously is not addressed. In Ref. 2 the problem of synthesizing weather 
avoidance routes in the transition airspace is investigated, for a given deterministic weather forecast; 
however, the robustness of the routing algorithms to weather uncertainties is not analyzed. 
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5. The expected value of information over multiple scales 

ATM operates over multiple scales, although many decisions are often highly localised (even based on a 
single flight) and/or made in the absence of complete information.  This application investigates decision-
making in the context of the scale at which the decision is based.  Uses of a Bayesian approach are 
discussed in the wider context of complexity science.  Specific applications might be the scale over which 
KPIs are measured (where scales may be too wide) or delay propagation (where scales may be too 
local). The optimal course of action under a posterior analysis may well be different from that indicated 
by a prior analysis.  In the former, enhanced by quantifying the value of additional information, insight 
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may be gained through the calculation of the posterior expected value of ‘best’ information (taking into 
account irreducible uncertainty due to factors such as weather).  Key challenges here in the ATM context 
are the difficulty of attempting to evaluate the worth of obtaining such further information to inform 
decision-making in a given instance and of evaluating the cost of providing such information, e.g. 
through new infrastructure and/or technologies. In the developing context of SWIM, it is important to 
consider the impact of improved information in terms of: 

(1) the way information changes as a function of the scale at which it applies 

(2) residual uncertainty (the extent to which the information can be reliable) 

(3) its effects on stakeholder (especially airline) behaviour 

(4) the extent to which stakeholders can actually respond to the information 

(5) the cost of providing the information 

 

The example in the figure above outlines the concept in the generalised terms of ‘disutility’ and ‘scale’.  
‘Disutility’ refers to a negative consequence, either specific, or generalised.  A good example is cost; 
other examples are emissions or safety incidents.  ‘Scale’ refers to the boundary applied when measuring 
the disutility. A good example is time (which is invariably associated with spatial extent, too, and vice 
versa, as the ATM system evolves); other examples are the number of stakeholders, or of KPIs, included 
in the scope of the assessment. 

If we take the example of disutility as cost, and let the scale represent hours, it may be considered that 
the cost implications of, say, a primary 20 minute delay for an aircraft may ‘locally’ be relatively low 
(region ‘A’, where it affects only one flight leg).  As we look further out in time, the propagated effects in 
the network (other aircraft, passenger and crew delays) causes the estimated cost of the primary 20 
minute delay to increase (‘B’).  These may reach a peak, and could then even fall after 20 hours, if 
certain mitigating tactics are successful (such as spare aircraft being repositioned, or a cooperative 
passenger reaccommodation protocol with an alliance partner). Cost recovery and flight prioritisation 
decision-making also depend on the type of metric used (e.g. flight-centric or passenger-centric). Over 
multiple scales, fundamental conflicts may arise between efficiency (minimising the cost function) and 
equity (the absence of systematic bias against certain flights, airlines or origin-destination pairs). 

The dashed line either side of the estimated cost projection illustrates the increasing uncertainty of the 
estimate the further it is projected forward.  This is both due to unknown information and unknowable 
information (the irreducible uncertainty mainly attributable to exogenous events, e.g. due to imperfect 
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weather forecasting). In the language of Bayesian decision theory, if we calculate the expected gain (e.g. 
avoidance of disutility) with perfect information, then subtract the expected gain under uncertainty, we 
evaluate the expected value of ‘perfect’ information (EVPI).  In a situation such as ATM, we may define 
the expected value of ‘best’ information, i.e. taking into account the irreducible uncertainty. 

One opportunity here might be to apply Bayesian statistics in the context of graph theory, to produce a 
Bayesian network model.  The Bayesian approach involves statements or formulations of conditional 
probabilities, known as ‘posterior’ or ‘revised’ probabilities, which should give superior insights than 
simple or ‘prior’ probabilities (prior to an empirical observation).  This calculates the probabilities of 
causes based on observed effects, or, of revising the probabilities of events as additional, empirical 
information becomes available. The value of using Bayesian networks for analysing (and visualising) how 
system-level effects arise from subsystem-level causes in complex systems, in the context of delay 
propagation, has been demonstrated by researchers at George Mason University.  These researchers 
used the Bayesian network development software ‘Netica’ (Norsys Software Corp., US). 

Whereas (classical) statistical decision theory informs rational choices when information is incomplete and 
uncertain, Bayesian decision theory is designed to take account of shorter- or longer-term consequences.  
By considering the probabilistic costs of various outcomes, we can calculate the expected utility (benefit) 
of choosing the optimal act under uncertainty (as compared with its counterpart, the expected 
opportunity loss through failing to take the best possible action). The decision-maker’s behaviour may be 
captured through agent-based modelling (indeed, Bayesian decision theory specifically allows for 
subjective probabilities, as well as empirical ones). 

As the status of the system evolves as we move along the curve above, we could assess the reliability of 
each subsequent prediction on the basis of additional information.  For example, each time a flight has 
suffered a primary delay of 20 minutes, the prediction that this will be recovered in the next two rotations 
could have been found empirically to be reliable only 80% of the time. Such additional evidence can be 
applied as weights to revise the prior probabilities, to give posterior probabilities associated with each 
possible outcome.  We thus produce ‘posterior’ expected values, as analogues of what we can now refer 
to as the ‘prior’ expected values above. 

The key here is that the optimal course of action under a posterior analysis may well be different from 
that indicated by a prior analysis.  In the former, insight may be gained through the calculation of the 
posterior expected value of ‘best’ information, again taking into account the irreducible uncertainty, but 
now enhanced by quantifying the value of additional information: previously observed (or newly 
estimated) as the multiple scales evolve.  This is, of course, the counterpart of quantifying the 
corresponding cost of uncertainty. If, say, the posterior expected value of ‘best’ information is less than 
the prior value, this indicates that the cost of uncertainty to the decision-maker has been reduced (the 
availability of the best information is not as valuable as it was prior to the additional information).  Key 
challenges in the ATM context are the difficulty of attempting to evaluate the worth of obtaining further 
information to inform decision-making in a given instance (due both to the stakeholder’s ability to act and 
due to the non-monotonic nature of d(s)) and of evaluating the cost of providing such information (e.g. 
through new infrastructure and/or technologies). 

 

6. Impact of uncertainty on airport emissions 

The impacts of aircraft ground movements are often overlooked in ATM studies, although they are 
important both in terms of being a critical link in the gate-to-gate management of aircraft and their 
contribution to local air quality, which may be a legally binding constraint (Directive 2008/50/EC) to 
airport expansion. This technical study would seek to assess how uncertainty, traffic scenarios, and 
control logic and procedures, variously contribute toward the creation of environmental inefficiencies. The 
key research question is whether complexity techniques can help to model and understand the 
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contributions to such environmental inefficiencies, which are brought about by uncertainty across several 
scales.  Can we separate 'resolvable' uncertainty, which arises due to lack of appropriate data and 
enabling technologies, from 'irresolvable' (residual) uncertainty (arising through factors such as weather) 
and estimate their corresponding contributions to emissions? The approach should attempt to address 
both the multiple stakeholder objectives and the multiple scales involved. 

It is the convergence of the air traffic network at airports where some of the most intricate logic and 
trade-offs in ATM come into play. This applies both to how the traffic is managed within given constraints 
(shown schematically below) and what metrics are used to measure performance. The performance of 
the system is measured using metrics such as capacity, safety, delays, emissions, and noise (SESAR 
Target Concept, D3, 10.2.4 - Sustainability Assessment). Even within the noise and emissions metrics, 
non-trivial trade-offs exist, e.g. with regard to CO2, NOx (quantity and location), particulate matter and 
noise. 

The key questions which may be addressed are, can complexity techniques help to model and 
understand the contributions to inefficiencies, which are brought about by uncertainty across several 
scales.  In particular, can these techniques: 

• allow us to functionally separate resolvable uncertainty which arises due to lack of timely and 
appropriate data (e.g. through CDM/SWIM and appropriate enabling technologies) from 
irresolvable uncertainty through factors such as weather, and estimate their corresponding 
contributions to emissions? 

• bring an increased understanding of the interactions between these emissions metrics (and, 
indeed, other KPIs), in a way which also sufficiently embraces both the multiple stakeholder 
objectives (e.g. airline cost minimisation c.f. ANSP capacity utilisation c.f. airport LAQ targets) 
and the multiple scales (aircraft ground movements in a given time-window are, in turn, related 
to preceding and subsequent ATM decision-making)? 

The environmental impact of the air traffic movements could be assessed using an aircraft performance 
model linked to an emission inventory. The performance model would be based on EUROCONTROL’s 
BADA (Base of Aircraft Data) energy share model or, alternatively, the PIANO aircraft performance model  
(Lissys ltd, UK). 
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Figure courtesy Alex Goman 

It is proposed that the results could be presented visually by overlaying concentrations of aircraft 
pollutants on a map of the airport surface (i.e. integrating them over time). This will indicate the ‘hot 
spot’ locations around the airport, i.e. where system inefficiencies (due to irresolvable uncertainty) are 
causing high levels of emissions to be produced and hence opportunities exist for future optimisation. 
(The overall magnitude of the potential emission savings could be assessed and compared with other on-
airport emission control strategies, such as bus and service vehicle fleet management and pollutant 
reduction through adsorption of gases.) 

The best data to use would be FDR data, which have the advantage of synchronous powerplant setting 
and positional information, although these are challenging to acquire due to commercial sensitivities. 
Model outputs could also be compared with fast-time simulation results. Ideally, airport case studies 
would be undertaken, which would include examples where advanced surface guidance and control 
systems, and where delegated procedures, are in place. 

 

7. Spatio-temporal propagation of disturbances in ATM systems 

In the next years, the ATM systems will face a massive increase of the air transport worldwide. This 
increase will be very significant in Europe. Moreover, there will be an even more pronounced need of 
integration amongst national air control agencies so that the spatio-temporal structure of the air 
transport system will be more and more critical. There will be a need for quantitative methods to monitor 
the airspace structure, in order to identify emerging properties, like the size and time duration of 
disturbances in the ATM system and the interrelation of this emergence with properties of the ATM 
system. Strongly related to the characterization and the development of models of propagation of 
disturbances is the problem of the identification of early warning signal of critical events. In an heavily 
loaded air traffic space, knowing the spatio-temporal configurations that are more likely to generate 
systemic events could help to forecast and control the traffic. 

In this respect, tools and methodologies of complex systems theory can be useful to give insight about 
the way disturbances trigger deviation from the typical state and propagates across sectors, as well as to 
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understand whether disturbances have a clustered structure in space and time. Finally complex system 
methods to identify early warning signals could be useful to improve the control of air traffic. 

The first step is to select appropriate variables/proxies of disturbances in order to characterize specific 
aspects of the ATM system in certain space and time range (e.g. daily, weekly, monthly and yearly, intra-
sector, sector and inter-sector interrelation, etc). 

A first investigation could therefore be devoted to characterize which indicator has statistical properties, 
which are characterized by a leptokurtic profile of the probability density function and/or which indicator 
can be described in terms of a stochastic variable with long range memory (and therefore with the 
indication of a presence of a multiplicity of time scales). Leptokurtosis indicates deviations from Gaussian 
distribution and, broadly speaking, refer to the fact that extreme events are more likely than expected 
under the standard Gaussian hypothesis. Long range memory processes are characterized by the absence 
of a typical time scale, which can also be seen as the presence of multiple time scales. In a long range 
memory process the future is strongly determined by the whole past history of the process. 

In order to study the spatial interrelations between sectors, one potential approach will be to build up a 
network. Networks might be physical communication networks and/or correlation based network where a 
similarity measure is used to characterize a certain variable describing a specific process of the ATM 
system. The analysis of such networks will provide insights about those sectors that have a similar profile 
in terms of the selected variable/proxy. These clusters of sectors are therefore the possible channels 
through which disturbances propagate. Networks can be constructed at different time ranges, thus 
allowing investigating how the spatial properties of the network change over time. 

More generally the concept of scaling, i.e. how the properties of the system are invariant when one 
changes the spatial or temporal scale of observation, and its breakdown can give relevant information on 
the system dynamics and can be used to extrapolate (or interpolate) the behavior of the system at other 
scales. 

A complementary approach can be used to investigate the temporal propagation of disturbances. In fact, 
having selected the appropriate variables/proxies, standard time series analysis tools can be used in 
order to reveal whether or not disturbances have a clustered structure in time. It is worth mentioning 
that such approach can be applied both to the variables/proxies describing disturbances and for the time-
series obtained by characterizing the networks constructed at different time ranges. 

Finally, many complex systems have critical thresholds, sometimes called tipping points, at which the 
system shifts abruptly from one state to another. Systemic events are often characterized by the 
presence of these transitions. These are typically hard to forecast but a series of techniques have been 
developed in the context of dynamical models of complex systems and applied successfully in several 
contexts, such as ecology, climate change, physiology, etc. The application of such approaches to ATM is 
potentially fruitful and of significant practical value. 

The statistical characterization of disturbances of the ATM system can be achieved with a large set of 
classic tools of complex systems including Hurst exponent estimator, probability density function 
comparative tests, etc. For example for the estimation of deviations from the Gaussian behavior and 
power law decay of the probability density function a quite efficient and unsupervised tool is the one 
discussed in Ref. (1). More generally, technique from extreme value theory (2) would be very useful to 
characterize the frequency of extreme events in the ATM. Techniques of spatio-temporal data mining (3) 
and modeling techniques inspired by spatio-temporal pattern formation (4) could be profitably be 
employed for the characterization and modeling of spatio-temporal disturbances. 

Networks can be analyzed with standard tools of network theory (5,6) and clusters of related or similar 
elements can be detected by community detection algorithm recently developed by computer scientists 
and by physicists developing network theory (7,8). In the analysis of the spatial properties of the 
networks one can also identify the most informative links of the network by building up statistically 
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validated networks, along the lines of Ref. (9). Given the network, communities will be identified by using 
standard communities search algorithms (7,8). Finally, such communities can be characterized by using 
an ontological analysis as shown in Ref. (10). These successive steps might allow to identify and 
characterize the sectors that have a similar profile in terms of the selected variable/proxy and that are 
therefore the possible channels through which disturbances propagate. 

In the analysis of the way disturbances propagate over time, one can also use standard tools of time-
series analysis. A typical analysis might be performed by investigating the autocorrelation properties of 
the relevant time-series in order to understand whether these are long-range or short-range correlated 
processes, i.e. whether or not disturbances are clustered in time. 

Finally, statistical tools and concepts developed for the detection of early warning signals of critical 
transition could be useful for the short term forecast of disturbances (11). Examples in the temporal 
domain include the critical slowing down, bifurcation analysis, skewness and flickering, increasing 
autocorrelation and variance. In the spatial domain, scale invariant power law structures or the 
emergence of regular patterns sometimes are associated to early warning signals. 
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8. Safety Analysis Feedback to Advanced ATM Design 

The design and validation of changes to an individual organization’s local Air Traffic Management (ATM) 
system has become an acceptable practice in Europe. As part of this, Air Navigation Service Providers 
(ANSPs) are required, by applicable safety regulations, to hand over a positive safety case for regulatory 
approval prior to introducing a change. However SESAR is planning changes in air traffic operations in 
Europe that go much further than changes to a local ATM system. Because SESAR strives for ambitious 
objectives, addressing sometimes almost contradictory Key Performance Areas (KPAs), the changes to be 
made are fundamental. SESAR concepts of operation include changes for a multitude of stakeholders 
including many ANSPs, airlines and airports. The safety of such operations does not only depend on these 
stakeholders’ individual performance, but also on their interactions. In the early design phase these 
interactions can relatively simple be designed as required. Hence safety analysis of advanced ATM 
ConOps should be done in the early phases of the development life cycle. As has been identified by the 
European Operational Concept Validation Methodology [E-OCVM, 2010], the early development phase is 
in need of safety analysis feedback to design, whereas the established safety case development process 
aims at safety assurance.  

 

Safety Analysis feedback to design covers multiple time scales 

As is depicted in the ATM Safety Pyramid figure below, the key challenge of safety analysis feedback to 
design is that the relevant events extend along multiple time scales, which varies from conflict resolution 
activities which may happen a few times per flight hour to Loss Of Separation events, which happen once 
per 10 thousand flight hours, to Mid Air Collisions which happen once in a billion flight hours. In order to 
identify and learn understanding emergent behaviour at various heights along the slope of the safety 
pyramid, there is an expected value in exploring complexity science techniques such as Agent Based 
Modeling and Gaming Theory. As remarked in the previous section, in applying these approaches 
effective use can be made of complementary techniques such as data mining, social models, sensitivity 
analysis, uncertainty analysis and optimization techniques. 

 

 

9. ATM Performance Assessment 

Performance assessment is crucial within the ATM context. It is essential in order to monitor the 
performance of the system in real time, thus enabling the application of specific policies if this 
performance deviates from its nominal value; furthermore, it is also essential to quantify the impact of 
new operational concepts, and reduce their adverse effects. Define a common performance framework is 
not straightforward, as different members of the ATM community may have very different requirements 
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of performance: economic, efficiency, safety, predictability, etc. The former are integrated in the so-
called key performance areas (KPAs), as defined by ICAO or SESAR. 

Two complementary approaches have been developed within this field of research. The first one, focused 
on monitoring the past or present performance of the system, relies on the analysis of historical real 
data. Due to the complex nature of the ATM, those analyses cannot just be the result of some plain 
statistical result; instead, a step forward is needed, by introducing more complex statistical techniques, 
and other tools coming from the data-mining world. This would allow unveiling intriguing connections 
between different factors involved in the ATM and hidden in the actual data, as well as correlations, 
salient patterns, and cause-and-effect relationships. 

The second approach deals with the estimation of improvements in the performance of the system when 
a new operational concept is introduced; thus, here the attention is centered on a hypothetical future. In 
the history of air traffic management, many models have been developed to address these questions. 
Nevertheless, they usually lack a holistic perspective to the problem, and only focused on specific 
aspects, as estimating aviation emissions (AEM, ALAQS), efficiency of self-separation tactics (TMX), or 
delays, resources, or capacity management (RAMS, SAAM, TAAM). Once again, and due to the 
complexity inherent the ATM system, there is a need for integrating different layers of operations 
(business, regulation, operations, etc.), accounting for the interactions at multiple spatio-temporal scales 
and the interconnections between each other. A solution depicted in the ComplexWorld Network’s White 
Paper is the use of multi-agent based simulations, in which agents represent the relevant actors of the 
ATM system and are responsible of making decision. The interactions between agents, giving rise to 
emergent decision processes, are also a field of study within the context of game theory. 

 

10. Safety from a Complex Systems perspective 

The design and validation of changes within the ATM system, as well as within any of its sub-systems, is 
an essential tenet for safety. As part of this, Air Navigation Service Providers (ANSPs) are required, by 
applicable safety regulations, to hand over a positive safety case for regulatory approval prior to 
introducing a change; nevertheless, these cases usually suppose small and uncoupled changes, thus 
affecting just one element of the whole system. 

In the near future, the new operational concepts that will be introduced with SESAR are expected to 
change this view to safety. Because SESAR strives for ambitious objectives, the changes to be made are 
fundamental; they will affect a multitude of stakeholders, including ANSPs, airlines and airports. The 
safety of such operations does not only depend on these stakeholders’ individual performance, but also 
on their interactions. Thus, it is unrealistic to assume that old safety cases can be used to validate these 
new operational concepts. 

In order to identify the novel safety needs that emerge for advanced ATM developments, during the 
SESAR definition phase, a series of in-depth studies have been conducted, each one of them addressing 
a specific aspect of importance for managing safe design and validation in SESAR. Together, these 
studies identified several novel safety needs, which include, between others: organizational safety, 
identification of unknown emergent risks, performance of human operators, the definition of a macro 
safety case, or the Concept life-cycle. 

From the ComplexWorld network perspective, the first two threads deserve further research with highest 
priority. The first of them is related to the concept of resilience in open socio-technical systems. Those 
systems, the ATM being one of them, are characterized by a strong interaction between humans, 
machines, and their environment. Typically, these interactions are bidirectional: an open socio-technical 
system adapts to the environment, in order to be able to fulfill its objective in an ever-changing context, 
but at the same time it influences that environment with its actions. Resilience engineering aims at 
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improving their active capacity to tolerate perturbations that are originating either internally, or from the 
environment, without collapsing into a qualitatively different state, thus maintaining the required level of 
safety. 

The second thread is directly connected to the concept of emergent behavior. Due to the complex nature 
of ATM, i.e., to the high number of heterogeneous and interacting elements composing the system, 
unexpected behaviors may arise, which cannot be explained just by studying its individual parts. When 
we apply this concept to safety, we must take into account that some unsafe events may arise from the 
interactions between different parts of the systems, as for instance interactions between different 
stakeholders: therefore, validation cases cannot focus on stakeholders’ individual performances, but 
should focus the ATM as a whole. 
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ANNEX IV. DATA REQUIREMENTS 

Data Requirements 

(a) Remit of this section of the White Paper 

This section of the White Paper will coordinate barriers to further progress in the field of complexity 
science, applied to ATM, which relate specifically to shortcomings in the supply of data required to 
achieve a research goal.  Potential data problems could include: 

[A] non-existence 
[B] inaccessibility (e.g. not in the public domain) 
[C] unusable due to format (e.g. application-specific binary files; pooled identifiers) 
[D] limited geographical scope (e.g. pertains to one EU state only) 
[E] non-geographical limitation of scope (e.g. limited range of aircraft covered) 
[F] too highly priced 

(b) Protocol 

If a Member or Participant of the Network requires particular data, it shall, in the first instance, contact 
the University of Westminster, which will respond to this request, identifying if the data are available 
from EUROCONTROL (PRISME, BADA; CODA, CFMU, etc), other international, public organisations (e.g. 
ACI, Eurostat, IATA, ICAO) or from commercial sources (such OAG, GDSs, IPS, national CAAs).  If the 
University of Westminster is unable to verify the availability, or otherwise, of the data specified, it will 
circulate the request to other Members/Participants.  The result of the request will be logged in a 
database of technical data requirements, see (c), below. 

(c) Database of data requirements 

Request 
(or 
query)  

Raised by 
/ [date]  

Links 
with 
query  

Summary  Objective  Response  Source 
(if any)  

[Outstanding 
problem(s)] 
/ status  

1  UoW / 
[12SEP10]  

N/A  Total data 
passenger 
flows between 
top European 
airports  

To develop 
passenger-centric 
ATM metrics for 
new KPA  

Available from 
ICAO, on 
subscription  

ICAO  [C] / pending  

2  UoW / 
[12SEP10]  

[1]  Same as [1], 
but also with 
all transfer 
passengers  

To develop 
passenger-centric 
ATM metrics for 
new KPA  

Available as 
MIDT 
(Marketing 
Information 
Data Tapes) 
from GDSs  

Sabre 

Amadeus  

[F] / pending  

3  INO 
participant / 
[08DEC10]  

N/A  Sample traffic 
data for one 
(past) day in 
ECAC airspace  

To help 
researchers who 
currently have no 
access to such 
traffic data  

Would need 
permission 
from PRISME; 
data already 
exists  

PRISME  [B] / pending 

4  INO 
participant / 
[08DEC10] 

[3]  Forecast traffic 
data for one 
future (2020?) 
day in ECAC 

To help 
researchers who 
currently have no 
access to such 

Needs to be 
organised 
through 
STATFOR?  

STATFOR  [B] / pending 
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airspace traffic data 
5  INO 

participant 
/  
[08DEC10] 

N/A  Currently no 
Europe-wide 
data available 
on 
cancellations  

To supplement 
existing data on 
delays  

May become 
available in 
2011 through 
CODA?  

CODA  [A] / pending 

6  UoW / 
[28MAR11]  

[1] [2] 
[3]  

Fleet data 
(type, seats, 
MTOWs, etc)  

To help 
researchers who 
currently have no 
access to such 
fleet data  

Available from 
multiple 
sources 
(subscription 
required for 
some)  

ICAO  

IATA  

PRIMSE  

[C] / pending  

7  UPC / 
[12APR11]  

[8]  Aircraft 
performance 
data (fuel 
consumption, 
aerodynamic 
data)  

To help 
researchers model 
aircraft 
performance 
outside "typical" 
cruise airspeeds 
and altitudes (i.e. 
beyond scope of 
BADA)  

Highly 
sensitive data, 
some airlines 
may be willing 
to share if data 
are suitably 
anonymised  

Airlines  [B] / pending 

8  UoW / 
[13JUN11] 

[7] Aircraft FDR 
data  

Potential case 
study / application 
in ComplexWorld 
White Paper  

Highly 
sensitive data, 
some airlines 
may be willing 
to share if data 
are suitably 
anonymised  

Airlines  [B] / pending 

Table 1. Database of data requirements 
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