
SampleHST: Efficient On-the-Fly Selection of

Distributed Traces

Alim Ul Gias∗, Yicheng Gao†, Matthew Sheldon†, José A. Perusquı́a‡, Owen O’Brien§, Giuliano Casale†

∗University of Westminster, Email: a.gias@westminster.ac.uk
†Imperial College London, Email: {y.gao20, matthew.sheldon20, g.casale}@imperial.ac.uk
‡Universidad Nacional Autónoma de México, Email: jose.perusquia@sigma.iimas.unam.mx

§Huawei Technologies (Ireland) Co., Ltd, Email: owen.obrien@huawei.com

Abstract—Since only a small number of traces generated
from distributed tracing helps in troubleshooting, its storage
requirement can be significantly reduced by biasing the selection
towards anomalous traces. To aid in this scenario, we propose
SampleHST, a novel approach to sample on-the-fly from a stream
of traces in an unsupervised manner. SampleHST adjusts the
storage quota of normal and anomalous traces depending on the
size of its budget. Initially, it utilizes a forest of Half Space Trees
(HSTs) for trace scoring. This is based on the distribution of the
mass scores across the trees, which characterizes the probability
of observing different traces. The mass distribution from HSTs
is subsequently used to cluster the traces online leveraging a
variant of the mean-shift algorithm. This trace-cluster association
eventually drives the sampling decision. We have compared the
performance of SampleHST with a recently suggested method
using data from a cloud data center and demonstrated that
SampleHST improves sampling performance up to by 9.5×.

Index Terms—Distributed Tracing, Microservices, Anomaly
Detection, Sampling.

I. INTRODUCTION

Distributed tracing is tailored primarily to monitoring and

profiling applications built with the microservice-based archi-

tecture [1]. In a microservice ecosystem, with the increase of

services, the volume of the trace data, used for observability

of application performance and reliability, increases signifi-

cantly [2]. In a typical production setup, each server, hosting

hundreds of microservices, generates several tens of gigabytes

of trace data every day. Considering all the servers, the total

daily generated data are in the order of several terabytes.

Nevertheless, most of the traces do not report on application

anomalies and thus there is little value in storing them all.

The fraction that can be retained is constrained by a storage

budget [3] and the problem we study is how to select the

most interesting traces to help monitoring and diagnostics of

microservices runtime behavior. This entails sampling a mix

of traces that characterizes the overall user behavior but at the

same time retaining a high relative ratio of anomalous traces.

To accommodate the storage budget, we need to deploy a

sampling strategy. It is a common industry practice to use

uniform sampling [3], which is also referred as head-based

sampling. Under this strategy, the sampling decision is taken

once the request for a service is received, leading to a lower

hit rate of anomalous traces. To address this issue, it is

increasingly preferred to use a tail-based sampling strategy

[4], which can improve the selection accuracy as it takes the

sampling decision after the response is served, i.e., when the

entire trace for the service call chain is available. This allows

to reason on the information contained in the trace itself upon

deciding whether to store it or not.

Ideally, a tail-based sampling strategy should be online and

without any batch processing. This means that we must decide

either to save or discard a trace on-the-fly rather than storing

it temporarily for batch processing. Recently, researchers have

proposed different tail-based sampling strategies based on

unsupervised learning [3], [5], [6]. However, existing research

faces multiple challenges such as difficulties in performing

clustering due to high dimensionality of data, requirements of

batch processing, low amplitude scores for anomalous traces,

and no explicit consideration of the budget size. To address

all these shortcomings, we propose a novel method, Sam-

pleHST. On one hand, SampleHST focuses on sampling only

anomalous traces when the storage budget is comparatively

lower than the fraction of expected anomalies. On the other

hand, when the budget is higher, SampleHST samples both the

normal and anomalous traces, with a bias towards anomalous

ones. Such a bias is fair because it increases the representation

of the anomalous traces, which are rare compared to normal

ones, among the sampled traces. In other words, the bias

allows representative sampling [3], [5].

SampleHST leverages a Bag-of-Words (BoW) model [7]

as a count-based representation for each trace. By taking this

representation as an input, we can generate a distribution of the

mass values obtained from a forest of a tree-based classifier,

namely Half Space Trees (HSTs) [8]. This distribution is then

used to perform an online clustering of the traces based on

an algorithm we have developed which is part of the mean-

shift clustering algorithm family [9]. Once the clustering is

complete, we decide to sample the trace based on its cluster

association, i.e., a trace is more likely to be sampled if it is

associated with a cluster with low mass values as such clusters

represent rarely observed traces.

We evaluate the performance of SampleHST, using data

provided by a commercial cloud service operator and com-

paring the results with a recently proposed approach for point

anomalies developed in [3]. For this production dataset, we

see that SampleHST yields 2.3× to 9.5× better sampling

performance in terms of precision, recall and F1-Score than

prior work. When we consider representative sampling in a

high budget scenario, we see SampleHST is 1.6× fairer with

respect to the Jain fairness index [10]. In summary, the key

contributions are:

• A novel approach to sample distributed traces by forming

clusters using the mass distribution of the traces obtained

from Half Space Trees.

• An online clustering method, generalizing the mean

shift algorithm [11], that considers non-spherical cluster

shapes such as hyper-cubes and hyper-rectangles.

• Experiments using real-world data to compare the sam-

pling performance of SampleHST with a recent tail-based

sampling approach [3].

The rest of the paper is organized as follows. Section

II presents the related work and motivation for developing

SampleHST. Section III demonstrates how to model traces

and detect anomalies. Section IV discusses how to transform

anomaly detection processes to a sampling method. Section

V and VI present the SampleHST clustering and sampling

algorithms respectively. Section VII evaluates the sampling

performance. Section VIII concludes the paper.

II. BACKGROUND

A. Related Work

The first step of designing a sampler is to differentiate the

anomalous traces from the normal ones. There have been

many works on anomaly detection for microservices using

their generated traces. The authors in [12], [13] learn from

the patterns of call trees and request execution respectively to

detect anomalies. Some studies [14]–[16] also consider deep

learning based methods focusing on different aspects, e.g.,

response times and causal relationships. However, these works

do not consider our sampling scenario, i.e., they only focus

on anomaly detection but not on transforming the anomaly

detection result to a sampling decision.

To the best of our knowledge, there are only a few research

papers focusing on sampling anomalous traces generated by

microservices. In [3], the authors propose a sampler based

on a hierarchical clustering method PERCH [17]. Authors

demonstrate that their method can achieve representative sam-

pling, meaning equal share for both normal and anomalous

traces. Such clustering methods can incur the curse of the data

dimensionality [18] and they often require batch processing,

which is not always supported under low latency requirements.

Sifter [5] avoids batch processing by taking sampling de-

cisions trace-by-trace. It generates a sampling probability by

utilizing the loss of training a neural network for a particu-

lar trace. A potential issue with loss-based methods is that

anomalous traces may still have small probabilities overall,

closer to 0 than to 1, allowing several anomalous traces to

go unsampled. This problem is studied in recently proposed

sampler, Sieve [6], which uses a threshold to first separate the

anomalous traces and then amplify the sampling probability.

This still leaves an open challenge regarding the optimal and

automated choice of threshold.

B. Sampling performance

As a classification problem, it may be natural to study trace

sampling performance in terms of F1-Score, as this strikes a

balance between Precision and Recall. We however observe

that this is not always an ideal performance criterion in the

presence of budget constraints. For example, an abundant

storage budget with few constraints is more appropriate to

consider Recall, while a heavily constrained storage budget

expects more from achieving high Precision. Summarizing, we

set the following overall performance evaluation principles for

trace sampling methods:

• For infrequent anomalous traces, where the prevalence

of anomalies is less than the storage budget, the primary

evaluation metric should be the Recall.

• For low storage budgets, where the prevalence of anoma-

lies is greater than the storage budget, the primary eval-

uation metric should be the Precision.

• When sampling N traces from a collection of traces

containing N anomalies, the primary evaluation metric

should be the F1-Score.

C. Comparing State-of-the-Art Anomaly Detection Methods

Since anomaly detection is a key step for a sampling

process, we here illustrate why off-the-shelf anomaly de-

tection methods are not fit for purpose. We consider the

following popular techniques: 1) local density estimate: K-

Nearest Neighbor (KNN) and Local Outlier Factor (LOF),

2) tree-based classification: Isolation Forest and Half Space

Trees (HST) [8], 3) boosting: Lightweight Online Detec-

tion of Anomalies (LODA) [19], and 4) neural network:

Deep Belief Net and One Class Support Vector Machine

(DBN+OCSVM) [20]. A notable advantage of using the tree-

based methods is that they can work on one trace at a time,

while the other methods, off-the-shelf, require batching.

To evaluate the performance of the above methods, we con-

sider a production dataset from a cloud data center consisting

of trace data spanning a week over a set of 14 microservices.

As the trace is unlabelled, we identify ∼ 5% point anomalies

using the popular offline DBSCAN clustering algorithm, and

evaluate the ability of the listed methods to obtain similar

results. DBSCAN, being resource intensive, is not feasible in

an online scenario such as distributed trace sampling, but is

considered as a generally reliable technique in industry [21].

We use Matlab’s native implementation of DBSCAN with

ϵ = 2.5 and minpts = 5, where ϵ indicates the size of the

local neighborhood of the data points and minpts indicates

the minimum number of points per cluster. Once the traces

are clustered, we regard the smallest clusters as anomalies,

accounting for ∼ 5% of the total traces.

The results of the experiment are presented in Table I. The

dataset contains traces from six consecutive days with 77577

traces. For all the batch methods, we keep a similar batch

size of 2000 traces. We see that HST is the best method with

respect to F1-Score. This motivates further investigation in

HST methods to address the problem under study. In addition,

HST has other benefits from the perspective of a streaming

2

TABLE I
RESULTS OF DIFFERENT ANOMALY DETECTION METHODS ON THE

PRODUCTION DATASET

Isolation

Forest
KNN LOF LODA

DBN +

OCSVM
HST

Precision 0.73 0.77 0.73 0.62 0.47 0.94

Recall 0.72 0.72 0.72 0.60 0.97 0.70

F1-Score 0.73 0.74 0.73 0.61 0.64 0.80

platform. Due to the way HSTs are designed, for a particular

trace, we only need to update a single mass value [22] per

tree. To determine whether a trace is normal or anomalous,

the mean mass value (m) of the HSTs, for that particular

trace, is compared against a threshold. An HST only needs to

query its already stored mass values, resulting in a very low

computational footprint in the order of less than a millisecond

per trace. This will reduce the time taken during the training,

where we can only use the computing resource to update the

mass values of the node. Due to all these benefits, the rest of

the paper focuses on HST as a baseline classifier.

III. HALF SPACE TREES FOR ANOMALY DETECTION

Half Space Trees (HST) [8] are an ensemble of decision

trees. The structure of the decision trees is a simple Binary

Tree. Each HST has a depth d, and the corresponding binary

tree will have 2d+1−1 nodes. Each tree stores split points for

a random subset of dimensions, and possibly multiple splits

per dimension, together with a count of how many points

are within the subspace defined by a path (a metric called

mass). Mass is simply defined as a count of data points, thus

it is easier to calculate than density measures used in other

methods, e.g., which require likelihood estimation. Normally,

an ensemble of t Binary Trees is used, with identical depth h,

which are independently trained on a data window w.

HSTs are particularly suitable for streaming data as its core

processes - building the tree data structure and characterizing

the data points using the mass values - are both lightweight [8].

In this study, we assume that such data points will be available

of continuously arriving streams of spans generated in a cloud

data center from a heterogeneous collection of microservices.

A span is an immutable data structure that supplies the value

of a collection of categorical and continuous variables at a

particular point in time. The spans contain a traceId, based

on which they can be grouped to form traces. We propose to

abstract each trace as a document where the span properties are

considered as words or terms. The document is subsequently

converted to a bag of words [7].

During the conversion, the span properties that are not

relevant to performance and reliability analysis are ignored.

We restrict our attention to discrete fields, some of which, e.g.,

HTTP code, can be categorical i.e., they have a fixed number

of possible values. In addition, we do not explicitly address

latency anomalies as they are often best studies with with

anomaly detection based on continuous response time distri-

bution estimators, which can be already done with specialized

methods in the literature [23]–[25]. Alternatively, latencies can

be discretized and considered as one of the features considered

by our method. We represent each trace using a count vector

x = (x1, . . . , xd, . . . , xD), where D is the number of different

terms that have been seen across all the traces. For example,

the HTTP code 200 is one term and a specific URL could

be another one. Each dimension xd ≥ 0 is an integer value

counting how many time a particular term appears in a trace.

The resulting count data assures knowledge of the dimension

D and the mappings of dimensions to terms. In a production

implementation, such knowledge can be acquired from an

initial monitoring period and periodically updated.

In production data, sparsity is frequently observed. Once the

categorical properties of the spans are vectorized as count data,

there are relatively few types of traces that occur repeatedly,

thus the HST mass could accumulate within a small set of

terminal nodes. This is confirmed from our production data

where we observe that only 0.004% of the trace count vectors

are unique. We thus focus on a variant of HST known as

HS*-Trees (HS*T) [22], which aims to deal with the sparsity

in the tree structure. In HS*T, nodes that have fewer than

SizeLimit samples are not further expanded during the training

phase. This reduces memory consumption and also the time

to traverse the trees. Thus, we have opted for HS*T as our

chosen HST variant. In the rest of the study, we use the term

HST and HS*T interchangeably.

We incorporated two further modifications to HS*T. Firstly,

we opted for depth-dependent split dimension. This means that

when splitting a node, instead of using the normal procedure

of picking a dimension at random, we require all nodes at

the same depth level to use the same split dimension, which

largely reduces memory usage since a single dimension is

stored at each level. Secondly, as suggested in [8], we opted

for a [0, 1] workspace. This means that, the maximum and

minimum values of the features are assumed by the HS*T to

be 1.0 and 0.0, rather than in the min-max range observed

in the data. This can simply be achieved with min-max

scaling. However, an issue with such count data scaling is

that outliers can often cluster the normal values at one end

of the range, making the prediction particularly difficult for

tree based methods since they rely on randomized partitioning

of the input space, i.e., random split points will be chosen

in the segment [0,1] to branch the tree along a dimension.

Therefore, if the points are all clustered in a small portion of

the range [0,1] the HS*T will struggle to separate the samples

along that dimension. To address this, we apply the following

transformation in place of the min-max scaling

f(x) =
1

1 + g(x)
. (1)

that allows us to control the stratification of the count data.

We have found it sufficient to use g(x) = x but we could also

define, for example, g(x) = log(x) considering large values

of x. Using (1), the large outliers will be squeezed near 0,

therefore not suppressing the ability to resolve the normal

values That are critical to HST training. We illustrate the

impact of this transformation in Fig. 1 using 5000 randomly

3

0 1000 2000 3000 4000 5000

Trace #

0

0.2

0.4

0.6

0.8

1

F
e
a
tu

re
 v

a
lu

e
 (

0
-1

)

(a) Min-Max Scaling

0 1000 2000 3000 4000 5000

Trace #

0

0.2

0.4

0.6

0.8

1

F
e
a
tu

re
 v

a
lu

e
 (

0
-1

)

(b) Transformation function f

Fig. 1. Comparing the scaled value of HTTP 200 code counts with min-max
scaling and the transformation function f

chosen traces, where we scaled the feature corresponding to

the frequency of HTTP code 200 in the trace.

As before, we used the production data from Section II-C

to test these modifications. We consider each day as a window

and use the first day to build the trees. We observe that the

F1-Score improves from 0.8 to 0.97. This indicates that the

changes aid in anomaly detection from the trace streams.

IV. MASS-BASED CLUSTERING FOR SAMPLING

Although HSTs can help in classifying the anomalous

traces, in reality we need to utilize this classification output

in a sampling process. This process is complex because of

the trade-off between sampling normal and anomalous traces.

While sampling, the proportion of the storage budget and

the expected percentage of anomalies should be taken into

account. If the budget is lower than the anomaly percentage,

the focus should be on sampling mostly the anomalous traces.

The normal traces should gain more attention only when the

budget is higher than the anomaly percentage. In addition,

while sampling the anomalous traces, the target should be

representative sampling from that group of traces i.e. sampling

from different “groups” of traces fairly.

To achieve this, we propose to cluster the traces and

decide whether to sample a trace or not based on its cluster

association. However, when clustering in a high-dimensional

space it is harder to achieve accurate density estimation [26],

in addition to incurring a higher computational cost. This

is expected in the normal behavior of our system, as our

production data contains hundreds of features. Therefore, we

propose a new approach considering the distribution of mass

across the trees in the HS*T forest and selecting a mean

mass score m and a low percentile of the mass score p. Low

percentiles are expected to significantly differ from the mean

when there is at least a subset of trees in the forest that

identifies the trace as an anomaly. We refer to this method

as SampleHST as we are using the the mass distribution of

HST to perform sampling.

Since we want to use a low percentile (p) value along

with the mean (m), we represent each trace with a unique

pair (m, p) that will be used for clustering. The projection of

the production traces from Section II-C in this 2-dimensional

space is shown in Figure 2. The figure shows in different

colors the clusters obtained by DBSCAN. It is clearly seen that

the mass-based properties cluster the traces in distinct groups

and the cluster centers are also appropriately detected using a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean Mass Score

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5
th

 P
e

rc
e

n
ti
le

 o
f

M
a

s
s

Cluster

Center

Outlier

Fig. 2. The production trace plotted using the mass-based properties. The
colors and marker shapes indicate the DBSCAN original clusters. The cluster
centers are estimated with a baseline online clustering method.

baseline streaming clustering method [27]. Another potential

benefit of using the low percentile value is a better separation

of trace groups. As seen from Fig. 2, ignoring the percentile

value will result in multiple trace groups being merged to-

gether, eventually affecting the sampling performance.

This mass-based clustering is at the core of our sampling

approach. Once a trace is formed with its spans, to take a

sampling decision, it is moved through two key components:

• SampleHST Clustering: Cluster the trace based on the

its mass based properties.

• SampleHST Controller: Makes the sampling decision

based on budget and trace-cluster association.

We discuss these components in details in the next sections.

V. SAMPLEHST CLUSTERING

SampleHST Clustering is primarily based on the underlying

theory of mean-shift analysis [9] and the CEDAS algorithm

[27] yielding a data-driven online approach that generalizes the

hyper-sphere cluster shape commonly assumed in the literature

to hyper-rectangles and hyper-cubes. Broadly speaking, our

method receives the mass score of a trace in the form of a pair

(m, p), which is generated using the HST mass distribution.

Subsequently, the method aims to find the association of the

new trace with an existing cluster, if the association condition

is not met a new cluster is created and a signal is send.

Furthermore, the method is able to remove clusters that have

not received a new trace for a pre-defined period of time

modulated by the decay and the life (energy) parameters and

also merge clusters together whenever an overlapping occurs.

These steps can be broadly grouped into two sets of tasks:

trace association and cluster management. We now discuss

the key aspects of these tasks.

A. Trace Association

1) Cluster Shape: A common assumption for online clus-

tering algorithms for data streams is that the cluster shape

is a hyper-sphere [9], [27]. In our case, the problem with

such shapes is that they can lead to inaccurate partitioning

of the traces because the normalized values of the unique pair

(m, p) belong to the unit hyper-cube. To address this issue we

consider instead an arithmetic average kernel whose support

4

c1

c4

c2 c3

c1

c4

c2 c3

c1

c4

c3

Fig. 3. Demonstrating cluster merging process. Initially, though there is an
overlap between the boundary of cluster c2 and c3 they are not merged.
Once their centroids overlap, they are merged into single cluster c3

is a hyper-rectangle [28]. Assuming d data dimensions, the

kernel considered is presented in (2) for which we further

show in Theorem 1 that the mean-shift property is achieved if

the clustering bandwidth [29] is equal in all dimensions.

Theorem 1. For the additive kernel defined as

Kd(u1, . . . ud) =







3
d2d+1

d
∑

k=1

(

1− u2
k

)

if |uk| < 1, ∀k

0 otherwise,

(2)

the mean-shift algorithm at each iteration shifts each sample

with a value equal to the local mean if the support is given

by a hyper-cube.

Due to space limitations, we present the proof in our online

preprint1.

2) Cluster Assignation: The assignment step requires a pre-

defined clustering bandwidth. We define the bandwidth vector,

H = {h ∈ R
d|∀i = 1, . . . , d, 0 < hi ≤ 1}, where each value

hi ∈ H defines the Manhattan distance from the center to the

boundary of the cluster in the ith dimension. Now, if we define

a vector of Manhattan distances between a cluster centroid and

a new data point as M = {m ∈ R
d|∀i = 1, . . . , d, 0 ≤ mi ≤

1}, then if ∀i mi ≤ hi, we assign the data point to that cluster.

Otherwise, a new cluster is created with that point.

3) Centroid Update: Appropriately updating the cluster

centroid is critical since SampleHST uses the centroid distance

to decide the mapping of traces to clusters. In general it is

preferable to update the centroid giving more importance to

traces that are unequivocally within that cluster. This is the

concept of cluster kernel region [27]. Given the clustering

bandwidth vector H, we can define the kernel region as the

sub-space within a cluster with bandwidth rH, where the

scalar r quantifies the proportion of the cluster considered as

the kernel region.

B. Cluster Management

1) Cluster Merging: To address the overlaps among clusters

as they are indications of possibly inaccurate clustering, we opt

for the policy that merges two clusters only when the centroid

of one overlaps with the boundary of the other. This policy is

less drastic than merging two clusters when their boundaries

overlap because one distant point cannot shift the cluster center

unless the cluster has a very few samples. An illustration of

this policy is presented in Fig. 3.

1Available at: https://arxiv.org/abs/2210.04595

2) Cluster Removal: We need to regularly remove the

clusters whose population have remained static for a while

since they are unlikely to be relevant and might affect the

sampling policy. We realize this by using the decay and

life (energy) parameters for the clusters as in [27]. The life

property is initially set to one and gradually reduced using the

decay value, which is set as the average number of traces

in the work cycles, defined as a sequence of consecutive

periods where we received at least 1 trace, within the sampling

window.

VI. SAMPLEHST CONTROLLER

A. Overview

The SampleHST controller takes the sampling decision

by utilizing the clustering method we have presented. The

controller initially calculates the number of traces (sw) that

need to be sampled from the next sequence of w traces. We

refer to this number as sampling limit and the sequence as a

window. For a given budget τ , the sampling limit is defined as

sw = τw. The budget is held constant, therefore the sampling

limit only varies with w over the runtime. The sampling

process runs continuously according to Algorithm 1, using

HST mass scores xm. The algorithm expects a set of inputs

that defines the size of the sampling window (w), the budget

(τ), the total number of traces to be sampled in this window

(sw), the relative position of the current trace in the window

(w
(p)
i), the number of traces that still remain to be sampled

(sr), the current clusters status (C), the clustering bandwidth

vector (H) and the length of the system work cycle (β).

The algorithm initially performs a series of pre-processing

on the received data. Subsequently, the locality of the trace,

represented by its associated cluster index, is determined by

SampleHST clustering. The final step is the sampling decision

based on the inclusion of the trace in a set of prioritized

clusters, which we refer as the selection pool. This step is

skipped if the sampling target has already been reached. Since

we already discussed the SampleHST clustering method, we

now present the other key aspects of the controller.

B. Online Score Scaling

The first step in Algorithm 1 is to make the adjust-

ments to the sampling window size estimate and the sam-

pling target when the current window is larger than the

expected window size. This is followed by log-transformation

and min-max scaling of mass scores: x
(s)
m = [logb(xm) −

min(xs
m)]/[max(xm) − min(xm)]. It should be noted that

before the log transformation, the mass scores are expected

to be standardized. The SampleHST clustering method uses

two mass scores, the mean and the 5th percentile of the mass,

to cluster the traces (p = 0.05). Since we are using HS*T,

we use the mass value m[l]2l, where m[l] is the mass of the

terminal node where the trace falls into and l is the depth of

the corresponding tree node. To standardize the mass scores,

we scale down the augmented mass using the maximum mass

value possible, which is w2d where d is the tree depth and w
is the number of observed traces.

5

Algorithm 1 Sampling Process

Require: massScores (xm), budget (τ), idxPriWindow (w
(p)
i),

windowSize (w), remainingTarget (sr), windowTarget

(sw), clusters (C), bandwidth (H), workCycleLen (β)

Ensure: decision
1: if w

(p)
i > w then

2: AdjustParameters()
3: end if

4: x
(log)
m = logb(xm)

5: x
(s)
m = ScaleScores(x

(log)
m)

6: if HasMaxMinChanged() then

7: ReScaleClusterCenters()
8: end if

9: (C, xc)← GetTraceLocality(x
(s)
m , C,H, 1

β
)

10: R =
w

(p)
i

w

11: U = sw−sr
sw

12: if sr > 0 then

13: decision = IsTraceInSelectionPool(C, xc, τ, R, U)
14: end if

15: if decision then

16: sr = sr − 1
17: end if

Once the mass scores are processed, it is checked that

whether the minimum or maximum values change along with

the new mass scores in the current sampling window. If this is

the case, all the cluster centers are re-scaled. This is followed

by clustering the trace and taking the sampling decision.

C. Sampling Decision

The sampling decision procedure needs to decide on-the-fly

whether to sample a trace or not. If a new cluster is created

by a trace the methods always sample it. For the case where

the trace is associated with an existing cluster, we rely instead

on generating a prioritized pool of clusters, which we refer as

selection pool and use it to take the decision. This is done in

three steps, which are described as follows.

1) Distance-based Cluster Ranking: The first step is to rank

the clusters. Two methods of ranking were considered: size of

the cluster and Euclidean distance from the origin. Cluster size

is an obvious method of ranking, but since SampleHST creates

and deletes clusters online, smaller clusters might not always

represent less frequent traces. A cluster might be smaller but

all of its traces can have high mass values. This means that

the traces have hit HST nodes with a high mass count which

indicates that these traces are quite frequent. In addition, the

most interesting and possibly smallest clusters are likely to

be near the origin, which represents a low mass region in the

clustering place. Therefore, we chose Euclidean distance of

the centroids to the origin (0, 0) and if a cluster is closer to

the origin, traces associated with it will be sampled first even

if that cluster is not the smallest.

2) Selection Pool: Once the clusters are ranked, we decide

how many of those will form the initial selection pool. Clusters

are added according to the above ranking, starting with the one

closest to the origin, until the threshold θ is reached. If two

clusters are equidistant, the one created first is prioritized.

After creating the initial selection pool, we start the second

phase by checking the actual value of the percentage total

population in the selection pool denoted by θ̂. If the actual

percentage is less than α% of the budget, we add more clusters

in the selection pool. The clusters are added depending of

the magnitude M of the budget (τ) in comparison to θ̂.

This is defined as M =
⌊

(τ − θ̂)/θ̂ + 1
2

⌋

. We then make

M independent attempts to add the clusters in a probabilistic

manner, where in the kth attempt, the kth closest cluster to

the origin, which is not yet included in the selection pool,

is chosen with a probability P k. Here each attempt of being

successful has the same probability P = max(τ, S), where τ
is the budget and S is the sampling eagerness defined as

S = R(1− U). (3)

This sampling eagerness is bounded between [0, 1] and a

high value indicates to sample more. It is defined in terms

of the budget utilization (U), which is the ratio of number

of sampled traces to the sampling limit, and the relative trace

position in the current window (R), which is the ratio of the

trace index in the current window to the sampling window

size.

3) Decision Process: After the selection pool has been

decided, we sample the new trace only if it is associated with

any of the clusters in the pool. If that is the case, one of

two paths may be followed. If the budget is greater than or

equal to the actual percentage of population in the selection

pool (τ ≥ θ̂), we sample the trace straightaway. Conversely,

if the budget is less than the actual percentage, we follow the

second path that takes a probabilistic sampling decision. This

is to sample cautiously as we may have larger clusters in the

selection pool containing common traces. In this path, we set

the probability of sampling as

Ps =







τ

θ̂
if Γc > Γµ + kΓσ

1 otherwise.
(4)

Here we set the probability based on the cluster size. Firstly,

if the size of the cluster (Γc), which is associated with the

current trace, is greater than the sum of mean (Γµ) and k
standard deviation (Γsigma) of the cluster size in selection

pool, we set the sampling probability to τ/θ̂. This means

that, if there are N traces, the size of the selection pool

will be Nθ̂ and we would like to sample Nτ traces from

those in the selection pool. Secondly, if Γc ≤ Γµ + kΓσ , we

set the sampling probability to 1. This means if the cluster

is sufficiently small, we decide to sample the corresponding

trace. The value of k is set using Chebyshev’s inequality [30],

which estimates the minimum percentage (V) of values within

k standard deviation of the mean. For a given V , we can

solve the inequality to determine the value of k. We notice

that, this percentage V is related to the ratio of τ/θ̂. Because,

6

if τ is much smaller than θ̂, we want to sample only if the

associated cluster is smaller than the majority of the clusters.

As the value of τ increases compared to θ̂, we can consider

the larger clusters i.e., larger value of V . Thus, we consider

V̂ = τ/θ̂, where V̂ is and estimate of the minimum percentage

V , we can calculate the value of k using (5).

k =

√

√

√

√

1

1−
τ

θ̂

≡

√

θ̂

θ̂ − τ
. (5)

VII. SAMPLING PERFORMANCE

A. Experimental Setup

To test SampleHST performance, we use a dataset provided

by a cloud data centre composed of 77,577 traces. Each trace

contains at least one span and the following four categorical

features: Service Name, URL, Process Id, and Node Id. A span

also contains the http return code and http method for the

service invocation. The dataset includes 14 different services

with four of them containing 98% of the spans; more than

50 different URLs with four accounting for 95% of the spans;

more than 40 different Process Id’s with 20 containing 91% of

the spans; and 8 different node Id’s with four containing 88%
of the spans. The traces are represented as a count vector using

the BoW model as detailed in Section III. Through this, we

obtain 105 unique features. Ignoring timestamps, the 77,577

traces map to 308 unique traces.

To test the SampleHST robustness, we consider 5 cases

with different storage budgets. First, since we have about 5%

anomalies in our data, we include a case where the budget is

5%. The evaluation criteria for this case is the F1-Score. We

have also chosen 3 smaller budgets (0.5%, 1% and 2%) where

the evaluation criteria is precision. Finally, we also consider

a high budget case of 10%, where the evaluation criteria

is recall. We compare the results with two other samplers:

uniform random sampler, implemented following the Head-

based sampler in [5], and the PERCH-based method [3].

Since sampling methods such as [3], [5] focus on repre-

sentative sampling, we also compare their fairness in terms

the Jain index [10]. The index can be calculated using (6)

where Xi = Ti

Oi
. Here, for each cluster i, Ti is the number

of traces sampled by a method and Oi is the optimal number

of traces that should be sampled. This metric indicates what

percentage of the groups are treated fairly. In our case, the

groups are the clusters that we obtain offline from DBSCAN

clustering. Note that, to calculate the index, we need to know

the optimal number of traces that should be sampled. As we

know the overall distribution of the traces among the groups

and sampling budget, we calculate it offline using the max-min

fair allocation approach [31].

J (X1, X2, . . . , Xn) =

(

n
∑

i=1

Xi

)2

n
n
∑

i=1

X2
i

Xi ≥ 0 (6)

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

0 0.5 1

1

Fig. 4. Output of the SampleHST clustering algorithm. The X-axis and Y-
axis represent mean and 5th percentile of mass respectively. The colored
symbols represent different DBSCAN labels. The + signs are the cluster
centers estimated by SampleHST clustering. The output is presented in 6
windows. As we move from left to right, we move towards the next window.

B. Results

SampleHST Clustering Operation. We begin by illustrating

in Fig. 4 the operation of the SampleHST method. Since,

this is an online clustering method, we divide the total time

frame in six periods and show the clustering status for those

periods. We immediately see that in the first window, the data

points are less segregated. This is because of the online min-

max scaling. In the initial period, the min-max values are not

steady, which affects the data points as well. As we progress

towards the end, we can see that the clusters are increasingly

segregated. We also see that the number of clusters continue to

change throughout these periods. The clusters around the top

right corner remains stable, but the ones around the bottom

left corner change their positions frequently as the top right

clusters are of frequent traces whereas the bottom left ones

are of the infrequent ones. The infrequent trace clusters decay

quickly by not receiving traces in some work cycles.

Comparative experiments. We now compare the performance

of SampleHST against the uniformly random and PERCH-

based methods. In Table II we see that SampleHST with

a bandwidth of h = 0.1 is the best method across all

budgets, with the uniform random sampler performing the

worst. We also see that the PERCH-based method does not

perform significantly better with respect the precision, recall

and F1-Score. From the fairness perspective, the PERCH-

based method scores much higher than the random sampler,

but still it cannot outperform SampleHST. The results show

that even though the PERCH-based method can achieve better

Jain score in low budgets, it is not precise in sampling the

anomalous traces as made evident by the precision score.

As we mentioned earlier, identifying anomalous traces is

difficult for clustering methods due to the high number of

dimensions of the input data, as in the present case with 105

dimensions. SampleHST, on the other hand, eliminates this

problem by using the mass scores, which are low dimensional.

We now focus on the case with high budget (10%). Firstly,

7

TABLE II
PERFORMANCE OF DIFFERENT SAMPLERS WITH DIFFERENT BUDGET

0.5% 1% 2% 5% 10%

Uniform

J 0.10 0.10 0.11 0.13 0.18
P 0.05 0.04 0.06 0.05 0.05
R 0.01 0.01 0.03 0.05 0.10

F1 0.01 0.01 0.04 0.05 0.06

PERCH-

based

J 0.32 0.24 0.32 0.47 0.56
P 0.41 0.18 0.13 0.11 0.09
R 0.03 0.03 0.04 0.09 0.15

F1 0.05 0.04 0.07 0.10 0.11

SampleHST

J 0.40 0.59 0.72 0.75 0.88
P 0.84 0.83 0.86 0.92 0.80
R 0.10 0.18 0.37 0.91 0.94

F1 0.17 0.30 0.52 0.92 0.87

0 0.2 0.4 0.6 0.8 1

Mean mass

0

0.2

0.4

0.6

0.8

1

5
th

 p
e
rc

e
n
ti
le

 o
f
m

a
s
s

(a) h1 = h2

0 0.2 0.4 0.6 0.8 1

Mean mass

0

0.2

0.4

0.6

0.8

1

5
th

 p
e
rc

e
n
ti
le

 o
f
m

a
s
s

(b) h1 ̸= h2

Fig. 5. Comparing clusters with equal and unequal clustering bandwidth

we see that SampleHST easily outperforms the PERCH-based

method considering the primary evaluation criteria recall. Sec-

ondly, when we consider representative sampling, we see that

the Jain score produced by SampleHST is 1.6× better than the

PERCH-based method. The reason for SampleHST performing

better is as follows. The primary objective of SampleHST

is to sample as much as anomalous traces possible. In high

budget cases, it only shifts focus towards normal traces when

the primary objective is fulfilled. Anomalous traces can create

many groups, each with a small size, whereas normal traces

create a small number of large groups. This is indeed the

case with the production data. As a result, when SampleHST

samples most of the traces from anomalous groups, it satisfies

the demands of majority of the groups, making it more fair

which is reflected in the Jain score.

SampleHST with Hyper-Rectangles. The mass scores work

as anomaly signals to the SampleHST, which are not always

likely to be equally strong in all clustering dimensions. In

such cases, the traces may not be segregated ideally in

that dimension. This is not a problem as long as we can

separate anomalous traces from normal ones. However, if the

bandwidth in that dimension is small, we can have multiple

clusters in a particular region in the clustering hyper-plane,

which represents traces of similar types. Thus rather than using

a small clustering bandwidth in that dimension, as illustrated

in Fig. 5, we can chose a large one to remove clusters

containing similar traces, allowing a more precise clustering.

In other words, we can opt for hyper-rectangles, with unequal

clustering bandwidths in each dimension, instead of hyper-

cubes. When we observe the clustering status, as presented

in Fig. 5, indeed with hyper-rectangles there are less number

of clusters in the top right corner, that represents normal

TABLE III
PERFORMANCE OF SAMPLEHST CONSIDERING HYPER-RECTANGLES

Jain Precision Recall F1-Score

0.05, 0.1 0.76 0.90 0.91 0.91

0.05, 0.2 0.75 0.91 0.91 0.91

0.05, 0.3 0.74 0.93 0.91 0.92

0.1, 0.2 0.74 0.94 0.91 0.92

0.1, 0.3 0.73 0.97 0.92 0.95

TABLE IV
SAMPLING RESULTS WITH HYPER-CUBES AND HYPER-RECTANGLES

h = 0.1 [h1, h2] = [0.1, 0.3]
J P R F1 J P R F1

0.5% 0.40 0.84 0.10 0.17 0.41 0.94 0.10 0.18

1% 0.59 0.83 0.18 0.30 0.50 0.95 0.21 0.34

2% 0.72 0.86 0.37 0.52 0.47 0.96 0.41 0.58

5% 0.75 0.92 0.91 0.92 0.73 0.97 0.92 0.95

10% 0.88 0.80 0.94 0.87 0.88 0.79 0.94 0.86

traces. Having less number of traces reduces the probability of

sampling from normal groups, which is essential in low and

moderate budget cases. This is also reflected in the sampling

performance. In Table III we present the results, for the

5% budget case and for different sizes of hyper-rectangles.

From these results, we can appreciate that the F1-Score for

bandwidth [0.1, 0.3] reaches 0.95, which is higher than the one

we achieved for hyper-cubes presented in Table II. Moreover,

and considering the hyper-rectangle [0.1, 0.3] as our baseline

we can see in Table IV that the hyper-rectangles approach

yields significantly better results in the metrics considered. In

particular for low-budget scenarios we achieve on average an

improvement of 1.12× with respect to hyper-cubes.

VIII. CONCLUSION AND FUTURE WORK

In this paper we propose a novel sampling method for

distributed tracing namely SampleHST. The objective of Sam-

pleHST is to take its sampling decision based on the proportion

of sampling budget and the fraction of expected anomalous

traces. If the budget is lower, the priority is to sample the

anomalous traces. On the other hand, when the budget higher,

the normal traces are sampled as well. This sampling process

is based on an online clustering mechanism. The traces are first

clustered using their mass scores generated using a forest of

HST. After that, if the budget permits, the sampling decisions

are taken based on the association of a trace with a cluster,

where the clusters more likely to contain anomalous traces

are prioritized. Our experiments, that considers production

data from a cloud data center, show that SampleHST by far

outperforms the recent approach targeting point anomalies.

A possible line of future research direction could be in-

tegrating the continuous trace properties, like the response

time, to identify also the latency anomalies in an integrated

approach.

ACKNOWLEDGMENTS

This research has received funding by Huawei Technologies

(Ireland) Co., Ltd.

8

REFERENCES

[1] C. Richardson, Microservices patterns: with examples in Java. Simon
and Schuster, 2018.

[2] X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding, T. Xie, and L. Su,
“Graph-based trace analysis for microservice architecture understanding
and problem diagnosis,” in Proc. of ESEC/FSE. ACM, 2020, pp. 1387–
1397.

[3] P. Las-Casas, J. Mace, D. Guedes, and R. Fonseca, “Weighted sampling
of execution traces: Capturing more needles and less hay,” in Proc. of

SoCC. ACM, 2018, pp. 326–332.
[4] A. Parker, D. Spoonhower, J. Mace, B. Sigelman, and R. Isaacs,

Distributed tracing in practice: Instrumenting, analyzing, and debugging

microservices. O’Reilly Media, 2020.
[5] P. Las-Casas, G. Papakerashvili, V. Anand, and J. Mace, “Sifter: Scalable

sampling for distributed traces, without feature engineering,” in Proc. of

SoCC. ACM, 2019, pp. 312–324.
[6] Z. Huang, P. Chen, G. Yu, H. Chen, and Z. Zheng, “Sieve: Attention-

based sampling of end-to-end trace data in distributed microservice
systems,” in Proc. of ICWS. IEEE, 2021, pp. 436–446.

[7] Y. Zhang, R. Jin, and Z.-H. Zhou, “Understanding bag-of-words model:
a statistical framework,” Intl. Journal of Machine Learning and Cyber-

netics, vol. 1, no. 1-4, pp. 43–52, 2010.
[8] S. C. Tan, K. M. Ting, and T. F. Liu, “Fast anomaly detection for

streaming data,” in Proc. of IJCAI, 2011.
[9] R. D. Baruah and P. Angelov, “Evolving local means method for

clustering of streaming data,” in Proc. of FUZZ-IEEE. IEEE, 2012,
pp. 1–8.

[10] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A Quantitative Measure
of Fairness and Discrimination for Resource Allocation in Shared
Computer System,” Eastern Research Laboratory, Digital Equipment

Corporation, Hudson, MA, 1984.
[11] K. Fukunaga and L. Hostetler, “The estimation of the gradient of a

density function, with applications in pattern recognition,” IEEE Trans.

on Information Theory, vol. 21, no. 1, pp. 32–40, 1975.
[12] T. Wang, W. Zhang, J. Xu, and Z. Gu, “Workflow-aware automatic

fault diagnosis for microservice-based applications with statistics,” IEEE

Trans. on Network and Service Management, vol. 17, no. 4, pp. 2350–
2363, 2020.

[13] Y. Zuo, Y. Wu, G. Min, C. Huang, and K. Pei, “An intelligent anomaly
detection scheme for micro-services architectures with temporal and
spatial data analysis,” IEEE Trans. on Cognitive Communications and

Networking, vol. 6, no. 2, pp. 548–561, 2020.
[14] S. Nedelkoski, J. Cardoso, and O. Kao, “Anomaly detection and classifi-

cation using distributed tracing and deep learning,” in Proc. of CCGRID.
IEEE, 2019, pp. 241–250.

[15] S. Nedelkoski, J. Cardoso, and O. Kao, “Anomaly detection from system
tracing data using multimodal deep learning,” in Proc. of CLOUD.
IEEE, 2019, pp. 179–186.

[16] J. Bogatinovski, S. Nedelkoski, J. Cardoso, and O. Kao, “Self-supervised
anomaly detection from distributed traces,” in Proc. of UCC. IEEE,
2020, pp. 342–347.

[17] A. Kobren, N. Monath, A. Krishnamurthy, and A. McCallum, “A
hierarchical algorithm for extreme clustering,” in Proc. of SIGKDD,
2017, pp. 255–264.

[18] A. Zimek, E. Schubert, and H.-P. Kriegel, “A Survey on Unsupervised
Outlier Detection in High-Dimensional Numerical Data,” Statistical

Analysis and Data Mining: The ASA Data Science Journal, vol. 5, no. 5,
pp. 363–387, 2012.

[19] T. Pevnỳ, “Loda: Lightweight on-line detector of anomalies,” Machine

Learning, vol. 102, no. 2, pp. 275–304, 2016.

[20] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, “High-
dimensional and large-scale anomaly detection using a linear one-class
svm with deep learning,” Pattern Recognition, vol. 58, pp. 121–134,
2016.

[21] P. Fisher-Ogden, G. Burrell, C. Sanden, and C. Rioux, “Tracking down
the Villains: Outlier Detection at Netflix,” https://netflixtechblog.com/
tracking-down-the-villains-outlier-detection-at-netflix-40360b31732,
2015, Accessed: 2023-01-25.

[22] K. M. Ting, G.-T. Zhou, F. T. Liu, and S. C. Tan, “Mass estimation,”
Machine Learning, vol. 90, no. 1, pp. 127–160, 2013.

[23] R. Li, M. Du, Z. Wang, H. Chang, S. Mukherjee, and E. Eide,
“LongTale: Toward Automatic Performance Anomaly Explanation in
Microservices,” in Proc. of ICPE, 2022, pp. 5–16.

[24] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “MicroRCA: Root Cause
Localization of Performance Issues in Microservices,” in Proc. of NOMS.
IEEE, 2020, pp. 1–9.

[25] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, C. Jia, Z. Wang,
and D. Pei, “Localizing Failure Root Causes in a Microservice through
Causality Inference,” in Proc. of IWQoS. IEEE, 2020, pp. 1–10.

[26] K. Fukunaga, Introduction to Statistical Pattern Recognition. Elsevier,
2013.

[27] R. Hyde, P. Angelov, and A. R. MacKenzie, “Fully online clustering
of evolving data streams into arbitrarily shaped clusters,” Information

Sciences, vol. 382, pp. 96–114, 2017.

[28] N. Langrené and X. Warin, “Fast and stable multivariate kernel den-
sity estimation by fast sum updating,” Journal of Computational and

Graphical Statistics, vol. 28, no. 3, pp. 596–608, 2019.

[29] M. P. Wand and M. C. Jones, Kernel smoothing. CRC press, 1994.

[30] W. Feller, An Introduction to Probability Theory and its Applications,

vol 2. John Wiley & Sons, 2008.

[31] J. Jaffe, “Bottleneck flow control,” IEEE Trans. on Communications,
vol. 29, no. 7, pp. 954–962, 1981.

9

