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Abstract: In traditional finance, option prices are typically calculated using crisp sets of variables. 

However, as reported in the literature novel, these parameters possess a degree of fuzziness or 

uncertainty. This allows participants to estimate option prices based on their risk preferences and 

beliefs, considering a range of possible values for the parameters. This paper presents a 

comprehensive review of existing work on fuzzy fractional Brownian motion and proposes an 

extension in the context of financial option pricing. In this paper, we define a unified framework 

combining fractional Brownian motion with fuzzy processes, creating a joint product measure space 

that captures both randomness and fuzziness. The approach allows for the consideration of 

individual risk preferences and beliefs about parameter uncertainties. By extending Merton’s jump-

diffusion model to include fuzzy fractional Brownian motion, this paper addresses the modelling 

needs of hybrid systems with uncertain variables. The proposed model, which includes fuzzy 

Poisson processes and fuzzy volatility, demonstrates advantageous properties such as long-range 

dependence and self-similarity, providing a robust tool for modelling financial markets. By 

incorporating fuzzy numbers and the belief degree, this approach provides a more flexible 

framework for practitioners to make their investment decisions. 

Keywords: fuzzy; fractional; Brownian motion; jump-diffusion models; fuzzy systems; fuzzy  

random variable; fuzzy Poisson processes; fuzzy volatility 

 

1. Introduction 

Traditional option pricing models rely on precise, fixed values for variables like 

expected return and volatility. However, these models fail to account for the inherent 

uncertainty surrounding these parameters. To address this limitation, recent approaches 

have incorporated fuzziness into the calculations, allowing investors to estimate option 

prices based on their individual risk tolerance and beliefs about the potential range of 

values for these variables. 

The aim of this paper is two-fold: first, to review the state-of-the-art methods in fuzzy 

fractional Brownian motion and prove the theoretical correctness of this model, and, 

second, to extend many novel proofs and theoretical considerations presented in the 

recent works of the other authors. In future work, we will present examples and 

applications and introduce a novel proof dealing with the constraint of h << ½. This will 

pave the way to defining fuzzy fractional Brownian motion for h << ½. In this paper, we 

employ a narrative review methodology to synthesise existing research and to identify 

gaps where our proposed model can offer improvements. This allows us to provide a 

comprehensive overview of the literature and enables expert interpretation and synthesis, 

which are essential for extending existing theoretical frameworks and offering novel 

proofs in this area. 

This paper delves into a unified framework that merges fractional Brownian motion 

with fuzzy processes, creating a combined measure space. We begin by constructing a 
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product measure space that encompasses both the randomness inherent in fractional 

Brownian motion and fuzziness of the associated parameters. The underlying asset price 

St is assumed to follow the following crisp dynamics: 

��/� =  ��� +  ���(�)  +  ����
�  +  � ��(�� − 1)

�

�

�. 

In this equation, the terms represent various components: (i) the drift parameter µ 

represents the expected return rate on the value of the underlying asset; (ii) the volatility 

parameter σ represents the standard deviation of the return rate on the value of the 

underlying asset; (iii) the term dB(t) represents a standard Brownian motion; (iv) the term 

dBH(t) represents an independent standard fractional Brownian motion with respect to a 

fractional Brownian motion parameterised by the Hurst exponent H; (v) the term d(Σ(Vi 

− 1)) represents a sum of jumps, where {Vi, i ≥ 1} is a sequence of independent and 

identically distributed non-negative random variables. The logarithm of Vi, denoted as Υ 

= log(V), follows a normal distribution with a probability density function [1]: 

��(�) =
1

√2���

�
�

(����)�

���
�

 

The expected return rate µ, volatility σ, jump intensity λ, and jump magnitudes 

sequence Vi in the underlying asset price dynamics cannot always be treated as constant 

real numbers. Therefore, a new model is proposed to incorporate both randomness and 

fuzziness in describing the dynamics of the process. When dealing with processes that 

involve non-standard or non-numeric variables, such as fuzzy numbers or other types of 

uncertain quantities, the traditional tools of real analysis may not be directly applicable. 

In such cases, alternative mathematical frameworks or extensions of real analysis are often 

employed to handle the specific characteristics and uncertainties present in the financial 

domain. In the next sections, we prove the no-arbitrage condition in the presence of 

uncertain or non-standard variables. This involves extending the mathematical 

framework to accommodate the specific characteristics of the variables under 

consideration. Ref. [2] conducted a literature review and categorised more than fifty 

papers on option pricing in a fuzzy se�ing, providing insights into different approaches 

and best practices for utilising fuzziness in option pricing. Refs. [3,4] studied the pricing 

problems of European options with the application of Lévy processes under fuzzy 

environments. Ref. [5] developed a nonlinear fuzzy-parameter partial differential 

equation model for obtaining fuzzy option prices and derived dominating optimal 

hedging strategies under fuzzy environments. Ref. [6] studied the pricing problem of n-

fold compound options using the pricing model of [7], martingale method, and fuzzy sets 

theory. Ref. [8] discussed Asian option pricing when the stock price, risk-free interest rate, 

and volatility were trapezoidal fuzzy numbers. Ref. [9] used fuzzy quadratic regression 

methods to estimate the implied volatility smile function. Ref. [10] assumed that the 

underlying asset followed a Lévy process and fuzzified the input parameters. They 

derived option pricing formulas in both crisp and fuzzy cases using a minimal entropy 

martingale measure and fuzzy arithmetic. They also proposed and verified a generalised 

hybrid binomial American real option pricing model. Ref. [11] applied fuzzy decision 

theory and Bayes’ rule to derive a fuzzy Black–Scholes pricing model. They aimed to 

measure fuzziness in option pricing using fuzzy arithmetic. Refs. [12,13] developed a 

fuzzy version of the Black–Scholes pricing formula by considering triangular fuzzy 

numbers for the underlying asset price, volatility, and risk-free interest rate. Ref. [14] also 

introduced a bisection search algorithm to calculate the membership degree associated 

with a given option price. Ref. [15] employed stochastics and fuzzy set theory to develop 

a new framework for option pricing in which the underlying process follows a mixed 



Algorithms 2024, 17, 289 3 of 34 
 

fuzzy fractional Brownian motion with jump when h > ½. Using our derivations, we will 

complete and extend the work of Zhang, Wu, Lee, Nowak, and Romaniuk here. 

In summary, this paper proposes the utilisation and extension of the mixed fuzzy 

fractional Brownian motion as a replacement for Brownian motion in stochastic process 

modelling, specifically focusing on its advantageous properties, such as long-range 

dependence, self-similarity, and stationarity of increments. Furthermore, we complete 

and extend proofs and theoretical framework for some novel equations, namely the mixed 

fuzzy stochastic Brownian motion with jumps, to address the modelling needs of hybrid 

systems. 

2. Methods 

In this section, we review the works of [15] to extend Merton’s jump-diffusion model 

to include fBm and fuzzy processes and present an alternative variation of the proof. In 

the fuzzy fractional jump-diffusion model (FFJDM), the underlying process is  

�S�/S�  =  μ��� +  ����� + �����
� + � �����

� − 1�

��

�

. � 

The inclusion of the fuzzy Poisson process ��  with fuzzy intensity λ and ��
�  

(sequence of independent and identically distributed fuzzy random variables) makes this 

a jump-diffusion process as it allows for random jumps to occur at random times, in 

addition to the continuous stochastic components represented by the Brownian motion 

terms. In this model, all the fuzzy parameters are denoted by a hat symbol, such as μ�  and 

�� , representing the fuzzy expected return rate and fuzzy volatility, respectively. The 

model includes additional components, such as Bt (standard Brownian motion) and ��
�  

(independent standard fractional Brownian motion). The subtraction of 1 in the jump 

process is a convention used to represent the relative change or jump size with respect to 

the value of the process before the jump occurs. In the context of jump-diffusion models, 

the jump term is typically expressed as the sum of individual jump sizes, i.e., the 

magnitude of the jump experienced by the process. The jump size, Vi, represents the 

absolute change in the process value at the i-th jump. By subtracting 1 from Vi, one is 

effectively expressing the relative change or percentage change in the process due to the 

jump. By expressing the jump size as a relative change, the impact of jumps is effectively 

scaled based on the current value of the process. It allows for a more interpretable 

representation of jumps, as they are related to the percentage change rather than absolute 

changes. The fuzzy normal distribution is used to describe the fuzziness in the expected 

return rate and jump magnitudes. The model assumes independence among the sources 

of randomness and fuzziness, including ��, ��
� , Ñt, and Ṽi. We will now apply Itô’s lemma 

to FFJDM. If we make a Taylor expansion and ignore (dt)2 and dtdx because they are 

negligible compared to the dt-term, then 

�� =  (��/��) �� +  (��/��̂) �� ̂ +  (1/2)(���/��̂�)(��̂)�. 

The first term (∂f/∂t) dt is zero as f does not have an explicit time dependence. The 

second term (∂f/∂Ŝ) dŜ can be computed by using the assumption f(Ŝ) = ln(Ŝ) and taking 

the derivative of f(Ŝ) = ln(Ŝ) with respect to Ŝ: ∂f/∂Ŝ = 1/Ŝ. Multiplying this by dŜ, we obtain 

(∂f/∂Ŝ) dŜ = (1/Ŝ) dŜ. Now, let us consider the third term. Since (dŜ)2 = 0 (as d��  is a 

differential form), this term can be ignored. Now, substitute the given expression for dS ̂: 

dS�/S�  =  (μ��� + ����� + �����
� + ��∑ ���

� − 1���
� �). Expanding this expression, we have 

dS�/S�  =  μ��� +  ����� + �����
� + � �����

� − 1�

��

�

� 
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Integrating both sides of the expression, we obtain 

ln (S�)�  =  ln (S(0))� + ∫ μ���
�

�
 +  ∫ ��

�

�
��� + ∫ �����

� +  ∫
�

�
�−

�

���
�

�

�

�
������dt +

∫
�

�
�−

�

��� ������dt��

�
+ ∫ ��∑ ���

� − 1���
� �

�

�
dV). 

In the crisp case, we used Itô isometry to show that (��)� = (���)� + 2������ +

�(��)� = ���. 

Now, recall that �(�̂�)  =  ��(�̂�), so �̂�  =  ���(�(�̂�)). Replacing �� with exp(f(S ̂)) in the 

above expression, 

ln (S�)�  = ln �S(0))� + μ�� +  σ�� + �����
� −

1

2
���t +

1

2
���t�� + � � �����

� − 1�

��

�

�
�

�

dV�. 

Recall that ��
� are lognormally distributed such that E(��

�) = ������ � = ����/���
; then, 

exponentiate both sides and simplify: 

S�
�  =  S(0)����� � ���������

��
�

�
�����

�

�
������

∏ ��
���

��� . 

If we now take an expectation of S�
� , we have 

E[S�]
� = E[ S(0)����� � ���������

��
�

�
�����

�

�
������

∏ ��]
���

��� . 

In stochastic calculus, Bt, represents a standard Brownian motion and the key 

property of Brownian motion is that its variance increases linearly with time. The variance 

of Bt at time t is given by t, which is a result of its definition and properties. The variance 

of a random variable X is defined as— ���(�)  =  �[(� − �[�])2].  For a standard 

Brownian motion Bt, its expected value E[Bt] is 0 at any time t. Therefore, we have 

���(��) = �[��
�] = ∫ ����(�)(�)��

�

��
. Since Bt follows a Gaussian distribution with mean 

0 and variance t, its probability density function is the Gaussian density function ��(�) =
�

√���
exp (−

��

��
) . Plug this into the integral for the variance ���(��) = �[��

�] =

∫ �� �

√���
exp (−

��

��
)��

�

��
. The integrand 

�

√���
exp (−

��

��
) is the Gaussian p.d.f. with mean 

0 and variance t. To integrate the Gaussian p.d.f over the entire real line, 

∫
�

√���
exp (−

��

��
)��

�

��
, we will use the Gamma function. The integrand is an even function 

so ∫ ����
�� = 2

�

��
∫ ����

�� 
�

�
. Thus, after a change in variable x= √t, we turn this into 

gamma function 

2 �
1

2
������/��� = √�

�

�

 (1)

Similarly, ∫
����

�
�� = √2�

�

��
 . For standard normal distribution µ=0 and σ2=1, and 

changing variable � =  √�,  and x2= u, so du= 2xdx, then we have 

∫ �� �

√��
exp �−

��

�
� �� =

�

��
 

�

√��
2 ∫ �

�

√��
exp �−

�

�
�

�

�√�
�� =

�

�

�

√��
∫ √�

�

√��
exp �−

�

�
� ��

�

�
. 

Next, we use integration by parts. Choose u=√� and dv = exp �−
�

�
� ��. Then, du= ½ 

u−1/2 and v = -2 e-u/2. Applying integration by parts, 

�

√��
0∞√�

�

√��
exp �−

�

�
� �� =

�

√��
 � [�

�  − 2�
�

�e�
�

�� + [∫ ���/����/�]
�

�
. 

When x is 0, u is also 0, and as x approaches +∞, u approaches +∞, so the first integral 

uv evaluates to zero. We are left with 0∞√�
�

√��
exp �−

�

�
� �� =

�

√��
 [∫ ���/����/�]

�

�
. To 

evaluate the remaining integral, we can once again use integration by parts. Notice that 

the integral representation of ∫ ���/����/�]]
�

�
 is the result that we showed earlier in (1), 
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which is the gamma function Γ �
�

�
� = √�. Therefore, 

�

√��
 [0∞��

�

���
�

�] =  
�

√�
. Going back to 

E[S�]
� = E[ S(0)����� � ���������

��
�

�
�����

�

�
������

∏ ��]
���

���  , we need to evaluate E[ � ���������
�

] . 

The variance of the sum of independent random variables is given by ���(� + �) =

 ���(�)  +  ��� (�). For X=σ��  and Y= ����
� , from Itô’s isometry, we have �[���] and let 

�(�)  =  ���; then, using Itô, 

��(�)  =  ½ �����(�)�� +  ����(�)��(�)  =  ½ ���(�)�� +  ����(�)��(�). 

Z(0) = 1. Then, in integral form, �(�) = 1 + 
�

�
�� ∫ �(�)�� + � ∫ ��(�).

�

�

�

�
  Taking the 

expectation will make the stochastic integral vanish, so the last term is zero. Then, �(�) =

�[�(�)] = 1 +  
�

�
�� ∫ �(�)��

�

�
 . Taking derivates of both sides, we obtain �̇(�) =

��

�
�(�) . 

This is an ordinary differential equation, so we can separate variables and then integrate 

both sides. Let us start by rearranging the equation �′(�)/�(�)  =  �2/2. Now, we can 

integrate both sides with respect to t: ∫  �′(�)/�(�) �� =  ∫  (�2/2) ��.  Integrating the 

left side gives us the natural logarithm of the absolute value of m(t): 

ln| �(�)| =  �
��

�
� ∗  � +  ��, where C₁ is the constant of integration. To eliminate the 

absolute value, we can re-write the equation as �(�) =  ± exp ��
��

�
� � +  ���. Now, let us 

combine the constant terms into a new constant, C₂: �(�) =  �� ∗ exp ��
��

�
� ��. We know 

that m(0) = 1, so C2 = 1, and we are only interested in positive processes, so we can get rid 

of negative logarithm process. The result is �����(�)� = �[�(�)] = �(�) = �
���

� . Similarly, 

� ������
�

� = �
�

�
������

. Therefore, we obtain the following equation: 

E���
� � = S(0)����� � ��������

��
�

�
�����

�

�
������

∏ ��]
���

���   

                         = S(0)����� �
�

�
�����

�

�
������

�
�

�
�����

�

�
������

∏ ��]
���

���   
(2)

To evaluate the last term ∏ ��]
���

���  , which is the product of the i.i.d. distributed 

random jumps with mean µ and variance σ2, we will use the property that the expectation 

of the product of independent random variables is equal to the product of their 

expectations. Re-writing this expression and using the fact that � ��(�ᵢ)  =  ��(�₁)  +

 ��(�₂)  +  � +  ��(�ₙ)  =  ��(�₁ ∗  �₂�. . .∗  �ₙ), we obtain ∏ ��]
���

��� = �∑ �� (��)��
��� . 

E[S�]
� = S(0)����� �

�

�
�����

�

�
������

�
�

�
�����

�

�
������

�∑ �� (��)��
��� = ��������[�∑ �� (��)��

��� ]. 

To evaluate the process �[�∑ �� (��)��
��� ], we will use the fact that the jump size is i.i.d; 

then, by the law of iterated expectation, we can re-write the expectation as a conditional 

expectation: �[�∑ �� (��)��
���  ] = �[�[�∑ �� (��)��

��� |��]]�  . Recall that ��
�  is a Poisson distribution 

with parameter λ [1]. Because the distributions of the size of the jumps and the Poisson 

process of the number of jumps are independent, we can simplify the above expression as 

�[�∑ �� (��)��
��� ] = �[�[�∑ �� (��)��

��� |��]]� = ∑
(���)�

�!
�����

�[�∑ �� (��)��
��� ]�

��� . 

If one recalls, the jump size has a lognormal distribution with mean value µ and 

variance σ2 [1]. From the property of the normal distribution, we know that 

�� = E(��
�) = ������ � = ����/���

. 

So, 
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∑
(���)�

�!
�����

�[�∑ �� (��)��
��� ]�

��� =

∑
(���)�

�!
�����

[∏ E(��
��

��� )]�
��� =∑

(���)�

�!
�����

[∏ E(��
��

��� )]�
��� =

∑
(���)�

�!
�����

��� =�
��� ∑

(���)�

�!
�����

��� =�
��� ∑

(���)����

�!
������

��� . 

The first part of this series is just a re-wri�en Taylor series �� = ∑
�� �

�!

�
���  , so we can 

simplify ∑
(���)����

�!
= ������

��� . The whole expression becomes 

∑
(���)�

�!
����

�[�∑ �� (��)��
��� ]�

��� = �����
�����

= �����(��� ��). 

Then, 

E[S�]
� = S(0)����� �

�
�

�����
�
�

������

�
�
�

�����
�
�

������

�∑ �� (��)��
��� = ��������[�∑ �� (��)��

���

= ������������(��� ��). 

E[S�]
� = ������������(��� ��) = �����������(��� ��) = �����( �����(��� ��)).  (3)

In the next section, we will review the works of [16] and show how we can combine 

fuzzy processes with fBm. 

3. Proofs and Discussion 

In the field of stochastic process modelling, the fractional Brownian motion (fBm) is 

often recommended as a replacement for Brownian motion as the driving process, 

particularly when studying phenomena characterised by long-range dependence. The 

fBm, with a Hurst exponent (H) ranging between 0 and 1, is a type of Gaussian process 

that possesses several advantageous properties, including long-range dependence, self-

similarity, and stationarity of increments. Notably, when the Hurst exponent is different 

from one-half, the fBm ceases to be a semi-martingale. This paper is somewhat reliant on 

an earlier work of the Doob–Meyer decomposition theorem that provides a representation 

of a submartingale as the sum of a martingale and an increasing predictable process. This 

theorem lays the foundation for the decomposition of submartingales into their 

components. If we let X(t) be a submartingale with respect to a filtration (a sequence of 

sigma algebras), then there exists a unique, increasing, predictable process A(t) such that 

the martingale process M(t) can be defined as M(t) = X(t) − A(t). In other words, according 

to Doob–Meyer, the submartingale can be decomposed into the sum of a martingale M(t) 

and an increasing predictable process A(t). The proof for a continuous case is very 

complicated and can be found here [17]. However, there is a contradiction here, as it was 

said that the fBM is not even a semi-martingale. 

In this paper, we propose to review and extend proofs in mixed fuzzy stochastic 

Brownian motion as novel equations suitable for modelling hybrid systems. These 

equations provide a flexible framework that can effectively capture the dynamics of 

complex systems characterised by both stochastic and fuzzy components. By combining 

the concepts of fuzzy logic and stochastic processes, we aim to address the modelling 

challenges associated with hybrid systems. Applications of these processes can be made 

in the telecommunication industry, where measurements of variables suffer from multiple 

disturbances, and the financial industry, where participants are operating under 

uncertainty. 

To illustrate the applicability of our approach, we utilise the Liouville form of the 

fractional Brownian motion. The Liouville form represents a particular representation of 

the fBm that allows for an enhanced analysis and interpretation of its properties. By 

leveraging this form, we can gain further insights into the behaviour of the mixed fuzzy 
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stochastic Brownian motion and intuitional mixed fuzzy stochastic Brownian motion, 

thereby facilitating their use in a wide range of modelling scenarios. 

3.1. Preliminaries 

3.1.1. Fractional Brownian Motion 

The fBm BH is a zero mean Gaussian process with the following covariance function: 

���(�, �) = �(��(�)��(�) =
1

2
(��� + ��� − |� − �|��) (4)

This was derived in [18] and further studied in [19], ref. [20] where a stochastic 

integral representation was derived in terms of the Brownian motion. ∫ [(� −
�

�

�)��
�

�]��(�)) is called the Liouville form of an fBm and it holds many properties of the 

fBm, except that it has non-stationary increments. The classical Itô theory cannot handle a 

stochastic integral in terms of fBm because BH is not a semi-martingale if H ≠ ½. Two 

approaches have been used to evaluate stochastic integrals with respect to fBm. If H> 1/2, 

the Riemann–Stieltjes stochastic integral can be defined using Young’s integral [21]. 

If H < ½, Malliavin calculus techniques are used to approximate BH(t) by a semi-

martingale process [22]. The scope for this paper is to derive results for MFFBM processes 

when h > ½. The theoretical framework that we are relying on when h < ½ is from the 

Molchan–Golosov integral and adopted by [23]. It allows us to change the Hurst exponent 

using a specified transformation. This will be the main contribution in the future work. 

Returning to the proposition that, if H> 1/2, then the Riemann–Stieltjes stochastic integral 

can be defined using Young’s integral [21], 

��,�(�) = � [(� − � + �)��
�
�]��(�)), � > 0, � = � − 1/2

�

�

  (5)

��,�(�) = � ∫ ��(�)�� + ���(�)
�

�
, where ��(�) = ∫ (� − � + �)���]��(�)

�

�
. 

The proof using the integration by parts technique is as follows: ∫ �� =

� ∫ � − ∫ �′ ∫ �. For an alternative proof of this theorem, please see Theorem 2.1 [24]. 

So, 

��,�(�) = � (� − � + �)���(�)
�

�

= (� − � + �)� � ��(�) − � �(� − � + �)��� � ��(�)
�

�

�

�

�

�

= 

= [(� − � + �)��(�)]|�
� −  � ∫ (� − � + �)��� ∫ ��(�)�� = (

�

�

�

�
� − � + �)��(�) −

(0 − � + �)��(0) +  � ∬ (� − � + �)�����(�)��
�

�
=  ���(�) + � ∬ (� − � +

�

�

�)�����(�)�� =  � ∫ ��(�)�� +  ���(�)
�

�
,   

where ��(�) = ∫ (� − � + �)���]��(�)
�

�
. 

The process BH,ϵ (t) converges to BH(t) in L2(Ω) when ϵ tends to zero because it is 

square-integrable [24]. 

3.1.2. Fuzzy Random Variable, Fuzzy Stochastic Process, and Integral Overview 

This section provides some necessary background for fuzzy processes. The material 

mainly comes from the fuzzy set theory of [25]. Here, we will define a number of measures 

that are used in this paper. Let K(R) be the family of all nonempty, compact, and convex 

subsets of R (field). The Hausdorff metric dH is defined by the following: 

��(�, �) = max{ sup
�∈�,�∈�

inf|� − �| , sup
�∈�,�∈�

inf|� − �|}  (6)
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A metric space is said to be separable if there exists a countable dense subset. If A, B, 

C ⊂ K(R), then 

��(� + �, � + �) = ��(�, �) (7)

Let Ω, A, P be a probability space. The mapping F: Ω-> K(R) is called A-measurable 

if it satisfies {w ϵ Ω : F(w) ⋂ C ≠ φ} ϵ A for every closed set C ⊂ R. This means that, for any 

element w that belongs to space Ω such that F(w) is disjoint with C, it is not equal to zero 

for every closed set C ⊂ R. A closed set means that all limiting and interior points belong 

to a set. A multifunction F ⊂ M is said to be Lp—integrably bounded if the pth power is 

integrable for p ≥ 1, iff (if and only if) there exists h ⊂ Lp(Ω, A, P, R+) such that the norms 

metric (the norm ||.|| induces a metric on F, known as the metric induced by the norm 

or the norm metric) such that ||F|| ≤ h P-a.e (almost everywhere—event holds for almost 

all elements in a set, with the exception of a negligible subset of elements according to the 

probability measure P), R+ = [0, ∞) and ||F|| = dH(F, {0}) = sup |f|, f ϵ F. This means that 

the norm in terms of the metric is the greatest value of F. 

The membership function u on an interval closed set R → [0, 1] is defined for a fuzzy 

set u ⊂ R, where u(x) is the degree of membership of x in the fuzzy set u. Let us denote by 

F(R) the fuzzy set u: R → [0, 1] such that [u]a ⊂ K(R) for every a ⊂ [0, 1], where [u]a = {x ϵ 

R: u(x) ≥ a}. Define domain d∞: F(R) x F(R) → [0,∞) codomain/space of images and F(R), 

where d∞ is a complete metric space by d∞(u, v) = sup dH ([u]a, [v]a), where a ⊂ [0, 1]. This 

means that we are defining a function d∞ that takes two inputs from the set F(R), which 

represents the set of all real-valued functions and returns a value in the range [0, ∞)—the 

non-negative real numbers. We will now show that d∞ is a metric in F(R) and (F(R) d∞) is 

a complete metric space. To accomplish this, we consider F(R) equipped with the metric 

d∞ to establish if it is a complete metric space. A metric space consists of a set equipped 

with a metric, which is a function that measures the distance between elements in the set. 

In this case, F(R) is the set, and d∞ is the metric that we are defining. The metric d∞(u,v) is 

defined as the supremum or the least upper bound of the Hausdorff distance between the 

equivalence classes [u]a and [v]a, where a belongs to the interval [0, 1]. Here, [u]a and [v]a 

represent equivalence classes of functions u and v, respectively, under the relation defined 

by the parameter a. The Hausdorff distance measures the “closeness” between two sets by 

considering the furthest distance from each set to the other. It is the maximum distance of 

a set to the nearest point in the other set. In this case, the sets [u]a and [v]a are compared, 

and their Hausdorff distance is computed. The supremum is then taken over all values of 

a in the interval [0, 1]. By defining the metric d∞ this way, we establish that F(R) is a 

complete metric space. Completeness means that every Cauchy sequence in F(R) 

converges to a limit within F(R). In other words, F(R) with the metric d∞ satisfies the 

property that any sequence of functions that gets arbitrarily close to each other eventually 

has a limit within the same set. So, we have defined the metric d∞ on the set of real valued 

functions F(R) and established F(R) equipped with d∞ as a complete metric space. The 

metric measures the Hausdorff distance between equivalence classes of functions under a 

parameter a in the interval [0, 1]. For every u, v, w, z ϵ F(R), λ ϵ R, we have the following 

properties: 

i. Additive property d∞(u+w, v+w) = d∞(u,v); 

ii. Distribution property d∞(u+v, w+z) = d∞(u,w) + d∞(v,z); 

iii. Transitive (triangular) property d∞(u,v) ≤ d∞(u,w) + d∞(w,v); 

iv. Scalar multiplication property d∞(λu, λv) = |λ| d∞(u,v); 

v. Non-negativity d∞(u, v) is non-negative for all u, v in F(R); 

vi. Identity of indiscernibles d∞(u, v) = 0 if and only if u = v; 

vii. Symmetry d∞(u, v) = d∞(v, u) for all u, v in F(R); 

viii. Consistency d∞(u, v) = d∞(v, u) = 0 implies u = v. 
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Expanding the work of [16], we will now define a fuzzy random variable as a function 

that assigns fuzzy sets to elements in probability space. We will introduce the concept of 

measurability with respect to different metrics such as d∞ and ds and describe the 

properties and relationships between these metrics and notion of a fuzzy random variable. 

We will break it down step by step: 

Let (Ω, A, P) be a probability space, where Ω represents the sample space, A is a σ-

algebra of subsets of Ω, and P is a probability measure defined on A. Given a set Ω, a σ-

algebra of subsets of Ω, denoted as Σ, is a collection of subsets of Ω that satisfies certain 

properties. It is a fundamental concept in measure theory and serves as a foundation for 

defining measurable sets and functions. To formally define a σ-algebra, we require it to 

satisfy the following properties: 

 The empty set (∅) is in Σ: ∅ ∈ Σ. 

 Σ is closed under complementation: if A is in Σ, then its complement, denoted as Ac, 

is also in Σ. 

 Σ is closed under countable unions: if A₁, A₂, A₃, ... are subsets of Ω and each Aᵢ is in 

Σ, then the union of all the Aᵢ, denoted as ⋃ Aᵢ, is also in Σ. 

In other words, a σ-algebra is a collection of subsets of Ω that includes the empty set, 

is closed under the taking of complements, and is closed under countable unions. 

The purpose of defining a σ-algebra is to identify a set of subsets of Ω that can be 

considered “measurable” in a certain sense. The elements of Σ are often referred to as 

measurable sets, and they form a structure that allows us to define measures (such as 

probability measures) on these sets. 

By specifying a σ-algebra on Ω, we establish a framework for defining and working 

with measurable functions, integrating functions, and constructing measures. The σ-

algebra provides a systematic way to determine which subsets of Ω are considered 

“measurable” within the given context, allowing us to analyse and reason about these 

subsets in a rigorous mathematical manner. In summary, a σ-algebra of subsets of Ω is a 

collection of subsets that satisfies specific properties, including containing the empty set, 

being closed under complementation, and being closed under countable unions. It 

provides a foundation for defining measurable sets and functions, allowing us to study 

measures and perform various mathematical operations on these sets. 

A fuzzy random variable is defined as a function X: Ω → F(R), where F(R) represents 

the set of fuzzy sets over the real numbers. This means that X assigns each element ω in 

Ω a fuzzy set X(ω) in F(R). 

For every α ∈ [0, 1], the mapping [X]α: Ω → K(R) (where K(R) denotes the set of fuzzy 

sets over R) should be A-measurable. This implies that the pre-images of measurable sets 

in K(R) under [X]α should be measurable sets in A. 

Consider a metric ρ on the set F(R) and let Bρ be the σ-algebra generated by the 

topology induced by ρ. A fuzzy random variable X can be seen as a measurable mapping 

between the measurable spaces (Ω, A) and (F(R), Bρ), and we refer to X as being A|Bρ-

measurable. 

The metric ds(u, v) is defined as follows: ds(u, v) := inf max {sup|λ(t) − t|, sup dH(Xu(t), 

Xu(λ(t)))}, where λ∈Φ, t ∈ [0, 1] and t∈[0, 1], Φ denotes the set of strictly increasing 

continuous functions λ: [0, 1] → [0, 1] satisfying λ(0) = 0 and λ(1) = 1. Xu and Xv are càdlàg 

(right-continuous with left limits) representations of the fuzzy sets u and v in F(R), 

respectively. dH represents the Hausdorff distance between fuzzy sets. 

The space (F(R), d∞) is complete (meaning that all Cauchy sequences converge) and 

non-separable (does not contain a countable dense subset), while the space (F(R), ds) is a 

Polish metric space (a complete and separable metric space). The reason for the difference 

in these properties lies in their respective definitions and metrics. The metric d∞, defined 

as the supremum of the Hausdorff distances between equivalence classes [u]a and [v]a, is 

a robust way to measure the “closeness” of fuzzy sets. It can be shown that the space (F(R), 
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d∞) is complete, meaning all Cauchy sequences converge. However, d∞ does not lend itself 

to finding a countable dense subset within the space (F(R), d∞). This makes (F(R), d∞) non-

separable because it lacks the property of separability, even though it is complete. On the 

other hand, the metric ds is defined differently and results in a metric space that is both 

complete and separable. This metric is designed in such a way that it allows for the 

existence of a countable subset within the space (F(R), ds). Because (F(R), ds) is complete 

(all Cauchy sequences converge) and separable (contains a countable dense subset), it 

meets the criteria to be classified as a Polish metric space. 

For a mapping X: Ω → F(R) on the probability space (Ω, A, P), X is a fuzzy random 

variable iff X is A|Bds-measurable and, if X is A|Bd∞-measurable, then it is a fuzzy random 

variable, but the opposite is not necessarily true. For X to be considered a fuzzy random 

variable, it must meet the condition of being A|Bds-measurable. This means that X can be 

measured using the ds metric. The ds metric is a specific way to compare how close or 

similar two fuzzy sets are. If X is also A|Bd∞-measurable, it indicates that X can be analysed 

using the d∞ metric. These two metrics, ds and d∞, are used to assess the closeness of fuzzy 

sets, but they perform this differently. ds looks at the behaviour of the fuzzy sets through 

the continuous λ function and their values at different points. In contrast, d∞ considers the 

worst-case scenario by looking at the maximum difference between the fuzzy set at any 

point. It is important to note that while being A|Bd∞-measurable is more inclusive, the 

opposite is not necessarily true. Just because X is A|Bd∞-measurable does not 

automatically mean it is A|Bds-measurable. Therefore, being A|Bds-measurable is a more 

specific and essential criterion for defining a complete fuzzy random variable. In 

summary, the given explanations define a fuzzy random variable as a function that 

assigns fuzzy sets to elements in probability space. It introduces the concept of 

measurability with respect to different metrics, such as ds and d∞, and describes the 

properties and relationships between these metrics and notion of a fuzzy random variable. 

Next, we expand the work of [16] in a fuzzy random variable and fuzzy stochastic 

process. A fuzzy random variable X: Ω → F(R) is said to be Lp-integrably bounded for p ≥ 

1 if the equivalence class [X]α belongs to the space Lp (Ω, A, P; K(R)) for every α ∈ [0,1]. 

Here, the random variables X, Y ∈ Lp (Ω, A, P; K(R)) are identical if P(d∞(X, Y) = 0) = 1. This 

means that, for X and Y to be considered identical, the probability that their distance d∞ is 

equal to zero should be 1. d∞ measures the “distance” or dissimilarity between two fuzzy 

variables X and Y. When the distance d∞ between X and Y is zero, it indicates that X and Y 

are indistinguishable from each other in terms of their fuzzy characteristics. For a fuzzy 

random variable X: Ω → F(R) and p ≥ 1, the following conditions are equivalent: a) X ∈ 

Lp(Ω, A, P; F(R)); b) the equivalence class [X]0 belongs to Lp(Ω, A, P; F(R)); c) the norm of 

[X]0 denoted as ||[X]0|| belongs to Lp(Ω, A, P; R+), where R+ represents the non-negative 

real numbers. The statement then asserts that these three conditions (a, b, and c) are 

equivalent. In other words, if any one of these conditions is true, the other two conditions 

will also be true, and vice versa. This demonstrates the relationships between the 

integrability of a fuzzy random variable, its equivalence class, and the norm of that 

equivalence class in different spaces. The notation I := [0, T] signifies the interval from 0 to 

T, which means that it is a closed interval from 0 to T inclusive, and (Ω, A, P) represents a 

complete probability space equipped with a filtration {At}t∈I. A filtration is a sequence or 

family of sub-σ-algebras {At}t∈I defined on a probability space. In this case, the filtration 

is defined for each t in the interval I = [0, T]. A complete probability space refers to a 

probability space where every subset of a null set (a set with measure zero) is also 

measurable and has measure zero. A complete probability space means that not only are 

the sample space, the σ-algebra, and the probability measure defined, but it also has an 

additional property that every subset of a null set (a set with measure zero) is also 

measurable. In other words, if you have a set of outcomes that is so unlikely (e.g., its 
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probability measure is zero), then any subset of that unlikely set is also considered 

measurable. Being measurable means that it is part of the σ-algebra, so one can assign 

probabilities to it. The requirement that these subsets of null sets are measurable ensures 

that there are no hidden or unmeasurable sets that could potentially lead to issues in 

probability theory. It essentially fills in any gaps or irregularities in the probability space, 

making it more robust. 

The filtration is an increasing and right-continuous family of sub-σ-algebras of A, 

which contains all P-null sets. The filtration {At}t∈I is said to be increasing, which means 

that, as t increases, the sub-σ-algebra At becomes larger or contains more sets. In other 

words, if s ≤ t, then As is a subset of At. This property ensures that the information or 

knowledge available at time s is also available at any later time t ≥ s. The filtration {At}t∈I 

is also right-continuous, which means that, for any t in the interval I, the sub-σ-algebra At 

is equal to the intersection of all sub-σ-algebras As with s > t. In other words, the 

information available at time t is already available at any slightly earlier time t − ε, where 

ε is a small positive value. The filtration {At}t∈I is required to contain all P-null sets. A P-

null set is a subset of the sample space Ω with measure zero. By including all P-null sets 

in each sub-σ-algebra At, the filtration captures all negligible information about the 

underlying probability space. 

A fuzzy stochastic process X is said to be d∞-continuous if almost all its trajectories, 

denoted as X(·, ω), are d∞-continuous functions. Here, the trajectories refer to the 

mappings X(·, ω) that associate each time point t in the interval I with a fuzzy set X(t, ω) 

in F(R). The d∞-continuity of these trajectories means that they exhibit continuity with 

respect to the d∞ metric, which measures the dissimilarity between fuzzy sets. A fuzzy 

stochastic process X is considered as measurable if the equivalence class [X]α: I × Ω → K(R) 

is a measurable multifunction for all α in the interval [0, 1]. Here, [X]α represents the 

equivalence class of X with respect to the parameter α, and K(R) denotes the set of fuzzy 

sets over the real numbers. A measurable multifunction [X]α: I × Ω → K(R) maps a 

measurable set in the time domain I and the sample space Ω to a set of measurable fuzzy 

sets in the value domain R. For example, let X(t) be a fuzzy stochastic process that 

represents the price of a stock at time t. The parameter α can represent the level of 

confidence that we have in the price prediction. For example, α = 0.95 could represent a 

95% confidence level. We can define the equivalence class [X(t)]α as follows: [X(t)]⍺ = {Y ∈ 

K(R) | Y(x) ≥ α for all x ∈ R}. The parameter α represents the level of confidence in the 

price prediction. It quantifies the minimum membership value required for a fuzzy set to 

be considered as part of the equivalence class [X(t)]⍺. This equivalence class contains all 

fuzzy sets that are at least as precise as X(t) with respect to the confidence level α. The 

equivalence class [X(t)]⍺ is defined as the set of fuzzy sets Y in K(R) that have a 

membership value greater than or equal to α for all x in the real numbers (R). In other 

words, [X(t)]⍺ contains all fuzzy sets that are at least as precise as X(t) with respect to the 

confidence level α.We can then show that the multifunction [X(t)]⍺: I × Ω → K(R) is 

measurable. This means that the fuzzy stochastic process X(t) is measurable. By stating 

that the multifunction [X(t)]⍺: I × Ω → K(R) is measurable, we are asserting that the 

mapping from the Cartesian product of the index set I and the sample space Ω to the set 

of fuzzy sets K(R) is a measurable multifunction. This means that the pre-images of 

measurable sets in K(R) under [X(t)]⍺ are measurable sets in I × Ω. The pre-images, in this 

context, refer to the subsets of the domain I × Ω that get mapped to a specific set in the 

target space K(R) under the mapping [X(t)]⍺: I × Ω → K(R). To put it simply, if we have a 

set A in K(R), the pre-image of A under [X(t)]⍺ is the set of all points (i, ω) in the domain I 

× Ω such that [X(t)]⍺(i, ω) belongs to A. 

In other words, the pre-image of a set A in K(R) consists of all the elements (i, ω) in I 

× Ω that get mapped to A under the mapping [X(t)]⍺. By saying that the pre-images of 
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measurable sets in K(R) under [X(t)]⍺ are measurable sets in I × Ω, we mean that if we 

consider a measurable set A in K(R), the pre-image of A under [X(t)]α is a measurable set 

in I × Ω. This implies that the behaviour of the fuzzy stochastic process X(t) with respect 

to such pre-images is well behaved and can be characterised by measurable sets in the 

domain I × Ω. 

We propose that the condition that [X]⍺ be measurable for all α in the interval [0, 1] 

ensures that the fuzzy stochastic process X can be integrated with respect to time and the 

sample space. 

B(I) is the Borel σ-algebra, which consists of all subsets of the interval I. To determine 

measurability, [X]α: I × Ω → K(R) should be B(I) ⊗ A-measurable. Here, B(I) ⊗ A 

represents the product σ-algebra, which is generated by the Borel σ-algebra B(I) and the 

σ-algebra A. This requirement ensures that the equivalence class [X]α is measurable with 

respect to the joint σ-algebra generated by B(I) and A. In this context, K(R) denotes the set 

of fuzzy sets over the real numbers. Fuzzy sets are sets that assign membership degrees 

or degrees of truth to elements, allowing for a more flexible representation of uncertainty 

or partial truth. B(I) refers to the Borel σ-algebra, which is the σ-algebra generated by the 

open sets in the interval I. The Borel σ-algebra consists of all subsets of I that can be formed 

by taking unions, intersections, and complements of open sets. B(I) ⊗ A represents the 

product σ-algebra, which is the smallest σ-algebra generated by the sets of the form B × 

A, where B is a Borel set from B(I) and A is a set from the σ-algebra A. The requirement of 

[X]α being B(I) ⊗ A-measurable ensures that the equivalence class [X]α is measurable with 

respect to the joint σ-algebra generated by B(I) and A. This joint σ-algebra allows us to 

analyse and reason about the measurability properties of the fuzzy stochastic process X 

across both the time domain (Borel sets in I) and the probability space (sets in A). Suppose 

that we have two sets: B(I), which represents the Borel σ-algebra generated by the open 

sets in the interval I, and A, which represents a σ-algebra defined on a sample space Ω. 

We want to generate a σ-algebra that captures the joint measurability of sets from B(I) and 

A. The product σ-algebra B(I) ⊗ A is defined as the smallest σ-algebra generated by sets 

of the form B × A, where B is a Borel set from B(I) and A is a set from the σ-algebra A. Let 

us consider a specific example to illustrate this concept. Assume that I is the interval [0, 1] 

and A is the power set of Ω = {a, b}, which contains all possible subsets of Ω. B(I): B(I) is 

the Borel σ-algebra on I, generated by the open sets in I. It includes sets such as open 

intervals, closed intervals, half-open intervals, and countable unions or intersections of 

such intervals. A: A is the power set of Ω, which includes all subsets of Ω. In this case, A 

= {∅, {a}, {b}, {a, b}}. To construct the product σ-algebra B(I) ⊗ A, we consider all possible 

combinations of Borel sets from B(I) and sets from A. For example, let us take B = (0.2, 0.8) 

(an open interval in I) and A = {a} (a singleton set in A). The set B × A is the Cartesian 

product of B and A, which results in the set {(x, a) | 0.2 < x < 0.8}. Similarly, we can consider 

other combinations of Borel sets from B(I) and sets from A. The product σ-algebra B(I) ⊗ 

A is then defined as the smallest σ-algebra that includes all such sets B × A for all possible 

choices of B from B(I) and A from A. In this example, the product σ-algebra B(I) ⊗ A 

would consist of sets such as B × A, where B represents Borel sets from B(I) and A 

represents sets from A. It captures the joint measurability of sets from B(I) and A, allowing 

us to reason about sets that involve both the real number domain and the sample space. 

The product σ-algebra B(I) ⊗ A is the smallest σ-algebra that contains all possible 

combinations of sets formed by pairing a Borel set from B(I) with a set from σ-algebra A. 

So, B(I) ⊗ A helps us to explore the measurability of events that occur at the intersection 

of these two domains. 

A process X is said to be nonanticipating if, for every α ∈ [0, 1], the multifunction [X]α 

is measurable with respect to the σ-algebra N. The σ-algebra N is defined as follows: N := 

{A ∈ B(I) ⊗ A : At ∈ A for every t ∈ I}, where At represents the set of outcomes ω such that 
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the pair (t, ω) belongs to the set A. In other words, N consists of subsets of I × Ω for which 

the corresponding time t belongs to the set A. 

Before proceeding further, we need to state a few theorems. 

Definition 1. The Fubini’s theorem [26], also known as the Fubini–Tonelli theorem, is a 

fundamental result in measure theory and integration theory. It provides a condition under which 

the iterated integrals of a measurable function over a product space can be computed by performing 

separate integrations. Formally, let (Ω₁, A₁, µ₁) and (Ω₂, A₂, µ₂) be two measure spaces, where Ω₁ 

and Ω₂ are sets, A₁ and A₂ are σ-algebras of subsets of Ω₁ and Ω₂, respectively, and µ₁ and µ₂ are 

measures defined on A₁ and A₂, respectively. Consider the product measure space (Ω, A, µ) defined 

as the product of the two measure spaces, where Ω = Ω₁ × Ω₂, A = A₁ ⊗ A₂ (the product σ-algebra), 

and µ is the product measure. Fubini’s theorem states that if f: Ω → [0, +∞] is a non-negative 

measurable function, then the iterated integrals ∫Ω₁∫Ω₂ f(ω₁, ω₂) dµ₁(ω₁) dµ₂(ω₂) and ∫Ω₂∫Ω₁ f(ω₁, 

ω₂) dµ₂(ω₂) dµ₁(ω₁) are both well defined and equal, provided at least one of them is finite. In other 

words, under appropriate conditions, the order of integration can be interchanged without affecting 

the result. 

Definition 2. The Aumann integral, also known as the integral with respect to a fuzzy measure, 

is a generalisation of traditional integration theory that applies to fuzzy sets to extend the concept 

of integration to accommodate uncertainty and partial truth [27]. Traditional integration measures 

the “area under the curve” or the accumulation of quantity over a given range. With fuzzy sets, 

where membership degrees represent degrees of truth or uncertainty, the concept of area or 

accumulation needs to be generalised. The Aumann integral achieves this by integrating a fuzzy 

set with respect to a fuzzy measure, which assigns a degree of “importance” or “size” to subsets of 

a set, similar to how a traditional measure assigns a value to subsets. Formally, let X be a fuzzy set 

defined on a set Ω and let µ be a fuzzy measure defined on the power set of Ω. The Aumann integral 

of X with respect to µ, denoted as ∫ X dµ, is a generalised notion of integration that takes into 

account the degrees of truth or membership of X. The Aumann integral is typically defined in terms 

of a level-wise integral. For each α in the interval [0, 1], the Aumann integral ∫ X dµ is equal to the 

integral of the α-cut of X (i.e., the subset of elements with a membership degree of at least α) with 

respect to the α-cut of the fuzzy measure µ. The Aumann integral allows for the accumulation and 

aggregation of fuzzy information. 

Following the works of [16], we will now use Fubini’s theorem and Aumann integral 

to build the fuzzy integral and discuss its properties. A fuzzy stochastic process X is called 

Lp-integrably bounded (p ≥ 1) if there exists a real-valued stochastic process h ∈ Lp(I × Ω, 

N; R+), where I is the interval and Ω is the probability space, such that the fuzzy set ||[X(t, 

ω)]0|| is bounded by h(t, ω) for almost all (t, ω) in I × Ω. The notation ∣∣[X(t, ω)]0∣∣ 

represents the magnitude or absolute value of the equivalence class [X(t, ω)]0. Lp(I × Ω, N; 

F(R)) denotes the set of nonanticipating and Lp-integrably bounded fuzzy stochastic 

processes. Nonanticipating means that the process X does not rely on future information 

but only on the current and past information. By employing the Fubini theorem, the fuzzy 

integral of a fuzzy stochastic process X, denoted as ∫ X(s, ω) ds
�

�
, is defined. Here, T is a 

fixed time point, and the integral is taken over the interval from 0 to T. The integral is 

defined for ω in the set Ω minus NX, where NX is a subset of Ω belonging to the σ-algebra 

A with P(NX) = 0, meaning that it has measure zero. The fuzzy integral ∫ X(s, ω)ds 
�

�
can be 

defined level-wise. For each α in the interval [0, 1] and for each ω in the set Ω minus NX, 

the Aumann integral ∫ [X(s, ω)]� ds
�

�
 belongs to the set K(R), which represents fuzzy sets 

over the real numbers. Therefore, the fuzzy random variable ∫ X(s, ω) ds
�

�
 belongs to the 

set F(R) for every ω in the set Ω\NX. 

Now, we define the fuzzy stochastic Lebesgue–Aumann integral of X ϵ L1(I x Ω, N; 

F(R)). 
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��(�, �) = �
∫ 1[�,�](�)�(�, �)�� ��� ����� � ∈  Ω\��

�

�

〈0〉 ��� ����� � ∈ ��

  (8)

We will now discuss properties of this integral LX. First, we introduce some more 

terminology. The material comes from [25,28]. The d∞ metric, also known as the 

supremum or uniform metric, is a mathematical measure of dissimilarity or distance 

between fuzzy sets. It quantifies the maximum discrepancy between the membership 

degrees of corresponding elements in two fuzzy sets. Formally, let A and B be two fuzzy 

sets defined on a common universe of discourse. The d∞ metric between A and B, denoted 

as d∞(A, B), is defined as the supremum or maximum of the absolute differences in 

membership degrees:  �∞(�, �)  =  ��� |��(�)  −  ��(�)|,  where µA(x) and µB(x) 

represent the membership degrees of the element x in the fuzzy sets A and B, respectively. 

The supremum is taken over all elements x in the universe of discourse. The d∞ metric 

provides a measure of the largest difference in membership degrees between 

corresponding elements of two fuzzy sets. It captures the maximum discrepancy or 

dissimilarity between the two sets, indicating how much they differ in terms of their 

membership degrees. Now, we will define the L1 norm. L1 refers to a mathematical space 

or norm in the context of functions and integrals. Specifically, L1 represents a function 

space of integrable functions with a finite integral norm. Formally, L1 is a function space 

defined over a given measure space (Ω, A, µ). It consists of all measurable functions f: Ω 

→ ℝ (or f: Ω → ℂ) such that the integral of the absolute value of f, denoted as ∫|f| dµ, is 

finite: �1(�, �, �)  =  {�: � →  ℝ (�� ℂ) | ∫ |�| �� <  ∞}. 

In simpler terms, L1 consists of functions whose absolute value is integrable over the 

measure space, meaning that the area under the curve of the absolute value function is 

finite. The norm associated with the L1 space, denoted as ‖f‖₁, is defined as the integral 

of the absolute value of f: ‖f‖₁ = ∫|f| dµ. The L1 norm measures the size or magnitude of 

the function f in terms of its integral, capturing how spread out or concentrated the 

function is. L1 represents a function space of integrable functions, where the absolute 

value of the function is integrable. The associated norm, ‖f‖₁, measures the size of the 

function based on its integral. In the context of stochastic processes, the L1 space refers to 

a function space that consists of processes that are integrable with respect to a given 

measure. Formally, let (Ω, A, P) be a probability space and let X be a stochastic process 

defined on that space. The L1 space, denoted as L1(Ω, A, P), consists of all stochastic 

processes X that satisfy the condition of integrability. This means that the expected value 

or integral of the absolute value of X is finite: L1(Ω, A, P) = {X: Ω → ℝ (or ℂ) | E[|X|] < ∞}. 

Here, E[·] denotes the expected value or the integral with respect to the probability 

measure P. The absolute value |X| ensures that both positive and negative values 

contribute to the integrability condition. In simpler terms, a stochastic process X belongs 

to the L1 space if the expected value of its absolute value is finite. This indicates that the 

process is well behaved in terms of its average behaviour and does not exhibit extreme 

fluctuations or infinite values. Now, we define the LP space. The LP space, also known as 

a p-norm space, is a function space that consists of functions with finite p-norms. 

Formally, the LP space, denoted as Lp(Ω, A, µ), is defined over a given measure space (Ω, 

A, µ). It consists of all measurable functions f: Ω → ℝ (or ℂ) such that the p-th power of 

the absolute value of f, denoted as |f|p, is integrable with respect to the measure µ: Lp(Ω, 

A, µ) = {f: Ω → ℝ (or ℂ) | ∫|f|p dµ < ∞}. Here, p is a positive real number greater than or 

equal to 1. The p-norm of a function f, denoted as ‖f‖p, is defined as the p-th root of the 

integral of |f|p: ‖f‖p = (∫|f|p dµ)(1/p). Formally, let (Ω, A, P) be a probability space and let 

X be a stochastic process defined on that space. The LP space, denoted as Lp(I × Ω, A × N ; 

F(R)), consists of all stochastic processes X that satisfy the condition of p-integrability. This 

means that the p-th power of the absolute value of X, denoted as |X|p, is integrable with 
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respect to the product measure A × N: Lp(I × Ω, A × N ; F(R)) = {X: I × Ω → F(R) | ∫∫|X(t, 

ω)|p dP(t, ω) < ∞}. Here, p is a positive real number greater than or equal to 1. The integral 

is taken over the product measure P, which is the joint measure defined on the σ-algebra 

generated by the Cartesian product of the intervals I and the probability space (Ω, A, P). 

The p-integrability condition ensures that the p-th power of the absolute value of the 

process X is well behaved and has a finite integral. 

Having defined integrability conditions, we can now expand the work of [16] by 

exploring the Lebesgue–Aumann integral. If X ∈ Lp(I × Ω, N ; F(R)) for p ≥ 1, then LX(·, ·) ∈ 

LP(I × Ω, N ; F(R)): this property states that if the fuzzy stochastic process X belongs to the 

LP space, which consists of processes that are p-integrable, then the fuzzy stochastic 

Lebesgue–Aumann integral Lx, defined over the same probability space, also belongs to 

the LP space. In other words, the integrability of X carries over to the integrability of Lx. 

Let X ∈ L1(I × Ω, N ; F(R)); then, {LX(t)}t∈I is d∞-continuous. This property states that if the 

fuzzy stochastic process X belongs to the L1 space, which consists of processes that are 

integrable, then the trajectories of the fuzzy stochastic Lebesgue–Aumann integral {Lx(t)}t∈I 

are d∞-continuous. In other words, the integral Lx(t) is a d∞-continuous function of time t 

for each fixed outcome ω. This implies that the fuzzy integral exhibits continuity with 

respect to the d∞ metric, capturing the dependence and smoothness of the integral over 

time. We will now define an inequality that provides a bound on the maximum difference 

between fuzzy sets Lt,x(u) and Lt, y(u) over the interval [0, t] in terms of the cumulative 

difference between fuzzy sets X(s) and Y(s) over the sample interval. The inequality 

captures the relationship between the supremum and integral of the d∞ metric almost 

everywhere (a.e.). This inequality states that the supremum of the d∞ metric between 

Lt,x(u) and Lt, y(u) for u in in the interval [0, t] is bounded by the scaled integral of the d∞ 

metric between X(s) and Y(s) for s in the interval [0, t], with the scaling factor depending 

on the value of p. 

sup
�∈[�,�]

��
�

���,�(�), ��,�(�)� ≤ ���� ∫ ��
�

��(�), �(�)���, �. �.
�

�
  (9)

The L.H.S. represents the supremum (maximum) of the d∞ metric between Lt,x(u) and 

Lt,y(u), where t is a fixed value and u ranges from 0 to t. Here, dp∞(a, b) denotes the d∞ 

metric between two fuzzy sets or elements a and b. dp∞(Lt,x(u), Lt,y(u)) is the d∞ metric 

between the fuzzy sets Lt,x(u) and Lt,y(u) at each u. It measures the maximum difference in 

membership degrees between corresponding elements of the fuzzy sets at a given u. The 

R.H.S. represents an integral involving the d∞ metric between the fuzzy sets X(s) and Y(s), 

where s ranges from 0 to t. The integral is scaled by tp–1, where p is a positive real number. 

It is the integral of the d∞ metric between X(s) and Y(s) at each s. It measures the cumulative 

difference in membership degrees between corresponding elements of the fuzzy sets over 

the interval [0, t]. tp–1 scales the integral by a factor that depends on the value of p. The 

value of p determines how the integral contributes to the overall inequality. The inequality 

holds almost everywhere (a.e), meaning that it holds for all values of t except possibly for 

a set of measure zero. 

We will now define the fuzzy stochastic Itô integral by using fuzzy random variable 

∫ �(�)��(�)
�

�
 , where W is a Wiener process. Let X ∈ L2(I × Ω, N; R); then, 

{〈∫ �(�)��(�)
�

�
〉}, where t ∈ I. This represents a fuzzy stochastic process defined over the 

interval I. For each fixed t, 〈∫ �(�)��(�)
�

�
〉  is a fuzzy set. The process captures the 

evolution of these fuzzy sets as t varies. Here, dW(s) represents the differential of a Wiener 

process or Brownian motion. The next part indicates that the fuzzy stochastic process 

〈∫ �(�)��(�)
�

�
〉  belongs to the L2 space over the product space I × Ω. The fuzzy sets 

generated by the integral have finite second moments or variances and take values in the 

space of fuzzy sets over the real numbers, denoted as F(R). The last proposition states that 
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if X belongs to a family of square integrables, then the next integration will become a fuzzy 

stochastic differential equation and then that integration also belongs to the family of 

square integrables. Formally, let X ∈ L2(I × Ω, N ; R); then, X belongs to the L2 space, which 

consists of processes that have finite second moments or variances. The process X takes 

real-valued values and 〈∫ �(�)��(�)
�

�
〉 , � ∈ � is d∞-continuous. In other words, as t varies 

within the interval I, the fuzzy sets 〈∫ �(�)��(�)
�

�
〉 exhibit continuity with respect to the 

d∞ metric. As discussed earlier, the d∞ metric, also known as the supremum or uniform 

metric, measures the maximum difference in membership degrees between 

corresponding elements of fuzzy sets. Thus, the statement asserts that the fuzzy sets 

〈∫ �(�)��(�)
�

�
〉 , obtained by integrating X with respect to the Wiener process, show 

continuity with respect to the d∞ metric as t varies. This continuity property is significant 

because it indicates that the fuzzy stochastic process 〈∫ �(�)��(�)
�

�
〉 , � ∈ � has a smooth 

and well-behaved evolution with respect to the d∞ metric. It suggests that the variations 

in the fuzzy sets, induced by the integral, are gradual and predictable as t changes within 

the interval I. In summary, the given statement states that if the stochastic process X 

belongs to the L2 space, then the fuzzy stochastic process 〈∫ �(�)��(�)
�

�
〉 , � ∈ �, obtained 

by integrating X with respect to a Wiener process, exhibits continuity with respect to the 

d∞ metric. This property implies a smooth and predictable evolution of the fuzzy sets as t 

varies. 

3.2. Main Results—Fuzzy Stochastic Differential Equation when H> ½ 

We will now focus on the special case of H> ½ and apply the Liouville form fBm 

[16,23]. This is a type of fractional Gaussian process that is defined by a covariance 

function that exhibits power-law scaling. Specifically, the covariance function is given by 

�(�, �)  =  |� −  �|(�� � �), where 0 < H < 1 is the Hurst exponent. Now, in this case, H > ½ 

for the process to have finite moments of order greater than or equal to two. If H < ½, the 

process has infinitely many moments and the covariance function becomes singular. This 

means that the covariance function does not satisfy the conditions of positive definiteness 

that are typically expected for covariance functions. When H > ½, the Liouville fBM does 

not have mean reversion. When H< ½, the fBm process does not possess the self-similarity 

and stationarity properties required for the Liouville form. A fractional Brownian motion 

with H < ½ is often referred to as “rough” or “pathologically irregular.” It exhibits strong 

long-range dependence, which means that distant points in the process are highly 

correlated. In the Liouville form, fBm is expressed as a stochastic integral involving a 

deterministic function and a standard Brownian motion. It has the following form [24]: 

�(�) =  �� + ∫ ���, �(�)��� + 〈∫ ���, �(�)����(�)
�

�
〉 ,

�

�
 �0 =  �(0)  (10)

where the FSDE is given by Equation (10), X(t) is the solution of the equation at time t, X0 

is the initial condition of X at time 0, f(s, X(s)) is a function that describes the drift of X, g(s, 

X(s)) is a function that describes the diffusion of X, and BH is the Liouville fBm that drives 

the equation. The integral term in the equation represents the stochastic integral of g(s, 

X(s)) with respect to BH(s), which is a type of integral that is defined in terms of the Itô 

integral and the covariance structure of the fBm. The angle brackets around the integral 

indicate that it is taken in the sense of the Stratonovich integral. The corresponding 

approximation equation to (10) is given by Xε(t), where Xε(t) is an approximation to X(t) 

that is obtained by discretising the integral term using a numerical scheme. The integral 

term in the approximation equation is approximated using a discrete version of the 

stochastic integral, which is defined in terms of the Riemann sum and the covariance 

structure of the discretised fBm, denoted by BHε(s) [16]. 

��(�) =  �� + ∫ ���, ��(�)��� + 〈∫ ���, ��(�)����
�(�)

�

�
〉 

�

�
  (11)
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This section discusses a class of stochastic differential equations that are driven by a 

Liouville fBm, which is a type of fractional Gaussian process with a power-law covariance 

structure. Building on [16], we will now make a couple of assumptions to prove that (11) 

has a strong unique solution. The first assumption(A1) is that, for every u, v ∈ F(R) and 

every t ∈ I, there exists L > 0 such that max{d∞(f(t, w,u), f(t, w, v)), |g(t, w, u) − g(t, w, v)|} 

≤ Ld∞(u,v). This assumption helps to estimate the upper bound using constant L. The 

second assumption (A2) is the Cauchy–Schwarz inequality and supposes that there is C > 

0 such that max{d∞(f(t, w,u⟨0⟩), |g(t, w, u)| } ≤ C(1+d∞(u,⟨0⟩). The last assumption (A3) is 

that the mappings f: I × Ω × F(R) -> F(R) and g: I × Ω × F(R) -> F(R) are measurable with 

respect to standard Brownian motion, formally, N ⊗  Bds|Bds-measurable and N ⊗ 

Bds|B(R)-measurable, respectively. The product sigma-algebra is a way to combine two 

sigma-algebras (sets of events) from different sources. In this work, N represents the 

sigma-algebra associated with the underlying probability space, which captures the 

randomness or uncertainty inherent in the system. Bds|Bds denotes the sigma-algebra 

generated by the Brownian motion process Bds. It contains all the events or information 

that can be described solely in terms of the Brownian motion process. The symbol ⊗ 

represents the product operation between sigma-algebras, which creates a larger sigma-

algebra that combines the information from both sources. The product sigma-algebra N 

⊗ Bds|Bds captures the combined information from the underlying probability space and 

the Brownian motion process. It allows us to consider events or random variables that 

depend on both the inherent randomness of the system (represented by N) and the 

randomness introduced by the Brownian motion process (represented by Bds|Bds). 

This construction is important in the theory of stochastic processes and stochastic 

differential equations because it provides a way to define and work with stochastic 

integrals, which are integrals with respect to Brownian motion or other stochastic 

processes. The measurability condition (A3) in the context provided ensures that the drift 

and diffusion functions are well defined and can be integrated with respect to the 

Brownian motion process, taking into account both the underlying probability space and 

the Brownian motion itself. 

Next, we will consider the bound on the distance between two stochastic integrals 

involving Wiener process W(s). Let X(s) and Y(s) be two stochastic processes and let d2∞ 

(·, ·) denote the L2 distance between two processes. Then, by the Burkholder and Gundy 

inequality [29], 

� sup
��[�,�]

��
� (〈∫ �(�)��(�)

�

�
〉, 〈∫ �(�)��(�)

�

�
〉) ≤ 4� ∫ ��

� (〈�(�)〉, 〈�(�)〉)�� 
�

�
  (12)

Here, 〈·〉 denotes the quadratic variation of a stochastic process, which is a measure 

of the total variation of the process. The integral ∫ �(�)��(�)
�

�
 represents the stochastic 

integral of X(s) with respect to the Wiener process up to time u. The inequality states that 

the distance between the stochastic integrals of X(s) and Y(s) with respect to W(s) is 

bounded by a multiple of the integral of their L₂ distance over time. The constant 4 in the 

inequality is a universal constant that arises from the properties of the Wiener process. 

(12) is a special case of the Burkholder–Davis–Gundy (BDG) inequality that we will 

explore further down the line and on which we will rely in other proofs. We will be using 

(12) and the assumptions above to show that (11) has a strong unique solution. We need 

to establish two points: 1. The existence of a strong solution. There exists a process X(t) 

that solves the FSDE a.s. for all t ≥ 0. 2. The uniqueness of the strong solution. The solution 

X(t) is unique a.s. Using Equation (5) and the integration by parts technique, we can re-

write (11): 
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��(�) =  �� + � ���, ��(�)���
�

�

+ 〈� (� �� (� − � + �)��
�
���(�)

�

�

� ���, ��(�)���
�

�

+ � ���(�, ��(�)��(�)
�

�

〉

=  �� +  � ���, ��(�)���
�

�

+ 〈� (���(�)���, ��(�)��� + � ���(�, ��(�)��(�)
�

�

�

�

〉 

where  

��(�) = ∫ (� − � + �)���]��(�)
�

�
, � > 0, � = � − 1/2.  (13)

The proof begins by introducing the Picard iterations [27], denoted as ��
�(�), which 

are obtained by iteratively applying the equation ��
�(�) =  �� + ∫ ���, ����

� (�)��� +
�

�

〈∫ (���(�)���, ����
� (�)��� + ∫ ���(�, ����

� (�)��(�)
�

�

�

�
〉  almost everywhere (a.e.). These 

iterations aim to find an approximation for the solution of the equation. To approximate 

X(t), the Picard iteration scheme defines a sequence of iterates ��
�(�) that should converge 

to X(t) as n goes to infinity. Starting with ��
�(�) =  ��, we calculate ��

�(�) by plugging X0 

into the right-hand side. Then, ��
�(�) is calculated using ��

�(�) and so on. The key idea is 

that, as n increases, the sequence ��
�(�) should get closer and closer to the true solution 

X(t), provided some condition on f, g, and the initial data is satisfied to ensure 

convergence. The parameters ε and a are introduced to control the convergence behaviour, 

while φ is some approximating kernel. The Picard iterations provide a recursive way to 

obtain successively be�er approximations of the original equation’s solution by iteratively 

updating an integral equation approximation. Define the sequence jn(t) = 

� sup
�∈[�,�]

��
� (��

�(�), ����
� (�)). The sequence measures the distance between two consecutive 

iterations. When we take n = 1, and by the assumption that there is C>0 such that 

���{�∞(�(�, �, �⟨0⟩), |�(�, �, �)| }  ≤ �(1 + �∞(�, ⟨0⟩), and from Theorem 4.1 in [26], we 

know that 

�|��(�)|� ≤  �|�� +  � ���, ��(�)���
�

�

+ � �(�, ��)��(�)
�

�

|�

≤  3�|��|� +  3�| � ���, ��(�)���|�
�

�

+ 3�| � �(�, ��)��(�)
�

�

|� 

Therefore, we have a constant 3 in 

��(�) =  � sup
�∈[�,�]

��
� ( � ���, ��

�(�)�)��
�

�

+ 〈� (���(�)���, ��
�(�)��� + � ���(�, ��

�(�)��(�)
�

�

�

�

〉 , 〈0〉)  

≤ 3� sup
�∈[�,�]

��
� ( � ���, ��

�(�)���, 〈0〉)
�

�

+ 3� sup
�∈[�,�]

��
� (〈� (���(�)���, ��

�(�)���, 〈0〉)
�

�

+ 3� sup
�∈[�,�]

��
� (� ���(�, ��

�(�)��(�)
�

�

〉 , 〈0〉)   

(14)



Algorithms 2024, 17, 289 19 of 34 
 

Using proposition (9) sup
�∈[�,�]

��
�

���,�(�), ��,�(�)� ≤ ���� ∫ ��
�

��(�), �(�)���, �. �.
�

�
 , 

proposition (12), and the linearity of the expectations operator, and since our metric is ��
�

, 

so we can pull out constants as square, we can restate that 

��(�)  ≤ 3�� ( � ��
� ���, ��

�(�)�, 〈0〉)��
�

�

+ 3��� sup
�∈[�,�]

��
� �〈� ���(�)���, ��

�(�)���, 〈0〉� + 3
�

�

∗ 4 ����(� ��
� ���, ��

�(�)�
�

�

〉 , 〈0〉� ��  

Using assumption ���{�∞(�(�, �, �⟨0⟩), |�(�, �, �)| }  ≤ �(1 + �∞(�, ⟨0⟩),  for C >0, 

and properties of the expectation operator, we substitute this into the following integral 

expression to obtain the following. Also, remember that ��
� (��

�(�)), 〈0〉  measures the 

squared maximum distance between some fuzzy set ��
� at a specific time s and zero fuzzy 

set, where all membership values are zero and utilise the metric inner product. For a 

different version of this proof, see [16]. 

��(�) ≤ 3(� + 4���)[� ( ∫ ��
� ���, ��

�(�)�, 〈0〉)�� +
�

�

 �(∫ ��
� ���, ��

�(�)�, 〈0〉)��
�

�
+ 3��� sup

�∈[�,�]
��

� �〈∫ ���(�)���, ��
�(�)���, 〈0〉�

�

�
〉� ≤

3(� + 4���)(∫ ���(1 + ��
� (��

�), 〈0〉)���
�

�
+  ∫ ���(1 + ��

� (��
�), 〈0〉)���

�

�
+

 3��� sup
�∈[�,�]

��
� �〈∫ ���(�)���, ��

�(�)���, 〈0〉�
�

�
〉� =  3 ∗ 2��(� +

 4���)[(1 + �||��]�||�)� + 3��� sup
�∈[�,�]

��
� �〈∫ ���(�)���, ��

�(�)���, 〈0〉�
�

�
〉� =

 6��(� +  4���)[(1 + �||��]�||�)� +

3��� sup
�∈[�,�]

��
� �〈∫ ���(�)���, ��

�(�)���, 〈0〉�
�

�
〉�  

(15)

This works only for � =  � –  ½ > 0, which was our assumption earlier and which 

is why it only works for H > ½. For H < ½, we use different integration methods. Next, we 

utilise the following results. The ��
�   distance, or Hausdorff distance, measures the 

maximum discrepancy between two sets by considering the minimum distance from each 

point in one set to the other set. This means that the ��
�  distance accounts for the smallest 

possible distance between the two sets. On the other hand, the ��
� distance, or supremum 

distance, measures the maximum difference between the values of two functions or sets. 

It calculates the maximum absolute difference between corresponding points of the two 

functions or sets. Since the ��
�  distance considers the minimum distances, it takes into 

account the smallest possible difference between the two sets. Therefore, the ��
�  distance 

will always be greater than or equal to the ��
�  distance, which measures the maximum 

difference. Using the above, and by the metric inner product, 

�  sup
 �∈[�,�]

��
� �〈∫ ���(�)���, ��

�(�)���, 〈0〉�
�

�
〉�  ≤

� sup
�∈[�,�]

��
� ��∫ ���(�)���, ��

�(�)���, {0}�
�

�
��  ≤

� sup
�∈[�,�]

��∫ ���(�)���, ��
�(�)����

�

�
��

�

  

(16)

We will now use the famous H�̈lder inequality [22]: 

� |�(�)�(�)|�� ≤ (� |�(�)|���)�/�(� |�(�)|���)�/�
�

�

�

�

�

�

 

and rearrange terms r with s. 
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� sup
�∈[�,�]

��∫ ���(�)���, ��
�(�)����

�

�
��

�

= � sup
�∈[�,�]

(∫ ∫ (� − � +
�

�

�

�

�)���]��(�)���, ��
�(�)���)�  

Since the integration variables are independent, we can use Fubini’s theorem [27] to 

rearrange the integration variables. It is important to note that not all integrals allow for 

swapping the order of integration. The conditions for applying Fubini’s theorem include 

continuity of the integrand, boundedness of the region of integration, and absolute 

integrability. If these conditions are not met, swapping the order of integration may lead 

to incorrect results. 

We will now expand the work of [16]. So, first, we will use Fubini to rearrange r with 

s in this integral. Then, we will apply Itô isometry or the Itô integral rule. It is a key tool 

in stochastic calculus and is used to calculate the expected value of stochastic integrals 

involving Brownian motion or other forms of stochastic processes. The identity essentially 

says that the square of the difference between two points in a Brownian motion path, 

raised to the power of (α − 1), can be expressed as the double stochastic integral of (α − 2) 

powers of the differences between the same points and the endpoints of the integration 

range. Intuitively, this identity can be understood as follows: the Brownian motion 

process is continuous and has infinite variation, meaning that the difference between two 

points in a path can take on any value in a certain range with positive probability. The Itô 

isometry [30] allows us to calculate the expected value of the square of these differences, 

which is a key step in deriving stochastic integrals and differential equations. In the 

rearrangement of terms given in the original question, the Itô isometry is used to express 

the term (s – r + ε)a−1 as a double stochastic integral, which allows for the interchange of 

the order of integration and ultimately results in the desired form of the expression 

(�(�) − �(�))��� = ∫ (� − � + �)�����(�) ∫ (� − � + �)�����(�)
�

�

�

�
 . Using this identity 

with t=r and s=s, we have, (� − � + �)��� =  ∫ (� − � + �)�����(�) ∫ (� − � +
�

�

�

�

�)�����(�) . Substituting this into the integral, we can now interchange the order of 

integration between s and r. There are three integrals in the intermediate step because the 

stochastic integral involving the Brownian motion process requires two integrals: one 

with respect to time and one with respect to the Brownian motion itself. There are two 

stochastic integrals involving Brownian motion: one over the range [u, s] and one over the 

range [r, t]. This requires a total of three integrals: one over the range [u, t] with respect to 

time and two with respect to Brownian motion over the ranges [u, s] and [r, t], 

respectively. When the order of integration is interchanged between s and r, the resulting 

expression involves a double stochastic integral over the ranges [u, s] and [r, t], 

respectively. This requires two integrals with respect to Brownian motion and one integral 

with respect to time, which is consistent with the three integrals in the original expression. 

The identity introduced with t = s and s = v allows for the simplification of the 

expression by expressing the term (s − r + ε)a−1 as a double stochastic integral over the 

ranges [s, u] and [r, v], respectively. This ultimately leads to the desired form of the 

expression with only two integrals involving Brownian motion and one integral with 

respect to time. 

� sup
�∈[�,�]

(∫ ∫ (� − � + �)���]��(�)���, ��
�(�)���)� =

�

�

�

�

� sup
�∈[�,�]

(∫ ∫ ���, ��
�(�)���(� − � + �)���]��(�))� = 

�

�

�

�
   

Using Itô isometry [30], i.e., that (dW)2 = dt, and, for the upper bound, simply 

multiplying the expectation by 4 [26], we can further simplify the stochastic integral: 
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� sup
�∈[�,�]

(� � ���, ��
�(�)���(� − � + �)���]��(�))�

�

�

�

�

≤ 4�(� � ���, ��
�(�)�(� − � + �)���]��)���

�

�

�

�

≤  4� � (� ����, ��
�(�)�(� − �

�

�

�

�

+ �)���]�� )(� (� − � + �)���]�� )�� ≤ 
�

�

≤  4� � ��(�, ��
�

�

�

(�))(� − � + �)���]�� )[
(� − � + �)�

�
 ]�

���

≤ 4� � ��(�, ��
�

�

�

(�))(� − � + �)���]�� )[
(� − � + �)�

�

−
��

�
]���, ����� �, �, � ≥ 0 ∴

(� − � + �)�

�
−

��

�
≤

(� + �)�

�
 

∴ ��������� ������� ���������:  

(17)

4� ∫ ��(�, ��
��

�
(�))(� − � + �)���]�� )

(���)�

�
 �� ≤

 4
(���)�

�
� ∫ ��(�, ��

��

�
(�))(� − � + �)���]���� ≤

 4
(���)�

�
� ∫ ��(�, ��

��

�
(�))]

(���)�

�
�� ≤

�(���)��

�� � ∫ ��(�, ��
��

�
(�))��.  

Because this is a linear integral, we can take the term 
(���)�

�
 outside the integral. Now, 

using the Cauchy–Schwarz inequality [26], 

���{�∞(�(�, �, �⟨0⟩), |�(�, �, �)| }  ≤ �(1 + �∞(�, ⟨0⟩),  we can evaluate the last 

expression: 

4(� + �)��

��
� � ��(�, ��

�
�

�

(�))��

≤  
4(� + �)��

��
(� ���(1 + ��

� (��
�), 〈0〉)���

�

�

+ � ���(1 + ��
� (��

�), 〈0〉)���
�

�

≤  2��
4(� + �)��

��
[(1 + �||��

�]�||�)� 

≤  ��
8(� + �)��

��
[(1 + �||��

�]�||�)�  

(18)

We will now substitute this result in J1(t) and simplify and take the exponential out 

of the bracket. 

��(�) ≤  6��(� +  4���)[(1 + �||��]�||�)�

+ 3����
8(� + �)��

��
[(1 + �||��

�]�||�)� 

≤ (6��(� + 4���) + 3��8(� + �)��)[(1 + �||��
�]�||�)� ≤

≤ 6��(� + 4��� + 4(� + �)��)[(1 + �||��
�]�||�)� 

We will explain what this all means and why we need it. The first term J1(t) in the 

estimate is an upper bound on the error between the true solution X(t) and the numerical 

solution Xε(t) obtained at the nth time step. It represents the contribution to the error due 

to the approximation made at the current time step. The inequality for J1(t) follows from 

the error estimate for the numerical method used to compute Xε(t) at the current time step. 

This estimate indicates that the error in Xε(t) at the current time step is proportional to the 

time step size t and to a constant factor that depends on the parameters of the numerical 

method and on the regularity of the solution X(t). Similarly, we can obtain the same result 

for Jn+1(t), which, in the estimate, is an upper bound on the error between the numerical 
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solution Xε(t) obtained at the (n+1)th time step and the numerical solution Xε(t) obtained 

at the nth time step. It represents the contribution to the error due to the propagation of 

the error from the current time step to the next time step. The inequality for the next time 

step, which we will prove now, is 

����(�) ≤ 3(� + 4��� + 4(� + �)��)��� � ��
� (��

�(�), ����
�

�

�

(�)�� 

It follows from a stability estimate for the numerical method used to compute Xε(t) 

at the (n+1)th time step. This estimate indicates that the error in Xε(t) at the (n+1)th time 

step is proportional to the time step size t, to a constant factor that depends on the 

parameters of the numerical method and on the regularity of the solution X(t), and to the 

norm of the difference between the numerical solutions for ��
�(�) and ����

� (�) obtained at 

the nth and (n-1)th time steps, respectively. Heuristically, this makes sense because, as the 

time steps are reduced, the numerical method is able to capture more accurately the 

behaviour of the true solution X(t) at each time step. Second, let us consider the constant 

factor that depends on the parameters of the numerical method and on the regularity of 

the solution X(t). This constant factor represents the accuracy of the numerical method 

itself and is determined by the choice of the numerical scheme, the order of accuracy of 

the numerical method, and other parameters specific to the method. The regularity of the 

solution X(t) also plays a role in determining the accuracy of the numerical method, since 

more regular solutions can be approximated more accurately than less regular ones. 

Finally, let us consider the norm of the difference between the numerical solutions 

��
�(�)  and ����

� (�)  obtained at the nth and (n − 1)th time steps, respectively. This term 

accounts for the propagation of the error from the previous time step to the current time 

step. If there is a large difference between the numerical solutions at the two time steps, 

this indicates that the error has been propagated and has accumulated over time, leading 

to a larger error in the numerical solution at the current time step. The norm of this 

difference is used to quantify the magnitude of the error that has been propagated from 

the previous time step. Therefore, the estimate for the error in ��
�(�) at the (n + 1)th time 

step takes into account the time step size, the accuracy of the numerical method, and the 

propagation of the error from the previous time step. In summary, the term Jn+1(t) accounts 

for the propagation of the error from the current time step to the next time step and 

provides an upper bound on the total error in the numerical solution Xε(t) at the (n + 1)th 

time step. By summing up the contributions from all time steps, we obtain an estimate for 

the total error in the numerical solution ��(�) over the entire time interval [0, T]. 

This is our proof of the above. Let ��
�(�) be the numerical solution obtained at the n-

th time step and ����
� (�) be the numerical solution obtained at the (n − 1)th time step. 

Then, the error between these two solutions can be wri�en as 

��(�) =  ��
�(�) −  ����

� (�). 

Using the difference equation for the numerical method, we can write ����(�) =

 ��(� + ∆�) − ��
�(�), where ��(� + ∆�) is the true solution at the (n+1)th step and ∆� is 

the time step size. Then, the error in the numerical solution Xε(t) at the (n+1)th time step 

can be wri�en as 

����(�) − ��(�) =  ��(� + ∆�) −  ��
�(�) − (��

� (�) − ����
� (�) =  ��(� + ∆�) −

 2��
�(�) + ����

� (�). 

Taking the norm ||.|| of both sides and using the triangle inequality property of 

norms in vector spaces, ||� +  �||  ≤  ||�||  + ||�|, we obtain 

||����(�)�|≤  ||��(� + ∆�) −  2��
�(�)|� + ||(��

�(�) −  ����
� (�)|| 
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A function f(x) is said to be Lipschi� continuous if there exists a constant K such that 

|�(�1)  −  �(�2)|  ≤  �|�1 –  �2| for all x1 and x2 in the function’s domain [26]. Intuitively, 

this means that the function’s rate of change is bounded by a constant factor K, which is 

independent of the size of the interval over which the function is measured. Using the 

Lipschi� continuity of the function f in the differential equation, we can write 

��(� + ∆�) − 2��
�(�) ≤ ��∆�||�(�, ��

�(�), �) − �(�, ����
� (�), �)|| 

where L2 is the Lipschi� constant. It is the smallest possible value of K that satisfies the 

Lipschi� condition |�(�1)  −  �(�2)|  ≤  �|�1 –  �2|.  In other words, it is the smallest 

possible upper bound on the rate of change in the function over its entire domain and it 

provides a measure of how rapidly the function changes over its domain. We will use it 

in the following context. If the right-hand side of a differential equation is Lipschi� 

continuous with a constant K, then numerical methods indicate that a time step t will 

converge to the true solution at a rate proportional to t/K. Using the assumption on the 

distance between the initial condition u0 and the true solution X(t), we can write 

||�(�, ��
�(�), �) − �(�, ����

� (�), �)||  ≤  ��
� (��

�(�), ����
� (�)) 

Therefore, we can write the following and integrate both sides over time interval 
[�(�), �(� + 1)]: 

 ||����(�) ��≤  ����
� ���

�(�) −  ����
� (�)� + ||��(�) −  ����

� (�)��  

� ||����(�)||�� ≤  �� ∆� � ��
�  [���

�(�), ����
� (�)���]�/�

�

�

 [� ||���
�(�)

�

�

�

�

− ����
� (�)� || ���]�/� 

Taking the expectation on both sides and using the fact that the expectation operator 

is linear, we obtain 

� ∫ ||����(�)||�� ≤  �� ∆�� ∫ ��
�  [���

�(�), ����
� (�)���]�/��

�
 �[∫ ||���

�(�) −
�

�

�

�

 ����
� (�)� || ���]�/�  

Use the fact that the square of the norm of the difference between two solutions is 

bounded by three times the sum of the squares of their individual norms. 

� � ||����(�)||�� 
�

�

≤  3∆� [(�� + 4�� + 4(��

+ �)��]
�
�  �� � � ��

�  [���
�(�), ����

� (�)���
�

�

] �/� 

(19) 

Therefore, we have derived the expression for the jn+1(t) term in the error estimate: 

����(�) ≤ 3[(� + 4�� + 4(� + �)��]  �� � � ��
�  [���

�(�), ����
� (�)���

�

�

] �3[(�

+ 4�� + 4(� + �)��]  ��  � � sup
�∈[�,�]

��
�  [���

�(�), ����
� (�)��� 

�

�

≤ 3[(� + 4�� + 4(� + �)��]  ��  � ��(�)��
�

�

 

(20)

This inequality holds because the function jn(s) is defined as the supremum distance 

between values of the process X over the interval from n to n+1, as measured by the metric 

function ��
� . Therefore, the integral of jn(s) over the interval t0 to s gives an upper bound 

on the supremum distance between values of the process X over the same interval. 

We will now apply the Chebyshev inequality P(|X-µ|>kσ) ≤1/k2 to the metric 

function ��
�  [���

�(�), ����
� (�)�] [26]. 
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Proof. Define Y to be the random variable such that 

� = sup
 �∈[�,�]

��
�  [���

�(�), ����
� (�)�. 

Then, we have 

 � = �(�) =  �( sup
�∈[�,�]

��
�  [���

�(�), ����
� (�)� and 

 �� = ���(�) =  ���( sup
�∈[�,�]

��
�  [���

�(�), ����
� (�)�.  

Since the metric function is a distance measure, it is non-negative, and therefore Y is 

also non-negative. We can choose k = 2n to obtain P(Y > 2nµ) ≤ Var(Y)/(2nµ)2, and since Y is 

non-negative, we have E(Y) = µ ≥0; therefore, (2nµ)2 ≥ 0. This means that the denominator 

of the fraction is non-negative. We can multiply and invert the inequality to obtain 

�( sup
 �∈[�,�]

��
�  ����

�(�), ����
� (�)� ≥

�

��� = �(� > 2�� ≤
�

�� ≤

(2�)�
��� ( ���

 �∈[�,�]
��

�  ���
�(�),����

� (�)�).

��  �( ���
�∈[�,�]

��
�  [���

�(�),����
� (�)�

�
 
= 2� ���(��(�)) 

�(��(�))� ≤ 2���(�)  
(21)

We will now use the Borel–Cantelli lemma [31]. Let {En} be a sequence of events in 

the sample space Ω; then, if the sum of the probabilities of the events in the sequence is 

finite, then the probability of the intersection of all the events is zero, i.e., 

∑ ��(��) < ∞ �ℎ�� Pr(��) = 0 �ℎ��� �� = ⋂ ⋃ ��
�
���

�
���  �

���   . If the events {En} are 

independent, then 

� �� = ∞ �ℎ�� Pr(��) = 1 �ℎ��� �� = � � ��.
�

���

�

���

 

�

���

 

Conversely, if the events are independent and the sum of their probabilities diverges, 

then the probability of the intersection of all the events is 1. To understand this, consider 

the first case where the sum probabilities is finite. We can define a new sequence of events 

{Fn} as follows: �� = ⋃ ����� . That is the union of all the events in the sequence En starting 

from index n. Intuitively, Fn represents the event that at least one of the events En occurs 

starting from index n. Since the sum of the probabilities of the events in the sequence is 

finite, we have ∑ �(��) < ∞�
��� . This implies that the sum of the probabilities of the events 

in the sequence is also finite since Fn is the union of a finite number of events En. Therefore, 

we have 

� ��(��) =  � �� ��

���

� ≤ � � �(��)

���

�

���

�

���
 =  � �(��) + �(����) + ⋯ )

�

���

 

�

���

 

The last step follows from the fact that the events En are non-negative and therefore 

the sum can be rearranged. Now, let us consider the event �� = ⋂ ��
�
��� . Intuitively, Es 

represents the event that infinitely many of the events En occur. We can write Es as a 

countable intersection of the events {Fn}, i.e., �� = ⋂ ��
�
��� = lim sup ��, where lim sup is 

the limit supremum of the sequence {Fn}. In other words, Es is the set of all outcomes that 

belong to infinitely many of the events Fn. Since the sum of the probabilities of the events 

in the sequence {Fn} is finite, we can apply the first Borel–Cantelli lemma to conclude that 

Pr(lim sup Fn) = 0. Therefore, we have shown that Pr(Es) = Pr(lim sup Fn) = 0, which 

completes the proof of the first case. We do not need the second case here because Jn(T) is 

convergent. Having shown the convergence, we will now apply the Borel–Cantelli lemma. 

Let {fn(x)} be a sequence of measurable functions on [0, 1] with |fn(x)| < ∞ for a.e. x ⊂ [0, 

1]. Then, there exists a sequence {cn} of positive real numbers such that fn(x)/cn -> 0 a.e. x 

⊂[0, 1]. Suppose that there is a sequence such that m(En) ≤ 2-n. Then, from the lemma, it 
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follows that P(|f(x)|> N/n) > 2-n. Going back to our proof, and using the Borel–Cantelli 

lemma, 

� sup
 �∈[�,�]

��
�  [���

�(�), ����
� (�)� ≥

�

√�
�  ���������� ����� = 0.  This means that the 

probability of the event that the supremum of the d2 distance between ���
�(�), ����

� (�)� 

is greater than 
�

√�
� for infinitely many values of n is zero. Following from this, we can say 

that 

sup
 �∈[�,�]

��
�  [���

�(�), ����
� (�)� ≤

1

√2
�  (22)

We will now formally prove this important result. The value 1/√2 comes from the fact 

that we are interested in the probability of the event that the supremum of the d2 distance 

between ���
�(�) ��� ����

� (�)� is greater than (1/√2)n for infinitely many values of n. The 

value 1/√2 is chosen because it is a convenient threshold that ensures the convergence of 

the series ∑ ��(�)�
���  in the statement of the problem. In particular, the convergence of the 

series implies that the sequence ��
�(�) converges almost surely in the d2 metric, which is 

a stronger condition than the almost sure convergence in the Euclidean metric since the 

la�er is a special case of a d2 metric. The choice of the threshold (1/√2)n is motivated by the 

fact that it ensures that the rate of growth of E(sup
 �∈[�,�]

��
�  [���

�(�), ����
� (�)� is bounded by √2 

times the logarithm of n. The logarithm comes from the asymptotic behaviour of the 

harmonic series, which is related to the rate of growth of the sum of the variances of the 

random variables in the sequence ��
�(�)}.  The sum of the variances of the random 

variables is equal to n since they are independent standard normal random variables. 

Therefore, the sum of the variances of the random variables in the sequence {��
�(�)} up 

to time n is equal to ��� ∑ ���(�)�� = ∑ ��
��

��� ���[�(�)] = � ∑ ��
��

���
�
��� . 

We can use the fact that ∑ ��
��

���  is bounded by 1 for all n since u belongs to the unit 

ball in Rd. Therefore, we have ��� ∑ ��
�(�)�� ≤ ��

��� . Using this result, we can re-write 

E(sup
 �∈[�,�]

��
�  [���

�(�), ����
� (�)�  ≤ √2 ∑ [���[∑ ��

�(�)��]]�/� ≤ √2 ∑ √��
���

�
���

�
��� , 

where the last inequality follows from the fact that the sum of the variances of the random 

variables in the sequence {��
�(�)} up to time n is bounded by n. We also use a well-known 

result in mathematics originally proved by Euler that the sum of the harmonic series, i.e., 

the sum of the reciprocals of the positive integers, is asymptotically bound by the natural 

logarithm of the number of terms in the series. 1 + ½ + 1/3 + …+1/n ≃ln(n) + ɣ as n->∞, 

where ɣ is the Euler–Mascheroni constant. So, in this context above, the sum of √n grows 

slowly compared to the harmonic series and is bounded by ln(n). So, ∑
√�

�� (�)
=  ∞�

���  , 

which follows from the fact that the integral 1/√x from 1 to ∞ is infinite and the comparison 

test for series. Heuristically, the numerator grows faster than the denominator, so the sum 

of the series is infinite. This is why we choose the threshold 
�

√�
� in the statement of the 

Borel–Cantelli lemma to ensure that the rate of growth of E(sup
 �∈[�,�]

��
�  [���

�(�), ����
� (�)�  ≤

√2 ∑ [���[∑ ���(�)��]]�/� ≤ √2 ∑ √� ≤ √2ln (�)�
���

�
���

�
���  is bounded. Now, recall that the 

sequence { ��
�(�)} =  ����

� (�) + ∑ ��
�(�)�

���   represents independent standard normal 

variables. Therefore, the distance between ��(��
�(�), ����

� (�) = ∑ (��
�(�) −�

���  ��
���(�))���

�. 

Now, we will use the fact that these are independent random variables with mean 0 and 

variance 1. Therefore, Var(∑ (��
�(�) −�

���  ��
���(�))�) is equal to the sum of their variances, 

which is two, and the covariance term is zero. Using this, we can write that 

�[��(��
�(�), ����

� (�))] = ∑ (��
�(�) −�

���  ��
���(�))���

� = 2 ∑ ��
��

��� . Taking the square root, we 

have 
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E(sup
 �∈[�,�]

��
�  [���

�(�), ����
� (�)�  ≤ √2�[� ��

�]�/� ≤ √2 � �(|��|)

�

���

�

���

≤ √2ln (�) 

Therefore, by the Borel–Cantelli lemma, we can conclude that the probability of the 

event that the supremum of the d2 distance between ��
�(�) ��� ����

� (�) is greater than 
�

√�
� for infinitely many values of n is zero. So, we have proven that 

sup
 �∈[�,�]

��
�  [���

�(�), ����
� (�)� ≤

1

√2
�  

□ 

We will now complete the proof of the existence of a strong and unique solution. We 

know that, as n goes to infinity, ��
�(�) → �������ℎ�� �� ��(�), so ��

� (��
�(�), ��(�)) = 0 as 

d(a,a) = a − a = 0. In other words, ��
�(�) ��� ��(�) become the same. Let us take ��(�) as 

some continuous fuzzy stochastic process. Then, by the above, ��
�  [(��

�(�)�, ����
� (�)�) →

0 �� � → ∞. Hence, as n goes to infinity, 

� sup
�∈�

[ ��
� ���

�(�), ��(�)� + ��
� (��

�(�), ��
�

+ � ���, ��(�)��� + 〈� ���, ��(�)����
� (�)

�

�

〉)]� => 0
�

�

 

This shows the existence of a strong solution: 

sup
�∈�

[ ��
� [(��(�), ��

� + � ���, ��(�)��� + 〈� ���, ��(�)����
� (�)

�

�

〉)] = 0
�

�

 (23)

Now, we will show the uniqueness of the solution. For this, we need Gronwall’s 

lemma and inequality [32]. Let y(t), f(t), g(t) be non-negative functions on a closed interval 

[a, b], where a < b. If f(t) satisfies inequality �(�) ≤ �(�) +  ∫ ℎ(�)�(�)��
�

�
  for all � ⊂

 [�, �], then it follows that 

�(�) ≤ �(�) + ∫ ℎ(�)�(�)�∫ �(�)��
�

� ��
�

�
 for all � ⊂ [�, �]. A special case of Gronwall’s 

lemma arises when g(t) is identically zero on the interval [a, b], which then simplifies to 

�(�) ≤ ∫ ℎ(�)�(�)��
�

�
,  which provides an upper bound on f(t). Grownall’s inequality 

provides an upper bound on the function f(t) in terms of the constant A and the 

exponential of the integral of g(s) over the interval [a, t]. The inequality guarantees that 

the growth of f(t) is controlled by the exponential function. The general form of the 

inequality is as follows: let f(t) be a non-negative, continuous function on a closed interval 

[a, b], where a<b. If f(t) satisfies the inequality �(�) ≤ � +  ∫ �(�)�(�)��
�

�
, where A is a 

constant and g is a non-negative, continuous function, then it follows that �(�) ≤

� ∫ ��(�)���

�
. Going back to our proof of uniqueness, consider that 

�(�) = �[  sup
 �∈[�,�]

��
�  ���(�), ��(�)� ] , where we already have an estimation or upper 

bound, which is 

�(�) ≤ 3[(� + 4�� + 4(� + �)��]  �� � � ��
�  [���(�), ��(�)���

�

�

]  

≤ 3[(� + 4�� + 4(� + �)��]  ��  � ��(�)��
�

�

 

In the context of the j(t) function, we apply Gronwall’s inequality with � = 0 and 

� = 3[(� + 4�� + 4(� + �)��]  ��. Using �(�) ≤ � ∫ ��(�)���

�
, we can state that 

�(�) ≤ 0 ∗ ��[��������(���)��]���� = 0 . Therefore, j(t) = 0 for all t within the given 

interval. This bound shows that the function j(t) grows exponentially in time, with the rate 
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of growth determined by the constant 3[(� + 4�� + 4(� + �)��]��. However, the growth 

of j(t) is limited by its initial value j(0). If J(t) = 0 for all t in I, this means that the distance 

between the two solutions of the stochastic differential equation is zero for all times in the 

interval I. But since j(t) is non-negative, this implies that j(t) = 0 for all t ≥ t0, where t0 is the 

endpoint of the interval I. Therefore, the two solutions of the equation coincide for all 

times t ≥ t0, which means that they become arbitrarily close to each other as time goes to 

infinity. The proof of uniqueness is complete: 

�(�) = �[  sup
 �∈[�,�]

��
�  ���(�), ��(�)� ] = 0 �. �., 

We will next prove that Xε(t) converges to the solution X(t) in L2 space as ε->0 and t ⊂ 

[0, T], which is fundamental if we want to apply Itô’s lemma later on. However, first, we 

need to prove that, for every ε > 0 and 0 < a < ½, 

� ((� − � + �)��� − (� − �)���)�� ≤
� + 1

�
��

�

�

 

We will need this inequality for use in the former proof. We will employ the finite-

increments formula in the proof. Let f(x) be a differentiable function defined on an interval 

[a,b] and let δ be a small increment. The formula states that �(� + �) − �(�)  =  �’(�)� +

 ��, where f’(x) represents the first derivative of f evaluated between some point x and x 

+ δ, and θ is a value between 0 and 1. In other words, the change in the function’s value 

over the interval [x, x+δ] is approximately equal to the derivative of the function times the 

increment δ, plus an additional term θδ accounting for the difference between the true 

change and the linear approximation. In the context of this proof, we will use the finite-

increments formula to analyse the function f(x) = xa−1 to obtain (x+ε)a−1 − xa−1= [(a − 1)(x + 

θε)(a−2)ε]. By applying the formula to this function, we can derive relationships between 

the increments in the function’s values and the derivative of the function evaluated at 

intermediate points. These relationships are then used to establish the inequality for the 

integral in the proof. In summary, the finite-increments formula allows us to approximate 

the change in a function over small increments and provides a useful tool for bounding 

the behaviour of the functions. Here are the steps of the proof. (i) Apply the finite-

increments formula to obtain an upper bound for the absolute value of the following: 

|((� − � + �)��� − (� − �)���)�≤ |� − 1|�� − �|����. Using this inequality, we will split the 

integral over the time interval [s,t] into two parts, one from s to s+ε and the second from 

s+ε to t. 

� ((� − � + �)��� − (� − �)���)��
�

�

 

≤ ∫ |((� − � + �)��� − (� − �)���)|�� + ∫ |(� − � + �)��� − (� − �)���)�� 
�

���

���

�
  

Notice that (� − � + �)��� − (� − �)���)  can be wri�en as [(� − �) + �]��� − (� −

�)���) = = [(� − �)��� + (� − 1)(� − �)���� + ⋯ + ����] − (� − �)��� ≤ |(� − 1)(� −
�)���� + |����| ������� (� − �) ≤ �; (� − 1)(� − �)���� ≤ (� − 1)|(2(� − �))��� − (� −

�)��� |��. 

Just to clarify, (r-s) ≤ ε comes from the fact that we are integrating over the interval 

[s,t] and spli�ing it into two parts: [s, s+ε] and [s+ε, t]. Since r is in the interval [s, s+ε], � −

� + � ≤  � + � − � = �, so � −  � ≤  �, and since r is in the interval [s+ε, t], we have � −

� + � ≤  � − �. Since we are interested in bounding the integrand over the entire interval 

[s,t], we can take the maximum of the upper bounds for (r-s) over both parts, which gives 

(� − �)  ≤  ��� {�, � − �}. 

We can now use these bounds to re-write the integrals: 
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∫ |((� − � + �)��� − (� − �)���)|�� + ∫ |(� − � + �)��� − (� −
�

���

���

�

�)���)�� ≤  ∫ |(2(� − �))��� − (� − �)���|�� + |� − 1|� ∫ |� −
�

���

���

�

�|����� ≤  ∫ (� − �)����� + |� − 1|� ∫ |� − �|����� ≤ [
(���)�

�

�

���

���

�
 ]�

��� + (� −

1)�[
(���)���

���
]���

� ≤
��

�
+ ��  

(24)

We will now use this result to prove the convergence of the solution and show how 

to apply it for the purposes of this paper. We want to prove that ��(�) = �� +

∫ ���, ��(�)��� + 〈∫ ���, ��(�)����
� (�)

�

�
〉)]

�

�
  converges to �(�) = �� + ∫ ���, �(�)��� +

�

�

〈∫ ���, �(�)����(�)
�

�
〉)]. We will utilise Equation (12) and the Euler–Maruyama numerical 

method for that. This is a reminder of the Equation (12): 

sup
��[�,�]

��
� (〈� �(�)��(�)

�

�

〉 , 〈� �(�)��(�)
�

�

〉) ≤ 4� � ��
� (〈�(�)〉, 〈�(�)〉)�� 

�

�

 

The Euler–Maruyama method is a modification of the standard Euler method for 

solving ordinary differential equations (ODEs) to solve stochastic differential equations 

(SDEs). The solution of an SDE is itself a random process, and therefore cannot be 

computed exactly in closed form. The Euler-Maruyama method approximates a solution 

of an SDE as a piecewise linear function. At each step, the approximation is updated by 

taking a small step in time and adding a random perturbation. Specifically, it takes the 

form dX(t) = f(t,X(t))dt + g(t,X(t))dBH(t). Choose a time step size Δt and define the time 

points tK = kΔt for k = 0,1,2,...,n. Initialise the approximation by se�ing X0 = X(t0). For k = 

1,2,...,n, compute the approximation at time tK as X(tK) = X(tK−1) + f(tK−1,X(tK−1))Δt 

+g(tK−1,X(tK−1))(BH(tK) − BH(tK-1)), where BH(tK) − BH(tK−1) is the increment of the Brownian 

motion over the time interval [tK−1 , tK]. Now, to obtain a bound on the distance between 

X(t) and Xε(t), we use the triangle inequality and the fact that the distance between the two 

drift functions f(X) and f(Xε) can be bounded by the integral of the distance between them 

over time. Specifically, we have 

�[ sup
 �∈[�,�]

��
�  ��(�), ��(�)� ]

≤ 2E sup
 �∈[�,�]

� ��
�  ��(�, �(�), �(�, ��(�)���

�

�

+ 2E sup ��
�

 �∈[�,�]
〈� ���, �(�)����(�)

�

�

〉 , 〈� ���,  ��(�)����
� (�)

�

�

〉  

(25)

To obtain this result, we apply a triangle inequality to the distance between X(u) and 

Xε(u) to bound the first term. 

�[  sup
 �∈[�,�]

��
�  ��(�), ��(�)� ≤ �[  sup

 �∈[�,�]
��

�  ��(�), ��(�)� ] + �[  sup
 �∈[�,�]

��
�  ���(�), �(�)�  

Similarly, we can bound the second term and, substituting these bounds, we obtain 

(25). Then, we will apply the Burkholder–Davis–Gundy (BDG) inequality in our proof. 

BDG is a tool used to bound the moments of stochastic integrals involving martingales. It 

provides a way to control the growth of moments of stochastic integrals. In general form, 

the inequality states that �[ sup
�����

|��|� ≤ ���[(��
∗)�] , where Mt is a continuous square-

integrable martingale, p>1 is a real positive number, and ��
∗ = �[ sup

�����
|��|  is the 

maximum value of the absolute value of the martingale up to time t. In other words, the 

BGD inequality relates the supremum of the pth power of a continuous square-integrable 

martingale Mt to the pth moment of its maximum value ��
∗. To apply BHG, we first need 

to express the stochastic integrals in terms of the increments of the Brownian motion (so 
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that they are a martingale). In particular, we use the Equation (5) derivation of the 

fractional Brownian motion ��,�(�): 

��,�(�) = � � ��(�)�� + ���(�)
�

�

 

where ��(�) = ∫ (� − � + �)���]��(�)
�

�
 and B(t) is a standard Brownian motion. 

Using this representation, we can express the stochastic integral involving the 

difference between X and Xε as 

∫ (���, �(�)�(
�

�
���

� (�) − ���(�)) =  ∫ (���,  ��(�)�(
�

�
���

� (�) −

���(�)) ∫ (���, �(�)� − ���, ��(�)�
�

�
���

� (�). 

We can similarly express the other integrals involving X and Xε in terms of the 

increments in the Brownian motion. We can apply the BDG inequality to bound the 

supremum of the stochastic integrals involving Brownian motion increments. 

Recall a special case of BDG that we used earlier: 

� sup
��[�,�]

��
� (〈� �(�)��(�)

�

�

〉 , 〈� �(�)��(�)
�

�

〉) ≤ 4� � ��
� (〈�(�)〉, 〈�(�)〉)��.

�

�

 

Then, 

E [sup
 �∈[�,�]

��
�  ��(�), ��(�)� ]

≤ 2E sup
 �∈[�,�]

� ��
�  ��(�, �(�), �(�, ��(�)���

�

�

+ 4E sup ��
�

 �∈[�,�]
〈� ���, �(�)����(�)

�

�

〉 , 〈� ���, �(�)����
� (�)

�

�

〉  

+  4E sup ��
�

 �∈[�,�]
〈� ���, �(�)����

� (�)
�

�

〉 , 〈� ���,  ��(�)����
� (�)

�

�

〉

= 2E sup
 �∈[�,�]

� ��
�  ��(�, �(�), �(�, ��(�)���

�

�

+ 4E sup ��
�

 �∈[�,�]
〈� ���, �(�)����(�)

�

�

〉 , 〈� ���, �(�)����
� (�)

�

�

〉  

+  4E sup ��
�

 �∈[�,�]
〈� ���, �(�)����

� (�)
�

�

〉 , 〈� ���,  ��(�)����
� (�)

�

�

〉

= 2E sup
 �∈[�,�]

� ��
�  ��(�, �(�), �(�, ��(�)���

�

�

+ 4E sup |
 �∈[�,�]

� ���, �(�)�(���(�)
�

�

− ���
� (�))|�  

+  4E sup |
 �∈[�,�]

� (���, �(�)� − ���, ��(�)�
�

�

���
� (�)|�  

We will now substitute (5) ��,�(�) = � ∫ ��(�)�� +  ���(�),
�

�
  where ��(�) = ∫ (� −

�

�

� + �)��� − (� − �)��� ]��(�),  so ��,�(�) = � ∫ �(� − � + �)���]��(�) ��� �(�) = �(� −
�

�

�)���]��(�)�, ��� � > 0, � = � − 1/2, into the above and use the (BDG) inequality in our 

proof. We need to replace the fBm with normal Brownian motion. We will use the 

following properties of the fBm. The increments in the fractional Brownian motion ��(�) 

are stationary with mean zero and variance|t−s|2H. The increments in the fractional 

Brownian motion ��
� (�) are also stationary and have mean zero and variance |t|2H. Using 

these properties, we can write 

�(���
� (�) − ���(�))� = �(��(� + �) − ��

�(�) − ��(�))�

= 2����(� + �)� + 2�(���) − 4�(������) − 4�(������)

+ 4�(��)(�(�)) 
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So, 

E [sup
 �∈[�,�]

��
�  ��(�), ��(�)� ]

≤ 2E sup
 �∈[�,�]

� ��
�  ��(�, �(�), �(�, ��(�)���

�

�

+ 8���E sup |
 �∈[�,�]

� ���, ��(�)�(��(�)
�

�

)|�  

+ 8��E sup |
 �∈[�,�]

� (���, ��(�)�(� �(� − � + �)���
�

�

�

�

− (� − �)���]��(�)���|�  + 8��E sup |
 �∈[�,�]

� (�(�, ��(�)
�

�

− �(�, ��(�)) � �(� − � + �)�����(�)���|�
�

�

+ 8���E sup |
 �∈[�,�]

� (�(�, �(�) − ���, ��(�)�(��(�)|�
�

�

   

We now have 

E [sup
 �∈[�,�]

��
�  ��(�), ��(�)� ]

≤ 2E sup
 �∈[�,�]

� ��
�  ��(�, �(�), �(�, ��(�)���

�

�

+ 8���E sup |
 �∈[�,�]

� ���, ��(�)�(��(�)
�

�

)|�  

+  8��E sup |
 �∈[�,�]

� � (���, ��(�)��(� − � + �)���
�

�

�

�

− (� − �)���]����(�)�|�

+ 8��E sup |
 �∈[�,�]

� � (�(�, ��(�)
�

�

�

�

− �(�, ��(�))�(� − � + �)�������(�)�|�

+  8���E sup |
 �∈[�,�]

� (�(�, �(�) − ���, ��(�)�(��(�)|�
�

�

  

We will now apply Doob’s inequality for Brownian motion to the second, third, 

fourth, and fifth term, which states that E [sup
 �∈[�,�]

��
�  |��|]� ≤ 4�|��|� , Holder’s inequality to 

the third and fourth term, which states that f⊂LP, q⊂LQ, ∫ �� ≤ ||�||�||�||� , and Itô 

isometry to the second, third, fourth, and last terms, which states that 

E(∫ ∫ �����)�) =
�

�
�(∫ (��)���)

�

�
. 
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E [sup
 �∈[�,�]

��
�  ��(�), ��(�)� ]

≤ 2E sup
 �∈[�,�]

� ��
�  ��(�, �(�), �(�, ��(�)���

�

�

+ 32���� � ����, ��(�)���
�

�
 

 

+ 32��E
 

� [� ����, ��(�)� �(� − � + �)���
�

�

�

�

− (� − �)���]�� � [(� − � + �)��� − (� − �)���]��)
�

�

���

+ 32��E
 

� � ��(�, ��(�) − �(�, ��(�))�(� − �
�

�

�

�

+ �)����� � (� − � + �)���
�

�

��� ��

+ 32���E
 

� (�(�, �(�) − ���, ��(�)�
�

��
�

�

. 

Using (17), (18), (23), and assumptions A1–A3, 

E [sup
 �∈[�,�]

��
�  ��(�), ��(�)�]]

≤ 2��� � ��
�  ��(�), ��(�)���

�

�

+ 64����� � (1 + �||[��(�)]�||�)��
�

�
 

 

+  64��(� + �)��
� + 1

�
��

 

� (1 + �||[��(�)]�||�)��
�

�

+ 32��(� + �)��E
 

� ��
�  ��(�), ��(�)���

�

�

+ 32�����E
 

� ��
�  ��(�), ��(�)���

�

�

  

≤ (2�� + 32��(� + �)��

+ 32�����) � � sup
�∈[�,�]

��
�  ��(�), ��(�)� �� + (64�����

�

�

+ 64��(� + �)��
� + 1

�
��) � (1 + �||[��(�)]�||�)��

�

�

 

(26)

We will now show the convergence of the solution of a fuzzy stochastic differential 

equation driven by fBm. The first part of (26) provides a bound on the supremum of the 

distance between the solution X(u) and a perturbed version of the solution Xε(u) over the 

interval [0,t]. Here, sup
�∈[�,�]

��
�  ��(�), ��(�)�  denotes the supremum distance between the 

two processes, L is a Lipschi� constant, T is the final time, ε is a small perturbation 

parameter, and a is the Hurst parameter of the fBm. The second part of (26) provides a 

bound on the second moment of the perturbed solution Xε(s). Here, C is a constant and 

[��(�)]� is the initial value of the perturbed process. We will apply Gronwall’s lemma to 

the inequality to show that the supremum of the distance between 

�(�) ��� ��(�) converges to zero as ε approaches zero, which implies the 

convergence of the solution X(u) to a limit process as the perturbation parameter ε goes 

to zero. The equation provides an estimate for the convergence rate of the solution of the 

fuzzy stochastic differential equation driven by an fBm. To apply Gronwall’s lemma to 

the inequality, we first define Y(s) = E [sup
 �∈[�,�]

��
�  ��(�), ��(�)� ] and re-write the 

inequality as 
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Y(s) ≤ (2�� + 32��(� + �)�� + 32�����) ∫ �(�)�� + (64����� +
�

�

64��(� + �)�� ���

�
��) ∫ (1 + �||[��(�)]�||�)��

�

�
. 

We can now apply Gronwall’s lemma, which states that if f(t) and g(t) are non-

negative continuous functions on [0,T] and if there exists a nonnegative constant K such 

that �(�) ≤ � + ∫ �(�)�(�) ∀ � ∈ [0, �]
�

�
 , then �(�) ≤ ��∫ �(�)�(�) 

�
� ∀ � ∈ [0, �] . Applying 

this lemma, we have 

Y(s) ≤ (2�� + 32��(� + �)�� + 32�����) � �(�)�� + (64�����
�

�

+ 64��(� + �)��
� + 1

�
��) � (1 + �||[��(�)]�||�)��

�

�

 

� = (64����� + 64��(� + �)��
� + 1

�
��) � (1 + �||[��(�)]�||�)��

�

�

 

�(�) = 2�� + 32��(� + �)�� + 32����� 

Then, by Gronwall’s lemma �(�) ≤ ��∫ �(�)�(�) 
�

� ∀ � ∈ [0, �], we obtain 

E [sup
 �∈[�,�]

��
�  ��(�), ��(�)�

≤ (64�����

+ 64��(� + �)��
� + 1

�
��) � (1

�

�

+ �||[��(�)]�||�)�� ���������(���)����������
  

We can use the fact that the space of continuous functions equipped with the 

supremum norm is complete, i.e., all Cauchy sequences converge, to conclude that the 

solution X(u) converges to a limit process as the perturbation parameter ε goes to zero. As 

ε approaches zero, the second and third terms in the exponent tend to zero faster than the 

first term, which dominates for large t. Therefore, the exponent approaches zero as ε 

approaches zero, which implies that the supremum of the distance between X(u) and 

Xε(u) also approaches zero. This completes the proof that Xε(t) converges to the solution 

X(t) in L2 space as ε → 0 and t ⊂ [0, T]. 

4. Conclusions 

This paper reviews a new approach to option pricing that incorporates fuzziness or 

uncertainty in parameters like expected return rate, volatility, jump intensity, and jump 

magnitudes. Traditional option pricing models like Black–Scholes assume that these 

parameters are crisp values. The proposed model treats them as fuzzy numbers to allow 

participants to estimate option prices based on their risk preferences and beliefs about the 

uncertain parameters. In Section 2, we build on [15] to show an alternative proof to extend 

Merton’s jump-diffusion model for underlying asset price dynamics to include fractional 

Brownian motion and fuzzy processes. The asset price follows a stochastic differential 

equation driven by Brownian motion, fractional Brownian motion, and a fuzzy jump 

process. Detailed mathematical derivations are provided to incorporate the fuzziness into 

the asset price dynamics using fuzzy arithmetic and fuzzy stochastic calculus. An 

expectation formula is derived for the fuzzy asset price process that depends on the fuzzy 

drift, volatility, jump parameters, and the expectation of the log jump sizes. The article 

builds on and extends prior work on fuzzy option pricing models. We start by considering 

the usual probability space (Ω, F, P) that captures the randomness via the probability 

measure P on the sample space Ω and a filtration {Ft}. This represents the standard 

stochastic/Brownian motion components. To incorporate fuzziness, we propose to 

construct a product measure space by taking the product of the above probability space 

with another measure space that captures the fuzziness inherent in model parameters like 
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expected return rate µ, volatility σ, jump intensity λ, etc. Essentially, we represent the 

fuzzy parameters using fuzzy numbers or fuzzy sets defined on appropriate measure 

spaces. By taking products of these measure spaces with the original probability space, 

we obtain a new joint “product measure space” that simultaneously captures both the 

randomness from the stochastic processes and the fuzziness from the fuzzy parameters. 

On this product space, we can then define stochastic processes that have fractional, jump-

diffusion dynamics given by SDEs driven by Brownian motions, but where the coefficients 

(drift, volatility, etc.) are now fuzzy numbers instead of constants. 

The use of product measure spaces allows us to apply fuzzy arithmetic, fuzzy 

calculus, and fuzzy stochastic analysis on these mixed “fractional fuzzy” processes in a 

theoretically consistent manner within the standard measure-theoretic probability 

framework. 

In summary, the key idea is to start with classical probability spaces for the stochastic 

components, construct separate measure spaces for the fuzzy parameters, and then form 

product measure spaces that merge the randomness and fuzziness into a unified model 

for asset price dynamics. This enables extending stochastic models like fractional 

Brownian motion to incorporate fuzzy coefficients and parameters. 

The hybrid systems modelling approach presented in this paper is particularly suited 

for domains and subfields where systems exhibit long-range dependence and fuzziness. 

In the context of hybrid systems, fuzziness typically refers to situations where imprecision 

is inherent. This can be due to various factors, such as variability in data, lack of precise 

information, subjective judgement, or complex underlying processes. The areas where this 

framework can be applied include financial risk management, telecommunications and 

network management, insurance modelling, and healthcare. 

The theoretical extensions proposed in this manuscript require practical validation 

and testing in empirical studies. It is of course entirely plausible that other models are 

equally capable of modelling the uncertainty of the processes and we emphasise that the 

point of this manuscript is not to show a superior approach to others. We are only simply 

trying to demonstrate extensions, fills the gaps, and present alternative proofs to the 

existing theory. 

Future work will present real-world examples, potential applications, and a novel 

way of dealing with the proofs when h << ½. 
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