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Abstract 

The Mismatch Negativity (MMN) has been characterised as a ‘pre-attentive’ 

component of an Event-Related Potential (ERP) that is related to discriminatory 

processes.  Although well established in the auditory domain, characteristics of 

the MMN are less well characterised in the visual domain. The five main studies 

presented in this thesis examine visual cortical processing using event-related 

potentials. Novel methodologies have been used to elicit visual detection and 

discrimination components in the absence of a behavioural task. Developing 

paradigms in which a behavioural task is not required may have important 

clinical applications for populations, such as young children, who cannot comply 

with the demands of an active task. The ‘pre-attentive’ nature of visual MMN 

has been investigated by modulating attention. Generators and hemispheric 

lateralisation of visual MMN have been investigated by using pertinent clinical 

groups.   

A three stimulus visual oddball paradigm was used to explore the elicitation of 

visual discrimination components to a change in the orientation of stimuli in the 

absence of a behavioural task. Monochrome stimuli based on pacman figures 

were employed that differed from each other only in terms of the orientation of 

their elements.  One such stimulus formed an illusory figure in order to capture 

the participant’s attention, either in place of, or alongside, a behavioural task. 

The elicitation of a P3a to the illusory figure but not to the standard or deviant 

stimuli provided evidence that the illusory figure captured attention. A visual 

MMN response was recorded in a paradigm with no task demands. When a 

behavioural task was incorporated into the paradigm, a P3b component was 

elicited consistent with the allocation of attentional resources to the task. 

However, visual discrimination components were attenuated revealing that the 

illusory figure was unable to command all attentional resources from the 

standard deviant transition. The results are the first to suggest that the visual 

MMN is modulated by attention. 

Using the same three stimulus oddball paradigm, generators of visual MMN 

were investigated by recording potentials directly from the cortex of an 

adolescent undergoing pre-surgical evaluation for resection of a right anterior 

parietal lesion. To date no other study has explicitly recorded activity related to 
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the visual MMN intracranially using an oddball paradigm in the absence of a 

behavioural task. Results indicated that visual N1 and visual MMN could be 

temporally and spatially separated, with visual MMN being recorded more 

anteriorly than N1.  

The characteristic abnormality in retinal projections in albinism afforded the 

opportunity to investigate each hemisphere in relative isolation and was used, 

for the first time, as a model to investigate lateralisation of visual MMN and 

illusory contour processing. Using the three stimulus oddball paradigm, no 

visual MMN was elicited in this group, and so no conclusions regarding the 

lateralisation of visual MMN could be made. Results suggested that both 

hemispheres were equally capable of processing an illusory figure.  

As a method of presenting visual test stimuli without conscious perception, a 

continuous visual stream paradigm was developed that used a briefly presented 

checkerboard stimulus combined with masking for exploring stimulus detection 

below and above subjective levels of perception. A correlate of very early 

cortical processing at a latency of 60-80 ms (CI) was elicited whether stimuli 

were reported as seen or unseen. Differences in visual processing were only 

evident at a latency of 90 ms (CII) implying that this component may represent a 

correlate of visual consciousness/awareness. 

Finally, an oddball sequence was introduced into the visual stream masking  

paradigm to investigate whether visual MMN responses could be recorded 

without conscious perception. The stimuli comprised of black and white 

checkerboard elements differing only in terms of their orientation to form an x or 

a +. Visual MMN was not recorded when participants were unable to report 

seeing the stimulus. Results therefore suggest that behavioural identification of 

the stimuli was required for the elicitation of visual MMN and that visual MMN 

may require some attentional resources.   

On the basis of these studies it is concluded that visual MMN is not entirely 

independent of attention. Further, the combination of clinical and non-clinical 

investigations provides a unique opportunity to study the characterisation and 

localisation of putative mechanisms related to conscious and non-conscious 

visual processing. 
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Preface 
 

The electrophysiological component known as the auditory Mismatch Negativity 

(aMMN), reflective of a pre-attentive change detection mechanism, has 

provided an objective marker for central auditory processing. As such, it is 

proving a useful tool for research and clinical investigations, offering insight into 

brain functioning and clinical diagnostics. At the start of this research, an 

analogous component was claimed to be identified in the visual system, the 

visual Mismatch Negativity (visual MMN) and indeed also in the somatosensory 

system. A research focus was to ascertain whether visual MMN exhibits similar 

properties to auditory MMN, namely independence of attention, endogeneity 

and sensory memory. 

    

When my research started there were two main issues relating to the visual 

MMN: whether recordings were reflective of sensory memory or due to the 

refractory state of neurons, and whether visual MMN could be recorded in the 

absence of focused attention (shown to reflect a pre-attentive process).  The 

research presented in this thesis has mainly focused on recording a visual MMN 

in the absence of focused attention rather than investigating correspondence 

with the sensory memory trace. However, the accumulation of research now 

suggests that the visual MMN does exist in an analogous way to auditory MMN 

and there have been developments in paradigms for eliciting visual MMN. 

Therefore, the research in earlier chapters will be presented in a manner faithful 

to the original objectives. In the discussion chapter, findings will be reinterpreted 

in the light of newer research and theoretical models.  
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1 General introduction  

For humans to survive we need to be able to adapt our behaviour to a dynamically 

changing environment. In order to do this we need to assimilate information rapidly 

from the environment, process it and produce appropriate behaviour. We gain 

information about the complex world in which we live through our sense organs. 

This information is then transduced into neural signals and, through cortical 

networks in the brain, transformed into what we perceive as experience. A primary 

source of environmental information is gained from visual input. The perception of 

the visual world is based more on our brain’s construction rather than an exact 

image of the complex world of which we strive to make sense. The rich array of 

stimuli entering our eyes has to be filtered and information that is relevant brought 

into the focus of attention. The point at which visual information enters 

consciousness and the mechanisms by which this occurs are still matters of 

debate.  

The fact that certain clinical visual tests produce, within a normal population, 

electrophysiological responses that have little variability in terms of morphology, 

polarity and latency means that electrophysiological methods can provide unique 

insights into brain functioning in relation to visual discrimination and this, in turn, 

can lead to the development of clinical tests for the diagnosis of abnormal brain 

function. The research presented in this thesis is an investigation of the early 

cognitive processes underlying the detection of change in visual perception and 

memory in the absence of focused attention with a particular emphasis on the 

development and application of electrophysiological methods for clinical visual 

testing for populations who cannot respond to the demands of an active task.  

Current clinical visual electrophysiological tests when carried out within the correct 

parameters can assess the functioning of the visual pathways to the cortex. 

However, at the level of the cortex new tools are required. To understand the 

requirements of any clinical or experimental test it is necessary to have an 

understanding of the anatomy and physiology of the system under investigation. 

Therefore, firstly the visual system will be described. 
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1.1 Anatomy of the visual pathways 

Before visual information can be processed, it has to be converted from 

electromagnetic radiation arriving at the eye and encoded by a number of neuronal 

events. Light enters the eye through the pupil where it is focused by the cornea 

and the lens, travelling through the vitreous humor, to the retina at the back of the 

eye. The retina is lined with visual photoreceptors, approximately 125 million - rods 

and cones, (Bear, 2007) and it is here that transduction of light occurs. 

 

 

Figure 1.1 Structure of the eye  

Reproduced with permission from: 
https://commons.wikimedia.org/wiki/File:Schematic_diagram_of_the_human_eye_en.svg 

 

https://commons.wikimedia.org/wiki/File:Schematic_diagram_of_the_human_eye_en.svg
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Differences in rod and cone structure and their distribution lead to functional 

differences between the peripheral and macula retina. Rods outnumber cones 20 

to 1 in the human retina (Bear, 2007). Rods are longer than cones, with more 

membranous disks containing a higher concentration of light sensitive 

photopigments. The higher proportion of rods to cones and photoreceptors to 

ganglion cells in the peripheral retina means, that functionally, the peripheral retina 

is specialised for vision in low light. The thinnest part of the retina and the central 

area of the macula, the fovea, contains only cones. There are three types of cone, 

each containing a photopigment maximally sensitive to different wavelengths of 

light. At the fovea there is also an overrepresentation of the central few degrees of 

visual space. This is because relatively few photoreceptors feed each ganglion cell 

(Zeki, 1993). The fovea is therefore specialised for colour and detailed vision.   

Once the action potential is generated in the rods and cones of the retina, the 

impulse travels to bipolar neurons closer to the centre of the eye and then to 

ganglion cells whose axons form the optic nerve. The optic nerves from each eye 

join together at the base of the brain to form the optic chiasm. In the normal 

mammal with binocular vision there is a partial decussation - the axons from the 

nasal retina projecting contralaterally and the axons from the temporal retina 

projecting ipsilaterally. The majority of these retinal ganglion cells ascend via the 

optic tract to form synaptic connections with the cells of the lateral geniculate 

nucleus (LGN) located in the dorsal thalamus. The majority of geniculate neuron 

axons then project via the optic radiation where they synapse with the primary 

visual cortex. Thus, all of the information from the left visual hemifield goes to the 

right hemisphere of the brain and all of the information from the right visual 

hemifield goes to the left side hemisphere of the brain (see Figure 1.2).  
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Figure 1.2 Visual pathways to the brain 

Reproduced with permission from: 
http://commons.wikimedia.org/wiki/File:Constudeyepath.gif 

 

1.2 Laminar structure of the visual cortex 

Like other areas of the cerebral cortex, the visual system is characterised by a 

laminar structure. The ganglion cells in the retina, project via the optic tract to the 

six layers of the LGN. The four upper layers of the LGN contain parvocellular or P-

type ganglion cells and the two lower layers contain magnocellular or M-type 

ganglion cells. The optic nerve fibres from each eye are segregated in each LGN 

with projections from the ipsilateral eye synapsing in layers 5, 3 and 2, projections 

from the contralateral eye synapsing in layers 6, 4 and 1.  The parvocellular cells in 

the retina project to the parvocellular layers in the LGN and the magnocellular cells 

http://commons.wikimedia.org/wiki/File:Constudeyepath.gif
http://upload.wikimedia.org/wikipedia/commons/6/6b/Constudeyepath.gif
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in the retina project to the magnocellular layers in the LGN. The ganglion cells from 

the LGN synapse on the striate cortex, which has approximately six layers I-VI, 

when using Brodmann’s convention (Rompelman & Ros, 1986). There is a point to 

point projection from the retina, to the LGN, and to the striate cortex. This is 

thought to lead to differential processing: the parvocellular cells in the LGN feed 

information into the parvocellular layers in the striate cortex whilst the 

magnocellular cells feed information into the magnocellular layers of the striate 

cortex.  

1.3 Central visual system 

In humans, the primary visual cortex, also known as the striate cortex, V1 and 

Brodmann’s area (BA) 17, is found in the occipital lobe and surrounds the calcarine 

fissure (see Figure 1.4). Initial cortical processing of all visual information required 

for visual perception occurs in the striate cortex and loss of vision in the 

contralesional hemifield occurs when it is damaged (Dragoi, 1997). The striate 

cortex is surrounded mostly by the secondary or extrastriate cortex (V2, V3, V4, 

V5).  Extrastriate areas are also known as Brodmann’s areas 18 and 19. Damage 

to the extrastriate cortex results in deficits in complex visual perception tasks, 

attention and learning/memory (Dragoi, 1997). 

There are two main ways in which information is organised within the striate cortex. 

Firstly, like other areas of the cerebral cortex, the striate cortex is organised in 

functional columns. Secondly, like the retina, the striate cortex is organised 

retinotopically, this means that neighbouring cells in the retina feed information to 

neighbouring places in the LGN and then the striate cortex. It is thought there are 

20 to 40 distinct areas in the extrastriate cortex in humans (Bear, 2007). 

Information from the visual cortex is integrated and associated with information 

arising from other modalities in cortical association areas. 
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Figure 1.3 Brodmann architectural map, after Brodmann, K. 1909. 

Reproduced with permission from: 
http://commons.wikimedia.org/wiki/File:Gray727-Brodman.png   
Note areas 17 refers to the striate cortex and 18 and 19 to the extrastriate cortex.   
 

1.4 Visual association cortex  

Mapping of association cortex has largely been derived from primate models where 

it has been possible to use invasive methods to lesion and trace the 

interconnections between the various cortical visual structures and areas they 

project to (Felleman & Van Essen, 1991). Newer methods such as magnetic 

stimulation, which essentially induces a reversible functional lesion, have allowed 

testing of the cortical organisation of visual functions in humans and have helped 

clarify some of the anatomical processes revealed through primate research 

(Pascual-Leone & Walsh, 2001)  

From the retina to the striate cortex there are two main streams of visual 

information processing the parvocellular pathway which is specialised for colour 

vision and detail, and the magnocellular pathway which is specialised for motion. 

http://commons.wikimedia.org/wiki/File:Gray727-Brodman.png
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This separation of the visual processing continues as the main pathways feed from 

the striate cortex to other areas of the association cortex, a dorsal stream runs 

between the occipital, parietal and frontal lobes (BA 7, BA 20 and the superior part 

of BA 39) and is responsible for location and movement processing. A ventral 

stream comprises the pathway between the occipital lobes and the temporal lobes 

(BA 20, the inferior part of BA 37 & BA 39) and is responsible for object and colour 

identification (Goodale & Milner, 1992; Komatsu & Goda, 2009). 

1.5 Techniques employed in the investigation of central visual 

function  

Activation of the visual cortex is dependent on the functional integrity of central 

visual pathways at all levels, including the eye, retina, the optic nerve, optic 

radiations and occipital cortex (Odom et al., 2010). Cognitive processes including 

those relating to central visual function and visual discrimination can be explored 

through the application of a number of methodologies that allow investigation of 

brain function and organisation. The methodologies enable the measurement of 

changes in activity in blood, oxygen metabolism or neurons under defined 

conditions, and are of two distinct groups, hemodynamic and electromagnetic.   

Hemodynamic techniques are best used for the localisation of function and include 

Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging 

(fMRI). fMRI offers excellent spatial resolution. The assumption underlying the use 

of hemodynamic techniques is that increases in local oxygen metabolism and 

blood flow relate to task induced neuronal activity. However, due to the speed of 

the circulatory system their temporal resolution is poor in comparison to 

electromagnetic techniques, in the order of seconds. Electromagnetic techniques 

include magnetoencephalography (MEG) and electroencephalography (EEG). Due 

to their excellent temporal resolution they are best used for exploring the time 

course of cerebral events including those relating to visual discrimination 

processes. Neuronal transmission is almost instantaneous and as these methods 

measure the magnetic or electric fields generated by neuronal activity, the 

temporal resolution is in the order of milliseconds. However, the spatial resolution 

of these techniques is poor compared to imaging techniques as there is no unique 
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or universally agreed mathematical solution to working out what is known as the 

‘inverse problem’ – that is attempting to predict internal neural generators of 

cognitive processes from scalp voltage distributions when there are multiple 

dipoles from which activity can be generated. Figure 1.5 illustrates the temporal 

and spatial resolution of functional neuroimaging methods and these are outlined in 

more detail below. 

 

 

Figure 1.4 Functional neuroimaging methods and their temporal and spatial 
resolution.  

Reproduced exactly from Meyer-Lindenberg (2010) with permission. However, this 
is schematic as, for example, when the y axis resolution shown is 3= log (resolution 
mm), then actual resolution = 10 mm³ = 1000 mm. 

 

1.5.1 PET 

By introducing into the body a radioactive tracer, functional processing can be 

imaged by the measurement of changes in regional cerebral blood flow through the 

decay of radioactive ligands. Comparison of blood flow images under different 

experimental manipulations can reveal the brain regions implicated in task 

performance. Imaging takes place in a scanner and this invasive technique, has a 

spatial resolution in the order of 4 mm and a temporal resolution of 30-40 seconds 

(Levin & Hoffman, 1999).  
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1.5.2 fMRI 

An imaging technique that is widely used to explore neuronal localisation of 

cognitive processes is fMRI (Belliveau et al., 1991). fMRI is based on the 

measurement of changes in blood oxygenation and flow in the brain using Blood 

Oxygenation Level-Dependent (BOLD) responses. It has a relatively high spatial 

resolution (3mm³) (Bear, 2007) and this provides anatomical information by 

enabling the location of cognitive processing in the brain based on increased blood 

flow levels under different experimental conditions, however, temporal resolution is  

poor, in the order of seconds.  

1.5.3 MEG 

MEG is based on the measurement of the magnetic fields produced during cortical 

activation. This technique has a high temporal resolution in the order of 

milliseconds and a better spatial resolution than EEG in the order of 2-3 mm for 

cerebral cortex sources (Hamalainen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 

1993), although depending on the experiment spatial resolution may be in the 

order of seconds. Like EEG, the spatial resolution of MEG is inferior to 

hemodynamic techniques. 

1.5.4 EEG 

EEG is based on the measurement of electrical fields produced by neuronal 

activity. Due to the columnular organisation of the cortex electrical potentials 

propagate to the scalp where their differences can be measured (D. A. Kaiser, 

2005). Compared to other techniques, EEG has a number of advantages, it is non-

invasive, unless it is being used to record directly from the cortex as, for example, 

in pre-surgical evaluation of epilepsy. It also has excellent temporal resolution, in 

the order of milliseconds and is comparatively inexpensive to use. However, spatial 

resolution is poor in comparison to fMRI, PET and MEG and this means that it is 

difficult to localise underlying neural generators with this method - although, the 

use of mathematical source modelling techniques such as standardized low-

resolution brain electromagnetic tomography (sLORETA) (Pascual-Marqui, 2002) 

and Principal Component Analysis (PCA) can be used.  Historically, one of the 
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main advantages of EEG is that it can be time locked with an external or internal 

signal (e.g. a muscle movement or perception of a visual stimulus) to study cortical 

processing to a discrete event. The resulting recording is known an event-related 

potential (ERP) or an Evoked Potential (EP) and relies on averaging tens to 

hundreds of EEG epochs related to the onset of the event or signal. The use of 

ERPs has been chosen for this study due to its high temporal resolution and its 

ability to illuminate the stages of cognitive processing. 

1.6 Principles of event-related potentials  

This section introduces the principles of event-related potentials and how they are 

used to explore cognitive function in relation to discrimination processes. This 

technique offers the opportunity to study early brain processes associated with the 

presentation of stimuli.  

1.6.1 ERP definition 

ERPs are small changes in the electrical activity of the brain that are recorded from 

the scalp, or directly from the cortical surface and are time-locked to some sensory, 

motor or mental event. The ERP signal that is recorded reflects activity in the 

neuronal networks of the brain and is thought to be the spatial and temporal 

summation of a large number of cortical excitatory and inhibitory post-synaptic 

(dendritic) potentials (Allison, Wood, & McCarthy, 1986). This electrical activity is 

transient and has a spatially extended field (Luck, 2005).  

ERPs are time-locked voltage change responses to specific stimuli. These signals 

are small in amplitude, 3-25µV, compared to the ongoing cortical activity in which 

they are embedded which can vary between -100 and +100µV. To evaluate cortical 

response to stimulation, the ERP can to be separated from the continuous EEG by 

means of averaging and digital filtering.  ERPs therefore allow the non-invasive 

evaluation of brain function and organization during cognitive processing. 

ERP components are defined by the polarity of their deflections (positive or 

negative), latency, scalp distribution and relationship to experimental variables. 

The time course of cognitive processing is reflected in the order and latency of 
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ERP components. This can be recorded with millisecond temporal resolution and 

from multiple locations. The allocation of neural resources to specific cognitive 

processes is reflected in component amplitude (Duncan et al., 2009). 

1.6.2 Averaging and digital filtering 

The most common method of extracting the ERP ‘signal’ from the ongoing EEG 

‘noise’ is the use of time domain averaging techniques (Picton, Bentin, et al., 2000; 

Picton, Lins, & & Scherg, 1995). By defining an epoch within an EEG that is locked 

to the stimulus and having repeated presentations it is assumed that the response 

to a stimulus will have a constant and known relationship, whereas, background 

activity will be unrelated. Averaging therefore results in a reduction of the noise 

relative to the signal and is proportional to √n, where n is the number of responses 

(Rompelman & Ros, 1986). 

The application of digital filters during EEG data acquisition is a simple method to 

improve signal to noise ratio as filters can be set to a pertinent bandwith in order to 

decrease the amount of electrical activity unrelated to the measurement of interest 

(Picton, Bentin, et al., 2000). In addition, the data can be subjected to further offline 

filtering following acquisition  (Picton et al., 1995).  

1.6.3 Oddball paradigm  

The oddball paradigm developed out of a literature based on target detection and 

vigilance studies embedded in information processing models such as Triesman’s 

feature-integration theory of attention (Treisman, 1991; Treisman & Gelade, 1980). 

This involves the presentation of a sequence of frequent or ‘standard’ stimuli 

(p=0.90), interspersed with the presentation of an infrequent or ‘deviant’ stimulus 

(p=0.10) that differs in some physical attribute from the standard stimulus.  The 

detection of an infrequent stimulus in a train of frequent stimuli, provides an 

experimental paradigm whereby the attributes of the ERP can be correlated with 

processes of detection, discrimination and the evaluation of probability. The 

oddball paradigm is a widely used technique due to its success in evoking reliable 

markers of cognitive function related to discrimination processes. In conjunction 

with ERPs, the oddball paradigm can provide insights into the time course of 
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events related to visual discrimination. Oddball experiments can take place in 

either an active or a passive condition. During an active paradigm, the participants 

are asked to attend to the stimuli and respond in some predefined way to a target 

stimulus – this could be by pressing a button every time the target stimulus 

appears or by mentally counting the number of target stimuli. The behavioural task 

is often unrelated to the variables of interest. In a passive condition, the 

participants are either asked to ignore the stimuli or given no instructions beyond 

perhaps focusing at a fixation point on the screen where the stimuli are presented. 

A distinction between these conditions is that a passive oddball paradigm can be 

used in populations who cannot meet the demands of an active task such as young 

children or children who have motor deficits.  

1.7 Visual ERP components 

This section introduces the ERP components commonly associated with visual 

detection and discrimination tasks. The visual cortex responds to a wide variety of 

different visual stimuli and the pattern visual ERP is representative of the visual 

cortex’s response to stimuli presented in the middle of the visual field. The main 

components of a visual ERP are the CI, P1, N1, P2, N2.  See Figure 1.6 for a 

schematic representation of visual components time-locked to a stimulus event.  

Of specific interest to this thesis are the P3 and the MMN whose elicitation is 

dependent on the experimental paradigm and which are slow potential wave 

complexes related to visual discrimination processes.  
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Figure 1.5 Schematic of a generic visual waveform time-locked to stimulus event 
with labelled components 

Adapted from Woodman (2010). 

ERPs that are specific to sensory perception or processing and whose component 

characteristics are reliant on the physical characteristics of the stimuli are called 

‘exogenous’  or ‘sensory-evoked potentials’ or, in the case of the visual modality, 

Visual Evoked Potentials (VEPs) (Coles, 1995). Although largely independent of 

the participant’s cognitive state, attentional manipulations can influence these 

feature-based stimulus elements. The ERP components that are reliant on the 

participant’s interaction with the stimulus are known as ‘endogenous’ components 

and these usually occur following sensory processing. Endogenous components 

are sensitive to task difficulty and manipulations of attention. However, these 

distinctions are not absolute, evoked potentials can be exogenous, endogenous or 

both (Picton, Bentin, et al., 2000). Exogenous components can be modulated by 

cognitive aspects of a stimulus and endogenous components can be modulated by 

the physical properties of a stimulus. Exogenous components and the endogenous 

components evoked by an oddball paradigm of particular relevance to this thesis 

shall be outlined in the sections below. 
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1.7.1 Exogenous components  

The earliest elicited sensory component to pattern onset stimuli is the C1 (also 

referred to as the ‘NP80’) which peaks between 60-80 ms.  The unique aspect of 

the C1 component compared to other visual ERPs is that depending on whether 

the visual stimuli are presented to the upper or lower visual field the polarity of the 

scalp recorded voltage reverses – lower visual field presentation leads to a positive 

waveform and upper visual field presentation leads to a negative waveform (Di 

Russo et al., 2005; Jeffreys & Axford, 1972a). This polarity reversal has enabled 

the localisation of this component to the striate cortex (Clark, Fan, & Hillyard, 1995; 

Jeffreys & Axford, 1972a). The striate cortex principally covers the calcarine fissure 

and receptive field from upper-field visual stimuli map onto the lower banks of the 

calcarine fissure; and receptive fields from lower-field visual stimuli map to the 

upper banks of the calcarine fissure. The prevailing view for many years was that 

C1 was not thought to be influenced by attentional modulations (Martinez, Di 

Russo, Anllo-Vento, & Hillyard, 2001). However, more recent studies reveal that 

the C1 can be influenced by attentional manipulations (Proverbio, Del Zotto, & Zani, 

2010), for a review of studies see (Rauss, Schwartz, & Pourtois, 2011). 

The ‘P1’ (also referred to as ‘P100’) is usually the first positive component 

observed in visual tasks and peaks between 80-130 ms with a maximal amplitude 

over occipital electrodes (Mangun, 1995). In a dipole modelling study using a 

combination of multichannel scalp recordings, MRI and fMRI, the generators of the 

early and late phase of the P1 have been localised to sources in the dorsal 

extrastriate cortex of the middle occipital gyrus and the ventral extrastriate cortex of 

the fusiform gyrus respectively (Di Russo, Martinez, Sereno, Pitzalis, & Hillyard, 

2002).  

The P1 is followed by the N1 (also referred to as ‘N100’) which is the first negative 

component and peaks between 140-190ms after stimulus onset with a maximal 

amplitude over occipital-parietal scalp sites (Mangun, Hillyard, & Luck, 1993). 

Generator sources for the N1 have proved more difficult to identify, due to the 

widespread activation across occipito-temporal and parietal regions, although Di 

Russo et al. (2002) identified generators of subcomponents of N1 to the dorsal 
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extrastriate cortex of the middle occipital gyrus and to generator sources located 

deep in the parietal lobe.  

Both P1 and N1 can be modulated by attention (Hillyard, Vogel, & Luck, 1998; 

Martinez et al., 1999). There is debate as to whether the modulation of P1 is 

related to consciousness or to a preconscious selection process that influences 

what does enter consciousness. For a review, see Railo, Koivisto, and Revonsuo 

(2011). The N1 component is correlated with discrimination processes within the 

focus of attention. Studies have shown that the N1 component amplitude is 

increased in visual discrimination compared to detection tasks (Hopf, Vogel, 

Woodman, Heinze, & Luck, 2002; Vogel & Luck, 2000). 

It is worth noting that there is some confusion in the literature as to the 

nomenclature of early pattern onset components. Early work demonstrated 

differing polarities of the CI component and a positive CII component (Jeffreys & 

Axford, 1972a, 1972b). However, other authors refer to Jeffreys and Axford's CII as 

a P1 (Di Russo et al., 2002). Further, Di Russo et al. (2005) describe pattern onset 

components as C1, P1, N1 These discrepancies are described in more detail in 

Section 6.5. 

1.7.2 Endogenous components evoked in an oddball paradigm 

A wide range of research, in auditory, somatosensory and visual modalities, has 

shown that a number of ERP components specifically related to stimulus 

discrimination processes can be evoked by using an oddball paradigm. These 

include the N2, P3a, P3b and Mismatch Negativity (MMN).  

1.7.3 N2  

The N2 component in the visual modality is the second negative peak observed in 

visual tasks and peaks typically 200-400 ms after stimulus onset and is maximal 

over occipital electrode sites (Simson, Vaughan, & Ritter, 1977). It has been 

associated with automatic and controlled evaluation and stimulus classification 

processes (Folstein & Van Petten, 2008). The N2 component can also 
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demonstrate sensitivity to tasks involving manipulations of spatial attention 

(Woodman & Luck, 1999).  

1.7.4 P3 

A consistent finding in ERP research is that the P3 wave (also known as P300), a 

positive deflection occurring from 280 to 400ms post-stimulus indicates attentional 

processing (see Hagen, Gatherwright, Lopez, & Polich, 2006; Hruby & Marsalek, 

2003; Polich, 2003). The P3 is not modality specific and it can further be divided 

into the subcomponents P3a and P3b. P3a originates from frontal attention 

mechanisms to task novelty and/or distractors whilst the P3b is generated in more 

temporal/parietal regions and is associated with context updating and memory 

storage operations (Polich, 2007). The P3a has an earlier and more frontal peak 

latency and a smaller amplitude than the P3b. The P3a is usually evoked in 

experiments associated with novelty and is thought to represent a reorienting 

mechanism.  Whereas, the P3b can be evoked in experiments where the subject is 

required to attend actively to a target  stimulus (Polich, 2003). The P3 is often 

preceded by the smaller N2b which occurs around 200 to 350ms post stimulus.  

1.7.5 MMN 

The component of an ERP that is thought to represent a detection of change 

mechanism or a violation of regularity is known as the mismatch negativity 

(Näätänen, Gaillard, & Mantysalo, 1978; Näätänen et al., 2012). It has been 

proposed that the functional significance of the MMN generator is to initiate an 

attention switch to the eliciting stimulus change (Näätänen, 1990a, 1992) and as 

such it should be present in all sensory systems. Although this process has been 

clearly evidenced in the auditory system where the majority of work has been 

carried out (Näätänen, 1990a, 1992; Näätänen, Jacobsen, & Winkler, 2005; Picton, 

Ritter, Achim, Alain, & Otten, 2000) and  to an extent in the somatosensory system 

(Näätänen, 2009; D. Restuccia et al., 2009; Spackman, Boyd, & Towell, 2007; 

Spackman, Towell, & Boyd, 2010) it is only recently that the cumulative research is 

providing evidence for its existence in the visual system (for a review of the 

evidence see Kimura, Schroger, & Czigler, 2011). Establishment of the existence 

of MMN in the visual system has been predicated on the characteristics and 
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functional significance of the auditory MMN, therefore the literature and 

characteristics of the auditory mismatch negativity are reviewed below. 

1.8 The auditory MMN  

The auditory MMN is a component of an ERP that is reflective of task-irrelevant 

processing of ‘deviant’ sounds presented in a series of repetitive ‘standard’ sounds 

that is best observed in the absence of attention, for reviews see,  Näätänen 

(1992); Näätänen et al. (2012); Näätänen, Kujala, and Winkler (2011); Näätänen, 

Paavilainen, Rinne, and Alho (2007). The auditory MMN appears as a negative 

deflection at approximately 100-250ms after stimulus onset and is thought to reflect 

the pre-attentive detection of acoustic changes  (Näätänen, 1990a).The auditory 

MMN overlaps other change components that are elicited in auditory oddball 

sequences such as the N2b (Näätänen, 1988) and it is delineated by subtracting 

the ERP to standard sounds from the ERP to deviant sounds (for a review of 

methodology for delineating MMN see Kujala, Tervaniemi, & Schroger, 2007).  

Evidence that the auditory MMN represents a sensory memory trace rather than a 

response generated by refractoriness of neural populations is provided by a 

number of studies (for a review see Näätänen et al., 2005). The auditory MMN is 

not elicited by deviant stimuli when they are presented without the intervening 

standards or when inter-stimulus intervals are long (Sams, Paavilainen, Alho, & 

Näätänen, 1985). It is not evoked by the first stimulus in a sequence (Cowan, 

Winkler, Teder, & Näätänen, 1993). Therefore the auditory MMN is not elicited by 

any stimulus, without a number of preceding repetitions of a different stimulus (the 

standard) preceding this stimulus. This is indicative of a relationship between the 

present stimulus and the representation of the preceding stimulus. The auditory 

MMN can also be elicited by stimulus omission in a stimulus sequence (Yabe, 

Tervaniemi, Reinikainen, & Näätänen, 1997). 

The auditory MMN is recorded with largest amplitudes over the fronto-scalp areas. 

Modelling of generator sources explains the fronto-central scalp distribution by the 

summation of bilaterally generated activity in the supratemporal cortices (Giard et 

al., 1995; Rinne et al., 1999). In addition, magnetoencephalograhic (MEG) 
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equivalent ‘MMNm’ recordings (Hari et al., 1984; Levanen, Ahonen, Hari, McEvoy, 

& Sams, 1996) support this interpretation. Intracranial recordings in humans 

(Halgren et al., 1995; Halgren, Marinkovic, & Chauvel, 1998; Liasis, Towell, & 

Boyd, 1999, 2000) indicate auditory MMN generation in the auditory cortices. In 

addition to the bilateral supratemporal cortices, evidence has been provided for 

frontal-lobe involvement in auditory MMN generation from scalp density analysis 

(SCD) (Deouell, Bentin, & Giard, 1998), from source-current modelling studies 

(Rinne, Alho, Ilmoniemi, Virtanen, & Näätänen, 2000) and from intracranial studies 

(Liasis, Towell, Alho, & Boyd, 2001; Rosburg et al., 2005). 

It has been suggested that the functional significance of the MMN generation 

process is to initiate an automatic attention switch to the eliciting stimulus change 

(Näätänen, 1990a, 1992; Näätänen et al., 2011)and that the frontal lobe 

involvement in the generation of MMN is due to the attention call process 

(Näätänen et al., 2011). Further evidence for frontal lobe involvement in auditory 

MMN generation is demonstrated by results that show lesions of dorsolateral 

prefrontal cortex result in attenuated MMN amplitudes (Alain, Woods, & Knight, 

1998). Current interpretations of the auditory MMN generation process emphasise 

the active role of the memory trace assumed to be used in MMN generation.  

‘The MMN is elicited by a mismatch between auditory input and the 

predictions formed on the basis of trends or rules that are automatically 

detected in the recent auditory stimulation’ (Näätänen et al., 2011, p. 6). 

The value of the auditory MMN as a research tool for exploring brain function 

relating to auditory discrimination processes and its value for investigating central 

auditory processing has been widely documented (Näätänen, 2003). In addition, 

attenuation of the auditory MMN and prolonged peak latency is implicated in a 

number of neuropsychiatric, neurological and neurodevelopmental disorders and 

cognitive decline due to the normal ageing process (for a review see Näätänen et 

al., 2012). An important feature of the auditory MMN is that it can be elicited in the 

absence of focused attention - in fact attention leads to the overlap of other 

attention related ERP components. This has clear benefits for use with clinical 

populations who cannot meet the demands of a behavioural task.  
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1.9 Characteristics of the visual Mismatch Negativity 

The visual Mismatch Negativity (visual MMN) is a negative ERP deflection that 

usually peaks around 150-400ms post stimulus change. The component has been 

most frequently elicited using an oddball paradigm where the response elicited to 

the infrequent or deviant stimulus is observed, see (Czigler, 2007; Kimura et al., 

2011; Pazo-Alvarez, Cadaveira, & Amenedo, 2003). The emergence of the visual 

MMN is maximal over posterior electrode locations and generators have been 

localised to visual extrastriate areas and prefrontal areas (Kimura, Ohira, & 

Schroger, 2010; Urakawa, Inui, Yamashiro, & Kakigi, 2010)  

Visual MMNs have been reported in ‘match’ and ‘non match’ tasks where the 

stimuli are presented with equiprobability to control for the effects of global stimulus 

presentation (Fu, Fan, & Chen, 2003; Maekawa, Tobimatsu, Ogata, Onitsuka, & 

Kanba, 2009),  for changes in orientation and spatial frequency (Kimura, 

Katayama, Ohira, & Schroger, 2009; Kimura, Murohashi, & Katayama, 2006). 

Visual MMNs have also been reported within an oddball paradigm whereby a 

variety of other dimensions of the visual stimulus known to be important in early 

visual processing are manipulated. These include changes in spatial frequency 

(Maekawa et al., 2005), motion (Kremlacek, Kuba, Kubova, & Langrova, 2006), 

colour (Czigler, Balázs, & Pató, 2004; Czigler, Balázs, & Winkler, 2002), form (Berti 

& Schroger, 2004; Besle, Fort, & Giard, 2005; Stagg, Hindley, Tales, & Butler, 

2004) and orientation  (Astikainen, Korhonen, Ruusuvirta, & Wikgren, 2004; 

Astikainen, Lillstrang, & Ruusuvirta, 2008; Czigler & Csibra, 1992; Flynn, Liasis, 

Gardner, Boyd, & Towell, 2009).   

Although a number of studies have identified the visual MMN there has been 

debate as to whether an authentic visual MMN has been recorded (Czigler, 2007; 

Pazo-Alvarez et al., 2003). This is mainly due to methodological limitations 

including a failure to control attentional, exogenous and refractory effects. It has 

been argued that to be considered a true analogue to the auditory MMN, visual 

MMN must have the same characteristics including: independence of attention, 

endogeneity, sensory memory, sensory discrimination (Pazo-Alvarez et al., 2003). 

These characteristics are outlined below.  
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The criterion of endogeneity requires that the changes observed in the waveform 

are not due to changes in the physical characteristics of the stimuli but to the 

interaction of the participant with the stimulus. To do this, stimulus characteristics 

must be carefully controlled. The first reported visual MMN studies did not control 

for this fully.  Maekawa et al. (2005) controlled for endogeneity by alternating, 

standard, deviant or target stimuli. Others have attempted to standardise the 

adaption state of receptors and neurons in the visual fields exposed to the deviant 

and standard stimuli (Czigler et al., 2002; Stagg et al., 2004).  

MMN is best observed when the participant’s attention is directed away from the 

stimulus, as the overlap of other negative components at the same latency range 

(e.g. N2b) is thus avoided. In order to differentiate between MMN and other ERP 

change components, such as the N2 and the P3, the participant’s attention is 

usually drawn away from the test stimuli using a variety of behavioural tasks. A 

typical MMN paradigm is a selective attention task, where the participant is asked 

to focus on one aspect of the environment whilst ignoring another; the stimulus 

sequence is usually presented as task-irrelevant or unattended. For example, in a 

typical auditory MMN experiment, participants are presented with a visual task, 

such as reading a book or playing a computer game, whilst a regular train of 

auditory ‘standard’ stimuli is presented interspersed with an occasional ‘deviant’ 

stimulus that differs in some physical aspect such as frequency or duration. By 

varying the demands of the visual task, it has been shown that attention to the 

auditory tones can be withdrawn. In a typical visual MMN experiment, the 

participant is presented with a visual display that can contain a target stimulus 

amongst a variable number of distractor stimuli to which the participant is asked to 

respond, or a number of task irrelevant stimuli are presented peripherally whilst the 

participant is asked to focus their attention on a task in the middle of the visual 

field. In both the auditory and visual MMN the experimenter is interested in the 

processing of the rejected stimuli and the MMN is elicited even when the eliciting 

stimuli are unrelated to the ongoing task.  

Neumann, Vanderheijden, and Allport (1986) in their discussion on the attentional 

requirements in vision and hearing highlighted that sound is usually only produced 
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when something happens in the environment, or as noted by Czigler (2007) apart 

from in music or speech only rarely guides behaviour continuously. Whereas, in a 

lighted environment, visual information is continuously available and therefore 

continuously guides behaviour. These differences in characteristics of the auditory 

and visual attentional systems mean that developing an ‘ignore’ condition in the 

visual domain is more difficult than in the auditory domain. Although visual MMN 

studies have tried to control for attention, for example, (Astikainen et al., 2004; 

Stagg et al., 2004; Tales, Newton, Troscianko, & Butler, 1999) it is unclear whether 

focal attention was controlled. 

A number of competing theories have been put forward to explain the MMN neural 

mechanisms and its functional significance. The ‘adaptation or refractory 

hypothesis’ suggests that the change in neural activity between the standard and 

deviant transition represented by the MMN is due to habituation of afferent neurons 

to the features of the standard stimulus and activation of fresh populations of 

neurons to the features of the deviant stimuli.(Berti & Schroger, 2004; Mazza, 

Turatto, & Sarlo, 2005). A number of studies in the auditory domain have shown 

that the MMN is not due to the refractoriness of the neurons (Näätänen et al., 

2005). The ‘memory trace hypothesis’ (Näätänen, 1990a) posits that MMN reflects 

a comparison process whereby the ‘deviant’ stimulus is found to be incongruous 

with the sensory memory trace that has been established by the repetitive 

presentation of the standard stimulus and is thought to represent a change 

detection mechanism. Similar to the auditory MMN the visual MMN is thought to 

reflect the memory based detection of deviant stimuli rather than refractoriness 

(see Czigler, 2007 for a detailed discussion). However, not all of the results from 

visual MMN studies can be explained by the memory trace hypothesis (Berti & 

Schroger, 2004; Kenemans, Jong, & Verbaten, 2003; Mazza et al., 2005) and 

recently, the memory trace hypothesis has been extended so that MMN is 

explained within a hierarchical predictive coding framework (Baldeweg, 2007; 

Friston, 2005, 2010) as a specific form of visual sensory memory  ‘unintentional 

temporal-context-based prediction in vision’ (Kimura et al., 2011, p. 671). Within 

this framework evidence has shown that the visual MMN response reported in a 

number of studies has been shown to comprise of two separable components: an 
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N1 which represents the refractoriness of neurons, and a later mismatch - which is 

based on a memory comparison process or a predictive coding response (Kimura 

et al., 2009). These theories shall be discussed in more detail and in relation to the 

experiments presented in this thesis in Section 8.4 

One of the problems for recording a ‘true’ MMN within the visual system is that 

both the relevant and irrelevant ‘to be ignored’ stimuli are usually presented within 

the visual system (Czigler, 2007). This differs to studies of the auditory MMN, 

which in order to draw focal attention away from the task irrelevant stimuli usually 

have a behavioural task engaging the visual system. This ‘unimodal’ presentation 

and the requirement for an absence of attention is particularly difficult in passive 

paradigms in which no behavioural task is required.  

1.10  Visual event-related potentials in clinical research 

Clinical electrophysiological tests have been devised that allow assessment of the 

functional integrity of the visual system. In combination with clinical presentation 

and psychophysical findings, an understanding of each test, and what they reveal 

about the functioning of the visual system, can assist in the diagnosis of a number 

of diseases. Furthermore, electrophysiological examination when related to 

cognitive processes can provide an insight into the cognitive processing of visual 

stimuli.  

A number of tests have been standardised for use in clinics by the International 

Society for the Clinical Electrophysiology of Vision (ISCEV) including those for 

Visual Evoked Potentials (Odom et al., 2010). These include the standardisation of 

testing conditions and the stimuli presented. These tests can tell us about visual 

functioning in a normal population as some tests, for example the pattern reversal, 

hardly differ within an individual or differ relatively little between individuals with 

normal visual functioning. Visual tests currently available can help to assess the 

integrity of the visual pathways from the retina to the visual cortex. However, once 

the information gets to the visual cortex, assessment is less clear. It is not the 

purpose of this thesis to describe the full armoury of visual tests used in clinical 

diagnosis and evaluation but rather to acknowledge the existence of tests to 
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pattern onset, reversal and offset that provide markers of specific aspects of visual 

processing (Odom et al., 2010). The visual MMN may provide the opportunity to 

develop visual diagnostic tools that can provide an assessment of visual 

functioning at the level of the cortex reflecting the integration of visual processes 

required for discrimination. 

In addition, as the MMN can be recorded in the absence of attention, it offers the 

potential to address one of the challenges in paediatric visual electrophysiology, 

namely to assess visual function while the child’s attention is otherwise occupied. It 

would constitute a major breakthrough if the tests could take place whilst, for 

example, watching a video playing. With this in mind one of the aims of this study 

was to try to develop electrophysiological methods for clinical assessment whereby 

stimuli were presented below and above subjective thresholds of detection in a 

continuous visual stream.  

1.11  Aim of this research 

The research reported in this thesis explores the development of visual diagnostic 

techniques using novel methodologies in which active participation on the part of 

the participant is not required.  This was done by investigating electrophysiological 

correlates of pre-attentive visual processing using ERPs to measure brain activity 

when controlled changes in visual stimulation occur. Specifically the oddball 

paradigm was used to elicit visual MMN components and visual 

detection/discrimination components when stimuli are presented either away from 

the focus of attention or below and above subjective levels of perception. In 

addition, by recording EEG from two specific populations – namely a child 

undergoing pre-surgical evaluation for epilepsy (which enabled recording directly 

from the surface of the cortex thus improving spatial resolution) and children with 

albinism (who have optic misrouting such that asymmetrical VEP responses with a 

contralateral hemisphere dominance are observed) - the generator sources of 

visual pre-attentive processes and hemispheric specialisation were investigated. 
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2 Methodology    

Five studies are reported in this thesis, see Table 2.1 for an overview of 

experiments. The stimuli and recording paradigms varied between experiments in 

order to control focal attention and to explore different aspects of visual 

discrimination. All experiments, with the exception of Experiments 5.1, 6.1 and 6.2 

were based on an oddball paradigm in which there was a change of stimulus 

orientation. The experiments reported in this thesis, with the exception of 

Experiment 3.2, were designed to elicit VEPs in the absence of a behavioural task.  

Table 2.1 Overview of experiments and number of participants 

 

Experiment 

number 

Experiment overview Number of 

participants 

3.1 Passive visual MMN paradigm 14 

3.2 Active visual MMN paradigm 13 

4.1 Intracranial recording to explore VEP 

generators  

 1 of 3 analysed 

5.1 

 

5.2 

Assessment of optic pathway misrouting for 

participants with albinism 

Exploration of hemispheric lateralisation  

9  

 

6 of 9 analysed 

6.1 Visual detection paradigm with masking 16 

6.2 Visual detection control study  7 

7.1 Visual MMN paradigm with masking 15 

 

2.1 Ethical considerations  

The research reported in this thesis has been given ethical approval. Ethical 

approval studies on non-clinical populations (Experiments 3.2, 3.2, 6.1, 6.2, 7.1) 

was obtained from the University of Westminster and participants completed a 

consent form after reading a description of the research (see Appendices I-III for 

examples of participant information sheets and consent forms). The studies with 

patient groups (Experiments 4.1, 5.1 and 5.2) were reviewed by the Great Ormond 
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Street Hospital for Children (GOSH) NHS Trust/Institute of Child Health Research 

Ethics Committee and given ethical approval. The intracranial recording was 

carried out as part of a pre-surgical assessment with parental consent. The parents 

of the children with albinism completed a consent form after reading a description 

of the research. The author was given an honorary contract at GOSH and 

decisions about patient groups were covered by the relevant clinical lead at the 

hospital. GOSH has a strong tradition of evidence based clinical investigation and 

parents were willing to participate in clinical research that may contribute in some 

way to understanding their child’s condition. As a matter of ethical principal and 

good practice staff were sensitive to the wishes of the child and where co-operation 

was not forthcoming the experimental protocols would be stopped. As in all 

experimental clinical studies if any data revealed any facts relevant to the child’s 

condition/ diagnosis/ prognosis the matter would be dealt with by the lead clinician 

or their nominee. 

2.2 Instrumentation 

The recording equipment consisted of two synchronised systems, the EEG data 

acquisition/analysis system Neuroscan SCAN version 4.3 (Compumedics USA 

Ltd., Charlotte, North Carolina, USA) and a visual presentation system. For the 

studies exploring unmasked visual stimuli (Experiments 3.1, 3.2, 4, 5.1 and 5.2) the 

visual presentation system was Stim² (Compumedics USA Ltd., Charlotte, North 

Carolina, USA) and for the studies exploring stimuli presented at very brief 

presentation rates, masked (Experiments 6.1,7.1), unmasked (Experiment 6.2) the 

visual presentation system was E-Prime version 2.0 (Psychology Software Tools, 

Sharpsburg, Pennsylvania, USA). SCAN 4.3 was used to acquire and analyse the 

data, while 64 channel SynAmps² amplifiers (Compumedics USA Ltd., Charlotte, 

North Carolina, USA) were employed to amplify and digitise the cortical electrical 

signals obtained through the use of electrodes (see figure 2.1 for a schematic EEG 

laboratory set up).  

 

 

 



41 
 

For the studies exploring cortical responses to unmasked visual stimuli, the stimuli 

were presented on a 15” computer screen (Experiments 3.1, 3.2 and 4.1). For the 

children with albinism (Experiments 5.1 and 5.2) the unmasked stimuli were 

presented on a 50 inch plasma screen (Pioneer PD50). For the studies where 

masked visual stimuli were presented at very brief presentation rates (Experiments 

6.1, 6.2 and 7.1) the stimuli were presented on a 21 inch cathode ray tube (CRT) 

monitor (Samsung SyncMaster) with an NVIDIA GeForce 8800GT 320MB graphics 

card, running with a screen refresh rate of 160Hz.  Particular details of the 

instrumentation used will be given in the relevant methods section for each of the 

studies. 

 

 

 

 

 

Figure 2.1 Schematic of an EEG laboratory set up 
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2.3 Methods 

2.3.1 Participants 

Participants for non-clinical studies were recruited from friends and colleagues for 

Experiments 3.1, 3.2, 6.1 and 6.2 and students from the University of Westminster 

were recruited through a departmental research participation scheme for 

Experiment 7.1.  Clinical participants were recruited at GOSH. The participant 

undergoing surgical resection for epilepsy (Experiment 4.1) was recruited from the 

Department of Clinical Neurophysiology and the children with albinism 

(Experiments 5.1 and 5.2) had been referred to a clinic at the Department of 

Ophthalmology. Further details of the participant populations are given in the 

relevant chapter in the methods section. 

2.3.2 Protocol 

During all recordings with the exception of the intracranial recording (Experiment 

4.1), participants were seated comfortably in a darkened room 1 m in front of the 

presentation screen and requested to fixate on a small dot that was present 

throughout recordings in the centre of the display. The participant was presented 

with a sequence of visual stimuli whilst ERPs were recorded non-invasively 

through scalp electrodes. Throughout this time the participants were asked to relax 

as much as possible but to remain alert. During the recording from the participant 

undergoing pre-surgical evaluation for epilepsy (Experiment 4.1), the recording 

was taken in his hospital room with the participant sitting up in bed and the ERPs 

were recorded from invasive subdural electrodes. Experiment 3.2 was the only 

experiment to incorporate a behavioural task, participants were asked to respond 

by pressing a button when a particular stimulus was presented. In Experiments 5.1 

and 5.2, stimulus presentation was monocular, stimuli were presented to one eye, 

whilst the other eye was covered with a patch and then vice-versa. Further details 

of the particular experimental protocols are given in the relevant chapters in the 

methods section. 
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2.3.3 Stimuli and stimulus presentation 

Experiments 3.1, 3.2, 4.1 and 5.2 used the same three stimuli based on pacman 

figures which differed from each other only in terms of the orientation of their 

elements. These stimuli were generated employing Stim² software (Compumedics 

USA Ltd., Charlotte, North Carolina, USA) and were presented in an oddball 

paradigm (see Section 1.6.3). Details and a figure for these stimuli are outlined in 

the first study chapter in which these stimuli were used (Experiment 3.1, Section 

3.3.2.1). Details of stimuli for Experiment 5.1 are outlined in Section 5.4.1.  

 

Visual masks were used in Experiments 6.1 and 7.1. Details and a figure showing 

the mask stimuli are provided in the first study chapter in which these stimuli are 

used (Experiment 6.1, Section 6.3.2.1).  Experiments 6.1 and 6.2 did not use an 

oddball paradigm but presented a train of identical checkerboard stimuli under two 

conditions, either masked (Experiment 6.1) or emerging from a grey background 

(Experiment 6.2). The checkerboard stimuli were generated using Stim² software 

(Compumedics USA Ltd., Charlotte, North Carolina, USA). The mask stimuli were 

generated using Adobe Photoshop. In Experiment 7.1 stimuli that differed in 

orientation were used to explore the visual MMN. The stimuli were created in 

Microsoft Powerpoint and then in Adobe Photoshop. Details and a figure of the 

stimuli are shown in Section 7.4.2. 

For the experiments employing an oddball paradigm (Experiments 3.1, 3.2, 4.1, 

5.2, 7.1) pseudorandom sequences were used in the experiments to ensure that 

the sequence could be structured so that no two deviants were presented one after 

the other, which would contaminate the VEPs by evoking a visual MMN but in 

addition would reinforce a memory trace of the standard stimulus. In addition, to 

strengthen the memory trace order was constrained so that the first ten stimuli 

presented in the sequence were standards. On analysis of the data, these first ten 

standards were excluded. 
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For the experiments employing an oddball paradigm (Experiments 3.1, 7.1), as 

recommended by Kraus, Sharma, McGee, and Carrell (1995), additional deviant 

and illusory deviant ’alone’ conditions were presented. The ‘alone’ condition acts 

as a control for stimulus differences and involves presentation of the deviant / 

illusory deviant stimulus as the only stimulus in a repetitive sequence. The evoked 

response to the deviant stimulus in context was compared to the evoked response 

to the same stimulus presented alone. If an MMN is present, a relative negativity 

will be apparent only in the evoked response elicited in the context of the oddball 

paradigm and will not be present when the deviant is presented alone.  

2.3.4 Data acquisition 

In all five studies the amplifier settings were identical. EEG was acquired 

continuously with a sampling rate of 1000 Hz and amplified (x1500) before 

conversion into a digital format and saved to the computer hard drive for offline 

analysis. The continuous EEG record was marked digitally each time a stimulus 

was presented by the visual presentation computer. The markers that were sent to 

the amplifier’s digital ports via a parallel port to the acquisition computer were 

different for each type of stimulus and identified the onset of all the stimuli 

presented to the participant. These markers enabled the isolation and grouping of 

epochs that are time-locked to the same types of stimuli. 

2.3.5  Filters 

During all recordings low pass filters were set to 100Hz and high pass filters were 

set to 0.05Hz. Offline filters were set to a 1-30Hz bandpass. In addition, all offline 

filtering in this thesis was performed using digital filters set to prevent phase-

shifting  of frequencies which can distort waveform morphology (Picton, Bentin, et 

al., 2000). 

2.3.6  Electrodes 

Electrodes were used to make the connection between the conducting fluid of the 

tissue in which the electrical activity is generated and the input to the amplifiers 

(Cooper, Osselton, & Shaw, 1969).  
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2.3.6.1 Scalp electrodes 

Prior to the placement of the electrodes, the skin on the scalp was abraded using 

Neuroprep (Nihon Kohden Ltd.) to reduce electrode impedance (Picton et al., 

1995) and the electrodes were attached to the scalp using Elefix conductive gel 

(Nihon Kohden Ltd). The conductive gel reduces the amount of resistance created 

between the conductive fluid of the tissue and electrode. The electrode locations 

were based on the International 10-20 system of electrode placement (Jasper, 

1958). This system is based on specific measurements from skeletal structures 

designed to ensure that the electrodes are place over the same cortical areas 

irrespective of variations in head size. In accordance with the International 10-20 

system head measurements were taken with a tape measure and electrodes 

placed over pertinent cortical areas.  Grasse silver-silver chloride (Ag/AgCl) 

electrodes were used to record all data from the scalp and the impedance of the 

electrodes during the recordings was maintained below 10KOhms. The EEG was 

recorded using electrode montages that varied from one study to another. All 

montages used, had numbers of electrodes that met or exceeded the minimum 

recommended by ISCEV (Odom et al., 2010). 

2.3.6.2 Intracranial electrodes  

Implantation of a subdural electrode array (SEA) and a strip enabled recordings 

directly from the cortex. The SEA and strip consisted of platinum electrodes 

embedded in a one and a half millimetre thick flexible plastic sheet. Centre-to-

centre distances between electrodes were ten millimetres. Many metals cause 

inflammatory reactions when implanted in the brain tissue for periods of longer 

than one to two days. Silver, silver-chloride, copper, tungsten, gold and platinum 

electrodes will all evoke reactions (Cooper & Crow 1966) but tungsten, gold and 

platinum are the most innocuous. Please refer to Section 4.3.3 for more details. 

2.3.6.3 Reference electrode 

Measurement of the EEG is dependent on the calculation of the electrical potential 

difference between two electrode locations. EEG recordings are the result of the 

difference in voltage between the reference electrodes and each active scalp 
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electrode. The reference electrode is often placed at a neutral site such as the 

nose, earlobes or mastoids in order to minimise activity from the reference (Luck, 

2005). Current EEG data acquisition systems such as Neuroscan enable the re-

referencing of the data following acquisition. In the experiments reported in this 

thesis, the reference and ground electrode were placed at the right and left mastoid 

respectively Following acquisition, data was referenced to either Fz – which is 

customary to resolve activity generated in the posterior visual areas (Tales et al., 

1999), or to averaged mastoids which is a commonly used as a reference 

electrode to explore P3 activity (Stagg et al., 2004) .   

2.3.7 Off line data analysis 

2.3.7.1 ERP construction 

The EEG was segmented into epochs from -100 ms before stimulus presentation 

to +500 ms post stimulus presentation unless otherwise stated. The data was 

artifact rejected using an automated procedure that rejected epochs with data from 

any channel exceeding an amplitude of ±100 µV. After artifact rejection the epochs 

were averaged into different groups. Averages were constructed of all standards 

before deviants and deviant/illusory deviant epochs. In addition, averages of all 

deviants presented in an ‘alone’ condition were constructed. During experiments a 

minimum of 100 deviants were presented, This ensured that even after artifact 

rejection, averages were constructed from a minimum of 65 epochs. In the 

experiments with clinical populations (Experiment 4.1 and 5.2) a minimum of 30 

deviants were presented. Before measurement of the VEP component amplitudes 

and latencies all channels were baseline corrected employing an average of a 100 

ms pre-stimulus baseline as zero.  

2.3.7.2 Measurement of voltage amplitudes and latencies 

Two measures of voltage amplitudes and latencies were used in this thesis. In the 

studies in which the latency of the components was of particular interest, peak 

latency and peak-to-peak amplitude was calculated (Experiment 5.2, Experiment 

6.1 and 6.2). The peak latency of components was identified by manual analysis of 

the waveforms, the amplitude of components was measured from the peak-to-peak 
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of sequential components. In Experiments 3.1, 3.2, 4.1 and 7.1 a temporal window 

was defined based on expected component latency, location and on the grand 

average waveforms. The mean amplitude for these time windows was then 

calculated.  

2.3.7.3 Subtraction waveforms 

Visual MMN was delineated by subtracting the ERP to the standard stimulus from 

the ERP to the deviant stimulus and the ERP to the standard stimulus from the 

ERP to the deviant illusory stimulus. The emergence of visual MMN was assessed 

by t-tests as the deviance from zero on the difference potential in the time window 

ranges centred on the grand average peak latency at electrodes O1 and O2. In 

addition, the deviant/illusory deviant ‘alone’ ERP was subtracted from the 

deviant/illusory deviant ERP when the stimulus was presented in a sequence of 

standard stimuli.  The ‘alone’ condition acts as a control condition as observation of 

the MMN by subtracting the response to the standard from the response to the 

deviant may be confounded by pure stimulus differences (see Section 2.3.3). 

2.3.8 Statistical analysis 

Repeated measures Analysis of Variance (ANOVA) was used to analyse latency 

and amplitude data. When assumptions of sphericity were not met by the data and 

Mauchley’s test of sphericity was significant, Greenhouse Geisser corrections were 

applied. When significant main effects and/or interactions were observed paired t-

tests were used to compare means. In most instances Bonferroni corrections were 

applied when multiple t-tests were used. However, in more exploratory 

experiments such as those reported in Chapter 7 Bonferroni corrections were not 

applied. All exploratory analyses using uncorrected multiple t-tests are flagged at 

the appropriate point. When sample sizes were small Partial Eta Squared is 

reported. The ANOVA models used are outlined in the methods section of the 

relevant chapters.  

In supplementary analyses the presence of MMN was assessed by computing t- 

scores at each point on the subtraction waveform. This point-by-point approach is 

commonly used in the literature (Kraus et al., 1995). Using the t-test function in 
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Neuroscan Edit point-by-point algorithms (based on Student’s t) were applied to 

the subtraction waveform data (both deviant minus standard and illusory deviant 

minus standard). This enabled the comparison over time of each point on the 

difference waveforms for each electrode, comparing the relative negativity in the 

waveforms with the baseline. Significant t scores indicated a statistically reliable 

negativity in the difference waveform. As spurious significant values may occur 

across short time intervals (Guthrie & Buchwald, 1991) suggest that a waveform is 

significantly different from baseline only if obtained across an interval of at least 12 

sampling points. In the current study intervals of 20 or 30 sampling points were 

used.  

 

In order to control for pure stimulus differences point-by-point t-tests were also 

used to compare the discrimination waveform to the deviant stimulus with the 

discrimination waveform when that same stimulus was presented alone i.e. out of 

context and not in an oddball paradigm. 
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3 Can illusory deviant stimuli be used as attentional 
distracters to record visual MMN in a passive three 
stimulus oddball paradigm? 

 

3.1 Aim 

The experiments reported in this chapter aimed to evaluate an experimental 

paradigm designed to elicit, in the absence of an active task, visual discrimination 

ERP components to a change in orientation. Attentionally salient Kanizsa square 

stimuli were employed both in place of (Experiment 3.1), and alongside 

(Experiment 3.2), an active task.  Illusory figures such as the Kanizsa square 

(Kanizsa, 1976) have been shown to ‘pop-out’ of visual displays when presented in 

the context of a visual search task and, when used as visual cues, automatically 

capture spatial attention (Senkowski, Rottger, Grimm, Foxe, & Herrmann, 2005). 

To date, no other study has used an illusory figure in a passive paradigm in an 

attempt to control for the effects of attention in a visual MMN study. The 

comparison between Experiments 3.1 and 3.2 served to assess whether the 

illusory figure diverted attention away from the standard-deviant transition. 

3.2 Introduction 

In comparison to other ERP change components, such as N1, N2 and P3, the 

MMN can be elicited in the absence of attention (Pazo-Alvarez et al., 2003). 

Therefore, in order to differentiate between MMN and other ERP change 

components the participant’s attention is typically drawn away from the test stimuli, 

employing a variety of behavioural tasks. For example, in studies to elicit a visual 

MMN, Stagg et al. (2004) and Tales et al. (1999) required participants to press a 

button in response to target stimuli. Astikainen et al. (2004) used an auditory 

distraction task whereby participants were required to focus their attention on 

counting the number of words in a story whilst being presented with visual stimuli.  

One of the features of the auditory MMN is that it can be recorded even when the 

participants are not attending to the auditory stimulation.  This means that it is not 

contaminated by task related processing (Schroger, 1998). The auditory MMN is 

regarded as an automatic or pre-attentive process in that is not reliant on the 
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participant’s explicit intention to detect deviants and can be elicited in the absence 

of attention.  In keeping with this view, auditory MMN has been elicited in coma 

patients (Kane et al., 1996) and in sleeping newborn babies (Cheourluhtanen et al., 

1995). In addition, to assess whether the auditory MMN is contingent upon 

attention, studies have employed a highly demanding primary task, such as visual 

tracking, to divert the attention of the participants from the auditory input.  Although 

auditory MMN elicitation is rarely affected by attention, this approach has on 

occasion yielded conflicting results with studies showing that MMN to changes in 

frequency is not modulated by primary task complexity (Alho, Woods, & Algazi, 

1994) while complexity of visual tracking task does modulate and attenuate MMN 

in relation to changes in pitch (Yucel, Petty, McCarthy, & Belger, 2005). It is still a 

matter of debate whether the N1/N2 waves elicited by visual stimulus change 

reveal the same degree of automaticity as in the auditory MMN (Garrido, Kilner, 

Stephan, & Friston, 2009).  

Kanizsa figures are ambiguous figures in which the illusion of a square or triangle 

is perceived in the middle of inducers, such as pacmen in the absence of real 

contours. When illusory figures are presented in the context of a visual search task 

and when used as visual cues, they automatically capture spatial attention 

(Senkowski et al., 2005). The binding process that leads to the perception of an 

illusory figure, such as a square or a triangle, causes the figure to ‘pop-out’ from a 

visual display and thus, when presented in the midst of distractor stimuli, illusory 

figures capture attention (Davis & Driver, 1994).  

It has generally been understood that a concurrent active task is mandatory in 

eliciting visual MMN to control for the effects of attention so that resources are 

allocated away from the standard-deviant discrimination towards the active task 

(Czigler, 2007; Heslenfeld, 2003). However, not all patient populations can meet 

the demands of an active task. Therefore, in the present study a three-stimulus 

passive oddball paradigm was developed. Stimuli differed with regard to orientation 

of local endline type pacman figures and their information/entropy content (see 

Figure 3.1). So in addition to standard and deviant stimuli, an infrequent illusory 

deviant stimulus was introduced in order to assess the effects of an attentionally 
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salient stimulus on change detection components. The illusory deviant stimulus 

was a Kanizsa figure (Kanizsa, 1976) which formed an illusory square, a salient 

event thought to demand attention to reconstruct contours that are absent from 

visual images (J. Kaiser, Bühler, & Lutzenberger, 2004).  

The P3 component served as an indicator of the effect of the illusory deviant 

stimulus on the allocation of attention. As described in Section 1.7.4  a consistent 

finding in ERP research is that the P3 wave, a positive deflection occurring from 

280-400 ms post stimulus indicates attentional processing (for reviews see Hagen 

et al., 2006; Hruby & Marsalek, 2003; Polich & Comerchero, 2003). The P3 can be 

further divided into the subcomponents P3a and P3b. P3a is thought to originate 

from frontal attention mechanisms to task novelty and/or distractors whilst the P3b 

is thought to be generated in more temporal/parietal regions and is associated with 

context updating and memory storage operations (Polich, 2007).  

3.2.1 Rationale and predictions 

Two experiments were carried out to validate the use of an illusory deviant 

stimulus, a Kanizsa square, in orienting attention. Experiment 3.1 was a passive 

visual oddball paradigm with no behavioural task. It was predicted that 

discrimination components possibly reflecting visual MMN would be evoked by 

both the deviant and illusory deviant stimuli whilst a P3a component would be 

evident only to illusory deviant stimuli that captured attention. Experiment 3.2 

introduced a behavioural task, it was predicted that a P3b to the task stimulus 

would be evoked reflecting participant engagement with the task. If the illusory 

deviant was sufficient to occupy attention it was expected that there would be no 

effect of the task on the visual discrimination components. However, if the illusory 

deviant was not sufficient to occupy attention an effect of task may occur.   
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3.3 Methods for Experiments 3.1 and 3.2 

3.3.1 Participants 

With ethical approval and informed consent 14 healthy adults mean age 34.5 years 

± 8.6 (10 females) were recruited for Experiment 3.1 and 13 healthy adults mean 

age 29.23 ± 8.8 years (11 females) were recruited for Experiment 3.2. Participants 

reported no history of neurological disease and had normal or corrected-to-normal 

visual acuity.  

3.3.2 Stimuli and procedure 

3.3.2.1 Experiment 3.1 

Three monochrome endline type stimuli based on pacman figures were employed 

in a behaviourally silent oddball paradigm where the ratio of standards to deviants 

and illusory deviants was 8:1:1. The stimuli (see Figure 3.1) differed from each 

other only in terms of the orientation of elements, which were oriented 

unsystematically around their axes for the standard and deviant stimuli and formed 

an illusory Kanizsa figure for the illusory deviant stimulus. The stimuli appeared on 

a computer screen for 400 ms with an inter-stimulus interval of 600 ms, the stimuli 

subtended 4 degrees. In Experiment 3.1 the stimuli were presented in five blocks 

of 225 stimuli with up to a minute break between blocks. At the end of the oddball 

recording, blocks of 64 deviants and illusory deviants ‘alone’ were presented. For 

further details of the stimuli and protocol please refer to Sections 2.3.2 and 2.3.3. 
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                       a)                                      b)                                     c) 

 

Figure 3.1 Stimuli presented in an oddball paradigm  

Pseudorandom sequences of 8:1:1 respectively a) standard, b) deviant and c) 
illusory deviant forming a Kanizsa square 

3.3.2.2 Experiment 3.2 

The same stimuli and procedure as in Experiment 3.1 were utilised with the 

exception that an active attention task was embedded in the 3 stimulus oddball 

paradigm. Within the blocks of 225 stimuli, during the inter-stimulus interval (ISI), a 

small red square replaced the small red fixation dot on 22 trials chosen at random.  

The red square appeared at the start of the 600 ms ISI and stayed on the screen 

for 200 ms. Participants were instructed to focus their attention on the red fixation 

dot and press the right hand button of a mouse as quickly as possible whenever 

the red square appeared. Inclusion criteria were based on participants correctly 

detecting the target on 90% or more trials. 

3.3.3 EEG recording and analysis 

For both experiments, nineteen Ag/AgCl electrodes were used to record the EEG 

activity and were positioned at sites in accordance with the International 10-20 

system (Fz, F3, F4, Cz, C3, C4, T3, T4, Pz, P3, P4, Oz, O1, O2, T5, T6, VEOG, 

M1, M2). The reference electrode and the ground electrode were placed at the 

right and left mastoid respectively. An electrode was placed above the left eye to 

enable online artifact rejection of eye blinks. Continuous EEG was collected using 
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Neuroscan-SCAN version 4.3at a sampling rate of 1000Hz, with a low pass of 

100Hz and a high pass of 0.05Hz and stored on a computer for offline analysis.  

Continuous EEG data were epoched offline  -100 ms pre-stimulus to +500 ms post-

stimulus. The epochs were digitally filtered with a band pass 1-30Hz and baseline 

corrected. Epochs containing transients greater than ± 100μV were excluded from 

further analysis. For each participant, ERPs were averaged separately for 

standard, deviant and illusory deviant stimuli employing Fz as a reference and 

grand average waveforms were constructed. Additional ERPs were constructed in 

Experiment 3.2 for the red fixation dot and for the red square that replaced the 

fixation dot on a number of trials. ERPs to standard stimuli were constructed from 

epochs that preceded deviant stimuli. As in previous studies (Stagg et al., 2004; 

Tales et al., 1999), averaged mastoids were employed as a reference to 

investigate P3 activity. 

From the grand average waveforms MMN-like differences were identified on the 

basis of known negative polarity, known emergence over posterior electrode 

positions and typical latency range (100-250ms post stimulus: Pazo-Alvarez et al., 

2003). In each study, the maximal difference between ERPs to standards and 

deviants was identified at occipital sites and a 20 ms time window was centred at 

this latency for electrodes P3, P4, O1, O2, T5, T6 (Astikainen et al., 2008). Mean 

amplitudes for the time windows were calculated relative to the mean voltage of a 

100 ms pre stimulus baseline for each participant for the standard, deviant and 

illusory deviant stimuli. The mean amplitudes were analysed using Analysis of 

Variance (ANOVA). In addition, subtraction waveforms were constructed of deviant 

minus standard and illusory deviant minus standard for Experiment 3.1.  

3.3.4 Results 

3.3.4.1 Experiment 3.1 

A visual response was recorded in all participants consisting of a P1-N1-P2 

waveform. Grand average waveforms were constructed for the standard, deviant 

and illusory deviant stimuli (see Figure 3.2 for waveforms at electrodes O1 and 

O2). The maximal difference between ERPs to standards and deviants was at 
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approximately 180 ms post-stimulus at occipital electrodes. Mean amplitudes and 

standard deviations for the standard, deviant and illusory deviant in the 170 – 190 

ms time window are shown in Table 3.1.  

 

 

 

Figure 3.2 Grand average waveforms referenced to Fz at electrodes O1 and O2. 

A: Standard, deviant and illusory deviant stimuli B: Deviant minus standard 
subtraction waveforms, C: Illusory deviant minus standard subtraction waveforms.  
Note the discrimination responses in B and C with an additional negative 
component in C corresponding to an inverted P3 (Negative upwards). 

 

 

 

 

C 

B 

A 



56 
 

Table 3.1 Mean amplitude (µV) and standard deviation (SD) for each stimulus type at 
electrode sites for the 170-190ms time window for the passive task (n=14) 

 

Electrode 

Site 

Mean amplitude (µV) and Standard Deviation (±SD) 

Stimulus 

 Standard Deviant Illusory Deviant 

O1 2.98 ± 2.32 5.67 ± 3.36 7.10 ± 4.10 

O2 3.11 ± 2.73 5.66 ± 3.38 7.33 ± 4.38 

P3 1.99 ± 1.68 3.75 ± 2.85 5.03 ± 3.49 

P4 1.90 ± 1.91 3.43 ± 2.27 5.08 ± 3.12 

T5 2.36 ± 2.03 4.59 ± 2.75 5.42 ± 3.07 

T6 2.62 ± 1.83 4.70 ± 2.24 5.13 ± 2.75 

A three-way within subjects ANOVA was used to analyse these mean amplitude 

data. Pair-wise comparison of means was carried out using bonferroni corrected t-

tests. Factors were location (occipital, parietal, temporal), hemisphere (left, right) 

and stimulus (standard, deviant and illusory deviant). The amplitude differed 

significantly with location (F(2,26)= 11.880 p <0.001) and  stimulus type (F(2,26)= 

15.886; p <0.001) but not with hemisphere (F(1,13)= 0.233;  p = 0.794). There was 

a statistically significant interaction between location and stimulus (F(4.52)= 6.503 ; 

p = 0.001 p <0.001), indicating that the amplitude of the deviant stimulus was 

greater than the standard stimulus at occipital (t = 4.004; df = 13; p = 0.002) and 

temporal electrodes (t = 4.552; df = 13; p = 0.001) and that the amplitude of the 

illusory deviant was greater than the standard at occipital (t = 4.507; df = 13; p = 

0.001), temporal (t = 4.552; df = 13; p = 0.001) and parietal electrodes (t = 4.276; 

df = 13; p = 0.001).  

Difference waveforms of deviant minus standard and illusory deviant minus 

standard both revealed visual MMN components (Figure. 3.2B and C respectively). 

When comparing the deviant to the standard ERP, using the point-by-point t-test 
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algorithm (p< 0.05; one-tailed), against baseline there were significant differences 

at O1 between 173-217ms (181-203 ms; p< 0.01) and at O2 between 178-208 ms 

(185-196 ms); p< 0.01). Comparing the illusory deviant to the standard ERP 

against baseline, there were significant differences (p< 0.05; one-tailed) at O1 

between 164-212 ms (175-203 ms; p< 0.01) and at O2 between 169-212 ms (181-

199 ms; p< 0.01). 

Illusory deviant stimuli evoked an additional late negative component at 234 ms at 

Oz. To examine whether this component corresponded to an inverted P3 

component the waveforms were re-referenced to averaged mastoids. This 

revealed a positive component over the fronto-central electrode sites 

corresponding to P3a. At Fz this component had an onset latency of 244 ms, 

SD=13 ms and a peak latency of 290ms, SD=27 ms with a peak amplitude of 

4.19µV, SD=2.06 µV (see Figure 3.3). 

As a method of control, to examine whether the differences observed in the 

subtraction waveforms were confounded by pure stimulus differences, the 

discrimination waveform to the deviant stimulus was compared to the 

discrimination waveform when that same stimulus was presented alone i.e. out of 

context and not in an oddball paradigm. Point-by-point t-tests revealed no 

significant differences between the deviant-standard and deviant - deviant alone 

waveforms suggesting that when the deviant stimulus was presented alone and out 

of context it behaved in a similar way to the standard stimulus even though it was 

physically different. The same procedure was used to compare the illusory deviant 

stimulus in the context of an oddball paradigm with the illusory deviant stimulus 

presented alone. Similarly, there were no significant differences between the 

illusory deviant-standard and illusory deviant alone-illusory deviant waveforms.    
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Figure 3.3 Grand average waveforms for standard, deviant and illusory deviant 
stimuli at Fz, Cz, O1, Oz and O2 referenced to averaged mastoids.  

Note the P3a component seen only to illusory deviant stimuli at Fz and Cz (Negative 

upwards). 

3.3.4.2 Experiment 3.2 

As in Experiment 3.1, a visual response was recorded for all participants consisting 

of a P1-N1-P2 waveform. Grand average waveforms were constructed for the 

standard, deviant and illusory deviant stimuli (see Figure 3.4 for waveforms at 

electrodes O1 and O2). The maximal difference between ERPs to standards and 

deviants was at approximately 160ms post-stimulus at occipital sites. Mean 

amplitudes and standard deviations for the standard, deviant and illusory deviant in 

the 150-170 ms time window are shown in Table 3.2. 
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Figure 3.4 A: Grand average waveforms referenced to Fz for standard, deviant and 
illusory deviant stimuli at electrodes O1 and O2.  

Note the P3a component seen only to illusory deviant stimuli, B: deviant minus 
standard subtraction waveforms, C: illusory deviant minus standard subtraction 
waveforms, D: grand average waveforms for the rarely occurring red fixation square 
and for the central fixation dot. Note the attenuated visual MMN in B and the P3b 
wave to the task in D (Negative upwards). 
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Table 3.2 Mean amplitude (µV) and standard deviation for each stimulus type at 
electrode sites at 150-170ms for the active task (n=13) 

 

Electrode 

Site 

Mean amplitude (µV) and Standard Deviation (±SD) 

Stimulus 

 Standard Deviant Illusory Deviant 

O1 4.12 ± 2.22 5.12 ± 2.10 7.24 ± 2.79 

O2 5.20 ± 3.40 6.25 ± 3.43 9.27 ± 5.20 

P3 2.32 ± 1.76 2.79 ± 1.83 3.51 ± 2.22 

P4 3.50 ± 2.33 4.07 ± 2.01 5.56 ± 3.28 

T5 3.23 ± 1.75 4.18 ± 1.82 5.20 ± 2.00 

T6 4.90 ± 2.35 5.64 ± 2.36 7.48 ± 3.92 

A three-way within subjects ANOVA was used to analyse these mean amplitude 

data. Pair-wise comparison of means was carried out using bonferroni corrected t-

tests. Factors were location (occipital, parietal, temporal), hemisphere (left, right) 

and stimulus (standard, deviant and illusory deviant). The amplitude differed 

significantly with location (F(2,24)= 16.874 ; p <0.001), hemisphere (F(2,24)= 

7.059; p =0.021) and stimulus type (F(2,24)= 14.254; p <0.001). There was a 

significant interaction between location and stimulus (F(4.48)= 10.636 ; p < 0.001) 

indicating that the amplitude of the deviant stimulus was greater than the standard 

stimulus at occipital (t = 3.796; df = 12; p = 0.003) and temporal (t = 3.147; df = 12; 

p = 0.008) electrodes. The amplitude of the illusory deviant stimulus was greater 

than the standard stimulus at occipital (t = 4.494; df = 12; p = 0.001), temporal (t = 

4.425; df = 12; p = 0.001) and parietal (t = 4.105; df = 12; p = 0.001) electrodes. 

There was a significant interaction between hemisphere and stimulus (F(2,24)= 

3.402; p =0.050) indicating that in the left hemisphere the mean amplitude was 

greater for the deviant (t = 4.194; df = 12; p = 0.001) and illusory deviant  (t = 

5.536; df = 12; p < 0.001) than for the standard. In the right hemisphere the mean 
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amplitude of the illusory deviant (t = 5.944; df = 12; p < 0.001) was greater than the 

standard as was the deviant but to a lesser extent (t = 2.952; df = 12; p = 0.012). 

Difference waveforms of deviant minus standard and illusory deviant minus 

standard both revealed attenuated visual MMN components (Figure. 3.4 B and C 

respectively). When comparing the deviant to the standard ERP, using the point-

by-point t-test algorithm (p< 0.05; one-tailed) against baseline, there were 

significant differences at O1 between 138 and 176 ms but no significant differences 

were apparent at O2, in keeping with the interaction between hemisphere and 

stimulus found for the amplitude data. When comparing the illusory deviant to the 

standard ERP against baseline, there were significant differences (p< 0.05; one-

tailed) at O1 between 142 and 178ms and at O2 between 147 and 177ms. 

Illusory deviant stimuli evoked an additional late negative component at occipital 

electrodes. When re-referenced to averaged mastoids this component was positive 

over the fronto-central electrode sites corresponding to P3a. At Fz this had an 

onset latency of 223 ms, SD=18 ms and a peak latency of 282 ms, SD=22 ms with 

a peak amplitude of 5.17µV, SD=2.72 µV. 

All participants completed the active task (pressing the mouse when the red 

fixation dot was replaced with a red fixation square) within the limits of the inclusion 

criteria. As expected, the active task evoked a P3b component consistent with the 

allocation of attentional resources to this task (see Figure 3.4D). 

3.4 Discussion 

The main result from this study is that visual discrimination responses including 

visual MMN components have been recorded in a behaviourally silent oddball 

paradigm to a change in orientation. The stimuli utilised in this study evoked a 

response that was more negative to the deviant stimuli than to the standard stimuli 

in the period 150 – 200 ms after stimulus onset. Physical differences between the 

stimuli can contribute to such a finding, as demonstrated by the larger amplitude 

for standard - illusory deviant comparison relative to that for standard – deviant in 

both experiments.  However, the employment of ‘deviant alone’ and ‘illusory 

deviant alone’ conditions served as controls (see Section 2.3.3). Subtraction 
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waveforms using the method suggested by Kraus et al. (1995) for delineating the 

MMN reveal that the difference in negativity was attributable not to physical 

differences in the stimuli themselves, but by the context in which the stimuli were 

presented. The latency of the responses in the current experiments are consistent 

within the general window for visual MMN responses of between 100-250 ms 

(Pazo-Alvarez et al., 2003) although it is known that latency and duration of visual 

MMN will differ according to stimulus characteristics and task complexity with less 

salient changes and more complex rules resulting in longer latency and less phasic 

visual MMN responses (Czigler, Weisz, & Winkler, 2006).   

The presence of a P3a over frontal/central electrodes for the illusory deviant grand 

average waveform but not for the standard or deviant grand average waveforms in 

Experiments 3.1 and 3.2, suggests that the Kanizsa square captured attention. 

This finding is consistent with research by Senkowski et al. (2005) who found that 

Kanizsa figures automatically capture spatial attention when used as visual cues 

and Wallach and Slaughter (1988) who reported that familiarity of the illusory 

shape increases the likelihood that the shape will be perceived. The enhanced 

visual N1 amplitude component at the lateral occipital electrodes that was 

observed in both Experiment 3.1 and 3.2 is also consistent with the illusory deviant 

stimulus having captured attention (Vogel & Luck, 2000). 

As with several other studies (e.g. Clery, Andersson, Fonlupt, & Gomot, 2013; 

Czigler & Pato, 2009; Tales et al., 1999) an active control task was incorporated in 

Experiment 3.2. Participants were required to press a button at the occurrence of a 

change in shape of the central fixation dot. The understanding here is that 

attentional resources are drawn from the standard-deviant discrimination to the 

active task. The elicitation of a P3b in Experiment 3.2 reflected engagement with 

the task. Under these conditions the existence of visual MMN responses was 

confirmed although they were significantly reduced in amplitude. The attenuation of 

the visual MMN responses when an active task was incorporated in the paradigm 

reveal that visual MMN elicitation is to some degree modulated by attention. 

Without the control task this would imply that the enhanced negativity exhibited by 

the deviant compared to the standard in Experiment 3.1 may not depend on 
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attention. Extra deviant stimuli conceptulised as distractor stimuli have also been 

used in the auditory modality to manipulate attention. For instance, Schröger, 

Giard, and Wolff (2000); Schröger and Wolff (1998)  in an auditory duration 

discrimination task found that task irrelevant distractors in the form of small 

changes in frequency prolonged reaction times and elicited MMN and P3a 

components, reflecting orientation towards the distractor.  

Some previous studies on visual MMN have tended to engage active tasks 

embedded in more peripheral areas of the visual field than the current experiments 

and one study specifically set out to assess the contribution of the magnocellular 

system (Kremlacek et al., 2006). This pathway forms the dorsal stream and is not 

sensitive to colour or detail but is thought to be responsible for pre-attentive 

detection of motion stimuli. Whilst in the present study we cannot exclude the 

contribution of the magnocellular system, our findings of a visual MMN in the 

macular field at 4 degrees visual angle also reveals the contribution of the 

parvocellular system and ventral stream in detecting differences in the sequence of 

unattended central stimuli. The parvocellular system is particularly adapted to 

colour and high contrast black and white detailed information.  Thus, the present 

findings are consistent with earlier work using an active task to show a visual MMN 

at a visual angle of 2 degrees (Besle et al., 2005).  

In conclusion, it is suggested that visual discrimination potentials containing visual 

MMN components can be elicited using a paradigm with no task demands. The 

existence of attenuated visual MMN when participants engaged in an active 

distractor task supports the contention that the illusory square was unable to 

command all resources away from the standard-deviant comparison. This suggests 

that visual MMN elicitation was modulated by attention. The presence of these 

discrimination responses in a clinical group may provide useful information on the 

functioning of the visual cortex.  
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4 Intracranial recording of visual evoked potentials 

4.1 Aim 

A 15 year old male with focal epilepsy undergoing pre-surgical evaluation for 

resection of a right anterior parietal lesion provided the opportunity to examine 

whether there was a dissociation of detection and discrimination components of the 

visual ERP. The aim of the experiment was to investigate whether visual N1 and 

visual MMN could be recorded directly from the cortex in a child and if they could 

be separated temporally and/or spatially to delineate different cortical areas 

involved in visual discrimination. To date, no other study has explicitly recorded 

activity related to the visual MMN intracranially in a passive oddball paradigm.   

4.2 Introduction 

Understanding the automatic detection of change in an ever changing environment 

is an important topic in the neuroscience literature. EEG research has investigated 

the automatic detection of change through the use of the MMN. Discovering the 

source of the underlying cognitive activity related to discrimination processes is 

important because the localisation of electrophysiological correlates cannot be 

verified until it is supported by finding its local generator (Roman, Brazdil, Jurak, 

Rektor, & Kukleta, 2005) (see Sections 4.2.1 and 4.2.2). In addition, in a number of 

clinical conditions such as schizophrenia (Rosburg et al., 2005) there is a reduction 

in MMN generation (for a review see Näätänen et al., 2012).  Therefore, 

identification of the anatomical correlates of this reduction may provide insights into 

clinical conditions.  

4.2.1 The inverse problem 

Establishing the location of underlying neural generators from neural activity 

recorded by scalp electrodes is a difficult issue to solve. This issue is an example 

of an ‘inverse problem’. In this context, the inverse problem arises from attempting 

to predict the neural generators of cognitive processes from voltage distributions 

recorded at the scalp. However, the activity recorded from the scalp may result 

from an infinite number of generator sources. A number of computational methods 
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have been devised to address this issue and a number of source location 

packages are available that all use some form of factor analysis/principal 

component analysis (PCA) to estimate the contribution of an underlying source to 

surface activity e.g. brain electrical source analysis software (BESA) and 

standardized low resolution brain electromagnetic tomography (sLORETA) 

(Pascual-Marqui, 2002). These enable estimation of dipole sources and source 

waveforms of components. However, none of these algorithms can provide a 

unique solution, instead providing computational evidence for what may be an 

underlying source. For a review of solutions to the inverse problem in EEG source 

analysis see Grech et al. (2008). 

The source of the neural generators of deviant related negativity has been 

investigated using a number of methods including EEG, intracranial EEG (iEEg), 

fMRi, and MEG. In the auditory modality, evidence from topographical (Scherg, 

Vajsar, & Picton, 1989), brain lesion (Knight, Hillyard, Woods, & Neville, 1980), 

intracranial studies in animals (Csepe, Karmos, & Molnar, 1987), intracranial 

studies in adults (Halgren et al., 1995) and children (Liasis et al., 2000) indicate the 

primary involvement of the bilateral temporal generators and the frontal generators 

(Liasis et al., 2001).  The neural correlates of the underlying cognitive activity 

relating to the visual MMN, is less well understood, although current understanding 

suggests that neural generators for the visual MMN are located in the visual 

extrastriate areas (Urakawa, Inui, Yamashiro, & Kakigi, 2010) and the prefrontal 

areas (Kimura et al., 2010), typically limited or lateralised to the right hemisphere, 

for a review of studies see (Kimura, 2012). 

4.2.2 Intracranial recordings 

The placement of electrode arrays under the dura directly on the surface of the 

cortex and/or depth electrodes implanted within the cortex enable recording directly 

from the brain.  This procedure is typically performed clinically in order for 

epileptogenic zones to be identified for surgical removal for the treatment of severe 

intractable epilepsy. These intracranial recordings have proved a useful tool in 

providing a window into the neural mechanisms underlying visual (Clarke, Halgren, 
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& Chauvel, 1999a), auditory (Liasis et al., 2001; Liasis et al., 1999) and 

somatosensory (Spackman et al., 2010) discrimination. 

It is difficult to establish the source of the neural generators of electrophysiological 

correlates of cognitive processes from scalp electrodes - although temporal 

resolution is excellent, spatial resolution is poor compared to other methods. One 

of the problems with the use of scalp electrodes is that they are recording activity 

that is the result of a number of overlapping sources and they pass through tissue 

and bone of varying conductance. This varied conductance of potentials leads to 

the EEG being recorded over wide areas of scalp and also leads to a reduction in 

amplitude (Hashiguchi et al., 2007). Intracranial recordings are not impeded by 

barriers in conduction from the scalp and the skull and they have a higher signal-to 

noise ratio as there are no muscle movement and eye artifacts (Cooper et al., 

1969). Responses recorded intracranially are sometimes inverted in comparison to 

those recorded using scalp electrodes. Intracranial recordings offer the excellent 

temporal resolution of the EEG, in the order of milliseconds, but offer improved 

spatial resolution compared to scalp electrodes by recording directly from the 

cortex of the brain, closer to the generator sources, which is limited only by the 

electrode size and spacing (Cooper, Winter, Crow, & Walter, 1965; Roman et al., 

2005). However, this methodology is limited in that subdural and depth recordings 

cannot be taken from a normal population and may therefore not necessarily 

record a normal response. Furthermore, in a practical sense, the location of the 

electrodes is limited and based on clinical need, rather than research priorities.  

4.2.3 Intracranial studies of visual discrimination 

A number of studies have used intracranial recordings to infer the neural generator 

sources of visual discrimination processes (Baudena, Halgren, Heit, & Clarke, 

1995; Brázdil, Dufek, Jurák, Rektor, & Daniel, 2001; Clarke et al., 1999a; Clarke, 

Halgren, & Chauvel, 1999b; Halgren et al., 1995; Kukleta, Brazdil, Roman, & Jurak, 

2003; Roman et al., 2005). The visual oddball paradigm, where an infrequent or 

‘deviant’ stimulus is presented in a pseudo random sequence of frequent or 

‘standard’ stimuli, or a ‘target’ stimulus is presented at lower probability than a 

‘non-target’ stimulus, has been utilised in a number of intracranial studies to 
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explore the underlying neural generators of visual discrimination processes that 

can be recorded from scalp electrodes. Many of these studies have involved an 

active task whereby a target stimulus has to be identified by the participant, by 

either pressing a response button or by mentally counting the targets. 

 Clarke et al. (1999b) recorded intracranial ERPs from 13 patients undergoing pre-

surgical evaluation for intractable epilepsy. A lateralised visual oddball task was 

used to evoke P3 activity. Participants had to respond manually to a target stimulus 

which was presented on 25% of the trials and ignore the standard stimulus which 

was presented on 75% of the trials. The stimuli, an X and an O, were presented in 

a pseudo-random sequence. Whilst the patients carried out the task, ERP 

recordings were taken from intracranial depth electrodes that, across the group, 

were at temporal, parietal and frontal lobe sites. ERPs to target stimuli showed 

enhanced amplitudes and distinct N2-like and P3-like components, with the P3-like 

components being larger in amplitude in ventrolateral prefrontal and hippocampal 

areas than in the lateral temporal lobes, suggesting different cognitive generators. 

Although a lateralised task was used, there were no lateralised ERP effects, 

implying that inter-hemispheric integration was more important than hemispheric 

lateralisation for this type of task. 

Brazdil et al. (1999) used depth electrodes located in frontal and temporal lobes 

and a scalp electrode at CPz in twelve intractable epilepsy patients to record ERPs 

in a visual oddball paradigm using an X as a rarely presented target stimulus and 

an O as the frequently presented standard stimulus. Participants were asked to 

respond to the target stimulus by pressing a button, while silently counting the 

number of targets. Their findings indicated generators in the frontal lobe sites - 

orbitofrontal, dorsolateral prefrontal and anterior cingulate, for a triphasic negative 

positive negative waveform (N2-P3-SW).  The positive wave, peaking at about 

300-400 ms, they identified as corresponding to a P3a novelty orienting response. 

Further, a broad positivity at 400-600ms probably corresponding to the scalp 

recorded P3b was observed. The generators for this component  were localised to 

medial temporal structures.  
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Roman et al. (2005) took intracerebral recordings using depth electrodes from 17 

participants with intractable epilepsy whilst they carried out a task. Participants 

were presented with X (target) and O (standard) stimuli in a random sequence 

within a visual oddball task, and had to respond to the target stimulus by pressing a 

button and also to count silently the target stimuli. Patterns of intracerebral 

activation included triphasic N2a-P3a-SW and a P3b. Intracerebral P3 was 

recorded to visual stimulation, to motor responses, and a P3 was recorded that 

was not locked to either the stimulus or to the required motor response. The P3s 

were diffusely distributed in the brain and the authors concluded that it was unclear 

how the intracerebral P3 generators contribute to the scalp recorded potentials. 

The above studies add confirmatory evidence of the temporal and spatial 

distribution of some attentional components. The depth studies indicate that there 

are subcortical sources to these scalp or subdural recorded potentials. This is the 

first study to examine pre-attentive visual discrimination intracranially. Further, to 

my knowledge there is no study to date that has used an oddball paradigm with no 

behavioural task to elicit visual MMN components. The aim of the current study 

was to explore whether there was a dissociation of detection and discrimination 

components of the visual ERP in a single participant. It was predicted that there 

would be dissociations.  

4.3 Methods 

4.3.1 Participant 

With hospital ethical approval and parental consent, data were collected from a 

child with a 16 mm hyperintense lesion within the surface of the right parietal lobe, 

close to the motor region, identified as a Dysembryoplastic Neuroepithelial Tumour 

and resultant medically intractable symptomatic focal epilepsy. Prior to a focal 

cortical resection, the child was undergoing pre-surgical invasive monitoring. A 

temporary subdural electrode array (SEA) and strip electrodes were implanted to 

localise seizure foci (see Section 4.3.3 below).  Areas of functional cortex were 

also studied. The patient was a 15 year old male with seizure onset at 12 years of 

age. Development up to the age of 12 was normal and initial assessments found 
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the child within the normal range of intellectual ability, with no behavioural 

difficulties.  However, increased seizures had impacted on intellectual ability and 

moderate learning difficulties were diagnosed prior to surgery, with specific 

impairments in processing speed and visual memory.  In addition, by the time of 

admission for surgery, attentional and behavioural problems had developed. The 

child was having 12-16 seizures clusters a month with both tonic and clonic 

phases, characterised by becoming unresponsive and rigid and all four limbs 

jerking. The seizures usually lasted about a minute and occurred in clusters of 20 

or more.  In addition, episodes of peri-ictal mental state changes occurred, which 

include altered perception and a degree of agitation. 

4.3.2 Stimuli and procedure 

The stimuli used were the three monochrome endline type stimuli based on pac-

men figures that were employed in Experiment 3.1 (see Section 3.3.2.1). The 

stimuli appeared on the screen for 400 ms with an inter-stimulus interval of 600 ms 

and the patient was asked to focus on the red fixation dot in the centre of the 

screen. Beyond this request there were no task demands. The recording session 

lasted less than half an hour and was performed on the telemetry ward, with the 

patient sitting up in bed viewing a monitor which was placed 1 m in front of him. 

Due to the difficulties of recording in a clinical environment such as this, only two 

blocks of the 225 stimuli were presented. The recording was paused when the 

patient’s attention to the screen wandered, as assessed by observation. No ictal 

events occurred during the recording. 

4.3.3 Subdural electrode implantation and electrodes 

Before surgical implantation of the electrodes, an MRI was taken and used to 

construct a three-dimensional (3D) image of the patient’s skull and cortex. During 

surgical implantation of the electrode array, the 3D image was co-registered to the 

patient’s head by taking a number of scalp co-ordinates and using the Image 

Guidance System (IGS) (see Figure 4.1). Once co-registered, the surgeon could 

use the IGS software to navigate around the virtual brain locating structures visible 

to MRI but not to the naked eye. The SEA and strip were implanted under general 
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anaesthesia through a craniotomy. A photograph of the cortex pre and post 

electrode implantation allowed individual SEA contacts to be mapped to fissures 

and blood vessels (see Figure 4.2). Following insertion of the electrodes, the bone 

flap was replaced and the electrical wires brought through the scalp and connected 

to the telemetry machine for monitoring of electrical activity. Monitoring of the 

patient using telemetry and video to observe epileptogenic activity took place over 

five days prior to surgery. 

Based on clinical need to demarcate the area of cortical abnormality, a 32-contact 

subdural platinum grid was implanted, straddling the parietal and pre-motor gyri, 

along with a 6-contact strip extending posteriorly over the inferior parietal cortex 

such that the most distal contact (S1) overlay the right occipital cortex (Figure 4.1).  

The SEA and strip consisted of platinum electrodes embedded in a one and a half 

millimetre thick flexible sheet. Centre to centre distances between electrodes were 

ten millimetres. The clinical need for the strip electrodes is that when testing the 

hypothesis that the seizures are arising from a particular locus, it is common 

practice to have at least some contacts distal from the area of the lesion to assess, 

as far as is practicable, whether seizure onset is confined to the area close to the 

lesion.  

Following electrode placement, functional stimulation was carried out by Dr Stewart 

Boyd, Consultant Clinical Neurophysiologist as part of the clinical assessment of 

the patient. The stimulation aids in the functional mapping of cortical anatomy.  

Functional stimulation of electrode G28 highlighted in green in Figure 4.1 evoked 

movement in the fingers, stimulation of electrode G26, highlighted in brown, 

evoked movement in the left lower jaw and stimulation of electrodes G17 and G18 

(highlighted in blue) evoked movement of the left lower face. The 6 contact strip 

extends across the lower portion of the parietal lobe and occipital lobes but does 

not reach the occipital pole. Reconstruction of the electrode placement with the 

surface-rendered scan suggests that the strip lies below the angular gyrus (BA39) 

and traverses the caudal portion of the supramarginal gyrus (BA40) onto V2 

(BA19) and V3 (BA18) (see Section 1.3). 
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Figure 4.1 3D MRI reconstruction and co-registered subdural electrodes, highlighted 
pink area denotes surface visible lesion.  

Functional stimulation of:  electrode G28 (highlighted in green) evoked movement in 
fingers; G27 (highlighted in brown) evoked movement in mouth; G17 and G18 
(highlighted in blue) evoked movement of the lower jaw. 

 

 

Figure 4.2 Photograph of exposed cortex and 32 contact subdural electrode array in 

place 
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4.3.4 EEG recording and data analysis 

The intracranial reference electrodes G1 and G2 were selected for the intracranial 

recording as they were distal from locus of the epileptogenic activity. Continuous 

EEG was collected using Neuroscan-SCAN version 4.3 (see Section 2.2). 

Continuous EEG data were processed offline into epochs from -100 ms pre-

stimulus to +500 ms post-stimulus. The epochs were digitally filtered with a band 

pass 1-30Hz and baseline corrected. Due to limited data, no artifact rejection 

settings were applied. ERPs were averaged separately for standard, deviant and 

illusory deviant stimuli employing G25 and G26 as an averaged reference, as 

these electrodes were distal from the epileptogenic activity and from the electrodes 

over the occipital areas. Average waveforms were constructed from 36 epochs for 

each of the stimuli. ERPs to standard stimuli were constructed from epochs that 

preceded deviant stimuli – these were randomly selected. Subtraction waveforms 

were constructed by subtracting the standard from the deviant waveform.  

4.4 Results 

As expected, greater amplitudes were recorded using intracranial electrodes in 

comparison to those typically recorded from scalp electrodes, and responses were 

inverted. A negative positive negative complex was recorded to all stimuli at the 

most posterior electrode sites (S1, S2 and S3) (Fig 4.3A) indicating visual stimulus 

detection. The latency and amplitude of the first major negative component (N1) 

was similar for standard, deviant and illusory deviant stimuli (153ms and -32.39uV, 

153ms and -48.54uV, and 162ms and -45.50uV, respectively). Responses to 

stimulus discrimination (visual mismatch) were recorded more anteriorly at (S3) 

and (S4) and were characterised by enhanced positivities at about 90ms (42.32uV) 

and 219ms (87.21uV) for S3 and enhanced positivities at 88ms (28.55uV) and 

237ms (45.93uV) for S4, either side of the major negative component (Figure 

4.3A). Subtraction waveforms (deviant-standard) revealed a discrimination 

response with positive peaks at 86ms and 219ms for electrode S3 and 93ms and 

233ms at electrode S4 (Figure 4.3B).   
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A )                                                                                         B) 

 

Figure 4.3 Standard, deviant and subtraction waveforms from the six strip contacts 

A) Standard (green line) and deviant (red line) waveforms from the six strip 
contracts. At S1 and S2 the illusory deviant waveform did not differ from the deviant 
or standard and no consistent changes were seen at S3 and S4. For reasons of 
clarity the illusory deviant waveform is not shown. Peak amplitude at N1 and 
inverted discrimination components shown by the grey shaded area. B) Deviant 
minus standard subtraction waveforms (grey lines). Note the discrimination 
responses highlighted with grey arrows. (Positive upwards). 
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Figure 4.4 shows grand average ERPs to all the grid contacts. Responses over the 

surface visible lesion and the seizure onset zone were not interpreted as it would 

be expected that they were non-normal. Functional stimulation of fingers, hand and 

face assist in the anatomical localisation of responses.  Of interest to the current 

experiment, a later positive response to the illusory deviant stimulus was seen at 

around 386ms over pre-motor regions corresponding to Brodmann’s area 6 

(electrodes G9, G17 and G18), suggesting activation of a frontal system to 

stimulus novelty and/or target detection (see shaded upper panel, and the lower 

panel of Figure 4.4). 
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Figure 4.4 Grand average ERPs to grid contacts.  

The upper panel shows grand average ERPs to all the grid contacts (standard green 
waveform, deviant red waveform and illusory deviant blue waveform). The dotted 
ellipse denotes the surface visible lesion, the seizure onset zone is highlighted in 
orange (G5, G6, G15, G21, G22). Somatosensory localised responses to functional 
stimulation of fingers are highlighted in green (G28), of hand are highlighted in light 
blue (G18, G19), and of face are highlighted in brown (G27).  Time-locked visual 
activity is highlighted in purple (G9, G14, G17, G18, G20). Anterior grid electrodes 
revealing a later positive response to the illusory deviant stimulus are indicated 
where there is a shaded area of the waveform and this area is enlarged in the lower 
panel (G9, G17, G18). (Positive upwards). 
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4.5 Discussion 

Recordings from the intracranial case study support the separation of detection 

and discrimination processes likely to be within the visual cortex. The N1 

component at 153 ms located at the more posterior electrodes, located over 

extrastriate occipital areas (BA18/BA19) corresponds to the scalp recorded N1 

recorded in Experiment 3.1 (see Section 3.3.4) at 167 ms. The waveforms were 

similar for the standard, deviant and illusory deviant stimuli. The N1 probably 

represents visual stimulus detection processes. However, at adjacent posterior 

electrodes (S3 and S4) the deviant stimuli evoked early and later positivities that 

probably contribute to the scalp recorded MMN. These electrodes were within the 

extrastriate cortex anterior to the lunate sulcus and ventral to the lateral occipital 

sulcus, suggesting that this area may be a local generator of visual MMN. With 

respect to scalp recordings these potentials to stimulus discrimination are inverted 

in polarity and the first positive component is seen relatively early at around 90 ms. 

These findings are consistent with a MEG study showing strong activation of the 

lateral occipital cortex at around 155 ms post stimulus (Halgren, Dale, Mendola, & 

Chong, 2003). In MEG studies comparison of illusory Kanizsa stimuli with control 

stimuli reveals activation between 100 – 350ms post stimulus (J. Kaiser et al., 

2004) and at around 280 ms (Halgren et al., 2003). It is believed that illusory 

contour sensitivity may first occur in middle to higher order visual processing areas 

and that feedback modulation from lateral occipital areas will activate V1 and V2 

areas (J. Kaiser et al., 2004).  

Polarity inversions between the cortex and the scalp can indicate local generator 

sources in that region of cortex. As these scalp recorded N1 and MMN fields result 

from the super imposition of several bilateral generators, it is difficult to understand 

how focal intracranial potentials contribute to the scalp recorded N1 and MMN. The 

inverted bifid positive discrimination component may well represent the existence 

of one or more local generator sources to change detection. Complex and 

widespread activation has also been recorded to alternating and on/off stimuli at 

the striate cortex and visual association areas (Farrell, Leeman, & Ojemann, 2007) 
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further supporting the view that it is difficult to disentangle the generator sources 

that contribute to responses measured at the scalp. 

Intracerebral potentials to rare distractor visual and auditory stimuli have been 

recorded from frontal regions as a widespread negative-positive-negative 

waveform at approximate latencies of 210-280-390 ms respectively (Baudena et 

al., 1995). It is believed that this waveform corresponds with the scalp recorded 

N2a/P3a/slow wave that is associated with orienting of attention. In the present 

study, the later positivity to the illusory deviant stimulus seen at around 386ms over 

pre-motor regions may correspond to this novelty orienting process. 

A number of scalp recorded electrophysiological studies have attempted to infer 

the generators of deviant related negativity. The findings of Urakawa, Inui, 

Yamashiro, and Kakigi (2010) converge with the results of Experiment 4.1 and 

suggest that neural generators for the visual MMN are located in the extrastriate 

cortex (BA 19). They used a passive visual oddball paradigm during which 

participants watched a silent movie whilst counterbalanced task irrelevant 

infrequent and frequent red and blue stimuli were presented to their peripheral 

visual field. Neural responses to infrequent and frequent stimuli were recorded 

using MEG and then a multi-dipole BESA comparison method was used to 

elucidate the source and timing of the cortical activity. Urakawa et al.’s findings 

revealed at 100ms activation of the cuneus (BA17) which was similar for infrequent 

and frequent stimuli, whilst at 150ms the infrequent compared to the frequent 

stimuli produced an enhanced peak amplitude for the middle occipital gyrus (MOG, 

BA19) magnetic activity. In addition, for some participants there was enhanced 

activation of the right inferior frontal gyrus. There was a divergence of the magnetic 

responses to the infrequent and frequent stimuli at around 150ms, this divergence 

concurred with the findings of previous EEG studies such as (Czigler et al., 2002). 

The timings of this divergence also correspond to the findings of the present 

experiment. 

Using a combination of an oddball and an equiprobable paradigm which has been 

shown to separate the visual N1 and visual MMN components (Kimura et al., 

2009), Kimura et al. (2010) explored the contribution of neural generators to N1 
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and MMN using current sources as estimated by an sLORETA solution. They 

found a separation of neural generators for the two components, with N1 neural 

generators including the occipital visual striate and extrastriate areas (both 

hemispheres) and the MMN neural generators including the right hemisphere 

occipital visual extrastriate areas and prefrontal areas. This separation of the 

components corresponds to the separation of the N1 and MMN found in the current 

experiment.  

In contrast to the results in the current experiment, which suggests visual MMN 

generators in extrastriate areas, Czigler et al. (2004) found that the deviance 

related negativity generators include prestriate areas. They presented stimuli to 

upper and lower visual fields, in common with prior work (Jeffreys & Axford, 

1972b). Upper and lower visual field presentations were found to lead to an 

inversion of polarity and indicated striate origin of such components. They reported 

that the most likely source of activity underlying automatic visual change detection 

is the prestriate cortex and therefore that the neural generators include at least, the 

retinotopically organised visual areas. A number of ERP studies have shown that 

the N1 component of the visual event related potential occurring (140-200ms) is 

affected by task-related manipulations such that there is an increase in N1 

amplitude in conditions where attention is required (Vogel & Luck, 2000).  It is 

unclear from the paradigm used in this study whether a ‘true’ MMN was recorded 

as the ERP recorded and identified as MMN remained within the N1 latency range.  

In conclusion, the current results indicate that the generators of the visual N1 and 

MMN can be temporally and spatially separated, with the generators for the MMN 

(electrodes S3 and S4) being located more anteriorly over extrastriate areas 

ventral to the lateral occipital sulcus. However, it is unclear how these are related 

to the scalp recorded N1 and MMN. In addition, this recording was from only one 

participant and the brain areas recorded from were limited as they were selected 

on the basis of clinical need and were confined to the cortical surface. 

 

  



79 
 

5 Exploration of hemispheric lateralisation of visual 
MMN and perception of illusory contours  

5.1 Aim 

Due to a characteristic abnormality of retinal projections in albinism, the primary 

visual cortex receives an abnormal visual field representation, such that, in addition 

to the normal input from the contralateral hemifield, there is abnormal input from 

the ipsilateral hemifield. This preponderance of temporal retinal fibres from each 

eye crossing to the contralateral hemisphere affords the opportunity to investigate 

each hemisphere in relative isolation and explore whether there is a hemispheric 

lateralisation in the source of the visual MMN and the perception of illusory 

contours.  To date no other study has examined the visual MMN or illusory contour 

processing in a paediatric albino population. 

5.2 Introduction  

Albinism is a group of inherited disorders characterised by an abnormality in 

melanin synthesis in which either eyes (ocular albinism), or the eyes, skin and hair 

(oculocutaneous albinism) may be affected. In humans, it is estimated to affect 

approximately one in 17,000 people and is found in all ethnic backgrounds (Witkop, 

1979). Clinically, manifestations include congenital nystagmus, iris hypo-

pigmentation and translucency, reduced pigmentation of the retinal pigment 

epithelium, foveal hypoplasia, reduced visual acuity and refractive errors, impaired 

colour vision and photophobia. Misrouted optic nerve fibres result in strabismus 

and reduced stereoscopic vision (Gronskov, Ek, & Brondum-Nielsen, 2007).  

Despite a variety of phenotypic presentations ranging from hypo-pigmentation to 

dark skin pigmentation (Apkarian & Bour, 2007), obligatory features of albinism are 

foveal hypoplasia (Guillery, 1996), which is manifested by the absence of a foveal 

reflex, and, of particular interest to this study, misrouted optic nerve fibres (Guillery, 

Okoro, & Witkop, 1975). This distinguishing misrouting of optic nerve fibres has 

been found not only in humans with albinism but also in albino rats (Lund, 1965), 

albino cats (Guillery & Kaas, 1971),  albino rabbits (Sanderson, 1975), albino mice 

(Lavail, Nixon, & Sidman, 1978) and a number of other vertebrate species with 

albinism.  



80 
 

As noted in Section 1.1, mammals with binocular vision normally have a partial 

decussation at the optic chiasm – the axons from the nasal retina project 

contralaterally and the axons from the temporal retina project ipsilaterally. 

Mammals with albinism have different visual pathways to those without albinism 

such that there is a shift in the line of decussation with the majority of temporal 

retinal fibres from each eye crossing to the contralateral hemisphere (Dorey, 

Neveu, Burton, Sloper, & Holder, 2003). This abnormality in temporal retinal 

projections, means that in addition to normal input from the contralateral hemifield, 

the visual cortex receives abnormal input from the ipsilateral hemifield (see Figure 

5.1). This is a characteristic anomaly that when examined using Visual Evoked 

Potentials (VEP) results in asymmetrical responses (Apkarian & Bour, 2007; 

Apkarian & Shallohoffmann, 1991), the response in the contralateral hemisphere is 

earlier and larger than in the ipsilateral hemisphere.  

 

 

 

Figure 5.1 Normal and albino visual pathways  

Reproduced with kind permission from Tom M Maynard, University of California, 

Santa Barbara 
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Electrodiagnostic methods for detecting misrouting asymmetry have been 

developed.  Optic pathway misrouting can be recorded with lateralised occipital 

scalp electrodes using appropriate full-field VEP testing, and can detect optic 

chiasm misrouting (Apkarian, Reits, Spekreijse, & Vandorp, 1983; Hoffmann, 

Lorenz, Morland, & Schmidtborn, 2005; Soong, Levin, & Westall, 2000). These 

methods employ stimuli, such as pattern onset stimuli, that are presented 

monocularly.  When occipital derivations from one eye are subtracted from the 

other, polarities of inter-hemispheric difference VEPs for left and right eye 

stimulation should be inverted if the majority of temporal retinal fibres cross to the 

contralateral hemisphere.  Whereas, in a normal population, because the temporal 

and nasal retinal projections for each eye project equally to both hemispheres, 

occipital difference polarities are not inverted (Hoffmann et al., 2005).  

5.2.1 Hemispheric specialisation  

Widely held views of cerebral asymmetries in brain function suggest that the left 

hemisphere is specialised for linguistic and cognitive processing and fine motor 

control. For example, auditory MMNs to language specific stimuli show left 

hemispheric dominance (Naatanen, 2001), whilst it is suggested that the right 

hemisphere is specialised for visuo-spatial processing. However, studies with split-

brain patients have shown this to be an oversimplification as the left hemisphere 

retains complex visuo-spatial abilities and the right hemisphere can enable some 

limited language comprehension. It is suggested that both hemispheres can 

process visuo-spatial information but do so in different ways.  For a review of split 

brain studies, see Gazzaniga (2000).  

5.2.2 Importance of the right hemisphere for visual MMN 

The importance of the right hemisphere in the generation of the visual MMN has 

been highlighted in a number of studies. Using the source localisation method 

sLORETA, Kimura et al. (2010) explored the neural generators of visual N1 and 

visual MMN in relation to changes in the orientation of a bar. They reported a right 

hemispheric dominance for visual MMN generators. Their results also suggested 

that the visual N1 is associated with large areas including the primary and non-
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primary visual areas, while visual MMN is associated with more discrete non-

primary visual areas. Kimura, Kondo, Ohira, and Schroger (2012) reported that the 

visual MMN elicited in response to alternations of facial stimuli was mainly 

generated from occipito-temporal visual extrastriate areas in the right hemisphere 

and medial and lateral prefrontal areas lateralised to the right. In addition, Kimura 

et al. (2009) reported a right hemisphere dominance for visual MMN to changes in 

the orientation of a bar. Grimm et al. (2009), using a multi-level distraction 

paradigm explored stimulus regularity violations and found the differences between 

deviant and control stimuli were present in both hemispheres indicating sources in 

bilateral parieto-occipital areas of cortex but with a right hemisphere dominance. In 

the experiment reported in Chapter 4 of the current thesis, ERP recordings taken 

directly from the cortex, provided evidence for the spatial and temporal separation 

of visual N1 and MMN in the right hemisphere. This may be suggestive of 

generators of visual MMN in the right hemisphere, although it is acknowledged that 

this was a case study and that electrode coverage was not extensive and did not 

cover the left hemisphere. The results of these studies suggest that there may be 

evidence for the predominance of the right hemisphere in the generation of the 

visual MMN.  

5.2.3 The right hemisphere and illusory contour processing   

Illusory figures, as noted in Section 3.2, are ambiguous figures in which the illusion 

of a square or triangle is perceived in the middle of inducers, such as pacmen, in 

the absence of real contours (Kanizsa, 1976).The existence of hemispheric 

lateralisation in the perception of illusory contours and whether their perception 

involves high level cognitive processes or only low level parallel processes has 

been debated.  For a review of functional neuroimaging findings on the perception 

of illusory contours, see Seghier and Vuilleumier (2006).  Larsson et al. (1999) 

using positron emission tomography (PET) to measure brain activation to the 

perception of real and illusory contours suggest a hemispheric asymmetry with 

evidence of right–sided lateralisation for both real and illusory contour processing. 

In particular, the perception of illusory contours was associated with stronger 

activation in the right fusiform gyrus, suggesting differential levels of top-down 
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processing between illusory and real contours. Korshunova (1999) recorded ERPs 

in a passive paradigm in which participants were presented, in the central visual 

field, with Kanizsa stimuli and stimuli that did not form an illusory percept. They 

found an increase in mean VEP amplitudes in both hemispheres at N180-P230. 

Comparison of left and right hemisphere activation across all electrodes revealed 

increased amplitude in the right hemisphere, consistent with its superiority in visuo-

spatial processing.  Rooted in Feature Integration theory (Treisman & Gelade, 

1980) a recent study by Poynter and Roberts (2012) suggests differences in the 

efficiency of spatial processing between the hemispheres. They suggest the right 

hemisphere performs global low-level spatial processing more efficiently and that 

this type of spatial processing is associated with parallel search mechanisms 

requiring spatially distributed attention. They suggest the left hemisphere is 

associated with high spatial frequency/serial search mechanisms that require shifts 

in localised attention.  

Proverbio and Zani (2002) did not provide evidence of a right-sided lateralisation. 

Using ERPs to establish the time course and scalp topography in the perception of 

illusory figures, they used a behavioural task in which participants had to press a 

button in order to distinguish whether an illusory figure was present or absent from 

a visual display. They found that the perception of illusory figures was associated 

with activation of bilateral cortices at about 145ms post stimulus onset as reflected 

by an enhanced N1 component. In addition, stronger left than right hemisphere 

activation to the perception of illusory contours was observed in an event related 

fMRI study (Ritzl et al., 2003). In a study of split brain patients, (Corballis & 

Fendrich, 1999) compared the processes involved in the perception of an illusory 

Kanisza square and  a modified Kanisza square in which the contours of the 

square were not readily visible but had to be inferred. They found that both 

hemispheres were equally capable of illusory contour perception, but that for the 

completion of the modified Kanisza square, perception of the stimuli presented to 

the right hemisphere was significantly better. They suggested that illusory 

processing was low-level processing available to both hemispheres, whilst the right 

hemisphere was superior at completion of the modified Kanisza square. Corballis 

(2003) suggests that hemispheric asymmetries with a right hemisphere dominance 
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may occur for higher level visual mechanisms and that low level processing can be 

carried out in both hemispheres.    

5.2.4 Rationale 

The studies discussed above demonstrate the lack of consensus and debate 

regarding hemispheric lateralisation in the generation of the visual MMN and 

illusory contour perception and highlight the need for further investigation. The 

experiments presented in this chapter were therefore carried out in order to gain 

further insight into this area using a sample of participants with albinism, whose 

abnormality in temporal retinal projections, means that in addition to normal input 

from the contralateral hemifield, the visual cortex receives abnormal input from the 

ipsilateral hemifield. 

Two experiments were carried out. Experiment 5.1 was designed to confirm 

primary optic pathway misrouting by establishing that the central visual field 

showed cerebral asymmetries. Experiment 5.2, was designed to assess cerebral 

asymmetries in the time course of visual MMN and illusory contour processing. 

Taking into account the established finding that ERPs to monocular recordings for 

albinism are characterised by faster latencies in the contralateral hemisphere than 

in the ipsilateral hemisphere, it was predicted that the ERP responses to the stimuli 

would be earlier in the contralateral than in the ipsilateral hemisphere. It was 

predicted that the mean P1-N1 peak-to-peak amplitude to the deviant and illusory 

deviant stimuli would be enhanced compared to the response to the standard 

stimulus, indicating discrimination processes and this would be larger over the right 

hemisphere. In addition, it was predicted that the ERP response to illusory deviant 

would be fastest in the right hemisphere. 
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5.3 Methods for Experiment 5.1 and Experiment 5.2 

5.3.1 Participants 

Nine participants were recruited from a group of children, with clinically diagnosed 

albinism, at Great Ormond Street Hospital for Children. Diagnosis was based on an 

ophthalmological assessment including fundoscopy, orthoptic assessment and 

visual electrophysiological testing. The mean age of participants was 13 (range 9 

to 17) - see Table 5.1 for clinical characteristics. Parental consent was obtained for  

their child’s participation in the experiments.  
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Table 5.1 Clinical characteristics of test sample (F=female, M=male), n=9 

Participant 

No. 

Age 

(years) 

Sex Type of Albinism 

Diagnosis 

Visual 

acuity 

Log 

Mar 

Patient details 

1 16 F Exact subtype not 

known at time of 

submission of 

PhD 

 

Not 

known 

Detailed Ophthalmic 

symptoms not 

available at time of 

submission of PhD 

2 15 F Oculocutaneous 0.6 Reduced vision 

 

3 9 F Exact subtype not 

known at time of 

submission of Phd 

 

0.5 Squint, nystagmus, 

macula hyperplasia, 

astigmatism, mild 

albinism, peripheral 

translucency of irides.  

 

4 12 M Oculocutaneous 1.04 Registered blind, 

horizontal manifest 

nystagmus 

 

5 10 F Ocular 0.56 Mild form of albinism 

with reduced vision 

 

6 17 M Oculocutaneous 0.16 Left convergent squint 

 

7 11 M Oculocutaneous 0.42 Foveal hypoplasia, 

Hermansky pudlak 

syndrome 

 

8 16 M Exact subtype not 

known at time of 

submission of 

PhD 

 

Not 

known 

Detailed Ophthalmic 

symptoms not 

available at time of 

submission of PhD 

9 13 M Ocular 0.72 Nystagmus 

 

 

 

 



87 
 

5.3.2 Procedure 

Within the same recording session, two VEP experiments were conducted in 

participants with albinism. Apart from differences in stimuli, both experiments were 

carried out under identical conditions. For both experiments, participants were 

seated comfortably in a darkened room 1 m away from a 50 inch plasma screen 

(Pioneer PD50) and asked to fixate on a small red dot in the centre of the screen 

that was present throughout the recordings. Left and right eyes were stimulated 

monocularly; an eye patch was placed over the eye that was not being tested at 

the time. The stimuli were presented in separate blocks. Stimuli for Experiment 5.1 

were presented to each eye in turn and then the process was repeated for the 

stimuli in Experiment 5.2.  

5.3.3 EEG recording  

Nineteen Ag/AgCl electrodes were used to record the EEG activity and were 

positioned at sites in accordance with the International 10-20 system (Fz, F3, F4, 

Cz, C3, C4, T3, T4, Pz, P3, P4, Oz, O1, O2, T5, T6, VEOG). The reference 

electrode and the ground electrode were placed at the right and left mastoid 

respectively. An electrode was placed above the uncovered eye to enable online 

artifact rejection of eye blinks. Continuous EEG was collected using Neuroscan 

SCAN version 4.3, at a sampling rate of 1000Hz, with a low pass of 100Hz and a 

high pass of 0.05Hz and stored on a computer for offline analysis. Continuous EEG 

data were epoched offline -50 ms pre-stimulus to +500 ms post-stimulus. The 

epochs were digitally filtered with a band pass 1-30Hz and baseline corrected. 

Epochs containing transients greater than ± 100μV were excluded from further 

analysis. Fz was employed as a reference.   
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5.4 Experiment 5.1: Procedure to confirm primary optic pathway 
misrouting 

5.4.1 Stimuli 

Pattern onset stimuli consisted of black and white checkerboard strips that enabled 

the  visual field to be segmented into four equally spaced segments such that two 

segments were equally distributed over the left half field (stimuli 5, 4) and two over 

the right half field (stimuli 2, 3). The order of presentation was 5, 4, 2, 3 (see Figure 

5.2). The black and white checkerboard strips were presented at 97% contrast and 

appeared against a uniform grey background with equal luminance to the strip 

(mean luminance 93 cd/m²). The strip (checkerboard) patterns appeared for 240ms 

and were presented at a rate of 3Hz, each strip subtended 10 degrees of arc. 

Within a block there were 808 stimuli, comprised of 202 presentations of each 

stimulus type. Two blocks of the stimuli were presented to each eye. 

 

 

 

Figure 5.2 Pattern onset stimuli - left half field (stimuli 5, 4), right half field (stimuli 
2,3) 

 

5.4.2 VEP data analysis 

For each participant, the waveforms for left half-field and right half-field were 

combined to construct grand average waveforms of all onset strips. A linear 

derivation whereby the right hemisphere occipital response was subtracted from 

the left hemisphere occipital response was then applied to the grand average 

waveforms for the left eye and the right eye. This method reveals misrouting 
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asymmetry in the form of polarity reversals of the difference potential from left eye 

to right eye stimulation (Apkarian & Bour, 2007). In addition, grand average ERPs 

were constructed for each stimulus for each eye.  

5.4.3 Results 

The distribution of the VEP response lateralisation across the occipital lobes is 

evident in Figure 5.3 below, where polarity reversals of the difference potentials 

from left eye to right eye stimulation can be seen (highlighted with arrows) for the 

participants. This asymmetry confirms the optic pathway misrouting for the majority 

of the participants, although no optic pathway misrouting is apparent for 

participants 4 and 5.  

Comparison of grand average waveforms for the left and right eye for each of the 

stimuli at electrodes O1 and O2 reveal that for stimuli 4 and 2 right eye viewing had 

an earlier response latency in the left hemisphere, whilst left eye viewing had an 

earlier response latency in the right  hemisphere (see Figure 5.3 A,B). In addition, 

the subtraction waveforms (electrode O2 subtracted from electrode O1 for the left 

and the right eye) reveal a reversal of polarity of the inter-hemispheric activation 

difference in the central visual field (stimuli 4 and 2) revealing optic nerve 

misrouting from the central temporal retina. The absence of the polarity reversal in 

the periphery (stimuli 5 and 3) reveals the reversion to the normal pattern of optic 

nerves. This corresponds with the findings of Hoffmann et al. (2005).   
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Figure 5.3 Individual participant grand average and subtraction waveforms  

Individual participant grand average waveforms for the left and right eye at 
electrodes O1 and O2 (A, B), polarity reversals are shaded in grey.  Individual grand 
average subtraction waveforms for the left and right eye (C, D) - right hemisphere 
occipital response subtracted from the left hemisphere occipital response - 
revealing a misrouting asymmetry highlighted with arrows. Note: participants 4 and 
5 do not show a misrouting asymmetry. (Referenced to Fz, positive upwards). 
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Figure 5.4 Group grand average waveforms for each of the stimuli for the left eye (A) 
and the right eye (B) at electrode O1 and electrode O2.  

Subtraction waveforms O1 minus O2 for the left and right eye (C) for each of the 
stimuli. Note: Pronounced inter-hemispheric asymmetries are revealed for stimuli 4 
and 2. (Referenced to Fz, positive upwards). 
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5.4.4 Discussion 

Pattern onset stimuli segmented into four equally spaced segments were 

presented monocularly to participants, such that, two segments were equally 

distributed over the left half-field and two equally distributed over the right half-field. 

It was established that, for those stimuli presented in the central visual field, 

patterns of occipital activation exhibited a contralateral dominance characterised by 

a reversal of polarity of the inter-hemispheric activation difference, whilst, for those 

stimuli presented in the peripheral visual field no such reversal of polarity was 

observed. These results are in accordance with other studies and provide evidence 

of optic nerve misrouting at the central temporal retina for the majority of this group 

(Hoffmann et al., 2005; Soong et al., 2000).  

In a study quantifying the extent of inter-hemispheric asymmetry, Hoffman 2005 

found in a sample of 16 albino participants that the projection was confined to the 

central retina and varied in extent between subjects (2-15⁰; median 8). This range 

is consistent with a previous fMRI based retinotopic mapping study that reported 

abnormalities between 6 and 14⁰ (Hoffmann, Tolhurst, Moore, & Morland, 2003). 

Inter-hemispheric asymmetries for individuals were not measured in this study; the 

stimuli in Experiment 5.2 were confined to presentation within the central retina 

subtending 4⁰ of arc.   

The preponderance of temporal retinal fibres from each eye crossing to the 

contralateral hemisphere therefore provided the rationale for investigating 

hemispheric lateralisation in the visual MMN and the perception of illusory contours 

in Experiment 5.2 as each hemisphere can be studied in relative isolation.  
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5.5 Experiment 5.2 visual oddball paradigm 

5.5.1 Participants 

Data from three participants were excluded from the visual oddball paradigm 

results and statistical analysis. In Experiment 5.1, participants 4 and 5 did not 

exhibit the characteristic hemispheric asymmetry so were excluded from the 

analysis of Experiment 5.2. In addition, participant 7 was excluded from the 

analysis as he was unable to tolerate the visual oddball recording, leaving 6 

participants for data analysis (see Table 5.1 for clinical characteristics of 

participants).    

5.5.2 Stimuli  

The stimuli outlined in Section 3.3.2.1 based on pacmen figures were employed in 

a behaviourally silent oddball paradigm where the ratio of standards to deviants 

and illusory deviants was 8:1:1 (see Section 2.4.3.1). The stimuli appeared on the 

screen for 400 ms with an inter-stimulus interval of 600 ms. As noted in Section 

5.3.2, recordings were monocular, two blocks of 225 stimuli were presented to 

each eye whilst a patch was worn on the other eye. Breaks between blocks were 

as long as the participant required.   

5.5.3 VEP data analysis  

To examine the visual MMN, for each participant, ERPs were averaged separately 

for standard, deviant and illusory deviant stimuli to construct grand average 

waveforms for each of the stimuli for the left eye and for the right eye. See Figure 

5.4 (A) where standard, deviant and illusory deviant waveforms are presented at 

occipital electrodes for the ipsilateral hemisphere (left eye - electrode O1, right eye 

– electrode O2) and (B) over the contralateral hemisphere (left eye – electrode O2, 

right eye – electrode O1).  

To examine the processing of the illusory deviant, the peak latency of the illusory 

deviant VEP component onset, P1, N1 and P2 was measured as the interval in 

milliseconds from baseline to stimulus onset to the peak of the individual VEP 

component being measured while the amplitude was measured in microvolts (µV) 
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from the peak of one VEP component to the peak of another – onset –P1, P1-N1 

and N1-P2. These measures were computed for electrodes P3, P4, O1, O2, T5, T6 

Peak-to-peak amplitudes were calculated relative to the mean voltage of a 50 ms 

pre stimulus baseline The peak latencies and peak-to-peak amplitudes were 

analysed using Analysis of Variance (ANOVA) (see Sections 5.5.3.2 and 5.5.3.2 

for statistical analysis of latency and amplitude data). 

5.5.4 Results 

5.5.4.1 VEP results  

Visual mismatch results 

A visual response was recorded in all participants consisting of a P1-N1-P2 

waveform. For each participant grand average waveforms for the standard, deviant 

and illusory deviant stimuli were constructed combining bilateral occipital, temporal 

and parietal electrodes as these areas have been implicated in the generation of 

visual MMN. Figure 5.5 shows the grand average standard, deviant and illusory 

deviant ERPs at occipital electrodes by eye (left, right) and hemisphere (ipsilateral, 

contralateral). The amplitude of the ERP to the deviant stimulus was smaller than 

the standard irrespective of eye or lateralisation and therefore it is important to note 

that in this experiment no visual MMN was recorded in relation to the deviant 

stimulus. Examination of the individual ERP files revealed that only one of the six 

participants showed enhanced N1 amplitude for the deviant compared to the 

standard stimulus, whilst five participants showed a reduced amplitude. This 

suggests that the deviant was less well processed than the other stimuli. In view of 

this finding no further analyses were carried out to explore the generation of the 

visual MMN. 
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Figure 5.5 Grand average waveforms for standard, deviant and illusory deviant 
stimuli at occipital electrodes referenced to Fz for the ipsilateral hemisphere (A) and 
the contralateral hemisphere (B) (Negative upwards).  

 

Illusory contour processing 

To explore the lateralisation of the perception of the Kanizsa square, grand 

average waveforms for illusory deviant were constructed. Figure 5.6 shows the 

grand average waveforms for the illusory deviant (Kanizsa square) for left and right 

eye viewing at electrodes O2 and O1. The hemispheric asymmetry can be 

observed; left eye viewing is faster in the right hemisphere and right eye viewing is 

faster in the left hemisphere.  
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Figure 5.6 Grand average waveforms for the illusory deviant (Kanizsa figure) for left 
and right eye viewing at electrodes O2 and O1 referenced to Fz, showing the inter-
hemispheric asymmetry.  

Note that the P1 latency is slowest of all for right eye viewing at electrode O2 
(negative upwards).   

 

5.5.4.2 Statistical analysis of illusory deviant latency data 

Mean latencies and standard deviations (SD) for the components are shown in 

table 5.2   
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Table 5.2 Mean latency (ms) and standard deviation for illusory deviant stimulus type by eye of presentation and electrode site for 
component onset (n=6) 

 

 

Electrode 

Site 

Component mean latency (ms) and Standard Deviation (±SD) for illusory deviant stimulus 

 

                   Onset                                       P1                                             N1                                                P2 

 

 Left eye Right eye Left eye Right eye Left eye Right eye Left eye Right eye 

O1 77.17±18.76 83.83±21.87 138.33±12.71 137.50±31.65 205.00±29.18 211.00±31.50 272.17±61.34 262.50±43.67 

O2 67.67±22.13 95.17±36.42 121.67±8.19 151.83±18.43 201.50±25.56 240.17±44.04 261.67±49.11 298.50±78.33 

P3 83.00±13.10 84.67±26.35 136.83±12.92 129.67±24.05 201.33±26.42 199.33±37.42 259.17±35.82 267.50±59.00 

P4 70.67±20.37 92.17±31.66 120.17±13.41 149.00±18.90 197.83±20.51 222.50±34.88 250.50±35.33 281.00±59.93 

T5 75.50±23.67 85.50±18.85 140.17±14.61 147.17±18.50 213.67±33.16 215.50±31.61 287.67±72.44 267.83±46.46 

T6 69.33±18.50 93.83±29.36 125.33±5.99 152.67±14.40 205.33±25.84 227.00±25.39 259.00±49.71 267.50±45.92 
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Given the findings presented in Chapter 3, that the amplitude of the illusory 

deviant was most prominently seen at occipital, parietal and temporal 

electrodes, these electrodes were combined. ANOVAs were used to investigate 

evidence of hemispheric lateralisation, which would translate as a significant 

interaction. 

Onset latency 

A two-way (2 x 2) within subjects ANOVA was carried out on onset latency. The 

first factor was eye (left, right), the second factor was lateralisation (ipsilateral 

hemisphere, contralateral hemisphere), The main effect of lateralisation was 

significant (F(1,5)=7.743, p = 0.039, ηp2= 0.608), indicating that the onset 

latency, as expected, was faster in the contralateral hemisphere than in the 

ipsilateral hemisphere and as was shown in Experiment 5.1. The main effect of 

eye was not significant (F(1,5)=2.400, p = 0.182, ηp2=0.324). There was no 

significant interaction between eye and lateralisation (F(1,5)=0.001, p = 0.972, 

ηp2<0.001). 

P1 Latency 

A two-way (eye x lateralisation) ANOVA was carried out on P1 latency. The 

main effect of lateralisation was significant (F(1,5)=14.516, p = 0.013, 

ηp2=0.744) indicating that the P1 latency was faster in the contralateral 

hemisphere than in the ipsilateral hemisphere. The main effect of eye was not 

significant (F(1,5)=4.957, p = 0.077, ηp2=0.498). There was no significant 

interaction between eye and lateralisation (F(1,5)=0.117, p = 0.747, 

ηp2=0.023). 

N1 Latency 

A two-way (eye x lateralisation) ANOVA was carried out on N1 latency. The 

main effect of lateralisation was significant (F(1,5)=8.566, p = 0.033, 

ηp2=0.631) indicating that the N1 latency was faster in the contralateral 

hemisphere than in the ipsilateral hemisphere.. The main effect of eye was not 

significant (F(1,5)=1.541, p = 0.269, ηp2=0.236). There was no significant 

interaction between eye and lateralisation (F(1,5)=2.901, p = 0.149, 

ηp2=0.367). 
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P2 Latency 

The two way (eye x lateralisation) ANOVA was applied to P2 latency data. The 

main effect of lateralisation was not significant (F(1,5)=0.023, p = 0.885, 

ηp2=0.005).  The main effect of eye was not significant (F(1,5)=0.208, p = 

0.668, ηp2=0.040). There was no significant interaction between eye and 

lateralisation (F(1,5)=1.500, p = 0.275, ηp2=0.231). 

5.5.4.3 Statistical analysis of illusory deviant amplitude data 

Mean peak-to-peak amplitudes and standard deviations (SD) for the 

components are shown in Table 5.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



100 
 

Table 5.3 Mean peak-to-peak amplitude (µV) and standard deviation for the 
illusory deviant stimulus by eye of presentation and electrode site (n=6) 

 

 

 

Electrode 

Site 

Mean peak-to-peak amplitudes (µV) and Standard Deviations (±SD) 

Peak-to-peak 

                Onset to P1                      P1 to N1                          N1 to P2 

 Eye 

 Left  Right  Left  Right  Left  Right  

O1 7.12 ± 2.56 9.34 ± 7.23 11.37± 5.15 14.59 ± 8.21 9.74 ± 4.67 9.05 ± 2.52 

O2 8.61 ± 4.28 9.73 ± 2.94 15.29± 9.18 14.37± 4.03 11.61± 8.67 10.83 ± 3.80 

P3 4.46 ± 1.43 5.26 ± 2.41 7.73 ± 3.35 8.00 ± 3.56 5.01 ± 1.99 5.01 ± 1.75 

P4 4.35 ± 2.07 5.22 ± 1.68 7.27± 3.80 7.06 ± 2.48 5.45 ± 3.36 4.67 ± 0.90 

T5 5.92 ± 1.57 7.45 ± 4.42 10.21± 4.55 12.25 ± 5.31 8.08 ± 4.53 8.44 ± 2.51 

T6 7.66 ± 2.39 7.68 ± 2.10 12.88 ± 5.74 10.43 ± 2.92 8.53 ± 5.35 7.47 ± 2.08 

 

Onset –P1 mean peak-to-peak amplitude 

A two-way 2 x 2 within subjects ANOVA was carried out on onset to P1 mean 

peak-to-peak amplitude. The first factor was eye (left, light) and the second 

factor was lateralisation (ipsilateral, contralateral). There was no main effect of 

eye (F(1,5)=1.018, p = 0.359, ηp2=0.169) or lateralisation (F(1,5)=0.194, p = 

0.678, ηp2=0.037). The interaction effect was also non-significant 

(F(1,5)=0.831, p = 0.404, ηp2=0.143). 
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P1-N1 mean peak-to-peak amplitude  

Two-way within subjects ANOVA was carried out on the P1-N1 mean peak-to-

peak amplitude. The main effect of eye was not significant (F(1,5)=0.042, p = 

0.845, ηp2=0.008).The main effect of lateralisation was not significant 

(F(1,5)=2.462, p = 0.177, ηp2=0.330). There was no significant interaction 

between eye and lateralisation (F(1,5)=0.187, p = 0.683, ηp2=0.036). 

N1 – P2 mean peak-to-peak amplitude 

The two-way within subjects ANOVA revealed no significant main effect of eye 

(F(1,5)=0.117, p = 0.746, ηp2=0.023), no main effect of lateralisation 

(F(1,5)=0.473, p = 0.522, ηp2=0.086) and no significant interaction between the 

factors  (F(1,5)=0.544, p = 0.494, ηp2=0.098).  
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5.6 Discussion 

The preponderance of temporal retinal fibres from each eye crossing to the 

contralateral hemisphere in albinism can potentially afford the opportunity to 

investigate each hemisphere in relative isolation and explore whether there is a 

hemispheric lateralisation in the source of the visual MMN and the perception of 

illusory contours. However, the critical finding of Experiment 5.2 was that a 

visual MMN response could not be recorded in this sample group. The deviant 

stimulus did not elicit an enhanced negative amplitude in comparison to the 

standard stimulus for five of the six participants. Therefore, no conclusions 

regarding the lateralisation of the source of the visual MMN could be drawn. In 

animal models, albino rats have been shown to elicit a somatosensory MMN 

response analogous to that shown in human somatosensory MMN studies 

(Astikainen, Ruusuvirta, & Korhonen, 2001). However, to date, there have been 

no other studies exploring visual, auditory or somatosensory MMN so little is 

known about the MMN in either humans or animals with albinism. 

It is unclear whether the absence of a visual MMN response is due to a 

characteristic deficit related to albinism or due to the intra-individual and inter-

individual differences in participants. The results indicate that processing of the 

deviant stimulus was less efficient in this sample. Typically, in conjunction with 

optic pathway misrouting, people with albinism have conditions such as 

congenital nystagmus (involuntary eye movements), reduced visual acuity and 

refractive errors, impaired colour vision, photophobia, reduced stereoscopic 

vision and strabismus (squint). In a study exploring neurodevelopment in 

children with albinism, Kutzbach, Summers, Holleschau, and MacDonald (2008) 

reported normal neurodevelopment despite visual impairments. However, 

compared to age appropriate norms they reported an increased incidence of 

Attention Deficit Hyperactivity Disorder (ADHD) in the group of 65 children with 

albinism that they assessed. In the current experiment, beyond the 

experimenter observing the participants, there was no independent verification 

that fixation to the screen was maintained. The presence of nystagmus or other 

unaccounted for visual difficulties or perhaps ADHD in this group may have 

affected the results. 
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The second hypothesis tested in Experiment 5.2 was that the illusory deviant 

stimulus, the Kanizsa square, after taking into account the misrouting 

asymmetry, would show a hemispheric lateralisation characterised by an earlier 

latency and/or an enhanced amplitude in the right hemisphere. The current 

results suggest that both hemispheres were equally capable of processing the 

illusory deviant stimulus.  This evidence is in agreement with (Corballis, 2003; 

Corballis & Fendrich, 1999) who found no hemispheric advantage in the 

processing of illusory contours and Proverbio and Zani (2002) who found that 

the perception of illusory figures was associated with activation of bilateral 

cortices. The current findings may be suggestive of low level global visual 

processing and, it may be that, as suggested by Corballis, it is only when higher 

level visual mechanisms related to visual perception of a stimulus is required 

that visuo-spatial functions are lateralised.  

The current results however are in contrast with a number of other studies 

exploring illusory contour processing. Korshunova (1999) used centrally 

presented stimuli similar to those employed in Experiment 5.2. The timing of the 

N1 component in Experiment 5.2 was comparable to that observed by 

Korshunova occurring at approximately 200-240ms and they observed 

enhanced amplitudes to the perception of illusory figures in both hemispheres at 

N180-P230. However, in contrast to Experiment 5.2, their results indicate 

increased activation of the right hemisphere. In addition, Hirsch et al. (1995) 

measured cerebral activation using fMRI whilst participants were presented with 

visual stimuli (pacmen) that were either oriented to form an illusory figure or 

were misaligned. They found that the perception of illusory figures was 

associated with activation of right extra-striate areas that were not activated by 

control stimuli or real contours. However, they found no evidence of increased 

activity in the prefrontal cortex which they interpreted as a lack of involvement of 

higher cognitive processes. Support for the role of the right extrastriate cortex in 

the perception of illusory figures was also reported by Murray et al. (2002). The 

results of a PET study by Larsson et al. (1999) reported the perception of 

illusory contours was associated with stronger activation in the right fusiform 

gyrus, suggesting differential levels of top-down processing between illusory 

and real contours. 
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Experiments 5.1 and 5.2 however, confirm the results of other studies such as 

Pott, Jansonius, and Kooijman (2003), that, in albinism, comparison of 

ipsilateral and contralateral hemispheric responses to stimuli, when stimulating 

one eye, show that because of misrouting the ipsilateral response is delayed 

compared to the contralateral response.  

A review of the literature on the electrophysiology of vision for participants with 

albinism revealed that research has mainly focused on establishing methods for 

improving diagnosis of albinism rather than investigating perceptual 

mechanisms. Experiment 5.2 was novel in that it attempted to use albinism as a 

model to explore hemispheric lateralisation of visual MMN and illusory contour 

processing. However, the current finding that a visual MMN response could not 

be recorded in this group would suggest that albinism may not be an 

appropriate model to investigate lateralised sources of early ERPs. This may be 

due to a characteristic response in albinism or to the inter-individual differences 

in participants. Further research would require greater control for the other 

visual difficulties that accompany optic misrouting in the sample group chosen. 

In addition, the statistical analysis of the current data showed no hemispheric 

lateralisation in the perception of the illusory deviant, which suggests that both 

hemispheres were equally activated. This may be the case, however, in view of 

the small sample size and the lack of understanding of visual perception in 

albinism, the current results must be interpreted with caution. 
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6 Investigation of early visual processing responses in 
the pattern onset evoked potential and conscious 
visual perception  

6.1 Aim 

Development of a simple paradigm to explore visual stimulus perception that 

does not require patient participation would be useful for patients with significant 

language or motor deficits or in patients who present with functional visual loss, 

a condition in which no underlying visual system pathology can be found 

despite the patient reporting subnormal vision.  This study investigated whether 

perception to an unseen stimulus (a checkerboard) could be recorded using a 

paradigm involving brief stimulus presentation and masking. The checkerboard 

stimulus is a standard clinical probe when used emerging from a grey 

background (see ISCEV standards, Odom et al., 2010) and produces a typical 

VEP response pattern that is used in the diagnosis of a range of visual 

pathologies. The current study investigates the use of a brief stimulus 

presentation and masking paradigm to explore correlates of visual 

consciousness. In addition, if components analogous to a typical pattern onset 

VEP could be elicited subliminally, brief stimulus presentation and masking 

could be used to investigate stimulus discrimination by introducing an oddball 

paradigm. As such, this experiment is also a precursor to the experiment 

outlined in Chapter 7 in which a subliminal oddball paradigm was introduced.  

6.2 Introduction 

The subjective experience of vision is an important focus of scientific 

investigation, but where and when in the brain incoming visual information 

becomes conscious is still a matter of debate. Investigation of 

electrophysiological correlates of visual consciousness would potentially help 

address these questions. The identification of electrophysiological correlates to 

visual stimulus perception may have clinical diagnostic applications, especially 

in patients who are unable or unwilling to comply with behavioural visual tests. 

The use of ERPs in the study of visual consciousness has yielded a significant 

contribution to the literature by exploiting the relatively good temporal resolution 

afforded by this methodology. The ERP allows the non-invasive evaluation of 

brain function and organisation during cognitive processing. Furthermore, the 
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presence or absence of ERP components provides an insight into the extent 

and location of visual pathway dysfunction. Further quantification of ERPs in 

terms of amplitude and latency provides information regarding the strength of 

the signals and the speed at which they are processed. 

There has been considerable debate in the literature on the anatomical location 

and the timing of neural correlates of visual consciousness. Some authors have 

suggested that early and posterior, occipital cortical processing correlates with 

visual consciousness (Koivisto, Revonsuo, & Lehtonen, 2006; Koivisto, 

Revonsuo, & Salminen, 2005; Martinez, DiRusso, et al., 2001; Pins & Ffytche, 

2003; Tse, Martinez-Conde, Schlegel, & Macknik, 2005; Zeki, 2003, 2008) while 

others have suggested that later fronto-parietal circuitry correlates with 

conscious vision (Del Cul, Baillet, & Dehaene, 2007; Lau & Passingham, 2006). 

It is more than likely that both earlier sensory and later frontal pathways 

constitute a neural assembly or network related to consciousness. The 

methodologies to study the integration of these pathways are still under 

development but include high density EEG, MEG and co-registration with 

functional imaging techniques. For a review of ERP correlates of visual 

consciousness and a discussion of theoretical models that underlie their 

generation, see Railo et al. (2011). 

In the investigation of ERP correlates of visual consciousness a number of 

different experimental paradigms have been used to manipulate and explore 

conscious versus unconscious visual perception. These include the 

manipulation of attention (Pins & Ffytche, 2003), and the application of change 

blindness (Schankin & Wascher, 2007), attentional blink (Shapiro, Arnell, & 

Raymond, 1997), and masking paradigms (Wilenius-Emet, Revonsuo, & 

Ojanen, 2004). The general aim of these studies was to compare the ERPs 

elicited during an unconscious versus a conscious condition (Koivisto et al., 

2006). It should be noted that the plethora of diverse stimuli and paradigms 

probably contributes to the proliferation of neurobiological  models of visual 

consciousness, whether localised and early (Zeki, 2003) or distributed and late 

(Lau & Passingham, 2006).  

In order to render visual stimuli conscious and unconscious, a variety of 

masking techniques have been used with the majority of studies investigating 
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ERP correlates of visual awareness using backward masking.  For a review of 

masking techniques, see Ansorge, Francis, Herzog, and Ogmen (2007). 

Typically, the mask stimulus causes a reduction in the visibility of an object (the 

test or target), caused by the presentation of a second object (the mask) nearby 

in space or time. The temporal sequencing of the mask is critical to its 

effectiveness in interfering with the processing of the test stimulus, with longer 

test to mask intervals yielding less interference (Enns & Di Lollo, 2000).  

Koivisto and Revonsuo (2010) used different stimulus onset asynchronies with 

metacontrast masking, a form of backward masking where the stimulus does 

not spatially overlap with the target stimulus, to explore visual consciousness 

and proposed that a negativity (visual awareness negativity, VAN), in posterior 

temporal and occipital sites at about 200 ms correlates with visual awareness. 

Wilenius-Emet et al. (2004) used a backward and forward masking paradigm to 

vary the subjective perception of line drawings of familiar objects and 

meaningless non-objects and found that visual consciousness correlated with 

VAN. In contrast, a metacontrast masking study that manipulates the masking 

of a grey disk (Mathewson, Gratton, Fabiani, Beck, & Ro, 2009) found that 

consciousness correlated with the enhancement of a P1, equivalent to the 

onset/offset VEP CII component, (Di Russo et al., 2002), This is a positivity 

observed across occipital sites at about 100ms, with visual awareness.   

6.2.1 The significance of the checkerboard stimulus in probing the 

visual system 

The pattern onset/offset VEP is used clinically for detection or confirmation of 

malingering and for evaluation of patients with nystagmus. By presenting 

participants with a checkerboard stimulus that is exchanged abruptly with a 

diffuse grey background of the same mean luminance as the checkerboard a 

standard VEP response can be recorded in a normal population. The standard 

VEPs to pattern onset consist of three main peaks in adults: CI (positive, 

approximately 75ms), C2 (negative approximately 125ms) and C3 (positive 

approximately 125ms) (Odom et al., 2010) (see Figure 6.1).    
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Figure 6.1 Typical pattern onset response (positive upwards) 

Reproduced with permission from Odom et al. (2010). 

In Experiment 6.1 a simple forward and backward pattern-masking paradigm 

will be used, where the targets and mask overlap in space to vary conscious 

perception of a checkerboard stimulus and measure the effect on the pattern 

onset VEPs. The stability of these pattern onset responses will be further tested 

in a control study, Experiment 6.2, without masking. By using the same 

checkerboard stimuli in all conditions, any differences in the visual evoked 

potentials between the conscious and unconscious conditions will be attributed 

to visual consciousness. 

Rationale and predictions 

Clinically, a black and white checkerboard stimulus when emerging from a grey 

background is known to produce a particular visual ERP response the pattern 

onset/offset response. By using a briefly presented checkerboard stimulus in a 

masking paradigm and varying the participant’s perception of that stimulus, the 

resulting ERPs can be compared to those elicited in a typical pattern onset 

paradigm to explore the effects of the mask on the ERPs to the probe stimulus - 

the checkerboard. If, the pattern of responses is similar in both instances, this 

would suggest that briefly presenting stimuli in combination with masking can be 

used to assess later visual system components. In addition, components 

elicited in the masked condition can be compared to those elicited in a standard 

pattern onset/offset paradigm to examine whether any components can be 

elicited subliminally.  
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6.3 Methods for Experiments 6.1 and 6.2 

6.3.1 Participants 

With ethical approval and informed consent, 16 healthy adults (mean age 33.4 

years ± 6.1 (13 females) were recruited for experiment 6.1 and 7 healthy adults 

(mean age 31.5 years ± 6.3 (5 females) for Experiment 6.2. Participants 

reported no history of neurological disease and had normal or corrected-to-

normal visual acuity.  

6.3.2 Stimuli and procedure 

6.3.2.1 Experiment 6.1 

Participants were seated in a comfortable chair one metre away from a stimulus 

presentation screen. Stimuli were presented in a 14 degree field and the 

masking stimuli were presented for 500 ms. High contrast checkerboard stimuli 

of 7, 14 and 21 ms durations were embedded between masking stimuli 

consisting of complex images whose colours inverted (Figure 6.1). The target 

checkerboard stimulus had individual check elements that subtended 50 

minutes of arc. The checkerboard stimuli were presented in separate blocks for 

each stimulus duration starting with the shortest. There was a 1-minute break 

between blocks with each block consisting of three sub-blocks (80 stimuli with 

30 second break between sub-blocks). At the end of each block the participants 

were asked to describe the stimuli they perceived. All stimuli were computer 

generated (NVIDIA 8800GTS graphics card), presented on a CRT monitor 

(Samsung Sync Master) running with a screen refresh rate of 160Hz. The 

stimulus presentation software (E-Prime V2.0, Psychology Software Tools, Inc.) 

provided markers to be used during averaging of the EEG to produce evoked 

potential waveforms. Two triggers were allocated, the first at the offset of the 

checkerboard stimulus (onset of following masking stimulus) and the other at 

the onset of an identical masking reversal stimulus not preceded by a 

checkerboard stimulus. The triggers were allocated at these points as the 

comparison of interest was delineated by subtracting the ERPs elicited to the 

mask not preceded by a checkerboard from the ERPs to the mask preceded by 

the checkerboard. The waveforms derived from the masked stimuli will be 

called the pattern appearance/disappearance VEP. Any differences recorded 

between the two masks will be attributed to the presence of the checkerboard.  
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The checkerboard pattern stimuli were separated by four reversing masking 

stimuli (Figure 6.2).  

 

Figure 6.2 Schematic representation of single simulation cycle in the 
experimental protocol 

A, B and C show checkerboard duration of 7, 14 and 21 ms respectively and 

duration of the mask duration. Red arrows denote onset of mask preceded by a 

checkerboard stimulus at either 7, 14 or 21 ms. Black arrow denotes onset of 

mask when there is no preceding checkerboard stimulus 

6.3.2.2 Experiment 6.2 

The same checkerboard stimuli and procedure as in Experiment 6.1 were 

utilised with the exception that the complex masking images were replaced by a 

grey background of equal overall luminance to the checkerboard stimuli (Figure 

6.3). 

 

 

Figure 6.3 Schematic representation of single stimulation cycle in the control 
protocol 

A, B and C show checkerboard duration of 7, 14 and 21 ms respectively and 
duration of the grey stimulus. Red arrows denote offset of checkerboard stimuli 
at either 7, 14 or 21 ms preceding grey stimuli. Black arrow denotes onset of grey 
background in the absence of preceding checkerboard stimulus 
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6.3.3 EEG recording and data analysis 

The EEG activity was recorded from Oz referenced to Fz with the ground 

electrode at Cz. A limited electrode montage was used in this instance as the 

checkerboard stimulus is used as a clinical tool and is known to have a 

response over occipital electrodes. Clinical standards suggest that the active 

electrode is placed on the scalp over the visual cortex at Oz with the reference 

electrode at Fz (Odom et al., 2010). Continuous EEG was collected using 

Neuroscan-SCAN version 4.3 at a sampling rate of 1000 Hz, with a low pass of 

100Hz and a high pass of 0.05Hz and stored on a computer for offline analysis. 

Continuous EEG data was epoched offline -100 ms pre-stimulus to +500 ms 

post-stimulus. The epochs were digitally filtered with a band pass 1-30Hz and 

baseline corrected employing the average of -100 to zero ms as zero. Epochs 

containing transients greater than ± 100μV were excluded from further analysis. 

For each participant, pattern reversal VEPs were averaged separately for 

masking stimuli that were and were not preceded by a checkerboard stimulus 

during the 7, 14 and 21 ms conditions.  

Two types of ERP responses were evoked in Experiment 6.1, a pattern reversal 

response to the masking stimuli and a pattern onset response was elicited to 

the checkerboard stimulus – the pattern onset VEP in Experiment 6.1 was 

derived by subtracting the pattern reversal VEPs preceded by a checkerboard 

from the pattern reversal VEPs not preceded by a checkerboard stimulus and is 

referred to in the remainder of this chapter as the pattern 

appearance/disappearance VEP. The pattern reversal VEP is not of direct 

relevance to the current thesis and analysis of this waveform will not be 

included here but will be the subject of a separate paper. In Experiment 6.2 a 

typical pattern onset paradigm was used. The pattern appearance/ 

disappearance VEPs evoked by the checkerboard pattern onset stimuli were 

extracted by means of subtracting the grey stimulus VEP preceded by a 

checkerboard pattern from the grey VEP not preceded by a checkerboard 

stimulus. The latency and peak-to-peak amplitude pattern 

appearance/disappearance VEP components were then measured and 

tabulated (Tables 6.1 and 6.2). 
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6.3.4 Statistical analyses 

 A detailed analysis of stimulus duration on the separate VEP components was 

carried out in each of the experiments and these results are presented in 

Appendix IV as they are not primary to the thesis. These analyses are 

presented in an appendix, rather than within the main body of the thesis, as the 

primary focus of the experiments was to investigate the use of brief stimulus 

presentation and masking rather than stimulus duration per se. As such, whilst it 

was important to document changes to the pattern reversal VEPs, the analysis 

of interest was of the extracted (by subtraction waveforms) checkerboard 

appearance-disappearance VEPs in each of the stimulus duration conditions. 

For the purposes of this thesis, to explore the effects of masking on 

checkerboard onset waveforms the components evoked from checkerboard 

onset in Experiments 6.1 and 6.2 were compared in a series of 2x3 repeated 

measures ANOVAs. Factors were mask or no mask (checkerboard emerging 

from a grey background of the same overall mean luminance) and duration 

(7ms, 14ms, 21ms) were analysed for each component latency and peak-to-

peak amplitude (CI, CII, CIII, CIV; baseline to CI, CI-CII, CII-CIII, CIII-CIV). 

6.4 Results  

6.4.1 Experiment 6.1 

All participants were unable to report the appearance of the checkerboard 

stimulus at 7 ms presentation but were able to identify it at 21 ms duration. At 

14 ms duration all participants reported a visual event interspersed between the 

reversing masking stimuli but only 4 of the 16 participants reported being able to 

identify this event as the appearance of a checkerboard pattern.  

6.4.1.1 Subtraction waveforms – pattern appearance/disappearance VEPs 

subtracted from a mask stimulus 

Subtraction waveforms were constructed to reveal the pattern 

appearance/disappearance VEP components to the checkerboard stimuli for 

the 7 ms, 14 ms and 21 ms conditions (Figure 6.4a and see Tables 6.1 and 6.2 

for component latencies and peak-to-peak amplitudes). The pattern reversal 

VEPs preceded by a checkerboard were subtracted from the pattern reversal 
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VEPs not preceded by a checkerboard stimulus. The subtraction waveforms 

employing the pattern appearance nomenclature revealed a distinct CI 

component in each stimulus duration condition. However, the CII, CIII and CIV 

components were more visible in the 14 and 21 stimulus onset conditions.  

 

Figure 6.4 Subtraction and ERP waveforms when the pattern appearance/ 
disappearance VEP was subtracted from a masked background or emerged from 
a grey background  

a) Subtraction of waveforms shown in (a) revealing components to onset of 
preceding checkerboard stimuli. Note the single positive component following 
7ms checkerboard stimulation corresponding to a subthreshold CI component b) 
Control recording. Average ERP waveforms (n=7) to onset of checkerboard 
stimulus delivered at either 7, 14 or 21 ms preceding a uniform grey background 
of 1 second duration. Note consistency of early positive peak at approximately 
85 ms corresponding to CI component shown in (b). 

Table 6.1  Mean latency (ms) and standard deviation (SD) of pattern 
appearance/disappearance VEP responses subtracted from the masking reversal 
stimuli 

 CI CII CIII CIV 

 
Pattern onset 
from  mask -7ms 

 
89.9±6.6 

 
115.0±28.7 

 
151.0±40.6 

 
191.3±59. 

Pattern onset 
from mask-14ms 

82.7±5.5  119.9±7.4 170.4±12.7 230.0±19.3 

Pattern onset 
from mask-21ms 

70.3±7.8  114.2±7.9 165.8±16.1 235.2±26.0 
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Table 6.2 Mean peak-to-peak amplitude (µV) of pattern onset responses 
subtracted from the masking reversal stimuli 

 

 baseline-CI CI-CII CII-CIII CIV 

Pattern onset 
from mask - 
7ms 

5.9±2.4 10.5±4.5 7.7±3.2 3.7±2.2 

Pattern onset 
from mask-
14ms 

6.8±2.8 15.8±4.5 13.6±4.8 5.9±2.9 

Pattern onset 
from mask-
21ms 

7.2±2.7 17.1±5.5 17.2±5.4 8.6±4.1 

 

6.4.2 Experiment 6.2 

All participants were able to identify the checkerboard stimulus presented at 7, 

14, and 21 ms appearing from a uniform grey background. In all participants, 

pattern onset VEPs for the 7, 14 and 21 ms checkerboard durations revealed 

well-defined CI, CII and CIII components (Figure 6.4b and see Tables 6.3 and 

6.4 for component latencies and peak-to-peak amplitudes). 

Table 6.3  Mean latency (ms) and standard deviation (SD) of pattern onset VEPs 
to checkerboard appearing from a grey background  

 

 CI CII CIII CIV 

Pattern onset 
from grey -7ms 

70.2±11.5 105.6±10.0 162.6±30.1 254.7±32.3 

Pattern onset 
from grey-14ms 

68.6±4.8 100.0±7.7 156.1±21.8 251.1±27.0 

Pattern onset 
from grey-21ms 

56.7±7.7 89.7±6.0 163.6±39.4 241.4±15.6 
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Table 6.4 Mean peak-to-peak amplitude (µV) and standard deviation (SD) of 
pattern onset VEPs to checkerboard appearing from a grey background  

 

 baseline-CI CI-CII CII-CIII CIII-CIV 

Pattern onset 
from grey -7ms 

5.9±4.0 9.0±2.1 12.5±8.7 15.0±5.4 

Pattern onset 
from grey-14ms 

6.1±4.3 9.1±2.3 14.7±9.6 15.7±7.2 

Pattern onset 
from grey-21ms 

5.2±4.8 8.8±3.7 14.4±10.0 17.0±7.7 

 

6.4.2.1 Comparison of pattern appearance / disappearance responses 
between Experiment 6.1 and 6.2 (masked versus unmasked 
conditions) 

Masking the checkerboard stimulus increased the latency of CI and CII and 

decreased the latency of the CIV. CIII latency was not significantly different 

whether emerging from the mask or the grey background. Longer checkerboard 

duration led to decreases in component latency for CI and CII but latency for 

CIII and CIV was not significantly different in the 7, 14 or 21 ms condition.    

Baseline to CI amplitude was not significantly different whether the 

checkerboard was masked or unmasked or between different between 

checkerboard durations. Emerging from the grey background CI-CII amplitude 

was similar for all checkerboard durations. The amplitude of CI-CII was reduced 

when emerging from the grey background in comparison to emerging from the 

mask. Emerging from the mask CI-CII amplitude increased with increased 

checkerboard duration. At 21 ms presentation the amplitude of the CII-CIII 

component increased when the stimulus was masked, but decreased with 

masking in comparison to emerging from a grey background at 7 and 14 ms. 

CIII-CIV amplitude was reduced when the checkerboard was masked, and was 

smaller for shorter checkerboard durations. The results of the ANOVAs are 

reported below. 
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CI latency 

The main effect of mask was significant (F(1,6) = 20.834, p = 0.004, ηp2 = 

0.776), masking the stimulus increased the latency of the CI. The main effect of 

duration was significant (F(2,12) = 29,490, p < 0.001, ηp2 = 0.831), increasing 

the duration of the checkerboard reduced the latency of CI. There was no 

significant interaction between masking and duration (F(2,12) = 1.161, p = 

0.346, ηp2 = 0.162). 

CII latency 

The main effect of mask was significant (F(1,6) = 43.014, p = 0.001, ηp2 = 

0.878), masking the stimulus increased the latency of the CII. The main effect of 

duration was significant (F(2,12) = 26.047, p < 0.001, ηp2 = 0.813), increasing 

the duration of the checkerboard reduced the latency of CII. There was no 

significant interaction between masking and duration (F(2,12) = 2.572, p = 

0.118, ηp2 = 0.300). 

CIII latency 

The main effect of mask was not significant (F(1,6) = 1.259, p = 0.305, ηp2 = 

0.173). The main effect of duration was not significant (F(2,12) = 0.612, p = 

0.558, ηp2 = 0.093). There was no significant interaction between masking and 

duration (F(2,12) = 0.865, p = 0.446, ηp2 = 0.126). 

CIV latency 

The main effect of mask was significant (F(1,6) = 8.229, p = 0.028, ηp2 = 

0.578), masking the stimulus reduced the latency of the CIV. The main effect of 

duration was not significant (F(2,12) = 0.342, p = 0.717, ηp2 = 0.0.54) (see 

figure 6.6). There was no significant interaction between masking and duration 

(F(2,12) = 1.899, p = 0.192, ηp2 = 0.240). 

Baseline to CI amplitude 

The main effect of mask was not significant (F(1,6) = 0.368, p = 0.556, ηp2 = 

0.058). The main effect of duration was not significant (F(2,12) = 0.130, p = 

0.879, ηp2 = 0.021) There was no significant interaction between masking and 

duration (F(2,12) = 0.445, p = 0.651, ηp2 = 0.069). 
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CI to CII amplitude 

The main effect of mask was significant (F(1,6) = 10.444, p = 0.018, ηp2 = 

0.635 as was the main effect of duration (F(2,12) =3.743, p = 0.055, ηp2 = 

0.384), There was a significant interaction between masking and duration 

(F(1.150,6.901) = 5.895, p = 0.043, ηp2 = 0.496). Emerging from the grey 

background the amplitude was similar for all checkerboard durations. However, 

when emerging from the mask CI-CII amplitude increased with increased 

checkerboard duration (see Figure 6.5).  

 

Figure 6.5  Mean peak-to-peak amplitudes (µV) of CI to CII at stimulus durations 
of 7, 14 and 21 ms when the pattern appearance/disappearance VEP emerged 
either from a grey background or was subtracted from a masked background 

Simple effects revealed that at 7 ms checkerboard duration, CI-CII amplitude 

was not significantly different whether emerging from the mask or the grey 

background (t =-.820; df=6; p=0.444). At 14ms and 21 ms checkerboard  

duration, CI-CII amplitude was significantly larger emerging from the mask (t =-

2.481; df=6; p=0.048) and (t =-4.561; df=6; p=0.004) respectively. In addition, 

CI-CII amplitude for the masked stimulus had a significantly larger amplitude 

when the checkerboard was presented for 14ms than for 7 ms (t =-3.377; df=6; 

p=0.015). However, there was no significant difference in CI-CII amplitude for 
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the ERP emerging from the mask whether it was presented for 14ms or 21ms (t 

=-1.034; df=6; p=0.341). 

CII to CIII amplitude 

The main effect of mask was not significant (F(1,6) = 0.195, p = 0. 674, ηp2 = 

0.031). The main effect of duration was significant (F(1.183,7.099) = 13.678, p = 

0.006, ηp2 = 0.696). There was a significant interaction between masking and 

duration (F(2,12) = 18.647, p < 0.001, ηp2 = 0.757). At 21 ms presentation the 

amplitude of the CII-CIII component increased when the stimulus was masked, 

but decreased with masking in comparison to emerging from a grey background 

at at 7 and 14 ms (see Figure 6.6)  

 

Figure 6.6 Mean peak-to-peak amplitudes (µV) of CII to CIII at stimulus durations 
of 7, 14 and 21 ms when the pattern appearance/disappearance VEP emerged 
either from a grey background or was subtracted from a masked background. 

Simple effects revealed that at 7ms, 14 and 21 ms checkerboard duration, CII-

CIII amplitude was not significantly different whether emerging from the mask or 

the grey background (t =1.889; df=6; p=0.108), (t =0.842; df=6; p=0.432) and (t 

=-0.981; df=6; p=0.364) respectively. The amplitude of the CI-CII emerging from 

the grey mask was not significantly different between the 7 and 14 ms 

checkerboard duration (t =-2.275; df=6; p=0.063) or between the 14 and 21ms 

checkerboard duration (t =-0.073; df=6; p=0.945). When emerging from the 

mask, the amplitude of the CI-CII was significantly larger as checkerboard 
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duration increased. When the checkerboard was presented for 21ms the 

amplitude was significantly larger than when presented for 14ms(t =-3.719; 

df=6; p=0.010) and when presented for 14ms was significantly larger than when 

presented for 7 ms (t =-5,393; df=6; p=0.002). 

 

CIII to CIV amplitude 

The main effect of mask was significant (F(1,6) = 29.649, p = 0. 002, ηp2 = 

0.832). The main effect of duration was significant (F(2,12) = 11.023, p = 0.002, 

ηp2 = 0.648). There was no significant interaction between masking and 

duration (F(2,12) = 1.318, p = 0.304, ηp2 = 0.180). CIII-CIV amplitude was 

reduced when masked, and was smaller for shorter checkerboard durations.  

 

 

 

 



120 
 

6.5 Discussion 

The results of the current experiments suggest that briefly presented stimulus 

presentation combined with masking is a useful method for exploring stimulus 

detection.  The current experiments revealed that a correlate of very early visual 

processing can be observed for very briefly masked stimuli. This seems to be 

independent of awareness in that participants do not report seeing this at 7 ms 

stimulus duration. The experiments reported in this chapter indicate that 

component CI (60-80 ms) a correlate of very early cortical visual processing can 

be recorded to a checkerboard stimulus and can be observed for very briefly 

presented masked stimuli consciously seen or unseen. Differences in visual 

processing are only evident at as early as 90 ms (CII), implying that this 

component may represent a correlate of visual consciousness/awareness.  

Earlier studies exploring the generator sources of pattern VEP components 

(Jeffreys & Axford, 1972a, 1972b) found that for the left and right half-field 

responses, the transverse distribution of CI but not CII showed lateral polarity 

reversal across the occipital midline. They concluded that CI and CII have 

separate spatial generator sources. The longitudinal distribution of CII appeared 

to conform with a simple dipole model related to the retinotopic representation 

at the extrastriate cortex (areas 20 and 21). Since then a number of studies 

have identified the neural generators of CI to Brodmann’s area 17 of the primary 

visual cortex and CII and CIII to extrastriate cortex of the middle occipital gyrus 

and ventral extrastriate cortex of the fusiform gyrus respectively (Di Russo et 

al., 2002). Taken together with the current results this would place an 

anatomical site for visual consciousness/awareness at area 18/19.  

Further support for CI as a marker of unconscious visual processing is that it 

appears not to be modified by manipulations of selective attention and that the 

earliest event related potential (ERP) components enhanced by attention 

occurred in the time range 70-130 ms post-stimulus onset (Martinez, DiRusso, 

et al., 2001). The neural generators of these components were estimated to lie 

in the dorsal and ventral extrastriate visual cortex. Psychophysical evidence for 

lack of conscious awareness of V1 activity has also been reported by Crick and 

Koch (1995). However, the current results are in contrast to those reported by  

Proverbio et al. (2010) who reported modifications of CI for manipulations of 
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selective attention for spatial frequency stimuli, suggesting generators in the 

striate cortex. 

Pins and Ffytche (2003) found a difference between early VEP responses 

(P100) for stimuli which were consciously seen versus those which were not. 

Using fMRI they also showed differential responses in V1 and the lateral and 

the middle occipital cortex areas between seen and unseen stimuli.  Koivisto et 

al. (2006) reported that an ‘early’ posterior negative wave at 130-350 ms 

following stimulus was the earliest correlate of conscious awareness, in an 

experiment which distinguished visual awareness from the scope of attention.   

Zeki (2003, 2008) presented fMRI data from patients and normal participants to 

show that conscious perception of movement corresponded to increased 

activation of V5 and no other areas and proposed that visual perception as well 

as visual processing occurred in the extrastriate cortex. Tse et al. (2005) also 

used a mixture of monoptic and dichoptic masking and found fMRI changes 

corresponding to consciousness of simple visual stimuli starting at V2 but not 

extending outside occipital cortex. 

Other authors have reported seemingly contradictory results indicating a later 

and more anterior correlate with visual consciousness. Del Cul et al. (2007) 

used high density ERP recordings with masking of varying stimulus onset 

asynchrony and found that the changes that correlated with conscious 

perception occurred after 270 ms and postulated a widely distributed fronto-

temporal-parietal circuit as a correlate of conscious reporting. Lau and 

Passingham (2006) used variable metacontrast masking to influence perception 

separately from performance in conjunction with fMRI and found correlation 

between the left dorso-lateral prefontal cortex (Brodmann’s area 46) and 

conscious vision. 

Stimulus factors found to affect CII and CIII differentially from CI include resting 

contrast level where CII and CIII attenuate more rapidly than CI as resting 

contrast increased from zero (Jeffreys, 1977); defocusing of the stimulus 

pattern, to which CI is more resistant than CII and CIII (Jeffreys, 1977); pattern 

pre-exposure again attenuating CII and CIII but not CI (James & Jeffreys, 1975; 

Jeffreys, 1977); increased spatial frequency attenuating CI amplitude but 
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increasing CII amplitude (Hudnell, Boyes, & Otto, 1990); and stationary pattern 

adaptation which selectively attenuated CII but not CI (Hudnell et al., 1990).  

Finally, it is worth considering that there is some confusion in the literature as to 

the nomenclature of these early onset components. Early work demonstrated 

differing polarities of the early CI component and a positive CII component 

(Jeffreys & Axford, 1972a, 1972b). In the Di Russo et al. (2005) study, pattern 

onset components are described as C1, P1, N1 (corresponding to our CI, CII 

and CIII respectively) and in an earlier paper they refer to Jeffreys and Axford's 

CII as a P1 (Di Russo et al., 2002) whilst the International Standard for Clinical 

Evoked Potentials refer to the CII as a negative component around 125ms 

(Odom et al., 2010). One explanation for the discrepancy in the labelling of 

components may arise from uncontrolled changes in visual field stimulation. In 

the current experiments visual fixation was not monitored beyond participant 

observation following the instructions given at the start of the recordings. 

However, the labelling of the CI-CIII components in terms of amplitude and 

latency is consistent with the more recent ISCEV standard. The CIV component 

is not mentioned in the ISCEV standard and may reflect its variability across 

studies and paradigms. In fact, the latency and amplitude distribution of the CIV 

may suggest it is related to the P200 component typically recorded in ERP 

studies to stimulus identification and discrimination. 

In conclusion, these findings suggest a correlation between the early 

components of the pattern appearance/disappearance visual evoked potential 

and conscious perception. The CI component may determine if the visual 

system has detected the short duration stimulus while the CII and CIII 

responses may give an indication of whether this stimulus had been processed 

any further and possibly perceived. Alternatively, these early C components 

may activate later more anterior systems known to be involved with perception 

and awareness. Having validated the use of forward/backward masking 

paradigm with the checkerboard onset stimulus the following experiment will 

explore whether this masking paradigm can be used to investigate unconscious 

stimulus discrimination processing.  
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There are potentially some important practical applications for these findings 

such as investigation of challenging cases of non-organic (functional) visual loss 

or malingering. Such patients have been shown to be able to suppress 

voluntarily pattern reversal VEP responses (Manresa, Bonaventura, Martinez, 

Gomez, & Aguilar, 1996) and to a lesser extent pattern appearance VEPs 

(typically presented in the region of 200ms). Short duration checkerboard stimuli 

not perceived by the participant could potentially be embedded in a cartoon 

video. It has previously been demonstrated that well defined responses can be 

recorded checkerboard stimuli of 66 ms durations within a video stream (Flynn, 

Thompson, & Liasis, 2006).  
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7 Visual mismatch negativity to masked stimuli 
presented at very brief presentation rates 

7.1 Aim 

The aim of the current experiment was to establish whether visual evoked 

potentials reflecting discrimination processes – the visual MMN – could be 

recorded to very briefly presented masked visual stimuli. The stimuli were 

presented both below and above levels of subjective perception using an 

oddball paradigm in which the standard and deviant stimuli differed from each 

other in terms of orientation.   

7.2 Introduction 

Whether the visual MMN elicitation is dependent on attention is a controversial 

issue in MMN research.  Although it has been proposed that generation of the 

visual MMN is an automatic process independent of attention, this has proved 

difficult to establish empirically. In the auditory domain the MMN can be 

recorded even during sleep, suggesting it is an automatic detection of stimulus 

change and that it does not require conscious attention (Nielsenbohlman, 

Knight, Woods, & Woodward, 1991). As outlined in Section 1.9, the MMN is 

best recorded in the absence of focused attention. However, within the visual 

system it is difficult to design a methodologically adequate ‘ignore’ condition due 

to vision’s primacy in directing continuous behaviour (Czigler, 2007; Kimura, 

2012). This is an issue that has made it difficult to establish whether the visual 

MMN’s that have been reported in many studies are in fact ‘true’ visual MMNs 

as it has been difficult to assess whether attention has been paid to the stimuli 

irrelevant to the behavioural task.   

 

The experiments outlined in Chapter 3 of this thesis employed an illusory 

square as a distractor in order to take attention away from the standard-deviant 

transition (Experiment 3.1). However, it was shown in a control experiment 

(Experiment 3.2) that the illusory figure could not attract fully the attentional 

resources away from the standard-deviant transition. There are a number of 

ways in which attention can be taken from a visual stimulus, and these include:  
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focusing the participant’s attention on a second task, presenting stimuli that are 

irrelevant to the task in the peripheral visual field while participants focus their 

attention on the centre of the visual field and presenting stimuli at very brief 

presentation rates. An extension of the latter approach is to present stimuli at 

very brief exposure times in combination with a mask so that the stimuli can no 

longer be reported as seen. For the purposes of this thesis such stimuli are said 

to be subliminal or subliminally presented. 

 

General agreement suggests that stimuli that are not accessible to conscious 

awareness can still be analysed. The question of whether a visual MMN can be 

elicited by deviant stimuli even when they cannot consciously be reported may 

provide insight into the dependence of the MMN on attention. Studies such as 

Hsieh and Colas (2012) have shown that stimuli that are not consciously 

detected can still be analysed and influence perceptual and cognitive function, 

for a review of similar evidence, see Lin and He (2009). Much of the current 

debate has moved from whether subliminal stimuli can be perceived to 

identifying the nature of the processing that can be achieved without 

awareness. Whether stimuli that are not accessible to conscious awareness are 

processed in a similar way remains an open research question. 

7.2.1 Subliminal ERPs to neutral stimuli 

 

 A number of studies have used subliminal methods to explore ERP 

components to neutral stimuli. Much of the work relating to the recording of 

ERPs to emotionally neutral subliminal stimuli has focused on the P3 

component. In a group of thirteen patients with intractable epilepsy, Brázdil et 

al. (2001) recorded ERPs directly from the cortex to stimuli that were presented 

below subjective levels of awareness and stimuli that were presented 

supraliminally (above the threshold of sensation). Two stimuli, a yellow X 

(target) and a yellow O (standard), were presented on a white background 

within a visual oddball paradigm. Before the actual experiments the subjective 

threshold was determined for each participant by altering the level of contrast of 

the stimuli until the participant was no longer able to distinguish the stimuli from 

one another.  The experiment was carried out in two phases, in the first phase 

the stimuli were presented for 200ms duration (supraliminal condition) in a 

standard oddball paradigm and participants had to press a button as quickly as 
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possible on detection of the target. A P3 response was recorded to the target 

stimuli. In a second phase of the experiment the supraliminal stimuli were 

interspersed with stimuli presented for 10 ms duration (subliminal condition). 

Analysis of the ERPs evoked to the subliminal target stimuli revealed a 

waveform that corresponded to the P3 evoked to the supraliminal stimuli 

although it was smaller in amplitude and earlier in latency (peaking at 258 ms in 

the subliminal condition and 391 ms in the supraliminal condition). Brázdil et al. 

(2001) interpreted these results as implying that perception of the stimuli and 

higher level processing could occur even if the participant was unaware of the 

information, but concluded that the P3 evoked in the subliminal condition 

reflects conscious discrimination even if the participant was unaware of it.  

 

In another study Bernat, Shevrin, and Snodgrass (2001) used a passive 

experiment to investigate P3 activity in order to assess whether components of 

subliminal ERPs have similar functional properties to components of 

conventional supraliminal ERPs. Prior to the experimental presentation of the 

stimuli, the participant’s objective detection threshold was established. The 

words LEFT and RIGHT were presented in a counterbalanced oddball design 

subliminally for 1 ms using a tachistoscope. The findings confirmed that a P3 

component was significantly greater for the less frequent (either LEFT or 

RIGHT) than for the frequent stimulus across Fz, Cz and Pz, suggesting that 

the oddball P3 could be recorded to subliminal stimuli. These studies 

demonstrate that ERPs to stimuli presented below levels of subjective and 

objective detection (Cheesman & Merikle, 1984) can be elicited in the absence 

of focused attention.  

 

A number of studies have explored the visual MMN to briefly presented masked 

neutral stimuli. Czigler, Weisz, and Winkler (2007) conducted a series of 

experiments using a visual oddball paradigm to present green/black and 

red/black checkerboard stimuli that were counterbalanced between participants 

to act either as standard or deviant stimuli. The stimuli were followed by a mask 

consisting of red/green hexagons of a similar size to the checkerboard squares, 

test and mask stimuli were presented for 14 ms. Stimulus onset asynchronies 

(SOAs) were varied in the experiments between 14-174 ms and a behavioural 

task varied in the experiments between detecting changes in the size of 
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elements of a central fixation cross and detecting the deviant stimulus. The 

experiments were designed to assess the effects of the length of test to mask 

SOAs on ERPs and to measure the effects of masking on detection 

performance. With increases in test to mask SOAs there were increases in 

behavioural detection of the deviant. At 14 ms behavioural results suggested 

that the participants had difficulty detecting the difference between standard and 

deviant stimuli and no visual MMN response was recorded. The ERPs showed 

an enhanced negative component in response to the deviant stimuli in the 

visual MMN latency range 124-132 ms to stimuli with a minimum SOA of 40 ms 

but they reported behavioural stimulus detection performance increased from 

SOA of 13 ms. The results of the study suggest that stimulus discrimination 

responses were not elicited in the absence of conscious report.  

 

Kogai, Aoyama, Amano, and Takeda (2011) in a MEG study presented vertical 

grating stimuli that varied between standard, deviant and mask in terms of 

spatial frequency, with differences in spatial frequency such that it was difficult 

to distinguish the standard from the deviant. An oddball sequence, in which 

masked stimuli were presented for 433 ms interspersed with standard and 

deviant stimuli presented for 17 ms was carried out. During stimulus 

presentation, the participant’s task was to respond by pressing a button on 

detection of the deviant. Behavioural results suggested that the participants 

could not consciously detect the difference between standard and deviant 

stimuli. Results of the MEG revealed equivalent current dipole sources in the 

calcarine sulcus and the parieto-occipital sulcus. A response to deviant stimuli 

that was significantly larger than to standard stimuli  was recorded in the latency 

period 143-153 ms, suggesting an automatic response analogous to an MMN 

could be recorded to masked visual stimuli for changes to spatial frequency. 

7.3 Rationale and aim 

The current experiment used a backward and forward masking paradigm to 

investigate discrimination processes in stimuli that changed in orientation. A 

number of studies have shown that visual MMN can be elicited to a change in 

orientation (Astikainen et al., 2008; Flynn et al., 2009). The results of the 

experiments presented in Chapter 6 showed that using a continuous visual 
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stream masking paradigm with briefly presented checkerboard stimuli it was 

possible to record pattern onset responses, CI at 7 ms duration and CII and CIII 

at 14 ms duration even though the majority of participants were unable to 

identify the appearance of the checkerboard at 14 ms. The current study 

introduced an oddball paradigm to establish whether a deviant stimulus could 

elicit registration of stimulus discrimination that was independent of the ability to 

report that stimulus. A novel aspect to this experiment is that no behavioural 

task was required of the participant.  Evidence of stimulus discrimination in the 

absence of awareness would imply that the response to a change in orientation 

satisfied the criteria of recording a visual MMN in the absence of focused 

attention.  Whereas, evidence that stimulus discrimination was associated with 

the ability to report the stimulus would imply that the criterion of absence of 

attention had not been met.   

   

7.4 Methods Experiment 7.1 

7.4.1 Participants 

With ethical approval and informed consent 17 healthy adults (mean age 21.8 

years range 18 to 38 (12 females) were recruited for the experiment. 

Participants reported no history of neurological disease and had normal or 

corrected-to-normal visual acuity. Participants were recruited from a student 

population and received two and a half hours research participation credit. Two 

participants were excluded from the analysis, one due to technical issues during 

the recording and one due to excessive artifacts in the data. 

7.4.2 Stimuli and procedure 

Two stimuli, comprising of black and white checkerboard elements differing 

from each other only in terms of their orientation to form either a + or an x were 

presented in a behaviourally silent oddball paradigm where the ratio of 

standards to deviants was 8:2. The stimuli were embedded between masking 

stimuli consisting of complex images whose colours inverted (see Section 

6.3.2.1). The background of the stimuli consisted of the same complex image. 

The two stimuli were presented at very brief presentation times, below levels of 

subjective awareness for 7ms in the first instance and then above levels of 

subjective awareness at 14ms. The masking stimuli were presented for 
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between 486 and 500 ms and details of stimuli, stimulus sequence and 

durations during experiment are illustrated in Figure 7.1 conditions A and B. The 

test to mask SOA was determined by the computer refresh rate and was 7 ms. 

Participants were seated comfortably in a darkened room 1 m away from the 

computer screen and requested to fixate on a small red dot in the centre of the 

screen that was present throughout recording. Within the oddball paradigm, 

stimuli were presented in a pseudo-random sequence ensuring deviant stimuli 

were interspersed with standard stimuli. Five blocks of the 7 ms duration stimuli 

were presented. Each block contained 500 stimuli (400 standards, 100 

deviants). This was followed by one block of 100 stimuli during which the 

masked + was presented alone and one block where the masked x was 

presented alone. The same procedure was then carried out for the 14ms 

duration stimuli. There was a break of one minute break between blocks.  

Following the first block of the 14 ms presentation, participants were asked if 

they observed anything different from the earlier presentations. If their answer 

was yes, they were asked to describe what that was. If the answer was no, at 

the end of all the presentations they were asked to describe what they saw. If 

they had not reported seeing anything other than the masking stimulus they 

were shown the + and x stimulus and were asked if they had seen them during 

the recording and their responses noted.  

All stimuli were presented on a CRT monitor (Samsung Sync Master) running 

with a screen refresh rate of 160Hz. The stimulus presentation software (E-

Prime V2) provided markers to be used during averaging of the EEG to produce 

evoked potential waveforms.  
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Figure 7.1 Schematic representation of single stimulation cycle presented in the 
oddball paradigm  

A and B show stimulus presentation times for 7 ms and 14 ms respectively 

7.4.3 EEG data recording  

Eleven silver-silver chloride electrodes were used to record the EEG activity 

and were positioned at sites in accordance with the International 10-20 system 

(Fz, Cz, Pz, Oz, O1, O2, VEOG, M1, M2) (see Sections 2.2 and 2.3).  

7.4.4 VEP data analysis 

Continuous EEG data were epoched offline  -100 ms pre-stimulus to +500 ms 

post-stimulus. The epochs were digitally filtered with a band pass 1-30Hz and 

baseline corrected. Epochs containing transients greater than ± 100μV were 

excluded from further analysis.  For each participant, ERPs were averaged 

separately for standard and deviant stimuli, the data re-referenced to Fz and 

grand average waveforms were constructed.  

From the grand average waveforms MMN-like differences were identified on the 

basis of known negative polarity, known emergence over posterior electrode 

positions and typical latency range 150 – 400 ms (Kimura, 2012). In both 

experiments, the maximal difference between ERPs to standards and deviants  

was identified at 170 ms and 320 ms post stimulus presentation at occipital 

sites and a 30 ms time window was centred at these latencies for electrodes 

O1, and O2 (Astikainen et al., 2008). In addition, subtraction waveforms were 

constructed of deviant minus standard and deviant minus deviant alone (see 

Section 2.3.7.3). Mean amplitudes for the time windows were calculated relative 

to the mean voltage of a 100 ms pre stimulus baseline for each participant for 
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the standard and deviant stimuli. The mean amplitudes were analysed using 

ANOVA (see Section 7.5.2).  

7.5 Results 

7.5.1 VEP data analysis 

A visual response was recorded in all participants consisting of a P1-N1-P2-N2 

waveform for the stimuli presented at 7 ms and 14 ms duration. All participants 

were unable to report the appearance of the + and x stimulus at 7 ms stimulus 

duration. At 14 ms 12 of the 15 participants were able to identify this event as 

the appearance of the + and the x. Grand average waveforms were constructed 

for the standard and deviant stimuli (see Figure 7.2 A and D) for waveforms at 

electrodes O1 and O2. Visual inspection of the grand average waveforms 

reveal an enhanced negativity in the ERP response for the deviant when stimuli 

were presented for 14 ms, with a maximal difference at approximately 170 ms 

compared to the standard stimuli. This amplitude difference was not apparent in 

the 7ms condition. An enhanced amplitude for deviants compared to standards 

was noted at around 320 ms for both durations - this was larger in the 14 ms 

condition.  A 30 ms time window was centred at each of these latencies for 

electrodes O1 and O2. For all participants mean amplitudes for these time 

windows were calculated relative to the mean voltage of a 100 ms pre-stimulus 

baseline for standards and deviants. Mean amplitudes and standard deviations 

for the standard and deviant are shown in Table 7. 1.  

 

Difference waveforms of deviant minus standard at 7 ms revealed possible 

visual discrimination components at approximately 320 ms, this was larger for 

electrode O1 than electrode O2 (Figure 7.2 B). At 14 ms visual discrimination 

components were revealed (Figure 7.2 E) peaking at approximately 170ms and 

at approximately 320 ms. Comparison of the deviant to the standard ERP using 

the point-by-point t- test algorithm (p<0.05; one-tailed) against baseline, did not 

reach significance suggesting that MMN was not elicited when the stimulus 

duration was either 7 ms or 14 ms.  
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Figure 7.2 Grand average waveforms referenced to Fz (negative upwards) at 
electrodes O1 and O2 

A) and D), standard and deviant waveforms at 7 ms and 14 ms duration 
respectively, B) and E) deviant minus standard subtraction waveforms at 7 ms 
and 14 ms duration respectively, C) and F) deviant in context minus deviant 
alone subtraction waveform at 7 ms and 14 ms duration respectively. Note the 
discrimination responses highlighted in grey 
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7.5.2 Statistical analysis of amplitude data 

 

Table 7.1 Mean amplitude (µV) and standard deviation (SD) for each stimulus 
type at occipital electrode sites for the 155-185 ms and 305-335 time windows for 
the stimuli presented at 7 ms and 14 ms (n = 15) 

 

  Mean amplitude (µV) and Standard Deviation (±SD) 

  

Stimulus Type and Stimulus Duration 

 

Electrode 

 

Time 

window 

Standard 

7ms 

Deviant 

7ms 

Standard 

14ms 

Deviant 

14ms 

O1 155-185ms 0.05 ± 2.79 -0.26 ± 2.28 -0.38 ± 2.83 -2.41 ± 2.69 

O2 155-185ms 0.41 ± 3.36 0.20 ± 2.82 0.05± 3.45 -2.14 ± 2.63 

O1 305-335ms 0.36 ± 1.20 -0.23 ± 1.10 0.04 ± 1.41 -1.20 ± 2.31 

O2 305-335ms 0.16 ± 1.16 -0.28 ± 1.04 -0.10 ± 1.78 -1.62 ± 2.39 

  

The mean amplitude data at bilateral occipital electrodes in the 155-185 ms and 

the 305-335 ms time window was analysed using a pair of ANOVAs.  At each 

time window, a two-way within subjects ANOVA was used to examine the 

effects of stimulus type (standard, deviant) and stimulus duration (7 ms, 14 ms) 

on the ERP responses. As the analyses were exploratory Bonferroni corrections 

were not applied. 

7.5.2.1 Time window 155-185ms 

The main effect of stimulus type (F(1,14) = 9.832; p = 0.007), and stimulus 

duration (F(1,14) = 9.918; p = 0.007) were both significant.  This should be 

interpreted in light of the statistically significant interaction between stimulus 

type and stimulus duration (F(1,14) = 12.899; p = 0.016).  This interaction 

depicted in Figure 7.2 appears to show that the amplitude of the deviant 

stimulus is more negative at 14 ms than at 7 ms and than the standard stimulus 

at 7 ms and 14 ms stimulus durations.   
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Figure 7.3 Mean amplitude (µV) of component waveforms at bilateral occipital 
electrodes in the 155-185 ms time window as a function of stimulus type and 
stimulus duration (ms) 

To examine the stimulus type x stimulus duration interaction, simple effects 

were carried out. At 14 ms duration, there was an increased negative amplitude 

to the deviant stimulus compared to the standard stimulus (t = -3.262; df = 14; p 

= 0.006). There was also an increased negative response when the deviant 

stimulus was presented for 14 ms compared to 7ms duration (t = -4.324; df = 

14; p = 0.001). The amplitude of the component did not differ significantly 

between standard and deviant stimuli at 7 ms duration (t = -0.842; df = 14; p = 

0.414) or between standard stimuli at 7 ms and 14 ms duration (t = -0.705; df = 

14; p = 0.492). 

7.5.2.2 Time window 305-335ms 

The main effect of stimulus type was significant (F(1,14) = 14.731; p = 0.002), 

deviant stimuli had a significantly a greater negative amplitude compared to 

standard stimuli. The main effect of stimulus duration was significant (F(1,14) = 

5.293; p = 0.037), stimuli presented for 14 ms had a significantly greater 



135 
 

negative amplitude than stimuli presented for 7 ms.  There was no statistically 

significant interaction between stimulus type and stimulus duration (F(1,14) = 

2.700; p = 0.123). 

To assess any discrimination responses at very brief presentation durations, 

simple effects were also carried out. These revealed that although the 

amplitude of the ERP in this time window to the deviant stimulus was 

significantly greater than the standard at 14 ms duration (t = -3.397; df = 14; p = 

0.004), there was no such difference at 7 ms (t = -1.676; df = 14; p = 0.116). 

7.6 Discussion 

The results of Experiment 7.1 show that for stimuli that were not reportable 

using the backward and forward masking paradigm employed, i.e. those 

presented at 7ms, there was little variation in the ERPs evoked to standard and 

deviant stimuli in the N1 latency period. A small but enhanced negativity to the 

deviant stimulus was observed at around 320 ms in the grand average 

waveforms. Although this negativity was smaller, it did correspond in terms of 

latency with that observed when the stimuli were presented for 14 ms and is in 

the expected latency period of visual MMN. This negativity did not reach 

statistical significance however when tested using point-to-point t-tests or 

simple effects. Overall therefore, these results suggest that visual MMN was not 

elicited when participants could not report seeing the stimuli.   

 

When stimuli were presented at 14 ms duration, twelve of the fifteen 

participants were able to report the appearance of the standard and the deviant 

stimuli. The deviant stimulus produced an enhanced negative amplitude in the 

order of 2.2µV and 1.5µV compared to the standard stimulus at approximately 

170 ms and 320 ms respectively.  Analysis of the subtraction waveform, deviant 

minus standard, by point-to-point t-tests did not reach significance. However, 

analysis of grand average waveforms by ANOVA and simple effects revealed 

that, at bilateral occipital electrodes, the response to the deviant was 

significantly more negative than the response to the standard in both the early 

and the late time window. The ERP waveforms and the statistical analysis 

suggest that discrimination responses, possibly reflecting a visual MMN 

response, were recorded in the 14 ms stimulus condition.  
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In contrast to the results reported by Czigler et al. (2007) whose masking study 

varied test to mask SOAs and found that a visual MMN response did not 

emerge below SOA of 40 ms, in the current experiments, visual MMN emerged 

with a test to mask SOA of 7 ms. However, it should be noted that in the current 

experiment behavioural detection of the deviant stimulus was high when the 

stimulus was presented for 14 ms, whereas, behavioural detection in the study 

by Czigler et al. (2007) was low at 14 ms deviant duration. These results 

suggest that conscious perception of the stimuli was required before visual 

MMN could emerge. 

 

The results of the current study are also in contrast to those of Kogai et al. 

(2011) who used an oddball sequence, in which masked grating stimuli were 

presented for 433 ms interspersed with standard and deviant grating stimuli 

presented for 17 ms. They reported that despite behavioural results suggesting 

that the participants could not consciously detect the difference between 

standard and deviant stimuli, a MEG response to deviant stimuli that was 

significantly larger than to standard stimuli emerged. They interpreted this as 

suggesting an automatic response analogous to an MMN could be recorded to 

masked visual stimuli for changes to spatial frequency. Kogai et al. (2011) result 

raise the possibility that MEG offers a more sensitive methodology with which to 

investigate visual MMN is the absence of awareness. 

 

A number of studies have reported recording ERPs to subliminal stimuli. Bernat, 

Shevrin, et al. (2001) reported a significant parietal P3 to stimuli presented 

below objective detection threshold levels. Brázdil et al. (2001) reported an ERP 

to subliminal stimuli that corresponded to the P3 evoked to the supraliminal 

stimuli. It was however, smaller in amplitude and earlier in latency in the 

subliminal condition. A study by Bernat, Bunce, and Shevrin (2001) showed that 

a subliminal P3 ERP could be elicited to emotionally valent words that had a 

component structure similar to a supraliminal P3, although smaller in amplitude 

by at least a factor of four.  The visual MMN response is smaller in amplitude, 

often in the region of 1-3µVs, than that of a P3. One explanation for a lack of 

visual MMN in the 7 ms condition could be that if the amplitude of the response 

was reduced in the subliminal condition and it may be difficult to demonstrate its 
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emergence with scalp recorded EEG methods but iEEG or MEG may detect 

differences.  

 

Recent interpretations of the component structure of the visual MMN suggest an 

initial negative component occurring between 150-200 ms and a later negative 

component between 200-400 ms. These components, corresponding to visual 

N1 and N2 respectively, are apparent in the present experiment. The early 

visual MMN component, in the N1 latency period, is thought to be due to 

differential activation of afferent neuronal populations between stimuli thus 

reflecting their state of habituation. Differences in habituation are thought to be 

due to differences in stimulus probability and, as such, the amplitude of VEPs 

evoked to deviant stimuli are larger than those evoked to standard stimuli 

(Kimura, 2012). Several studies have suggested that the enhanced negativity 

observed in the deviant minus standard subtraction waveforms, in the N1 

latency period, is therefore due to the refractory state of the neurons due to the 

rareness of the deviant stimuli in comparison to the standard stimulus 

(Kenemans et al., 2003; Mazza et al., 2005). Although other studies have 

interpreted this difference in the N1 latency period as a genuine visual MMN 

response (Czigler & Sulykos, 2010).  

 

The late visual MMN component, in the N2 latency period, is thought to be 

representative of sensory memory formation or prediction error responses that 

are generated when a current event is incongruent with events predicted on the 

basis of sequential regularities (Kimura, 2012; Kimura et al., 2011). Studies 

incorporating an ‘equiprobable paradigm’ specifically designed to separate the 

effects of refractoriness and sensory memory/prediction error responses, elicit 

enhanced negativities in the latency periods observed in the current 14 ms 

condition (Czigler, Weisz, et al., 2006; Kimura et al., 2009). 

In the current experiment the use of the same stimulus only changing its 

orientation was used to control for habituation. However, some of the changes 

observed may be due to the activation of fresh neuronal populations within the 

oddball condition. When the ERP response to the deviant stimulus presented 

alone and out of context was subtracted from the deviant ERP response to the 

deviant presented in the oddball paradigm, no significant differences were 
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revealed when analysed by point-to-point t-tests. This, in combination with the 

observed reduction in the subtraction waveform (Figure 7.2 F) suggests that 

some of the differences observed in the 14 ms condition may be due to stimulus 

characteristics. Although the stimuli used as standard and deviant were the 

same, only changing in orientation, stimulus differences cannot be ruled, these 

however, may be reflected in the enhanced negativity in the N1 latency period.  

 

The current experiment used a backward and forward masking paradigm to 

investigate discrimination processes in stimuli that changed in orientation by 

introducing an oddball paradigm to establish whether a deviant stimulus could 

elicit registration of stimulus discrimination that was independent of the ability to 

report that stimulus.  No visual MMN was recorded to masked stimuli presented 

for 7 ms. Visual MMN components only emerged when the stimuli were 

presented for 14 ms and the majority of participants were able to report their 

appearance. This would suggest that using the current paradigm it was not 

possible to capture the automaticity of the visual MMN in the absence of 

attention and that for visual MMN elicitation some degree of attention is 

required. 
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8 General Discussion 

8.1 Introduction 

The motivation for this thesis has been to develop visual diagnostic techniques 

that can be used with children and others who cannot actively participate in a 

behavioural task. Currently available electrophysiological methods such as the 

VEP can, in combination with other diagnostic tests, assess the functional 

integrity of the visual pathways to the level of the cortex. However, clinical VEP 

assessment does not always give an indication of higher cortical function and 

does not have a direct relationship with visual acuity. For example, in cases of 

cerebral palsy, relatively good VEPs can be recorded but visual acuity can be 

poor. In cases of optic atrophy, poor degraded VEPs can be recorded whilst 

visual acuity can be relatively good. Cortical visual impairment is another 

condition where pattern reversal VEPs sometimes do not seem to give an 

accurate reflection of the conscious perception of the child. Therefore, currently 

available VEP assessment tools do not fully explain how vision is integrated at 

the level of the cortex.  

In the auditory system the MMN and its magnetic counterpart the MMNm 

provide an objective assessment of the accuracy of central auditory processing 

(Näätänen, 2000; Näätänen & Escera, 2000). In addition, it can be recorded in 

the absence of attention which makes it attractive for use with clinical 

populations as a behavioural response is not required. By assessing visual 

functioning at the level of the cortex, the visual MMN may thus potentially be 

developed into a diagnostic tool reflecting the integration of visual processes 

required for visual stimulus discrimination. However, the validity of any 

diagnostic test and its clinical usefulness is reliant on accurate measurement 

and an understanding of the underlying mechanisms which it taps. Therefore, 

characterising the visual MMN could have important clinical applications and, in 

particular, experimental evidence of sensory memory and pre-attentive 

processing has been sought (Czigler, 2007). This chapter discusses the 

findings of the studies in this thesis as a whole, and in relation to the above 

aims. It begins with a summary of the findings of each experiment and then 

integrates these findings with reference to a wider literature. Future directions 

are then discussed. 



140 
 

8.2 Summary of experiments 

When the experiments reported in this thesis were designed, the existence of 

the visual MMN was debated and its characterisation was in early stages of 

testing. Research over the past decade or so, has focused on establishing 

whether the same characteristics observed in the auditory MMN are present in 

the visual MMN, and the studies in this thesis make a contribution to this 

research effort. Where it has been specifically investigated in this programme of 

research, visual MMN components have been observed (apart from Experiment 

5.2, for the sample of participants with albinism). These findings and the 

findings of others indicate that there is now substantial evidence for the 

existence of visual MMN (Kimura, 2012; Kimura et al., 2011).  

Uniquely, in the experiments presented here, these visual MMN components 

have been elicited in paradigms in which there was no behavioural task. It had 

generally been understood that a concurrent active task is mandatory in eliciting 

visual MMN to control for the effects of attention, so that resources are allocated 

away from the standard-deviant discrimination towards the active task (Czigler, 

2007; Heslenfeld, 2003). A typical MMN paradigm is a selective attention task, 

whereby the stimulus sequence is usually task-irrelevant or unattended. Thus, 

participants are typically presented with a visual display that can contain a 

target stimulus amongst a variable number of distractor stimuli to which the 

participant is asked to respond (an active paradigm), or a number of task 

irrelevant stimuli are presented peripherally whilst the participant is asked to 

focus their attention on a task in the middle of the visual field (a passive 

paradigm). The paradigms in the experiments presented here used an illusory 

figure to attract attention from the standard deviant transition instead of a 

behavioural task to control for the effects of attention. Or, stimuli were 

presented close to thresholds of awareness to modulate attention. Importantly, 

these paradigms have the potential to be used in populations who cannot meet 

the demands of an active task. 

In Experiment 3.1, in a non-clinical population, the illusory deviant stimulus 

elicited the expected P3a novelty orienting response demonstrating that the 

illusory figure captured attention. A visual MMN was recorded over posterior 

electrode sites indicating visual discrimination responses. The introduction of a 
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behavioural task in Experiment 3.2 elicited a P3b attentional response to the 

target and visual MMN components were attenuated. To the author’s 

knowledge, this was the first experiment to demonstrate explicitly that visual 

MMN was subject to attentional modulation.  

Experiments 4.1, 5.1 and 5.2 utilised novel approaches to explore the source 

and laterality of visual MMN as some studies have shown that there is a right 

hemisphere dominance in the generation of the visual MMN (e.g. Kimura et al., 

2010). For the first time, in Experiment 4.1, intracranial electrodes recorded 

directly from the cortex of an adolescent male, components which may 

correspond to the scalp recorded visual N1 and MMN. Visual N1 and MMN 

components could be separated temporally and spatially with MMN recorded 

more anteriorly than N1.  Experiments 5.1 and 5.2 were innovative in approach 

in that the characteristic contralateral dominance in albinism was used as a 

model to explore hemispheric lateralisation of visual MMN, although no visual 

MMN response could be recorded in this sample. Little is known about the MMN 

response in albinism as, to date, no other studies have investigated either 

auditory or visual MMN in this population. 

Experiments 6.1, 6.2 and 7.1 were designed to explore the automaticity of the 

visual MMN using stimuli presented below and above participants’ subjective 

levels of perception. Experiments 6.1 and 6.2 were precursors to Experiment 

7.1 in that they investigated whether a combined masking and brief stimulus 

presentation continuous visual stream paradigm could elicit similar components 

emerging from a masked background (Experiment 6.1) in comparison to those 

emerging from a grey background (Experiment 6.2). Similar components could 

be elicited in the masked and unmasked condition indicating that this paradigm 

could be used to investigate later visual discrimination components. In addition, 

early visual component (CI) was recorded in all stimulus durations whereas 

components CII and CIII were recorded at 14 and 21 ms stimulus duration only, 

which may suggest that CII may be a correlate of visual consciousness. 

Experiment 7.1 investigated whether visual MNN responses could be recorded 

subliminally, in the absence of the participant’s ability to report seeing the 

stimulus. In this experiment behavioural identification of the stimuli was required 

for elicitation of visual MMN suggesting that the visual MMN may require some 

attentional resources.  
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In summary, visual MMN can be elicited in a non-clinical sample and directly 

from the the cortex of an adolescent suffering with epilepsy. Visual MMN could 

be separated temporally and spatially from N1. These experiments indicate that 

visual MMN is subject to attentional modulation and its pre-attentive nature was 

not captured. The implications of these findings are discussed in relation to the 

wider MMN literature below. 

8.3 Visual MMN as a pre-attentive mechanism 

Although the visual MMN has often been described as a pre-attentive process, 

it is unclear in the visual MMN whether it is elicited in the absence of attention 

or whether the N1/N2-like waves observed in the subtraction waveforms 

demonstrate the same degree of automaticity as the auditory MMN. In fact, 

there is some debate in recent years as to whether even the auditory MMN is 

truly elicited in the absence of attention (Haroush, Hochstein, & Deouell, 2010; 

Rissling et al., 2013), as attentional manipulations have been shown to lead to 

increases (Domenico Restuccia, Rubino, Marra, Valeriani, & Della Marca, 2005) 

and decreases (Yucel et al., 2005) in MMN amplitude. The experiments 

designed in this thesis have attempted to establish whether a ‘pre-attentive’ or 

‘attention independent’ visual discrimination response can be recorded in the 

absence of a behavioural task and to explore the generators of the mechanism.  

Evidence of the pre-attentive nature of the visual MMN in many studies is 

sought by the manipulation of attentional resources of the participant away from 

the task irrelevant stimulus sequence that is of interest to the experimenter. As 

noted in Section 8.2, in an active visual MMN paradigm, the participant’s task is 

typically to detect a target stimulus amongst distractor stimuli. Studies that have 

reported visual MMN in an active paradigm include (Fu et al., 2003; Kimura, 

Katayama, & Murohashi, 2006; Kimura, Murohashi, et al., 2006; Maekawa et 

al., 2005; Maekawa et al., 2009). 

 

In a passive visual MMN paradigm task, irrelevant stimuli are typically 

presented peripherally whilst the participant is asked to focus their attention on 

a task in the middle of the visual field or to focus on an  on an auditory task 

whilst ignoring visual stimuli presented. Such studies include (Astikainen et al., 

2004; Astikainen et al., 2008; Clery et al., 2013; Czigler et al., 2002; Czigler & 
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Pato, 2009; Kenemans et al., 2003; Kremlacek et al., 2006; Stagg et al., 2004; 

Stefanics, Kimura, & Czigler, 2011; Tales, Newton, Butler, Troscianko, & 

Wilcock, 2002; Tales et al., 1999). However, it is unclear from these studies 

whether evidence for the elicitation of the visual MMN is truly independent of 

attention because there is no way of being certain that the stimuli are truly 

ignored.  

 

In the current thesis, it was attempted to modulate attention in two ways.  

Firstly, an illusory deviant stimulus was used in the absence of a behavioural 

task to attract attention away from the standard deviant transition. Secondly, by 

manipulation of presentation durations close to the threshold of awareness. The 

elicitation of the visual MMN in the absence of the ability to consciously report 

the changes in the deviant would provide strong support for the automaticity of 

the visual MMN mechanism (Paavilainen, 2013) and would be suggestive of 

pre-attentive cognitive operations in vision. However, it is noted that there is 

debate as to whether consciousness, visual awareness and attention are 

separable processes and there is still a lack of understanding as to the 

relationship between these concepts and they are often conflated although 

some authors suggest they can be experimentally separated.  For a discussion 

of these issues, see (Chica, Lasaponara, Lupianez, Doricchi, & Bartolomeo, 

2010; Hohwy, 2012; Koch & Tsuchiya, 2007; Koivisto, Kainulainen, & 

Revonsuo, 2009) . It is not an aim of this thesis to review or try to resolve these 

issues but just to note an awareness of them. 

 

The first experiments in this thesis (reported in Chapter 3), used an illusory 

figure, a Kanizsa square, in place of a behavioural task to distract attention 

away from the standard deviant transition. Experiment 3.1 was novel, in that, no 

other studies have reported using an illusory figure in a passive oddball 

paradigm to control for the effects of attention. The deviant stimulus elicited a 

more negative response than the standard stimulus and the illusory deviant 

stimulus elicited a more negative response than either the standard or the 

deviant stimulus. An additional component reflecting a P3a was elicited to the 

illusory deviant only, suggesting that, as predicted, the illusory figure captured 

attention. The incorporation of a behavioural task in Experiment 3.2, in which 

participants had to respond to the presence of a square in the fixation point, 
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enabled the examination of the effect of an active task on the visual MMN. In 

Experiment 3.2, a P3b reflecting engagement with the task was elicited. 

However, when a task was incorporated into the paradigm, an attenuated visual 

MMN was recorded. In combination the two experiments show that 

discrimination to a change in the orientation of stimulus elements could be 

recorded in the absence of a behavioural task. However, the attenuation of the 

visual MMN when a behavioural task was incorporated, suggests that direction 

of attention modulated visual MMN amplitude. This suggests that some aspects 

of the visual MMN process are susceptible to attentional modulation, a finding 

that has been subsequently corroborated by Czigler and Sulykos (2010). 

The experiments reported in Chapter 6 used a standard clinical probe stimulus, 

the checkerboard, known to elicit particular electrophysiological ERPs. It was 

possible to show that comparable components could be elicited when this 

stimulus emerged from a grey background and when it was briefly presented 

and masked to vary the participant’s perception of the stimulus. When the 

participants could not report seeing the stimulus, early responses were still 

recorded – the CI at a latency of about 60-80 ms. Masking the stimuli increased 

the amplitude of CII components. These findings may suggest an association 

between the early components of the pattern appearance/disappearance VEP 

and conscious perception. The CI component may determine if the visual 

system has detected the short duration stimulus while the CII and CIII 

responses may give an indication of whether this stimulus had been processed 

any further and possibly perceived. Alternatively, these early C components 

may activate later more anterior systems known to be involved with perception 

and awareness. It may be that the cortical processing represented by CII and 

CIII is necessary but not sufficient for conscious perception and trigger later and 

more anterior circuitry which actually represents conscious perception.  

However, such an account would contradict the findings of Zeki (2008) and Tse 

et al. (2005). 

 

One problem in experiments using subthreshold stimuli is to establish absence 

of stimulus awareness. This should be based on sound methodological grounds 

and relates to the problem of determining the sensory threshold, which can vary 

as a result of different participant criteria in deciding for the presence of a 
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stimulus. In the experiments reported in Chapters 6 and 7 it was chosen to rely 

on subjective appraisal of stimulus perception without using signal detection 

protocols as it was the modulation of attention that was of current interest, 

rather than establishing individual perceptual thresholds. The signal detection 

paradigm is more critical in that it instructs the participants to judge whether a 

stimulus had been presented or not within a designated interval following a 

warning stimulus. By using a false alarm and hit rate, it is possible to establish 

the decision criteria of the participant. This is a relatively time consuming 

procedure and not suitable for routine clinical testing. Another problem with 

using signal detection protocols is that they incorporate a decision process 

rather than recording brain activity related purely to the physical stimulus. 

However, the methods for measuring awareness are controversial. Based on 

Signal Detection Theory there is a distinction between a subjective threshold, 

which is the level of discriminative responding at which observers claim not to 

be able to detect or recognise perceptual information at a better than chance 

level of performance and an objective threshold which is the level of 

discriminative responding corresponding to chance level performance. Some 

authors (Cheesman & Merikle, 1984, 1986; Merikle & Cheesman, 1986) 

advocate the use of subjective measures; they argue that perceptual awareness 

or consciousness is a subjective state that accesses the phenomenological 

experience of consciousness. Other authors (Bernat, Shevrin, et al., 2001; 

Shevrin, 2001) suggest the use of objective measures as being  more rigorous, 

as subjective measures are prone to differences in an individual’s willingness to 

report awareness. For a review of objective and subjective measures see  

Snodgrass, Bernat, and Shevrin (2004). 

 

Having validated the use of brief stimulus presentation in combination with a 

masking paradigm, the experiment reported in Chapter 7 investigated 

discrimination processes in relation to stimuli that changed in orientation. The 

introduction of an oddball paradigm was used to establish whether a deviant 

stimulus, when compared to a standard stimulus, could elicit registration of 

stimulus discrimination that was independent of the ability to report that 

stimulus. Evidence of visual MMN in the elicited waveforms when participants 

were unable to report stimulus change would provide strong support for the 

automaticity of the visual MMN. However, no visual discrimination components 
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were recorded when the stimuli were presented for 7 ms, apparently below 

levels of subjective perception and when participants did not report seeing the 

stimuli. Visual MMN components only emerged when the stimuli were 

presented for 14 ms and the majority of participants were able to report their 

appearance. The current results are in agreement with those of Czigler et al. 

(2007), who using a backward masking paradigm to elicit visual MMN reported 

that visual MMN was only elicited as behavioural identification of the deviant 

increased. These results also suggest that some degree of attention may be 

required to elicit a visual MMN. However, the current results are in contrast with 

those reported by Berti (2011), who reported the automaticity of the visual MMN 

using an attentional blink paradigm. The results of Experiment 7.1 may suggest 

that in some instances the visual MMN is not fully automatic. Alternatively, it 

may be that the paradigms developed in this thesis cannot tap the automaticity 

of the visual MMN. In future studies, reduction of stimulus contrast to render the 

stimuli unreportable as opposed to using a mask may be a useful way forward.  

 

To some degree automaticity of the visual MMN can be assumed in the current 

experiments as the participant’s focal attention was not directed to the stimuli – 

the criteria accepted for many visual MMN studies, including all of the 

experiments referenced in paragraph two of this section. However, the evidence 

in Experiments 3.1, 3.2, 6.1, 6.2 and 7.1, suggest that the visual MMN is 

sensitive to attentional modulation. Rather than specifying the nature of visual 

MMN generation as pre-attentive, it may be more appropriate to describe it as 

elicited in the absence of focal attention. The issue of how the specificity of the 

automaticity of the MMN generation can be characterised is still an issue to be 

resolved (Kimura, 2012; Rissling et al., 2013).  

8.4 Neuronal mechanisms underlying visual MMN 

Cognitively, mismatch responses are thought to be the consequence of change-

sensitive processes that are reflective of the automatic detection of sensory 

change/regularity violation and pre-attentive processing. However, this does not 

explain the neural mechanisms underlying the mismatch response. Two 

competing hypotheses have dominated the literature to explain the results from 

experiments investigating the neural mechanisms leading to the generation of 

the visual MMN, the ‘adaptation hypothesis’ and the ‘memory mismatch’ 
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hypothesis. It is now suggested that the results found for visual MMN can be 

accounted for more parsimoniously within a predictive coding framework. The 

theories will be outlined below. 

 

Within a neural adaptation account (Näätänen, 1990b), the enhanced negativity 

observed when the ERP to the standard stimulus is subtracted from the ERP to 

the deviant stimulus is accounted for by the refractory state of neurons. It is 

suggested that neurons that respond to a visual feature may become less 

responsive when that feature is repeated with short intervals. Whereas, with 

infrequent presentations of the deviant stimulus with longer stimulus intervals, 

neuronal responsivity is maintained. Therefore the enhanced amplitude in the 

N1 latency period is thought to be representative of differential activation of 

afferent neuronal populations between stimuli thus reflecting their state of 

habituation. Differences in habituation are thought to be due to the differences 

in stimulus probability and, as such, the amplitude of VEPs evoked to deviant 

stimuli are larger than those evoked to standard stimuli. A number of visual 

MMN experimental results can be explained within this framework including 

those of (Berti & Schroger, 2004; Kenemans et al., 2003; Mazza et al., 2005). 

 

Within a memory mismatch account (Näätänen, 1990b; Näätänen et al., 2005), 

the underlying mechanism for the emergence of the enhanced negativity 

observed in the visual MMN is that after a number of presentations of the 

standard stimulus, a sensory memory trace is represented in the neural 

architecture. When the deviant stimulus is compared to the neural 

representation that has been formed by the standard stimulus, there is a 

mismatch resulting in the differential electrical activity observed. An update of 

the memory mismatch account suggests that instead of being reliant on the 

physical characteristics of a stimulus, it is the regularity of a sequential pattern 

that is encoded in the neural representation and that the mismatch process is 

better characterised as a violation of regularity (Czigler, 2007; Czigler et al., 

2002). This account of the visual MMN therefore suggests that the visual MMN 

is generated by a mechanism that responds to a difference between 

consecutive stimuli rather than the stimulus itself.  
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A number of studies provide support for a mismatch interpretation, for a review 

see (Kimura, 2012).  The visual MMN is not elicited by deviant stimuli when they 

are presented without the intervening standards or when inter-stimulus intervals 

are long (Astikainen et al., 2008). Therefore the visual MMN is not elicited by 

any stimulus, without a number of preceding repetitions of a different stimulus 

(the standard) or when the transient memory trace of the stimulus has decayed. 

This is indicative of a relationship between the present stimulus and the 

representation of the preceding stimulus. For comparable results in the auditory 

domain see Sams et al. (1985). The visual MMN can also be elicited by 

stimulus omission in a stimulus sequence (Czigler, Várnagy, et al., 2006).  For 

comparable results in the auditory domain, see (Yabe et al., 1997). Violations of 

regularity in a sequence rather than physical differences between stimuli have 

been shown to elicit visual MMN (Czigler, Weisz, et al., 2006). 

  

The prevailing theory explaining the neural mechanisms that underly MMN 

generation are predictive coding theories. Predictive coding theories unify the 

competing hypotheses of neuronal adaptation and memory mismatch and can 

provide an overarching account for the experimental results observed 

supporting each of these hypotheses (Garrido et al., 2009; Kimura et al., 2011; 

Winkler & Czigler, 2012). In addition, they provide an extension of the memory 

mismatch account by explaining a number of experiment results that cannot be 

explained within a memory mismatch account (e.g. Czigler, Weisz, et al., 2006; 

Stefanics et al., 2011). Studies such as Stefanics et al. (2011) have provided 

evidence to suggest that the visual MMN, rather than being reliant on a sensory 

memory trace based on deviations in the physical stimulus characteristics of the 

standard and deviant, can be based on violations of regular sequential patterns. 

  

Predictive coding theories are models of perceptual inference based on the 

assumption that rather than passively registering environmental regularities, the 

brain actively predicts the causes of sensory inputs (Friston, 2005, 2010; Rao & 

Ballard, 1999). Within this framework the brain’s perceptual system is seen as a 

system that tries to utilise limited resources efficiently by minimising error by 

actively predicting the causes of sensory inputs. It is assumed the brain’s 

perceptual system is made up of a series of hierarchically organised generative 

models, with higher levels becoming ever more general.  The brain infers the 



149 
 

causes of sensory inputs by predicting them and adjusts these predictions in 

order to minimise error which leads to perceptual learning. Minimisation of 

prediction error is assumed to be reliant of a hierarchical network that operates 

on an empirical Bayes scheme with extrinsic (forward and backward 

connections between cortical sources) and intrinsic (local) connectivity (Friston, 

2005). Within this framework, sensory input entering the primary cortex is 

actively compared with top-down predictions and the MMN is elicited when 

there is a failure to suppress prediction error (Friston, 2005; Garrido et al., 

2009). For a review of visual MMN and auditory MMN studies interpreted within 

this framework see Winkler and Czigler (2012). 

 

In the current experiments, neuronal refractoriness was controlled for by the use 

of a ‘deviant alone’ condition (see Section 2.3.7.3).  A deviant alone condition 

removes the standard from the sequence which is one method of testing a 

memory mismatch account. To examine whether the differences observed in 

the subtraction waveforms were confounded by pure stimulus differences, the 

discrimination waveform to the deviant stimulus was compared to the 

discrimination waveform when that same stimulus was presented alone i.e. out 

of context and not in an oddball paradigm. Results suggested that differences 

observed were due to the context in which the stimuli were presented, although 

refractory effects could not be completely discounted.   

 

In the eight years that this thesis has been in development, methods for 

characterising the neuronal mechanisms underlying visual MMN generation 

have developed. The introduction and use of an equiprobable paradigm, in 

combination with an oddball paradigm (Kimura et al., 2009), has enabled the 

separation of mechanisms thought to underly the elicitation of the visual MMN. 

By presenting stimuli including the deviant with equal probabilities in one 

stimulus sequence (a control condition), and comparing that deviant to the 

deviant when presented in an oddball paradigm, the probability of the deviant in 

both conditions is maintained. This ensures that the state of neuronal 

refractoriness of the deviant is the same in both conditions. If the elicitation of 

the visual MMN is reliant on a sensory memory trace, no MMN is expected in 

the equiprobable condition, but an observed enhanced negativity in the deviant 

in the oddball paradigm minus the deviant in the control subtraction waveforms 
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provides evidence for a memory mismatch account. Largely based on studies 

using a combination of an equiprobable and oddball paradigm, current literature 

suggests that the visual MMN is made up of two components an early 

component in the N1 latency range which is reported as being related to neural 

refractoriness whilst a later component in the N2 latency range of 200-400 is 

related to memory based change or ‘unintentional temporal-context-based 

prediction in vision’  (Kimura et al., 2009; Kimura et al., 2011) p 671.   

 

A limitation of the experiments designed to elicit visual MMN in this thesis, is 

that they were not primarily designed to distinguish between hypotheses 

relating to the neural mechanisms underlying visual MMN. The best method for 

experimentally separating hypotheses as to the underlying neural mechanisms 

generating visual MMN responses is currently thought to be the use of the 

equiprobable paradigm in combination with an oddball paradigm (Kimura et al., 

2009). Therefore it is difficult to establish from the designs employed here 

whether in fact a ‘true’ visual MMN was indeed recorded. 

8.5 Generators of the visual MMN and hemispheric 

lateralisation 

The identification of neural generators of the visual MMN currently suggests 

areas in the extrastriate cortex are implicated, particularly in the right 

hemisphere. The generators of the visual MMN were investigated in Chapter 4 

by using recordings directly from the surface of the right hemispheric cortex 

from a patient undergoing pre-surgical evaluation for epilepsy. By using the 

illusory figure within an oddball paradigm and recording from strip electrodes it 

was possible to show that extrastriate areas BA18 and BA19 were implicated in 

the elicitation of visual MMN. In addition, it was possible to separate what may 

be recorded from the scalp as N1 and MMN components both temporally and 

spatially. Recordings to visual MMN were recorded more anteriorly than those 

to the N1 and this converges with the results of other studies (e.g. Urakawa, 

Inui, Yamashiro, & Kakigi, 2010; Urakawa, Inui, Yamashiro, Tanaka, & Kakigi, 

2010), who found that the Middle Occipital Gyrus (MOG) (BA19) was implicated 

in the generation of the visual MMN. Other studies have shown that the 

extrastriate cortex is implicated in the generation of the MMN. Kimura et al. 

(2010) using sLORETA reported generator sources in the right extrastriate 
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cortex. Other studies have also identified generator sources in frontal areas.  

For example, Yucel, McCarthy, and Belger (2007) found that deviant compared 

to standard stimuli evoked increased hemodynamic activation along the 

geniculo-striate pathways such that visual deviant stimuli evoked significant 

activation not only in early visual areas, but also in the posterior parietal cortex 

(BA19/7 and BA7). In addition, deviant stimuli elicited significant activation in 

prefrontal regions (BA9/10) in the left and more prominently the right 

hemisphere. Kimura et al. (2009) reported generators of the visual MMN in the 

right occipital lobe (BA19) and in the right orbitofrontal areas (BA47 and BA11). 

Due to the limited electrode coverage in Experiment 4.1, frontal generators 

were not investigated. 

The illusory deviant paradigm was used to investigate hemispheric lateralisation 

in the source of the visual MMN in a group of participants with albinism (Chapter 

5). A characteristic preponderance of temporal retinal fibres from each eye 

crossing to the contralateral hemisphere afforded the opportunity to investigate 

each hemisphere in relative isolation and explore whether there was a 

hemispheric lateralisation in the source of the visual MMN. A number of studies 

have reported that the right hemisphere is the dominant hemisphere for the 

visual MMN. For example, Kimura et al. (2012) reported that the visual MMN 

was mainly generated from occipito-temporal visual extrastriate areas in the 

right hemisphere and medial and lateral prefrontal areas lateralised to the right. 

In addition, Kimura et al. (2009) reported a right hemisphere dominance for 

visual MMN to changes in the orientation of a bar. Grimm et al. (2009), found 

the differences between deviant and control stimuli were present in both 

hemispheres indicating sources in bilateral parieto-occipital areas of cortex but 

with a right hemisphere dominance. However, in Experiment 5.2 a visual MMN 

response was not recorded in this group and no conclusions regarding the 

lateralisation of visual MMN could be made.  

 

 

 



152 
 

8.6 Development of visual diagnostic tests and future 

directions 

Cortical visual impairment is the major cause of blindness in children in the 

Western countries (Good, 2001), followed by retinal dystrophies which account 

for 14% of children newly diagnosed with blindness in the UK (Hamblion, 

Moore, Rahi, & British Childhood Onset, 2012). Due to the plastic properties of 

the cortex, methods of documenting and monitoring visual function/performance 

are becoming increasingly important especially with the need for evidence 

based medicine and quantifiable outcome measures. The experiments 

presented in this thesis have attempted to develop visual paradigms that 

address how information is initially processed by the brain and subsequently 

integrated for higher visual functions.  

Experiments 3.1, 3.2 and 7.1 showed electrophysiological markers of visual 

discrimination. Although these responses were modulated by attention the 

presence of these responses in a clinical group would indicate transfer of 

information from V1 to higher visual areas that ultimately correlate to visual 

function/performance. In addition, Experiments 3.1 and 3.2, have also shown 

that robust responses to an illusory square in comparison to other visual stimuli 

can be recorded eliciting a P3a reflective of attentional reorienting. 

The experiments outlined in Chapter 6 address the speed at which the visual 

cortex is able to process individual stimuli during a continuous visual stream. 

This has potential clinical applications, for example in determining the effect of 

visual rehabilitation strategies involving the temporal processing of information. 

From a scientific perspective, the results of Experiments 6.1 and 7.1 suggest 

that stimuli are required to be perceived by the participant for visual MMN to be 

evoked. This may aid in future work in designing studies to be used in 

developing visual MMN paradigms.  

A general problem in electrophysiological recordings is the identification of 

potentials just above the level of noise, such as the visual MMN. This signal to 

noise ratio is generally worse in a clinical paediatric environment and this 

problem is compounded by the need to determine exact onset and offset 

latencies in order to measure amplitudes. However, strategies have been 

developed to extract information that are now widely used to identify, for 
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example, epileptic spikes from background EEG (Wilson & Emerson, 2002). 

Such an algorithm developed and validated for use with the visual MMN would 

facilitate the use of the visual MMN in clinical visual testing. Another approach 

to identify/classify ERP components is to use Fast Fourier Transform (FFT) 

techniques. Here, the frequency at which the component occurs is extracted 

from a bandwidth spectrum. Cong et al. (2012) have used FFT techniques to 

identify the auditory MMN in children. This may be useful in combination with 

other methods described above to validate the existence of small visual MMN 

components. In addition, the incorporation of an equiprobable paradigm to the 

experiments designed within this thesis may provide further information on the 

mechanisms underlying visual MMN.  

8.7 Conclusion 

There are inherent difficulties in designing simple visual paradigms to 

investigate visual processing. The experiments presented in this thesis have 

demonstrated that robust responses to visual detection and discrimination can 

be elicited in the absence of a behavioural task in non-clinical populations. 

Therefore these paradigms have the potential for further research in non-clinical 

and clinical populations. Although it is unclear whether a ‘true’ visual MMN was 

recorded the results presented in this thesis suggest that the visual MMN in 

some instances is subject to attentional modulation.  
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APPENDICES 

 

APPENDIX I  

Participant Information Sheet: Experiment 3.1 

A study of visual electrophysiological responses 

The aim of the study: The aim of our study is to gather more information about 

how the eye and brain process visual input. 

Why is this study being done?: This study is being done to provide 

information on very early cognitive processing within the visual system. Once 

we understand how early visual cognitive processing occurs within a healthy 

population we can develop tests that can be used for clinical populations. 

How are the vision studies to be done? 

 Small areas of the scalp will be cleaned with a slightly gritty soap on a 

cotton wool bud. 

 Electrodes will be positioned on the head with a washable gel. This will 

take approximately 40 minutes. The electrodes detect brain waves linked 

with visual processing.  

 You will be asked to sit on a chair in front of a computer screen.  

 The lights in the room will be turned off. Black and white patterns will be 

shown on the computer screen and you will be asked to focus on a red 

dot in the centre of the screen. Data recording will take about an hour 

and a half and will be interspersed with short breaks – therefore the total 

participation time will be approximately two and a half hours.  

The researcher will remain in the room whilst the tests are taking place to 

ensure that you are looking at the screen during the presentation. 

Should you have any issues with any part of this research, or if there is anything 

about this research you wish to discuss, please contact Maria Flynn 

flynnm@westminster.ac.uk (Ext. 2181). You have the right not to participate. 

Should you choose to participate, you have the right to halt the trial and/or 

withdraw at any time. You do not have to give a reason. 

mailto:flynnm@westminster.ac.uk
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APPENDIX II 
Participant Information Sheet: Experiment 3.2 

A study of visual electrophysiological responses 

The aim of the study: The aim of our study is to gather more information about 

how the eye and brain process visual input. 

Why is this study being done?: This study is being done to provide 

information on very early cognitive processing within the visual system. Once 

we understand how early visual cognitive processing occurs within a healthy 

population we can develop tests that can be used for clinical populations. 

How are the vision studies to be done? 

 Small areas of the scalp will be cleaned with a slightly gritty soap on a 

cotton wool bud. 

 Electrodes will be positioned on the head with a washable cream. This 

will take approximately 40 to 50 minutes. The electrodes detect brain 

waves linked with visual processing.  

 You will be asked to sit on a chair in front of a computer screen.  

 The lights in the room will be turned off. Black and white patterns will be 

shown on the computer screen and you will be asked to focus on a red 

circle in the centre of the screen, when the dot changes to a square you 

will be asked to press a response pad button as quickly as possible. Data 

recording will take about one hour and will be interspersed with short 

breaks – therefore the total participation time will be approximately two 

hours.  

The researcher will remain in the room whilst the tests are taking place to 

ensure that you are looking at the screen during the presentation.  

Should you have any issues with any part of this research, or if there is anything 

about this research you wish to discuss, please contact Maria Flynn 

flynnm@westminster.ac.uk (Ext. 2181). You have the right not to participate. 

Should you choose to participate, you have the right to halt the trial and/or 

withdraw at any time. You do not have to give a reason. 

 

mailto:flynnm@westminster.ac.uk
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APPENDIX III 
Consent Form 

CONSENT FORM AND AGREEMENT TO PARTICIPATE IN A STUDY OF 

ELECTROPHYSIOLOGICAL RESPONSES 

All information provided for this study is being used for research purposes under 

the leadership of Professor Tony Towell, University of Westminster, 309 Regent 

Street, London, W1B 2UW 

I understand that all the information provided by me will be kept confidential and 

will be stored in such a manner that no specific details will be linked to 

individuals. 

Data will be stored on computers and on discs. 

I understand that I will not get any individual feedback but that a summary of the 

findings will be available to me at a later stage. 

 

I confirm that I have normal or corrected-to-normal vision             Yes/No 

 

I confirm that I have no history of neurological disease                  Yes/No 

 

I confirm that I have received an information sheet and have been given an 

opportunity to ask questions about the study. 

I understand that I am able to withdraw from this project at any time without 

having to provide an explanation. 

Signed (participant)__________________________      date _____________ 

 

Please print your name___________________________________________ 

 

Signed (researcher)__________________________      date _____________ 
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APPENDIX IV 
Experiment 6.1 and 6.2 Statistical analysis of stimulus duration 

To explore the effect of stimulus duration on the latency and peak-to-peak 

amplitude of the pattern appearance/disappearance VEP components revealed 

through the subtraction of the pattern reversal VEPs preceded by a 

checkerboard from the pattern reversal VEPs not preceded by a checkerboard 

stimulus, a one-way ANOVA with the factor stimulus duration (7 ms, 14 ms and 

21 ms) was carried out for each component latency and peak-to-peak amplitude 

(CI, CII, CIII, CIV; baseline – CI, CI-CII, CII-CIII, CIII-CV).  

For experiment 6.2, to establish whether a stable ERP response was present to 

the checkerboard stimulus emerging from the grey background stimulus across 

the different times, a one-way ANOVA with the factor duration (7 ms, 14 ms and 

21 ms) was carried out for each pattern onset component latency and peak-to-

peak amplitude (CI, CII, CIII, CIV; baseline to CI, CI-CII, CII-CIII, CIII-CIV). 

Effect of duration checkerboard duration on the pattern appearance/ 
disappearance VEPs 

For the pattern appearance/disappearance VEP components one-way ANOVAs 

were used to examine the latency (CI, CII, CIII and CIV) and peak-to-peak 

amplitudes (baseline –CI, CI-CII, CII-CIII, CIII-CIV) when the duration of the 

checkerboard was 7 ms, 14 ms and 21 ms.   

One-way ANOVAs revealed that increasing the duration of the checkerboard 

stimulus reduced CI latency (F(2, 30) = 43.544, p < 0.001) and increased CIV 

latency F(2, 30) = 5.346, p = 0.001). T-tests showed that in the 21ms condition 

CI latency was significantly shorter than in the 14ms condition (t=5.745, df=15, 

p<0.001) and that in the 14ms condition (t=4.362, df=15, p=0.001) CI latency 

was significantly shorter than in the 7ms condition. T-tests showed that in the 

7ms condition (t=-2.654, df=15, p=0.018) CIV latency was significantly longer 

than in the 14ms condition but CIV latency was not significantly different 

between the 14 and 21ms conditions (t=--0.516, df=15, p=0.614). There were 

no significant differences in CII latency (F(1.058, 15.870) = 0.593, p = 0.462) 

and CIII latency  (F(1.252, 18.785) = 2.929, p = 0.097). 

One-way ANOVAs were used to examine the effects of checkerboard stimulus 

duration on peak-to-peak amplitude. The amplitude of the baseline to CI was 
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not significantly different across the 3 checkerboard durations (F(2,30) = 1.894, 

p = 0.168). Increasing the duration of the checkerboard stimulus increased the 

amplitude of the CI-CII (F(2,30) = 10.922; p < 0.001). T-tests revealed that with 

the 14ms condition had a significantly greater amplitude than the 7ms condition 

(t=--5.377, df=15, p<0.001), but the 21ms condition although the amplitude was 

greater than the 14ms, this was not significant (t=--0.730, df=15, p=0.476). 

Increasing the duration of the checkerboard stimulus also increased the peak-

to-peak CII-CIII amplitude (F(2,30) = 34.524; p < 0.001). In the 21ms condition 

there was a significantly greater amplitude than the 14ms condition (t=--2.724, 

df=15, p=0.016) and the 14ms condition having a significantly greater amplitude 

than the 7ms condition (t=--5.946, df=15, p<0.001). The same pattern was 

revealed for the CIII to CIV amplitude (F(2,30) = 22.115; p < 0.001) with the 

21ms checkerboard duration condition showing a  significantly greater 

amplitude than the 14ms condition (t=--3.931, df=15, p=0.001) and the 14ms 

condition having a significantly greater amplitude than in the 7ms condition than 

(t=--3.327, df=15, p=0.005). 

Pattern appearance/ disappearance responses from grey background 

Increasing the duration of the checkerboard stimulus reduced CI latency 

(F(2,12) = 11.413, p = 0.002, ηp2 = 6.55). When the checkerboard was 

presented for 21ms CI latency was significantly shorter than when presented for 

14ms (t=3.990, df=6, p=0.007). There was no significant difference in CI latency 

between the 14 and 7 ms conditions (t=-0.488, df=6, p=0.643). CII latency was 

reduced when checkerboard stimulus duration was increased (F(2,12) = 

21.802, P < 0.001, ηp2 = 0.322). Simple effects revealed that when the 

checkerboard was presented for 21ms CII latency was significantly shorter than 

when presented for 14ms (t=5.279, df=6, p=0.002). When the checkerboard 

was presented for 14ms, CII latency was significantly shorter than when 

presented for 7ms (t=2.788, df=6, p=0.032). There were no significant 

differences across checkerboard durations for CIII latency (F(2,12) = 0.426, P = 

0.662, ηp2 = 0.066) or for  CIV latency (F(2,12) = 2.856, p = 0.097, ηp2 = 

0.322). The peak-to-peak amplitudes were not significantly different across all 

checkerboard durations, baseline to CI amplitude (F(1.127, 6.759) = 0.499, p = 

0.619, ηp2 = 0.077), CI to CII (F(2,12) = 0.204, p = 0.818, ηp2 = 0.033), CII to 

CIII (F(2,12) = 2.389, p = 0.134, ηp2 = 0.285) and CIII to CIV (F(2,12) =0.851, p 

= 0.451, ηp2 = 0.124). 


