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Abstract 

. 
The inherent analogue .nature of ~e signals encountered in the real world in 

conju,nction with the abundant merits provided by digital techniques together with the 

increasing use of mixed-signal based systems have created considerable demand for high 

performance AID and Of A ~-.1 converters. Furthermore, the increasing need to perform 

high-precision data conversion for narrow-band high-frequency signals in communications 

and broadcasting systems as well as special-purpose instrumentation provide ample 

justification for development and innovation in the very important field of bandpass ~-A 

modulation. 
The overall aim of this research programme is to investigate, establish, develop and 

confrrm through a combination of theoretical analysis and behavioural level simulations 

suitable techniques for the design of accurate and simple-to-implement bandpass ~-A 

modulators. 

First of all, the low-to-bandpass frequency transformation technique is further 
developed to enable the simultaneous specification of the signal bandwidth and noise­
shaped band-location for any arbitrary centre frequency. The second technique involves the 

coincidental placement of the noise transfer function zeros at the centre of the signal region 

to achieve variable-band noise-shaping. The third approach, which is absolutely novel, 

employs a first-order sum-filter in combination with fractional-delayers to spectrally shift 

the noise-shaped band to the desired signal region. Fourthly; a practical step-by-step 

method is presented for the design of variable-band Butterworth or Chebyshev 2 bandpass 

~-A modulators. These techniques are extended to design different as well as combinations 

of single-loop, multi-stage and multi-bit real and complex coefficient bandpass ~-.1 
modulators. 

This thesis, in addition, presents the design analysis and evaluation of a novel class of 

~-A modulators that are capable of providing concurrent multiple-band noise-shaping for 

multi-tone narrow-band input signals. Noise transfer functions which utilise comb filters, 

slink filters, fractional delay filters, FIR multi-notch and IIR multi-notch bandstop filters 

are applied for the design of these multi-band ~-A modulators. 

Detailed models of these modulators incorporating the quantiser non-linearities and 

the effect of non-ideal loop-filters are evaluated at the behavioural level. Evaluation tools 
in Matlab to verify the design by simulation are created, explained and supported with 

examples to demonstrate that these theoretical techniques work in practice. 

The stability of bandpass ~-.1 modulators is evaluated at the behavioural level using 

a mixture of Root Locus techniques and the Jury Criterion to determine the stable range of 
the quantiser gain values. A comprehensive coverage of the main factors that affect 

stability in high-order l:-A modulators is presented and supported with simulation results. 

Detailed guidelines for the choice of modulator topologies as well as coefficient 
complexity are obtained and presented in tabular form. Graphs and charts are provided 

which depict modulator performance including in-band signal-to-noise ratios, dynamic 
~ges as well as regions of stability 
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Chapter 1 

Introduction to the Concepts of Sigma-Delta Modulation 

1.1 Introduction to Sigma-Delta Modulation 

Sigma-delta (~-~) modulation utilises oversampling, noise-shaping as well as 

simple-to-implement and relatively high tolerance analogue components to accomplish 

high precision Analogue-to-Digital AID and Digital-to-Analogue D/A conversion for low 

to medium signal bandwidth applications. Several comprehensive publications, which 

explain the basic underlying principles and detail the operation of these highly useful 

modulators can be found in [Azi96]-[Can92]-[Hau91]-[Nor97]-[Ste98]-[Tom94] and 

[Ben99]. A summary of some of the major milestones in the history of ~-~ modulators 

since their inception in the mid 1950s is presented below in Table 1.1 

Authors Description Year Ref 

Cutler Earliest reported description employing the concept of feedback to 1960 [Cut60] 

enhance the resolution of a coarse quantiser. 

Spang and Development of Cutler's system by proposing to include a FIR 1962 [Spa62] 

Schultheiss loop-filter in the feedback path. 

lnose and Yasuda The creation of the l:;-A modulator in its current form, where the 1963 [ln063] 

loop-filter was transferred inside the loop. 

Candy The complete design, analysis and fabrication of a I It-order lowpass 1974 [Can74] 

~-~ modulator operating at Is = 40 MHz having 8-bit resolution. 

Candy The design, building and testing of a lowpass ~-A modulator with 1976 [Can76] 

13-bit resolution operating atJs = 8 MHz. 

Ritchie The creation of a high-order ~-A modulator in the form of a chain 1977 [Rit77] 

of integrators with distributed feedback to avert instability. 

Candy Detailed analysis and characterisation of the double-loop single- 1985 [Can85] 

stage lowpass t-A modulator. 

Hayashi The invention of the multi-stage (MASH) t-A modulator as an 1986 [Hay86] 

alternative for the design of stable higher-order t-A modulators. 

Lee and Sodini Presentation of a technique for the design of stable high-order t-A 1987 [Lee87] 

modulators. 

Adams Proposition of a simple design approach and several easy-to- 1991 [Ada91] 

implement topologies for higher-order t-~ modulators. 

Table 1.1 Milestones in the History of ~-~ modulation. 



Despite the significant and popular use of ~-d modulators, there is not, to-date, a 

universal closed form solution that fully describes the dynamic properties of these 

modulators. The existing models for the analysis of ~-d modulators can be broadly 

categorised into approximate linear models, accurate statistical models and non-linear 

dynamic models. The linear model approach used in [Agr83]-[Can85]-[Cha90]-[Ada91] is 

relatively accurate at predicting the overall shape of the noise transfer function. However, it 

fails to predict stability and tonality behaviour, because it does not take into consideration 

the constant output power criterion of single-bit ~-d modulators. Developments of the 

linear model so as to comply with the constant power criterion were attempted, but these 

were partially successful [Qiu93]. More accurate linear methods that employed Describing 

Function techniques to model the non-linear quantiser are documented in [Ard87]-[Ris94]. 

These methods did not completely characterise the stability and tonality of ~-d 

modulators, because they assumed a particular mathematical function for the quantisation 

noise. Root Locus Techniques were applied in [Bai94]-[Sti88], where the quantiser was 

modelled as a variable gain block. The motivation there was to plot the modulator poles 

with respect to the quantiser gain in order to establish a more realistic stability range for the 

modulator. 

Accurate models based on ergodic theory, which fully describe the output spectra of 

first-order and multi-stage ~-d modulators are documented in [Gra90]. Non-linear 

dynamics techniques to estimate the bounds of the internal states of these modulators are 

fully analysed in [Fee96]. These techniques are more rigorous compared with their linear 

counterparts, but are very much modulator-specific. 

The lack of a theoretical model that can precisely predict the stability range and tonal 

properties of ~-d modulators, when in overload mode, provides ample justification for 

resorting to behavioural level simulations. These are shown by many designers and 

practitioners to be the most appropriate means of evaluating the performance of ~-d 

modulators, because they take into account the actual non-linearity of the quantiser. 

Lowpass ~-d modulators have appeared in many commercial products for AID and 

DI A conversion applications as well as mixed-signal DSP devices with on-chip coding 

, [Ste98]. A summary of some of these products with their web-site addresses is given below 

in Table 1.2. 
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Product Company Web-site address 

AD1859 Analog Devices http://www.analog.com 

AD1879 Analog Devices http://www.ana1og.com 

ADS1212 Burr-Brown http://www.burr-brown.com 

DAC1719 Burr-Brown http://www.burr-brown.com 

CS4390 Crystal Semiconductor http://www.crystal.com 

CS5334 Crystal Semiconductor http://www.crystal.com 

MC145073 Motorola http://www.mot-sps.com 

ADC16071 National Semiconductor http://www.national.com 

ADC16471 National Semiconductor http://www.national.com 

SAA7350 Philips http://www.semiconductors.philips.com 

SAA7360 Philips http://www.semiconductors.philips.com 

TLC320AD58C Texas Instruments http://www.tLcom 

Table 1.2 A Selection of Commercial Products that l:-~ Modulators. 

A major literature survey, which was carried out at the outset of this research 

programme showed that there was a large gap in the area of bandpass l:-~ modulation. 

Indeed Table 1.2 confirms that to the best knowledge of the author and [Ste98] that there is 

not a commercial product to-date that employs bandpass l:-~ modulators. This coupled 

with the increasing demand for high-resolution and relatively simple-to-implement AID 

converters represented the prime motivation behind this work. 

1.2 Contributions by the Author 

The contributions by the author in this thesis can be broken down into two categories: 

First, original contributions covering novel propositions, techniques and topologies 

specifically-related to' the field of bandpass l:-~ modulation. Second, extensions or 

developments of the work of other l:-~ experts, which was judged by the author to be 

worthy of research. 

1.2.1 Original Contributions 

• A novel technique is proposed for the design of narrow-band variable-band l:-~ 

modulators, whose noise transfer functions utilise a first-order sum-filter in 

conjunction with fractional delayers to accommodate different passband centre to 
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sampling frequency ratios. These FIR and allpass IIR fractional delay filters result in 

the spectral shifting of the zeros of the noise transfer function to the signal band of 

interest for any specified centre frequency input waveform. 

• The design, analysis and evaluation of complex variable-band and fractional-delay 

filter based bandpass MASH l:-~ modulators. 

• The design, analysis and evaluation of the double-stage variable-band resonator­

bandpass l:-~ modulator. 

• The design, analysis and evaluation of the double-stage single-loop inverse­

comb/bandpass l:-~ modulator. 

• The design, analysis and evaluation of the double-stage double-loop mverse­

comb/bandpass l:-~ modulator. 

• The complete design analysis and evaluation of double and triple band l:-~ 

modulators. These are based on the noise transfer functions of comb, slink, fractional 

delayer comb, FIR and IIR multi-notch filters. These analyses are extended to complex 

comb, complex slink, complex multi-notch FIR and complex multi-notch IIR NTF 

based l:-~ modulators. 

• The derivation of analytical expressions, which employ the Jury Criterion in 

conjunction with Root Locus Techniques, in order to determine the stable range of 

quantiser gain values of variable-band bandpass ~-~ modulators. 

1.2.2 Deveiopment/Extended Contributions 

• The development of the lowpass-to-bandpass transformation technique where the signal 

bandwidth as well as the centre of the variable noise-shaping band can be defined for 

any high-level narrow-band specification. 

• The development of a technique that is well suited for the design of variable-band 

bandpass l:-~ modulators based on the noise transfer functions of FIR notch-filters, IIR 

notch-filters, complex FIR notch-filters and complex IIR notch-filters. 

• A practical step-by-step methodology for the design of bandpass l:-~ modulators. 

• The design, analysis and evaluation of different combinations of variable-band 

bandpass MASH l:-~ modulators, whose constituent stages contain single- and multi­

bit lower-order ~-~ modulators. 
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• The design analysis and evaluation of MASH l:-~ modulators, which utilise non-. 
resonator based loop-filters in their individual stages and IIR bandstop filters in their 

cancellation circuitry. 

• The development of simple-to-use routines in Matlab, which can compute the loop­

filter, feedback and feedforward coefficients for a variety of single-stage, multi-stage 

and multi-band l:-A modulator topologies. 

• The creation of a library in SimulinklMatlab, which contains over fifty single-stage, 

multi-stage and multi-band l:-~ modulators. 

• The development of Matlab routines that can quantitatively evaluate the resolution and 

stability of any variable-band bandpass l:-~ modulator. 

• A detailed treatment of the factors that affect stability in l:-~ modulators including 

modulator order, feedback coefficients, feedforward loop-filter gains, number of 

delayers, initial conditions, noise-shaping band location, dither, number of quantisation 

levels as well as the amplitude and type of the input signal. 

1.3 Organisation of the Thesis 

In chapter 1, the fundamentals of Nyquist rate and oversampling rate AID converters 

are reviewed, focusing in particular on the theory and advantages of oversampled l:-~ 

converters. A brief comparison is then made between AID and 01 A l:-~ modulators. This 

is followed by a discussion of the merits and limitations of the linear white noise model in 

the context of l:-~ modulator analysis. The operation of a first-order l:-A modulator is 

explained and is supported with time-domain and frequency-domain analysis. The chapter 

continues by providing an overview of high-order distributed feedback, multi-stage and 

multi-bit l:-~ modulators. The chapter culminates by explaining the simulation approach 

and defIning specifIcally the performance criteria that are employed for the evaluation of 

l:-~ modulators throughout this thesis. 

Chapter 2 presents an overview on bandpass l:-~ modulators including an up-to-date 

review of hardware implementations and potential applications. Mid-band resonator based 

l:-A modulators are analysed and evaluated. The prime objective of this chapter is to 

develop and present novel single-stage single-bit l:-~ modulators that can accommodate 

different passband to sampling frequency ratios overcoming the popular Is I 4 restriction. 

Four techniques are presented for the design of variable-band bandpass l:-i\ modulators. 

The first involves the development of the lowpass-to-bandpass transformation technique 
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where the signal bandwidth as well as the noise-shaping band centre frequency can be 

defined for any high-level narrow-band specification. The second referred to as the 

Coincidental-Zero-Placement (CZP) technique involves placing the zeros of the noise 

transfer function at the centre of the desired noise-shaping band. The third method, which 

is novel, utilises a first-order sum-filter in conjunction with fractional delayers to spectrally 

transfer the noise-shaping baiid to the desired signal region. The fourth technique details a 

practical step-by-step methodology for the design of variable-band Butterworth or 

Chebyshev 2 based bandpass l:-~ modulators. Simulation results demonstrating the 

applicability of these techniques to complex variable-band and multi-bit bandpass l:-~ 

modulators are also shown. Several commonly used l:-~ modulators are analysed and 

where appropriate structural modifications are made so as to allow variable-band noise­

shaping. The chapter also provides linearised analysis supported with detailed simulations 

on the effect of non-idealities of the performance of these modulators. 

Chapter 3 provides the design procedure and analysis of variable-band resonator­

based multi-stage (MASH) bandpass l:-~ modulators. The four techniques considered are 

based on the noise transfer functions of real-coefficient FIR notch filters, complex FIR 

notch filters, fractional delayers in conjunction with first-order sum-filters and 

Butterworth/Chebyshev 2 bandstop filters. The design analysis and use of several new 

bandpass MASH l:-~ modulators are presented including the double-stage resonator/non­

resonator and double-stage inverse comb/bandpass l:-~ modulators. A comparative study 

is given based on a mixture of linear modelling, behavioural level simulations and maximal 

achievable performance such as in-band Signal-to-Noise Ratio (SNR), lli'namic Rang~s 

(DR) and tonality. 

Chapter 4 presents the design analysis and evaluation of a novel class of 

programmable narrow-band bandpass l:-~ modulators, that can achieve concurrent 

multiple noise-shaping bands for multi-tone input signals. Five different techniques based 

on the noise transfer functions of comb filters, slink filters, fractional-delay comb filters, 

FIR multi-notch and IIR multi-bandstop filters, are applied for the design of these multi­

band l:-~ modulators. It is also demonstrated through analysis and simulations that these 

techniques can be easily extended to design complex multi-band noise-shaping l:-~ 

modulators. 

In chapter 5, the stability of bandpass l:-~ modulators is evaluated by using a 

variable gain model for the quantiser. Root locus techniques in combination with the Jury 

Criterion are employed to determine the stable range of the quantiser ~ain values. The 
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chapter continues to discuss in detail and evaluate the main factors that affect the stability 

of ~-~ modulators such as input amplitude, modulator order, feedback coefficients, 

feedforward loop-filter gains, number of delayers, initial conditions, noise-shaping band­

location and composition of the input signal. The ultimate, but yet the most important 

objective of this chapter is to provide more accurate guidelines for the design of single- and 

multi-bit bandpass ~-~ modulators. 

1.4 Conventional Nyquist Rate AID Converten 

Analogue-to-digital conversion is the process of converting a continuous time 

analogue signal to an equivalent discrete sequence of numbers having finite precision. 

Typical examples include flash converters, serial-parallel (subranging/ripple) converters, 

pipelined converters, multiplexing converters and successive approximation converters 

[Mit93]. 

Conventional Nyquist converters can be described in terms of three separate 

processes namely, Anti-Aliasing (AA) filtering, uniform time-domain sampling and 

amplitude quantisation [Ism94]-[Mit93]. A block diagram of a general Nyquist rate 

converter is shown in Figure 1.1. 

x(t) 

t 

Anti Aliasing 
Ts Multi-bit 

(AA)Filter 
Quantiser 

~ 1 XAA(t)~ A xAA(kT) 
Q. Output 

XAAQ 

1 Sampler levels N-bits 
~- Steps 

-fc Ie f Ts=l! Is 

(leT) 

X(f) 

Figure 1.1 Block Diagram of a Conventional Nyquist Rate AID Converter. 

The purpose of the AA filter is to limit the bandwidth of the incoming signal x(t)to 

a maximum of half the sampling frequency Is, in order to avoid the overlapping of signals 

(Le. aliasing). The sampler converts the band-limited continuous-time analogue input 

signal x AA (I) to a signal that is discrete in time and continuous in amplitude x AA (kTs). 

This signal is sampled at uniformly spaced intervals of time Ts' where Ts is the inverse of 

the sampling frequency Is . In the frequency domain, the sampling process generates 

periodic replicas of the signal spectrum at multiple frequency intervals of Is. Therefore, it 

is essential to comply with the Nyquist criterion, which stipulates that Is has to be at least 
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twice the highest frequency component of the input signal. This criterion may also be 

expressed in terms of Is ~ 21B' where IB is the input signal bandwidth. If the highest 

frequency harmonic is more than half Is, then interference between the repeated versions 

of the signal spectrum will take place resulting in distorted outputs [Ism94]-[Mit93]­

[Pr092]. 

Conventional rate converters sample the analogue signal at the Nyquist frequency 

IN = 21B' Sampling at the Nyquist rate necessitates the use of an AA filter with a very 

sharp transition band in order to ensure adequate aliasing protection. This stringent 

specification increases the complexity of the analogue AA filter considerably [Pr092]­

[Mit93]. 

The quantisation process involves the discretisation of the amplitude of the signal. 

The signal x AA (kTs) that enters the quantiser is converted to a signal that is discrete in 

both time and amplitude x AAQ (kTs ) . A quantiser with Q output quantisation codes may be 

represented by Q = 2 N, where N is the number of resolution bits. Another important 

parameter is the quantisation step-size Do, which is defined by Do = 2V / (Q -1), where 

represents voltage. One of the main disadvantages of Nyquist rate AID converters is the 

requirement for extremely small quantisation step sizes for modest resolutions. For 

example, a converter that has 16 bits of resolution will have Q = 216 = 65536 quantisation 

levels resulting in a quantisation step-size of Do = 2V / (Q -1) = 30.5,uV for an input range 

of ± 1 V. This simple calculation shows that such accuracies are virtually unattainable with 

the majority of analogue integrated circuit components [Azi96]-[0rf96]. Various 

calibration and laser trimming techniques exist, but these have their limitations [Tom94]. 

One of the main problems encountered in any AID device is that it is a non-linear 

system due to the presence of the quantiser. The simplest approach to represent the non­

linear quantiser is to adopt the additive white noise model with its associated assumptions 

and statistical properties in order to enable the application of linear theory [Azi94]-[0rf96]-

[Opp99]-[Pro92]. The quantisation noise power un
2 or variance for a Q= 2N output 

quantisation levels and Do = 2V / (Q -1) = 2V / (2 N -1) is given by 

2 (Do
2] 1 ( 2V )2 

Un = 12 = 12 2 N -1 (1.1) 
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High resolution Nyquist converters are difficult to implement in existing VLSI 

technologies due to the need for high precision analogue components, greater vulnerability 

to noise and interference as well as the very steep roll-off demanded of the analogue AA 

filter. These practical limitations have contributed towards the resurgence of oversampling 

converters [Tom94]. 

1.S Oversampling AID Converters 

Oversampling converters achieve high resolution by using simple and relatively high 

tolerance analogue components at the expense of the requirement for faster and more 

complicated digital circuitry. These converters reduce the necessity for precise sample and 

hold circuitry, overcome the need for trimming or calibration and impose less restrictions 

on the performance requirements of the analogue AA filters that precede the sampling 

operation. However, these advantages are gained at the price of greater digital complexity 

for the decimation filter [Azi96]-[Ism94]-[Pr092]-[Tom94]. 

These converters perform sampling and quantisation at significantly higher rates 

compared with the Nyquist frequency Is » IN' This implies that more samples are taken 

from the analogue input waveform over a given time interval. The much larger ratio of the 

sampling rate to that of the signal bandwidth means that this excess sampling speed can in 

general be traded for improved amplitude resolution. The resultant magnitudes of the 

quantisation errors are considerably lower in oversampling converters, because more 

samples are taken over the same time interval. From the frequency-domain point of view, 

the effect of oversampling is to uniformly distribute this constant quantisation noise power 

over a much wider frequency range, thereby substantially reducing the amount of 

quantisation noise in the in-band region. [Azi96]-[Pr092]. A block diagram of an 

oversampled AID converter is shown in Figure 1.2. 

Analog Digital 

x(t) 

1 
X(j) 

Anti Aliasing I 

T, Multi-bit I Averaging Down 
(AA) Filter Quantiscr I Filter Sample 

-+ JtL 
x,u(t) 

J. x,u(kT) 
Q-Output 

x,uQ(kT) I 

~ byOSR f++ 
1 Sampler levels N-bits I [ ] + 

N-b 
T,=llf, 

,.:1- Steps I 
-Ie Ie! I 

its 

X,u(f) 

OSR ~ fs12* Is known as the OverSampling Ratio 

I 
I ....... _-.... 'V,--_J, 
I Decimator 

Figure 1.2 Block Diagram of an Oversampling AID Converter. 
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This in-band noise power is given by 

(1.2) 

The design specifications of the analogue AA filter are substantially reduced because 

oversampling results in a much wider transition band between the cut-off and Nyquist 

frequencies, (Le. AA filter passband is much narrower compared with its transition band). 

However, a price is paid in the digital domain, which requires the subsequent digital filter 

to attenuate as much out-of-band quantisation noise power as possible [Azi96]. A less 

obvious advantage that is served by the use of this digital filter is that any other noise that 

may have remained in the transition band after the AA filter will be furthermore attenuated 

[Azi96]. 

Practical difficulties still exist with standard oversampling converters in spite of 

their numerous advantages. Extremely high resolutions are virtually unattainable because 

gigantic sampling frequencies are needed which to-date are beyond the scope of existing 

CMOS techniques [Azi96]-[Ste98]. 

1.6 Sigma-Delta Modulation 

Sigma-delta (L-~) modulation is a popular technique that may be employed in AID 

conversion for low to medium signal bandwidth applications. Typical areas of application 

include high-fidelity audio, speech processing, metering applications, data-acquisition and 

voiceband data telecommunications [Azi96]-[Can92]-[Hau91]. 

L-~ modulation utilises oversampling and noise-shaping in order to achieve a high 

level of resolution. It is well known that oversampling leads to the reduction of 

quantisation noise power in the signal band of interest by distributing this fixed amount of 

noise over a much wider frequency range. This in-band quantisation noise can be further 

suppressed by a process known as noise-shaping. This technique does not reduce the 

magnitude of the quantisation noise, but instead causes most of this shaped noise to be 

shifted outside the signal band of interest, where it can be subsequently removed by using 

an appropriate digital filter [Azi96]-[Can92]-[Ste98]. 

A comparison based on the amount of quantisation noise power for Nyquist, 

oversampling and l:-.6. AID converters is shown in Figure 1.3. It is seen that all the 
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quantisation noise power occurs across the signal bandwidth for the Nyquist case. In 

oversampling converters, the in-band quantisation noise power is significantly reduced, 

because this fixed noise is distributed over a much greater frequency area. Noise-shaping 

l:-~ modulation achieves more quantisation noise attenuation in the signal region by 

pushing away significant amounts of this unwanted noise outside the signal band. Since the 

signal power is the same in all three cases, this implies that the best in-band SNR is 

accomplished by using L-~ modulators [Kal96]-[Mor96c]. 

p.(/) Nyquist rate PCM 
AID Converter 

-OSR* ib -h 

Figure 1.3 Comparison of Quantisation Noise PSD for three AID Converter Techniques. 

The benefits of l:-~ AID converters include inherent linearity due to the I-bit 

quantiser, reduced AA filter complexity, greater tolerance to device and component non­

idealities and a straight-forward trade-off between bandwidth and resolution. The general 

block diagram of a L-~ AID converter is shown in Figure 1.4. This system contains a 

continuous-time AA filter, a uniform sampler, a discrete-time analogue filter embedded in 

feedback loop and a digital decimator. 

The analogue section may be implemented using ,S.witched Capacitor (SC) [Baz98]­

[Chu98]-[Jan93]-[Lon93]-[Sin95] or Switched Current (SI) [Pat94]-[Ros95]-[Ros99] 

technology. Continuous-time L-.::\ modulators have been designed and implemented for 

numerous communication systems applications [Che99]-[Eng99b]. They are different from 

discrete-time implementations in that they can be implemented by using Le filters 

[Ga098]-[Sh094]. Continuous-time modulators can operate at very high sampling rates, 

because they do not require input sample and hold circuits. In addition, the use of 

continuous-time filters allows very low noise figures compared with discrete-time filters. 

However, good linearities of the loop-filter and Df A converter are quite difficult to attain 

for continuous-time modulators [Che99]-[Sh094]. 
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Figure 1.4 Block Diagram. of an Oversampled Noise-Shaping l:-6 AID Converter. 

1.7 Digital-to-Analogue l:-6 Modulators 

Oversampled l:-6 modulators can be equally used to improve the accuracy of DI A 

conversion, where digital complexity and speed can be traded for relatively high-tolerance 

analogue circuitry [Can92]-[Nor97, pp. 309]-[Tom94, pp. 224], Figure 1.S contrasts the 

block diagrams of AID and DI A l:-6 modulators. 

I-BitADC 

.x(t) x(k) 

• 
Discrete-Time ~log: Di.,tal 

(a) 

x(k) 

(b) 

Digital • Analog 
~I. 

x(t) 

Figure 1.5 l:-6 Modulator Configuration (a) as AID converter (b) as D/A converter. 

The input x(k) to the D/A structure is a multi-bit digital signal. This signal then feeds into 

the loop-filter, which with the aid of the feedback pushes the quantisation noise 

components outside the signal region. The multi-bit digital signal leaving the loop-filter is 

truncated to a single-bit before entering the I-bit D/A converter. Note also that the circuitry 

in DI A l:-6 modulators is predominantly digital as opposed to AID l:-6 modulators where 

it is mainly analogue. Detailed design analysis for high resolution multiplier-free l:-~ 

modulators for D/A applications are reported in [Hau9S]. 
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1.8 The Classical Linear White Noise Model 

Quantisation is an inherently non-linear operation making the exact analysis of !;-A 

modulators a very complicated process, thus necessitating the use of approximate linear 

methods. The simplest model can be represented by a summer having two inputs as shown 

in Figure 1.6. 

OR 

I-Bit Quantiser Multi-Bit Quantiser 
Representative of the ofNTF (Linear Model More Accurate) 

,- --------------- - .. 
, q®' 
, Signal component ... ~ " ' 
: to be converted ~(k): 
,- ----------------' 

Equivalent Additive White Noise Model 

Figure 1.6 The Equivalent Linearised White Noise Model. 

The first represents the signal components and the second input depicts the quantisation 

noise. The latter is modelled by a unity-gain white noise source and is assumed to be 

uncorrelated with the input signal. 

This model has several limitations, which have to be considered when investigating 

the behaviour and performance of the overall modulator [Ada91]-[Gra90b]. First; it 

assumes that the quantisation noise has unity gain neglecting the fact that the quantiser gain 

depends on the properties of the modulator input signal. Second; this model cannot predict 

the effect of the input signal and loop-filter initial conditions on the stability of the 

modulator. Third; the tonal behaviour including the location and strength of the limit cycle 

oscillations cannot be established from such a model. Fourth; the inclusion of a scaling 

factor prior to the quantiser in the modulator will not affect the decision of the quantiser as 

the sign of a number does not change by multiplication. However, this gain factor will 

affect the transfer functjon of the moduJator m a sjgnj.ficant way. pjfth; thjs modd does not 

obey the constant output power criterion, which is an inherent feature of single-bit !;-A 

modulators. In other words, making the linear model stable does not guarantee that the real 

non-linear modulator is stable [Ada91]-[Gra90b]-[Nor97, pp. 44]. 

Despite these constraints, the additive white noise model is straightforward to apply 

and is widely used by many practitioners in the field for preliminary design analysis. It 

provides a reasonably accurate representation of the overall spectral shape of the noise 

transfer function for single-bit l:-6 modulators. More accurate analysis and performance 
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evaluation can be achieved subsequently by detailed simulations that take into account the 

actual non-linearity of the quantiser [Can92]. 

This model depicts the quantisation spectra of high-order single-bit modulators, 

dithered modulators or multi-bit modulators more accurately as the quantisation noise in all 

these cases becomes more randomised [Azi96]-[Nor97, pp. 44]. 

1.9 First-Order I-A Modulator 

The first-order I-A modulator shown in Figure 1.7 consists of a loop-filter and a 1-

bit quantiser (AID converter) in the feedforward path as well as a I-bit DI A converter in 

the feedback path. The modulator input goes to the quantiser via the loop-filter. The 

quantiser output signal is fedback and subtracted from the input at the summing junction. 

The positive and negative errors between the input and output signals are all accumulated 

in the loop-filter. These errors, which essentially depend on the amplitude and complexity 

of the input signal, cancel each other out after a number of clock cycles. It is seen from 

Figure 1.7 that the digital output is converted by means of a I-bit DI A converter and then 

subtracted from the analogue input. The resultant error is transmitted through the loop-filter 

and the I-bit quantiser respectively [Azi96]-[Can92]-[Tom94]. 

The loop-filter is designed so as to provide a large gain in the in-band region. The 

modulator output at these frequencies is dependent on the feedback implying that the 

modulator performance is quite insensitive to the tolerance of the constituent analogue 

circuitry of the loop-filter. The tolerance for imprecise analogue components is a key 

advantage and is directly responsible for the robustness of I-A modulators. The feedback 

must contain a delay equal to at least one sample period to make the modulator realisable. 

This delay could also be embedded in the loop-filter as shown in Figure 1.7 [Can92]­

[Tom94]. 

For non-single-bit modulators, the linearity of the modulator output depends to a 

large extent on the linearity of the D/A. This means that a non-linear D/A will result in 

harmonic distortion, thus increasing the quantisation noise in the in-band region [Azi96]­

[Nor97,pp.244]. 
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Figure 1.7 Conventional First-Order Lowpass l:-~ Modulator. 

An example of the exact operation of a first-order is illustrated in Figure 1.8 for a dc input 

signal of 0.6, assuming that the output initial condition of the loop filter u(k -1) = 0, 

where TLC is the period of the Limit D'cle. 
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Figure 1.8 Time-Domain Response of a First-Order Lowpass I-~ Modulator: (a) dc 

input x( k) , (b) error signal e( k) , (c) output signal at summation node of 

accumulator u( k) , (d) accumulator output signal u( k - 1) , 

(e) converted analogue signal Ya (k) , (f) quanti sed output signal y( k) . 

Table 1.3 shows the signal values at each node of the l:-d modulator, where it can be seen 

that a maximum of 5 clock cycles containing four l' s and a single -1 are needed to 
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represent an input amplitude of 0.6, (i.e.(4(1)+I(-I))/5=0.6). This analysis 

demonstrates that the average stream of l' s and -1' s of the modulator output over the 

duration of a cycle is equivalent to the input signal. A ~-~ modulator generates outputs 

composed of ± 1 for any other types of input signal, where its amplitude is determined by 

the relative density of 1 's and -1 'so 

k x(k) e(k) u(k) u(k-l) Ya(k) y(k) 

0 0.6 -0.4 -0.4 0 1 1 

1 0.6 1.6 1.2 -0.4 -1 -1 

2 0.6 -0.4 0.8 1.2 1 1 

3 0.6 -0.4 0.4 0.8 1 1 

4 0.6 -0.4 0 0.4 1 1 

5 0.6 -0.4 -0.4 0 1 1 

6 0.6 1.6 1.2 -0.4 -1 -I 

Table 1.3 Discrete-Time Analysis of the First-Order ~-~ Modulator. 

The stability of a ~-~ modulator depends on the input signal, the loop-filter 

coefficients, initial conditions as well as the modulator order. The flrst-order ideal 

accumulator-based ~-~ modulator in Figure 1.7 can be shown to be permanently stable for 

comparator output levels of ± 1 if the input to the system never exceeds unity. Given that 

e(k) = x(k) - Ya(k) and that v(k) = x(k) - Ya (k) + u(k -1), the analysis provided in Table 

1.4 shows that all the internal signals within the modulator never exceed ± 2 for the worst 

case input signal amplitude fluctuation from + 1 to -1 and vice-versa. This implies that 

- 2 S u(k -1) S +2, which means that the quantiser can not become overloaded. 

k x(k) e(k) u(k) u(k-l) Ya(k) y(k) 

0 1 0 0 0 1 1 

1 -1 -2 -2 0 1 1 

2 -1 0 -2 -2 -1 -1 

3 1 2 0 -2 -1 -1 

4 1 0 0 0 1 1 

Table 1.4 Worst-Case Discrete-Time Analysis Demonstrating the Inherent Stability of 

a First-Order ~-~ modulator. 
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A modulator becomes unstable when the quantiser input amplitude significantly 

exceeds the magnitude of the signal in the feedback path. The input signals in the 

feedforward path continue growing indefinitely causing the quantiser to enter into chaotic' 

and unrecoverable oscillations. 

The modulator stability can be more accurately evaluated by examining the 

amplitude and nature of the quantiser input signal. Several comparable rules of thumb have 

been proposed, which are used to estimate the point at which the quantiser input signal 

diverges, thus leading to modulator instability. 

The operation of a first-order ~-~ modulator may be further understood by the use of 

mathematical analysis in the frequency-domain where the linear model discussed in 

Section 1.9 is applied. This linear modeling process enables the overall modulator to be 

characterised by a Signal Transfer Function (STF) Hs(z) and a Noise Transfer Function 

(NTF) H N (z) : 

L(z) 
Hs(z) = 1 + L(z) and (1.3) 

where L(z) is the formed loop-filter. Mathematical manipulation shows that both Hs(z) 

and H N (z) are inter-related as demonstrated by the expression below: 

The z-domain transfer function of H(z) in this case is given by 

-I 
Z 

L(z) = -1 
l-z 

which implies that the overall output expression in the z-domain is 

YJ (z) = Z-I X(z) + (1- Z-I )Q(z) 

where Hs(z)=z-I and H N (z)=(I-z-I ). 

(1.4) 

(1.5) 

(1.6) 

It can be observed from both of the above expressions that the input signal has been merely 

delayed by one sample resulting in no distortion. However, the quantisation noise has been 

shaped by a first-order differencer, which is effectively equivalent to a crude highpass 

filter. Thus, the quantisation noise has been shifted to higher frequencies leaving the input 

signal completely intact. Closer inspection of the NTF reveals that virtually infinite 

attenuation is achieved at dc (Le. z = 1). 
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Figure 1.9 Magnitude Spectrum of an accwnulator-based lowpass L-~ modulator. 

Figure 1.9 shows the simulation results of a first-order L-~ modulator in the frequency­

domain employing a simple I-bit non-linear quantiser. An input sinusoid having a 

frequency Ie of 0.025. These simulation results confirm theoretical expectations in that 

the input appears undistorted in the baseband region. The signal has been Fourier­

transformed to a delta function in the frequency-domain and the quantisation noise has 

been shaped away to higher frequencies. Dither is added prior to the quantiser input to 

substantially alleviate the level of tones in the frequency spectrum. 

Theoretical expectations coupled with simulation results confirm that with sufficiently 

large Is, L-~ modulators can achieve very respectable SNRs using only I-bit quantisers. 

The performance of L-~ modulators is primarily dependent on the NTF which has a 

magnitude frequency response of 

(1.7) 

The in-band quantisation noise power is given by 

(1.8) 

where an 2 / Is is the power spectral density of the quantisation noise. This ultimately 

yields in-band quantisation noise power provided that Is» Is and where C7bn 2 can be 

expressed to a good approximation as 
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(1.9) 

1.10 Higher-Order Distributed Feedback ~-~ Modulators 

In general, the resolution (Le. SNR as will be discussed in Section 1.13.2) of a ~-~ 

modulator increases, when more samples are included in the averaging process. In high­

order ~-~ modulators, more of the preceding error samples are included in the cancellation 

process to reduce the overall quantisation error. In the frequency-domain, this has the effect 

of increasing the quantisation noise attenuation in the in-band signal region by shifting 

greater quantisation noise power towards the higher frequency regions. A comparison of 

the NTFs based on the linear model for flrst-, second-, third- and fourth-order conventional 

lowpass L-~ modulators is shown in Figure 1.10. 

16.-----~------~------~----~----~~ 

14 

12 

4 

0.1 0.2 0.3 0.4 0.5 
Normalized Frequency , v 

Figure 1.10 Comparison of the NTF Magnitude Spectra for First-, Second-, Third- and 

Fourth-Order ~-~ modulators. 

The order of a ~-~ modulator may be simply increased by employing the distributed 

feedback topology, where the modulator output signal feeds back in a distributive manner 

at the input summing nodes of each loop-filter as shown in Figure 1.11 [Ada91 ]-[Rit77]. 
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X(z) t---+tI t---r-.Y(z) . 

I-bit quantiser 

Figure 1.11 Chain of Accumulators with Distributed Feedback. 

The signal feeding into the loop-filter is the summation of two inputs. The first input path 

is the output of the previous loop-filter and the second is the I-bit output signal scaled by a 

feedback coefficient. Thus, each loop-filter output contains a combination of the input 

signal to the modulator as well as quantisation noise. The signal Hs(z) and noise HN(z) 

transfer functions of this topology are given by: 

.L 
TIH;(z) 

Hs(z) = L L ;=1 L (1.10) 
1+a1TIH;(z) +a2TIH;(z)+ ... +aL_1 TIH;(z) +aLHL(z) 

;=1 ;=2 I=L-1 

1 
HN(z) = L L L (1.11) 

1 + al TI H; (z) + a2 TI H; (z)+ ... +a L-1 TI H; (z) + a LH L (z) 
1=1 ;=2 ;=L-l 

Higher-order single-bit l:-L\ modulators are more prone to instability compared with 

first-order l:-L\ modulators. Their stability depends on the feedback coefficients, gain 

factors in the loop-filter, the modulator input amplitude, the type of input signal and its 

hannonic content as well as the total delay in the feedback loop [Bai93]. Note that the l:-L\ 

modulator coefficients may be adjusted to ensure or improve stability as long as the desired 

specifications of the noise-shaping function are maintained [Bai94]-[Nor97, pp. 141]. 

Higher-order single-bit structures are capable of producing respectable SNRs for 

modest OSRs, are less tonal and have low sensitivity to component mismatches [Ada91]. 

However, the resultant sharp rise of the quantisation noise in the out-of-band region 
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imposes more stringent specifications on the decimation filter [Tom94]. The desirability' 

for high resolution coupled with the outlined design challenges have resulted in the 

existence of many alternative types and combinations of higher-order l:-.::\ modulator 

topologies as reported in [Ada91]. 

1.11 Multi-bit l:-.::\ modulators 

An alternative means of improving the resolution of l:-'::\ modulators is to replace the 

single-bit quantiser with a multi-bit quantiser as shown below in Figure 1.12. Multi-bit 

noise-shaping l:-'::\ modulators generate less quantisation noise by as much as 6 dB per 

additional bit, compared with conventional I-bit modulators [Nor97, pp.244]­

[Tom, pp. 224]. 

e(k) 
x(k) 

.----------------• Equivalent q(le) : 

: Additive White +:it.. ,,(Ie)' 

• Noise Model ~ : t _______________ _ 

M-Bits 
Analog 

Loop-filter I-----+l/I---f-~ y(k) 

M-bitD/A 
Converter 

Multi-bit quantiser 

Figure 1.12 General Block Diagram of a Multi-Bit l:-.::\ Modulator. 

Multi-bit quantisers containing an odd and an even number of levels were designed 

by the author in Simulink. A block diagram representation of both models shows that these 

consist of two-level comparators as shown in Figure 1.13, where TH represents the 

threshold value for each comparator and QL is the quantisation level. 
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I 
I 
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Figure 1.13 Multi-Level Quantiser Model (a) Odd Number (b) Even Number. 
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Multi-bit ~-A modulators are capable of generating high SNRs for reasonably low 

OSRs. They are much easier to stabilise, thus facilitating the design of higher-order 

systems. The presence of more levels causes the quantisation noise to be more randomised, 

thus reducing the occurrence of spurious tones across the frequency spectrum. The 

reduction in quantisation noise alleviates the constraints on the post output filter that must 

remove the out-of-band quantisation noise. The use of multi-bit quantisers makes the 

modulator more linear, thus making the adoption of the additive white noise model for 

analysis more realistic. Also, the gain of a multi-level quantiser tends towards unity as the 

number oflevels is increased [Sti88]-[Nor97, pp. 244]. 

The inherent linearity offered by single-bit AID ~-A converters is not preserved with 

multi-bit AID converters, because the latter require multi-bit DI A in the feedback path, 

whose linearity directly affects that of the output signal. The errors resulting from the DI A 

converter benefit from oversampling, but not noise-shaping [Sim89]-[Tom94, pp. 224]. 

1.12 Simulation Approach 

The non-existence to-date of a theoretical model [Gra89a] that can precisely predict 

the stability range and tonal properties of ~-A modulators, when in overload mode, 

provides ample justification for resorting to behavioural level simulations. These are shown 

by many designers and practitioners to be the most appropriate means of evaluating the 

performance of ~-A modulators. The time taken for behavioural methods to deliver the 

results of the simulated topologies is much shorter compared with device and circuit-based 

macro-models. Furthermore, l:-A modulators can be constructed and re-configured quite 

easily. Needless to say, behavioural level simulations must be performed before the circuit 

is designed as these help to validate the modulator performance with relative ease. The 

main objective is to adequately simulate all the characteristics. Both a large number of time 

steps and input values must be used to examine long term behaviour and identify any 

irregularities [Ben99]-[Nor97, pp. 447]. 

All the ~-A modulators in this thesis utilise a simulation environment, Simulink in 

Matlab, to model and simulate the behaviour of ~-A modulators in discrete-time using 

floating-point arithmetic for the analogue parts and the actual single-bit quantiser. 

These simulations are conducted by injecting a single-tone or multiple tone sinusoids 

to all ~-A modulators for an input block length of 282144 samples. The first 20000 output 

samples from the modulator are excluded as transient points. The remaining 262144 (218
) 

output samples are transformed using a Hanning-windowed Fast Fourier Transform (FFT) 
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on the output of the modulator. Note that the FFT length is always chosen to be a multiple 

of 2 to enhance simulation speed in Matlab. The input amplitude is progressively increased 

in steps of 0.01 from 0 to 1 for k e[O ... 282144]. Each modulator is evaluated with zero 

initial conditions at first. This procedure is then repeated for a random choice of initial 

conditions, ranging from -0.1 to +0.1. Figure 1.14 shows a plot comparing the simulation 

time versus the number of simulated points for a second-order single-stage ~-~ modulator. 
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Figure 1.14 A Comparison of Simulation Time versus Number of Simulated Samples 

1.13 Performance and Accuracy Criteria 

This section presents the most commonly used evaluation criteria by practitioners to 

verify the operation and assess the quality of L-~ modulator topologies. A description of 

how these performance measures are developed into automated routines in Matlab to 

facilitate and improve simulation speed is provided. The ability to build L-~ modulator 

structures in Simulink with relative ease coupled with these automated Matlab based tools 

provide both rapid and reliable means for novice and experienced engineers to accurately 

model and evaluate any ~-~ modulator topology. 

1.13.1 Ovenampling Ratios and Bandwidth 

The OverSampling Ratio (OSR) is defined as the ratio of the sampling frequency Is 

to that of twice the signal bandwidthlB • This is mathematically given by: 
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OSR=ls/2IB (1.12) 

The signal bandwidth refers to the range of frequencies, where the power of the signal 

components is concentrated. Given that this thesis primarily deals with the design of I-A 

modulators at the behavioural level, it is more convenient to express all frequencies in 

terms of their normalised equivalents V's (Le. v = I / Is), where I is the input signal 

frequency and Is is declared to be the reference frequency and thus set to unity. Thus, the 

OSR may be alternatively expressed as: 

(1.13) 

where VB denotes the normalised bandwidth. The normalised signal or centre frequency 

Vc is always assumed to be located in the middle of the bandwidth, unless stated 

otherwise, implying that the normalised low vL and high vH frequencies are equi-distant 

from vc. 

Typical OSRs for I-A modulators lie within the range 8 to 512. The maximum Is is 

restricted by technology limitations, whereas the minimum OSR is constrained by 

resolution specifications. 

A description of how the bandwidth is determined in Matlab is presented next. It is 

well known that any discrete-time signal in Matlab is represented by samples or bins, 

whose number NSAM is decided by the user. For a given OSR, the bin positions of vL and 

VH and consequently VB are given by: 

and (1.14) 

The difference between NVH and NVL is the number of bins representing VB' which 

simplifies to (N SAM /2 OSR) . 

1.13.2 In-Band Signal-to-Noise Ratio (SNR) 

The in-band ~ignal-to-Noise Ratio (SNR) is a fundamental performance measure that 

is used to assess the degree of resolution of any I-A modulator. It is defined as the ratio of 

the signal power to that of the in-band quantisation noise power [Azi96]-[Can92]-[Pr092] 

and is usually expressed in dBs as shown below: 
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SNR = 1010 ( Signal Power ) 
glO Inband Noise Power 

(1.15) 

The theoretical expression using the additive linear white noise model for the SNR of an 

Lth -order lowpass ~-~ modulator is given by 

( 
1(2L ) 

SNR=10 IOglO(0";)-10 10glO(O"in)-1010glo 2L+1 +(20L+1O)logOSR (1.16) 

This analytically derived expression demonstrates that the SNR improves by approximately 

9 dBs or 1.5 bits of resolution for every doubling of the OSR for a given modulator order. 

A further enhancement of 6 dBs can be achieved for every corresponding increase in 

modulator order. This expression only provides a rough estimate. More accurate readings 

can be obtained by performing long simulation runs based on ~-~ modulator models in 

Simulink. The retrieved data is more reliable, because the ~-~ model uses the actual non­

linear component, i.e. the I-bit quantiser, therefore circumventing the need to make any 

assumption about the properties of the quantisation noise. The simulated SNR figures are 

calculated by dividing the signal power by the sum of the powers of all the bins of the in­

band quantisation noise. The corresponding mathematical expressions are: 

(1.17) 

(1.18) 

where the SNR for a lowpass signal, the SNR for a bandpass signal, the input signal 

spectrum and the magnitude spectrum of the NTF are represented by SNRL , SNRB , X( v) 

and HN(v) respectively. 

There are two simulation methods for computing the in-band quantisation noise 

power. The simplest involves subtracting the input signal from the modulator output so as 

to only acquire all the bins that depict the NTF. The in-band quantisation noise region can 

be then computed for a given bandwidth. This method is restricted to working for input 

tones that reside in the middle of the notch of the NTF. Any slight misalignment in the 

signal location creates a phase-shift, which prevents the complete cancellation of the input 
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signal. For the majority of such cases, the estimation of this phase-shift and the subsequent 

re-adjustment of the signal notch becomes rather complicated. 

The complication arising from the above method has led to the creation of the 

following empirically-derived general-purpose approach. Here, the in-band quantisation 

noise is computed by identifying both the location and the number of bins that represent the 

input signal and then removing them from the output spectrum. This yields a good 

estimation of the actual NTF, which can be used to calculate the in-band SNR. It should be 

noted that the signal width in terms of bin numbers largely depends on the number of 

sample points. 

This method was verified with the first approach for a variety of frequencies and their 

corresponding NTFs, where total input signal cancellation was accomplished. The 

discrepancy between the two methods for a range of input amplitude levels was less than 

0.5 dB. 

The amplitude of all signals following the FFT command need to be normalised to 

unity by dividing by the FFT length, before subsequent calculations are carried out. This 

measure is particularly crucial for sinusoidal signals as these transform to impulses in the 

frequency-domain. 

It should be stated that both the signal and in-band quantisation noise powers were 

scaled down by 3/8 due to the amplitude of the Hanning window. A derivation from first 

principles by the author proving this value is included in Appendix A for completion. 

There is no need for any correction factor as far as the in-band SNR is concerned as both 

entities are reduced equally. However, if the input or in-band quantisation noise powers are 

individually required, then their corresponding simulated values need to be scaled-up by 

8/3 so as to normalise the amplitude back to unity. 

Each SNR curve is generated from 100 input amplitudes ranging from full-scale 

down to the input amplitude level, whose power equals the total in-band quantisation noise 

power (Le. until the SNR value is 0 dB). Each point is calculated using a 262144 point 

Hanning windowed FFT. 

Note that the in-band SNR deteriorates for very large input amplitudes due to 

quantiser overloading. In addition, in-band SNR degradation also occurs for small input 

levels as a result of little signal power. 

27 



1.13.3 Maximum Stable Input Amplitude 

The non-existence to date of a theoretical model [Gra90] that can precisely predict 

the stability range of a l:-~ modulator when in overload mode provides a powerful 

argument for resorting to behavioural level simulations. In this thesis, the stability of a ~-~ 

modulator is eval~ted by increasing the input amplitude from 0 to 1 in steps 0.01 for 

k E [0 ... 282144] with a random choice of initial conditions ranging from 0 to 0.1. The 

stability of any ~-~ modulator can be reliably predicted by monitoring the quantiser input 

amplitude q/N(k) as described in [Sch93]. Knee plots are used to establish the input 

amplitude that results in q/N(k) exploding towards infinity. A knee value for qIN(k) as 

given below is declared to be a suitable upper-limit to indicate instability. 

(1.19) 

The first quantiser input amplitude that reaches lOis declared to be the threshold quantiser 

input, qINMAX(k). Its corresponding input signal amplitude is therefore determined and 

declared to be the Maximum modulator ~table Input Amplitude (MSIA). This process is 

repeated 10 times with a different set of initial conditions where the worst-case MSIA 

value is retained. 

It may be argued that the input quantiser constraint is rather conservative. It is 

plausible that q/N(k) may quite harmlessly exceed 10 momentarily, before subsiding back 

to much lower values. This may especially occur in the case of higher-order single-bit ~-~ 

modulators. However, in the opinion of the author, it is better to underestimate as real 

world signals can rarely be completely band-limited. This practicality coupled with non­

idealities in implementation support the argument for being prudent. A recommendation in 

[Sch91 b] goes further by stating that MSIA should never exceed 85-90% of the peak input 

amplitude as a safety margin. This precaution becomes more significant in the case of 

aggressive NTFs, e.g. Chebyshev as opposed to Butterworth bandstop filters. 

1.13.4 Dynamic Range (DR) 

Another useful type of performance measure is the Qynamic Range (DR), which is 

defined as the range of input amplitudes for which the ~-~ modulator produces a positive 

SNR. A theoretically derived DR based on the linearised additive white noise model for an 

Lth - order lowpass ~-~ modulator is given by: 

28 



(1.20) 

which shows that DR depends on the OSR, the loop-filter order L and the quantiser 

resolution N [Nor97, pp. 220]-[Pr092]. 

As far as simulations are concerned, the DR is computed by finding the difference 

between the maximum x MAX and minimum x MIN input amplitudes. x MAX refers to the 

maximum input amplitude level for which the modulator remains stable. On the other 

hand, x MIN is defined as the input amplitude level, where the input signal power equals 

the in-band quantisation noise power. The DR is quite often expressed in dBs as shown 

below: 

(1.21) 

1.13.5 Tones 

Numerous publications involving precise theoretical analyses [Gra89a]-[Gra89b], 

simulations studies such as [Dun96a]-[Nor97, pp. 75-140] as well as behavioural-level 

simulations carried out by the author have shown that the quantisation noise spectra of I:-~ 

modulators exhibit discrete tones. Tones are spectral peaks, whose presence in the signal 

region degrade the resolution of a I:-~ modulator. The emergence of these tones is 

attributed to the following factors: 

First; the majority of quantisers employed in I:-~ modulators only have two output 

levels, thus increasing the possibility of similar patterns appearing in the output signal. 

Furthermore, single-bit quantisers can not handle extremely small input amplitudes, such as 

0, by periodically oscillating between + 1 and -I in the time-domain. This oscillatory pattern 

is translated into a single-tone at Is /2 in the frequency domain [Azi96]-[Ris94]. Second; 

the quantiser input samples become heavily correlated due to oversampling. Third; the 

lower order modulators, particularly those that employ simple-coefficient loop-filters such 

as accumulators and resonators tend to generate fewer, but higher-amplitude tones due to 

the more finite number of internal signal amplitude levels [Hei91]. These tones become 

especially undesirable, if they appear in the signal region as this leads to distorted signal 

outputs and inferior resolution. The amplitude of the tones, the number of times at which 

they occur as well as their locations in the frequency spectrum depend on the amplitude and 

type of input signal [Sim89]. 
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There are essentially three techniques that can be used to suppress these tones. The 

first involves deliberately injecting a white noise signal (Le. dither) prior to the quantiser 

input, which randomises the quantisation noise spectrum for a given modulator. The 

inclusion of dither just before the quantiser takes advantage of noise-shaping, which has 

the effect of limiting the amount of quanti sat ion noise in the signal region [Nor97, pp. 75]. 

The second approach involves de-stabilising the limit cycle oscillations responsible for 

these tones by making the loop-filter chaotic. A small shift in the pole positions of the 

loop-filter provides a successful means of breaking-up the limit cycle oscillations 

responsible for the appearance of these objectionable tones [Ris94]-[Sch94]. Third; the use 

of random initial conditions in the loop-filter sections provides an alternative means of 

disturbing the periodicity of these limit cycles. Care has to be taken to ensure that the upper 

limit of these random initial conditions is constrained to appropriate levels, especially for 

high-order single-bit ~-~ modulators [KozOO]. 

1.13.6 Other Performance Measures 

It is worth noting that there are three other types of performance measures found in 

the open literature. The first is the ~ignal-to-Noise Distortion Ratio (SNDR) which is 

defmed as the ratio of the power of the input signal to the power of the in-band 

quantisation noise including harmonic distortion. The second is ~urious free Qynamic 

Range (SFDR), which is defined as the power of the input signal to the power of the largest 

spurious tone for a given ~-~ modulator output signal in the frequency domain [Wep95]. 

The third is the Noise Power Ratio (NPR) which is defined as the ratio of the power 

spectral density of the noise outside the frequency band to the power spectral density of the 

noise inside the frequency band [Wep95]. 

1.14 Concluding Remarks to Chapter 1 

In this chapter, the fundamental concepts of ~-~ modulators were discussed and 

compared with conventional Nyquist rate and oversampling AID converters. The author's 

contributions to this research programme were stated, where a clear distinction was made 

between original contributions and extended/development contributions. The latter referred 

to the work of other ~-~ experts, which was judged to be worthy of further research. A 

summary of the major milestones in the history ofl:-~ modulators, since their birth in the 

1950's was presented. This was followed by a detailed explanation of first- and higher­

order lowpass l:-~ modulators, including the popular distributed feedback topology. A 
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description of multi-bit :I:-A modulators was presented, demonstrating the models of the 

used multi-level quantisers. The simulation approach that has been used to evaluate these 

L-,A modulators was described. The chapter concluded by describing the performance 

criteria that are commonly used to evaluate and assess the accuracy of these modulators 

such as signal-to-noise ratios and dynamic ranges. A discussion of the reasons for the 

occurrence of tones in the outputs of these modulators followed by methods to reduce the 

impact on the resolution of L-A modulators was also provided. 
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Chapter 2 

Bandpass l:-A Modulation 

2.1 An Overview of Bandpass I:-~ Modulation 

The concepts of conventional lowpass I:-~ modulation are applied to bandpass 

signal frequency ranges, whose frequency content lie in a narrowband [Pea87]-[Gai89]­

[Sch89]-[Hor91]. The resulting system is referred to as a bandpass l:-~ modulator 

[Bry94]-[Jan91b]-[Jan93]-[Thu95]-[Tr093]. In a similar manner to the lowpass case, 

bandpass l:-~ modulators combine oversampling and quantisation noise-shaping to trade­

off operation speed for improved amplitude resolution [Pat94]. Many of the advantages are 

also retained such as reduced anti-alias filter complexity, inherent linearity for single-bit 

quantiser modulators and robust analogue implementation [Fra95]-[Jan93]-[Nor97, pp. 

282]. 

This implies that l:-~ modulation can now be employed to perform AID conversion 

directly for high frequency narrow-band signals overcoming the necessity of modulating 

down to dc first [Fra95]. A diagram showing the constituent building-blocks of a typical 

bandpass l:-~ AID converter is given in Figure 2.1. 
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Figure 2.1 Block Diagram of a Bandpass Noise-Shaping l:-~ AID Converter. 

Compared with a lowpass I-t\ AID converter, the lowpass AA filter, loop-filter and 

decimator are replaced with equivalent bandpass filters, whose centre frequencies may 

reside at any spectral location away from dc. A single-bit bandpass I-t\ modulator 

produces an output signal normally consisting of a string of + 1 's and -1' s, whose average is 

equivalent to the input analogue signal to the modulator. From a frequency-domain 
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perspective, bandpass ~-~ modulators are designed such that the bulk of the quantisation 

noise is spectrally shifted to either side away from the signal band [Sch91 c] as illustrated in 

Figure 2.2. Note that Ie and IB refer to the centre frequency and bandwidth respectively. 

(-fc- IBI2) -Ie (-fc+ IBI2) 

Shaped Quantisation 
Noise 

Quantisation Noise 

DC (Ie -Is 12) Ie (/e+ Is 12) 
Frequency 

Figure 2.2 Quantisation Noise-Shaping in Bandpass ~ - ~ Modulation. 

The original signal, as a result, is left virtually unaffected with substantially less in-band 

quantisation noise. The shifted quantisation noise as well as any out-of-band signal 

harmonics and spurious tones are then attenuated by employing an appropriate bandpass 

filter [Dre91]-[Sch90]. Subsequently; a down-sampler is used to reduce the sampling 

frequency of the bandpass filtered signal to the Nyquist rate [Dre91]-[Sch90]-[Jan91a] . 

Bandpass ~-~ modulators can be also employed to perform high-resolution DI A 

conversion [Le097a]-[Le097b]. However, it should be made clear from the outset that this 

thesis primarily deals with the design and evaluation of bandpass ~-~ modulators for AID 

applications. 

The sampling theorem for bandpass signals states that the sampling frequency is only 

required to be twice the bandwidth of the input signal implying that much higher OSRs can 

be attained for relatively modest sampling frequencies [Dre91]-[Pro92]. This means that 

bandpass ~-~ modulators can achieve high SNRs at these significantly lower sampling 

frequencies in contrast with the lowpass case, where Is is required to be many times 

greater than the highest frequency component. For example, the conversion of a signal 

centred at 2 MHz with 20 kHz bandwidth. With a 20 MHz sampling frequency, a lowpass 

converter would provide five times oversampling, whereas a bandpass ~-6 converter 

would achieve 500 times oversampling [Bry94 ]-[Dre91 ]-[Jan91 b ]-[Jan93]. 

This chapter starts by providing a chronological survey of reported publications, an 

up-to-date review of hardware implementations and a summary of potential applications of 

bandpass ~-~ modulators. The existing lowpass-to-bandpass frequency transformation 
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techniques for mid-band and variable-band resonator-based bandpass l:-~ modulators are 

explained and analysed in greater depth to demonstrate their limitations. 

This background information sets the scene for the core objective of the chapter, 

which is to present, develop and propose different approaches for the system-level design 
. . 

of single-stage bandpass l:-~ modulators. A flow-line diagram summarising all these 

design procedures is illustrated in Figure 2.3. 

Figure 2.3 Different Techniques for the Design of Bandpass l:-~ Modulators. 

The following summarises the author's contributions to this chapter: First, the 

development of the lowpass-to-bandpass transformation technique, where the signal 

bandwidth as well as the centre of the variable noise-shaping band can be defmed for any 

behavioural-level narrow-band specification. Second, the development of a technique that 

is well suited for the design of variable-band bandpass l:-~ modulators based on the noise 

transfer functions of FIR notch-filters, IIR notch-filters, complex FIR notch-filters and 

complex IIR notch-filters. Third, an alternative novel technique for the design of variable­

band bandpass l:-~ modulators is proposed, which utilises a first-order sum-~lter in 

conjunction with fractional-delayers to spectrally transfer the noise-shaping band to the 

desired signal location. Fourth, a practical step-by-step methodology for the design of 

bandpass l:-~ modulators based on well-known filter family types is presented and 

supported with extensive simulation results. Fifth, several commonly used l:-~ modulator 

topologies are analysed and where appropriate structural modifications are made in order to 

allow variable-band noise-shaping. Simple-to-use routines, which can compute the required 
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coefficients for any system-level set of specifications as well as a library containing the 

corresponding L-~ modulator topologies have all been created in Matlab and Simulink 

respectively. Sixth, detailed simulations of the effect of non-unity gain and leaky resonators 

on the overall noise-shaping response, in-band SNRs and tonality of a fourth-order 

bandpass L-~ modulator are also provided. 

2.2 Sunrey of Publications to the Field of Bandpass L-~ Modulation 

This section presents a chronological survey of reported publications made by 

various pioneers, engineers, practitioners and theoreticians to the field of bandpass L-~ 

modulation as given in Table 2.1. These publications cover rigorous theoretical analyses, 

detailed behavioural investigations of new techniques and topologies as well as actual 

experimental results obtained from hardware implementations. 

A Resume of Publications on Bandpass L-~ Modulation Ref 

A method and detailed schematic diagram of a bandpass !:-a AID converter for mobile radio [Gai89] 

applications. 

Design analysis & simulation of the fIrst reported 4th-order bandpass t-a modulator: Is = 8 [Sch89] 

MHz.1e = 1 MHz.iB = 8 kHz. 16-bit resolution for narrow-band communication applications. 

A practical method for the design of a digital bandpass decimator for AID bandpass !:-a [Sch90] 

converters: Is = 8 MHz.fc = 1 MHz,iB = 8 kHz, OSR = 512, SNR = 107.4 dB. 

The design, analysis & simulation of an interpolative bandpass AID converter. [Dre91] 

A 2nd-order !:-a modulator, which provides noise-shaping at any centre frequency location. [Hor91] 

Design methodology of a 4th-order bandpass !:-a AID converter for a digital AM receiver [Jan91 a] 

application: 2.16 MHz<Is< 6.40 foriB = 10 kHz, Vc = Y.. 

SC design & simulation ofa 6th-order bandpass !:-a modulator: Is = 3 MHz, Ie= 455 kHz, [Jan91b] 

iB = 20 kHz, SNR = 94 dB for half-scale input. 

Design & SC realisation of 2-stage double-input bandpass t-a modulator using single- and [Pin91] 

multi-bit quantisers:1s = 66 kHz, 15.5 kHz <Ie < 16.5 kHz, in-band noise < -70 dB. 

Design ofa 4th-order bandpass !:-a AID converter ofIF signals to baseband I1Q format: [Thu91] 

Is = 10 MHz, Ie = 2.5 MHz, iB = 100 kHz, SFDR = 95 dB. 

The design, description & comparative evaluation of 3-types of bandpass l:-a converters for [Thu92] 

IF applications. 

A technique for achieving centre frequency tunability in bandpass t-a modulation by [Har93a] 

employing a lowpass-to-bandpass frequency transformation. 

First reported fully monolithic implementation ofa 4th-order bandpass l:-a AID converter: [Jan93] 

Is = 1.82 MHz, Ie = 455 kHz,iB = 10 kHz, SNR = 63 dB for half-scale input. 
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SC design & 1~ CMOS implementation ofa 4th-order bandpass l:-L\ modulator: [Lon93] 

Is= 7.2 MHz, le= 1.8 MHz, fB= 30 kHz, IS-bit resolution. 

Design of 4th-order bandpass l:-L\ AID converter for direct IF conversion: [Bry94] 

Is= 1.82 MHz, Ie = 4SS kHz,fB= 10 kHz, OSR= 91, SNDR= 6S dB. 

Design and 2~ CMOS fabrication of a 4-channel parallel AID converter for wide-band [Cor94] 

signals:1s = 4.3 MHz, noise null adjustment vB = 0.2 to 0.3 steps = O.OOS, SNDR = 36.4 dB. 

A novel 8th -order bandpass l:-L\ modulator architecture suitable for the AID conversion of an [Gou94] 

IF signal at 10.7 MHz, resolution = 13 bits. 

A new architecture for a digital radio receiver containing a novel complex bandpass l:-L\ [Jan94a] 

modulator is presented that allows the AID conversion on the VQ outputs of quadrature mixer 

SI circuit design & 1.2~ CMOS implementation ofan 8th-order bandpass l:-L\ modulator: [Pat94] 

Is = 40 MHz, k = 10 MHz, fB = 150 kHz, SNR = 90 dB. 

Design and implementation of a CT 4th-order bandpass l:-L\ modulator based on the pulse- [Sh094] 

invariant transformation: Is = 80 MHz, Ie = 20 MHz, fa = 1 MHz, SNR = 56.3 dB. 

Describing the use of phase corrective techniques to improve the performance of CT, 1 II, 2nd [Thu94a] 

and 3n1 order bandpass l:-L\ AID converters. 

A method of stabilising high-order bandpass l:-L\ modulators is presented, where a limiter is [Thu94b] 

employed to prevent quantiser overloading. 

Design, analysis & simulation of a tunable narrow-band 2nd -order bandpass AID converter for [Yan94] 

a mobile communication receiver. 

Design of a 2nd-order complex bandpass l:-L\ modulator that outperforms 4th-order real- [Azi95] 

coefficient bandpass l:-L\ modulator by an SNR of7.S dB for Vc = K 

Design of SC circuit of a 4th-order bandpass l:-L\ modulator. Eldo simulations show that for Is [Baz95] 

= 102.4 MHz, Ie = 25.5 MHz, fa = 5 MHz, SNDR = 28.5 dB. 

A method for the design of bigh-order bandpass l:-L\ modulators that uses inverse notch-filter [BeI95] 

sections and optimisation of the pole & zero positions to improve resolution & stability. 

A novel 4th -order bandpass l:-L\ modulator SC architecture that uses fewer components is [Fra95] 

proposed. SC simulated Is = 10 MHz,/e = 2.5 MHz,fa = 200 kHz, OSR = 25, SNR = 52 dB. 

SI design & 0.8J.1 CMOS implementation of a 4th -order bandpass l:-L\ modulator: [Ros95] 

Is = 10 MHz,/e = 2.5 MHz,fa = 30 kHz, SNR = 60 dB for -8.2 dB sine-input. 

New method for designing CT LC bandpass l:-L\ modulators based on DAC pulse shaping: [Sh095] 

4th -order results are Is = 200 MHz, k = 50 MHz, fa = 2 MHz, SNR = 64.3 dB. 

SC design & 0.8~ BiCMOS implementation of 2nd -order bandpass l:-L\ modulators:1s = 42.8 [Sin95] 

MHz, Ie = 10.7 MHz, fB = 200 kHz, SNR = 57 dB comparing active & passive sensitivities. 

A ratio-independent SC design technique & 2J.1 CMOS implementation of a 4th-order [Son9S] 

bandpass l:-L\ modulator: Is = 8 MHz, Ie = 2 MHz, fB = 30 kHz, SNR = 56 dB. 

Overview, design & implementation of bandpass l:-L\ modulation for AID conversion of IF [Thu9S] 

signals in narrow-band communication applications. 
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SC design in 0.5J.1 CMOS of a 6th -order multi-bit (9-level) bandpass I:-A modulator DAC, [And96] 

Is = 24.576 MHz, Ie = 6.144 MHz, fB = 1.536 MHz, SNR = 60 dB. 

Analytical derivation of the initial states that result in oscillations of zero-input 2nG-order [Dav96] 

resonator-based bandpass I:-A modulators. 

System-level design, behavioural-level and SC simulations of complex-signal I:-A [Dia96] 

modulators for quadrature bandpass AID conversion. 

Application of the theory of non-linear dynamics to the analysis of second-order bandpass [Fee96] 

I:-A modulators for more accurate prediction of stability and resolution. 

The use of an Sth-order bandpass I:-A modulator in a phase-locked-loop application is [Her96] 

described: Is = 24 MHz, k = 6 MHz, OSR = 64, SNR = 93 dB. 

A technique based on placing a notch in the image band of the NTF reduces the effect of [Jan96a] 

mismatches between the real & imaginary channels of complex bandpass I:-A modulators. 

Design & simulation of a 6th-order bandpass I:-A modulator with multi-stage polyphase [Kru96] 

decimator:Js = 3 MHz,/c = 455 kHz,JB = 22 kHz, SNR = 124.3 dB for composite sine inputs 

SC design & 0.8J.1 BiCMOS implementation of a 4th-order bandpass I:-A modulator for [Nor96b] 

ultrasound imaging: Is = 160 MHz, k = 5 MHz, fB = 2.5 kHz, DR = 84 dB. 

This paper gives the history and describes the theory of bandpass I:-A modulation and [Sch96] 

summarises some of the results reported in the literature. 

A digital method of stabilising CT 3rd-order bandpass I:-A modulator is presented, where [Tla96] 

oscillations are detected & internal variables are reset to initial values. 

SC design & implementation (O.SJ.1 BiCMOS) of Sth-order bandpass I:-A modulator, [Abc97] 

DR= 130 dB. 

SC design & implementation (0.5J.1 double-poly CMOS) of 4th-order bandpass I:-A [Baz97] 

modulator, Is = 160 MHz,lc = 40 MHz,fB = 2 MHz, SNDR = 45 dB. 

Comparison of cascade-of-integrators & cascade-of-resonators bandpass I:-A modulators [Bo197] 

based on SNRs for SC implementation. A 4th-order modulator exploiting best practical 

features of both is proposed. 

SC design & implementation (2J.1 CMOS) of a 6th -order cascade-of-resonators bandpass I:-A [Chu97] 

modulator: SO dB, VB = 0.004 and Vc = 0.25. 

Implementation of 4th-order bandpass I:-A modulator with digital programmable passband [Cor97] 

Vc = 0.2 to 0.3; SNRs are 47 dB and 59 dB forls of2.36 MHz & 1.25 MHz for VB = 0.005. 

Analytical conditions for the state-variables of zero-input oscillation bounds are derived for a [Dav97] 

2nd -order resonator based bandpass 1:-A modulator are derived. 

Design & implementation ofa 4th-order quadrature bandpass I:-A modulator converting 3.75 [Jan97] 

MHz I & Q inputs atls = 10 MHz attaining 67 dB DR for GSMfB = 200 kHz, SNDR = 62 dB 

Design & fabrication ofa 4 tb-order bandpass I:-A modulator: Is = 3.2 GHz,lc = 800 MHz,fB [Jay97] 

= 30 kHz, 66 dB & 41 dB SNRs for fB's of 100 kHz & 25 MHz 

Design & simulation of a high-speed multiplier-free higher-order digital bandpass I:-A [Leo97a] 

modulator: Is = 42.8 MHz,le = 10.7 MHz,fB = 200 kHz, DR = 72 dB. 
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Implementation of a high-speed multiplier-free 6th_ & 8th_ order digital bandpass l:-~ [Le097b) 

modulators using Xilinx FPGA:1s = 42.8 MHz,le = 10.7 MHz,fB = 200 kHz, DR = 72 dB. 

SC design & 2).1 CMOS implementation of a 4th-order bandpass l:-~ modulator with five [Liu97) 

digitally programmable passband locations: Is = 827 kHz Vc = Y4. VB = 0.0025. 

SC design & 0.6).1 CMOS implementation of a 2-path interleaved 4th-order bandpass l:-~ [Ong97) 

modulator for digital IF extraction: Is = 40 MHz, Ie = 20 MHz, Is= 200 kHz, DR = 75 dB. 

Design & implementation of a tunable 40 MHz-70 MHz CT 4tb-order bandpass l:-~ [Sh097] 

modulator: Is = 200 MHz, Ie = 50 MHz, fB = 200 kHz, SNR = 46 dB for k\ = k2 = -10 dB. 

Design, simulation & breadboard prototype of a robust 4th-order bandpass l:-~ modulator for [Ta097a) 

direct conversion to baseband with VQ paths: Is = 100 kHz, Ie = 25 kHz. 

SC design & implementation (0.5).1 double-poly CMOS) of a 4th-order bandpass l:-~ [Baz98] 

modulator. Is = 160 MHz,le = 40 MHz,fB = 1.25 MHz, SNDR = 45 dB. 

SC design & implementation (2).1 CMOS) ofa 4th_ and a 6th-order bandpass l:-~ modulators. [Chu98) 

SNRs are 73 dB & 80 dB for VB = 0.0025 & 0.002 respectively for Vc = Y4. 

Design and 0.5).1 bipolar implementation of an integrated Le CT 2nd-order bandpass l:-~ [Ga098] 

modulator: Is = 3.8 GHz, Ie = 950 MHz,fB = 200 kHz, SNR = 59 dB. 

Design of a multi-bit 4th-order bandpass l:-~ modulator for an RF-to-digital receiver [PeI98] 

providing 16-bit resolution overfB = 100 MHz for 10 MHz <Ie < 900 MHz. 

SC design & investigation of a novel6th-order bandpass t-a modulator. Is = 15 MHz, [Bot99] 

Ie = 400 kHz,.tB = 100 kHz, SNR = 96.4 dB. 

Exact theoretical analysis of 2nd-order bandpass l:-~ modulators for sinusoidal inputs. [Cha99) 

Methods for reducing SNR, DR and MSIA losses caused by excess loop delay in CT higher- [Che99c) 

order and multi-bit lowpass & bandpass t-~ modulators. 

Stability analysis incorporating the concept of phase uncertainty and a methodology for the [Eng99a] 

design of high -order CT bandpass t-~ modulators. 

The effects of bandpass l:-~ modulation on orthogonal frequency division multiplexing is [Gar99) 

analysed and investigated at the behavioural level. 

SC design & 0.8).1 BiCMOS implementation of an 8th-order bandpass t-a modulator: [Lou99] 

Is = 42.8 MHz. Ie = 10.7 MHz. .tB = 200 kHz, DR = 67 dB. 

Analysis of the limit-cycle behaviour of a double-loop 4th -order bandpass l:-~ modulator at [Man99) 

Vc = Y4. Scaling is applied to stabilise modulator. 

Systematic analysis of SI non-idealities on bandpass t-~ modulator performance. Practical [Ros99) 

guidelines validated by detailed time-domain simulations are provided. 

A reduced sample-rate bandpass t-a modulator architecture is designed & simulated: [Ste99] 

Is = 124 MHz, Ie = 512 MHz, .tB = I MHz, SNR = 68 dB. 

Analysis of timing jitter on the DR of discrete- & continuous-time bandpass l:-~ modulators. [Ta099] 

Table 2.1 Chronological Survey of Contributions for Bandpass I-A Modulation. 
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2.3 Survey of the Implementations of Bandpass 1:-.& Modulaton 

Bandpass 1:-.& modulators can be realised by using continuous-time circuits [Che99]­

[Eng99b] with off-chip Le resonators [Gao98]-[Sho94], monolithic discrete-time SC 

circuits [Chu98]-[Jan93]-[Lon93]-[Sin95] or SI circuits [Pat94]-[Ros95]-[Ros99]. SC is 

the most preferable analogue technique for the implementation of 1:-.& modulators, because 

of its high circuit accuracy [Baz97]. An up-to-date summary encompassing all the 

hardware implementations of bandpass L-~ modulators is given below in Table 2.2. 

Order Is Ie IB OSR SNRp Rei 
MHz MHz kHz dRs 

4 10 2.5 SO 62.6 60 [Dre90] 

4 10 2.5 100 50 67 [Thu91] 

4 1.82 0.455 10 91 63 [Jan93] 

4 7.2 I.S 30 120 75 [Lon93] 

4 26 6.5 200 65 55 [Tro93] 

S 40 10 150 133.33 90 [Pat94] 

4 80 20 1000 40 56.3 [Sho94] 

4 10 2.5 30 166.67 60 [Ros95] 

2 42.S 10.7 200 107 57 [Sin95] 

4 8 2 30 133.33 56 [Son95] 

6 24.576 6.l44 1536 8 60 [And96] 

4 160 5 2.5 32 65 [Nor96b] 

S 42.8 10.7 200 107 -- [Abc97] 

4 160 40 2000 40 45 [Baz97] 

6 0.5 0.l27 0.0005 500 85 [Chu97] 

4 1.25 0.25-0.375 6.25 100 59 [Cor97] 

4 2.358 0.472-0.707 11.79 100 47 [Cor97] 

4 10 3.75 200 25 62 [Jan97] 

4 3200 800 25000 64 41 [Jay97] 

8 42.8 10.7 200 107 --- [Leo97b] 

4 0.827 0.20675 2.067 200 67 [Liu97] 

4 40 20 200 100 72 [Ong97] 

4 200 50 200 500 46 [Sho97] 

2 3800 950 200 9500 59 [Gao98] 

S 42.S 10.7 200 107 52 [Lou99] 

Table 2.2 Survey of Bandpass 1:-.& Modulator Implementations. 
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2.4 Applications of Bandpass 1:-A Modulators 

Bandpass 1:-A modulators are well suited in communication systems, special­

purpose instrumentation and spectrum analysers for narrow-bandwidth input sources 

[Thu92]-[Lon93]-[Sch96]-[Nor97]. A typical practical application for bandpass AID 

conversion is in digital radio systems, where the IF signal of a superhetrodyne radio 

receiver can be directly digitised, allowing subsequent signal processing operations such as 

IF filtering and demodulation functions to be performed with greater accuracy [Bry94]­

[Jay97]. This technique avoids dc offset and low frequency noise problems (Le. compared 

with mixing and down conversion to baseband) [Pat94]. It also overcomes I1Q mismatches 

in quadrature demodulation, since this stage is performed digitally [Abc97]-[Gao98]­

[Har93]-[Jan93]-[Lou99]-[Sin95]-[Son95]-[Thu92]. In addition, these modulators enable 

the digitisation of weak IF signals with relatively low cost and high precision [Gar99]. 

In AM digital radio receivers, the placement of the AID interface closer to the 

antenna eliminates the need for the mixers and IF amplifiers, resulting in a reduced 

component count, robustness and greater accuracy. The use of digital filters improves the 

phase linearity and facilitates programmability and testability [Jan9Ia]-[Lon93]-[Sch89]­

[Eng99b]. 

Other viable applications that require high-resolution AID conversion include 

receivers for digital mobile cellular telephony [Gou94], high-speed modems [Baz95], 

satellite communication services [Chu97] and voice-band telecommunications. These 

bandpass converters are also suitable for portable receiver applications with channel 

allocation bandwidths Under 20 MHz, RF carrier frequencies below I GHz [Ga098], for 

example, pagers, cordless telephones, wireless electronic mail and personal communication 

devices [Jan94]-[Jan97]-[Ong97]-[Tao99]. 

A further promising application is in phased-array ultrasound imaging using I-bit 

bandpass l:-A AID converters [Nor96] , where the overall analogue hardware can be 

. simplified in exchange for increased digital signal processing complexity. A more recent 

applicable development is in on-chip signal generators for built-in-self-test [Vei96]. A 

phase locked-loop frequency synthesiser using a bandpass l:~A digital oscillator as the 

frequency reference was also reported in [Her96] as another potential application. 

2.5 The Lowpass-to-Bandpass Transformation Method - Mid-Band Resonance 

The simplest method for designing narrow-band bandpass l:-A modulators involves 

starting with a suitable lowpass accumulator-based l:-A modulator and then applying the 
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discrete lowpass-to-bandpass frequency transformation, z· l ~ _ z·2 [Sch92]-[Lon93]­

[Baz95]. A physical interpretation of this is that each delay element is replaced by a double 

delayer and a inversion. This has the effect of moving the zeros of the NTF from DC to the 

half-Nyquist frequencies as shown by the PZPs in Figure 2.4. 

v = 0.2 5 v = 0.25 

v = 0.5 ~----E~---ir v = 0 v = O.5-+------~B--------+- v =O 

v = -0.25 v = - 0.25 

Lowpass Loop-Filter Bandpass Loop-Filter 

(a) (b) 

Figure 2.4 Pole-Zero Patterns of (a) 15t-Order Accumulator, (b) 2nd -Order Resonator. 

Thus, the relationship between the sampling and centre frequencies for this popular special 

case is given by I e = y,; Is. The loop-filter becomes a second-order resonator R(z) glven 

by: 

1 
R(z) = - 2 

I+ z 
(2.1) 

where both zeros are stationed at the origin and the two complex conjugate poles are placed 

on the unit-circle at the half-Nyquist frequencies ( z = ±j), thus achieving resonance at 

Ve = y,; . At the resonant frequency, the mid-band resonator loop-filter has no phase-shift, 

whereas the double-delayer in the feedback path at this particular frequency introduces a 

180· phase-shift. 

(2.2) 

For this reason, the modulator output signal is added to, rather than subtracted from the 

input signal at the summing node. 
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Figure 2.5 Block Diagrams of (a) 1st-Order Accumulator-Based Lowpass, (b) 2nd-Order 

Resonator-Based Bandpass l:-~ Modulators. 

Figure 2.5 presents the block diagrams of a conventional lowpass first-order I-~ 

modulator and the newly derived second-order mid-band resonator-based l:-~ modulator. 

Although, the loop-filter is actually second-order containing poles at each of the one­

quarter and three-quarter sampling frequencies, it results in what is known as an effective­

first-order bandpass l:-~ modulator, because the other pole is really contributing to noise-
" 

shaping at the corresponding negative centre frequency. 

, An output expression for this second-order l:-~ modulator in the z-domain can be 

obtained by representing the I-bit quantiser by an additive white noise model and then 

applying linear analysis. This resultant output Y(z) becomes: 

Y(z) = X(z) + (1- jz-l)(1 + jz-l)Q(Z) = X(z) + (1 + Z-2)Q(Z) (2.3) 

where X(z) and Q(z) are the input and quantisation noise signals respectively. This 

approximate mathematical expression demonstrates that the quantisation noise is nulled at 

the half-Nyquist frequency by a second-order notch-filter, leaving the original signal 

undistorted. For implementation purposes, the loop and feedback filters are often combined 

into a single transfer function, resulting in the slightly modified output signal shown below: 

Y(z) = z-2 X(z) + (1 + z-2)Q(z) (2.4) 

In order to enable the second-order mid-band resonator-based l:-~ modulator to 

produce the correct noise-shaping in a simulation environment, it needs to be excited by an 

additive scaled dither signal at the quantiser input. In the absence of dither, the magnitude 

spectrum of this modulator consists of a string of strong-tones, whose location, mode of 

repetition and amplitude directly depend on the signal amplitude of the input sinusoid. For 

example, the magnitude spectrum for unity-amplitude input sinusoids contains purely three 

distinct tones positioned at the dc, half-Nyquist and Nyquist frequencies with no noise-
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shaping. The corresponding tone strengths are -12.04 dB, -12.04 dB and -18.06 dB 

respectively. For half-scale smusoids, five tones whose amplitudes are -8.52 dB, -18.06 dB, 

-18.06 dB, -18.06 dB and -24.08 dB are generated at the nonnalised centre frequencies of 

0,0.125,0.25,0.375 and 0.5 respectively. 

The amplitude of the majority of these tones is reduced as their number increases 

across the spectrum. This observation verifies the constant output power criterion. A very 

small amplitude dither signal in the order of J.I. V's is required to stimulate the modulator to 

achieve proper noise-shaping. In practice, however, larger amplitude dither signals (i.e. 

0.1 ~ 05 of full-scale) are deemed necessary to accomplish more significant quantisation 

noise randomisation, in order to reduce strong-amplitude tones to noise floor levels. Tone 

reduction can be achieved at the expense of degraded in-band SNR. 

Simulations have also revealed that this modulator can be made to deliver spectral 

noise-shaping without a dither signal by exciting it with an irrational-amplitude sinusoid. 

The immediate benefit is that the absence of dither does not compromise the modulator 

resolution. However, this type of excitation mechanism is deemed unreliable, because it is 

only restricted to making the modulator operational for non-fInite-amplitude input signals. 

Furthennore, all the examined noise-shaping spectra corresponding to a hundred random 

input amplitude combinations exhibited strong spectral content. 

Simulations have demonstrated that changing the initial conditions of the loop- and 

feedback ftlters from zero to random numbers and vice-versa, unfortunately does not 

trigger this modulator into proper operation. The location and number of these tones were 

seen to be totally independent of the initial condition values for this particular second-order 

L-~ modulator. The amplitudes of these tones, however, were observed to vary slightly for 

different combinations of random initial conditions. 

It was observed through detailed simulations that the injection to the modulator input 

of a sinusoid positioned at the exact band centre location produced a noise-shaping 

response that exhibited a multitude of dominant tones. The shifting of the input frequency 

slightly from the band-centre (i.e. by 0.01%) causes a randomisation effect to many of 

these limit cycle oscillations resulting in a signifIcantly improved noise-shaping spectrum 

with fewer tones. The application of this frequency offset not only eradicated many of these 

spurious tones, but it also acted as a third alternative to excite this modulator into 

accomplishing spectral noise-shaping. This frequency-offset mechanism has been 

employed in numerous topologies [Baz95]-[Rib94], but to the best knowledge of the 

author, no explanation has been reported to-date. 
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A fourth alternative means that can trigger this modulator into noise-shaping 

operation in the absence of dither is to make this modulator chaotic by shIfting the two 

conjugate poles of the loop-filters slightly outside the unit-circle [Sch94] . The movement 

of these poles substantially reduces the periodicity of these limit cycle oscillations, 

resulting in weaker and fewer tones appearing in the magnitude spectrum. This method 

should be applied with great care as minor shifts in the position of the poles due to non­

idealities in implementation can rendre the modulator unstable. Simulations have 

furthermore confirmed that this method, unlike dither, can not suppress all the tones across 

the spectrum. This complies with the observations made in [Dun96a] . 

This second-order L-~ modulator was evaluated for an input sinusoid at Vc = 0.25 

for a wide range of amplitude levels. The simulations demonstrated that its magnitude 

spectrum contained tones, whose locations and amplitudes varied with respect to the 

magnitude of the input signal. For example, the spectrum for a half-scale input amplitude 

contained two tones at 118 and 3/8 as shown in Figure 2.6(a). 
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Figure 2.6 Second-Order Mid-Band Resonator-Based Bandpass L-~ Modulator 

(a) Magnitude Spectrum, (b) SNR Curves for OSRs. 

Peak SNR values of 24.9 dB, 33.9 dB, 42.8 dB, 51.7 dB, 60.8 dB and 69.7 dB are 

attainable for OSRs of 8, 16, 32, 64, 128 and 256 respectively. In addition, the average 

increase in the SNR is found to be 9.2 dB for each doubling in the OSR. Furthermore, the 

fluctuations in the SNR curves in Figure 2.6(b) for large input amplitudes for OSRs of 8, 

16 and 32 are primarily attributed to the presence of relatively strong in-band tones. Small 

OSRs imply larger bandwidths and these in tum are likely to encompass more tones. The 

location, strength and frequency of these tones, as already discussed in Section 1.13 .5, 

depends on the amplitude and frequency of the input waveform. For very smai l input 
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amplitude signals, the SNR curves become very non-linear, because of the presence of 

many closely' adjacent tones within the signal region. Moreover, the out-of-band tones 

esp((cially ,at dc and Nyquist become more dominant as the input signal diminishes in 

amplitude. It was observed that the dc tone for a whole range of input amplitudes is always 

larger than its Nyquist counterpart by as much as 5 dB. 

2.6 Higher-Order Mid-Band Resonator-Based Bandpass l:-~ Modulators 

This transfonnation can be quite easily applied for the design of higher-order mid­

band resonator-based bandpass L-~ modulators. A generalised PZP for an L'h -order mid­

band resonator-based bandpass L-~ modulator is shown in Figure 2.7 (a). 
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Figure 2.7 (a) Pole-Zero-Pattem of the NTF of an L'h-Order Resonator-Based Bandpass 

L-~ Modulator, (b) NTF Magnitude Spectra of 2nd
_, 4th_ and 6th

_ Order 

Bandpass L-~ Modulators. 

A further advantage, as with the lowpass case, is that smaller sampling frequencies can be 

used to yield the same resolution to meet a given specification compared with lower-order 

L-~ modulators. Figure 2.8 presents an L'h -order chain of mid-band resonators with 

distributed feedback topology. 
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Figure 2.8 An Lth -order chain of mid-band resonators with distributed feedback. 

Using linearised analysis and assuming the feedback as well as the feedforward coefficients 

to be all unity results in an output given by: 

fez) = X(z) + (1 + z-2)L Q(z) (2.5) 

A theoretical expression corresponding to the NTF of (2.5) for the shaped quantisation 

noise is given by 

(j2 [ 2 ] a
2 

[\( )L\2 ] a
2 

a2hn = _n iH N (z)i 121fT = fn 1 + Z-2 = fn (2 cos21rfT)2L 
S fs Z = e S z = el 211fT S 

(2.6) 

Integrating over the signal bandwidth Is = Is /2 OSR, gives the in-band noise power a;" 

of the modulator. 

Ie + 'O/Z 
a;n = 2 f a;hn (f) df 

Ie - 'o/z 
(2.7) 

(2.8) 

The in-band quantisation noise is reduced by (3L + 3) dB for each octave increase in the 

OSR, where L denotes the order 'of the notch-filter [Sch89]-[J,an91b]. The theoreticai 

results depicting the decrease in the in-band quantisation noise with respect to the OSR for 

different modulator orders are presented in Figure 2.9. 
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Figure 2.9 
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The magnitude spectrum of a fourth-order resonator-based bandpass L-~ modulator for a 

half-scale single-tone sinusoid exactly centred at Vc = 0.25 is shown in Figure 2.10 (a). 
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Figure 2.10 Fourth-Order Mid-Band Resonator-Based Bandpass L-~ Modulator 

(a) Magnitude Spectrum, (b) SNR Curves. 

This spectrum is seen to contain six distinct tones positioned at 1116, 2116, 3116, 5116, 6116 

and 7/16 as well as two notches at DC and the Nyquist frequency. Detailed simulations 

have shown that the magnitude spectrum of L-~ modulators that contain a few strong­

power tones or many low-power tones due to very low input amplitudes often exhibit 

notches at the same time. Since the output power of a single-bit L-~ modulator is always 

unity irrespective of the input amplitude, these notches unavoidably occur to compensate 

for the presence of these tones_ This modulator was evaluated for different input amplitude 
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levels and zero initial conditions, where the number of tones and their locati~ns were seen 

to depend primarily on the amplitude of the input signal. The two notches remained at 

v = 0 and v = 05 for all input amplitudes. 

Simulations indicate that the locations, strength and density of the tones in the 

spectrum for this fourth-order L-~ modulator for an input signal' amplitude of 0.5 and a 

dither signal of 0.01 amplitude is very sensitive to the initial conditions of the resonators of 

the loop-filter. Peak SNR values of 34.4 dB, 48.8 dB, 64.2 dB, 79.3 dB, 94.8 dB and 110.3 

dB are attainable for OSRs of 8, 16, 32, 64, 128 and 256 respectively. In addition, the 

average increase in the SNR is found to be 15.2 dB for each doubling in the OSR. The 

simulations also reveal that the SNR curves in Figure 2.1 O(b) begin to decrease, when the 

quantisation noise power due to overloading exceeds the power of the input signal. For 

small input levels, the SNR reduction is attributed to the concurrent decrease of the input 

signal power and the increased occurrence of in-band tones. Modulators containing 

quantisers that have few and/or an even number of levels exhibit more tones in their 

spectral content, due to the absence of the zero threshold as this increases the occurrence of 

oscillations for small amplitude signals. 

Higher-order single-bit resonator-based bandpass L-~ modulators are prone to 

instability for large-amplitude input signals, because the signal levels in the modulator 

feedforward path increase more rapidly compared with those in the feedback. The feedback 

path is made ineffective and as a result, the I-bit quantiser becomes constantly overloaded. 

One simple heuristic solution is to choose suitable values for the feedback 

coefficients to make the magnitude of the feedback signals comparable to those circulating 

in the feedforward path. Intuitively, these coefficient values should be increased in powers 

comparable in value with the peak amplitude increase of the modulator order NTF. These 

feedback coefficients are numbered 12' 11 and 10 from the resonator nearest the quantiser. 

Simulations have confIrmed that this increase is proportional to (L -1) for feedback 

coefficients closest to the quantiser decreasing in successive powers for consecutive 

feedback coefficients away from the quantiser. Integer coefficient combinations are easier 

to use, e.g. 1,3,9 or 1, 4, 16 or 1, 5,25 for 10,11 and 12 respectively. Alternatively; small 

gains for the resonators can be used to reduce the magnitude of the signals in the 

feedforward path [Bos88]-[Baz95]. 

The envelope of the NTF for the 6th-order resonator-based L-~ modulator, when all 

the coefficients are set to unity, rises very steeply for the out-of-band magnitude reaching a 

peak value of 18.1 dB at v = 0 and v = 05 - well above the threshold tolerated by the 1-
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bit quantiser. The NTF magnitude can be reduced by including feedback coefficients to the 

modulator, whose values have to sufficiently exceed unity so as to provide adequate signal 

strength to counter-balance the large amplitude levels in the feedforward path. Figure 2.11 

shows that the NTF magnitude for different combinations of feedback coefficients. It is 

seen that the NTF magnitude decreases as the feedback coefficients increase - this naturally 

has the desirable effect of enhancing modulator stability. 
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Figure 2.11 NTF Magnitude Comparison for Different Feedback Coefficients for a Sixth­

Order Bandpass L-~ Modulator. 

The magnitude spectrum of a sixth-order bandpass L-~ modulator for an input 

amplitude of 0.5 and dither signal of 0.01 contained distinct tones located at equi-spaced 

multiples of v = 1/ 64 as well as four notches positioned at v = 0, 0.125 , 0.375 and 0.5. 

More unexpected notches appear in the spectrum in order to compensate for the presence 

of strong-power tones, especially for large-input amplitudes. The periodicity and strength 

of these tones were seen to be a function of the input amplitude. However, the location of 

the extra notches was shown to be independent of the signal amplitude. Furthermore, the 

use of different sets of feedback coefficients was demonstrated to be independent of the 

tones and the extra notches. 

Furthermore, increasing the amount of dither at the quantiser input helps to reduce 

these tones considerably, but at the expense of increased quantisation noise in the signal 

region. This also causes the notches to almost disappear confirming the earlier intuitive 

explanation that the presence of strong-power tones is related to the existence of notches as 

a means of power compensation. 
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Figure 2.12 SNR Curves of Mid-Band Resonator-Based Bandpass ~-~ Modulators for 

different OSRs , (a) Sixth-Order, (b) Eighth-Order. 

The SNR curves for a 6th -order and an 8th -order ~-~ modulators given in Figure 

2.12 demonstrate that significant improvements in the in-band SNRs and DRs are 

accomplished for higher modulator orders and OSRs. For the sixth-order ~-~ modulator, 

peak SNR values of 47.9 dB, 64.5 dB, 79.7 dB, 95.3 dB, 113.8 dB and 134.2 dB are 

. attainable for OSRs of 8, 16, 32, 64, 128 and 256 respectively. In addition, the average 

increase in the SNR is found to be 15.6 dB for each doubling in the OSR. 

The maximum achievable SNR values for the eighth-order modulator are 31.4 dB, 55.8 dB, 

85.3 dB, 112.1 dB, 138.8 dB and 157.7 dB for the same corresponding OSRs. In addition, 

the average increase in the SNR is found to be 26.4 dB for each doubling in the OSR. 

Furthermore, Figure 2.12 shows that the SNRs for the 6th and 8th order modulators are 

substantially reduced as a result of modulator instability for all input amplitudes beyond 

-2.2 dB and -10.5 dB respectively. 

Mid-band resonator-based bandpass ~-~ modulators are relatively easy to design and 

invariably exhibit symmetrical noise-shaping magnitude spectra. This symmetry helps to 

maintain stability and reduce the specification requirement of the decimation filter. 

However, two major limitations exist with the Z-I ~ _Z-2 transformation technique. 

Firstly; it only works for one centre frequency, i.e. Vc = ~. Secondly, it always requires a 

stable lowpass ~-~ modulator prototype. Fortunately; these constraints can be overcome 

by employing variable-band noise-shaping modulators as will be explained in the following 

sections. 
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2.7 The Lowpass-to-Bandpass Transformation Method - Non-Mid-Band Resonance 

This section describes a technique that was proposed in [Har93] and [Sch96] that can 

achieve noise-shaping tunability for very narrow-band bandpass I:-~ modulators. This 

method basically involves the insertion of a tuneable allpass filter in cascade With 'each 

delayer of a stable lowpass I:-~ modulator prototype, causing the loop-filter poles to be . 
shifted around the unit-circle to the designated centre frequency of interest. This discrete­

time lowpass-to-bandpass transformation is given by 

-1 -1[P+ Z-I] Z ~-z 
1 + pz-1 (2.9) 

where p = cos(21!lc / Is) . Positive and negative p values deliver noise-shaped passbands 

for the normalised centre frequency ranges 015 < Vc < 0.5 and 0 < Vc < 0.25 respectively, 

whereas the case p = 0 degenerates to the mid-band resonance case (i.e. Z-1 ~ _Z-2) that 

was discussed Sections 2.5 and 2.6. 

The application of this spectral transformation to a first-order accumulator-based 

lowpass I:-~ modulator results in the following loop- and feedback transfer functions. 

These are given by: 

I 
and (2.1 0) H(z) = 1 2P -1 -2 

- Z +z 

A suitable topology of a second-order bandpass I:-~ modulator incorporating these 

modifications is shown in Figure 2.13, where D(z) represents the dither gain . 
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: Additive White + + Y(z) • 
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,................................ D(z) . . 
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Figure 2.13 Second-Order Bandpass I:-~ Modulator using Frequency Transformation. 
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The magnitude spectrum for a 2nd-order L-~ modulator tuning at Vc = 5/64 fdr input and 

dither signal amplitudes of 0.5 and 0.01 is shown in Figure 2.l4(a). Magnitude spectra 

corresponding to a whole range of small and medium strength input levels exhibited 

relatively fewer tones in comparison with their mid-band resonator counterparts. This is 

due to the more complicated composition of the loop-filter, which imparts more state 

values and thus weaker spectral tones. Figure 2.14 (b) shows that, unlike the mid-band 

resonator case the SNR curves become noticeably non-linear for input signal amplitudes 

exceeding -5 dB. Tills non-linearity is caused by the asymmetrical noise-shaping response 

for non-mid-band resonator frequencies, which is responsible for the amplification of the 

internal signal levels in the modulator feed forward path. Careful behavioural-level 

simulations showed that the quantiser was never overloaded for the mid-band resonator 

case. However, for Vc = 5/64 the quantiser input amplitude invariably exceeded the 

quantiser dynamic range by as much as 2 or 3 times, giving rise to spurious tones. Some of 

these manifest themselves in the in-band region therefore accounting for the apparent SNR 

dip for high-input signal amplitudes. Simulations also confirm that unlike the z - I ~ _z-2 

spectral transformation, the modulator dynamics including stability are not preserved. 
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Figure 2.14 Second-Order Variable-Band Resonator-Based Bandpass L-~ Modulator at 

Vc = 5/64 (a) Magnitude Spectrum, (b) SNR Curves for different OSRs. 

Peak SNR values of 22.3 dB, 31.4 dB 39.7 dB, 49.4 dB, 58.3 dB and 67.3 dB are 

attainable for OSRs of 8, 16, 32, 64, 128 and 256 respectively. 

This transformation is then extended to a second-order lowpass L-~ modulator. The 

loop-filters HI (z) and H2 (z) as well as the feedback filter F(z) are identical to the 

transfer functions in (2.9). However, this newly derived 4th-order bandpass L-~ modulator 
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may be simplified by embedding the feedback term into the second loop-filter making 

H2 (z) a delayed resonator. The new transfer functions for this modulator become: 

and F(z) = 1 (2.11 ) 

while HI (z) remains unchanged. 

Simulations show that this 4th -order modulator remains unstable when all its coefficients 

are set to unity. In order to stabilise this modulator, the gain of the first-resonator had to be 

reduced. A value of 0.125 was empirically found to suffice, thus enabling this modulator to 

perform noise-shaping at Vc = 5 / 64 as can be shown in Figure 2.15(a). 
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Figure 2.15 Fourth-Order Variable-Band Resonator-Based Bandpass L-L\ Modulator at 

Vc = 5/64 (a) Magnitude Spectrum, (b) SNR Curves for Different OSRs. 

A family of SNR curves for various OSRs is illustrated in Figure 2.15(b) where this 

modulator is shown to become unstable for a sinusoidal input amplitude exceeding -2.1 dB. 

This is in contrast to the 4th-order mid-band resonator case, which does not destabilise until 

its input amplitude exceeds -1 dB. Peak SNR values of22.8 dB, 43 .8 dB, 44.2 dB, 56.5 dB, 

72.4 dB and 88.7 dB are attainable for OSRs of 8, 16, 32, 64, 128 and 256 respectively. 

Simulations confmn that further reductions in this gain value are deemed necessary if 

this modulator is required to perform noise-shaping for centre frequencies that are smaller 

than 5/64. This potential to instability is attributed to the uneven shoulder gains of the non­

mid-band resonator loop-filters HI (z) and H2 (z) . This 4th -order modulator was evaluated 

for different-amplitude sinusoids ranging from 0 ~ 1 for the full-range of normalised 

frequencies to determine the lower and upper frequency thresholds before the onset of 
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instability. When all the gain coefficients are set to unity, Figure 2.16 demonstrates that 

this modulator remains only stable for the range 0.22 < v c < 0.28 . 
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Figure 2.16 3-D Plot illustrating the Stable Range of Normalised Centre Frequencies for 

a Fourth-order Variable-Band Resonator-Based Bandpass L-~ Modulator. 

This transformation technique is simple to apply and provides flexibility in that 

noise-shaping can be provided for any centre frequency across the spectrum. However, it 

has several drawbacks. First; a working lowpass L-~ modulator is always required, whose 

noise-shaping properties and stability are not maintained after the transformation. Second; 

the uneven shoulder gains attributed to the non-mid-band resonator transfer function 

jeopardise modulator stability and impose tighter specifications on the post bandpass 

decimator. Third; good resolution can only be achieved for extremely narrow bandwidths, 

normally a single frequency. Fourth; the designer is only limited to specifying the centre 

frequency location and OSR, having no freedom over specifying the parameters that 

control the stable and tonal properties of the modulator. 

It is quite evident that this lowpass-to-bandpass transformation has numerous 

constraints. This necessitated the development of existing techniques to circumvent some 

of these limitations and explore alternative novel approaches that can deliver enhanced 

no{se-shaping :spectra and better resolution. 

2.8 Extension of the Transformation Approach to Specifying Bandwidths 

The lowpass-to-bandpass transformation technique proposed in [Har93] and [Sch96] 

and discussed in Section 2.7 restricts the designer to only specifying the centre frequency 

of the noise-shaping band. In this section, this transformation is developed so as to allow 
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the designer to specify the bandwidth as well as the centre frequency location for a given 

NTF. This is given by: 

where 

Z-2 +(2 ak)z-1 +(!=l) 
-1 k+l k+l 

Z -+-

a _ cos [21Z'(VH + vL )/2] 
- cos [21Z' ( V H - V L) I 2] 

(H)Z-2 + (2 ak)z-l + 1 
k+l k+l 

and 

(2.12) 

(2.13) 

Before delving into the detailed analysis, it is useful at first to discuss the main 

characteristics that are associated with this technique. First; it allows the designer to define 

the signal bandwidth making it more suitable for applications, whose inputs are composed 

of a multitude of harmonics. This is in contrast to the procedure in Section 2.7, which only 

permits the specification of the centre frequency, totally disregarding the width of the 

modulator input signal. Second; the shoulder gain levels of the NTF and subsequently the 

loop-filter are equal for any arbitrary band-location across the spectrum. This serves to 

enhance stability, particularly, for higher-order modulators circumventing the need for the 

incorporation of stability scaling factors. Third; the design process using this 

transformation is straightforward to apply to any conventional lowpass l:-~ modulator 

prototype. This simply requires the substitution of each delay element of the lowpass 

prototype with the more elaborate expression given in (2.12). Fourth; the magnitude spectra 

of all the examined modulators using this transformation for v c = 17/64 and VB = 1132 

exhibited noticeably fewer tones in their spectra. This is attributed to the more complicated 

coefficients of the loop-filter, which imparted a wider range of state values. Needless to 

say, a larger variety of internal signal amplitudes helps to reduce the recurrence of similar 

patterns, thus leading to fewer strong spectral tones. Simulations also confirm that the 

quantiser input levels are almost always within the threshold boundaries of the quantiser. 

This substantially reduces the formation of tones, especially for large input amplitudes. 

Fifth; the poles and zeros of the NTF are coincidentally positioned on the unit-circle. This' 

may simplify the complexity of the loop-filter coefficients, but certainly does not yield 

optimum in-band SNRs. 

In order to facilitate the design of bandpass l:-~ modulators using this transformation, a 

programme has been written in Matlab, which can evaluate the loop-filter coefficients 
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based on the specification of VC ' VB' modulator order and dither gain. An annotated outline 

of this programme's algorithm is given below: 

STEP 1: Specify the normalised centre frequency Vc as well as the bandwidth VB of the 

intended design. For a symmetrical signal-band, VB is defined in terms of the normalised 

lower vL and upper VH frequencies as illustrated below in (2.14) 

and (2.14) 

STEP 2: Determine the coefficients a and k using (2.13) and substitute them into the 

transformation given in 2.12. 

STEP 3: Select the NTF for a stable lowpass L-~ modulator. 

STEP 4: Apply this transformation to each delayer term of the prototype NTF. Note that 

higher-order delayers need to be replaced with a cascade combination of this 

transformation, whose number equals the order of each delayer component. 

STEP 5: Scale down the NTF so that its first coefficient becomes 1 in order to satisfy the 

causality criterion. Note that this transformation, unlike the previous two in Sections 2.5 

and 2.7, can not be directly applied to the loop-filter, because it contains constant terms in 

both numerator and denominator, inevitably violating the causality criterion. 

STEP 6: Verify the peak amplitude of the NTF spectrum to ensure that it complies with 

Lee's stability criterion. 

STEP 7: The loop-filter L(z) can be analytically obtained by re-arranging the NTF 

expression such that 

L(z) = (1- NTF)/ NTF (2.15) 

STEP 8: Enter the coefficients of L(z) into the modulator and simulate it at the 

behavioural-level to confirm the correctness of its operation. 

A generalised loop-filter expression, which is used by this programme is given below: 
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(2.16) 

The corresponding algebraic loop-filter coefficients for the first-order differencer-based 

NTF ar~ PI = al(l- a2)' P2 = (a/ -1), ao = (l+a2)' a l = -2al and a 2 = (l+a2) . 

The loop-filter coefficients for a second-order differencer-based NTF are: 

p.. =2al(l-a22),P2 =-2-2a2(1-a2 -a22)+aI
2(2a2 -3+a/), 

P3 = 2al(2 + a2 - 2a/ - a/),P4 = (2a/ + a24 -1- 2a2) ,ao = (1 +a2)2 a l = -4al(1 + a2) 

a2 = 2(1+ 2a/ +2a12 +a/), a 3 = -4al(1 +a2), a4 = (1 +a2)2. 

The numerical coefficient values for the first-, second- and third-order based NTFs and 

loop-filters for the ~ v = 1/32 case are given in Table 2.3. 

Noise Transfer Function Loop-Filter 

First-Order Differencer Case 

nl 0.1970 d l 0.1793 PI -0.0177 a l 0.1970 

~ 1 d2 0.8207 A -0.1793 a 2 1 

Second-Order Differencer Case 

nl 0.3940 dl 0.3586 PI -0.0353 a l 0.3940 

~ 2.0388 d2 1.6735 A -0.3653 a 2 2.0388 

n3 0.3940 d3 0.2943 A -0.0996 a 3 0.3940 

n4 1 d4 0.6735 P4 -0.3265 a 4 1 

Third-Order Differencer Case 

nl 0.5909 dl 0.5380 PI -0.0530 a l 0.5909 

n2 3.1164 d2 2.5585 A -0.5579 a2 3.1164 

n3 1.1895 d3 0.8888 A -0.3008 a 3 1.1895 

n4 3.1164 d4 2.0997 /34 -1.0167 a 4 3.1164 

ns 0.5909 ds 0.3623 Ps -0.2286 as 0.5909 

n6 1 d6 0.5527 P6 -0.4473 a 6 1 

Table 2.3 NTF and Loop-Filter Coefficients for Extended Transfonnation Technique 
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The magnitude spectra for a second- and third-order differencer-based NTF for a sinusoidal 

input amplitude of 0.4, Vc = 17/64, ~ v = 1/32 and dither signal = 0.05 are shown in 

Figure 2.17. 
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Figure 2.17 Magnitude Spectra using Extended Transformation Approach of a :E-~ 

Modulator at Vc = 17/64 based on NTFs (a) 2nd-Order Differencer, 

(b) 3 rd -Order Differencer. 

The plots in Figure 2.18 show a family of SNR curves for different OSRs for the 1 S\ 2nd 

and 3rd order differencer-based NTFs at Vc = 17/64. Peak. SNRs values of 24.9 dB, 34.6 

dB, 44.2 dB, 52.8 dB, 61.5 dB and 71.1 are achievable for OSRs of 8, 16, 32,64, 128 and 

256 respectively for the 1 5t-order case. 
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Figure 2.18 SNR Curves using the Extended Transformation Approach of a :E-~ 

Modulator at Vc = 17/64 based on the NTF of: (a) 1 st-Order Differencer. 

(b) 2nd-Order Differencer and (c) 3rd-Order Differencer. 
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Similarly; the corresponding set of maximum SNRs for the 2nd-differencer case are 24.6 . 

dB, 35.5 dB, 48.4 dB, 61.8 dB, 75.8 dB and 90.6 dB and the for 3fd-order case, these are 

23.2 dB. 34.1 dB, 47.2 dB, 59.3 dB, 68.7 dB and 76.1 dB resp<?ctively. In addition, the 

average increase as a result of doubling the OSR for the 1 st, 2nd and 3fd order differencer­

based modulators are given by 8.9 dB, 13.1 dB and 17.5 dB.respectively. Simulations have 

also shown that this method does not deliver good SNRs for extremely narrow-bandwidths. 

This is explained by the fact that the very close clustering of the NTF zeros to the poles do 

not allow the zeros to accomplish sufficient attenuation in the signal region. 

2.9 Criteria for the Design of Variable-Band Bandpass l:-~ Modulaton 

Most of the published work on resonator-based bandpass l:-~ modulators has 

involved utilising a convenient centre frequency that is one quarter of the sampling 

frequency as confIrmed by the literature surveys in Sections 2.2 and 2.3. This section 

pres~nts several methods for the design of narrow-band bandpass l:-~ modulators that can 

accommodate different passband to sampling frequency ratios, overcoming the popular 

Is /4 restriction. 

All the considered methods will assume that the I-bit quantiser is modelled by an 

equivalent additive noise source in order to enable the application of linear theory. As 

already discussed, this linear model has many limitations, but it provides an adequate 

ge~eral approximation of noise-shaping properties of dithered l:-~ modulators. It enables 

the designer to manually derive reasonably accurate models for the loop- and feedback 

filters for any noise transfer function specifIcation. The effect of parameter variation on the 

overall modular characteristics as well as useful intuitive understanding of modulator 

operation can also be gained from this linear model. 

The fInal theoretical performance of a l:-~ modulator has to be verified through 

detailed behavioural simulations, which incorporate the actual non-linear quantiser. The 

ultimate design stage may include adjusting the modulator feedforward and/or feedback 

coefficient(s) to achieve more effective noise-shaping and better resolution. It may also 

involve varying the amount of dither at the quantiser input or modifying the loop-filter 

initial conditions to suppress in-band tones. 

A block diagram of a single-stage l:-~ modulator is shown in Figure 2.19, where 

L(z) and F(z) depict the loop- and feedback transfer functions and X(z), Y(z), Q(z) and 

D(z) represent the input, output, quantisation noise and dither signals respectively. 
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X(z) 
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Quanlisalion 
Noise 

X(z) 

Y(z) => 
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STF = L(z) 
1 + L(z)F(z) 

1 
NTF = 1 + L(z)F(z) 

D(z) 

(b) 

Figure 2.19 Block Diagram of (a) Single-Stage l:-~ Modulator, (b) Equivalent Linear 

Model. 

This linearised approach enables the modulator to be characterised by a Signal 

Transfer Function (STF) Hs(z) and a Noise Transfer Function (NTF) HN (z) as shown in 

Figure 2.19 (b). The expressions for the Hs(z) and HN(z) are given by: 

L(z) 
H (z) - ----'--'-­

s - 1 + L(z)F(z) 
and 

1 
H N (z) = 1 + L(z)F(z) (2.17) 

The loop- and feedback filters can be analytically derived by re-arranging the expression 

forthe HN (z) as shown below: 

(2.18) 

The individual transfer functions for F(z) and L(z) can be simply obtained by separating 

the numerator and denominator expressions such that F(z) = (1- HN(z») and 

L(z) = 1 IHN (z). 

It is useful at this stage to derme a set of criteria that will ensure the design of stable 

high-resolution variable-band bandpass l:-~ modulators. 

The causality criterion requires the loop around the quantiser to contain at least one 

delayer. This condition must be met to ensure that the preceding quantisation error values 

are used to form the current input to the quantiser. If this criterion is not satisfied then the 

modulator can not be implemented. This causality rule is usually applied to the NTF and is 

mathematically depicted by 

(2.19) 

which implies that the NTF numerator and denominator polynomials must be of the same 

order with both leading coefficients set to unity. This can be accomplished by incorporating 

the delayer component either in the loop-filter L(z) or feedback filter F(z). Note that the 
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simultaneous insertion of delayers in both L(z) and F(z) causes unnecessarily large phase 

shifts in the modulator spectral responses, as confirmed by simulations, leading to 

instability. 

The modulator NTF must satisfy the stability criterion according to [Lee87b]. 

Making the approximately derived linear model stable does not guarantee the stability of 

the modulator due to the presence of the non-linear quantiser. A non-linear system may 

become unstable, if the out-of-band noise gain gets too high. Extensive empirical 

investigation by Lee, taking into account component and manufacturing tolerances requires 

the NTF to satisfy (2.20): 

(2.20) 

The stability of higher-order single-bit bandpass l:-~ modulators can be further 

enhanced by designing NTIs that do not exhibit gain peaks in the magnitude spectra in 

order to control the signal amplitude levels within the modulator. thereby avoiding 

quantiser overloading. 

The deployment of the NTF zeros and consequently loop-filter poles exactly on the 

unit-circle at the desired centre frequency accomplishes maximum in-band quantisation 

noise attenuation resulting in a very deep 'V-shaped' notch. This can be mathematically 

verified by ensuring that the squared and constant term coefficients of the resonator 

denominator are both equal to unity [Sig95]. If the loop-filter poles are positioned at the 

wrong frequency (Le. wrong angle in the z-plane). then the noise notch will be improperly 

centred. More seriously, the movement of the resonator poles inside the unit-circle reduces 

the resonator gain (Le. Q-factor) at the centre frequency of interest. The in-band notch 

becomes shallower resulting in a poor noise-shaping response and a lower in-band SNR. If 

the radii of the resonator poles are reduced by more than 5% from unity, then the noise­

shaped magnitude spectrum begins to exhibit more tones. 

From a time-domain point-of-view, the leakage factor in the resonator is responsible 

for the creation of a permanent error between the modulator input and output signals, thus 

accounting for the lower SNR performance. 

It can be reasonably argued that the internal signal levels within the modulator will 

have smaller amplitudes, which implies that the limit cycle oscillations will be disturbed 

less often resulting in the occurrence of more identical sample patterns in the time-domain. 

The slight movement of some or all the resonator poles outside the unit-circle 

increase the vulnerability of the modulator towards instability. This, however, causes the 
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break-up of some of the limit cycle oscillations resulting in fewer tones appearing across 

the spectrum. 

The noise-shaping characteristics of the modulator are related to the loop-filter 

characteristics including the accuracy and locations of its poles and zeros, the initial 

conditions of the loop-filter, the number of levels in the quantiser as well as the type and 

amplitude of the input signal. The use of coincidental zeros, integers or mUltiple of 2 

coefficients in the NTFs . and loop-filter simplify the hardware complexity of I:-~ 

modulators [Nor97, pp. 282]. 

The NTF method circumvents the need to obtain or design a lowpass I:-~ modulator 

prototype by starting the design process directly for the bandpass I:-~ modulator. This is 

particularly useful for the design of higher-order modulators, where the maximum 

magnitude gain of the noise-shaping spectrum can be exactly determined and reduced if 

necessary to ensure modulator stability. 

2.10 The IIR Notch-lilter (FNF) Approach 

This method is based on positioning the zeros of the real-coefficient NTF in 

conjugate pairs on the unit-circle at the selected centre frequency location to provide 

maximum signal-band attenuation. The zeros of the NTF are located at e±j21rVc ,where Vc 

is the normalised centre frequency of interest. The poles of the NTF, however, are 

permanently stationed at the origin of the unit-circle. The NTF is given by: 

(2.21) 

The expressions for the loop L(z) and feedback F(z) filters can be analytically obtained by 

substituting the H N (z) into (2.21) resulting in 

L(z)=I/I-2cosaz-1+z-2 and F(z)=2cosaz-1-z-2 (2.22) 

The corresponding Pole-Zero-Patterns (PZPs) for HN(z) , L(z) and F(z) are given below: 
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!ffF Loop-Filter L(z) FeedOOck-Filter F(z) 

(a) (b) (c) 

Figure 2.20 Pole-Zero-Patterns of (a) FIR Notch-Filter NTF, (b) Loop-Filter, 

(c) Feedback Filter. 

This linear analysis reveals that a double delayer on its own in the feedback path, 

unlike the mid-band resonator case, is insufficient to completely cancel the denominator 

components of STF and NTF in (2.17) to unity. Simulations confinn that improper 

denominator cancellation lowers the in-band quantisation noise attenuation. The inclusion 

of a weighted single-delayer (i.e. 2 cos2;r Vc z-l) in summation with the double delayer in 

the feedback path, depicted by F(z) , achieves the necessary cancellation and thus provides 

more effective noise-shaping. Note that F(z) degenerates to a double-delayer only when 

Vc = 1/ 4. Simulations confinn that smoother magnitude spectra and better in-band SNRs 

are accomplished with the inclusion of the (2cos2;r Vc Z-I) tenn in the modulator 

feedback path. 

The second-order L-~ modulator shown in Figure 2.5(b) is up-graded so as to enable 

it to achieve noise-shaping for any nonnalised centre frequency in the range 0 < Vc < 0.5 . 

The variation of the noise-shaping band location is achieved by changing the value of /3 

where /3 = 2 cos2;r vc ' This corresponds to the movement of the poles of L(z) along the 

unit-circle to the specified centre frequency location. The modified resonator-based L-~ 

modulator structure is illustrated in Figure 2.21. Note that /3 = /31 = /32 = 1 in this case. 
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feedback-filter .............................. 

Figure 2.21 Variable-Band Second-Order Bandpass L-a Modulator. 

The linearised output expression for structure shown in Figure 2.21 is 

fez) = X(z) + (1- {3z-1 + z-l)Q(z) (2.23) 

where Hs(z) is equal to unity and HN(z) = (1- pz-l +z-l). 

The NTF for non-mid-band centre frequencies exhibit asymmetrical magnitude responses. 

This imbalance in shoulder gain levels reaches peak values of (2 - p) for 0 S Vc S 015 

and (2 + p) for 015 S Vc S 05. This unevenness is transferred into the loop-filter 

characteristics as a result of the NTF of (2.23) resulting in asymmetrical magnitude spectra. 

This asymmetry causes the amplification of some of the internal signal levels in the 

modulator, especially at the quantiser input. Figure 2.22(a) and 2.22(b) contrast the 

histograms of the quantiser input for a second-order modulator for a 0.7 input amplitude 

sinusoid for Vc = 114, and Vc = 1164, where larger input quantiser amplitudes are clearly 

observed with the latter case. 
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Figure 2.22 Histograms of the Range of Quantiser Input Amplitude for a Variable-Band 

Second-Order L-~ Modulator at (a) Vc = 1/4, (b) Vc = 1/64. 

Simulations confirm that this second-order L-~ modulator remains stable up to full 

scale input amplitudes for all values of vc , despite the large internal signal levels. The 

family of SNR curves in Figure 2.23 exhibit non-linearities for large input amplitudes due 

to quantiser overloading. 

The degree of non-linearity becomes more noticeable for noise-shaping bands that are 

positioned close to dc or Nyquist due to the disparity of the shoulder gain levels of the 

NTF. Figure 2.23 also shows that this modulator exhibits better in-band SNR curves (by as 

much as 3 dB) for Vc = 5/64, Vc = 17/64 and Vc = 29/64 compared with those obtained for 

the modulator in Figure 2.13. This improvement is attributed to the f3 coefficient in the 

feedback path, which is doubled in value compared with the Harris lowpass-to-bandpass 

transformation technique. Thus, it is concluded that this bandpass L-~ modulator provides 

more effective noise-shaping by as much as an extra half-bit of resolution compared with 

its sister topology in Figure 2.13 . 
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Figure 2.23 (a) Magnitude Spectrum of a Second-Order L-Ll Modulator at Vc = 5/64, 

SNR Curves versus Input Amplitudes for Variable-Band Bandpass L-Ll 

Modulators for Different OSRs at (b) v c = 5/64, ( c) v c = 17/64 and (d) v c = 

29/64. 

For non-mid-band second-order L-Ll modulators, the additional middle-term 

coefficient, (i.e. fJ) leads to the creation of more state values, resulting in more tones 

having smaller amplitudes. However, the magnitude spectrum corresponding to noise­

shaping bands at Vc = 1/ 6 and Vc = 1/3 exhibits more distinct tones compared with 

other centre frequencies. The strength of these tones is attributed to the simple integer 

coefficients of the loop-filter, which yield fewer and more frequent state values. These 

integer coefficients create finite-amplitude internal signals, which occur at exact bin 

locations. This explains why the magnitude spectra for Vc = 1/6 , Vc = 1/4 and Vc = 1/3 

are more tonal compared with other values of vc' 

A more hardware-efficient second-order bandpass L-i1 modulator combining L(z) 

and F(z) into a single filter that is more suitable for implementation purposes as given by 

(2.24). The modified linearised output expression has been altered as depicted by: 

(2.24) 

It should be noted that in spite of this STF change, the variation in the magnitude and phase 

characteristics in the in-band signal region between (2.23) and (2.24) are negligible. 

This technique can be extended to higher-order L-i1 modulators, where improved in­

band SNRs and DRs can be accomplished for any variable centre frequency. Higher-order 

NTFs can be simply designed by coincidentally positioning mUltiple conjugate pairs of 
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zeros at the designated centre frequency. The NTF of a 4th-order bandpass l:-a modulator 

is given by 

(2.25) 

Using linearised analysis and combining the second loop-filter with the feedback filter into 

a single entity to simplify hardware implementation, the corresponding first and second 

loop-filters respectively become: 

with the feedback set to unity as shown in Figure 2.24. 

r---------- .. 
I Equivalent Q(z) I 

I Additive White + ~ Y(zJ I 
I NoiseModeI ~ I ___________ .J 

D(z) 

X(z) I--........ y(z) 

Figure 2.24 Variable-Resonator Based Fourth-Order Bandpass l:-a Modulator. 

The linearised output expression is given by 

where 

Note that when fi, 12' gl and g2 are set to unity, the output Y(z) degenerates to 

Y(z) = (pZ-l - Z-2)X(Z) + (1- pZ-l + z-2)2Q(z) 

(2.27) 

(2.29) 

Quantitatively; the NTF magnitude gains of this fourth-order ~-~ modulator have 

peak values of (2 - fJ)2 and (2 + fJ)2 for the frequency ranges 0 S Vc S 015 and 

015 S Vc S 05 respectively as shown in Figure 2.25(a). On the other hand, the peak NTF 

gain corresponding to the mid-band notch filter case degenerates to 4. Given that the 

frequency dependent parameter p can reach a maximum of 2 for both dc and Nyquist, the 

corresponding NTF peaks and as a result, the modulator internal signal levels are 
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quadrupled in amplitude compared with the mid-band case. This explains why non-mid­

band fourth-order L-~ modulators are less stable in comparison with their mid-band 

counterparts. 

The 3-D plot in Figure 2.25(b) demonstrates that this fourth-order bandpass L-~ 

modulator is stable up to an input amplitude of unity, with I % dither and under random 

initial conditions for the mid frequency range 0218 ~ Vc ~ 0282. The modulator 

instability, outside this range, is attributed to the rising shoulder gain levels of the resonator 

at low and high frequencies for 0 < Vc < 0.218 and 0282 < Vc < 0.5 respectively. 
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Figure 2.25 (a) Maximum NTF Amplitude, versus Input Signal Amplitude versus 

Normalised Frequency, (b) 3-D Plot illustrating the Stable Range of 

Normalised Centre Frequencies for a Fourth-order Variable-Band Resonator­

Based Bandpass L-6 Modulator. 

The effect of this asymmetry becomes even more significant for higher-order 

variable-resonator based modulators, because the signals in the feedforward path in the 

modulator are effectively amplified by the gain of L resonators in cascade, thus 

overloading the I-bit quantiser. 

The modulator in Figure 2.24 can be made stable for all centre frequencies by 

reducing the gains a l and a2 in the feedforward path. A conservative empirical rule-of­

thumb, which was found to work for a whole range of centre frequencies involved using 

the inverse of the peak NTF magnitude for the gl coefficient. The gain of the first loop­

filter is the most critical as this has global control over all the internal signal levels of the 

modulator. The stability of this variable-band fourth-order L-L\ modulator was evaluated 
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for a whole range of centre frequencies. A family of SNR curves for three different centre 

frequencies are shown below in Figure 2.26. The premature instability experienced by this 

modulator at frequencies very close to DC or Nyquist is caused by the disproportionate 

shoulder gain levels of the loop-filter. 
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Figure 2.26 Family ofSNR Curves versus for the Variable-Band Fourth-Order Bandpass 

L-6 Modulators at (a) Vc = 5/64, (b) Vc = 17/64 and (c) Vc = 29/64. 

Behavioural level simulations for the 2nd and 4th -order variable resonator based 

bandpass L-6 modulator show that the peak SNRs and DRs remain relatively constant for 

any arbitrary centre frequency as can be deduced from the results in Table 2.4. Simulations 

also show that the SNR is improved by an average of 15.6 dB for every doubling of the 

OSR for all examined frequencies in Table 2.4. 

Vc Second-Order Fourth-Order Second-Order Fourth-Order 

Peak SNRldBs Peak SNR/dBs DR/dBs DR/dBs 

1 :8 55.8 94.7 59.8 101.7 

1 :7 55.1 93.6 59.0 99.8 

1 :6 55.0 93.4 58.1 98.6 

3:16 54.9 92.6 58.8 97.6 

1:5 56.8 93.3 57.8 96.8 

3:8 56.3 94.8 59.7 100.4 

2:5 56.7 94.7 60.5 99.4 

Table 2.4 Peak SNRs and DRs for 2nd and 4th Order Bandpass L-6 Modulators 

This modulator can be also stabilised by replacing the single-bit quantiser with a 

multi-bit quantiser. The use of a multi-level quantiser generates small quantisation error 

69 



signals, which help to control the amplitude levels of the internal signals in the modulator. 

Compared with the .single-bit quantiser case, these relatively small signal levels do not 

overload the quantiser as often, resulting in more stable modulators. 

a 

0.8 

0.5 

0.1 

0.01 

a 

0.8 

0.5 

0.1 

0.01 

a 

0.8 

0.5 

0.1 

0.01 

Table 2.5 

~.-levels a 9-levels a 10-levels 

0.142< vc <0.353 0.8 0.124< vc < 0.371 0.8 0.108 < vc < 0.393 

0.129< vc < 0.371 0.5 0.115< vc <0.384 0.5 0.107 < vc < 0.393 

0.129< vc <0.371 0.1 0.102< vc <0.399 0.1 0.098 < vc < 0.402 

0.116< vc < 0.384 0.01 0.103 < vc < 0.402 0.01 0.098 < vc < 0.397 

II-levels a 12-levels a 13-levels 

0.093 < vc < 0.402 0.8 0.088 < vc < 0.424 0.8 0.057 < vc < 0.442 

0.080 < vc < 0.420 0.5 0.068 < vc < 0.429 0.5 0.045 < vc < 0.469 

0.067 < vc < 0.433 0.1 0.063 < vc < 0.442 0.1 0< vc <0.5 

0.054 < vc < 0.446 0.01 0.050 < vc < 0.450 0.01 0< vc <0.5 

14-levels a IS-levels a 16-levels 

0< vc <0.46 0.8 0< vc <0.5 0.8 0< vc <0.5 

0< vc <0.5 0.5 0< vc <0.5 0.5 0< vc <0.5 

0< vc <0.5 0.1 0< vc <0.5 0.1 0< vc <0.5 

0< vc <0.5 0.01 0< vc <0.5 0.01 0< vc <0.5 

Stable Range of v c versus the Number of Quantiser Levels for a 4th-Order 

Variable-Resonator Based Bandpass l:-~ Modulator. 

Detailed simulation results were carried out for the 4th-order variable-resonator 

based bandpass l:-~ modulator to establish the relationship between the stable range of 

normalised frequencies with respect to the number of quantiser levels. Table 2.5 

summarises these results, where it can be clearly seen that the stable range of normalised 

frequencies increases with more quantisation levels. Note that a refers to the amplitude of 

the input signal to the modulator. This modulator for an amplitude dither signal of 0.01 

requires at least 15 levels to remain stable up to an input signal amplitude of 0.8 and needs 

16 levels (Le. 4-bits) for it to remain stable up to full-scale input amplitude. A further 

observation is that the stable range of normalised frequencies increases as the input 

amplitude signal decreases in value. This confirms that the stable range of normalised 

, 
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frequencies is a f).mction of both the input signal amplitude as weU· as the location of the 

noise-shaping band. 

A family of SNR curves for the 4th -order variable-band bandpass E-~ modulator for 

different quantiser levels is shown in Figure 2.27, where the linearity of the SNR plots is 

seen to improve as the number of quantiser levels increases. 

o~ ~ ~ ~ ~ ~ 
Input Amplltude . n dB, 

(a) 

o ' 
. g) -1D .8) .m ...() ~ 

Input Amplltude .n dB_ 

(b) 

dL--~-~----=-~_~ 
~ ~ ~ ~ ~ ~ 

Input Am p( l t ... d. 1 n dB. 

(c) 

Figure 2.27 Family of SNR Curves for the Fourth-Order Bandpass E-~ Modulator 

at vc= 17/64: (a) 3-levels, (b) 5-levels and (c) 15-levels. 

The maximum achievable SNR for this 4th -order bandpass L-~ modulator for different 

combinations of multi-level quantisers and OSRs are shown in Table 2.6. As expected, the 

peak SNR figures increase in proportion to the number of levels in the quantiser. However, 

a point is reached, where this SNR improvement ceases, making it unnecessary to utilise 

quantisers with additional levels. For this modulator, the critical number of levels appears 

to be between 5 and 6 based on the results presented in Table 2.6. 

OSR 

8 

16 

32 

64 

128 

256 

Table 2.6 

Peak SNRs in dBs 

2-levels 3-levels 4-levels 5-levels 6-levels 15-levels 

26.5 36.3 42.2 43.2 43.3 43 

41.9 51.4 57.1 58.1 58.3 58.5 

57.1 66.4 72.2 72.9 73.4 73 .2 

72 81.3 87 88.5 88.4 88.5 

87.2 96.9 102.6 102.7 103.8 103.1 

102 111.7 117.2 117.8 119.4 118.6 

Peak SNR values versus the Number of Quantiser Levels for a 4th -Order 

Variable-Resonator Based Bandpass E-~ Modulator at Vc =17/64. 
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A third alternative of obtaining stability is to utilise IIR notch filters for the NTF as 

will be explained in the next section. 

2.11 The !IR Notch-lilter (INF) Approach 

The uneven shoulder gain levels of the magnitude spectrum for most frequencies is a 

major drawback of the FNF technique. Another limitation is that the notch has a relatively 

large bandwidth implying that other frequency components, including unwanted tones, 

close to the desired nulls may be included in the in-band signal region. This constraint is 

also unsuitable for very narrow-band applications. These two problems can be solved by 

placing the conjugate pole pairs of the NTF at the same frequency of the null, but with a 

reduced magnitude as given by: 

(2.30) 

where p is the magnitude of the NTF poles. The deployment of the poles close to the zeros 

at the same frequency creates resonance in the null region, which simultaneously reduces 

the notch bandwidth and increases its attenuation at the selected centre frequency. 

Theoretical analysis backed-up with simulations indicate that more effective notches 

are attainable when p> 0.9. The placement of the poles close to the band edges helps to 

alleviate the out-of-band gain in order to achieve stability of higher-order bandpass L-~ 

modulators. 

The two spectral magnitudes of FIR and IIR notch filter for Vc = 5/64, are shown in 

Figure 2.28, where almost a threefold gain reduction is attained by making p > 0.9 . 

Magnitud e response of an IIR 
4~------~--------~------~--------~------~ 

35 

3 

25 
~ 

~ 2 
g> 

::E 1 5 

0 .5 

°0L---~~~~----~0~2~----~0~3~------0~4------~ 
0 .5 

Normali zed Frequency 

Figure 2.28 A NTF Magnitude Comparison of FIR and IIR Notch-Filter Based Variable­

Band Second-Order L-~ Modulator at Vc = 5/64. 
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The PZPs of H N(Z) , L(z) and F(z) belonging to this technique are shown in Figure 2.29. 

v = 0.25 v = 0.25 V= 015 

\\ 
v = O.5 v=O.5 V= 0 

!) 
v = -0.25 v = - 0.25 v = - 0.25 

!ffF Loop-Filter L(z) Feedback-Filter F(z) 

(a) (b) (c) 

Figure 2.29 PZPs of (a) IIR Notch-Filter NTF, (b) Loop-Filter, (c) Feedback Filter. 

The corresponding loop- and feedback transfer functions are given by: 

/ 1 2 - 1 - 2 L(z) = 1 - cosaz +z and F(z) = 2 cosa (1- p) Z- I + (p2 -1) Z-2 (2.31 ) 

Figure 2.30(a) confirms the correct operation of the INF approach by showing this 

modulator achieving noise-shaping at Vc = 5/64 for an input level of 0.5 and dither 

amplitude of 0.05. 

The family of SNR curves in Figure 2.30(b) are shown to exhibit greater linearity 

compared with those obtained using the FNF approach. These linear characteristics are 

attributed to less frequent quantiser overloading, which leads to the generation of fewer 

tones for high input amplitudes. 
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Figure 2.30 Variable-Band Second-Order Bandpass L-~ Modulator (a) Noise-Shaping 

Magnitude Spectrum at Vc = 5/64, SNR Curves versus Input Amplitudes 

(b)vc = 5/64, (c)vc = 17/64 and (d) vc =29/64. 

The design analysis of this technique can be quite easily extended to fourth-order 

modulators, where better resolution is achievable for a broader range of centre frequencies 

without having to incorporate further scaling factors. This NTF is given by: 

(2.32) 

The careful placement of the poles in relation to the zeros for an IIR NTF significantly 

reduces the out-of-band gains to moderate levels and therefore enhances modulator 

stability. The corresponding loop and feedback filters are: 

(2.33) 

F(z) = 2fJ(l- p)z - 1 + (2p2 + p2 fJ2 - 2 - fJ2 )z-2 + 2fJ(1- p3 )z-3 + (1- p4)z-4 (2.34) 

The SNR curves for the 4th_ and 6th-order bandpass L-~ modulators for three different Vc 

values are presented in Figure 2.31 and 2.32. 
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Figure 2.31 SNR Curves versus Input Amplitudes for the IIR NTF Based Fourth-Order 

Bandpass L-~ Modulators at (a)vc = 5/64, (b)vc = 17/64 and (c) vc = 

29/64. 

These curves show that the INF approach gives better DRs especially for very small and 

large centre frequencies. The use of IIR NTFs allows the poles to move closer to the zero 

locations, so as to even out the shoulder gain levels of NTF for any notch location in the 

spectrum. However, it should be made clear that this improved resolution is obtained at the 

expense of having more complicated loop-filters in the modulator. 
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Figure 2.32 SNR Curves versus Input Amplitudes for the IIR NTF Based Sixth-Order 

Bandpass L-~ Modulators at (a) Vc = 5/64, (b) Vc = 17/64 and 

(c) vc =29/64. 

2.12 The Complex IIR Notch-lilter (CFNF) Approach 

The majority of the publications on bandpass L-~ modulators have employed real­

coefficient NTFs [Sch92]-[Jan93]-[Lon93]-[Tr094] with a few exceptions such as 

[Jan94a]. These have utilised complicated band-stop filters for their NTFs, which have 

resulted in less hardware-efficient L-~ modulators, containing many multipliers. The 
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motivation behind this section is to present the design analysis of complex FIR notch filter 

based ~-~ modulators, whose building blocks constitute fewer mUltipliers. 

A complex bandpass ~-~ modulator can take a pair of in-phase and quadrature phase 

analogue input signals and perform accurate AID conversion directly generating a pair of 

high-speed bit-streams [Jan94]. 

The main advantage of complex l:-~ modulators is that the poles and zeros are not 
I 

restricted to having conjugate pairs, implying that better in-band quantisation noise 

attenuation can be attainable, compared with a real-coefficient modulator of the same 

order. Complex ~-~ modulators offer greater resolution and design flexibility at the 

expense of an additional quantiser and signal paths for the imaginary components of the 

signals in the modulator [J an94]. 

A complex bandpass l:-~ modulator is not restricted to having a symmetrical 

magnitude response around dc, thus making it a viable candidate for the generation of 

single side-band noise-shaping [Jan96]. The noise-shaping can be observed for the 

combined complex signal, but not for either the real or imaginary part independently, 

because the NTF is complex [Azi95]. 

Complex bandpass l:-~ are suitable for the quadrature AID conversion of signals in 

monolithic radio receivers [Dia96]-[Li99]. They are also well-suited for the AID 

conversion of signals for single-IF receivers and Image-Reject (IR) receivers [Swa97]. 

The complex FIR notch filter technique is based on positioning the zeros of the 

Complex Noise Transfer Function (CNTF) HCN(z) on the unit-circle at the specified 

positive centre frequency to achieve maximum in-band quantisation noise attenuation. This 

CNTF is given by: 

(2.35) 

Figure 2.33(a) shows the PZP for CNTF for an arbitrary vc' Figure 2.33(b) contrasts the 

real- and complex- coefficient NTFs for Vc = 5/64, where it is seen that the peak 

magnitude gain of the latter is almost halved. This significant reduction in the CNTF 

magnitude for all Vc values provides a stability advantage, whose effects become more 

apparent for higher-order l:-~ modulators. 
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Figure 2.33 (a) CNTF PZP of First-Order Notch Filter (b) NTF Magnitude of Real and 

Complex First-Order L-~ Modulator at Vc = 5/64. 

The corresponding complex loop CL(z) and feedback CF(z) transfer functions are given 

by: 

CL(z) = 1/ 1- eJ 21r Uc z- l and (2.36) 

The combination of CL(z) and CF(z) simplifies the overall transfer function, thus 

yielding the complex first-order resonator-based L-~ modulator shown in Figure 2.34. 

D(z) r r 

c 
X(z) I---+-......-.Y (z) 

Figure 2.34 Single-Stage Dithered Complex Resonator-Based Bandpass L-~ Modulator 

This structure consists of a complex programmable resonator, a Complex-To-Real­

Imaginary Converter (CTRlC), two physical quantisers (for the real and imaginary channels 

respectively) and a Real-Imaginary-To-Complex Converter (RITCC) in the feedforward 

path. The labels r , i and c denote real, imaginary and complex signal paths. The noise­

shaped location in the frequency spectrum is determined by the pole location of this 
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· variable-band resonator. A small amount (5%) of dither D(z) is added at the output of the 

resonator to alleviate the amplitude and occurrence of spurious tones. 

Each of the two quantisers can be modelled as a summer having two inputs, one 

representing the desired component of the signal (real or imaginary) and the other 

representing white noise. This linear modelling process enables the overall modulator to be 

characterised by an equivalent output expression given by: 

(2.37) 

This analysis indicates that the poles and zeros of this complex modulator are simply those 

of a rotated accumulator-based lowpass ~-L1 modulator [Jan94]. The magnitude spectrum 

tuning at Vc = 0.125 is given below in Figure 2.35. 
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Figure 2.35 Magnitude Spectrum of First-Order Complex Modulator at Vc = 0.125. 

The complex variable-band NTF reaches a maximum gain of 2 for both dc and Nyquist. 

This implies that the 1 sl-order complex variable-band L-~ modulator never overloads the 

quantiser provided its input does not exceed unity. This is in contrast to its real-coefficient 

counterpart, which reaches a peak magnitude gain of 4. This ' non-overloading' situation 

explains why the family of SNR curves shown in Figure 2.36 exhibit fewer non-linearities 

compared with those illustrated in Figure 2.23 for the real NTF case. 
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Figure 2.36 SNR Curves for the Complex FIR NTF Based First-Order Bandpass ~-~ 

Modulators at (a) Vc = 5/64, (b) Vc = 17/64 and (c) Vc = 29/64. 

This analysis is extended to a complex second-order bandpass ~-~ modulator, which can 

accomplish variable spectral-band noise-shaping for any positive centre frequency. The 

corresponding H N(z) and loop-filters L1(z) and ~(z) after simplification are given by: 

(2.38) 

This modulator remains stable up to a full-scale amplitude input for all the noise-shaping 

bands including those very close to dc and Nyquist. This robustness in stability is attributed 

to the much lower magnitude gains of the CNTF, which as a result maintain significantly 

smaller internal signal levels in the modulator. The presence of two instead of three 

summation terms in the CNTF could quantitatively account for the improved stability 

performance as the maximum possible CNTF peak is 4 instead of 16. 

Complex third-order noise-shaping can be achieved, but on this occasion, additional 

feedback coefficients are deemed necessary to maintain modulator stability as was 

discussed in Section 2.6. The magnitude spectra for complex IIR notch-filter based second 

and third order ~-Ll modulators for a single-tone sinusoid of 0.5 and dither signal of 0.05 

are shown in Figure 2.37. 

79 



·20 

1 
'" i ·Hll 

.120 ·120 

. 140 . 140 

" ~.5 .(l ' -03 -0 2 -0.1 a 01 0.2 0.3 04 05 
" 60 ':-~~~-~~~..I..-~~~_ 

.(l.5 .(l ' -0 3 -0,2 -0 1 a a 1 a 2 0 3 a 4 0 5 
Normahsad F r8quency . 'j Normalised Frequency, >I 

(a) (b) 

Figure 2.37 Magnitude Spectrum for Complex 1IR notch-filter Based (a) Second, (b) 

Third Order L-~ modulators at Vc = 0.125. 

The family of SNR curves in Figure 2.38 show that larger DRs can be achieved with the 

complex 2nd -order L-~ modulator as opposed to its real-coefficient counterpart. However, 

the SNR curves for v c = 29/64 display inferior resolution for very high amplitude inputs as 

depicted in Figure 2.38. The very close proximity of this particular noise-shaping band to 

Nyquist in contrast with the other two frequencies means that the NTF gains are relatively 

larger. The bigger gains amplify the input signal to the quantiser causing it to overload 

more prematurely. This produces limit cycle oscillations in the spectrum including the in­

band region, thus accounting for the poor resolution. 
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Figure 2.38 SNR Curves for the Complex FIR NTF Based Second-Order Bandpass L-~ 

Modulators at (a) Vc = 5/64, (b) vc= 17/64 and (c) vc = 29/64. 
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2.13 The ComplexJIR Notch-Eilter (CINF) Approach 

Complex IIR notch filters can be employed to provide narrow-band bandpass L- L1 

modulators that can deliver better noise-shaping responses and enhanced resolution. This 

technique is based on positioning the zeros of CINF on the unit-circle at the positive centre 

frequency of interest to achieve maximum quantisation noise attenuation. The CINF is 

given by: 

(2.39) 

The corresponding loop and feedback filters are: 

and (2.40) 

The NTF PZP for a typical variable-band complex IIR first-order is shown in Figure 2.39 

(a). The magnitude spectrum for a complex IIR based first-order L-~ modulator at Vc = 

0.125 is presented in Figure 2.39(b). 

v = 0.25 

v = Oj~--------~~~----+-

·1 40 

v = -0.25 

NTF 
·IEll '--~~~---~--"--~~----.J 

-0 5 -0 4 -03 -02 -01 0 01 02 03 04 05 
Normalrsed Frequency , , 

(a) (b) 

Figure 2.39 (a) CINF PZP of First-Order Notch Filter (b) Magnitude Spectrum of 

Complex First-Order L-~ Modulator at Vc = 0.125 of b) First-Order 

bandpass L-~ Modulators. 

The SNR curves for Vc = 5/64 and Vc = 29/64 are relatively linear as illustrated in Figure 

2.40. This linearity is attributed to the combined effect of non-quantiser overloading and 

the use of IIR NTFs, which reduce the disparity of the shoulder-gain levels of the loop­

filter. However, the fluctuations of the curves for vc= 17/64 for OSRs of 128 and 256 is 

caused by the presence of tones in the in-band region. 
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Figure 2.40 SNR Curves versus Input Amplitudes for the Complex IIR NTF Based 

First-Order Bandpass L-~ Modulators at (a) Vc = 5/64, (b) Vc = 17/64 and 

(c) Vc = 29/64. 

In a similar manner, a second-order complex IIR notch filter can be designed to 

accomplish improved in-band SNRs and DRs. Its CNTF is given by: 

The corresponding complex loop CL(z) and feedback CF(z) filters are given by: 

(2.42) 

(2.43) 

The family of SNR curves of this complex 2nd -order bandpass L-~ modulator for three 

different centre frequencies are shown in Figure 2.41. These linear-like SNR characteristics 

are attributed to the IIR NTFs and the more complex loop-filters. 
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Figure 2.41 SNR Curves versus Input Amplitudes for the Complex IIR NTF Based 

Second-Order Bandpass L-~ Modulators at (a) Vc = 5/64, (b) Vc = 17/64 and 

(c) Vc = 29/64. 
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2.14 Overview on the Eractional Delay Eilter (FDF) Approach 

This section presents a novel technique for the design of narrow-band l:-~ 

modulators with an embedded tuneable centre frequency mechanism. The method under 

consideration demonstrates that the use of a sum-filter combined with a fractional-delayer 

provide the flexibility of adjusting the noise-shaping band location to cater for any narrow­

band variable centre frequency input signal. It is initially demonstrated that the inclusion of 

pure integer delayers in combination with sum-filters in these modulators restricts noise­

shaping to a few centre frequency locations. This limitation is overcome by designing a 

NTF, which is formed by a fIrst-order sum-fIlter depicted by (1 + z-1)[Cun92] in 

conjunction with fractional-delayers [Laa96], to accommodate different passband centre to 

sampling frequency ratios. These FIR and IIR allpass fractional-delayers result in the 

spectral shifting of the zeros of the NTF to the signal band of interest. 

The combination of a fIrst-order sum-fIlter and an FIR or IIR allpass Fractional­

Delay (FD) filter [Laa96] form the NTF, whose zeros are distributed close to the unit-circle 

at the selected centre frequency. The order of the NTF depends on the order of the FD fIlter 

approximation and is represented by a generalised non-integer value D. The parameter D 

can be expressed as the summation of two variables, (Le. D = / + r), where / is the delay 

of the FD filter itself (including the fractional component) and r is the additional unit­

delay, whose inclusion is compulsory to satisfy the causality criterion. This implies that the 

NTF design should take into account the extra phase shift imparted by this unit-delay. 

It was originally thought that the numerator of the NTF could be scaled to unity to 

comply with the causality criterion without having to introduce the additional delay term 

z'''. However, the required scaling of the NTF was found to be very excessive (of the order 

of 50-60) leading to automatic modulator instability. Regrettably; it was concluded that 

NTF scaling did not provide an appropriate solution for both the FIR and IIR allpass FD 

fIlter techniques, leaving no option but to incorporate the additional delayer. 

The general expression for the FD NTF is given by: 

(2.44) 

Simple algebraic manipulation demonstrate that e-j21rVcD = -I = ILK, yielding a simple, 

but important relationship between y and D as shown below: 

I I 
y---

- 2D - 2(/ +r) (2.45) 

83 



This means that an arbitrary nonnalised centre frequency can be attained by 

determining the necessary total delay D that must be incorporated in the NTF, so that the 

null of the 1st-order sum-filter is spectrally transferred to the corresponding signal 

frequency band. It is seen from (2.45) that the use of pure integer values for D can only 

cater for a very limited choice of centre frequencies. For example, setting D = 2 can 

achieve noise-shaping at Vc = 025, which confinn existing theory. 

Figure 2.42 together with (2.45) demonstrate that Vc is inversely proportional to D, 

implying that centre frequencies close to dc require larger values of D. More interestingly, 

the tunability of a centre frequency location between 0.25 and 0.5 using this technique can 

only be achieved by employing a non-integer value for D. For example, D = 1.3 is 

required for Vc = 0.385. 
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Figure 2.42 Total Delay D in Modulator versus Nonnalised Centre Frequency vc' 

It is convenient for explanation purposes to categorise the centre frequency ranges, as far as 

this method is concerned, according to their required D values as illustrated in Table 2.7. 
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Vc Ranges D 

Vc ~i D~3 

i~ Vc ~t 3~D~2 

t~ Vc ~1 2~D~! 

1~ Vc ~t !~D~l 

Table 2.7 Required Total Delay D Values for Different Centre Frequency Ranges. 

Delay values in excess of 3 can be attained with accuracy for Vc ~ i. However, 

making D ~ 3 leads to the creation of multiple notches across the spectrum, which increase 

the amplitude level of the out-of-band quantisation noise to compensate for the redundant 

notches. This rise in the out-of-band quantisation noise has two disadvantages, the 

requirement of a more complicated post digital filter that has greater attenuation capability 

and to a lesser extent, vulnerability to modulator instability. Detailed simulations confirm 

that accurate centre frequency tunability for i ~ v c ~ t is achievable by utilising either a 

fourth-order FIR or second-order fiR allpass FD filter. 

A feature ofFD filters that becomes more critical, particularly, in the ITR allpass case 

is the inherent delay of the FD filter itself [Laa96], making small values of D virtually 

unattainable and, thus restricting noise-shaping to only half the available range, i.e. 

o ~ Vc ~ 025. For example, Figure 2.42 shows that a D value of 1.4 is required to achieve 

tunability at Vc = 0.367. A second-order fiR allpass filter can produce the necessary 

fraction of 0.4, but in addition generates its own delay, which happens to be 2 in this case. 

Moreover, r must be set to a minimum value of unity to satisfy the causality criterion 

[Jan93]. This means that D becomes 3.4 instead of the desired 1.4. A further shortcoming 

associated with the FD filters is that their accuracy deteriorates at very high frequencies. 

Fortunately; this inherent practical limitation can be circumvented by designing an 

FD filter that will give a centre frequency equal to (05 - vc ) and then applying a lowpass 

to highpass transformation (z-l ~ _Z-l) to yield the desired centre frequency. An example 

demonstrating the accuracy of this procedure is shown in Figure 2.48. 

An alternative solution is to design fiR filters, which can provide very small group 

delays. This was achieved with limited success by designing a fourth-order lowpass 

Chebyshev filter that yielded a group delay of 0.1. 
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The single-loop dithered l:-~ modulator shown in Figure 2.43 is a suitable topology 

for the application of the FDF approach. This modulator comprises a loop-filter T(z) (with 

an in-built fractional delayer) and,a I-bit quantiser in the feedforward path. In addition, an . 
amplitude of 0.01 of white noise dither D(z) is added prior to the quantiser input to whiten 

the quantisation noise and substantially reduce tones [Nor92]. This structure also contains a 

cascade combination of a variable bulk integer delayer z -r and a FD filter 

C(z) == z-f [Laa96] in the feedback path. The noise-shaping properties of dithered l:-~ 

modulators may be analysed by modelling the I-bit non-linear quantiser by an equivalent 

noise source in order to make linear analysis possible. Despite the linear approximation, 

this approach delivers results which are representative [Can92]. The NTF and STF of the 

modulator shown in Figure 2.43 are: 

and 
H z _ T(z) 

s( ) - I+z-rC(z)T(z) (2.46) 

X(z) I--......-Y(z) 

Figure 2.43 Single-Stage Dithered FDF Based l:-~ Modulator. 

This analysis can be extended to higher-order single-bit l:-~ modulators in order to 

acquire improved noise-shaping responses and more respectable in-band SNRs and DRs. 

The NTF is given by: 

(2.47) 

where the order of H N (z) is the product of L and the order of the FD filter approximation. 

2.15 FIR Fractional Delay Case 

The FIR FD filter C(z) is designed by the use of the maximally flat Lagrange 

technique [Laa96] whose coefficients c( k) are defined as: 
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N • D-n 
c(k):i::: n -, 

n=O,m.k k-n 
k=O,I, ... ,N. (2.48) 

The Lagrange approximation is well suited for use in l:-A modulators, because the peak of 

its magnitude never exceeds unity [Laa96]. This particular property considerably reduces 

the occurrence of instability. The new mathematic31 expression for H N (z) incorporating 

the FIR FD filter becomes 

(2.49) 

The resultant loop T(z) and feedback C(z) filters are: 

1 
T(z) = -1---,-(----'"71-------:(7."N---:l):------:-N:-:--) 

+z Co +C1Z +,,,+C(N-l) z +cN z 
(2.50) 

(2.51) 

The coefficients for some of the FIR FD filter approximations for N = 4, are shown in 

Table 2.8. 

Vc f r ho hI h2 h3 h4 

0.238 1.1 1 1 -0.0285 0.9405 0.1045 -0.0165 

0.227 1.2 1 1 -0.048 -0.864 0.216 -0.032 

0.185 1.7 1 1 -0.0455 0.3315 0.7735 -0.0595 

0.179 1.8 1 1 -0.032 0.216 0.864 -0.048 

Table 2.8 Loop-Filter and Feedback Filter Coefficients for Some Centre Frequencies 

using the FIR FDF Approach. 

These FD filters have the same numerator and denominator orders which imply that the 

value for r must be at least equal to 1, so as to comply with the causality criterion [Jan93]. 

It should be noted that the FIR FD filter does not have a linear phase (except when FD = 

0.5) due to the asymmetry of the coefficient of HN(Z) [Laa96]. 

2.16 AUpass I1R Fractional Delay Case 

An alternative means of representing FD filters is by using the FD allpass maximally 

flat group-delay approximation [Laa96]. The advantage is that an IIR digital filter can 

provide the same or even better FD filter characteristics with fewer coefficients compared 

with FIR filters. These allpass filters have unity magnitude and much improved group 
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delay responses for the entire frequency range. The filter coefficients of an N'h -order FD 

filter are: 

ak = (-l)kCk
N nN 

D-N +n fi k or = 0, 1,2 ... , N 
n=oD-N +k+n 

(2.52) 

The resultant loop and feedback filters become: 

1 + b1z- I + ... +b(N_2)Z-(N-2) + b(N_Il-(N-I) 

T(z) = 1 -I -(N-l)-N 
+ a1z + .... +a(N-l)z + Z 

(2.53) 

-r aN + aN_1z-1 + ... + a1z-(N-I) + Z-N 
C(z) = -c z _I -(N-I)-N 

1 + a1z + ... + a(N.l)z + aNz 
(2.54) 

The coefficients for some of the allpass IIR FD filter approximations for N = 3 , are shown 

in Table 2.9. 

Yc a l a2 b] b] b3 a] a] a3 

0.1 -0.8 0.2 -0.8 0.2 0 -0.6 -0.6 1 

0.185 0.2222 -0.021 0.222 -0.021 0 0.201 0.201 1 

0.208 0.5 -0.0294 0.5 -0.0294 0 0.4706 0.4706 1 

0.448 1.4 0.5091 -1.4 -0.0591 0 0.8919 -0.8919 -1 

Table 2.9 Loop-Filter and Feedback Filter Coefficients for Some Centre Frequencies 

using the IIR Allpass FDF Approach. 

2.17 Evaluation of the FDF Technique 

Discrete-time behavioural level simulations were carried out for the single-stage 

single-bit and single-stage multi-bit r-~ modulators to demonstrate the correct operation 

of the proposed approach. Figure 2.44 shows the magnitude spectra of FIR FD filter based 

r-~ modulators tuning at y= 0.185, where it can be observed that improved noise-shaping 

performance is accomplished with the double stage eighth-order r-~ modulator. Figure 

2.45 shows the magnitude spectrum of a single-stage allpass IIR FD filter based r-~ 

modulator, where it can be seen that a lower amount of in-band quantisation noise is 

retained in the signal region compared with the FIR case. Simulations reveal that this 

improvement becomes even more significant at high frequencies due to the unity 

magnitudes and enhanced phase responses of the IIR allpass FD filter. 
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Figure 2.44 Magnitude Spectra at Vc = 0.185 using the FDF Approach for (a) Single­

Stage Fourth-Order I;-6 modulator (b) Double-Stage Eighth-Order I;- 6 

Modulator. 
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Figure 2.45 Magnitude Spectrum of a Single-Stage Third-Order IIR Allpass I;- 6 

Modulator at Vc = 0.l85. 

Figure 2.46(a) quantitatively verifies that the in-band SNR for the allpass IIR case 

improves by an average of 7.3 dB compared with the FIR FD case for a single-stage I;- 6 

modulator. Better in-band SNRs can be alternatively accomplished by increasing the 
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number of levels in the quantiser as can be observed from the SNR plots in Figure 2.46 (b) 

'. and Figure 2.46 (c). Quantisers with an odd number of levels outperform those with an 

even number of levels, because of the presence of the zero-level threshold, which reduces 

the occurrence of oscillations. for small amplitude signals, For peak input amplitudes, 

nearly 1.5 and I-bit in resolution are gained by increasing the number of levels from 2 to 5 

for the FIR and IIR cases respectively. 

(a) (b) (c) 

Figure 2.46 SNR Curves of FIR & Allpass IIR Single-Stage l:-~ Modulators 

(a) 2-Level, (b) 3-Level, (c) 5-Level. 

Figure 2.47 (a) and (b) illustrate the in-band SNR results for oversampling ratios of 64, 128 

and 256 for the single-stage, single-bit FIR and allpass llR based l:-~ modulators 

respectively. It is seen that the in-band SNR is improved by an average of 3 dB for every 

doubling of the OSR. Furthermore, this new technique is further extended to higher-order 

I:-~ modulators using FIR FD filters, where it is seen from Figure 2.46 that the SNR is 

improved by 14 dB for each corresponding increase in modulator order. 
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Figure 2.47 SNR Curves of Single-Stage l:-~ Modulators for (a) FIR, (b) Allpass llR. 
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Figure 2.48 demonstrates noise-shaping using the FDF approach at Vc = 0.448. 

- 1 00 
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Figure 2.48 Magnitude Spectrum of a Single-Stage Third-Order IIR FDF I:-~ 

Modulator at Vc = 0.448. 

2.18 A Methodology for the Design of Bandpass I:-~ Modulaton 

This section presents a simple practical step-by-step approach for the design of 

single-stage bandpass I:-~ modulators. The NTF design of these modulators is based on 

the use of Butterworth and Chebyshev 2 bandstop filters. This approach, however, can be 

extended to other types of filter families. This section also provides a few guidelines that 

can be applied to further improve the resolution of these custom-made NTFs. 

It is important before proceeding with the actual design analysis to understand the 

interrelationships between the specification parameters that affect the spectral 

characteristics and resolution of Butterworth and Chebyshev 2 filters. 

Butterworth filters exhibit monotonic passbands and stopbands, low pass-band 

ripples and relatively wide transition bands [Cun92]-[0rf96]-[Pr092]. The peak out-of­

band spectral magnitude of 2nd
, 4th, 6th and 8th order Butterworth NTFs are 0.78 dB, 1.16 

dB, 1.64 dB and 2.14 dB respectively for Il v = 0.06. A higher NTF order results in a wider 

stop-band with greater attenuation at the cost of a higher overall NTF gain. 

Chebyshev 2 filters have a monotonic passband and an equi-ripple stopband. 

Chebyshev 2 also provides low pass-band distortion and exhibit sharp transition bands, 

thus requiring a lower-order filter to meet a given specification compared with Butterworth 

filters. For a given a NTF order, stop-band ripples can be traded for wider stop-bands and 

increased NTF magnitudes [Cun92]-[0rf96]-[Pr092]. 

STEP 1: Select a modulator order N , a NTF filter family type, bandwidth ~ v , passband 

ripple (Rp) needed for (Chebyshev 1 and Elliptical filters) and stopband ripple (Rs) 
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required for (Chebyshev 2 and Elliptical filters). A straightforward procedure for obtaining 

the NTF for any filter family type involves using the Matlab Signal Processing Toolbox as 

indicated below: 

For a Butterworth NTF: 

[num, den] = butter(N, [VL Vu], 'stop') 

For a Chebyshev Type 2 NTF: 

[num,den] = cheby2 (N, Rs ' [VL Vu ], 'stop') 

where num and den refer to the numerator and denominator polynomials of the NTF, 

stop refers to a stop-band filter, VL and Vu represent the normalised lower and upper 3dB 

frequencies and are given by: 

(2.55) 

STEP 2: Scale the NTF so that the first sample of the impulse response becomes 1, in order 

to meet the causality criterion. This can be achieved in Matlab by typing 

nums = num / num(1) , where nums contains the newly scaled coefficients of the numerator 

polynomial of the NTF. 

-------
STEP 3: Check the peak magnitude of the NTF spectrum to ensure that it does not exceed 

2 (or more practically 1.6) to comply with Lee's stability criterion. 

STEP 4: The loop- and feedback transfer functions can be analytically obtained by re­

arranging the expression for the NTF as shown below: 

(2.56) 

whereF(z) and L(z) may be determined by separating the numerator and denominator 

expressions such that F(z) = (1- HN(z») and L(z) = 1 / HN (z). 

STEP 5: Enter the coefficients of F(z) and L(z) into the modulator and simulate it at the 

behavioural level using Simulink in Matlab to confirm the correctness of its operation. 
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STEP 6: If the in-band SNR value is not sufficiently high then 

.. a) increase the. modulator order provided the peak amplitude of HN(z) satisfies ~ee's 

Criterion,· 

b) increase the OSR p~ovided the bandwidth specification is not violated, 

c) increase the number of levels in the' quantiser I '. 

d) reduce the dither such that the in-band tones do not become too strong. 

e) resort to an optimisation algorithm where the poles and zeros of the HN(z) are shifted 

to more optimal positions in the z-plane to achieve better resolution. 

The noise H N (z) , loop-filter H(z) and signal Hs (z) transfer functions of an eighth-order 

L-~ modulator are given by 

where the b's are the most important parameters since they are responsible for controlling 

the magnitude of the in-band quantisation, the a's for reducing the overall spectral 

magnitude of the NTF to avoid overloading the quantiser and the c's are simply given by 

eN = aN - b
N

• The coefficients of H N (z), H(z) and Hs (z) for these 8th -order modulators 

as well as those for the 6th -order modulators are all presented in Table 2.10. 

Two 8th -order bandpass L-L\ modulators that can achieve noise-shaping at v c = 

0.125 were designed using this technique. The first employed a Butterworth filter for its 

NTF and its spectral magnitude response is shown in Figure 2.49(a). The second utilised a 

Chebyshev 2 bandstop filter for its NTF and its magnitude spectrum is shown in Figure 

2.49(b). 
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Coeff 

C{ 

C} 

CJ 

C~ 

Cj 

C6 

C7 

Ca 

a{ 

a} 

aJ 

a4 

aj 

a6 

a7 

a8 

Table 2.10 

.J) 

6t11-Order 8t11-Order 

Butter Cheby2 Butter Cheby2 

0.2674 0.5218 0.3496 0.561 2 

-1.1020 -2.0898 -1.9228 -3 .0245 

2.0014 3.6605 4.933 7.591 2 

-2.0426 -3 .6128 -7.6396 -11.5149 

1.1568 1.9836 7.6698 11 .3379 

-0.3145 -0.5259 -5 .0247 -7.2989 

- - 1.9995 2.8593 

- - -0.3895 -0.5501 

-4.2616 -4.2426 -5.6821 -5.6569 

9.0536 8.9999 16.1072 15.9998 

-11.3895 -11.3135 -28.5119 -28.2838 

9.0536 8.9999 34.2863 33.9993 

-4.2616 -4.2426 -28.5119 -28.2838 

I 1 16.1072 15.9998 

- - -5.6821 -5 .6569 

- - 1 1 

Loop-Filter Coefficients for 6th and 8th Order Bandpass L-~ Modulators 

based on the NTFs of Butterworth and Chebyshev 2 Filters . 
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Figure 2.49 Magnitude Spectra of an Eighth-Order L-~ modulator at Vc = 0.125 

(a) Butterworth, (b) Chebyshev 2. 

Simulations showed that the in-band SNR that is achieved by a Chebyshev 2 bandpass L-~ 

modulator outperforms its Butterworth counterpart by as much as 15 dB. This better 
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resolution is attributed to the distribution of the zeros across the signal region, which 

accomplished greater attenuation ~d therefore better SNRs. This is in contrast to the 

Butterworth based l:-~ modulator, whose zeros are placed in a ~oincidental manner. 

Furthermore, the spectral responses of the Chebyshev 2 was less tonal. This is explained by 

the fact tha~ a Chebyshev 2 loop-filter is more complicated, thus resulting in the generation 

of more state values. This increases the decorrelation of the quantisation noise and 

therefore results in fewer tones. 

The following present some considerations when designing l:-~ modulators: 

The loop-filter should be designed to ensure that the input signal is transmitted through the 

modulator with the least amount of distortion in its spectral characteristics. Better 

quantisation noise attenuation is achieved by distributing the zeros of the NTF across the 

signal bandwidth as opposed to placing them coincidentally at the same centre frequency. 

The STF zeros should simultaneously provide a flat magnitude in the signal region and a 

low out-of-band gain. The constant magnitude helps to preserve the input signal, while the 

small out-of-band gain enhances the stability of the modulator by alleviating the amplitude 

of the out-of-band signals. 

The zeros of the NTF should be positioned on the unit-circle and inside the signal 

band to ensure adequate in-band quantisation noise attenuation [Azi95]. The selection of 

NTFs whose zeros have radii below 0.9 has the effect of reducing the notch depth, 

therefore resulting in lower resolution. 

Placing the zeros of the NTF very close to each other accomplishes greater in-band 

quantisation noise suppression for narrow bandwidths. However, spreading the zeros along 

the unit-circle increases the bandwidth at the expense of lower in-band quantisation noise 

attenuation. Therefore, the proximity of the zeros to each other as well as their locations 

directly affects the amount of in-band noise power. Good quantisation noise suppression in 

the passband region is achieved by constraining the NTF zeros to be distributed along the 

bandwidth on the unit circle. 

The use of multipliers should be limited as far as possible in the implementation of 

Df A higher-order bandpass l:-L\ modulators. As well as slowing down the operation of the 

modulator, multipliers occupy large portions of silicon area. When used, they should be in 

powers of 2 as these can be simply implemented by hardware shifts with minimum speed 

penalties [Hau95]. 

The envelope of the quantisation noise rises more sharply as the modulator order is 

increased. This may increase the modulator vulnerability to instability and at the very least 
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reduce the overload point rttSulting in lower DRs. The demands on the decimator become 
,.. .. 

more severe as a result of the steepness of the quantisation noise. 

The following sections present several commonly used l:-a modulator topologies, 

·which are well-suited for the implementation of mid-band and varfable-band noise-shaping 

bandpass l:-a modulators [Ada91]. 

2.19 Chain of Resonators with Weighted Feedforward Summation 

The chain of accumulators with weighted feeforward summation in [Tom94, pp. 235] 

has been modified by replacing the constituent accumulators of the loop-filter with mid­

band resonators, thus enabling it to achieve noise-shaping at Vc = 0.25. The loop-filter 

consists of a cascade connection of mid-band resonators of the form z-2 / (1 + z-2) in the 

feedforward path., where the output of each resonator is scaled and summed up prior to the 

quantiser input as shown in Figure 2.50. 

X(z) 

Y(z) 

Figure 2.50 Chain of Resonators with Weighted Feedforward Summation. 

The generalised analytical NTF expression given in 2.61 verifies that the NTF zeros or 

. loop-filter poles are totally independent of the weighting coefficients, therefore restricting 

this topology to achieve noise-shaping at mid-band resonance. The feedforward 

coefficients (Le. the a's), however, allow the adjustment of the NTF pole locations so as to 

obtain a maximally flat out-of-band gain with a reduced magnitude. The reduced NTF gain 

coupled with the flat NTF magnitude enhances stability significantly, particularly for 

higher-order Butterworth bandpass l:-a modulators. 
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L-l L 
+aL_lnH1(z) +aLnHj(z) 

HS(z)=----~--------------------~/~=I~------~/-~I------L-I L 
l+a~HI(z)+a2HI(z)H2(z)+ ... +aL-lnHL_I(Z)+aLnHL(z) 

1=1 1=1 

1 

(2.60) 

HN(z).= L-I t (2.61) 
l+aIH I(z)+a2H l(z)H2(z)+ ... +aL~IT1HL-I(z)+aLnHL(Z) 

1=1 1=1 

The feedfoward coefficients are a l = -0.3090, a2 = 0.0417 for the 4th-order Butterworth 

L-~ modulator and a l = -0.4390, a2 = 0.0912, a3 = -0.0086 for the 6th-order Butterworth 

L-~ modulator. The weighting of these coefficients was seen to decrease progressively in 

relation to the order of the resonators inside the modulator. In other words, the latter 

coefficients diminish in value to cope with the accumulative effects of the preceding 

resonators. 

These modulators were simulated for an input sinusoid and dither signal whose amplitudes 

were 0.5 and 0.05 respectively. The resulting magnitude spectra are shown in Figure 2.51. 

Both of them contained two distinct tones at Vc = 0.125 and Vc = 0.375 verifying that 

these tones are independent of the modulator order and essentially related to the amplitude 

level of the modulator input signal. As expected, the 6th -order modulator was capable of 

accomplishing greater quantisation noise suppression in the signal region, compared with 

its 4th-order counterpart. This observation is supported with the SNR curves shown in 

Figure 2.52. The maximum achievable SNR figures for the 4th-order were 25.2 dB, 37 dB, 

50.2 dB, 64.6 dB, 79.5 dB and 94 dB for OSRs of 8, 16,32,64, 128 and 256 respectively. 

This is in contrast to the 6th-order modulator peak SNR, which were 25.5 dB, 39 dB, 57.1 

dB, 77.8 dB, 99.4 dB and 119.1 dB for the same OSRs. Note that the SNR improvement 

with respect to the modulator order, becomes significant for the higher OSRs. However, 

there was virtually no SNR gain between the 4th and 6th order modulators for the lower 

OSRs of 8 and 16. Figure 2.52 (b) also shows that this modulator became unstable for input 

amplitudes beyond -1.5 dB. This of course is attributed to the accumulative effect of the 

resonators in the feedforward path. 
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Figure 2.51 Magnitude Spectra of Chain of Resonators with Weighted Feedforward 

Summation Butterworth L-~ modulator at Vc = 0.25 (a) 4th-Order, (b) 6th_ 

Order. 
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Figure 2.52 SNR Curves at Vc = 0.25 for (a) 4th-Order. (b) 6th-Order Variable-Band 

Bandpass L-~ Modulators. 

2.20 Chain of Accumulators with Feeforward Summation & Local Resonator Feedbacks 

This topology contains a summation of weighted accumulators in the feedforward 

path as well as an internal negative feedback term around pairs of accumulators [Tom94, 

pp. 235]. The outputs of all the constituent accumulators are summed and fed to the 

quantiser input as illustrated in Figure 2.53. 
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X(z) 

Y(z) 

Figure 2.53 Chain of Accumulators with Feedforward Summation and Local Resonator 

Feedbacks. 

The presence of the internal feedback loop as well as the coefficient r provides the 

flexibility of moving the loop-filter poles away from DC to any normalised centre 

frequency up to Nyquist. The signal Hs(z) and noise HN(z) transfer functions of this 

topology are given by: 

and H (z) ___ l __ 
N -l+HFR(z) 

(2.62) 

where the generalised transfer function of the loop-filter H FR (z) is given by: 

L-l L 

aL-lll H,(z)+aLll H/(z) 
/=1 1=1 (2.63) 

It is demonstrated analytically that the use of a delayed accumulator followed by a delay­

free accumulator satisfy the causality criterion as well as ensuring that the poles of the 

composite resonator are permanently stationed on the unit-circle to provide maximum gain 

in the signal region. This is given by: 

(2.64) 

If both accumulators employ a delay term in the numerator, the composite resonator will be 

less effective, because the poles will not be on the unit-circle as given by: 
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(2.65) 

For positive real values of " the poles move vertically away from the unit-circle resulting 

in a significant gain reduction at the resonant frequency. For negative real values of " the 

poles move horizontally along the real axis in opposite directions leading eventually to 

modulator instability. 

The coefficients based on Butterworth and Chebyshev 2 NTFs were derived for this 

topology with the aid of a programme written in Matlab. A listing of these coefficients 

specific to this topology for different modulation orders is presented in Table 2.11. 

Butterworth Chebyshev 2 

Second-Order 

a1 0.1988 a1 0.5686 

a2 -0.0573 a2 -0.1665 

'1 0.5772 '1 0.5857 

Fourth-Order 

a1 0.2673 a1 0.3575 

a2 -0.0475 a2 -0.0483 

a3 1.44. 10':> a3 0.0044 

a4 -0.0207 a4 -0.0404 

'1 0.5772 'I 0.5984 

'2 0.5772 '2 0.5732 

Sixth-Order 

a l 0.3564 a1 0.4289 

a2 -0.0441 a2 -0.0353 

a3 0.0061 a3 0.0185 

a4 -0.0425 a4 -0.0678 

as -0.0044 as -0.0084 

a6 0.0012 a6 0.0025 

'I 0.5722 'I 0.6012 

'2 0.5772 '2 0.5705 

'3 0.5772 '3 0.5857 

Table 2.11 Chain of Accumulators with Feedforward Summation and Local Resonator 

Feedbacks Coefficients for 2nd-Order, 4th-Order and 6th-Order Butterworth 

and Chebyshev 2 Bandpass I-L\ Modulators. 

100 



These modulators were designed to provide noise-shaping at Vc = 0.125, where the 

magnitude spectra corresponding to the 6th-order Butterworth and Chebyshev 2 cases are , 
shown in Figure 2.54. A tone is observed at Vc = 0.375 for both spectra, indicating that this 

was attributed to the amplitude of the input sinusoid and independent of the NTF. The SNR 

curves in Figure 2.55 and 2.56 demonstrate that the Chebyshev 2 based bandpass L-6. 

modulator deliver better resolution. This is attributed to the greater flexibility of the 

distribution of the NTF zeros across the spectrum, thus resulting in greater in-band 

quantisation noise attenuation. For the Chebyshev 2 based modulators, Figure 2.56 shows 

that there is very little SNR improvement as the OSR increases from 128 to 256. 
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Figure 2.54 Magnitude Spectra of a 6th-Order Chain of Accumulators with Feeforward 

Summation & Local Resonator Feedbacks L- 6. modulator at Vc = 0.125 

(a) Butterworth, (b) Chebyshev 2. 
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Figure 2.55 SNR Curves at Vc = 0.25 for (a) 4th-Order, (b) 6th-Order Butterworth Based 

Variable-Band Bandpass L-6. Modulators. 
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Figure 2.56 SNR Curves at Vc = 0.25 for (a) 4th-Order, (b) 6th-Order Chebyshev 2 Based 

Variable-Band Bandpass L-Ll Modulators. 

2.21 Chain of Resonators with Distributed Feedback 

This topology [Tom94, pp. 235] was modified by replacing all its accumulators with 

delayed resonators of the form z -2/ (1 + z -2) to make it perform bandpass L-Ll modulation. 

This topology consists of mid-band resonators in the feedforward path together with the 

distributed feedback that is subtracted from the output of the preceding mid-band resonator. 

The output node of each accumulator is appropriately scaled to control the amplitude level 

of the signals in the feedforward path to maintain stability as illustrated in Figure 2.57. 

X(z) 1---.111---.-. Y(z) 

I-bit quantiser 

Figure 2.57 Chain of Resonators with Distributed Feedback. 

The signal Hs (z) and noise H N (z) transfer functions of this topology are given by: 

L L L 

I1 H;{z) + I1 H;{z) + ... + IT H;(z) + HL(z) 
;-1 ;-2 I- L- I 

Hs{z) = L L L 

1 + IT a;H;{z) + IT a;H;{z)+ ... + I1 aL_1H;{z) + aLHL (z) 

(2.66) 

;=1 ;=2 ;= L-I 
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1 
HN(z) = L L L (2.67) 

1 + TI o;H;(z) + TI o;H;(z)+ ... + n 0L_IH;(z) +oLHL(z) 
;=1 ;=2 i=L-l 

The distributed feedback topology can be made more flexible by allowing a path 

from the input signal node to each summing junction of the constituent building blocks of 

the loop-filter as reported in [Ada91]. 

Furthermore, this topology could be further extended to provide variable-band noise­

shaping by substituting the mid-band resonators with a variable centre frequency resonator 

of the form 0(nz-1 +z-2)/(l-dz-1 +z-2). The flexibility to vary the signal band is 

achieved at the expense of greater hardware complexity. Each new resonator requires two 

multipliers, one in the denominator to ensure that the poles are positioned at the specified 

centre frequency on the unit-circle and the other in the numerator to provide more effective 

noise-shaping. 

Two modulator designs were carried out for this topology. The first and the simplest 

was the 6th-order bandpass l:-~ modulator, which used mid-band resonators to achieve 

noise-shaping at Vc = 0.25. The second was that of a 4th-order modulator that was capable 

of noise-shaping at Vc = 0.125. The design process was more elaborate and required 6 

coefficients. The n and d coefficients are responsible for shifting the location of the noise­

shaping band to the relevant centre frequency. The ° coefficients are used to control the 

amplitude of the internal signal levels in the feedforward path. A listing of the coefficients 

for both designs is presented in Table 2.12. 

6tn -Order Butterworth at v c = 0.25 

°1 °2 °3 

-0.0943 -0.2077 -0.4390 

4th-Order Butterworth at Vc = 0.125 

°1 °2 n1 d1 ~ d2 

-0.1352 -0.3091 -0.7120 -1.4228 -0.7111 -1.4228 

Table 2.12 Coefficients of Chain of Resonators with Distributed Feedback Butterworth 

4th-Order and 6th-Order Bandpass l:-~ Modulators. 

The magnitude spectrum in Figure 2.58 demonstrate the correct operation of these 

modulators. The SNR curves for the varaiable-band 4th-order bandpass l:-~ modulator are 
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illustrated in Figure'2.59. Peak SNRs of21.1 dB, 32.5 dB, 45.7 dB, 59 dB, 70.1 dB and 79 

dB are achieved for OSRs of8, 16,32,64, 128 and 256 respectively. 
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Figure 2.58 Magnitude Spectra of Chain of Resonators with Distributed Feedback 

Butterworth L-~ Modulator (a) 6th-Order at vc= 0.25, (b) 4th-Order at vc= 

0.125. 
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Figure 2.59 SNR Curves for a 4th-Order Chebyshev 2 Based Variable-Band Bandpass:E­

~ Modulators at Vc = 0.125. 

2.22 The Sodini Interpolative :E-~ modulator Topology 

Interpolative modulators contain both feedforward and feedback coefficients in the 

transfer function of the modulator as shown in Figure 2.60. These coefficients are chosen 

to improve stability as well as ensuring quantisation noise reduction in the signal region. In 

this topology, the poles of the modulator are spread across the signal region to reduce the 
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in-band quantisation' noise. The zeros are selected to decrease ~e magnitude of the 

quantisation noise spectrum at high frequencies. 

X(z) 

Y(z) 

Figure 2.60 The Sodini Interpolative k-~ Modulator Topology. 

The signal Hs (z) and noise H N (z) transfer functions of this topology are given by: 

L-I L 

l-aIHI(z)-a2HI(z)H2(z)- ... -aL_ITIH;(z)+aLTIH;(z) 
HN(z) = 1=1 1=1 L (2.69) 

l+bo +(bl -al )HI(z)+(b2 -a2)HI(z)H2(z) + ... +(bL -adTIHL(z) 
;=1 

The coefficients for the 4th and 6th order bandpass l:-~ modulator interpolative topology 

were derived for a variable noise-shaping band location at Vc = 0.125 and are given in 

Table 2.13. The magnitude spectra corresponding to the 6th-order Butterworth and 

Chebyshev 2 bandpass l:-~ modulators are shown in Figure 2.61. These modulators were 

simulated for an input sinusoid and dither signal, whose amplitudes were 0.5 and 0.05 to 

compare their spectra with the preceding topologies. A tone at vc= 0.375 can be perceived 

confirming once again that the location and to a lesser extent the strength of these tones are 

independent of the modulator topology and are primarily a function of the input signal 

amplitude. 
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Butterworth Chebyshev 2 

Fourth-Order 

b1 0.2198 b' 1 0.3092 

~ 0.0587 ~ 0.0929 

b3 0.0581 h3 . ,0.0731 

. b4 -0.0481 b4 -0.0681' 

a1 -1.1544 a1 -1.1716 

a2 -1.4876 a2 -1.5146 

a3 -0.6664 a3 -0.6860 

a4 -0.3332 a4 -0.3430 

Sixth-Order 

ht 0.3123 h1 0.3935 

b2 0.2801 h2 0.3699 

b3 0.3110 h3 0.3926 

b4 0.0290 h4 0.0344 

bs 0.0043 hs -0.0021 

b6 -0.0379 b6 -0.0492 

a1 -1.7316 a1 -1.7574 

a2 -2.7311 a2 -2.7868 

a3 -2.1913 a3 -2.2598 

a4 -1.5764 a4 -1.6324 

as -0.5769 as -0.6030 

a6 -0.1923 a6 -0.2010 

Table 2.13 The Sodini Interpolative Coefficients for 2nd-Order, 4th-Order and 6th-Order 

Butterworth and Chebyshev 2 Bandpass l:-~ Modulators. 

Table 2.14 summarises the peak SNRs that are achieved for a variety of Butterworth and 

Chebyshev 2 based bandpass l:-~ modulators for the interpolative and the Chain of 

Accumulators with Eeedforward ~ummation Local Resonator EeedBack (CAFSLRFB) 

topologies for Vc = 0.125. 
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Mod CAFSLRFB Interpolative 

OSR 4th 6~ 4th 6th 4th 6th 4th 6th 

8 21 18.9 21.6 18.5 21 19 21.5 18.4 

16 32.4 31.5 34.2 33.5 32.3 31.4 34.3 33.4 

32 45.7 50 49 54.5 45.5 49.5 49.2 53.7 

64 58.9 67.9 65.7 77.7 58.8 65.8 56.6 69.4 

128 70.1 83.6 81.3 102.2 69.1 74.8 81.3 74 

256 79.7 96.4 82.6 105.4 77.4 79.7 82.5 77 

Table 2.14 A Comparison of the Peak SNR values between the CAFSLRFB 

and Interpolative Topologies for Different OSRs. 

Several conclusions can be drawn based on the results in Table 2.14 as well as from 

detailed behavioural-level simulations. For the 4th-order Butterworth based modulator, the 

CAFSLRFB SNRs were marginally better for OSRs of 128 and 256 compared with the 

interpolative case as illustrated in Figure 2.62. For the 6th -order Butterworth based 

modulator, whose magnitude spectrum is shown in Figure 2.61 (a), the CAFSLRFB 

outperformed its interpolative counterpart by as much as 8.8 dB and 16.7 dB for OSR of 

128 and 256 respectively as shown in Figure 2.63. However, for the other OSRs, the SNR 

characteristics were very comparable. For the 4th-order Chebyshev 2 based bandpass l:-~ 

modulator, the SNR figures across the entire DR were virtually identical. Finally; for the 

6th-order Chebyshev 2 based modulator, whose magnitude spectrum is given in Figure 2.61 

(b), the SNR figures in Figure 2.63, for the CAFSLRFB significantly outperformed its 

interpolative counterpart. The marked SNR deterioration in the interpolative case is 

attributed to the fact that the internal signal levels have larger amplitudes, which cause the 

quantiser to overload more prematurely. This overloading makes the modulator generate 

more in-band tones, resulting in inferior resolution. 
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Figure 2.61 The Sodini Interpolative Magnitude Spectra of a 6th -Order L-~ modulator 

at vc= 0.125 (a) Butterworth, (b) Chebyshev 2. 
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Figure 2.62 SNR Curves at Vc = 0.125 for (a) 4th-Order, (b) 6th-Order Butterworth Based 

Variable-Band Bandpass L-~ Modulators. 
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Figure 2.63 SNR Curves at Vc = 0.125 for (a) 4th-Order, (b) 6th-Order Chebyshev 2 

Based Variable-Band Bandpass L-~ Modulators. 

2.23 Non-Idealities in Single-Stage Resonator-Based Bandpass L-~ Modulators 

This section presents a discussion supported with behavioural-level simulations of 

the effect of non-idealities on the noise-shaping performance and resolution of a 4th-order 

variable-band bandpass :E-~ modulator. The modulator under investigation was designed 

using the FIR notch-filter approach to provide variable-band noise-shaping at Vc = 17/64. 

These simulations can be broadly divided into two categories. 

The fust set of simulations investigated the effect of utilising non-unity gam 

resonators on the modulator resolution for different gain combinations in the 151 and 2nd 

resonators of the modulator. The transfer function model for this non-unity gain resonator 

Rc(z) is given: 

(2.70) 

The deductions drawn from the detailed behavioural-level simulation results are 

summarised as follows. The use of non-unity gain values for the first resonator in the range 

0.8 $; g, $; 1 has negligible effect on the overall modulator resolution for the different 

combinations of OSRs. Similarly; the utilisation of non-unity gains for the 2nd-order 

resonator in the range 0.8 $; g2 ~ 1 has very little effect on the SNR characteristics of the 

modulator. Moreover, simulations demonstrated that the simultaneous variation of the 

gains in both resonators had insignificant effect on the overall modulator resolution. It may 

have been quite surprising to see that in some cases, the peak SNR of this modulator 

occurred when the resonator gains were below unity. Initially; one is led to believe that a 

109 



reduction of r~onator gains automatically results in larger in-band quantisation noise. 

However, moderate gain reductions serve to alleviate the amplitude levels of the internal 

signals, thus helping to lessen the occurrence of quantiser overloading. This in turn reduces 

the generation of in-band tones due to overloading, thus yielding better resolution. 

Furthennore, these results conflnned the fact that single-stage l::-~ modulators are 

relatively insensitive to moderate gain variations in the quantiser. 

The second set of simulations utilised leaky resonators in the loop-fllter of this 4th_ 

order modulator as given by: ... ", 

Riz) = Vl- 2pcos2nvc z-l + p2z-2 (2.71) 

The variation of the leakage factor p ranged from 0.96 ~ P ~ 1 for each resonator. The use 

of leaky resonators in either the fIrst or second loop of the modulator demonstrated that 

there was negligible deterioration in the in-band SNRs for the smaller OSRs of 8 and 16. 

However, the SNR degradation became signifIcant for the larger OSRs of 32,64, 128 and 

256, where the discrepancy between p = 1 and p = 0.96 was as large as 16.5 dB. These 

observations confInn theoretical expectations, which indicate that the shift of the NTF 

zeros from the unit-circle towards the origin, causes a reduction of the quantisation noise in 

the in-band region. This naturally results in inferior resolution. In addition, the 

simultaneous and equal reduction of the resonator leakage factors below 0.98 produced 

very shallow noise-shaping responses. These spectra contained many tones especially in the 

signal region, which inevitably resulted in very poor resolution. 

2.24 Concluding Remarks of Chapter 2 

This chapter presented a survey of reported publications, an up-to-date review of 

hardware implementations and a summary of potential applications of bandpass l:-~ 

modulators. The core objective of the chapter was to present, develop and propose different 

approaches for the system-level design of single-stage bandpass l:-~ modulators. 

Mid-band resonator-based bandpass l::-~ modulators using the z-l -+ z-2 frequency 

transformation technique were relatively easy to design and invariably exhibited 

symmetrical noise-shaping magnitude spectra. Moreover, this symmetry improved 

modulator stability and simplified the specification requirements of the decimator. 

However, there were two constraints associated with this technique. First; it always 
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required a stable lowpass I-A modulator prototype. Second, it could only provide noise­

shaping for a single frequency at Vc = 0.25. 

The variable-band resonator-based lowpass-to-bandpass frequency transformation 

technique was simple to apply and. allowed noise-shaping to be achieved for any centre 
. . 

frequency across the ~pectrum. However, it had several limitations. First, a working 

lowpass I-A modulator prototype was always needed, whose noise-shaping and stability 

characteristics were no longer preserved after the transformation. Second, the uneven 

shoulder gain levels imparted by the variable-band resonator transfer function reduced 

modulator stability and imposed more stringent specifications on the bandpass decimator. 

Third, good SNRs and DRs could only be accomplished for extremely narrow bandwidths, 

normally a single frequency. Fourth, the designer was limited to defining the centre 

frequency and OSR, having no freedom over specifying the signal bandwidth. 

The application of the extended lowpass-to-bandpass frequency transformation 

approach, which was developed by the author allowed the specification of the signal 

bandwidth as well as the centre frequency of the noise-shaping band. The main features of 

this were as follows: First, allowing the designer to specify the signal bandwidth makes this 

technique more suitable for applications, whose inputs are composed of a multitude of 

harmonics. This is in contrast to the mid-band and variable-band transformation 

techniques, which only permitted the specification of the centre frequency, totally 

disregarding the width of the modulator input signal. Second, the difference in the shoulder 

gain levels of the loop-filter with this technique was virtually diminished for any band­

location in the spectrum. This enhanced stability, especially for higher-order I-A 

modulators circumventing the need to use stability scaling factors. Third, this design 

process required the substitution of each delay element of the lowpass prototype with a 

generalised lowpass-to-bandpass frequency transformation. An m-jile was written by the 

author, which could compute the loop-filter coefficients for a given set of system-level 

specifications. Fourth, I-A modulators, which employed this transformation approach 

contained fewer tones in their magnitude spectra. This was attributed to the more 

complicated loop-filter, which produced a wider range of state values. Fifth, the 

coincidental distribution of the poles and zeros of the loop-filter as a result of using this 

technique helped to simplify the structure of the loop-filter. 

The FIR notch filter approach utilised a simpler NTF and was easier to design. 

However, the uneven shoulder gains of the magnitude spectrum for most centre frequencies 

was found to reduce modulator stability. Another constraint was that the notch had a 

111 



relatively large bandwidth, which implied that unwanted tones close to the input signal 

might be included in the signal region. 

For the IIR notch filter approach, the disparity in the shoulder gain levels for non­

mid-band centre frequencies was significantly reduced. This was achieved by placing the 

NTF poles at the same frequency of the zeros, but with a comparatively smaller magnitude. 

With this approach, .the close proximity of the poles and zeros of the NTF resulted in 

greater in-band quantisation noise attenuation. but smaller bandwidths. Furthermore, this 

approach delivered better SNRs, higher DRs, reduced tonality and better stability compared 

with the FIR case. 

The merits and drawbacks of the complex I-A modulator approach are summarised 

next. First, the poles and zeros were not restricted to conjugate pairs, which resulted in 

lower in-band quantisation noise attenuation compared with a real-coefficient modulator of 

the same order. Second, greater design flexibility and better resolution could be achieved 

with this approach compared with its real-coefficient counterpart at the cost of an 

additional quantiser and signal paths for the quadrature components of the input signal to 

the modulator. Third, these modulators were found to be well-suited for single side-band 

applications. Fourth, I-A modulators using this approach were found to be more stable for 

noise-shaping bands that were very close to dc and Nyquist. This robustness in stability 

was due to the significantly lower gain of the complex NTF, which consequently produced 

smaller internal signal levels in the modulator compared with the real FIR notch filter 

approach. 

Complex IIR notch filter based I-A modulators gave better SNRs, higher DRs, lower 

tonality and improved stability compared with complex FIR notch filter based :E-A 

modulators. Moreover, these improvements were accomplished using a lower-order loop­

filter compared with the real-coefficient IIR approach, at the price of an extra quantiser and 

signal path for the imaginary components of the input signal. Once again, complex IIR 

notch filter based :E-A modulators achieved better stability compared with complex FIR 

and real-coefficient IIR notch filter based I-A modulators. However, the design process 

and loop-filters of these modulators were slightly more complicated. 

An alternative novel technique for the design of variable-band bandpass I-A 

modulators was proposed by the author, which utilised a first-order sum-filter in 

conjunction with fractional-delayers to spectrally transfer the noise-shaping band to the 

desired signal location. This approach was shown to accomplish single-band noise-shaping 

for any variable centre frequency input signal. In comparison with the transformation based 
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techniques, FIR sum-filter based ~-~ modulators were found to suffer from inadequate 

noise-shaping at high frequencies due to errors in the amplitude of the FIR filter. For FD 

requirements other 0.5, the FIR FD filter exhibited small phase errors resulting in minor 

shifts of the noise-shaping bands towards Nyquist. On the other hand, fiR sum-filter based 

~_~ modulators yielded enhanced SNRs at the expense of a slightly more complicated 

design process. Furthermore, l:-~ modulators employing this approach contained fewer 

tones in their magnitude spectra compared with the transformation methods. This was 

attributed to the more complicated loop-filter transfer function, which resulted in a more 

diverse range of ~tate values and therefore fewer tones. 

A practical step-by-step methodology for the design of bandpass l:-~ modulators 

based on well known filter family types was presented and supported with extensive 

simulation results. The in-band SNRs that were achieved with a Chebyshev 2 bandpass 

l:-~ modulators outperformed their Butterworth counterparts by as much as 15 dB. This 

improvement was attributed to the distribution of the NTF zeros across the signal band, 

which accomplished greater in-band quantisation noise attenuation and therefore better 

SNRs. On the other hand, the Butterworth based l:-~ modulators, whose NTF zeros were 

coincidentally positioned resulted in a simpler structure of the loop-filter. 

Next, several commonly used l:-~ modulator topologies were analysed and where 

appropriate structural modifications were made in order to allow variable-band noise­

shaping. Simple-to-use routines, which could compute the required coefficients for any 

system-level set of specifications as well as a library containing the corresponding l:-~ 

modulator topologies were created in Matlab and Simulink respectively. Analysis showed 

that the NTF of the chain of resonators with weighted feedforward summation topology 

was totally independent of the weighting coefficients, thus restricting this topology to 

achieving noise-shaping at mid-band resonance only. The feedforward coefficients, 

however, provided flexibility for the positioning of the NTF pole locations in order to 

reduce if necessary the out-of-band gain of the NTF to allow greater control over 

modulator stability. The chain of accumulators with feedforward summation and local 

resonator feedback topology was found to be well-suited for applications that required 

variable-band noise-shaping. The presence of the internal feedback loop with a suitable 

coefficient provided the flexibility of moving the loop-filter poles away from dc to any 

centre frequency up to Nyquist. This structure was found to be suitable for any type of 

loop-filter irrespective of the pole location unlike its predecessor, which was restricted to 

mid-band centre frequencies. The chain of resonators with distributed feedback topology 
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was simple to use for mid-band centre frequency applications. For other centre frequency 

locations, this topology required the use of variable-band resonators as well as the insertion 

of additional gain factors prior to these resonators to control the internal amplitude levels in 

the modulator to ensure stability. The Sodini interpolative l:-~ modulator topology was 

shown to be suitable for any centre frequency specification. However, higher-order 

interpolative based l:-~ modulators produced lower SNRs compared with the other three 

topologies. This marked SNR deterioration was attributed to the fact that the internal signal 

levels had larger amplitudes, which caused the quantiser to overload more prematurely. 

This overloading made the modulator generate more in-band tones, therefore accounting 

for the poor resolution. 

This chapter culminated by presenting detailed simulation results of the effects of 

non-unity gain and leaky resonators on the overall resolution of a fourth-order variable­

band bandpass l:-~ modulator. Variations in the gain of either or both resonators by as 

much as 20% were shown to have negligible effect on the overall modulator resolution for 

different OSRs. Variations in the leakage factors of either the first or second resonators 

demonstrated that there was little in-band SNR change for the smaller OSRs of 8 and 16. 

However, there was significant SNR deterioration for the larger OSRs of 32, 64, 128 and 

256 by as much as 16.5 dB for a 4% variation of the leakage factor. In addition, the 

simultaneous and equal reduction of the resonator leakage factors by as little as 2% 

exhibited very shallow noise-shaping spectra. 
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Chapter 3 

Multi-Stage (MASH) Bandpass :E-L\ Modulators 

3.1 Ov~rview on Bandpass MASH 1:-6 Modulators 

Multi-stAge Noise-SHaping (MASH) 1:-6 modulators provide an alternative means 

for achieving low-distortion, high-linearity AID and DI A conversion on narrow-band low 

and high frequency input signals [Hay86]-[Mat87]-[Uch88]-[Ch089]-[Kar90]-[Rib91a]­

[Rib91b]-[Wi191]-[Wi194]-[Bah95]-[Mar97]. These multi-loop 1:-6 structures are 

essentially a cascade of independent lower-order 1:-6 modulators [Ch089], where the 

quantisation noise in each stage is fed to the input of the following stage as shown below in 

Figure 3.1. 

Jl(k) 

Figure 3.1 Generalised Block Diagram of a Multi-Stage (MASH) 1:-6 modulator. 

The outputs of all the stages are digitally filtered and subsequently combined so as to 

cancel the quantisation noise of the intermediate stages. The final stage quantisation noise 

is digitally processed by an Lth order filter, where L is the overall order of the modulator 

[Ch089]. 

The main advantage of MASH 1:-6 modulators is that they are guaranteed to be 

stable to any order under all operating conditions for two important reasons. The first is 

that the lower-order 1:-6 modulators that they are composed of are inherently stable, 
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(nonnally not exceeding second-order). The second reason is that they only contain 

feedforward paths between the individual modulator sections [Mat87]-[Uch88]-[Ch089]. 

A major disadvantage associated with MASH structures is that they are more 

sensitive to component non-idealities compared with higher-order single-bit 1:-.6-

modulators of the same order. Mismatches between the analogue loop-filters and their 

corresponding digital inverse filters as well as inter-stage mismatches between the 

analogue stages result in the leakage of the quantisation noise of intennediate stages to the 

overall modulator output and thus lead to inferior resolution. Improper noise cancellation 

can also facilitate the propagation of tones from earlier' to subsequent stages. For all MASH 

1:-.6- modulators, the design of the first-stage is the most critical. The amount of 

quantisation noise in the in-band region for subsequent stages becomes greatly attenuated 

by noise-shaping, therefore making the perfonnance requirements of these modulators less 

stringent [Mat87]-[Ch089]-[Rib9Ia]. 

Another drawback of MASH 1:-.6. topologies is increased hardware complexity due 

to the additional number of quantisers and digital cancellation circuitry at the modulator 

output stages [Mat87]-[Rib9Ia]-[Wil91]. 

Another inherent feature of MASH structures is the presence of multi-bits in its 

output signal. The cumulative effect of multi-bit outputs depends on the modulator order 

and its constituent number of internal stages. For example, a I-I cascade MASH will 

produce a fmal output signal having one of the following values ± I and ± 3. [Ch089]­

[Rib9Ia]-[Wil91]. The linearised model discussed in section 1.8 becomes more accurate 

for higher-order MASH 1:-.6. modulators, because the quantisation noise components of 

successive stages become more randornised as a result of more filtering. It could be also 

intuitively stated that the presence of multi-bit outputs also achieves greater decorrelation 

of the modulator output signal, thus making the use of the linear analysis more realistic. 

Assuming identical loop-filters in each modulator stage and unity coefficients throughout, a 

generalised output expression for the modulator shown in Figure 3.1 is given by: 

L·2 L.I 
y(k)=YI(k)+lIlIY2(k)+ ... + Ln;IYL-I(k) + Ln;lyL(k) (3.1) 

I = I i= 0 

where H represents the loop-filter and L is the overall order of the modulator. Under ideal 

conditions, this output expression simplifies to 

YL(k) = x(k) + JrLqL(k) 

where q L (k) is the quantisation noise of the final stage. 
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A further drawback that is associated with MASH l:-~ modulators is that the post 

digital decimator for AID applications is complicated by the fact that it must allow for 

multi-bit inputs [Par92b]. 
~ 

It should be stated that a.porrit is reached where no further improvement in resolution 

can be accomplished by increasing the number of stages in the modulator. This has been 

confmned by simulation results carried out by the author. 

Alternative MASH 1:-~ configurations exist where the loop-filter output of the 

preceding stage feeds in directly to the following stage instead of feeding in the difference 

between the quantiser input and output. These modified MASH topologies may use 

scaling-down factors to control the magnitude of the signal levels from the loop-filters to 

ensure that the quantisers do not become overloaded [Rib91b]. 

Chapter 3 provides the design procedure and analysis of variable centre frequency 

resonator- and non-resonator based bandpass l:-A modulators. The four techniques 

considered are based on the noise transfer functions of real-coefficient FIR notch-filters, 

complex FIR notch-filters, fractional-delay filters in conjunction with first-order sum-filters 

and Butterworth/Chebyshev 2 bandstop filters. A library containing over 33 different 

combinations of these 1:-~ modulator topologies is created. The required modulator 

coefficients to meet any set of specifications can be obtained by running an associated m­

file prior to simulation. A comparative study based on a mixture of linear modelling and 

behavioural level simulations of these different topologies is presented. Detailed guidelines 

for the selection of modulator performance measures are evaluated and shown in tabular 

and graphical forms. 

3.2 Review of Published MASH l:-~ Modulators 

An extensive literature survey on multi-stage l:-~ modulators revealed that 90.4% of 

all existing conference and journal publications are lowpass-based topologies employing 

accumulators and differencers for the analogue and digital sections respectively. Of the 

remaining the 9.6%: 7.7% and 1.9% use the mid-band [Kuo96]-[Mor96]-[Pea94]-[Rib94] 

and non-Mid-band [Ben93] centre frequency low-to-band transformations discussed in 

sections in 2.5 and 2.7 respectively. These findings confllll1 the necessity of extending 

some of the techniques reported in chapter 2 for single-stage and multi-bit modulators to 

the cascaded MASH 1:-.6. modulators. Table 3.1 provides a chronological summary of all 

publications to-date on MASH 1:-.6. modulators. The abbreviations used in Table 3.1 are 
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given by: N is the modulator order, T is the modulator type, NMS represents the Number of 

Modulator Stages, RB is the resolution in bits, LP is LowPass and BP is BandPass. 

L T NMS Brief Description of the Reported Publication R8 Refs 

~ LP 1-1 SC 1.5-J.I. silicon gate CMOS for audio range 14 [Hay86] 

3 LP 1-1-1 2-J.I. CMOS, /8 = 24 kHz 16 [Mat87] 

L LP L Ergodic Theory for DC inputs N/A [He88] 

3 LP 2-1 SC 1.5-J.I. silicon gate CMOS,/8 = SO kHz,1s = 2.56 MHz 13 [LonSS] 

3 LP 1-1-1 SC Simulations for Hi-Fi Audio,1s = 2.56 MHz 16 [UchS8] 

L LP L Theoretical Analysis for DC and Sinusoids N/A [ChoS9] 

2 LP 1-1 Review of Various Topologies N/A [Mat89b] 

3 LP 1-1-1 SC 1.5-J,1 CMOS,/8 = 80 kHz, Is = 10.24 MHz 15.6 [Reb89a] 

3 LP 1-1-1 SC 1.5-J.1 CMOS,j8 = 160 kHz, is = 10.24 MHz 14.6 [Reb89b] 

2 LP 1-1 Analytical proof that dithered QN in 1-1 is White N/A [Cho90] 

4 LP 2-2 2.5-J.1 molybdenum gate CMOS,/B= 3 MHz, OSR = 64 18 [Kar90] 

4 LP 2-2 Robust SC Realisation,jB = 32 kHz, Is = 5 MHz 16 [Mat90] 

3 LP 1-1-1 SC 1.5-J.1 CMOS,/8 = 80 kHz, Is = 10.24 MHz 15.2 [Reb90] 

2 LP 1-1 Tutorial Survey of ~-~ Topologies N/A [Tem90] 

2 LP 1-1 An extended tutorial on oversampling converters N/A [Hau91] 

2 LP 1-1 Tutorial Overview on ~-~ Topologies N/A [Leu91] 

3 LP 2-1 Linear Analysis & simulations of two 1-1-1 and 2-1 N/A [Rib91a] 

3 LP 2-1 Robust SC 1.2-J.1 CMOS, sample rate 80 kHz 15 [Rib91b] 

3 LP 2-1 Analytical model & simulations of a 2-1 MASH N/A [WiI91] 

3 LP 1-1-1 Practical limitations & measurement N/A [Hej92] 

3 LP 1-1-1 Estimates: Is = 3 MHz, OSR = 64, also 1-2 reported 16 [Mat92] 

3 LP 2-1 Implemented in 1991 of AT&T DSP16C Codec DSP - [Nor92] 

4 BP 2-2 Double integrator & bandpass, Vc = 0.02 ,OSR = 50 15.5 [Ben93] 

3 LP 2-1 Cascade pseudo-multi-bit simulated, OSR = 64,fc - 4 kHz 17.5 [Dia93] 

4 LP 1-1 Non-accumulator-based 1-1 using Chebyshev 18 [Har93] 

3 LP 1-1-1 An overview on AID ~-~ modulators N/A [Par93] 

4 LP 2-2 Simulated: I-bit by 3-bit cascade (ideal- 26 b) 20 [Tan93] 

6 LP 2-2-2 Implemented 1.2-J.1 CMOS, /8= 100 kHz, 3-level 15 [Ded94] 

4 LP 3-1 Estis = 22 MHz, OSR = 32. 1.2-J.1 CMOS, 2nd stage 5-bit 16 [Har94] 

4 BP 2-2 Is -10 MHz,fc - 2.5 MHz,/B- 50 kHz, CT - [Pea94] 

6 BP 4-2 SC CMOS, Est:1s - 10 MHz,fc - 2.5 MHz, OSR = 64 16 [Rib94] 

3 LP 2-1 I-J.1 CMOS,1s - 6.4 MHz,fc = 25 kHz, OSR = 128 17 [Wil94] 

4 LP 2-1-1 SC, 2-J.1 BiCMOS,1s = 48 MHz, OSR = 32 16 [Yin94] 

4 LP 2-2 SC analysis inc. non-idealities, OSR - 64, also 1-1-1-1, 2-1 18.3 [Bah95] 

4 LP 1-1-1-1 Multi-stage closed-loop, OSR = 50, VB = 0.01, also BP 15 [Ben95] 
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6 LP 3-3 SC simulations, 3-level, also (3-2 stages,19.3 b, OSR = 32) 22.6 [Fis96] 

4 BP 2-2 Comparative simulations of topologies of same order 17 [Kuo96] 

6 BP 4-2 Novel digital FIR compensator to reduce non-idealities 16 [Mor96b] 

3 LP 1-1-1 Analysis at circuit-level inc. non-idealities for 2-1, 1-1-1 17.2 [Fis97] 

4 LP mixed Comparative simulations for 2-1, 2-1-1, 2-2, 3-1 mix [Mar97] 

3 LP 2-1 SC 0.8-.... CMOS, Is = 4 MHz,/B = 2S kHz, OSR = 80 16 [Rab97] 

6 LP 3-3 Is = 20 MHz, OSR - 20, digital correction non-idealities 18 [Fis98] 

4 LP 2-2 Is = 140 MHz,fc = 350 kHz, multi-bit quantisers, 16 [Got98] 

OSR = 16, Stage 1 is 2-bit, Stage2 is 6-bit 

4 LP mixed Analysis & simulations of2-1, 2-1-1, 2-2, 3-1 mix [Mar98b] 

4 LP 2-1-1 Stage3 is 3-bit, OSR - 16, insensitive to non-idealities 13.3 [Med98a] 

4 LP mixed Investigation inc non-idealities for SC implementation mix [Med98b] 

4 LP 2-2 SC 3-.... CMOS, Is = 3.2 MHz, OSR = 64 14.7 [Mia98] 

3 LP 1-1-1 SC 2-.... CMOS implementation with digital correction 17.8 [Dav99b] 

2 LP 1-1 Uni-MASH using time-division concept for architecture N/A [Ho99] 

2 LP 1-1 Cascade topology with reducedls, multi-bit quantiser IS [Qin99] 

2 LP 1-1 Pipe lined MASH with inter-stage scaling, SC 2-.... 11.6 [Ram99] 

CMOS, OSR = 8, stage2 multi-bit 

3 LP 1-2 Implementation on Xilinx 3042 FPGA - [Sun99] 

Table 3.1 Chronological Survey of Publications for MASH I-~ Modulators. 

3.3 Design Methodology for MASH Bandpass I-A Modulators 

This section describes a practical step-by-step approach that enables the design of 

bandpass MASH I-~ modulators using one of the three NTF techniques shown below in 

Figure 3.2. The first method is based on the Pole-Zero-Placement (PZP) of either real or 

complex FIR notch-filters for the design of the NTF. The second method employs a first­

order sum-filter in cascade with an FIR fractional delayer to spectrally move the NTF notch 

to the desired centre frequency location. The third technique utilises either Butterworth or 

Chebyshev 2 bandstop filters, where the stop-bandwidth of the NTF can be specified. The 

stop-band attenuation can also be specified in the case of Chebyshev 2. Each of the 

constituent lower-order sections will consist of a chain of resonators with distributed 

feedback. 
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t Variable Centre Frequency 
MASH Bandpass Design 

Techniques 

Figure 3.2 Different Techniques for the Design of Bandpass MASH I-~ Modulators. 

An algorithmic description of this method is presented in the following steps: 

STEP 1: Select a nonnalised centre frequency vc , bandwidth ~ v, OSR, DR and 

modulator order L. 

STEP 2: Select one of three NTF methods. 

IfNTF PZP method then goto STEP 3, 

IfNTF Sum Filter + FIR Fractional Delayer Method then goto STEP 12, 

IfNTF bandstop method then goto STEP 16. 

STEP 3: Select one of two sub-methods for NTF PZP, 

If real-coefficient FIR notch-filter method then goto STEP 4, 

If complex-coefficient FIR notch-filter method then goto STEP 8. 

STEP 4: The real-coefficient FIR notch-filter method involves positioning the zeros of the 

NTF at the desired centre frequency location to provide maximum in-band attenuation. The 

zeros of the NTF are located at e±j2trvc ,where v c is the normalised frequency of the input 

signal. The poles of the NTF, however, are stationed at the origin of the unit-circle. The 

NTF is given by: 

(3.3) 

where L is the modulator order. 
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STEP 5: The corresponding loop- and feedback filters may be analytically derived using 

the linear model described ~ Section 1.8. This linear approximation was found to deliver . . 
adt:q~te results as far as depicting the noise-shaping e~velope of the modulator. 

Therefore, the l~op- and feedback transfer functions are analytically· obtained by re­

arranging the expression for the NTF as shown below: 

F(z)L(z) = (1- NTF)/ NTF (3.4) 

whereF(z) and L(z) may be determined by separating the numerator and denominator 

expressions such that F(z) = (1- NTF) and L(z) = 1 / NTF . 

The lowest possible order in the case of real coefficient bandpass :E-~ modulators is 

second-order. Detailed simulations showed that second-order resonator-based single-bit 

:E-~ modulators are guaranteed to be stable for any centre frequency, but that fourth-order 

resonator-based single-bit bandpass :E-~ modulators are stable for a narrow-range of centre 

frequencies around the mid-band region. The adopted solution was to employ multi-bit 

quantisers where necessary to ensure that fourth-order resonator-based :E-~ modulators are 

stable for all the centre frequencies. Therefore, in this chapter higher-order bandpass 

MASH :E-~ modulators are constructed by using mixed combinations of second and/or 

fourth-order independent resonator-based :E-~ modulators. The second-order modulators 

will always contain a single-bit quantiser and the fourth-order modulators will contain 

either a single- or multi-bit quantiser depending on the centre frequency location. 

STEP 6: This step involves confirming the overall MASH modulator order, deciding on the 

order and number of stages within each MASH topology and hence determining the extra 

digital filters that are required at the output of each stage to achieve the most effective 

noise-shaping. Table 3.2 gives a summary of the constituent building blocks of these :E-~ 

MASH topologies. Note that the loop-filter, feedback filters and digital notch-filters are 

represented by R(z),F(z) and N(z) as shown below: 

1 
R(z) = ------.,.-....,. 

1-2 cos2n"Vc Z-l + z-2 

F(z) = 2 cos 2 nvc z-l + z-2 

N(z) = 1- 2cos2nvc z-l + Z-2 
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L Comb. Loop-Filters Feed- Notch-Filters 

Stage! Stage2 .,; Stage3 . Stage4 back Stage2 Stage3 Stage4 

4 2-2 R(z) R(z) . - - F(z) N(z) - -
• 

l? 2-2-2 R(z) : R(z) R(z) - F(z) N(z) N2(Z) -. 
o. ~ 

6 4-2 R2(z) R(z) - - F(z) N2(Z) - -
6 2-4 R(z) R2(Z) - - F(z) N(z) - -
8 2-2-2-2 R(z) R(z) R(z) R(z) F(z) N(z) N2(z) N 3(z) 

8 4-2-2 R2(z) R(z) R(z) - F(z) N2(Z) N 3(z) -
8 2-4-2 R(z) R2(z) R(z) - F(z) N(z) N 3(z) -
8 2-2-4 R(z) R(z) R2(Z) - F(z) N(z) N2(Z) -
8 4-4 R2(Z) R2(Z) - - F(z) N2(Z) - -

Table 3.2 Constituent Building-Blocks of Bandpass MASH l:-~ Modulators. 

STEP 7: Run the Matlab m-file mashdes first by simply typing it in the Matlab workspace 

environment. This program requires the user to enter values for Vc and OSR. Then run the 

simulator using Simulink in Matlab to confirm the correct operation of the chosen 

modulator. To check SNR and DR values, run another m-file called snrval. If the in-band 

SNR value is not sufficiently high then 

a) increase the modulator order and repeat STEPS 4-7, 

b) or increase the OSR provided the bandwidth of the in-band region is not violated and 

repeat STEPS 1-7, 

c) or increase the number of levels in the quantiser of the first-stage, and repeat 

STEPS 1-7. 

STEP 8: In the complex-coefficient FIR notch-filter method, the zeros of the NTF are 

placed at the specified positive centre frequency on the unit-circle to accomplish maximum 

in-band attenuation. The zeros are located at e+ j21rVC
• The NTF is given by 

(3.8) 

STEP 9: The corresponding loop- and feedback filters may be obtained using the linear 

model as described in sections 1.8 and STEP 5 respectively. 
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The lowest possible order in the case of cOI:nplex-coefficient bandpass I:-a modulators is 

fll'st-order. Detailed simulations confrrmed that both fIrst- and second-order complex 

resonator-based bandpass l:-~ modulators are stable for all centre frequencies up 'to very 

high input amplitude levels. Therefore, complex higher-order bandpass MASH I:-~ , 
modulators are built using combinations of complex fIrst- and/or second-order resonator­

based single-bit I:-~ modulators. 

STEP 10: This step involves deciding on the order and number of stages within each 

MASH topology and hence determining the extra digital fIlters that are needed at the output 

of each stage to achieve the most effective noise-shaping. Table 3.3 provides a summary of 

the constituent building blocks of these complex MASH topologies. Note that the complex 

loop-fIlters, complex feedback delayers and digital complex notch-mters are depicted by 

CR(z), CF(z) and CN(z) as shown below: 

CR(z) (3.9) 

L Comb. Complex Loop-Filters Complex Complex Notch-Filters 

Stage I Stage2 Stage3 Stage4 Delayers Stage2 Stage3 Stage4 

2 I-I CR(z) CR(z) - - CF(z) CN(z) - -
3 1-1-1 CR(z) CR(z) CR(z) - CF(z) CN(z) CN2(z) -
3 2-1 CR2 (z) CR(z) - - CF(z) N2(Z) - -
3 1-2 CR(z) CR2 (z) - - CF(z) CN(z) - -
4 1-1-1-1 CR(z) CR(z) CR(z) CF(z) CN(z) CN2(z) CN(z) 

4 2-1-1 CR2 (z) CR(z) CR(z) - CF(z) CN2(z) CN3(z) -
4 1-2-1 CR(z) CR2 (z) CR(z) - CF(z) CN(z) CN3(z) -

4 1-1-2 CR(z) CR(z) CR2 (z) - CF(z) CN(z) CN2(z) -
4 2-2 CR2 (z) CR2(z) - - CF(z) CN2(z) - -

Table 3.3 Constituent Building-Blocks of Complex Bandpass MASH I:-a Modulators. 

STEP 11: Run the Matlab m-fIle mashdes fIrst by simply typing it in the Matlab workspace 

environment. This program requires the user to enter values for v c and OSR. Then run the 

simulator using Simulink in Matlab to confrrm the correct operation of the chosen 
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modulator. To check SNR and DR values. run another m-file called snrval. If the in-band 
I 

SNR value is not sufficiently high then 

a) either increase the modulator order and repeat STEPS 8-10, 

b) or increase the OSR provided the bandwidth of the in-band region is not violated and 

repeat STEPS 8-10. 

STEP 12: The FIR Fractional-Delay-Filter (FDF) method is based on using a first-order 

sum-filter in cascade with an FDF for the NTF, which is given by, 

(3.10) 

This implies that an arbitrary normalised centre frequency can be attained by determining 

the necessary total delay D that must be incorporated in HN(z) , so that the null of the 

first-order sum-filter is spectrally transferred to the desired signal frequency band. Note 

that f is the delay of the FD filter itself (including the fractional component) and r is the 

additional delay required to meet a given specification. Using the Lagrange approximation 

as detailed in Section 2.15, the NTF becomes: 

(3.11) 

where N is the order of the FDF. 

STEP 13: Using linearised analysis. the corresponding loop- and feedback filters become: 

1 
L(z) = 1 -'( -I -(N-I) -N) + Z Co + c1z +",+C(N-l) Z + CN Z 

(3.12) 

-'( -I -(N-I) -N) C(z) = Z Co + c1z +",+C(N_l)Z + CNZ (3.13) 

For this technique. higher-order bandpass MASH I-a modulators are built by using mixed 

combinations of single-stage single-bit I-a modulators. The order of the constituent loop­

filters depends on the FD order. 

STEP 14: This step involves determining the number and order of the digital filters that 

are required at the output of each stage to achieve the most effective noise-shaping. Table 

3.4 gives a summary of all the building blocks contained in these MASH modulators. Note 

that Srefers to the number of stages in this modulator as the order depends on that ofFDF. 
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S Comb. Complex Loop-Filters Feedback Complex Notch-Filters 

Stage 1 Stage2 Stage3 Stage4 filter Stage2 Stage3 

2 1-1 . FR(z) FR(z) - - FF(z) FN(z) -
3 1-1-1 FR(z) FR(z) FR(z) - FF(z) FN(z) FN2(Z) 

4 1-1-1-1 FR(z) FR(z) FR(z) FR(z) FF(z) FN(z) FN2(Z) 

Table 3.4 Constituent Building-Blocks of Bandpass FDF-Based MASH I:-~ 

Modulators. 

Stage4 

-
-

FN 3(z) 

STEP 15: Run the Matlab m-file mashdes first by simply typing it in the Matlab 

workspace environment. This program requires the user to enter values for Vc and OSR. 

Then run the simulator using Simulink in Matlab to confirm the correct operation of the 

chosen modulator. To check SNR and DR values, run another m-file called snrval. If the 

in-band SNR value is not sufficiently high then 

a) increase the modulator order and repeat STEPS 11-14, 

b) or increase the OSR provided the bandwidth of the in-band region is not violated and 

repeat STEPS 11-14, 

c) or increase the number of levels in the quantiser of the first-stage, and repeat STEPS 

11-14. 

STEP 16: Select a modulator order L, either a Butterworth or Chebyshev 2 bandstop filter 

for the NTF, bandwidth ~ v, and stopband ripple (Rs) required for Chebyshev 2. A 

straightforward procedure for obtaining the NTF, for any filter family type involves using 

the Matlab as indicated below: 

For a Butterworth NTF: 

[num, den] = butter( N, [v L vu ], 'stop') 

For a Chebyshev Type 2 NTF: 

[num,den] = cheby2 (N, Rs , [VL vu], 'stop') 

where num and den refer to the numerator and denominator polynomials of the NTF, 

stop refers to a stop-band filter, v L and Vu represent the normalised lower and upper 3dB 

frequencies and are given by: 
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(3.14) 

STEP 17: Scale the NTF so thatthe first sample of the impulse response becomes 1 in 

order to meet the causality criterion. This can be achieved in Matlab by typing 

nums = num / num(I) , where nums contains the newly scaled coefficients of the numerator 

polynomial of the NTF, Ensure that the peak magnitude of the NTF spectrum does not 

exceed 2 to comply with Lee's stability criterion. 

STEP 18: The noise, loop-filter and signal transfer functions of an eighth-order L-~ 

modulator are given by 

1 b -I b -(L-I) b -L + IZ +... + (L-1)Z + LZ 
NTF = 1 -(L-I)-L 1 + a 1z- + ... + a(L-l)z + a LZ 

(3.15) 

-I -2 -(L-l)-L 
H(z) _ c1z + C2z + ... + c(L_I)Z + cLZ 

-~I---b~-l-------b~~-~(L~-~I)--b--~-L---
+ IZ +... + (L_I)Z + LZ 

(3.16) 

(3.17) 

where the b' s are the most important parameters since they are responsible for controlling 

the magnitude of the in-band quantisation, the a ' s for reducing the overall spectral 

magnitude of the NTF so as to avoid overloading the quantiser and the c's are simply 

given by CN = aN -bN • 

STEP 19: Run the Matlab m-file mashdes first by simply typing it in the Matlab 

workspace environment. This program requires the user to enter values for Vc and OSR. 

Then run the simulator using Simulink in Matlab to confirm the correct operation of the 

chosen modulator. To check SNR and DR values, run another m-file caIled snrval. If the 

in-band SNR value is not sufficiently high then 

a) increase the modulator order and repeat STEPS 16-18, 

b) or increase the OSR provided the bandwidth of the in-band region is not violated and 

repeat STEPS 16-18, 

c) or increase the number of levels in the quantiser of the first-stage, and repeat STEPS 

16-18, 
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d) resort to an optimisation algorithm, where the poles and zeros of the ' NTF are shifted t 

more optimal positions in the z-plane to achieve better resolution. 

3.4 Fourth-Order Bandpass 2-2 MASH L-Ll Modulator 

. The double-stage 2-2 MASH L- Ll modulator shown in Figure 3.3, is basically a 

cascade connection of two independent second-order L- Ll modulators which can provide a 

fourth-order noise-shaping response. 

X(z) 

Y(z) 

(a) (b) 

Figure 3.3 Fourth-Order Bandpass 2-2 MASH L- Ll Modulator: (a) Block Diagram, 

(b) Magnitude Spectrum at Vc = 5/64. 

Each of the two modulator sections consists of a second-order variable centre frequency 

resonator and a single-bit quantiser in the feedforward path as well as a sui table filter in the 

feedback path to provide effective noise-shaping. The quantisation noise f the first-stage 

is fed to the input of the second-stage. The resultant outputs of the first 1'; (z) and second 

Ji (z) stages are: 

(3. 18) 

(3. 19) 

The associated quantisation and dither signal of the first-stage can be fully cancelled if the 

digital notch-filter is N(z) = (1- p Z- 1 + Z-2) , resulting in a final expre sion for .122 (z) 

given by: 
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(3.20) 

where X(z) is the input signal, Q\ (z) and Q2 (z) represent the quantisation noise of the 

first- and second-stages respectively. 

The inclusion of a notch-filter at the output of 12 (z) as well a,s the summation of the 

two stages yields a multi-bit ou~ut signal in the time-domain. The output signal of the 

frrst-stage YI (k) has values of ± .1; and that of the second-stage after the notch-filter Y3 (k) 

has one of six values ± p and ± (2 ± p) , where p = 2 cos2il'vc ' All output combinations 

from both stages are added to produce a cumulative multi-bit stream of samples having one 

of the following values, ± (1 ± p) and ± (3 ± p) . 

The constituent quantisers inside the 2-2 MASH L-~ modulator do not become 

overloaded for high-amplitude inputs, unlike its 4th-order single-stage single-bit 

counterpart. This leads to better SNRs and DRs. However, the 2-2 MASH contains more 

analogue circuitry and requires a digital notch filter to achieve quantisation noise 

cancellation of the preceding stage. The presence of a multi-bit output imposes further 

design constraints on the decimator. Furthermore, non-idealities between the analogue 

stages and digital sections are more critical, because these inaccuracies contribute to the 

leakage of more quantisation noise and tones to the in-band region. 

The 2-2 MASH was evaluated at the behavioural-level in Simulink for an extensive 

range of centre frequencies to verify its correct operation and the effectiveness of its noise­

shaping, where the magnitude spectrum for Vc = 5/64 is shown in Figure 3.3 (b). The in-

band SNRs were determined for three separate examples: a low-frequency (vc = 5/64), a 

medium-frequency ( Vc = 17/64) and a high-frequency (vc = 29/64). These in-band SNR 

curves are illustrated in Figure 3.4 (a), (b) and (c) for different six OSRs. 

(a) 

o~~~~~~--~ 
·110 ·0)'" «I ~ .., .., .4) ~ .z .1O 0 

I npul .",plltud. l ", dl. 

(b) (c) 

Figure 3.4 SNR Curves for Variable-Band 2-2 MASH Bandpass L-~ Modulators at: 

(a) Vc = 5/64, (b) Vc = 17/64 and (c) Vc = 29/64. 
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The in-band SNRs for the nonnalised frequency range 0.03125 ~ Vc ~ 0.46875 were 

detennined for OSRs of 8, 16, 32, 64, 128 and 256 for four different amplitude levels as 

demonstrated in Figure 3.5. It is seen from 3.5 that the in-band SNRs deteriorate at very 

low and very high frequencies for large input amplitudes. This is attributed to quantiser 

overloading due to the asymmetrical magnitude of the noise transfer function at these 

frequencies. The in-band SNRs become more constant for moderate input amplitudes. 

However, for low input amplitudes, the in-band SNRs become more frequency-dependent 

where better SNRs are accomplished at lower and upper frequencies. 
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Figure 3.5 SNR curves versus Nonnalised Input Centre Frequency of a Fourth-Order 2-

2 MASH L-L\ Modulator for OSRs of 8, 16, 32, 64, 128 and 256 for Lnput 

Amplitudes of 0.8, 0.5, 0.1 and 0.01. 

The peak SNRs and dynamic ranges for six OSRs for three different normalised 

centre frequencies are recorded in Table 3.1. The difference between the highest and lowest 

SNR (L\SNR) for the nonnalised frequency range 0.03125 ~ Vc ~ 0.46875 is also recorded 

for a selection of input amplitudes, where high variations in L\SNR are measured for large 

input amplitudes. 

Peak SNRs Dynamic Ranges ~SNR 

OSR Vc Vc Vc Vc Vc Vc Input Signal Amplitude 

5/64 17/64 29/64 5/64 17/64 29/64 0.8 0.5 0.1 0.01 

8 34.3 36.9 33.6 43.4 36.8 50.6 12 2.9 12.2 18.3 

16 48.1 51.7 50.7 59.1 52.1 67.4 17.6 5.9 16.6 21.8 

32 65.1 66.9 66.9 76 67.4 84.5 23 .8 9.4 17.6 23 

64 78.6 82.3 81.7 91.2 81.8 99.7 28.4 7.2 17.8 23 .6 

128 93.3 97 102.2 106.7 96.5 115.2 36.7 7.7 19.7 23.2 

256 108.9 112.4 113 .1 122.5 105.2 129.2 41.9 7.7 17.7 23.5 

Table 3.5 Peak SNRs, DRs and L\SNR of the 2-2 MASH for different OSRs. 

129 



Table 3.6 reveals that the average SNR and DR increases in relation to the OSRs for the 

low and high frequencies ar~ noticeably better. 

SNR Increase DR Increase 

OSR ' vc vc vc v v v 

5/64 17/64 29/64 5/64 17/64 29/64 

8 ~ 16 8.6 7.5 8. 1 15.7 15.3 16.8 

16 ~ 32 8.8 7.6 8.9 16.9 15.3 17. 1 

32 ~ 64 8.0 7.3 8.1 15.2 14 .4 15.2 

64 ~ 128 7.9 7.1 7.6 15.5 14 .7 15.5 

128 ~ 256 7.7 7.2 7.3 15.8 8.7 14 

Average SNR Increase 8.2 7.4 8.0 15.8 13.7 15.7 

Table 3.6 Average increases in SNR and DR of the 2-2 MASH as a result of doubling 

OSRs at Vc = 5/64, Vc = 17/64 and Vc = 29/64. 

3.5 Sixth-Order Bandpass MASH I:-~ Modulator 

A sixth-order bandpass MASH I:-Ll modulator can be built by having cascade 

combinations of 2-2-2 or 4-2 or 2-4 lower-order modulator sections. The following three 

sub-sections provide a block diagram, the analysis and the simulation results for each case. 

3.5.1 Triple-Stage Sixth-Order 2-2-2 MASH Bandpass I:-Ll Modulator 

This structure is basically a cascade connection of three second-order variable-band 

resonator-based bandpass I:-Ll modulators as shown in Figure 3.6 (a), where the 

quantisation error of the first stage is fed to the input of the second stage. 

Y(z) 

·ltiD 

a a 05 a I a 15 a a 25 a 3 a 35 a 4 a 45 05 
Norrnah •• d FrtqutnCy ., 

(a) (b) 

Figure 3.6 Sixth-Order Bandpass 2-2-2 MASH I:-~ Modulator: (a) Block Diagram 

(b) Magnitude Spectrum at Vc = 5/64. 
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Similarly; the quantisation error of the second stage is fed to the input of the third stage. 

The output of the modulator is the summation of the first stage Yi (z), a single notch-

filtered output from the second stage 13 (z) and a double notch-filtered output from the 

third stage 16 (z) . 

These output expressions in the z-domain are given by: 

Yi (z) = X(z) + (1- P Z-l + z-2 )Ql (z) (3.21) 

(3.22) 

(3.23) 

Therefore, the overall output expression becomes Y(z) 

Y(z) = X(z) + (1- P Z-l + z-2)3 Q3 (z) (3.24) 

where the quantisation noise of the intermediate stages Ql (z) and Q2 (z) are cancelled out. 

The multi-bit output combinations from the 2-2-2 MASH can be determined by 

examining the modulator amplitude samples in the time-domain. The output signal of the 

first stage has values of ± 1 and that of the second-stage after the one notch-filter has one 

of six amplitudes ± P and ± (2 ± p) . Similarly; a double notch-filter yields a signal having 

values of ± (p2 ± 2mp± (m+ 2)), where m is an integer having one of three values 0 or 

± 2. All the combinations from each of the three stages are added to produce the final 

output signal, which consists of one of the following values ± (pl ± pp ± (p + 2)), where p 

is one of six odd integers ± 1, ± 3 or ± S. 

The 2-2-2 MASH compared with the 6th -order single-bit l:-~ modulator is simpler 

to design, exhibits a virtually tone-free magnitude spectrum for ideal component matching 

and IS unconditionally stable without the need for extra feedback coefficients. Moreover, 

higher in-band SNRs and DRs are achievable, because the constituent quantisers do not 

overload severely even at high input amplitudes. The disadvantages include, the 

requirement of 3 digital filters to achieve quantisation noise cancellation of the previous 

stages, the presence of more multi-bit output combinations and greater sensitivity to 

component tolerance. 

The correct operation of this 2-2-2 MASH is verified for a wide range of frequencies, 

where the magnitude spectrum for Vc = 5/64 is shown in Figure 3.6 (b). The in-band SNR 

curves for three different frequencies for six different OSRs are shown in Figure 3.7. 
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Figure 3.7 SNR Curves for Variable-Band 2-2-2 MASH Bandpass L-Ll Modulators at: 

(a) Vc = 5/64, (b) Vc = 17/64 and (c) Vc = 29/64. 

The in-band SNRs for the nonnalised frequency range 0.03125 ~ Vc ~ 0.46875 were 

detennined for OSRs of 8, 16, 32, 64, 128 and 256 for four different amplitude levels as 

demonstrated in Figure 3.8. It is seen from 3.8 (a) that the in-band SNRs deteriorate 

significantly at very low and very high frequencies for large input amplitudes. This is 

attributed to quantiser overloading due to the asymmetrical magnitude of the noise transfer 

function at these frequencies. The in-band SNRs become more constant for moderate input 

amplitudes. However, for low input amplitudes, the in-band SNRs become more 

frequency-dependent, where better SNRs are accomplished at lower and upper frequencies. 
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Figure 3.8 SNR curves versus Nonnalised Input Centre Frequency of a Sixth-Order 2-2-

2 MASH L-Ll Modulator for OSRs of 8, 16, 32, 64 128 and 256 for Input 

Amplitudes of 0.8 , 0.5, 0.1 and 0.01. 

The peak SNRs and DRs for six OSRs for three different nonnalised centre frequencies 

and LlSNR for different amplitude levels are recorded in Table 3.7. Large variations in 

SNRs are found for high input amplitude signals. 
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Peak.SNRs Dynamic Ranges ~SNR 

OSR Vc Vc Vc Vc Vc Vc Input Signal Amplitude 

5/64 17/64 • 29/64 5/64 17/64 29/64 0.8 0.5 0.1 

8 '" 33.2 46.6 32.9 41.9 46.5 47.8 21.7 12.8 6.7 

16 46.2 67.3 48.8 61.8 67.2 65.9 33.3 18.7 10.3 

32 64.1 88.4 64.1 90.9 88.3 94.3 45.6 24.9 14.8 

64 86.1 109.5 80.5 116.2 109.2 122.5 56.6 29.7 19.7 

128 108 130.3 102 135.8 129.6 137.7 70.5 35.7 22.9 

256 129.3 151.3 124.3 158.4 151.9 156.7 81.2 42.3 24.9 

Table 3.7 Peak SNRs, DRs and ilSNR of the 2-2-2 MASH for different OSRs. 

SNR Increase DR Increase 

OSR Vc Vc Vc Vc Vc 

5/64 17/64 29/64 5164 17/64 

8 ~ 16 8.4 11.0 8.9 19.9 20.7 

16 ~ 32 8.8 8.6 7.5 29.1 21.2 

32 ~ 64 11.0 11.0 13.2 25.3 20.9 

64 ~ 128 14.4 11.1 125 19.6 20.4 

128 ~ 256 11.8 11.2 11.9 22.6 22.3 

Average SNR Increase 10.9 10.6 10.8 13.3 11.1 

Table 3.8 Average increases in SNR and DR of the 2-2-2 MASH as a result of 

doubling OSRs for three different centre frequencies. 

3.5.2 Double-Stage Sixth-Order 4-2 MASH Bandpass I-A Modulator 

0,0} 

9 

9.4 

10 

10.9 

12 

12.8 

Vc 

29/64 

18.1 

28.4 

28.2 

15.2 

19 

11.8 

This structure is a cascade combination of a fourth-order modulator followed by a 

second-order modulator, thus yielding an overall sixth-order MASH bandpass I-A 

modulator. The first stage consists of two second-order variable centre frequency resonator 

sections and a multi-bit quantiser in the feedforward path. The second-stage contains a 

second-order resonator and a I-bit quantiser in the feedforward path. The quantisation 

noise of the first-stage is fed into the input of the second-stage. The overall output is simply 

the summation of the first-stage 11 (z) and a double notch-filtered version of the second-

stage 14 (z) as shown in Figure 3.9. 
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Figure 3.9 Sixth-Order Bandpass 4-2 MASH E-~ Modulator: (a) Block Diagram, 

(b) Magnitude Spectrum at Vc = 5/64. 

These signals are given by: 

The overall simplified output expression in the z-domain is given by 

(3.25) 

(3.26) 

(3.27) 

The multi-bit output combinations from this 4-2 MASH can be established by once 

again examining the modulator output in the time-domain. The output signal of the first 

stage has one of fifteen values of 0, ± 1, ± 2, ± 3, ± 4, ± 5, ± 6 or ± 7 . The output signal 

of the second stage, which has values of ± 1 after the double notch filter yields one of the 

following samples ± (fi2 ± 2mp± (m+ 2)), where m is an integer having one of three 

values 0 or± 2. Output combinations from both stages are added to produce the final output 

signal having one of the following values, ± (If ± 2mp ± r) , where r is an integer within 

the range 0 ~ r ~ 11. Note that the presence of the 15-level quantiser results in more 

cumulative multi-bit output combinations. 

The main advantage of the 4-2 MASH is that the quantisation noise of the first-stage 

output produces 4th-order noise-shaping, which is much smaller in magnitude and less 

tonal. Consequently; the effects of component mismatches on the modulator resolution are 

less significant. The requirement for 2 instead of 3 notch filters has a twofold advantage in 

that it reduces the overall modulator complexity, as well as generating fewer multi-bit 

output combinations compared with the 2-2-2 MASH. The main drawback is that the 4th. 
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order ~-~ becomes conditionally stable for large-amplitude input signals, particularly for 

very low and high frequencies. The internal signal levels within the first-stage can be 

reduced by using either appropriate feedforward coefficients or multi-bit quantisers . 
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Figure 3.10 SNR Curves for Variable-Band 4-2 MASH Bandpass ~-~ Modulators at: 

(a)vc = 5/64, (b)vc = 17/64 and (c) vc= 29/64. 

In contrast to the magnitude spectra obtained for Vc = 5/64 and Vc = 17/64, the 

simulations for the variable-band modulator at Vc = 29/64 showed that its in-band region 

contained smaller-amplitude tones, thus accounting for the better SNR characteristics 

shown in Figure 3.10. Figure 3.11 shows that this modulator functions correctly for any 

noise-shaping band location. However, better SNR figures can be achieved for very low 

and very high frequencies . 
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Figure 3.11 SNR curves versus Normalised Input Centre Frequency of a Sixth-Order 4-2 

MASH ~-6 Modulator for OSRs of 8, 16, 32, 64, 128 and 256 for Input 

Amplitudes of 0.8, 0.5, 0.1 and 0.01. 
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· PeakSNRs Dynamic Ranges ~SNR 

OSR Vc Vc Vc Vc Vc Vc Input Signal Amplitude 

5/64 17/64 29/64 5/64 17/64 29/64 0.8 O.~ 0.1 0.01 

8 62.8 49.3 72.9 62.4 48.9 72 32.6 32.6 32.7 32.7 

16 85 70.2 96.8 84.5 69.7 96 37.4 37.6 37.5 37.6 

32 106.5 91.2 119.2 106.9 91.2 118.7 39.4 39.8 39.7 40 

64 128.7 112.4 140 128.2 112.7 140.6 40.9 40.7 40.5 40.8 

128 148.6 133.3 161.3 148.7 132.9 159.7 41.4 40.5 40.9 40.4 

256 170.4 154.5 182.8 170.9 153.5 181.3 41.3 41.9 42 40.7 

Table 3.9 Peak SNRs, DRs and L\SNR of the 4-2 MASH for different OSRs. 

SNR Increase DR Increase 

OSR Vc Vc Vc Vc Vc Vc 

5/64 17/64 29/64 5/64 17/64 29/64 

8 -+ 16 10 11 11.5 22.1 20.8 24 

16 -+ 32 9 ILl 9.6 22.4 2U 22.7 

32 -+ 64 11.2 11 11.4 21.3 2U 21.9 

64 -+ 128 11.1 8.6 8.7 20.5 20.2 19.1 

128 -+ 256 8.5 11.1 13.5 22.2 20.6 21.6 

Average SNR Increase 10 10.5 10.9 21.7 20.9 21.9 

Table 3.10 Average increases in SNR and DR of the 4-2 MASH as a result of doubling 

OSRs for three different centre frequencies. 

3.5.3 DOUble-Stage Sixth-Order 2-4 MASH Bandpass 1:-L\ Modulator 

This structure is a cascade combination of a second-order modulator followed by a 

fourth-order modulator resulting in an overall sixth-order MASH bandpass 1:-L\ modulator 

as shown in Figure 3.12. The first-stage consists of a second-order variable centre 

frequency resonator and a I-bit quantiser in the feedforward path. The second stage 

contains two second-order resonators and a IS-level quantiser in the feedforward path. The 

quantisation noise of the first-stage is the input to the second-stage. The output of the 

modulator is the summation of the first stage Yi (z) and a single notched-filtered version of 

the second stage 13 (z) as shown below in Figure 3.12. 
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Figure 3.12 Sixth-Order Bandpass 2-4 MASH ~-6 Modulator: (a) Block Diagram, 

(b) Magnitude Spectrum at Vc = 5/64. 

The corresponding output expressions for 11 (z) and 13 (z): 

The overall simplified output expression in the z-domain is given by 

(3.28) 

(3.29) 

(3.30) 

The multi-bit output combinations from this 2-4 MASH can be established by 

examining the modulator in the time-domain. The output signal of the first stage has one of 

two values ± 1. The output of the second stage from the IS-level quantiser has one of 

fifteen values 0, ± I, ± 2, ± 3, ± 4, ± 5, ± 6 or ± 7, which when going through a notch­

filter yields one of the following amplitudes ± (p± (±t ± 7), where t is an integer within 

the range 0 ~ t ~ 7 . Output combinations from both stages are added to produce the final 

output signal having one of the following values ± tp ± (±t ± 8), where t is an integer 

within the range 0 ~ t ~ 7. Note that the presence of the IS-level quantiser followed by the 

a notch-filter results in a greater number of cumulative multi-bit output combinations 

compared with 4-2 MASH topology. 

A 2-4 MASH requires a single notch filter and therefore produces fewer multi-levels 

in its output signal in comparison with 2-2-2 and 4-2 MASH modulators. The main 

advantage for a 2-4 MA~H that employs a multi-bit quantiser in the 2nd-stage is that the 

effect of distortion due to the non-linearities of the multi-bit DI A are less detrimental to the 

overall modulator resolution, when compared with the 4-2 MASH. This is because the 
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output of the 2nd -stage including its D/ A error does not feed into another stage. 

Disadvantages include the need to adequately dither the 151_stage to alleviate spurious tone 

leakage to the 2nd -stage as well as the need to incorporate inter-stage scale factors to avoid 

premature overloading of the 2nd_stage quantiser. The use of a multi-bit quantiser in the 

2nd_stage subjects its multi-level output to be processed by a notch filter in this case, which 

considerably increases the number of multi-levels in the modulator output. 

The SNR curves in Figures 3.13 and 3.14 show that this modulator overloads at high­

amplitude inputs for noise-shaping bands, whose centre frequencies are positioned close to 

either de or Nyquist. This is attributed to the uneven-shoulder gain levels of the loop-filter 

at these frequencies. This problem can be resolved by increasing the number of levels in 

the 2nd -stage quantiser adequately to ensure smaller signal amplitudes in the modulator 

feedforward path . 
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Figure 3.13 SNR Curves for Variable-Band 2-4 MASH Bandpass L-~ Modulators at: 

(a) Vc = 5/64, (b) Vc = 17/64 and (c) Vc = 29/64. 
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Figure 3.14 SNR curves versus Normalised Input Centre Frequency of a Sixth-Order 2-4 

MASH L-~ Modulator for OSRs of 8, 16, 32, 64, 128 and 256 for Input 

Amplitudes 0[0.8,0.5,0.1 and 0.01. 
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Peak SNRs Dynamic Ranges ~SNR 

OSR vc vc vc vc vc vc Input Signal Ampli tude 

5/64 17/64 29/64 5/64 17/64 29/64 0.8 0.5 0. 1 0.01 

8 68.8 52.8 76.9 70.5 52.8 80.7 51.4 53 36.3 36.3 

16 90.9 73 .8 100.5 91.9 73 .5 104.4 64 69.7 40.6 40.2 

32 113 .1 95.2 121.1 113.9 95 126.8 78.8 87.1 42.3 41.9 

64 143.4 116.2 143.4 137.7 115.2 147.2 95.1 104.6 43 42.9 

128 155.2 137 164.1 155 135.8 167.9 11 3. 1 120.9 43 .9 43 .5 

256 175.9 158.1 186.4 177.5 156.8 189. 1 120.5 133.4 43 .9 43 .5 

Table 3.11 Peak SNRs, DRs and ~SNR of2-4 MASH for different OSRs. 

SNR Increase DR Increase 

OSR vc v vc vc vc v, 

5/64 17/64 29/64 5/64 17/64 29/64 

8 ~ 16 9.4 8.5 ILl 21.4 20.7 23 .7 

16 ~ 32 11.7 II 8.9 22 2 1.5 22.4 

32 ~ 64 14.3 11.1 11.7 23.8 20.2 20.4 

64 ~ 128 5.2 11.1 10.7 17.3 20.6 20.7 

128 ~ 256 11 11.1 11.9 22.5 2 1 2 1.2 

Average SNR Increase 10.3 10.5 10.9 21.4 20.8 21.7 

Table 3.12 Average increases in SNR and DR of the 2-4 MASH as a result of doubling 

OSRs for three different centre frequencies. 

3.6 Eighth-Order Bandpass MASH L-~ Modulator 

An eighth-order bandpass MASH L-~ modulator can built by having cascade 

combinations of 2-2-2-2 or 4-2-2 or 2-4-2 or 2-2-4 or 4-4 lower-order L-~ modulator 

sections. The following five sub-sections provide a block diagram representation, the 

necessary analysis and the simulation results for each case. 

3.6.1 Quadruple-Stage Eighth-Order 2-2-2-2 MASH Bandpass L-~ Modulator 

The modulator in Figure 3.15 (a) is a cascade combination of four second-order 

variable centre frequency resonator-based bandpass L-~ modulators, where the 

quantisation error of the first-stage is fed to the input of the second-stage. 
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Figure 3.15 Eighth-Order Bandpass 2-2-2-2 MASH t-~ Modulator: (a) Block Diagram, 

(b) Magnitude Spectrum at Vc = 5/64. 

Similarly; the quantisation error of the second-stage is fed to the input of the third-stage 

and likewise for the fourth-stage. The output of the modulator is the sum of the first stage 

1'; (z), the second stage notch-filtered once Yj(z) , the third stage doubly notch-filtered 

16 (z) and the fourth stage notch-filtered thrice IJo(z). These output expressions 

corresponding to each stage are given by: 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

The resultant final output expression fez) is given by: 

(3.35) 

The magnitude spectrum in Figure 3.l5(b) of this modulator output at Vc = 5/64 

exhibits some spectral tones, especially at the higher frequencies. These tones which are 

caused by overloading, become more persistent as the noise-shaping envelope rises as a 

result of the imbalance in the shoulder gain levels of the loop-filter as depicted in Figure 

3 .15 (b). Observation of the magnitude spectra for different input amplitudes showed that 

this modulator contained a significant number of tones including the in-band region. The 
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presence of these tones is reflected by the non-linear characteristics of the SNR curves in 

Figure 3.16. This is in contrast with the SNR results of mid-band frequencies, where the 

shoulder gain levels are almost identical for Vc = 17/64. The SNR curves become even 

more non-linear in Figure 3.16(c) as the noise-shaping band for Vc = 29/64 has a larger 

disparity between its loop-filter shoulder gain levels. 

The 2-2-2-2 MASH is unconditionally stable and therefore delivers greater in-band 

SNRs and DRs compared with an 8th-order single-stage single-bit L-~ modulator. It 

requires 6 notch filters to achieve quantisation noise cancellation of the preceding three 

stages. It contains more multi-bit output combinations. It is more sensitjve to component 

non-idealities, particularly, in the 1
51

_stage as this could result in the transmission of 

uncancelled quantisation noise and tones into later stages. 
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Figure 3.16 SNR Curves for Variable Centre Frequency 2-2-2-2 MASH Bandpass L-~ 

Modulators at: (a) Vc = 5/64, (b) Vc = 17/64 and (c) Vc = 29/64. 

The 2-2-2-2 MASH was evaluated for a whole range of frequencies for different input 

amplitudes, where the highest SNRs were attained for the mid-band frequencies as 

illustrated in Figure 3.17, Tables 3.13 and 3.14 . 
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Figure 3.17 SNR curves versus Normalised Input Centre Frequency of a Eighth-Order 2-

2-2-2 MASH L-~ Modulator for OSRs of 8, 16, 32, 64, 128 and 256 for 

Input Amplitudes of 0.8, 0.5, 0.1 and 0.01. 
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Peak SNRs Dynamic Ranges .1SNR 

OSR Vc Vc Vc Vc Vc Vc Input Signal Amplitude 

5/64 17/64 29/64 5/64 17/64 29/64 0.8 0.5 0.1 0.01 

8 • 33.2 55.5 32.8 41.9 55.8 47.8 31 22.2 16.1 15.1 . 
16 46 82.2 48.8 60.6 82.4 65.9 48.8 34.1 25.6 24.7 

32 64.4 108.7 65.6 90.2 109.2 96.7 66.9 46.3 36.4 31.8 

64 86.1 136 80.5 114.9 137.2 122.5 83.9 56.9 47.1 37 

128 108 162.6 102 134.3 163.1 137.7 104.8 69.5 56.4 43.4 

256 129.9 188.7 124.3 160 189.9 156.7 120.7 81.6 64.1 49.7 

Table 3.13 Peak SNRs, DRs and aSNR of 2-2-2-2 MASH for different OSRs. 

SNR Increase DR Increase 

OSR Vc Vc Vc Vc Vc Vc 

5/64 17/64 29/64 5/64 17/64 29/64 

8 ~ 16 6.3 16.9 8.9 18.7 26.6 18.1 

16 ~ 32 8.3 12 5.6 29.6 26.8 30.8 

32 ~ 64 12.7 14.6 15.2 24.7 28 25.8 

64 ~ 128 14.6 12.2 12.5 19.4 25.9 15.2 

128 ~ 256 10.4 12 11.8 25.7 26.8 19 

Average SNR Increase 10.5 13.5 10.8 13.6 16.8 11.8 

Table 3.14 Average increases in SNR and DR of the 2-2-2-2 MASH as a result of 

doubling OSRs for three different centre frequencies. 

3.6.2 Triple-Stage Eighth-Order 4-2-2 MASH Bandpass I-a Modulator 

This structure is a cascade combination of a fourth-order modulator followed by two 

further second-order bandpass modulators as shown below in Figure 3.18. The absence of 

tones in the magnitude spectrum in Figure 3.18(b) is attributed to the use of a multi-level 

quantiser in the 1st_stage of this 4-2-2 MASH I-a modulator. This multi-level quantiser 

also produces sufficiently low-amplitude signals in the modulator, which do not overload 

the quantiser. This explains why the SNR characteristics in Figure 3.19 appear to be quite 

linear for all the examined centre frequencies. The multi-bit quantiser also ensures that this 

modulator functions correctly for all the considered noise-shaping bands for 

0.03125 ~ Vc ~ 0.46875. 
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Figure 3.18 Eighth-Order Bandpass 4-2-2 MASH I:-~ Modulator: (a) Block Diagram, 

(b) Magnitude Spectrum at Vc = 5/64. 

Simulations showed that the magnitude spectrum for the mid-band frequencies 

contained stronger-amplitude in-band tones in comparison with the very low and high 

frequencies, thus accounting for the better SNR results shown in Figure 3.20, Tables 3.15 

and 3.l6. The 4-2-2 MASH has greater tolerance to non-idealities in the 1
51

- stage, requires 

5 instead of 6 notch filters and produces fewer multi-bit output combinations (if only 1-bit 

quantisers are employed in the 1st_stage) compared with the 2-2-2-2 MASH. However, the 

increased internal signal levels of the lSI_stage overload the quantiser prematurely, thus 

limiting its DR compared with the 2-2-2-2 MASH. 
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Figure 3.19 SNR Curves for Variable-Band 4-2-2 MASH Bandpass I:-~ Modulators at: 

(a) Vc = 5/64, (b) vc= 17/64 and (c) vc= 29/64. 
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Figure 3.20 SNR curves an Eighth-Order 4-2-2 MASH ~-~ Modulator for OSRs of 8, 

16,32, 64, 128 and 256 for Input Amplitudes of 0.8, 0.5 , 0.1 and 0.01. 

Peak SNRs Dynamic Ranges 6SNR 

OSR Vc Vc Vc Vc Vc Vc Input ignal Amplitude 

5/64 17/64 29/64 5/64 17/64 29/64 0.8 0.5 0. 1 0.0 1 

8 68.2 56.1 75.3 68.2 55 .8 75.2 25.7 25 .9 25.7 25.9 

16 98.5 83 107.4 97.6 82.4 105 .6 32.6 33 .1 31.5 33.2 

32 126.9 110.2 138.2 125.5 109.2 137.2 37.2 38.3 36.9 38.2 

64 153.9 137 165.5 153.5 135.8 163.2 39.9 40.5 39.6 40.7 

128 179.5 162.4 192.6 178.5 161.7 189.9 41.6 41.9 4 1 41.3 

256 204.9 185.9 216.8 204.1 184.2 2 15.6 42.5 42.9 42 .2 44 

Table 3.15 Peak SNRs, DRs and ~SNR of 4-2-2 MASH for different OSRs. 

SNR Increase DR Increase 

OSR Vc Vc Vc Vc VI Vc 

5/64 17/64 29/64 5/64 17/64 29/64 

8 ~ 16 15.2 16.9 17.2 29.4 26.6 

16 ~ 32 13.3 11.9 15.1 27.9 26.8 

32 ~64 12.2 14 12.9 28 26.6 

64 ~ 128 13.5 13.4 11.4 25 25.9 

128 ~ 256 12.5 10.8 14.8 25.6 22.5 

Average SNR Increase 13.3 13.4 14.3 27.2 2S.7 

Table 3.16 Average increases in SNR and DR of the 4-2-2 MASH as a result of 

doubling OSRs for three different centre frequencies. 

3.6.3 Triple-Stage Eighth-Order 2-4-2 MASH Bandpass ~-~ Modulator 

30.4 

31.6 

26 

26.7 

25 .7 

28.1 

This structure is a cascade combination of a second-order, a fourth-order and second­

order bandpass ~-~ modulators respectively as shown below in Figure 3.21 The overall 
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output of the modulator is the sum of the first stage, the second stage notch filtered twice 

and the third stage notch filtered three times. 

Y(:) 

·111l 

.;m 

Figure 3.21 Eighth-Order Bandpass 2-4-2 MASH L- .1 Modulator: (a) Block DiagTam 

(b) Magnitude Spectrum at Vc = 5/64. 

The magnitude spectrum in Figure 3.21 corresponding to this modulator is shown to be 

relatively tone-free. One again the absence of tones is attributed to the use of multi-bit 

quantiser in the middle-stage. The SNR characteristics in Figure 3.22 are quite linear. 

However, this modulator is seen to become unstable for extremely large input-amplitudes 

for frequencies very close to de and Nyquist. 
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Figure 3.22 SNR Curves for Variable-Band 4-2-2 MASH Bandpass L- .1 Modulators at: 

(a) Vc = 5/64, (b) Vc = 17/64 and (c) Vc = 29/64. 
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Figure 3.23 verifies the onset of instability when the modulator is subjected to large input-' 

amplitude levels. Tables 3.17 and 3.18 show that better in-band SNRs and DRs are 

accompiished for very low and very high frequencies. 
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Figure 3.23 SNR curves versus Normalised Input Centre Frequency of a eighth-Order 2-

4-2 MASH L-~ Modulator for OSRs of 8, 16, 32, 64, 128 and 256 for [nput 

Amplitudes of 0.8, 0.5, 0.1 and 0.01. 

Peak SNRs Dynamic Ranges ~SNR 

OSR Vc Vc Vc Vc Vc Vc Input Signal Amplitude 

5/64 17/64 29/64 5/64 17/64 29/64 0.8 0.5 0.1 0.01 

8 75.5 58.5 86.6 77.3 58.4 90.2 59.2 64.3 42.8 42.5 

16 104.2 85.8 117.8 105.7 85.5 121 .2 79.5 89.2 49 49 

32 132.9 112.6 145.9 134.3 111 .5 150.3 100.7 114.1 52 52.3 

64 160.4 139.5 17\.8 16\'4 139.1 177.5 124.2 137.9 53 .6 53 .4 

128 186.6 167.2 201.1 189.1 166.6 204.1 147.6 160 54.2 53.4 

256 213 .9 \94 226.6 215.6 19\.9 230.3 16\.6 171.2 47.4 47 

Table 3.17 Peak SNRs, DRs and ~SNR of 2-4-2 MASH for different OSRs. 
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SNRIncrease DR Increase 

OSR . , Vc Vc Vc Vc Vc , 
, 5/64 17/64 29/64 5/64 17/64 

8 ~ 16 14 14.4 16.3 28.4 27.1 

16 ~ 32 15.9 14.6 13.2 28.6 26 

32 ~ 64 12.1 12.1 12.1 27.1 27.6 

64 ~ 128 14.4 14.7 13 27.7 27.5 

128 ~ 256 14.3 11.9 15.7 26.5 25.3 

Average SNR Increase 14.1 U.S 14.1 17.7 16.7 

Table 3.18 Average increases in SNR and DR of the 2-4-2 MASH as a result of 

doubling OSRs for three different centre frequencies. 

3.6.4 Triple-Stage Eighth-Order 2-2-4 MASH Bandpass I-~ Modulator 

Vc 

29/64 

31 

29.1 

27.2 

26.6 

26.2 

18 

This structure is a cascade combination of a second-order, a second-order and fourth­

order bandpass I-~ modulators respectively as shown below in Figure 3.24. Its output 

magnitude spectrum exhibited several distinct out-of-band tones as shown in Figure 

3.25(a). These occurred, because the third-stage contained a 4th-order I-~ modulator, 

whose quantiser became overloaded. The relatively linear SNR plots in Figure 3.25(b) are 

attributed to the fact that for the majority of the modulator input amplitudes, the tones 

occurred outside the signal region. 

Y(z) 

Figure 3.24 Eighth-Order Bandpass 2-2-4 MASH I-~ Modulator: (a) Block Diagram. 
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Figure 3.25 Variable-Band 4-2-2 MASH Bandpass L-6 Modulators at Vc = 5/64: 

(a) Magnitude Spectrum, (b) SNR Curves. 

The simulation results in the form of SNRs and DRs are shown in Figure 3.26, Table 3.19 

and Table 3.20 for a combination of centre frequencies and OSRs. 

Amp ll t u d.-a. 

200 - - - r ---1 - - - -;- - - - T - - , 
I I 1 I 

1 S 0 - - - r - - - "'i - - - -=-.- - - - r - - ~ 
I I I I 

'00 ---r_- - ---- -- -r--
• I 1 - ' 

50 ::....:...:... r~---'- ---r--- -.-; -- ] 
i 0 " 0 '2 0 '30'4 

A mp l. lw d • • 0 1 

I 200 ---I .-- .-- -- , ---I --~ 

'50 ___ L __ - J ___ .1.--_ - -!. - --
1 I _ 1_ , , , 

, 00 - - - - - , - - - - ,- - - - - -. 

50 ~-

02 03 O ' 
No fm • II , • d 

Am pillude • 05 

2 0 0 - - I - - - I - - - -.- - - - r - - ~ 

1 50 - - -: - - -1~- -:- - - .or r --1 
'00 - - I ~--=-=-=--- :~ __ ~ __ , 

I I I I I 

50 ---- ---'----r---".-- 01 
02 03 04 

Amplltu a. -Oo, 

150 - - - ~ - - - -I - - - -:- - - - ~ - - ~ 
I I I 

100 - - r - - -,----- . ---,- - - - r - , 
; __ I I _ _ I 

50 Cj ~-;--:----~ l 
I I I I ........ , 

01 02 03 O . 
F' l Qulncy \I 

Figure 3.26 SNR curves versus Normalised Input Centre Frequency of a eighth-Order 2-

2-4 MASH L-6 Modulator for OSRs of 8, 16, 32, 64, 128 and 256 for Input 

Amplitudes of 0.8, 0.5 , 0.1 and 0.01. 

Peak SNRs Dynamic Ranges tiSNR 

OSR Vc Vc Vc Vc Input Signal Amplitude 

5/64 17/64 29/64 17/64 0.8 0.5 0.1 0.01 

8 65.6 62 32.2 61.5 47 46.3 44 41.5 

16 89.7 88.9 50.5 88.3 62.4 56.2 62.9 56.5 

32 122.2 116.5 66.5 116.4 80.6 70.9 74.1 75.6 

64 146 143.4 99.3 142.4 97.2 76.8 82.6 83 .2 

128 172.5 170.6 144.5 169.1 117.9 94 101 .8 103.7 

256 175.8 197 128.3 196 134.8 110 113.8 112.6 

Table 3.19 Peak SNRs, DRs and 6SNR of 2-2-4 MASH for different OSRs. 
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SNR Increase DR 

OSR Vc = 17/64 Vc = 17/64 

8 -+ 16 14.4 26.8 

16 -+ 32 14.6 28.1 

32 -+ 64 12 26 

64 -+ 128 12.1 26.7 

128 -+ 256 17 26.9 

Aver_it SNR Increase 14 26.9 

Table 3.20 Average increases in SNR and DR of the 2-2-4 MASH as a result of 

doubling OSRs for three different centre frequencies. 

3.6.5 Double-Stage Eighth-Order 4-4 MASH Bandpass l:-i\ Modulator 

This is a cascade combination of two fourth-order modulators yielding an overall 

eighth-order MASH bandpass l:-i\ modulator as illustrated in Figure 3.27(a), whose output 

magnitude spectrum is shown in Figure 3.27(b). The first stage consists of two second­

order resonator sections and a one bit quantiser in the feedforward path. The quantisation 

noise of the first stage is fed to the input of the second stage. The output is the sum of the 

first stage and the double notch-filtered version of the second stage. The first stage has 

output values of ± 1. The second stage which incorporates a double notch filter produces 

output values of 0, ± 2 and ± 4. Output combinations from both stages are added to produce 

the final output signal having one of the following values ± 1, ± 3 and ± 5. The reduced 

usage of notch filters results in fewer multi-bit output combinations . 
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Figure 3.27 Eighth-Order Bandpass 4-4 MASH l:-i\ Modulator: (a) Block Diagram, 

(b) Magnitude Spectrum at Vc = 5/64. 
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The 4-4 MASH modulator only requires two notch filters and as a result generates 

the lowest number of multi-levels in its output signal, when compared with the 2-2-2-2, 4-. 
2-2, 2-4-2 and 2-2-4 MASH modulators. It has greater insensitivity to component non-

idealities and is less ·tonal, because the quantisation noise in both stages is processed by 4th_ 

order noise-shaping. However, it exhibits comparatively lower in-band SNRs and DRs due 

to the quantiser overloading in both stages for high-amplitude input signals. The SNR 

curves for different combinations of centre frequencies are illustrated in Figure 3.28 and 

Figure 3.29. More simulation results are summarised in Tables 3.21 and 3.22. 
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Figure 3.28 SNR Curves for Variable-Band 4-4 MASH Bandpass L-~ Modulators at: 

(a) Vc = 5/64, (b) Vc = 17/64 and (c) Vc = 29/64. 

Am p ll tudl • 0 . • 

f I I I 

200 _-- .. --- .. ----0---- .. -- 1 
I I --L- -- I 

150 r - - r -- -~-=-=-=-= :"'L----- r - - ~ 
, , ,- '/ 

100 -- :::--r---,---- -- ,.--
I I __ • 

i 50 0\ 0~2 0 .'3 0'. 

.!i Am p ll tudl • 0 . 1 

I i , 

"' 200 ---~---~----:_ ---~-- .. 
t I I __ I 

150 ---r---'--- -'--;:,..r--· 
~ f - I 

1 00 - - - _~ - - - ~ - - - -t- - - - t;....- - .. , , 
50 - - - ~ - - - ~ - - - -:- --- - T - - J 

010 .20.30. ' 
Norm 1 1I"d 

Am p ll tudl • 0 . 5 

:::1 f ~~t~~~L~~~t~~~L~ , -.--.- , 
I I I I 

100 - ---,----r---_-f"--
, " 

50 I ., I I 

0 . 1 0 . 2 0 . 3 0 . • 

Am plltudl • 0 . 01 

200 -- --- - --- --- __ • 
I I I I 

150---~ ---~----~-- - }--
t I I • 

100 - - - ~ -~~---- .. .- ~- _ .. __ I I I I I 50 __ l~ __ _L__J... ___ l. __ , , , 
0 . 1 

FreQulncy II 

0 . 2 0 . 3 0 . ' 

Figure 3.29 SNR curves versus Normalised Input Centre Frequency of a Eighth-Order 4-

4 MASH L-~ Modulator for OSRs of 8, 16, 32, 64, 128 and 256 for lnput 

Amplitudes of 0.8, 0.5, 0.1 and 0.01. 
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:. PeakSNRs Dynamic Ranges , .:1SNR . 
OSR Vc Vc Vc Vc : Vc Vc Input Signal Amplitude 

, . , . , 0.8' • O.S , 0.1 . 0.01 5/64 17/64 29/64 5/64 17/64 ,: ' 29/64 " 

8" 85.S 62.3 '98.9 85.4. 61.5 98.6 46.9 47.3 46.7 47.1 
t, 

0 

16 ' 114.2 89.1 ' 129.8 114 88.3 129.5 53 52.7 52.8 53 

32 141.7 116 158.8 140.9 115.2 156.7 55.4 56.1 55.9 55.5 

64 168.Q 143.2 185.9 167.9 142.4 186.2 56.5 57 56.9 56.6 

128 196.1 171.3 212.5. 196 169.1 212.9 57.3 57.5 56.9 57.5 

256 223.5 198 236.8 222.7 196 235.2 44.6 45.2 45.4 46.\ 

Table 3.21 Peak SNRs, DRs and ~SNR of 4-4 MASH for different OSRs. 

SNR Increase DR Increase 

OSR 

5/64 17/64 29/64 5164 17/64 29/64 

8 ~ 16 16.3 14.3 15.8 28.6 26.8 30.9 

16 ~ 32 12.6 14.6 13.6 26.9 26.9 27.2 

32 ~ 64 14.7 12 15 27 27.2 29.5 

64 ~ 128 14.6 12.2 14.7 28.1 26.7 26.7 

128 ~ 256 14.3 17.1 11.1 26.7 26.9 22.3 

Average SNR Increase 14.5 14.1 14 17.S 16.9 17.3 

Table 3.22 Average increases in SNR and DR ranges of the 4-4 MASH as a result of 

doubling OSRs for three different centre frequencies. 

3.7 Complex Second-Order Bandpass MASH I:-~ Modulators 

The purpose of this section is to present complex MASH variable centre frequency 

resonator-based bandpass I:-~ modulators. The summarised literature survey carried out in 

Section 3.2 shows that no work has been reported on complex MASH structures with the 

sole exception of a 1-1 MASH I:-~ modulator topology in [Dia96]. 

The complex 1-1 MASH I:-~ modulator shown in Figure 3.30(a) consists of a 

cascade combination of two independent complex first-order resonator-based I:-~ 

modulators that can accomplish second-order single-band noise-shaping at any centre 

frequency location. 
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(a) (b) 

Figure 3.30 Complex Second-Order Bandpass 1-1 MASH :E-~ Modulator: (a) Block 

Diagram, (b) Magnitude Spectrum at Vc = 5/64. 

Each stage comprises a single-pole resonator and two quantisers in the feed forward 

path as well as a complex delayer in the feedback path to achieve effective noise-shaping. 

The complex quantisation noise of the first-stage is fed to the input of the second-stage. 

The output of the second-stage is digitally processed by a first-order notch-filter resulting 

in the cancellation of the quantisation of the first-stage and therefore allowing the second­

stage quantisation noise to be noise-shaped by the equivalence of a second-order notch­

filter. The resultant outputs of the first 1\ (z) and second 12 (z) stages are: 

Yj (z) = X(z) + (1- c Z-I )[QRI (z) + QI\ (z)] (3.36) 

12 (z) = [- (QI (z)) + (1- c Z- I )(QR2 (z) + Q/2 (z))] N(z) (3.37) 

The associated quantisation and dither signal of the first-stage can be fully cancelled if the 

digital notch-filter is N(z) = (1- C z-I) resulting in a final expression for Yj 1 (z) given by: 

1\ I (z) = Yj (z) + N(z)12 (z) = X(z) + (1- C z- I)2 [QR2 (z) + Q/2 (z)] (3.38) 

where c = eja , X(z) is the input signal, QRI (z), QII (z), QR2 (z) and Q/2 (z) represent the 

quantisation noise of the first-real, first-imaginary, second-real and second-imaginary 

quantisers respectively. 
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The inclusion of a complex first-order notch-filter at the output of Y2 (z) together . 

with the summation of the two stages produces a complex multi-bit output signal in the 

time-domain. The output signal of the first-stage has values of ± (1 + j) and that of the 

second-stage after the notch-filter has one of the following values ± e(l + j) and 

± (2 ± e)(1 + j). All output combinations from both stages are added to produce a 

cumulative multi-bit stream of samples having one of the following values, ± (1 ± e)(l + j) 

and ±(3±e)(1+j). 

The simulated magnitude spectral output of a complex 2-2 MASH at Vc = 5/64 

shown in Figure 3.30(b) shows asymmetry about dc. The in-band SNRs were determined 

for three separate examples: a low-frequency (vc = 5/64), a medium-frequency (v = 

17/64) and a high-frequency (vc = 29/64). These in-band SNR curves are illustrated in 

Figure 3.31 (a), (b) and (c) for different six OSRs. 
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Figure 3.31 SNR Curves for Complex Variable-Band 1-1 MASH Bandpass L- .1 

Modulators at: (a) Vc = 5/64, (b) Vc = 17/64 and (c) Vc = 29/64. 

3.8 Complex Third-Order Bandpass MASH L-.1 Modulators 

A third-order bandpass MASH L-.1 modulator can be constructed by having cascaded 

combinations of I-I-lor 2-1 or 1-2 lower-order complex L-Ll modulators. The 1-1-1 and 

2-1 will be considered in the following two sub-sections. 

3.8.1 Complex Third-Order 1-1-1 Bandpass MASH L-Ll Modulators 

This topology contains three independent complex first-order variable centre 

frequency resonator-based L-Ll modulators in cascade, where the complex quantisation 

noise of the first-stage is fed to the input of the second-stage. Likewise; the complex 

quantisation error of the second-stage is fed to the input of the third-stage. The modulator 
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output is the summation of the first stage~(z), a single complex notch-filtered output from 

the second-stage YJ (z) and a double complex notch-filtered output from the third stage 

Y6(z) as shown in Figure 3.32 (a). Its corresponding output magnitude pectrum at v = 

5/64 is shown in Figure 3.32(b) 

(a) (b) 

Figure 3.32 Complex Third-Order Bandpass 1-1-1 MASH L-L\ Modulator: (a) Block 

Diagram, (b) Magnitude Spectrum at Vc = 5/64 

These output expressions in the z-domain are given by: 

1'( (z) = X(z) + (1- C Z-I)[QRl (z) + Q/l (z)] (3.39) 

Therefore, the overall output expression becomes Y(z) 

(3.42) 

where the quantisation noise of the intermediate stages QRl (z) QIl (z) QR2 (z) and 

Q/2 (z) are cancelled out. 

The multi-bit output combinations from the 1-1-1 MASH can be detennined by examining 

the modulator amplitude samples in the time-domain. The output signal of the first stage 

has values of ± (l + j) and that of the second-stage after the one notch-filter has one of six 

amplitudes ± c(l + j) and ± (2 ± c)(1 + j). Similarly· a double notch-filter yields a signal 
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having values of ± (1 + j)(1- e ja )2. The SNR curves of this modulat r for differ nt 

combinations of centre frequencies and OSRs are presented in Figure 3.33. 
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Figure 3.33 SNR Curves for Complex Variable-Band 1-1-1 MASH Bandpa s L­

Modulators at: (a) Vc = 5/64, (b) v = 17/64 and (c) Vc = 29/64. 

3.8.2 Complex Third-Order 2-1 Bandpass MASH L-~ Modulators 

This structure is a cascade connection of a complex second-order fi 11 wed by a 

complex first-order E-~ modulators. The first-stage contains two first-order variable centre 

frequency complex resonator-based sections together with two quantiser for the real and 

imaginary channels respectively. The complex quantisation noise of theftr t- tage is fed 

into the input of the second-stage. The overall complex output signal imply the 

summation of the first-stage lJ(z) and a double complex notch-filt red ersion of the 

second-stage ~ (z) as shown in Figure 3.34(a). Its magnitude spectrum is sh wn in Figure 

3.34 (b). 

~) ~1 0 0 ' Ol 03 ~ . 05 
),,()rn\ ,*dr,IqUt'lt, .\ 

(a) (b) 

Figure 3.34 Complex Third-Order Bandpass 2-1 MASH L-~ Modulator: (a) Block 

Diagram, (b) Magnitude Spectrum at v = 5/64. 
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These are: 

1) (z) = X(z) + (1- C Z- l )2[QRl (Z) + QIl (Z)] (3.43) 

The overall simplified output expression in the z-domain is given by 

Y(z) = X(z) + (1- C z- l )3[QR2 (z) + Q/2 (z)] (3.45) 

The multi-bit output combinations from this complex 2-1 can be detennined by examining 

the modulator output in the time-domain. The output signal of the second-stage has values 

of ± (1 + j)(l- ej a )2 , which when summed up with those values of the first-stage 

± (1 + j), yield an overall output signal consisting of one of the following samples. 

In a complex 2-1 bandpass MASH ~-L\ modulator, the quantisation noise of the first­

stage produces second-order noise-shaping, which is much smaller in amplitude and less 

tonal compared with a 1-1-1 MASH topology. Therefore, the effects of components 

mismatches between the first and second stages are less significant, thus achieving better 

resolution. A second advantage is that this modulator produces fewer multi-bit output 

combinations compared with a complex 1-1-1 , thus simplifying the design of the post 

decimator filter. The SNR curves of this modulator for different combinations of centre 

frequencies and OSRs are presented in Figure 3.35 . 
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Figure 3.35 SNR Curves for Complex Variable-Band 2-1 MASH Bandpass ~-L\ 

Modulators at: (a) Vc = 5/64, (b) Vc = 17/64 and (c) Vc = 29/64. 

3.9 Complex Fourth-Order Bandpass MASH ~-~ Modulaton 

A fourth-order complex bandpass MASH ~-~ modulator can be constructed by 

having cascade combinations of 1-1-1-1 , or 2-1-1 , or 1-2-1 , or 1-1-2 or 2-2 complex lower-
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order L-6 modulators. The following two sub-sections provide a block diagram as well as 

the design analysis and simulation results for each case. 

3.9.1 Complex Fourth-Order MASH 2-1-1 Bandpass MASH L-6 Modulators 

This structure is basically a cascade combination of a complex second-order L­

modulator followed by two ~er complex first-order L-6 modulators as shown below in 

Figure 3.36(a). Its output magnitude spectrum and SNR curves are shown in igure 3.36 

(b) and Figure 3.37 respectively. 
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(b) 

Figure 3.35 Complex Fourth-Order Bandpass 2-1-1 MASH L-6 Modulator: (a) Block 

Diagram, (b) Magnitude Spectrum at Vc = 5/64. 
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Figure 3.37 SNR Curves for Complex Variable-Band 2-1-1 MASH Bandpass L- 6 

Modulators at: (a) Vc = 5/64, (b) Vc = 17/64 and (c) Vc = 29/64. 
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3.9.2 Complex Fourth-Order MASH 2-2 Bandpass MASH L-~ Modulator 

This a cascade combination of two complex second-order L-~ modulators as shown 

in Figure 3.38(a). Both stages consist of two complex first-order resonators and their 

associated real and 'imaginary quantisers in the feedforward path as well as complex 

delayers in the feedback path to deliver effective noise-shaping. The presence ~f only two 

stages coupled with the use of two notch-filters results in fewer multi-bit output 

combinations. Its magnitude spectrum and SNR curves for different centre frequencie and 

OSR combinations are given in Figures 3.38(b) and Figure 3.39 respectively. 
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Figure 3.38 Complex Fourth-Order Bandpass 2-2 MASH L-~ Modulator: (a) Block 

Diagram, (b) Magnitude Spectrum at Vc = 5/64. 
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Figure 3.39 SNR Curves for Complex Variable-Band 2-2 MASH Bandpass L-~ 

Modulators at: (a) Vc = 5/64 (b) Vc = 17/64 and (c) Vc = 29/64. 

3.10 FIR Fractional-Delay Double-Stage Bandpass MASH L-~ Modulators 

. ., 
I 
J 

<I 0 

The FIR FD MASH L-~ shown in Figure 3.40(a) consists of a cascade connection of 

two independent single-stage n'h-order FIR FD filter-based L-~ modulators that can 
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accomplish single-band noise-shaping at any specified centre frequency locati n. ach 

stage contains a variable centre frequeo.cy loop-filter FR(z ) and a I-bit quanti s r in the 

feedforward path together with two cascaded delayers represented by FF(z) , in the 

feedback path to deliver effective noise-shaping. The variable bulk delayer z-r is 

responsible for causing coarse spectral shifts whereas the fractional delay r z- f , take 

care of finer frequency adjustments. Note that z-r has to be at least equal t unity t ati fy 

the causality criterion. The first-stage quantisation noise is fed to the input f the ec nd­

stage. The output of the second-stage is processed by a digital filter wh se tran fer f1Jncti n 

is the inverse of that of the loop-filter to cancel the quantisation noi e of th fir t- tage a 

well as contributing towards noise-shaping the quantisation noise of the sec nd- tage. h 

simulated output magnitude spectrum ofa double-stage MASH L-~ modulat r at v = 1/5 

is shown in Figure 3 .40(b). 

1J(z) 

Arz) 

,'----+iI Yiz) 
005 01 015 02 0 03 036 OJ OIS 0' 

Norm,I'nd Frequlnc.y 'f 

(a) (b) 

Figure 3.40 FIR Fractional-Delay Double-Stage Bandpass MASH L-~ Modulat r : 

(a) Block Diagram, (b) Magnitude Spectrum at Vc = 1/5. 

11 (z) ~ X(z) + (1 + z· ' t, c.z · · )(Q, (z)) (3.46) 

(3 .47 

The total quantisation noise and dither of the first-stage can be fully cancelled if the digital 

fi Iteris N (z) ~ ( I + t, c.z· N ) resulting in a final expression for Yj, (z) given by:-
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(3.48) 

where c's represent the coefficients of the FD filter. 

The inclusion of an nth -order digital filter at the output of 12 (z) together with the 

summation of the two stages in the time-domain produces a multi-bit utput ignal in the 

time-domain. 

3.11 FIR Fractional-Delay Triple-Stage Bandpas MASH ~-~ Modulator 

This structure contains three independent nth-order variabl centre frequency 1:­

modulators in cascade where the first-stage quantisation is fed to the cond-stage input 

and likewise for the third-stage. The modulator output is the summation f the fir t- tag 

output Yt (z), an nth-order notch-filtered output from the second-stag » (z) and a 2nth-

order notch-filtered output from the third-stage J6(z) as in Figure 3.4 1 ). h magnitud 

spectrum of this modulator for v c = 1/5 is shown below in Figure 3 .41 (b). 
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Figure 3.41 FIR Fractional-Delay Triple-Stage Bandpass MASH ~-~ Modulator : 

(a) Block Diagram, (b) Magnitude Spectrum at Vc = 115 . 

The output expressions in the z-domain are given by: 
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(3.50 

, 

16(z) ~ [-(Q,(Z)) + +Z-'~C"Z-N }Q3(Z))]N' (Z) 3.5 1 

Therefore', the overall output expression becomes 1\ 11 (z) 

3.12 FIR Fractional-Delay Quadruple-Stage Bandpass MASH L- Modulators 

This modulator is a cascade combination of four nth-order variable centr fr quency 

bandpass L-~ modulators as shown in Figure 3.42(a) where th quanti ati n n i e f 

each-stage is fed to the input of its succeeding-stage. The resul6ng output i the ummati n 

of all stages with the necessary digital filtering so that the quanti ati n n f the 

intermediate stages are all cancelled out. The output magnitude spectrum f thi m dulat r 

is shown in Figure 3.42(b). 
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Figure 3.42 FIR Fractional-Delay Quadruple-Stage Bandpass MA H L-~ M dulators: 

(a) Block Diagram (b) Magnitude Spectrum at Vc = 1/5 . 

The intermediate corresponding output expressions are given by: 
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(3.53) 

(3.54) 

(3.55) 

(3.56) 

Therefore, the overall output expression becomes 1; II (z) 

(3.57) 

The SNR curves corresponding to the double-, triple- and quadruple-stage MASH FD 

variable-band bandpass L-~ modulators are illustrated in Figure 3.43. 
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Figure3.43 SNRCurvesat Vc = 17/64 for (a) 1-1 MASH, (b) 1-1-1 MASH, (c) 1-1-1-1 

MASH FD Variable-Band Bandpass L-~ Modulators. 

3.13 Double-Stage Non-Resonator-Based Bandpass MASH t-~ Modulators 

The use of variable centre frequency resonators beyond second-order in any stage in 

MASH bandpass L-~ modulators poses a stability problem. Fourth-order single-bit L-~ 

modulators are conditionally stable due to the uneven shoulder gains of the resonator for 

non-mid-band centre frequencies. Possible remedies to enhance stability were covered in 

Section 2.6 such as the use of the multi-bit quantisers, suitable resonator gain factors or 

feedback coefficients. Another viable choice is to employ non-resonator bandpass 
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alternatives such as Butterworth or Chebyshev 2 filters, whose zeros can be conveniently 

exploited to control the internal amplitude level in each stage of the MASH modulator to 

avert instability. The motivation of this section is to present the design analysis and 

simulation results of narrow-band bandpass Butterworth- and Chebyshev 2-based l:-~ 

modulators. The two scenarios of employing identical and different loop-filters in each 

section will be discussed in the following two sub-sections. The double-stage l:-~ 

modulator shown in Figure 3.44 is well-suited for the application and behavioural-level 

evaluation for both the ensuing stage combinations. Note that the constituent modulator 

sections are simplified by the embedding the feedback transfer function into that of the 

loop-filter. 
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I Y/z) 
X(z) 
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Y(z) 

I-bit quantiSCI' 

Figure 3.44 Double-Stage Non-Resonator-Based Bandpass MASH t-~ Modulators. 

3.13.1 Identical Loop-Filter Stages in Double-Stage Bandpass MASH t·~ Modulators 

This section provides the design analysis of identical loop-filter stages for narrow-

band bandpass t-~ modulators. The loop-filter H1(z) is partitioned into a numerator and a 

denominator polynomial represented by N1(z) and D1(z). Given that H1(z) = H 2(z) , the 

corresponding outputs of both stages 11(z) and l)(z) are given by 

(3.58) 

(3.59) 

The resultant output of this modulator after further algebraic simplifications becomes 
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(3.60) 

The SNRs for different combinations of centre frequencies and OSRs are illustrated in 

Figure 3.45. 
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Figure 3.45 SNR Curves for the Identical Loop-Filter Double-Stage Non-Resonator­

Based Bandpass MASH L-D. Modulators at: (a) Vc = 5/64, (b) 17/64 and 

(c) 29/64. 

3.13.2 Dissimilar Loop-Filter Stages in Double-Stage Bandpass L-D. Modulators 

This section provides the design analysis of different loop-filter stages for narrow­

band bandpass L-D. modulators. The numerator and denominator polynomials of the two 

loop-filters HI (z) and Hz (z) are represented by NI (z) , DI (z) , Nz (z) and D2 (z) 

respectively. The corresponding outputs of both stages ~(z) and 13(z) are given by 

(3.61) 

(3.62) 

The resultant output of this modulator after further algebraic simplifications becomes 

The SNRs of this modulator for different combinations of centre frequencies and OSRs are 

illustrated in Figure 3.46. 
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Figure 3.46 SNR Curves for the Dissimilar Loop-Filter Double-Stage Non-Resonator­

Based Bandpass MASH L-~ Modulators at: (a) Vc = 5/64, (b) Vc = 17/64 

and (c) Vc = 29/64. 

3014 Double-Stage ResonatorlNon-Resonator Based Bandpass :E-~ Modulators 

The novel double-stage L-~ modulator shown below in Figure 3.47 consists ofa 41h_ 

order variable centre frequency resonator-based L-~ modulator in the 1 SI-stage and a 4th_ 

order bandpass Butterworth/Chebyshev 2 :E-~ modulator in the 2nd -stage. 

X(z) 

I-bit quantiser 

Y(z) 

Figure 3.47 Double-Stage ResonatorlNon-Resonator-Based Bandpass L-~ Modulators. 

The outputs of the l SI_stage J-i(z) and 2nd_stage 12(z) are: 

165 



glg2 - Z +Z (1 P -I -2) 
11 (Z) = DSI (Z) X(Z) + DSI Q1 (Z) (3.64) 

(3.65) 

where Ds1(z), DS2 (z) and NS2 (z) are given by: 

DSI (z) = 1 + P(/lgIg2 + 12 - 2)Z-1 + (2 + p2 (1- 12) - IIgIg2 - 12 )z-2 

+ 2P(/2 - l)z-3 + (1- 12 )Z-4 (3.66) 

(3.67) 

(3.68) 

The resultant output of this modulator becomes: 

(3.69) 

This topology offers several advantages compared with conventional bandpass 

MASH I-A modulators. First; this modulator requires two simple digital notch filters 

instead of a more complicated band-stop filter at the output of the 2nd -stage to appropriately 

cancel the quantisation noise of the 1st-stage. Second; the 2
nd 

-stage output undergoes 

through less digital processing due to the simplicity of the notch filters resulting in fewer 

cumulative multi-levels in the output signal. This imposes fewer restrictions on the design 

specifications of the decimation filter. Third; the coincidental zeros of the 1st_stage NTF in 

combination with the distributed zeros of the 2
nd 

-stage NTF ensure a deep as well as a 

relatively wide-band notch in the signal region. This has the benefit of providing 

respectable in-band SNRs for closely-spaced multi-tone input signals as demonstrated in 

Figure 3.48(a). Fourth; the quantisation noise of the 15t-stage has a smaller magnitude and 

is less tonaI, because it is noise-shaped by a 4th -order I-A modulator, thus making this 

topology more immune to component imperfections. Fifth; the 2nd -stage quantiser will not 

be overloaded for high-amplitude inputs, because of the even distribution of the poles and 

zeros of the 2nd_stage loop-filter. 

The main drawback of this I-~ MASH modulator is that some scaling coefficients 

are needed in the 1st-stage for non-Mid-band centre frequencies to control the internal 

signal amplitudes in the feedforward path. The SNRs of this modulator significantly 

outperfonn those of the 2-2 MASH I-A modulator as shown below in Figure 3.48. 
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Figure 3.48 SNR Curves of (a) Double-Stage ResonatorlNon-Resonator-Based Bandpass 

L-~ Modulators, (b) 2-2 MASH Bandpass L-~ Modulators at v = 17/64. 

3.15 Double-Stage Inverse Comb-Bandpass Filter Based Bandpass L-~ Modulators 

3.15.1 Single-Loop Case 

This double-stage L-~ modulator employs an L'h -order multi-band loop-filter in the 

1st_stage that is derived from an L'h -order comb filter NTF and an M" -order bandpass 

Butterworth/Chebyshev 2 filter in the 2
nd

-stage as shown in Figure 3.48. The bandpass 

filter in the 2nd -stage acts to concurrently attenuate and widen the notch in the signal region 

to provide better in-band SNRs. The remaining out-of-band nulls, however, can be 

subsequently removed by the digital filter in the decimation stage. 

X(z) 

I·bie qUAnU5er 

+ 

__ --------------------------------~L~------~ 

Figure 3.49 Double-Stage Inverse ComblNon-Resonator-Based Bandpass L-~ 

Modulator. 

The outputs of the 1st 1';(z) and 2
nd

-stages 12(z) are given by: 

1'; (z) = z- N X(z) + (1 + Z-N )QI (z) 
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(3 .71 ) 

- N DG(z)(l + z- ) [ ] 
Y(z) = z X(z) + N G (z) + DG (z) Q, (z) - Q2 (z) (3.72) 

The benefits of this novel MASH bandpass L-~ modulator are ummari ed a 

follows: First· it contains a multiplier-free loop-filter in the 151-stage, which i capable of 

producing noise-shaping at a variety of centre frequency location. econd; the digital 

cancellation filter at the output of 2nd_stage does not use any multipliers. Thi results in 

simpler and fewer cumulative multi-levels in the output signal. Third; the quanti ser in the 

151_stage does not become overloaded for large-amplitude inputs or non-mid-band centre 

frequencies, circumventing the need for scaling coefficients to control stability. 

The main disad antage of this MASH topology is that the I 1_ tage produces 

redundant notches. The presence of too many notches due to a high-order loop-filter 

increase the amplitude level of the out-of-band quantisation noise, making th modulator 

more susceptible to instability. The output magnitude spectrum of this modulator is shown 

in Figure 3.50(a), where more effective noise-shaping can observed for the noi e-shaping 

band of interest. The other notch in the spectrum has occurred as a result of the comb filter 

in the first stage. The SNR curves for different combinations of centre frequencies and 

OSRs are shown in Figure 3.50 (b). 
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Figure 3.50 Double- tage Single-Loop Inverse Comb-Bandpass Filter Ba d Bandpas 

L-~ Modulator, (a) Magnitude Spectrum, (b) SNR Curves. 

3.15.2 Double-Loop Ca e 

This double-stage L-~ modulator employs a double-loop inverse-comb filter in the 

151_stage to provide an enhanced noise-shaping response compared with it single-loop 
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predecessor in 3.15:1 and a bandpass Butterworth/Chebyshev 2 filter in the 2nd_stage as 

shown in Figure 3.51. 

The advan~ges of this topology are summarised as follows: ,First; it provides a 

deeper notch with better resolution without using any multipliers. Second; the presence of a 

double-109P modulator in the 1 st_stage causes the overall modulator output to be less tonal. 

Third; this modulator is more tolerant to component mismatches; because any leaked 

quantisation noise that may be transmitted in the 2
nd 

-stage is noise-shaped by twice the 

order. Fourth; the digital cancellation circuitry does not require any multipliers, thus 

reducing the hardware complexity of the modulator. Fifth; fewer multi-level outputs are 

produced with this modulator due to the simplicity of the comb filters. 

Two disadvantages exist with this l:-~ modulator topology. First; the use of a double­

loop inverse comb filter in the 1 st -stage results in better resolution for the redundant noise­

shaping bands as well as the desired signal-band. Second; the out-of-band quantisation 

noise magnitude is increased in proportion to the number of noise-shaping bands. As a 

result, this imposes tighter requirements on the digital decimators. 

X(z) 

+ 

Y(rJ 

Figure 3.51 Double-Stage Double Inverse ComblNon-Resonator-Based Bandpass l:-~ 

Modulator. 

The intermediate and final outputs of this l:-~ modulator are given by: 

11 (z) = Z-N X(z) + (1 + Z-N )Ql (z) (3.73) 

(3.74) 
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(3 .75) 

The output magnitude spectrum' of this modulator i shown in Figure 3.52(a), wher 

significantly better noise-shaping was accomplished. This is reflect d by the improved 

SNR curves shown in Figu~e 3.52(b) compared with those shown in Figure .50(b). 
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Figure 3.52 Double-Stage Single-Loop Inverse Comb-Bandpass Filter Based Bandpass 

L-~ Modulator, (a) Magnitude Spectrum, (b) SNR Curves. 

3.16 Concluding Remarks to Chapter 3 

The design procedure and analysis of variable-band resonator-based MA I bandpa 

L-~ modulators were presented. The four techniques considered were ba d on the NTF 

of real-coefficient FIR notch filters, complex FIR notch filters, fractional-delay In 

conjunction with sum filters and Butterworth/Chebyshev 2 bandstop filters. 

The stability of the 2-2 MASH bandpass L-~ modulators was maintained for high­

amplitude inputs, unlike a fourth-order single-stage single-bit L-~ modulator. This led t 

better SNRs and DRs. However, the 2-2 MASH contained more analogue circuitry and 

required a digital notch filter to achieve quantisation noise cancellation of the first tage. 

The presence of a multi-bit output signal imposed further design constraint on the 

decimator. Furthermore, non-idealities between the analogue and digital tages were mor 

critical because these inaccuracies contributed to the leakage of more quantisation noise 

and tones to the in-band region. 

The 2-2-2 MA H was simple to design exhlbited a virtually tone-fr magnitude 

spectrum for ideal component matching and was unconditionally un table. Moreover, 

higher in-band SNRs and DRs were achieved, because the constituent quantisers became 

mildly overloaded for very high input amplitudes. The disadvantages of this modulator 
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included: the requirement of 3 digital notch filters to achieve the quantisation noise .. 
cancellation of the previous stages, the presence of more multi-bit output combinations and 

greater sensitivity to component tolerance. 

The main adv~tage o~ the 4-2 MASH was that the quantisation noise of the first­

stage output produced fourth-order noise-shaping, which was much smaller in magnitude 

and less tonal. Conseque~tly; the effects of component mismatches on the modulator 

resolution were less detrimental. The need for 2 instead of 3 notch filters had a twofold 

advantage in that it reduced the overall modulator complexity, therefore generating fewer 

multi-bit output combinations compared with the 2-2-2 MASH. The main drawback was 

that the fourth-order l:-~ modulator in the first-stage, became conditionally stable for 

large-amplitude input signals, particularly for very low and high frequencies. The stability, 

however, could be improved by using either suitable feedforward coefficients or multi-bit 

quantisers. 

A 2-4 MASH required a single notch filter and therefore produced fewer multi-levels 

in its output signal in comparison with the 2-2-2 and 4-2 MASH l:-~ modulators. The 

main advantage for the 2-4 MASH, which used a multi-bit quantiser in the second-stage, 

was that the effect of distortion due to the non-linearities of the multi-bit DI A were less 

significant to the overall modulator resolution, when compared with the 4-2 MASH. This 

was because the output of the second-stage including its D/A error did not feed into another 

stage. Disadvantages included the need to sufficiently dither the first-stage to reduce 

spurious tone leakage to the second-stage as well as the need to incorporate inter-stage 

scale-factors to avert premature overloading of the second-stage quantiser. The use of a 

multi-bit quantiser in the second-stage subjected its multi-level output to be processed by a 

notch filter in this case, which considerably increased the number of multi-levels of the 

modulator output. 

The 2-2-2-2 MASH was conditionally stable and therefore delivered greater SNRs 

and DRs compared with an eighth-order single-stage single-bit l:-L\ modulator. Compared 

with other MASH modulators, this required 6 notch filters to achieve quantisation noise 

cancellation of the preceding three stages. It contained more multi-bit combinations. In 

addition, it was more sensitive to component non-idealities, especially, in the first-stage, 

which resulted in the transmission of uncancelled quantisation noise and tones into later 

stages. 
The 4-2-2 MASH had greater tolerance due to non-idealities in the first-stage, 

requiring 5 instead of 6 notch filters. It also produced fewer multi-bit output combinations 
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compared with the 2-2-2-2 MASH. However, the increased internal signal levels of the 

first-stage overloaded the quantiser prematurely, thus limiting its DR compared with the 2-

2-2-2 MASH. 

The 4-4 MASH modulator only required two notch filters and a result gene~ated the 

lowest number of multi-levels in its output signal, when compared with the 2-2-2-2, 4-2-2, 

2-4-2 and 2-2-4 MASH modulators. The 4-4 MASH had greater insensitivity to component 

non-idealities and was less tonal, because the quantisation noise in both stages was 

processed by fourth-order noise-shaping. However, it exhibited comparatively lower in­

band SNRs and DRs due to the quantiser overloading in both stages for high-amplitude 

input signals. 

Several conclusions can be drawn with respect to the arrangement of fourth-order 

1:-.1 modulators within these 1:-.1 MASH topologies. The use of a fourth-order modulator 

in the first-stage makes the overall modulator less sensitive to non-idealities allowing the 

propagation to subsequent stages quantisation noise that is smaller in magnitude and less 

tonal. The use of a single-bit fourth-order 1:-.1 modulator in the later stages reduces the 

number of required notch filters for cancellation purposes resulting in fewer multi-bit 

output combinations. 

MASH Topology No oflevels Multi-level Combinations 

2-2 4 ± 1, ± 3 

2-2-2 8 ± 1, ± 3, ± S, ± 7 

4-2 6 ±1,±3,±5 

2-4 4 ± 1, ± 3 

2-2-2-2 16 ± 1, ± 3, ± S, ± 7, ± 9, ± 11, ± 13, ± 15 

4-2-2 14 ± 1, ± 3, ± 5, ± 7, ± 9, ± 11, ± 13 

2-4-2 12 ± 1, ± 3, ± S, ± 7, ± 9, ± 11 

2-2-4 8 ± 1, ± 3, ± 5, ± 7 

4-4 6 ± 1, ± 3, ± 5 

Table 3.23 Multi-Level Output Combinations of Nine-Different Cascades of Mid-Band 

Resonator-Based Bandpass 1:-.1 Modulators. 

The advantages and drawbacks of the complex 1-1 MASH, 1-1-1 MASH, 2-1 

MASH, 2-1-1 MASH and 2-2 MASH were very similar to those stated for the real­

coefficient 2-2 MASH, 2-2-2 MASH, 4-2 MASH, 4-2-2 MASH and 4-4 MASH bandpass 

1:-.1 modulators respectively. In general, the poles and zeros of the loop-filters in complex 

MASH 1:-.1 modulators were not restricted to conjugate pairs, implying that better in-band 
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quantisa~i?n noise attenuation could be attained, compared with a real-coefficient MASH 

modulator of the same order. Greater resolution and design flexibility were provided by 

complex MASH modUlators at the expense of an extra quantiser and signal paths for the 

imaginary components of the signals in the modulator. The constituent second-order 

modulators were stable compared with their real-coefficient fourth-order counterparts 

especially for non-mid-band centre frequencies. Complex MASH l:-~ modulators did not 

exhibit symmetrical noise-shaping spectra and were thus viable candidates for the 

generation of single side-band noise-shaping. 

The FIR fractional delay double-, triple- and quadruple-stage bandpass MASH l:-~ 

modulators achieved similar SNRs and DRs in comparison with their real-coefficient FIR 

notch filter based counterparts. Moreover, they exhibited smoother magnitude spectra that 

contained fewer tones. This improvement, however, was accomplished at the price of 

slightly more complicated analogue loop-filters and digital cancellation circuitry. 

The double-stage resonator/non-resonator based bandpass l:-~ modulator had several 

advantages compared with conventional bandpass MASH l:-~ modulators. First, this 

modulator required two simple digital notch filters instead of a more complicated bandstop 

filter at the output of the second-stage to suitably cancel the quantisation noise of the first­

stage. Second, the second-stage output went through less digital processing due to the 

simplicity of the notch filters resulting in fewer cumulative multi-levels in the output 

signal. This imposed fewer restrictions on the design specifications of the decimation filter. 

Third, the coincidental zeros of the first-stage NTF in combination with the distributed 

zeros of the second-stage NTF ensured a deep as well as a relatively wide-band notch in the 

signal region. This had the benefit of providing respectable in-band SNRs for closely­

spaced multi-tone input signals. Fourth, the quantisation noise of the first-stage had a 

smaller magnitude and was less tonal, because it was noise-shaped by a fourth-order I-~ 

modulator, thus making this topology more immune to component imperfections. Fifth, the 

second-stage quantiser would not be overloaded for high-amplitude inputs, because of the 

even distribution of the poles and zeros of the second-stage loop-filter. The main drawback 

of this l:-~ MASH modulator was that some scaling coefficients were needed in the first­

stage for non-mid-band centre frequencies to control the internal signal amplitudes in the 

feedforward path. The SNRs of this modulator were shown to significantly outperform 

those of the 2-2 MASH I-~ modulator. 

The advantages of the double-stage single-loop inverse comb-bandpass filter based 

l:-~ modulators were: First, it contained a multiplier-free loop-filter in the first-stage, 

which was capable of producing noise-shaping at a variety of centre frequency locations. 
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Second, the digital cancellation filter at the output of second-stage did not use any 

multipliers. This resulted in simpler and fewer cumulative multi-levels in the output signal. 

Third, the quantise~ in the first-stage did not become overloaded for large-amplitude inputs 

or non-mid-band centre frequencies, circumventing the need for scaling coefficients to 

control stability. The main disadvantage of this MASH topology was that the first-stage 

produced redundant notches. The presence of too many notches due to a high-order loop­

filter increased the amplitude level of the out-of-band quantisation noise, making the 

modulator more susceptible to instability. 

The benefits of the double-stage double-loop inverse comb-bandpass based I-L\ 

modulators were: First, it provided a deeper notch with better resolution without using any 

multipliers. Second, the presence of a double-loop modulator in the first-stage caused the 

overall modulator output to be less tonal. Third, this modulator was more tolerant to 

component mismatches, because any leaked quantisation noise that might be transmitted in 

the second-stage was noise-shaped by twice the order. Fourth, the digital cancellation 

circuitry did not require any multipliers, thus simplifying the hardware structure of the 

modulator. Fifth, fewer multi-level outputs were produced with this modulator due to the 

simplicity of the comb filters. However, two drawbacks existed with this I-~ modulator 

topology. First, the use of a double-loop inverse comb filter in the first-stage resulted in 

better resolution for the redundant noise-shaping bands as well as the desired signal-band. 

Second, the out-of-band quantisation noise magnitude was increased in proportion to the 

number of noise-shaping bands. As a result, this imposed tighter requirements on the 

digital decimators. 

In summary, a comparative study was given based on a mixture of linear modelling, 

behavioural level simulations as well as SNRs and DRs. In addition, a library in Simulink 

containing over 33 different combinations of these I-~ modulator topologies was created. 

The required modulator coefficients to meet any set of specifications were obtained by 

running an associated m-jile, which was written by the author. 
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Chapter 4 

Multi-Band Bandpass L-~ Modulators, 

4.1 Introduction to Multi-Band :I:-L\ Modulators 

Work reported to-date has focused on single-band noise-shaping :I:-L\ modulators. 

This chapter provides the design analysis and detailed behavioural-level simulations of a 

novel class of programmable narrow-band bandpass :I:-L\ modulators, that can achieve 

concurrent multiple noise-shaping bands for multi-tone input signals. Five different design 

methodologies based on the noise transfer functions of comb filters, slink filters, fractional­

delay comb filters, FIR multi-notch filters and IIR multi-bandstop filters, are applied for the 

design of these multiple-band :I:-L\ modulators. A tree structure summarising all these 

techniques is shown below in Figure 4.1. 

Figure 4.1 Different Techniques for the Design of Multi-Band Bandpass I-A 

Modulators 

Comb filters [Cun92]-[Pro92] provide both a simple and cheap option of generating 

concurrent multiple noise-shaping bands when employed in the design of :I:-A modulators. 

The number and location of these bands is dependent on the order of the comb filter. 
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However, their main drawback is that only a limited range of mUltiple noise-shaping band 

combinations is attainable. 

The second technique circumvents this limitation to a certain extent by substituting 

comb filters with slink filters, with the latter containing more adjustable multiplier-free 

parameter~. This has the advantage of accomplishing more null combinations for the NTF 

without employing any multipliers. 

The use of FIR or allpass fiR fractional delay filters in conjunction with comb filters 

can achieve multi-band noise-shaping for any equi-spaced combination of centre 

frequencies, overcoming the constraints imposed by the comb or slink filter approaches. 

This improvement, however, is achieved at the expense of using multipliers for the 

fractional delay filters. 

The fourth technique utilises single-block multiple notch-filters to generate the 

necessary nulls for any combination of non-equi-spaced as well as equi-distant noise-

shaping bands. 

In the fifth technique, bandstop Butterworth or Chebyshev 2 filters are used to 

characterise the NTFs. These have the benefit of enabling the designer to specify the signal 

bandwidths, the stop-band attenuation together with the provision for non-equi-spaced 

band locations. 

The merits and drawbacks of each technique for a variety of l:-~ modulator 

topologies are assessed in terms of in-band SNRs, accuracy of the noise-shaping band 

location and coefficient complexity for ease of implementation. 

The SNR routine discussed in Section 1.13.2 was developed so as to allow it to 

simultaneously determine the in-band SNR for each band in these l:-~ modulators. This 

involved subtracting the input signals from the modulator output, thus retaining the 

quantisation noise in the in-band region for each signal band. If this method did not work 

properly, then a second procedure was employed, where the bins that represented the input 

signal in each band were removed. The SNR for each band was then calculated by simply 

evaluating the ratio of the signal power to that of the in-band quantisation noise power. 

4.2 Applications for Multi-Band l:-~ Modulators 

Multi-band AID converters may be well suited for the simultaneous AID conversion 

of multi-tone input signals for telecommunication and commercial broadcasting systems, 

for both medium to high resolution applications, so that all subsequent signal processing 
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operations can be perfonned digitally. This le~s to cheaper. more robust and easily 

testable communications systems. 

A further promising application is in specialist high-quality instrumentation to yield 

accurate reproductions of signals with their periodic and aperiodic harmonics. In general. 

potential applications include systems. which require closely spaced filter banks [Nor93b]. 

4.3 Comb Filter Approach 

This multiple noise-shaping technique employs comb-filters. whose conjugate zero-

pairs are distributed around the unit-circle in the z-domain. to provide maximum in-band 

attenuation. The nulls of the comb filter are equi-spaced along the unit-circle and separated 

by frequency gaps of 11m in width. where m is the filter order [Cun92]-[Pr092]. The Comb 

Eilter noise transfer function Hcriz) is defined as 

(4.1) 

where d is a constant value that is set to ± 1. The resultant loop Mcrlz) and feedback Ccriz) 

transfer functions are: 

1 
and CCF (z) = -d z·m (4.2) 

The number of nulls for the NTF corresponds to the number of noise-shaping bands that 

are provided by the loop-filter. The Number of Bands (NB) is governed by the comb filter 

order and is given by 

(2NB-l) < m < (1 +2NB) (4.3) 

The locations of these bands can be determined by finding the roots of the comb filter 

Wh d . 1 th . . j1r(l+21)/m expression in (4.2). en IS +. e zero positions are at e • and when d is -1. 

the zeros are located at e±j2trk/m. where k is a positive integer. For example. selecting m = 

8 and d = 1 result in four nonnalised frequency nulls at 1116. 3/16. 5/16 and 7/16. These 

nulls are repeated at the corresponding conjugate frequencies. since only real filters are 

being considered in this section. The outcome is a total of eight symmetrical notches across 

the entire nonnalised frequency spectrum. which are positioned at (± 1116. ± 3/16. ± 5/16 

and ± 7/16). Similarly, when m = 8 and d = -1. the outcome is a total of eight equi-spaced 

nulls positioned at (0. ± 118. ± 114, ± 3/8 and 112). Several combinations of narrow multi­

bands can be obtained by choosing different values for m and d as shown in Table 4.1. 

positive values of d result in equi-spaced centre frequency locations having odd multiples 
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of 2m, whereas negative values of d yield equi-distant centre frequency positions at even 

multiples of 2m. 

m d Vc d Vc 

2 1 ± 114 -1 0, 112 

3 1 ± 116, 112 -1 0, ± 113 

4 1 ± 118, ± 3/8 -1 0, ± 114, 112 

5 1 ± 1110, ± 3/10, 112 -1 0, ± 115, ± 2/5 

6 1 ± 1112, ± 114, ± 5/12 -1 0, ± 116, ± 113, 112 

7 1 ± 1114, ± 3/14, ± 5/14, 112 -1 0, ± 117, ±217, ± 317 

8 1 ± 1116, ± 3/16, ± 5/16, ± 7/16 -1 0, ± 118, ± 114, ± 3/8 & 112 

9 1 ± 1I18,± 1I6,± 5118,± 7/18, 112 -1 0, ± 119, ± 2/9, ± 113, ± 4/9 

10 1 ± 1120, ± 3120, ± 114, ± 7/20, ± 9/20 -1 0, ± 1110, ± 115, ± 3/10, ± 2/5,112 

Table 4.1 Loop-Filter and Feedback Filter Parameters for a Combination of Centre 

Frequencies for the Comb Filter Approach. 

A closer inspection of Table 4.1 reveals that when d = -1 and m is an odd integer, one 

of the centre frequency bands is invariably positioned at dc. On the other hand, when d = -1 

and m is an even integer, two of the noise-shaping bands always occur at both dc and 

Nyquist. Multi-band conventional comb filter based I-A modulators may be simpler to 

implement as they do not require any multipliers. Their main limitation, however, lies in 

the fact that only a finite number of noise-shaping bands is attainable. 

A . 4 tit -order double-band comb filter based I-A modulator was simulated using two 

sinusoids, whose input and dither amplitudes were 0.1 and 0.01 respectively. The 

magnitude spectrum of this modulator shown in Figure 4.2 exhibited several dominant 

tones, whose locations, amplitude and mode of repetition were related to the modulator 

input amplitudes. 
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Figure 4.2 Magnitude Spectrum of a Double-Band Comb Filter Based 1:- 6 Modulator 

Centred at 1/8 & 3/8, (a) Fourth-Order, (b) Eighth -Order. 

Simulations showed that the amplitude level and concentration of these tones decreased as 

the dither amplitude increased. This particular modulator was tonal, because it contained a 

simple loop-filter that generated fewer state values. This enabled the modulator to generate 

identical patterns for its output signal in the time-domain. This corresponded to distinct 

spectral tones in the frequency-domain. The application of a large amount of dither 

significantly reduced the tonality content, but at the price of reducing the SNR. The SNRs 

in Figure 4.3 (a) exhibited non-lmear characteristics, which were primarily attributed to the 

number and power of the tones, whose properties varied with respect to the input 

amplitudes. This comb filter approach was then extended to higher-order 1:-6 modulators, 

where better SNRs were accomplished. The magnitude spectrum of an 8
th 

-order double­

loop single-bit comb filter based 1:-6 modulator is shown in Figure 4.2(b). This spectrum 

exhibited fewer tones in the spectrum due to the presence of the extra loop-filter, which 

was responsible for causing greater quantisation noise de-correlation. The SNR 

characteristics of this modulator in Figure 4.3 show that the curves become non-linear for 

large-input amplitudes. This was caused by the excessive quantiser overloading, which 

resulted in the occurrence of more tones, especially in the signal region. 

Figure 4.2 coupled with the simulation results shown in Figure 4.3 , Figure 4.4 and 

Figure 4.5 indicate that performance improvements in terms of in-band SNRs and DRs are 

attained for both noise-shaping bands (i.e. 1/8 and 3/8) at the expense of more complicated 

loop-filters, feedback filters and multi-level quantisers. 
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Figure 4.3 SNR Curves for Single-Bit Double-Band Comb Filter Based E- L1 

Modulator (a) Single-Loop at Vc = liS, (b) Single-Loop at Vc = 3/8, 

(c) Double-Loop at Vc = liS, (d) Double-Loop at Vc = 3/S. 

The SNR curves for the triple-band single-loop and double-loop comb filter based E-L1 

modulators are shown in Figure 4.4 and Figure 4.5 respectively for all three bands. 

Simulations as well as the SNR curves in Figure 4.4 show that the single-loop modulator 

becomes unstable, when the amplitude of each of the three sinusoids exceeds -S dB. The 

non-linearities at these amplitude are attributed to tones due to quantiser overloading. 

Moreover, simulation results showed that the occurrence of instability for the double-loop 

modulator was sharper. This is confmned by the steep drop of the SNR values as soon as 

the modulator reaches its maximum stable input amplitude. 
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Figure 4.4 SNR Curves for Single-Loop Single-Bit Triple-Band Comb Filter Based E­

L1 Modulator at (a) Vc = 1112, (b) Vc = 114, (c) Vc = 5/12. 
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Figure 4.5 SNR Curves for Double-Loop Single-Bit Triple-Band Comb Filter Based L­

~ Modulator at (a) Vc = 1112, (b) Vc = 114, (c) Vc = 5/12. 

4.4 Complex Comb Filter Approach (CCF A) 

Alternative sets of noise-shaping bands can be accomplished by employing 

Complex Comb filters for the noise transfer function HCCF(z), The zeros of HCCF(z) 

are equi-distanced along the unit-circle and segregated by frequency gaps of 11m in width, 

where m is the filter order [Cun92]-[pro92]. HCCF(z) is given by: 

HCCF(Z) = 1- j d z-m (4.4) 

where d is a constant value that can be set to +1, -1 , + j or - j. The resultant loop 

LCCF (z) and feedback FCCF (z ) transfer functions are: 

1 
LCCF (z) = 1 . d -m 

-} Z 
and (4.5) 

Complex comb filters cause their spectral null locations to be spectrally shifted by 

± (1( m / 2) compared with real comb filters, thus creating new multi-band combinations. 

For the d values -1 +1,- j and + j , the corresponding zeros of HCCFCz ) are located at 

ei (l+4k)1f12 m , e - j(1+4k)tr/2m , e ±j2trk/ m and e iJT( 1+2k )/ m respectively, where k is an integer. 

For example, selecting m = 3 and d = 1 result in three normalised frequency nulls at (1112 , 

5/12 and -114) as can be seen from Table 4.2. 
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d 
, 

Vc d Vc m ., 

3 1 1112,5/12, -114 -1 114, -1112, -5/12 

3 j ± 116, 112 -j 0, ± 113 

4 1 1116,5/16, -3/16, -7/16 -1 3116, 7/16, -1116, -5/16 

4 j ± 118, ±3/8 -j 0, ± 114, 112 

5 1 1120, 114,9/20,3/20, -712O -1 3120, 7120, -1120, 114, -9120 

5 J ± 1110, ± 3110, 112 -J ± 115, ±2/5 

6 1 1124, 5/24, 9/24, -3/24,-7/24,-11124 -1 3/24, 7/24, 11124, -1124,-5/24, -9/24 

6 j ± 1112, ± 114, ± 5/12 -j 0, ± 116, ± 113, 112 

Table 4.2 Loop-Filter & Feedback Filter Parameters for a Combination of Centre 

Frequencies for CCF A. 

Similarly, when m = 3 and d = -1, the outcome is a total of three different equi-spaced nulls 

positioned at (114, -1112 and -5/12). When d = ±j, HCCF(z) becomes a real-coefficient 

comb filter, which can deliver a different set of centre frequency bands (only restricted to 

conjugate pairs). Several more multi-band combinations can be obtained by choosing 

suitable values for m and d as shown in Table 4.2, where a complex-coefficient comb filter 

is seen to offer a wider range of distinct centre frequency nulls for the same filter order 

compared with its real-coefficient counterpart. 

The magnitude spectra of a second-order and fourth-order double-band complex comb 

filter based t-a modulator centred at -118 & 3/8 are shown below in Figure 4.6. 

The spectrum of the complex 2nd-order t-a modulator shown in Figure 4.6 (a) contained 

many tones. The power of these tones decreased as the amplitude of the injected dither at 

the quantiser inputs was increased. However, this modulator exhibited more tones than its 

real coefficient counterpart and required significantly more dither to suppress these tones. 

The spectrum of the complex 4th -order t-a modulator shown in Figure 4.6 (b) contained 

fewer tones and was shown to provide greater quantisation noise attenuation in the in-band 

region. 
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Figure 4.6 Magnitude Spectra of a Double-Band Complex Comb Filter Based I-~ 

Modulator Centred at -118 & 3/8, (a) Second-Order, (b) Fourth-Order. 

The non-linear characteristics of the SNR curves for the single-loop modulator in Figure 

4.7 demonstrated once again the effect of tones. These tones were shown to diminish in 

both amplitude and number for the double-loop case as was shown in Figure 4.6(b). The 

SNR characteristics verified that this observation by showing greater linearity until the 

quantiser became overloaded due to the large amplitude modulator inputs. The non­

linearities in Figure 4.8 are attributed to the emergence of tones due to quantiser 

overloading. However, the SNR curves in Figure 4.9 display fewer non-linearities as a 

result of the larger de-correlation of the quantisation noise. 

(a) (b) (c) 

- -------.l 
<II.~ ·. ·WJ .O ... -.. ... 

(d) 

Figure 4.7 SNR Curves for Single-Bit Double-Band Complex Comb Filter Based I-.1 

Modulator (a) Single-Loop at Vc = -1/8, (b) Single-Loop at Vc = 3/8, 

(c) Double-Loop at Vc = -118, (d) Double-Loop at Vc = 3/8. 
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Figure 4.8 SNR Curves for Single-Loop Single-Bit Triple-Band Comb Filter Based L-~ 

Modulator at (a) Vc = 1/12, (b) Vc = 5/12, (c) Vc = -114. 
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Figure 4.9 SNR Curves for Double-Loop Single-Bit Triple-Band Comb Filter Based L­

~ Modulator at (a) Vc = 1112, (b) Vc = 5/12, (c) Vc = -1/4. 

4.5 Slink Filter Approach 

The second multiple noise-shaping approach employs slink filters [Cun92]-[Mor94] 

in which the nulls occur periodically across the frequency band of the Slink filter based 

noise transfer function Hsdz). This is given by 

1- S Z - L(R+ l ) 

H SF (z) = - L 
I-t z 

(4.6) 

where R is the number of nulls and L is the order of null repetition in the normalised 

frequency range - 05:$ v :$ 0.5 . The resultant loop-filter Msdz) and feedback filter CsdzJ 

transfer functions are: 
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MSF(z) = 1 -L(R+l) -z 

1 -LR -z 
and (4.7) 

For example, selecting R = 2 and L = 4 result in two fundamental nulls centred at 1112 and 

2112, which are then repeated at the corresponding image and conjugate frequencies. The 

outcome is a total of eight symmetrical notches across the entire normalised frequency 

interval, which are positioned at (± 1112, ± 2/12, ± 4/12 and ± 5/12). This example 

demonstrates that many combinations of multi-band centre frequencies can be obtained by 

choosing appropriate values for R and L. More examples are presented in Table 4.3. 

m R L s t Vc m R L s t Vc 

4 3 1 -1 -1 ± 114, 112 9 2 3 -1 -1 ± 119, ±2/9, ±3/9 

4 3 1 -1 1 0, ± 114 9 2 3 1 1 ± 1I18,± 5/18,± 7/18 

5 4 I -I -1 ± 1I5,±2/5 8 3 2 -1 -I ± 118, ± 114, ± 3/8 

5 4 1 I I ± 1110, ± 3/10 6 5 I -1 I 0, ± 116, ± 113 

6 2 2 -1 -1 ± 1I6,± 113 6 5 1 1 -1 ± 116, ± 113, 112 

6 2 2 I 1 ± 1112, ± 5/12 12 I 6 -I -1 ± 1112, ± 114, ± 5/12 

- - - - - - 7 6 1 -1 -1 ± 117, ± 217, ± 317 

Table 4.3 Loop-Filter and Feedback Filter Parameters for a Combination of Centre 

Frequencies for the Slink Filter Approach. 

More equi-spaced noise-shaping band combinations can be achieved using this 

approach, because slink filters contain more adjustable multiplier free parameters 

compared with comb filters. This improvement is achieved at the price of having to use 

higher-order loop-filters in some cases. For instance, a ninth-order loop-filter is needed to 

perform noise-shaping at Vc = ± 119, Vc = ± 2/9 and Vc = ± 3/9. On the other hand, an 

equi-spaced three-band specification such as Vc = ± 117, Vc = ± 217 and Vc = ± 317 only 

requireS a sixth-order loop-filter. 

Figure 4.10 shows that the magnitude spectrum of a fifth-order double-band slink 

filter based l:-~ modulator for sinusoidal inputs and dither amplitudes of 0.1 and 0.01 

respectively. The uneven distribution of the out-of-band quantisation noise is attributed to 

the ratio of the peak. amplitudes of the main-to-side lobes of the slink filter. 
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Figure 4.10 Magnitude Spectra of a Fifth-Order Double-Band Slink Filter Based L-~ 

Modulator Centred at 1/5 & 2/5. 

The in-band SNR curves corresponding to the double-band double-loop slink filter based 

k-~ modulator are shown in Figure 4.11. The modulator became unstable for input 

amplitudes exceeding -8 dB. This is attributed to the quantiser overloading. This modulator 

produced fewer tones compared with the single-loop case. 

This technique was then extended to design triple-band slink filter based modulators to 

achieve noise-shaping at Vc = 1/9, Vc = 2/9 and Vc = 4/9 respectively. The SNR curves for 

this triple-band L-~ modulator are illustrated in Figure 4.12. 
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Figure 4.11 SNR Curves for Single-Bit Double-Band Slink Filter Based L-~ Modulator 

(a) Single-Loop at Vc = 1/5, (b) Single-Loop at Vc = 2/5, (c) Double-Loop 

at Vc = 115, (d) Double-Loop at Vc = 2/5. 
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Figure 4.12 SNR Curves for Double-Loop Single-Bit Triple-Band Comb Filter Based L-

6. Modulator at (a) Vc = 1/9, (b) Vc = 2/9, (c) Vc = 4/9. 

It should be stated that the uneven distribution of the out-of-band quantisation noise in 

Figure 4.10 is attributed to the ratio of the peak amplitudes of the main-to-side lobes of the 

slink filter. Further simulations demonstrate that an almost 2-bit improvement in resolution 

can be obtained by raising the number oflevels of the quantiser from 2 to 5. 

Unfortunately; comb and slink filter based L-6. modulators can only be used for equi­

spaced multi-band applications. 

4.6 Complex Slink Filter Approach (CSFA) 

This multiple noise-shaping approach employs Complex ~link filters [Mor94]­

[Cun92]-[Pr092], in which the nulls occur at periodic intervals across the frequency 

spectrum of the noise transfer function HCSF(z). This is given by 

I . - L(R+I) -Jsz H (z) - ----''-----CSF - 1 . -L 
+)SZ 

(4.8) 

where R is the number of nulls, L is the order of null repetition In the normalised 

frequency range - 05 ~ v ~ 05 and S could be set to either + 1 or -1. The resultant loop­

filter LCSF (z) and feedback filter BCSF(z) transfer functions are: 

LCSF (z) = 1 . - L(R+l) 
-)SZ 

and (4.9) 

Extra POSitIOning of centre-frequency bands is achieved by controlling an additional 

parameter L as well as Rand s of HCSF(z). For example, selecting L = 4, R = 2 and s = 1 
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· result in four equi-spaced nulls centred at 1/24, 5/24, -7/24 and -11 /24. More examples are 

given in Table 4.4. 

L 

1 

1 

2 

2 

3 

Table 4.4 

R s Vc 

2 1 
; 

1112, 5/12 

4 1 1120, 9/20, -3/20, -7/20 

2 1 1124, 5/24, -7124, -11/24 

2 -1 7/24, 11 /24, -1124, -5/24 

2 1 1136, 5/36, 13/36, 17/36, -7/36, -11136 

Loop-Filter & Feedback Filter Parameters for a Combination of Centre 

Frequencies for CSF A. 

Extensive simulations have shown that greater flexibility in the selection of noise-shaping 

bands is accomplished by employing complex slink filters for the noise transfer function , 

where an example demonstrating the correct operation of this approach is shown m 

Figure 4.13. 
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Figure 4.13 Magnitude Spectra of a Fifth-Order Double-Band Complex Slink Filter 

Baseo L-Ll ModUIator Centred at 1/5 & 2/5. 

The in-band SNRs corresponding to single-loop and double-loop complex slink-filter 

based l:-.1 modulators are shown in Figure 4.14. The complex single-loop slink filter 

based L-.1 modulator exhibited more in-band tones as reflected by the non-linearity of the 

SNR curves in Figure 4.14. On the other hand, the complex double-loop L-.1 modulator 
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displayed smoother SNR curves due to the presence of fewer tones. However, the 

modulator became unstable more abruptly. This was due to the larger amplitudes of the 

internal signals of the modulator. 
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Figure 4.14 SNR Curves for Single-Bit Double-Band Complex Slink Filter Based L-Ll 

Modulator (a) Single-Loop at Vc = 1112, (b) Single-Loop at Vc = 5112 

(c) Double-Loop at Vc = 1112, Cd) Double-Loop at Vc = 5112. 

4.7 Comb Filter Fractional-Delay Approach 

Comb filters combined with fractional delayers [Laa96]-[Pei98] form the new 

fractional Delay noise transfer function H FD (z) , whose zeros can be distributed anywhere 

in the unit circle. The single-stage, single-bit bandpass L-Ll modulator shown in Figure 

4.15 is suitable for the application of this technique. 
,------
I Q(z) 1 

I~+ Y(Z) : 
1 L 1 1 ______ -' 

D(z) D 

X (z) Y(z) 

·1 

Figure 4.15 Proposed FDF based Multi-Band L-Ll Modulator. 

This structure consists of a multi-variable centre frequency loop-filter M(z ) and a 1-

bit quantiser in the feedforward path as well as a cascade combination of a variable bulk 

delayer z - r and FD filter T(z):: z - f in the feedback path. Also, an amplitude of 0.1 of 

random dither D(z ) is added prior to the quantiser input to reduce spurious tones [Dun96a]. 

The conventional means of analysing the noise-shaping properties of dithered L-~ 
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modulators involve modelling the I-bit non-linear quantiser by an equivalent additive 

white noise source that is statistically independent of the input. This linearised approach 

though not very accurate, delivers results which are representative [Can92]-[Azi96]­

[Jan96b]. The signal Hs{z) and noise HN (z) transfer functions of this dithered linearised ' 

system are: 

Hs{z) = 1 +z-,. T{z)M{z) 
M{z) H (z) ____ 1 __ _ 

N -1+z-" T(z)M(z) 
(4.10) 

The filter order m of H N (z) is replaced by a generalised non-integer value D. The 

parameter D can be expressed as the summation of two variables (Le. D = f + r). where 

f is the delay of the FD filter itself (including the fractional component) and r is the 

additional integer delay required to satisfy the design specification. The new expression for 

HN(z) is 

(4.11) 

Simple mathematical analysis demonstrates that when c = -1, the zeros of HN(z) are 

placed at e±2tr1c/("+f) and when c = +1, the zeros are located at e±fr(1+2k)/("+f). This implies 

that any equi-distanced combination of centre frequencies can be obtained by determining 

the necessary total delay D that must be incorporated in H N (z) , so that the nulls of the 

modified comb filter are spectrally shifted to the corresponding signal bands. 

4.8 FIR Fractional-Delay Multi-Band t-a Modulator 

The maximally flat Lagrange interpolation method is used here to design an FIR filter 

for approximating the fractional-delay filter [Laa96], whose coefficients h( k) are defined 

as: 
N 

h{k) = Il D-n. 
rr=O_k k-n 

k = 0, 1, ... , N. (4.12) 

The Lagrange approximation is the most suitable for use in t-a modulators. because the 

peak of its magnitude never exceeds unity [Laa96]. This particular feature substantially 

alleviates the occurrence of instability. The new expression for H N(Z) including the FIR 

FD filter becomes: 

(4.13) 
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·The resultant loop and feedback filters are: 

1 
M(z) = -r 

l+cz HFlR(Z) 
and T(z) = -cz-r H FIR (z) (4.14) 

The order of the numerator and denominator of these FD approximations are the same, 

which means that r must have a minimum value of 1 to satisfy the causality criterion 

[Jan91]. For example, there are six feasible alternatives of representing D when it is equal 

to 6.4, two of which are shown in Table 4.5. When D = 6.4, the FIR FD approximation is 

given by, 

H () 1. h -I 1. -2 h -10 h -11 
FIR Z ="0 + IZ + ''2 z + ... + IOz + llZ (4.15) 

A distinction must be made between the actual order of the FD filter and its associated 

group delay [Laa96]. It is seen from Table 4.4 that an FD specification of 4.4 can be 

achieved with a tenth-order FIR filter. Note that the FIR FD filter does not have a linear 

phase (except when FD = 0.5) due to the asymmetry of the coefficients of HF1R(Z). The 

coefficients for some of the FIR FD filter approximations are shown in Table 4.4. 

f 4.4 5.4 f 4.4 5.4 

r 2 1 r 2 1 

ho 0.0005 -0.0001 h6 -0.1202 0.4848 

hI -0.0061 0.0016 h7 0.0317 -0.1299 

h2 0.0344 -0.0102 hs -0.0057 0.040 

h3 -0.1374 0.0433 h9 0.0005 -0.0096 

h4 0.7214 -0.1484 hlo 0 0.0015 

h5 0.4809 0.7272 hJl 0 -0.0001 

Table 4.5 Loop & feedback filter coefficients for the FIR FD approach for (D = 6.4). 

Extensive behavioural level simulations as will be seen in Section 4.10 demonstrate that a 

significant amount of quantisation noise is retained in the in-band signal region at 

frequencies close to Nyquist. This noise-shaping degradation is attributed to an inherent 

large magnitude error associated with FIR FD approximations at high frequencies. This 

error can be reduced by increasing the order of the FD approximation at the cost of large 

values of f and consequently using more coefficients. 

191 



4.9 Allpass IIR Fractional-Delay Multi-Band I:-A Modulators .' 
Alternatively; fractional delayers can be represented by the IIR allpass maximally flat 

group-delay approximat;ion [Laa96]. The advantage being that an IIR digital filter can 

provide the same or even better specifications with fewer coefficients compared with FIR 

filters [Laa96]. Allpass filters have unity magnitude and much improved group delay 

responses for the entire frequency range [Laa96]. The filter coefficients of an}/h -order FD 

filter are: 
N 

at = (_I)k cf I1 D-N +n " D N k k = 0, 1, 2 "., N 
/1=0 - + +n 

(4.16) 

The resultant loop and feedback filters are: 

1 +b1z-I + ... +b(N_2)Z-(N-2) + b(N_l)Z-(N-I) 

M(z) = -I -(N-l)-N 
l+a1z + .... +a(N-l)z +z 

(4.17) 

-r aN +aN_1z-1+ ... +a1z-(N-I) +Z-N 

T(z) = -c Z -I -(N-I)-N 
1 + a1z + ... + a(N_I)z + aNz 

(4.18) 

Some of these coefficients are given below in Table 4.6: 

f 1.4 2.4 3.4 4.4 5.4 

r 5 4 3 2 1 

al -0.1667 -0.2353 -0.2727 -0.2963 -0.3125 

a2 0 0.0374 0.0707 0.0972 0.1182 

a3 0 0 -0.0088 -0.021 -0.0388 

a4 0 0 0 0.0021 0.0061 

as 0 0 0 0 -0.0005 

bl -0.1667 -0.2353 -0.2727 -0.2963 -0.3125 

bz 0 0.0374 0.0707 0.0972 0.1182 

bJ 0 0 -0.0088 -0.021 -0.0388 

b4 0 0 0 0.0021 0.0061 

bj 0 0 0 0 -0.0005 

01 -0.1667 -0.2353 -0.2727 -0.2963 -0.313 

02 0 0.0374 0.0707 0.0993 0.1243 

OJ 0 0 -0.0176 -0.042 -0.0776 

OJ 0 0.0374 0.0707 0.0993 0.1243 

OJ -0.1667 -0.2353 -0.2727 -0.2963 -0.313 

Table 4.6 Loop & Feedback Filter Coefficients for the Allpass IIR FD Approach for 

(D = 6.4). 

Behavioural level simulations conducted for the fourth approach showed that the use of 

either FIR or IIR allpass FD filters combined with comb filters accomplish noise-shaping 
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for any combination of equi-spaced centre-frequency locations. The magnitude spectrum of 

a 12th -order triple-band FIR FD filter L-il modulator centred at 5/64, 15/64 & 25/64 is 

shown in Figure 4.16. 
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Figure 4.16 Magnitude Spectrum of a Twelfth-Order Triple-Band FIR FD Filter L- il 

Modulator Centred at 5/64, 15/64 & 25/64. 

It is seen from Figure 4.16 that a significant amount of quantisation noise is retained 

in the in-band region at fc = 25/64. This noise-shaping degradation is attributed to an 

inherent large magnitude error associated with FIR FD approximations at high frequencies. 

This error can be reduced by employing allpass IIR FD filter approximations. 

Figure 4.17 shows that better noise-shaping is accomplished across the entire 

spectrum including high frequencies, when an allpass FD filter is employed. This 

improvement is attributed to the unity gain magnitude of the allpass FD filter. The third 

centre-frequency band, however, is marginally shifted to a slightly higher frequency. This 

inaccuracy can be attributed to an inferior group delay approximation at very high 

frequencies. Tunability at high frequencies can be more accurately represented by 

encompassing high-order allpass FD approximations. 
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Figure 4.17 Magnitude Spectrum of a Triple-Band Allpass I1R FD Filter L-~ Modulator 

Centred at 5/64, 15/64 & 129/320. 

Table 4.7 provides a comparison of the quantisation noise power in dRs between FIR and 

fiR allpass filters for different f and r permutations when D = 6.4 . 

f r QFl QAl QF2 QA2 QF3 QA3 

1.4 5 -59.5 -58.4 -46.9 -44.6 -31.9 -40.7 

2.4 4 -59.4 -59.9 -55.2 -50.0 -35.6 -45.1 

3.4 3 -60.1 -59.2 -58.3 -55.8 -37.3 -48.2 

4.4 2 -57.7 -56.9 -59.7 -57.1 -38.9 -53.3 

5.4 1 -59.7 -56.4 -59.4 -57.6 -41.0 -60.8 

Table 4.7 Quantisation Noise Power Comparison in dRs between Single-Stage FIR 

and AlIpass IIR FD Filters Based L-~ Modulators. 

QF 1, QF2 and QF3 are the in-band quantisation noise powers of the FIR FD 

approximation for the first, second and third bands respectively. Similarly, QA1, QA2 and 

QA3 represent the corresponding quantisation noise powers for the allpass IIR case. The in­

band noise using the allpass IIR FD approximation decreases at a faster rate compared with 

the FIR FD case especially at high frequencies. For example, QA3 reduces by as much as 

20 dRs when f increases from 1.4 to 5.4 samples confirming that superior signal-to-noise 

ratios are achieved with the allpass IIR case. 
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The drawback of the allpass llR approach is the slight displacement of the noise-shaping 

bands at high frequencies. Table 4.8 confirms that this improper centre frequency tunability 

can be rectified by employing higher-order allpass IIR FD approximations. For instance, 

the third-band centre frequency tunability percentage error drops from 5.6% to 3% by 

raising I from 104 to 5 A samples. 

D I r Normalised Frequencies 

6.4 6.4 0 0.078, 0.234 and 0.391 

6.4 1.4 5 0.078, 0.241 and 0.413 

6.4 2.4 4 0.078, 0.237 and 0.410 

6.4 3.4 3 0.078, 0.236 and 0.407 

6.4 4.4 2 0.078, 0.235 and 00405 

6.4 5.4 1 0.078, 0.234 and 0.403 

Table 4.8 Comparison of Centre Frequency Locations for Different Allpass IIR FD 

Approximations. 

4.10 Multi-Notch Filter Approach 

In multiple narrow-band bandpass l:-a modulators, the noise-shaped band centres 

are designed by positioning the zeros of the Multi-Notch [Pro92] noise transfer function 

Hwiz) at the desired centre frequencies to provide maximum in-band attenuation. The 

zeros of Hwiz) are located at e±ja\, e±ja2 ... e±jap
, where the a coefficients are chosen 

to centre the signal passbands. Note that a = 21tlc / Is, where/c is the designated centre 

frequency, Is is the sampling frequency and P is the number of signal bands. The 

generalised case of HMN(Z) for any number of bands is: 

p 

HMN(z) = I1(1-c j z-1 +z-2) (4.19) 
1=0 

where c
j 

= 2 cos a j • For example, for a single-stage triple-band l:-a modulator, it can be 

analytically shown that M(z) and C(z) for the Multi-Notch filter case are: 

MMN(Z) = 1 R -1 + R -2 R_ -3 R_ -4 R -s -6 (4.20) 
-JJlz n Z -nz +nz -JJlz +z 

1 
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(4.21 ) 

where /31 =:= (CI + C2 + C3), /32 = (3 + CI C2 + CI C3 + C2 C3) and /33 = 2 (CI + C2 + C3) + CI C2 

C3. This analysis reveals ~at the coefficients of the feedback fi lter CMN(z) are dependent 

on the centre frequency. Concurrent multiple tunability of the modulator centre 

frequencies is achieved by varying the zero locations of HMN{Z}. This process is equjvalent 

to the movement of the loop-filter poles along the unit circle to the chosen frequency 

locations. Table 4.9 presents the modulator coefficients for a combination of centre 

frequencies, showing this approach requires the use of multipliers for non-equj-spaced 

noise-shaping bands, which may complicate modulator implementation. 

Normalised Centre Frequencies, Vc /31 A fi.J 

Table 4.9 

. l'lO 

. 100 

± 117, ± 217 & ± 317 1 1 1 

± 1/9, ± 2/9 & ± 4/9 0 0 1 

± 1/8, ± 2/8 & ± 2/5 -0.2 0.71 -0.41 

± 1I10, ±4/16& ±7/16 -0.23 0.01 -0.46 

± 1I16,± 4/16 & ± 15/32 -0.11 -0.63 -0.22 

Loop-Filter and Feedback Filter Coefficients for a Combination of Centre 

Frequencies using the Multi-Notch Approach . 

015 02 025 a 3 a 35 a 4 0 ' 5 0.5 
Norm_hud Frequ.ncy, "I 

(a) 

• 120 

·UO 

. IEDO!-:O~05:-::'O ':-1 -:0~15:-::':0 2::--::-0'7:25~0 3:--:"0 ~35 -O~'~O '-5 -.los 
Norm,h .. d Frtqu.ncy, v 

(b) 

Figure 4.18 Magnitude Spectrum of a Double-Band Multi-Notch Filter Based I;- 6. 

Modulator Centred at Vc = 0.19 and Vc = 0.33, (a) 1-1 MASH, 

(b) 1-1-1 MASH. 
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Simulations have verified that the multi-notch approach can achieve simultaneous multiple 

noise-shaping for any combination of equi-spaced and non-equi-spaced centre frequencies. 

This approach was extended to multi-stage topologies, where the magnitude spectrum of 

the double-stage and triple-stage MASH L-~ modulators are shown in Figure 4.18. The 

complexity of the loop-filter as well as the presence of more than one stage resulted in 

substantial quantisation noise randomisation. This is reflected by the near absence of tones 

in the spectra shown in Figure 4.18. 

The SNR plots shown in Figure 4.19 remained quite linear until the modulator 

reached its maximum stable input amplitude. The sharp drop in the SNR values is the 

result of modulator instability for large input-amplitude signals. 
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Figure 4.19 SNR Curves for Double-Band FIR Notch Filter Based L-~ Modulator (a) 11 

MASH at Vc = 0.19, (b) 11 MASH at Vc = 0.33, (c) 111 MASH at Vc = 0.19, 

(d) 111 MASH at Vc = 0.33. 

Alternatively; the SNRs can be improved by increasing the number of levels in the 

quantiser of these multi-notch based L-~ modulators. Quantisers with an odd number of 
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levels outperfonn those with an even number of levels, because of the presence of the zero" 

threshold, which reduces the occurrence of oscillations for small amplitude signals. Nearly 

2-bits in resolution are gained by increasing the number of levels from 2 to 5 for Vc of 

1110 and 114. Furthennore, the dyilamic range of this modulator was increased with the use 

of more quantiser levels. 

» ~ • 

.. ~ \ 

(a) (b) (c) (d) 

Figure 4.20 SNR Curves for Double-Loop Single-Bit Double-Band FIR Notch Filter 

Based L-~ Modulator (a) ll-levels at Vc = 0.19, (b) II-levels at Vc = 0.33 , 

(c) 16-levels at Vc = 0.19, (d) 16-levels at Vc = 0.33. 

4.11 Complex Multi-Notch Filter Approach (CMNFA) 

The noise-shaped band centres in complex multiple narrow-band bandpass L-~ 

modulators are designed by placing the zeros of the Complex Multi-Notch noise transfer 

function H CMN (z) at the specified centre frequencies on the unit circle, so as to ensure 

maximum in-band attenuation. This implies that the zeros of H CMN (z) are positioned at 

el2 /WI, e j21r l>z . , . e j 2trvp , where v is the nonnalised centre-frequency of interest and P is 

the number of notches in H CMN (z). Since H CMN (z) is complex, v could be either 

positive or negative. The general expression for H CMN (z) for any number of concurrent 

signal bands is: 

p 

H CMN ( Z ) = TI (1-,B; z -l) (4.22) 
;=0 

where 
R _ j2trv, 

P i - e . For example, the resulting transfer functions, for 

L CMN (z) and B CMN (z) for a single-loop triple-band multi-notch based L-~ modulator are 

given by: 

(4.23) 
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(4.24) 

This analysis demonstrates that the complex coefficients of L CMN (z) and B CMN (z) are 

directly related to the centre frequency locations where some examples are given in Table 

4.10. 

/31 /32 /33 
1110, 3/1 0 -0.809 - jO.588 0.309 - jO.951 0 

118, 2/8, 3/8 - jO.707 - jO.707 -J 0.707 - jO.707 

1116,5/16, 7/16 -0.924 - jO.383 0.383 - jO.924 0.924 - jO.383 

-114, 3/20, 23/50 +j -0.588 - jO.809 0.969 - jO.249 

Table 4.10 Loop-Filter & Feedback Filter Coefficients for a Combination of Equi­

Spaced & Non-Equi-Spaced Centre Frequencies for CMNA. 

The complex multi-notch approach demonstrated multi-band noise-shaping for any 

combination of equi-spaced as well as non-equi-spaced centre frequency locations, where 

two examples for double-band 1-1 MASH complex :E-d modulators are shown in Figure 

4.21. The absence of tones in the magnitude spectrum of these modulators is attributed to 

the more complicated loop-filter and the extra stages, which achieve a sufficient amount 

of quantisation noise decorrelation. 

-02 .() 1 0 01 0 
Normal1lld Fflqulnc:y. II 

. 160 ,:-::-":"--:,:---::":,,,-=,:-~-___ ~-,----,----.J 
-O.S -0 • -0.3 -02 .() 1 a 0 'OJ 

Norm.lliad Frequency. v 
03 O. 05 

(a) (b) 

Figure 4.21 Magnitude Spectrum of a Double-Band Complex Multi-Notch Filter Based 

:E-Ll Modulator Centred at Vc = 0.19 and Vc = 0.33, (a) 1-1 MASH, 

(b) 1-1-1 MASH. 

Figure 4.21 (b) shows that the 1-1-1 MASH modulator was capable of pushing away more 

in-band quantisation noise to the out-of-band regions, compared with the I-I MASH 

modulator. 
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Figure 4.22 presents the SNR curves for single- and double-stage L-~ modulators, where 

better SNRs are achieved with the latter due to more effective quantisation noise-shaping 

in the in-band region. 
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Figure 4.22 SNR Curves for Double-Band Complex FIR Notch Filter Based L-~ 

Modulator (a) Single-Stage at Vc = 0.19, (b) Single-Stage at Vc = 0.33, 

(c) Double-Stage at Vc = 0.19, (d) Double-Stage at Vc = 0.33. 

Figure 4.23 illustrates the SNR curves of a double-loop multi-bit L-~ modulator, where 

the use of more quantiser levels is shown to significantly increase the DR of the modulator. 
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Figure 4.23 SNR Curves for Double-Loop Single-Bit Double-Band Complex FIR Notch 

Filter Based L-.1 Modulator (a) 13-levels atvc = 0.19, (b) 13-1evels atvc = 

0.33, (c) 16-levels at Vc = 0.19, (d) 16-levels at Vc = 0.33. 

Further simulations showed that the overall quantisation noise floor level was observed to 

rise unifonnly in proportion to an increase in the number of noise-shaping bands. This 

feature inevitably imposes tighter constraints for the digital decimator, particularly, in the 

case of too many and/or very closely located adjacent signal bands. Moreover, a sharp rise 

in the level of quantisation noise may lead to modulator instability. 

4.12 IIR Multi-Notch Filter Approach (lMNFA) 

In this technique a bank of lower-order IIR notch filters are cascaded to provide an 

overall multiple-notch NTF. The normalised centre frequency, bandwidth and stop-band 
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attenuation (in the c~e of Chebyshev 2) for each signal band need to be specified initially. 

These individual NTFs, whic~ can have the same or different orders are then multiplied 

together to provide a single-block multi-notch NTF as shown below: 

P b b -1 b -2 b -(L-l) b -L _ n 10 + liZ + 12Z + ... + I(L-l)Z + ILZ 
HN(z) - 1 -I -2 -L 

;=0 +anz +a;2z + ... +al(L-l) +aj£Z 
(4.25) 

It should be pointed out that the leading coefficient of the overall NTF need to be scaled up 

to unity to satisfy the causality criterion. Also, the maximum gain of the NTF needs to 

comply with Lee's rule to ensure modulator stability. 

This method offers several advantages compared with its predecessors. First; the 

signal bandwidth can be adjusted to meet any given specification. Second; the signal bands 

are not restricted to having identical widths. Third; the signal bands can be assigned to non­

equi-distant locations in the frequency-domain. Fourth; the notch depth for the in-band 

region can be modified in the case of Chebyshev 2. Fifth; higher-order bandpass l:-~ 

modulators can be more easily stabilised as the freedom of the movement of the poles 

within the unit-circle given by an IIR NTF helps to substantially reduce the out-of-band 

gain. Six; the greater flexibility in the distribution of the poles and zeros of the NTF result 

in significant improvements to the noise-shaping symmetry and modulator resolution. 

Seven; the particular locations of signal bands do not unnecessarily increase the modulator 

order as was the case with the comb and slink filter NTF based modulators. Eight; smaller 

amounts of dither are deemed necessary with this approach, because the more complicated 

loop-filter produces a wider variation in state values resulting in more quantisation noise 

variation and ultimately fewer tones across the spectrum. 

Figure 4.24 shows that magnitude spectra of a real and a complex sixth-order double­

band l:-~ modulators. Figure 4.25 shows the SNR curves for different quantiser levels for 

the 6th-order double-band IIR notch-filter based I:-~ modulator. 
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Figure 4.24 Magnitude Spectrum of a Sixth-Order Double-Band Multi-Notch Filter 

Based L-~ Modulator Centred at Vc = 0.19 and Vc = 0.33, 

(a) Real Coefficient, (b) Complex Coefficient. 
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Figure 4.25 SNR Curves for Sixth-Order Double-Band IIR Notch Filter Based L-~ 

Modulator (a) 2-level at Vc = 0.19, (b) 2-level at Vc = 0.33, (c) 4-1evel at 

Vc = 0.19, (d) 4-level at Vc = 0.33, (e) 8-1evel at Vc = 0.19, (f) 8-level at 

Vc = 0.33 , (g) 16-1evel at Vc = 0.19, (h) 16-1evel at Vc = 0.33 . 
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Figure 4.26 shows the SNR curves for different quantiser levels for the 6th -order double­

band complex IIR notch-filter based L-6 modulator. 
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Figure 4.26 SNR Curves for Sixth-Order Double-Band Complex IIR Notch Filter Based 

L-6 Modulator (a) 2-level at Vc = 0.19, (b) 2-level at Vc = 0.33, (c) 4-level 

atvc = 0.19, (d) 4-level atvc = 0.33, (e) 8-level atvc = 0.19, (f) 8-level 

at Vc = 0.33, (g) 16-level at Vc = 0.19, (h) 16-level at Vc = 0.33. 

4.13 Concluding Remarks to Chapter 4 

Comb filter based L-6 modulators provided a simple and cheap option of generating 

concurrent multiple noise-shaping bands, when used in L-6 modulators. The number and 

location of these bands was dependent on the order of the comb filter. The main drawback 

associated with this technique was that only a limited range of multiple noise-shaping band 

combinations was attainable. Simulations also showed that the magnitude spectra of these 

modulators exhibited several dominant tones, because they contained relatively simple 

loop-filters that generated fewer state values. The SNR curves of the double- and triple­

band became non-linear for large-amplitude inputs. This was caused by the excessive 

quantiser overloading, which resulted in the occurrence of more tones in the in-band 

region. Alternative noise-shaping bands were accomplished by using complex comb filters 
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for the NTFs. The .magnitude _spectra of the complex comb filter modulators contained 

more tones compared with their real-coefficient counterparts and required more dither to 

alleviate these tones .. 

For the slink filter approach, more equi-spaced noise-shaping band combinations 

coUld be achieve~ because slink filters contained more adjustable multiplier free 
. .. 

parameters compared with comb filters. This improvement was accomplished at the cost of 

having to use higher-order loop-filters in some cases. The uneven distribution of the out-of­

band quantisation noise exhibited by the magnitude spectra of slink filter based t-6 

modulators was attributed to the ratio of the peak amplitudes of the main-to-side lobes of 

the slink filter. Once again, different combinations in the selection of noise-shaping bands 

was accomplished by employing complex slink filters for the NTF. Slink filter based t-6 

modulators were seen to become unstable more abruptly compared with their comb 

counterparts, because of the disparity of the shoulder gains levels of the slink filter. 

However, simulations demonstrated that slink filter based t-6 modulators were less tonal, 

because of the slight complexity in the loop-filter. 

Fractional delay filters in conjunction with comb filters were shown to accomplish 

concurrent noise-shaping for any equi-spaced combination of multi-tone input signals, 

overcoming the limitations imposed by the comb or slink filter approaches. This 

improvement, however, was achieved at the expense of using multipliers for the fractional 

delayer filters. FIR FD comb filter based t-~ modulators were found to suffer from 

inadequate noise-shaping performance at high frequencies (due to errors in the amplitude 

of the FIR filter). For FD requirements other 0.5, the FIR FD filter exhibited small phase 

errors resulting in minor shifts of the noise-shaping bands near Nyquist. On the other hand, 

llR allpass comb filter based t-~ modulators yielded enhanced resolution at slightly 

displaced noise-shaping bands at high frequencies (due to errors in the phase of the allpass 

filter). 
In order to enable multi-band noise-shaping for any arbitrary combination of centre 

frequencies, FIR multi-notch based t-6 modulators were designed and evaluated at the 

behavioural level. The main features of this approach were: First, these modulators were 

shown to accomplish multiple-band noise-shaping for any combination of equi-spaced as 

well as non-equi-spaced centre frequencies. Second, the signal bands were not constrained 

to having the same bandwidths. Thir~ the designated locations of the signal bands did not 

increase the modulator order unnecessarily as was the case with the previous three 
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approaches. Fourth. care had to taken to ensure that the disparity of the shoulder gain levels 

of the composite loop-filter did not reduce modulator stability. 

The llR multi-bandstop filter .approach offered several advantages compared with the 
• 

above four techniques. First, the signal bandwidth could be adjusted to meet any given 

specification. Second, the signal bands were not restricted to having· identical widths. 

Third, the signal bands could be allocated to non-equi-distant locations in the frequency­

domain. Fourth. the notch depth for the in-band region could be modified in the case of the 

Chebyshev 2. Fifth, higher-order bandpass l:-~ modulators could be more easily stabilised 

as the flexibility in the distribution of the poles within the unit-circle helped to substantially 

reduce the out-of-band gain. Six, the increased freedom to disperse the poles and zeros of 

the NTF led to enhanced noise-shaping symmetry and SNRs. Seven, the particular 

locations of the signal bands did not unnecessarily increase the modulator order as was the 

case with the comb-, slink and FD comb-filter based modulators. Eight, smaller amplitudes 

of dither were deemed necessary with this approach, because the more complicated loop­

filter produced a more diverse range of state values resulting in greater quantisation noise 

randomisation and consequently fewer spectral tones. 
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Chapter 5 

Stability of Bandpass L-~ Modulators 

5.1 An Oven'iew OD Stability 

It is well established that higher-order single-bit I:-~ modulators provide better 

signal-to-noise ratios, increased dynamic ranges, have inherent linearity and are easier to 

implement. On the other hand, the fact that these modulators are susceptible to instability 

coupled with the harsh non-linearity of the I-bit quantiser have made the identification of 

the conditions for modulator stability a crucial part of the design process [Bai93]. 

There does not exist a complete theory to-date that can with complete accuracy 

predict stability in I:-~ modulators. The endeavours to theoretically determine the stability 

of single-bit :E-~ modulators in [Ken88]-[Ana89]-[Hei91]-[Wan92] were shown to be 

correct, but modulator-specific. The techniques proposed in [Ard87]-[Rit90] are useful, but 

unfortunately approximate. Furthermore, it is shown that the stability rules-of-thumb 

presented in [Agr83]-[Lee87] give unreliable results for certain :E-~ modulator topologies. 

The design of stable high-order I:-~ modulators is a non-trivial task. A major 

challenge faced by all I:-~ designers and practitioners involves selecting a suitable noise 

tranSfer function and hence a loop-filter that will result in stable operation. Root locus 

techniques, non-linear optimisation approaches, exhaustive searching routines, extensive 

simulations as well as procedures based on intuition have all been attempted in order to 

facilitate the design of stable high-order single-bit I:-~ modulators. 

A literature survey is presented at the outset of this chapter, whose purpose is to 

summarise all the publications related to stability in :E-~ modulators, in order to highlight 

areas that merit further investigations. A brief categorisation of the different interpretations 

of stability as well as a critical review of existing rules-of-thumb, which have been widely 

employed by leading practitioners are presented in Sections 5.3 and 5.4 respectively. The 

Root Locus Technique, behavioural-level simulations as well as highly intuitive 

approaches are used to understand, design and evaluate the behaviour of high-order single­

bit and multi-bit bandpass I:-~ modulators. The factors that directly and indirectly control 

stability in :E-~ modulators are considered carefully. Some of these attributes reinforce 

what is intuitively expected and their impact on stability is supported, where appropriate by 

a plethora of simulation results. The ultimate, but yet the most important objective of this 

.206 



chapter is to provide more accurate guidelines for the design of single- and multi-bit 

bandpass ~-~ modulators. 

5.2 Survey of Publications Related to Stability in 1:-~ Modulation 

Publications, which deal with aspects related to stability in ~-~ modulation are 

summarised below in Table 5.1. These cover rigorous theoretical analysis, detailed 

behavioural investigations of new techniques as well as actual experimental results 

obtained from hardware implementations. 

Brief Description of the Reported Publication Ref 

Derivation of stability constraints for lowpass single-bit limiter-based l:-~ [Sti88] 

modulators using root locus techniques. 

Linearised analysis. simulation and intuitive explanation of the stability in lowpass [Sim89] 

second- and third-order single-bit l:-~ modulators. 

Development of a Markov model to calculate the quantiser gain curve, stability [WoI89] 

ranges, SNRs & harmonic distortion content in lowpass single-bit l:-d modulators. 

Techniques based on limit cycle analysis for constant inputs which guarantee the [Hei91] 

design of stabilised higher-order interpolative l:-~ modulators. 

Stability analysis coupled with detailed simulations of lowpass third-order l:-d 

modulators. Popular rules-of-thumb proposed by other practitioners in the field are [Sch9Ib] 

shown to be invalid for certain topologies. 

A variable gain model for the quantiser is proposed that allows the stability analysis [Bai93] 

of various third-order k-d modulator combinations using root locus techniques. 

A novel FIR spectrum distribution technique is proposed for improving the stability [Oka93] 

of higher-order k-d modulators. Stability is verified using the root locus method. 

Detailed simulations to establish the stability input limits and SNR curves of non- [Sch93b] 

optimised and optimised lowpass higher-order single-bit k-~ modulators. 

Root locus analysis of higher-order k-d modulators showing the effect of resonator [Bai94] 

gains, input amplitudes. number of delayers & initial conditions on stability. 

An improved linear model for determining the quantiser gain is proposed which 

recognises the constant power crite~on & explains some of the non-linear features [Mag94] 

of l:-~ modulators. 

A new method for stabilising higher-order single-bit k-d modulators is proposed 

which the limits the amplitude of the internal signals through the insertion of local [Mou94] 

feedback loops inside the modulator. 

A method based on quasi-linear modelling is proposed for predicting the stability [Ris94] 
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and quantisation noise properties of higher -order single-bit ~-A modulators. 

A technique is proposed based on state-space division into regions to analyse & [Ste94] 

derive simpler equations that characterise the stability of 2nd-order I:-A modulators. 

Conditions for the stability of continuous-time 2nd & 3rd-order ~-A modulators are [Ush94] 

derived and compared with the results provided by other authors. 

The stability analysis of a lowpass 4tb-order multi-bit I:-A modulator using root [Bai96] 

locus techniques. A description of the complete design process is also included. 

A novel analytical approach using a mixture of non-linear dynamics & geometrical [Far96] 

techniques is proposed to identify the stability bounds of 2nd -order ~-A modulators. 

Evaluation of the stability limits of lowpass third-order single-bit I:-A modulators [Mor96a] 

based on modulation depth and feedback coefficients. 

Derivation of the stability boundaries for the max. internal signal levels in double- [Mot96a] 

loop I:-A modulators. Effect of chaos on tone reduction & stability is investigated. 

The effectiveness of a new optimised reduced sample rate technique on the stability [Bir97] 

of 200_ & 3rd-order ~-A modulators is investigated using root locus techniques. 

A new model depicting both the gain and phase of the quantiser is described for the [Eng97] 

root locus stability analysis of lowpass I:-A modulators. 

An extensive simulation study of single-bit & multi-bit ~-A modulators based on [PeI97] 

the effect of loop-filter coefficients & input amplitude on stability & SNRs. 

A novel highly-accurate approach that analytically models the accumulator output [Far98] 

signal levels of 2nd -order lowpass I:-A modulators for constant input signals. 

Section 4 of this paper discusses the stability analysis of 2nd_ & 3rd-order lowpass [Ben99] 

I:-A modulators using root locus techniques. 

Stability analysis based on modelling the gain & phase of the quantiser of [Eng99a] 

continuous-time higher-order bandpass ~-A modulators using root locus methods. 

The effect of coefficient quantisation on the stability and resolution of higher-order [Gil99] 

lowpass ~-A modulators is evaluated in this paper. 

A novel stabilisation method based on detecting quantiser input overload which [Pne99] 

subsequently reduces the modulator order to ensure stability. 

Table 5.1 Summarised Survey of Publications Related to Stability in I:-A Modulators. 

5.3 Different Defmitions and Interpretations of Stability 

The most common interpretations of the occurrence of instability in I-A modulators 

are summarised next. First; a I-A modulator is described as being unstable if it has a 

persistent pattern of large-amplitude internal signals, especially at the quantiser input 
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accompanied by poor SNR performance [Nor97]-[Hei91]. Second; a l:-A modulator is 

declared unstable if it exhibits a very low-frequency output signal that contains an 
• 

alternating long sequence of 1 's and -1 's [Nor97]. Third; a l:-~ modulator is considered 

unstable if the SNR decreases significantly even though all the internal signals within the 

modulator are bounded [Hei91]. Fourth; a l:-A modulator is pronounced unstable when its 

quantiser input or output signal stays at a very high positive or negative value indefinitely 

[Kar94]. Fifth; a modulator is defined as unstable if the error signal and/or output voltages 

emanating from the resonators keep growing until the quantiser becomes continuously 

saturated [Mou94]-[Sch9Ib]. Sixth; a modulator is defmed as unstable if the average value 

of its output signal is no longer a close approximation of the amplitude of the input signal. 

5.4 Review of Existing Rules-of-Thumb 

This section demonstrates that all the existing rules-of-thumb proposed to-date are 

neither sufficient nor necessary to entirely and accurately predict the stability of single-bit 

t-A modulators. Extensive simulations have shown that excessive out-of-band 

quantisation noise gains leads to instability in l:-A modulators. 

Lee's criterion states that a l:-A modulator is guaranteed to be stable provided the 

peak gain of the noise-shaping spectral magnitude at any frequency does not exceed 2, i.e. 

IHN(z)1 < 2 [Lee87]. 

It is stated in [Agr83] that the power gain of the NTF should be less than 3 to ensure 

modulator stability. This power criterion assumes that the quantisation noise signal is white 

and uniformly distributed having a power value of 113. Given that the output signal for a 

single-bit t-A modulator is unity, this implies that the power gain of the NTF has to satisfy 

IIHlli ~ 3 . It should be pointed out that the power gain criterion is more conservative as the 

equivalent power gain proposed by Lee implies that II HIli ~ 4 . 

A third alternative stability criterion is proposed by Anastassiou [Ana89]-[Sch91 b] 

requires that the condition given below to be satisfied in order to ensure stability: 

co 
L Ih(i)1 ~ 2 -11~lco (5.1) 
1=1 

where u is the input to the modulator and h(i) is the impulse response of the NTF. 

Despite the popular use and reliability of these ad-hoc criteria in numerous situations, 

Schreier in [Sch91 b] shows through rigorous simulations that the maximum gain and 
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power gain criteria are neither necessary nor sufficient in certain cases to guarantee 

stability. 

S.S Stability using the d~ot Locus Techniques 

It has already been discussed that modelling the I-bit quantiser by an additive White 

noi'se source only provides useful information about the noise transfer function envelope of 

I-A modulators. The technique reported here is based on Kalman's Theorem [Tha62], 

which simply states that most types of non-linearities including saturation may be 

represented by an arbitrary range of linear gain values. Thus, the quantiser is modelled by a 

variable gain, whose value is adjusted depending upon the previous states of the modulator 

and the input signal. This variable gain method facilitates the stability analysis of I-A 

modulator structures. Theoretically, the gain value can lie anywhere between zero and 

infinity for any given input. However, behavioural simulations and practical 

implementations demonstrate that this gain has a fInite value. The quantiser gain may be 

simply defIned as the ratio of the quantiser output to the quantiser input voltages as given 

by: 

H( k) = N(z,k) 
z, D(z,k) (5.2) 

where N(z,k) and D(z,k) represent the numerator and denominator polynomials of the 

I-A modulator transfer function. The quantiser gain has a constant value during each clock 

period and only varies in magnitude from one sample to another. The well known Root 

Locus Techniques are employed to illustrate the movement of the poles of a I-A 

modulator as the quantiser gain varies [Bai93]-[Oka93]-[Bai94]. A transfer function 

incorporating this variable gain is derived from fIrst principles, where the Jury Criterion is 

applied in order to determine the range of stable quantiser gain values. 

The root locus of D(z,k) can provide valuable information regarding the stability 

behaviour of a I-A modulator. A modulator is described as being unconditionally stable if 

the locus of all its poles reside inside the unit circle. If one or more of its poles leave the 

unit-circle without coming back, then the modulator becomes unstable. The in-between 

cases refer to modulators, which are conditionally stable meaning that these modulators 

will be stable for a given range of input signals [Bai94]-[Ben99]. 

If the poles of H(z,k) remain inside the unit-circle for all values of k, then the 

modulator is said to be unconditionally stable. When one or more poles move outside the 

unit-circle for a given quantiser value, the internal signal levels in the modulator begin to 
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diverge in amplitude causing k to change its value. If the new k c,auses the pole to return 

to the unit-circle, then the modulator is described as having a stable limit cycle and 

therefore stable. On the other hand, if the change in k results in a pole staying outside the 

unit-circle,.then the limit cycle is said to be unstable. Behavioural level simulations showed 

that under. thls condition, the internal signal levels of the constituent resonators continued 

to grow in' a uncontrollable manner. This eventually causes the modulator to lock itself into 

endless low-frequency, high-amplitude oscillations which can only be terminated through 

external stabilisation techniques. 

S.S.1 Root Locus Analysis of Fourth-Order Bandpass I-~ Modulators 

This section presents the stability analysis of a variable-band fourth-order bandpass 

I-~ modulator using root locus techniques. The I-bit quantiser is represented by a variable 

gain to enable the application of linear theory so that a closed-loop transfer function that 

characterises the I-~ modulator can be obtained. This is given by: 

Y(z) k R2(Z) 

X(z) = 1- k R2 (z)F(z) - k R(z)F(z) 
(5.3) 

where k is the quantiser gain, R(z) is the variable-band resonator transfer function of both 

stages and F(z) is a feedback filter to provide effective noise-shaping. Algebraic 

manipulations demonstrate that 

g 
R(z) = 1-2cosaz-1 +Z-2 

and F(z) = 2cosaz-1 +Z-2 (5.4) 

in order to provide maximum attenuation in the in-band region. Note that g is the 

resonator gain and a is chosen to centre the signal band at any frequency given by 

a = 2.1ZVc, where Vc is the normalised centre frequency of interest. 

5.5.2 Ideal Fourth-Order Mid-Band Resonator I-~ Modulator 

This I-~ modulator structure is cheap to implement, because it does not require any 

multipliers, since a is zero for the mid-band resonance case. Furthermore, it assumes both 

resonator gains gl and g2 to be unity. Analysis of this fourth-order I-~ modulator yields a 

system transfer function given by 
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Y(z) . k 

X(z) = 1+(2-2k)z-2 +(1-k)Z-4 (5.5) 

It can be seen from the above expression that pole locations are dependent on the quantiser 

gain k. 1bis variable gain. whose value is governed by the modulator input signal and the 

previous error samples, makes the poles move along the root locus during normal 

operation. A well known stability criterion for sampled-data systems in the z-domain is the 

Jury Test [Phi96]. The Jury Test was applied to (5.3) to establish the quantiser gain values 

for which this ideal modulator is stable. The range of quantiser gains that must be satisfied 

to ensure modulator stability is given by 

(5.6) 

All the internal voltages of the modulator including the maximum voltage attained by the 

resonators depend on the amplitude of the input signal. This implies that the quantiser input 

voltage is directly proportional to the signal input to the modulator and inversely 

proportional to the quantiser gain since the output is a constant. Therefore, when the 

quantiser gain value exceeds 4/3, the two poles on the real axis exit the unit circle in 

opposite directions, one towards the positive real axis and the other towards the negative 

real axis. The other two poles remain permanently inside the unit circle for the entire range 

of quantiser gains. 

5.5.3 Variable-Band Resonator-Based Bandpass };-L\ Modulaton 

This fourth-order };-L\ modulator can accommodate a variety of centre frequencies 

overcoming the Is 14 restriction. The internal configuration of this structure is identical to 

that considered earlier with the exception that the resonators are not necessarily multiplier­

free. The corresponding closed-loop transfer function of this modulator becomes: 

fez) k 
X(z) = 1 + 2P (k -1)z-1 + (2 + P - (2 + p)k)z-2 + 2 P(k -1)z-3 + (1- k)z-4 (5.7) 

where P = 2cosa. By application of the Jury Test, the ranges of quantiser that must be 

satisfied to ensure modulator stability are as follows: 

for normalised centre frequencies, 0 < v c < 0.25, (5.8) 
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. d fre . 025 05 p2 p2 -4P+4 for normahse centre quencles, < Vc < , 2 < k < 2 (5.9) 
P +1 P -4P+3 

. The poles may exit the unit circle for two different ranges of k and therefore modulator 

stability should be considered for each case. Furthermore, there are two separate cases 

depending on the resoitator normalised centre frequencies, when k has a high value. For . 
the range, 0 < v c < 025, the pole on the negative real axis exits the unit circle, while the 

two conjugate poles and the other pole on the positive real axis remain inside the unit 

circle. The pole on the negative real axis should not result in continued instability due to 

the small amplitude internal voltages. After a number of samples, the signal levels within 

the modulator increase in amplitude. This amplification includes the quantiser input, which 

consequently reduces the quantiser gain and hence this real pole returns into the unit circle. 

Note that for modulators, whose centre frequencies lie between 025 < Vc < 05, the pole 

that leaves the unit circle is the one on the positive real axis, while the pole on the negative 

real axis and the conjugate pair remain inside the unit circle. The internal signal levels 

including the quantiser input begin to rise, which result in a reduction in quantiser gain. 

Consequently, the pole returns to the unit circle. Unlike the ideal case, a quantiser gain less 

than/f /(p2 + 1) for the normalised centre frequency range 0 < Vc < 05 will inevitably 

lead to instability. When the value of k goes below this threshold, the quantiser saturates, 

which leads to permanent large-amplitude low-frequency limit cycle oscillations. The 

internal signal levels within the modulator become excessively large as a result of the small 

quantiser gain and thereby force the two conjugate poles to go outside the unit circle and 

cause permanent instability. This modulator can be stabilised by either using a multi-bit 

quantiser or suitably clipping the resonator outputs [Bai94]. 

5.5.4 Non-Ideal Variable-Band Frequency Bandpass ~-A Modulator 

It is useful to consider the effect of employing non-unity gain resonators on the 

. stability of variable-band fourth-order bandpass ~-A modulators. The root locus plots of 

the poles of a fourth-order bandpass ~-A modulator for two centre frequencies for different 

resonator gains are given in Figure 5.1. The two resonator gains gl and g2 are assumed to 

be scalar and less than unity. The use of lower gains, particularly in the first-stage controls 

the level of the internal signals in the feedforward path and thus protects the quantiser from 

becoming overloaded. The resultant closed-loop transfer function including these two non­

unity gains is given by 
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By application of the Jury Test, the range of quantiser gain values that must be satisfied to 

ensure modulator stability are as follows: 

for 0 < v c < 0.25 

for 025 < v c < 05 

~ ~ 4 ~ 0 ~ 1 U 2 
RlllAis 

(a) 

(5.11) 

(5.12) 

gJ - 0.8, g2 = O.S 

-1 -<15 0 05 
RlllAis 

(b) 

Figure 5.1 Root Locus of the Poles of 4th-Order Bandpass ~-L\ Modulator Centred at 

(a) v c = 1 /16, b) v c = 1 / 8 for Different Resonator Gains. 

Once again, the poles may exit the unit-circle for two different ranges of k. Furthermore, 

large values of k have two separate cases depending on the locality of the centre 

frequency. The movement of the poles due to small and large quantiser gain values is very 

similar to the explanations provided in the above section. However, extra care must be 

exercised to ensure that the resonator gains are not significantly reduced, because this will 

push the poles closer to the zeros on the unit-circle. This results in a flatter response as 

opposed to the desired valley-shaped notch response. Often a compromise has to be made 

to satisfy both requirements. Table 5.2 gives the results of the Critical Quantiser Gain 

Range (CQGR) for various combinations of resonator gains. 
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fc:Js CQGRg}= 1,g2= 1 CQGR gi = 0.1, g2= 1 CQGR gJ= 0.1, g2= 0.5 

1:10 0.72 < k <1.08 0.21 < k < 1.34 0.41 < k < 2.69 

1:8 0.67 < k < 1.09 0.17<k< 1.37 0.33 < k < 2.75 

1:6 0.5 < k < .1.13 0.09 < k < 1.45 0.18<k<2.9 

1:5 0.28 < k < 1.17 0.04 < k < 1.56 0.07 < k < 3.12 

1:4 o <k < 1.33 0< k < 1.9 0<k<3.81 

1:3 0.5<k<I.13 0.09 < k < 1.45 0.18 < k < 2.9 

3:8 0.67 < k < 1.09 0.17<k<I.37 0.33 < k < 2.75 

2:5 0.72 < k < 1.08 0.21 < k < 1.34 0.41 < k < 2.69 

Table 5.2 The Different Critical Quantiser Gain Ranges for Different Resonator 

Gains. 

5.6 Detailed Behavioural-Level Simulations to Assess Stability 

The limitations of the stability criteria discussed in the previous section provides a 

strong argument for resorting to simulations when evaluating the stability of high-order 

l:-~ modulators. The assumption that the quantisation noise is white and uncorrelated with 

the input signal becomes especially inaccurate for large or very small amplitude signals 

[WoI89]. This implies that any type of theoretical analysis that employs this simplified 

model to assess stability performance produces incomplete results. The most reliable and 

efficient theoretical means of investigating stability is via behavioural level simulations 

compared with other types of low level and architectural simulations. [Mor94]-[WoI89]. 

Floating point simulations provide a reliable means of verifying the overall operation and 

choice of filter coefficients [Mor94]. The behavioural simulations can be run for a larger 

number of samples for a given time interval compared with architectural simulations thus 

allowing the detailed investigation of limit cycle oscillations and long term stability 

behaviour to be evaluated more thoroughly. The generation of 3D plots, which provide 

valuable description of the stability behaviour of these modulators require an extremely 

large number of sampling points. These can only be practically achieved using behavioural­

level simulations. 

The stability a fourth-order single-bit I-~ modulator was investigated using Matlab 

and Simulink based behavioural level simulations. Simulations were performed to provide 

adequately reliable 2D and 3D plots of the maximum amplitude input signal with respect to 

modulator order. It was found that the point of instability was sensitive to the initial 

conditions of the I-a modulator. The procedure adopted was to increase the input level in 

stepS of 0.01 with zero initial conditions at first. This procedure was then repeated for 
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random initial conditions over the range ± 0.1. The simulation length was 272144 samples 

for each ·point, where the initial 10090 points were discarded as transient samples. The 
- -

stability of this I-~ modulator was assessed by verifying the amplitude level of the input 

signal to the quantiser q/N(k). Knee plots similar to those fOlind in [Sch93] were . 
employed. Th~ modulator- was not considered to be stable and its quantiser input amplitude 
-' . 

was not plott~d, unless it satisfied the stability criterion I q IN (k) lSI 0 for k E [ 0 .. 272144] 

for the random choice of initial conditions within ± 0.1. All quantiser amplitude levels 

exceeding 10 were replaced with 0 and subsequently plotted on the stability charts to 

represent the unstable region of the modulator. This process was repeated several times 

with a different set of random initial conditions, where the worst-case value was always 

kept. 

5.7 Facton that Affect Modulator Stability 

This section discusses the various factors that affect stability in bandpass I-~ 

modulators. These include the amplitude, phase and frequency of the sine input signal, the 

initial conditions of the loop-filter, the number of delayers in the loop, the number of levels 

in the quantiser, the modulator order as well as the feedforward and feedback coefficients 

of the modulator [Bai93]. The simultaneous requirements of maximum in-band noise 

suppression as well as maximum modulator stability are not possible. Given that both 

requirements need to be fulfilled, a trade-off has to be made to ensure stability as well as 

sufficiently high SNR values [Hei91]-[Bai94]. The degree of stability for a given I-~ 

modulator topology should be defined in the early stages of the design process together 

with the other specification parameters [Hei91]. 

5.7.1 Amplitude and Type of Input Signal 

An extremely important parameter in the design of I-~ modulators is the modulation 

depth stability limit given by the maximum input value for which the modulator remains 

stable. The properties of the input signal have a considerable effect on the stability of 

higher-order I-~ modulators [Bai93]-[Bai94]. The amplitude of the input signal limits the 

stability boundaries and the dynamic range of a I-~ modulator [WoI89]. It is vital that the 

maximum stable input amplitude is determined in the early stages of the design process to 

establish whether it meets the design specifications [WoI89]. Behavioural-level simulations 

have shown that higher-order I-~ modulators are conditionally stable meaning that a I-~ 
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modulator becomes unstable beyond a certain input amplitude. For example, the sixth- . 

order mid-band resonator-based bandpass I-~ modulator is driven into instability when its 

input amplitude signal level exceeds 0.7. This is in contrast to the sixth-order Butterworth 

based bandpass ~-~ modulator, whose maximum input amplitude, before the onset of 

instability is 0.88. These results demonstrate that for the same modulator order and type of 

input signal, the maximum input for which this modulator remains stable is dependent on 

the NTF. A Butterworth based filter exhibits a NTF with a lower out-of-band gain making 

it more tolerant to higher input-amplitudes. On the other hand, the significantly higher­

order out-of-band gains coupled with the sharper rise of notch filter based NTFs explain 

why modulators employing notch filters have a lower stable input-amplitude threshold. 

A large-amplitude input signal to the I-~ modulator invariably results in high­

amplitude internal signals within the modulator, including the quantiser input signal. A 

point is reached, depending on the order, where the quantiser input amplitude rises very 

sharply, almost vertically as verified by the knee plots overleaf in Figure 5.3. This signifies 

severe quantiser overloading and therefore leads to instability [Sti88]. Furthermore, the 

input amplitude needs to be confined to the limits ± 1, otherwise the average value of the 

I-~ modulator output would not be able to track the input. 

For large OSRs, the input signal to a I-~ modulators appears to be relatively 

constant, thus providing good justification for evaluating the stability behaviour of I-~ 

modulators with dc inputs [Hei91] for lowpass applications. It is stated in [Hei91] that any 

I-~ modulator designed for dynamic inputs must be capable of handling dc input signals. 

It is recommended in [Sch9Ib] that any useful I-~ modulator should be stable with zero 

input. Another recommendation is to ensure that the input amplitude does not exceed 80-

90% of the peak input amplitude as a safety margin. This precaution becomes more 

significant in the case of aggressive NTF, e.g. Chebyshev as opposed Butterworth NTF 

[Nor97, pp. 141]. 

5.7.2 Modulator Order 

This section presents stability input limit plots for different orders of I-~ 

modulators. These are checked against the ad-hoc criteria proposed in [Agr83-[Lee87] to 

check their accuracy. It is shown that the input stability limits have significant variations 

for different I-~ modulator orders for a given topology. The use of several loop-filters in 

cascade in the feedforward path of I-~ modulators, as is the case in the distributed 

resonator feedback topology, results in large phase-shifts as well as huge-amplitude signal 
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levels (especially from the outputs of the later stages) leading to inevitable stability 

[Sim89]-[Bai94]. The effect of increasing the loop-filter order on the stability of bandpass 

l:-~ modulators is investigated. Second~, fourth-, sixth-, eighth·, tenth-, twelfth- and 

fourteenth-order bandpass :Butterworth based L-L1 modulators were designed and ,evaluated 

at the behavioural level. Figure 5.2 illustrates the topology under consideration, whose 

feedforward coefficients (Le. the g's) are listed in Table 5.3 for each modulator order. 

These simulations involved subjecting the modulator to a single-tone sinusoid at 

Vc = 025, whose input amplitude was swept from 0 to 1 in steps of 0.01. 

Figure 5.2 Chain of Resonators with Distributed Feedback. 

Order gl g2 g3 g4 gs g6 g7 

2na -0.1988 - - - - - -
4tn -0.1350 -0.3090 - - - - -
6tn -0.0947 -0.2077 -0.4390 . - - -
8m -0.0723 -0.1550 -0.2771 -0.5741 - - -
10m -0.0583 -0.1232 -0.2075 -0.3464 -0.7112 - -
12m -0.0488 -0.1022 -0.1669 -0.2575 -0.4159 -0.8493 -
14m -0.0419 -0.0872 -0.1399 -0.2074 -0.3063 -0.4854 -0.9880 

Table 5.3 Coefficients of Different Orders of Butterworth Based L-~ Modulators. 

The knee plots in Figure 5.3 show the maximum output-amplitude signal of each 

resonator stage for different orders of this modulator. It is quite apparent from the curves in 

Figure 5.3 and the results in Table 5.4 that the maximum modulator input amplitude is 

reduced as the modulator order is increased. For the lower order modulators, the rate at 

which the resonator output diverges towards instability varies, especially for the fourth- and 

sixth-order modulators. However, the onset of instability for the tenth-, twelfth- and 

fow1eenth-order modulators becomes almost concurrent as shown in Figure 5.3. In 
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addition, massive fluctuations in the output signal amplitude of these resonators very close 

to the maximum modulator input amplitude were observed for the twelfth- and fourteenth-

order modulators. 
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Figure 5.3 Knee Plots Depicting Resonator Output Amplitudes for Different L-~ 

Modulator Orders for Zero Initial Conditions. 

Figure 5.4 compares the maximum quantiser input levels versus the modulator input 

amplitude, where all the resonator initial conditions are set to zero. The second-order 

modulator, as expected remained unconditionally stable for all input amplitudes. However, 

the remaining modulators become unstable for input amplitudes below unity as can be 

shown in Table 5.4. Note that all the' simulations for this topology were carried out for a 

dither amplitude of 0.01 and an OSR of 128. The most significant feature of these curves is 

the vertical rise (i.e. sharp knee), which segregates the stable and unstable regions for a 

given modulator, order. 

Also, the ripples exhibited by the curves in Figure 5.4 show that the rise of the 

quantiser input with respect to the modulator input is not always monotonic. Simulations 

which were run for many input values and a large number of time steps showed a 

significant reduction in this ' non-monotoncity phenomenon' . This suggested that these 
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ripples were attributed to the fInite number of time-steps. These results and remarks 

comply with the observations made in [Sch93b] . 
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Figure 5.4 Knee Plots Depicting Quantiser Input Amplitudes for Different L-~ 

Modulator Orders for Zero Initial Conditions. 

Modulator Order 2 4 6 8 10 12 

Max Quantiser Input 0.607 4.303 3.546 1.520 1.56 2.22 

Max Modulator Input 1 0.990 0.879 0.727 0.596 0.465 

SNR before Instability 60.84 61.84 83.11 112.16 128.04 144.54 

Max SNR 60.84 77.64 95 .20 112.62 129.53 144.96 

Input Amp. - Max SNR 1 0.828 0.737 0.657 0.576 0.434 

Peak NTF Magnitude 1.11 1.17 1.25 1.33 1.429 1.531 

Max Reson 1 Amp. 0.398 1.08 1.136 1.157 1.049 1.074 

Max Reson 2 Amp. - 4.177 1.315 1.040 0.859 0.834 

Max Reson 3 Amp. - - 3.510 1.165 0.994 0.981 

Max Reson 4 Amp. - - - 1.550 1.154 1.059 

Max Reson 5 Amp. - - - - 1.558 1.228 

Max Reson 6 Amp. - - - - - 2.240 

Max Reson 7 Amp. - - - - - -

14 

1.931 

0.283 

154.04 

154.04 

0.283 

1.64 1 

1.089 

0.522 

0.651 

0.801 

0.974 

1.187 

1.898 

Table 5.4 Maximum Quantiser Input and Peak Resonator Output Amplitudes for 

Different L-~ Modulator Orders for Zero Initial Conditions. 

The same set of simulations were repeated, but this time with the resonators containi,ng 

random initial conditions, whose values lied between +0.1 and -0.1. Figure 5.5 shows the 

maximum resonator amplitude versus the modulator input amplitude for different 

modulator orders. These plots as well as the results presented in Table 5.5 indicated that 

the internal signal levels in the modulator, including those of the modulator outputs were 
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~ot always larger compared with the zero initial conditions' case. This variation could be 

attributed to the mixed use of positive and negative random initial conditions . 
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Figure 5.5 Knee Plots Depicting Resonator Output Amplitudes for Different L-.1 

Modulator Orders for Random Initial Conditio 

Modulator Order 2 4 6 8 10 12 14 

Max Quantiser Input 0.649 3.027 2.693 2.155 1.942 2.806 1.937 

Max Modulator Input 1 0.990 0.869 0.737 0.606 0.465 0.263 

SNR before Instability 62.93 60.36 88.17 109.83 128.42 143.2 1 153.9 

Max SNR 62.93 77.23 95.32 112.94 129.57 143.87 153.9 

lnput Amp. - Max SNR 1 0.778 0.677 0.616 0.556 0.44 0.263 

Peak NTF Magnitude 1.11 1.17 1.25 1.33 1.429 1.531 1.641 

Max Reson 1 Amp. 0.440 1.11 1.017 1.102 1.11 1.136 1.059 

Max Reson 2 Amp. - 2.92 1.262 1.093 0.931 0.86 0.571 

Max Reson 3 Amp. - - 2.649 1.209 1.061 1.012 0.727 

Max Reson 4 Amp. - - - 2.087 1.201 1.077 0.877 

Max Reson 5 Amp. - - - - 1.927 1.285 1.004 

Max Reson 6 Amp. - - - - - 2.72 1.191 

Max Reson 7 Amp. - - - - - - 1.923 

Table 5.5 Maximum Quantiser Input and Peak Resonator Output Amplitudes for 

Different L-.1 Modulator Orders for Random Initial Conditions. 
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Figure 5.6 showed that the quantiser input amplitude versus the modulator input amplitude 

for different modulator orders, whose constituent resonators contained random initial 

conditions. The maximum modulator input amplitude were shown to be the same for 2nd
, 

4th and 12th order modulators, lower for 6th_ and 14th-order modulators and slightly higher 

for the 8th-and 10th-order modulators, as can be seen from Table 5.5. 
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Figure 5.6 Knee Plots Depicting Quantiser Input Amplitudes for Different L-~ 

Modulator Orders for Random Initial Conditions. 

5.7.3 Feedback Coefficients 

In this section, the maximum stable limits on the modulator input as a function of the 

feedback coefficients are established, for the distributed feedback topology shown in 

Figure 5.7. A relationship between the two feedback coefficients to maximise the DR of 

the fourth-order mid-band resonator-based L-Ll modulator is empirically determined via 

behavioural level simulations. 

D(z) 

X (z) 1----.al+II I ---...-. r- Y(z) 
·1 

I-bit quantiser 

Figure 5.7 Chain of Resonators with Distributed Feedback. 
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It is well known that the cascaded arrangement of the resonators in hi~er-order single-bit 

l:-a modulators considerably increases the amplitude of the internal signals in. the 

feedforward path. thus overloading the I-bit quantiser and resulting in instability [Sim89]. 

The accumulative effect of the phase shifts imparted by these resonators is another 

hazardous contributor to instability [Sim89]. One simple heuristic solution is to choose 

suitable values for the feedback coefficients to make the magnitude of the feedback signals 

comparable to those circulating in the feedforward path as discussed in Section 2.6. 

Intuitively, these coefficient values should be increased in powers comparable in value 

with the peak amplitude increase of the modulator-order NTF. For a fourth-order mid-band 

resonator-based I-6 modulator, these feedback coefficients are numbered 12 and 11 

respectively from the resonator nearest the quantiser as shown below in Figure 5.7. 

Detailed simulations have confmned that this increase is proportional to (L -1) for 

feedback coefficients closest to the quantiser decreasing in successive powers for 

consecutive feedback coefficients away from the quantiser. Integer coefficient 

combinations are easier to use, e.g. 1 and 3 or 1 and 4 for 11 and 12 respectively. 

The 3D plots shown in Figure 5.8(a) were obtained by sweeping the input amplitude 

and 11 feedback coefficient from 0 to I and 1 to 10 for 100 equi-spaced divisions 

respectively, while keeping 12 fixed to unity. A modulator was not considered stable 

unless it satisfied the 'empirically-set' stability criterion of I qIN(k) I:s; 10 for 

k e [0.272144] for zero initial conditions. 

A careful examination of Figure 5.8(a) showed that the modulator remained stable up 

to an amplitude level of 0.9, provided fi did not exceed 3. Beyond that value, the 

modulator remained stable for a very small range of input amplitudes. These results 

quantitatively confmn that there is little point in increasing the 11 coefficients above unity . 

as this makes the feedback signal to the first differencer significantly higher than the 

feedforward signal. The error signal, as a result becomes very large, thus overloading the 

quantiser and rendering the modulator unstable. 

These simulations results were repeated for random initial conditions in the 

resonators, whose values were between the range +0.1 and -0.1. The modulator remained 
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stable for nearly the same DR as for the zero initial conditions' case as long as II did not 

exceed 3. However, the modulator stability for iJ > 3 became rather unpredictable even for 

the smaller input-amplitudes as can seen in Figure 5.8(b). 
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Figure 5.8 Maximum Quantiser Input Amplitude versus Feedback Coefficient II 

versus Input Amplitude for 12 = 1 and Vc = 0.25 under (a) Zero Initial 

Conditions, (b) Random Initial Conditions. 

In a similar way, the 3D plots in Figure 5.9(a) were generated by sweeping the input 

amplitudes and 12 feedback coefficients through the same number of points, while keeping 

11 set to unity. A careful examination of Figure 5.9(a) shows that the variation of the 12 

coefficient is more effective in allowing the modulator to remain stable for a much wider 

range of input amplitude levels. This can be explained by the fact that the amplitude levels 

of the later signals become inevitably large, because of the amplification imparted by the 

resonators. This makes it more appropriate to use an 12 value greater than 1, to control the 

amplitude level of the internal signals. This plot also shows that when 12> 4, the 

maximum stable input amplitude to the modulator begins to decrease. In other words, the 

12 coefficient is shown to be a function of the input amplitude to the modulator. The ' red 

carpet' pattern shown represents the unstable region of the modulator. These results show 

that this modulator becomes permanently unstable by making 12> 8. 

Simulations were repeated for a similar set of random initial conditions. The major 

difference between the two plots in Figure 5.9 was the more decisive onset of instability for 
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input amplitudes higher th~ ,0.8. This is in contrast to Figure 5.9(a), wh·ere the modulator 

produced quantiser inputs, whose amplitudes were below 10. 
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InpUl Amplttud. Feedback Coefficlem Q Input Amplrtude Feedback Coe1licien! 12 

(a) (b) 

Figure 5.9 Maximum Quantiser Input Amplitude versus Feedback Coefficient 12 

versus Input Amplitude for 11 = 1 and Vc = 0.25 under (a) Zero Initial 

Conditions, (b) Random Initial Conditions. 

The 3D plots in Figure 5.10 were obtained by sweeping the input amplitudes and feedback 

coefficients from 0 to 1, 1 to 10 and 1 to 10 respectively for 100 equi-spaced divisions. The 

motivation here was to evaluate the effect of modulator stability versus input amplitude by 

simultaneously changing the two feedback coefficients II and 12 for zero initial 

conditions, an OSR of 128 and an input amplitude of 0.01. The following conclusions can 

be drawn from these plots. First; increasing the value of 12 from 1 to 5 helps to improve 

the modulator stability as long as 1\ remains below 4. Second; the modulator stability 

deteriorates as 12 exceeds 5, resultirIg in smaller DRs. Third; the modulator becomes 

permanently unstable when 12> 8. Fourth; better stability is always achieved when the 

values of I, are always smaller than 12 . Fifth; when 12 exceeds 5, the modulator begins 

to have sporadic regions of stability. Sixth; these plots show that the input levels, size and 

shape of the stability regions of this modulator are a function of 11 and 12. Seventh; the 

input signals, which have low-amplitudes tend to span over a wider stable region compared 

with large-amplitude inputs. 
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Figure 5.10 Maxirnwn Quantiser Input Amplitude versus Feedback Coefficient II versus 

Input Amplitude for Vc = 0.25 under Zero Initial Conditions, (a) 12 = I, (b) 

12=2 (c) 12= 3, (d) f2=4,(e) 12 = 5, (f) f2=6,(g) 12= 7, (h) 12 = 8 and 

(i) 12 = 9. 
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The plots in Figure 5.11 were generated for the same modulator parameters, but this time 

for a random set of initial conditions. First; the 'a ' plot shows that this modulator became 

unstable for all input levels, when 11 > ' 3. Second; the region of modulator stability 

especially for the low inBut-amplitudes was shown to be sensitive to the random initial 

conditions of the resonators as well as the feedback coefficients of the modulator. 
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Figure 5.11 Maximum Quantiser Input Amplitude versus Feedback C;oefficient JI versus 

Input Amplitude for Vc = 0.25 for Random Initial Conditions, (a) J2 = 1, 

(b) 12=2 (c) J2=3,(d) J2=4,(e) J2=5,(f) J2=6,(g) J2= 7, (h) J2= 8 

and (i) J2 = 9. 

5.7.4 Feedforward Loop-Filter Gains 

An alternative approach to stabilise higher-order single-bit L-.1 modulators is to 

emplo small gain for the loop-filter resonators in order to reduce the magnitude of the 

signals circulating in the feedforward path [Bai93]- This lowers the noise suppression in 

the in-band region, thus relaxing the steep rise in the out-of-band quantisation noise and 

thereb maintaining modulator stability. The price paid for this stabilisation improvement 

is lower NRs [Hei91]_ A compromise has to be reached, where these values must be 

sufficiently low to ensure modulator stability. However, they should not be excessively 

small as till causes the TF pole to be shifted close to the NTF zeros thereby degrading 

the noi e-shaping re ponse of the modulator [Bai94]. Intuitively, the resonator furthest 

awa from the quanti er should ha e the smallest gain value in order to control the 
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amplitude level of the first-stage signal components before they become amplified by the 

gains of subsequent resonator stages. It makes good common sense to have coefficients 

whose values increase· fr~m the first to the last resonator to adequately control the internal 

signal levels of the modulator. A useful rule-of-thumb based on extensive simulations is to 

double the resonator gain value for each consecutive succeeding resonator. Care should be , 
taken to ensure that the first resonator gain is not made unnecessarily low, as this will result 

in degraded noise-shaping performance and lower in-band SNRs. Therefore, a compromise 

has to be reached for choosing suitable gain values that will ensure stability without 

significant penalties in SNR and DR. 

X(z) I--__ +y(=) 

I-bit quantiscr 

Figure 5.12 Chain of Resonators with Distributed Feedback. 

The 3D plots in Figure 5.13 were generated by sweeping the input amplitude and 

resonator gain of the first stage gl in steps ofO.Ot and 0.1 respectively, while keeping the 

second stage resonator gain g2 set to unity. The two 3D plots in Figure 5.13 show the 

maximum quantiser input amplitude versus the modulator input and gl for zero and 

random initial conditions respectively. The plots in Figure 5.14 were generated using the 

same number of points, but this time g2 was varied, while gl was set to unity. The 

following observations were made. First; the modulator remained stable for almost all the 

input amplitude levels. Second; the amplitude of the quantiser input increased with respect 

to the modulator input amplitude. The quantiser inputs in Figure 5.13 had larger input 

amplitudes, because only g2 was scaled down. This is in contrast to Figure 5.14, where all 

the internal signals in the modulator including the quantiser input signal had much smaller 

amplitudes, because of the gain reduction in the first stage, which had greater control over 

all the internal signals in the modulator. In addition, the use of random initial conditions 

resulted in modulators, whose amplitudes increased more rapidly. 
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The 3D plots in Figure 5.15 were generated by simultaneously varying g( and g2 in steps 

of 0.1 to evaluate their effect on modulator stability. The following observations were 
.', 

made. First; the quantiser input amplitude progressively increased as g2 became larger. 

Second; a rise in g( caused the quantiser input amplitude to increase as well. However, 

this increase became more significant with both g( and g2 increasing as depicted in Figure 

5.15 by the more frequent occurrence of peaks for the higher-amplitude input signals. Also, 

the modulator remained stable for almost the entire DR, until g2 exceeded 0.9, where it 

began to exhibit tones as a result of substantial quantiser overloading. The simulations 

showed that there are diminishing returns in SNR improvement as the resonator gains are 

increased too much. As the L-6 modulator is driven close to the edge of its stability 

threshold as a result of very high resonator gains, both the SNR and DR are reduced. 
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Figure 5.13 Maximum Quantiser Input Amplitude versus Feedback Coefficient g( 

versus Input Amplitude for g2 = 1 and Vc = 0.25 under (a) Zero 

Initial Conditions, (b) Random Initial Conditions. 
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Figure 5.14 Maximum Quantiser Input Amplitude versus Feedback Coefficient g2 

versus Input Amplitude for g) = 1 and Vc = 0.25 under (a) Zero 

Initial Conditions, (b) Random Initial Conditions. 
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(g) (h) (i) 

Figure 5.15 Maximum Quantiser Input Amplitude versus Feedback Coefficient gl 

versus Input Amplitude for Vc = 0.25 for Random Initial Conditions, 

(a) g2 = 0.1, (b) g2 = 0.2, (c) g2 = 0.3, (d) g2 = 0.4, (e) g2 = 0.5, (f) g2 = 0.6 

(g) g2 = 0.7, (h) g2 = 0.8 and (i) g2 = 0.9. 

5.7.5 Number of Delayers 

The sixth- and eighth-order :E-~ modulators based upon a cascade of resonators with 

distributed feedback to each stage are popular topologies for AID conversion applications 

due to their inherent ease of hardware implementation [Ada91]. This section starts by 

examining three variants for the sixth-order L-~ modulator: the first with a double delay 

associated with only the final resonator, the second with delays in the latter stages and the 

third with all three resonators providing delay. 

Previous work reported in [Bai94] showed that the number of delayers in the 

feedforward path had a significant effect on the stability and DR of the modulator. A 

conventional third-order lowpass :E-~ modulator with a single-delayer in its third stage 

remained stable until the modulator input reached 0.7. This was in contrast to another third­

order modulator, whose constituent accumulators were all delayed, which remained stable 

up to an input amplitude of 0.5. 

Sixth- and eighth-order :E-~ modulators were designed using Butterworth filters, 

whose coefficients for different delayer combinations are listed in Table 5.6. The knee 

plots in Figure 5.16 and Fi~e 5.17 as well as the results shown in Table 5.7 and Table 

5.8, indicated that the number of delayers has virtually no effect on the modulator stability 

or indeed on its DR. These simulations were repeated, but with the resonators containing 

random initial conditions. Once again, there was little discrepancy in the maximum stable 

input amplitudes for the different delayer combinations. This is attributed to the fact that 
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the arbitrary selection of resonator gains as was the case in [Bai94] resulted in sign'ificantly 

different modulator transfer functions, whose stability robustness varied according to the 

modulator input. In this case, however, the gains of the modulator were varied so as to 

preserve the m~dulator transfer function. It should be pointed out that the substitution of 

delayed accumulators with delayed resonators for the same modulator coefficients as used 

in [Bai94] did not preserve the stability properties of the modulator. Figure 5.18 and Figure 

5.19 show the knee plots for the resonator outputs and quantiser input, but this time using 

random initial conditions. 

Order g] g2 g3 g4 

Sixth-Order Single-Delay 0.1169 0.2074 -0.3564 -
Sixth-Order Double-Delay 0.1064 -0.1880 -0.4390 -
Sixth-Order Triple-Delay -0.0947 -0.2077 -0.4390 -

Eighth-Order Single-Delay 0.0923 0.1677 0.2630 -0.4379 

Eighth-Order Double-Delay 0.0845 0.1548 -0.2373 -0.5741 

Eighth-Order Triple-Delay 0.0779 -0.1438 -0.2771 -0.5741 

Eighth-Order Quadruple-Delay -0.0723 -0.1550 -0.2771 -0.5741 

Table 5.6 Coefficients of Sixth- and Eighth- Order Butterworth Based E-~ Modulators 

for Different Delayer Combinations. 
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Figure 5.16 Knee Plots Depicting Resonator Output Amplitudes for Different Delayer 

Combinations of 6th -Order L- L\ Modulators for Zero Initial Conditions. 
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Figure 5.17 Knee Plots Depicting Resonator Output Amplitudes for Different Delayer 

Combinations of 8th -Order L-~ Modulators for Zero Initial Conditions. 

Modulator Order Sixth-Order Eighth-Order 

z-l z-2 z-3 z-l z-2 z - 3 z - 4 

Max Quantiser Input 6.71 3.297 3.546 2.253 1.493 1.794 1.52 

Max Modulator Input 0.879 0.879 0.879 0.737 0.727 0.727 0.727 

SNR before Instability 83.11 85.3 83.11 109.97 111.08 110.78 112.16 

Max SNR 95.2 95.19 95.2 112.96 112.86 112.83 112.62 

Input Amp. - Max SNR 0.737 0.758 0.737 0.646 0.677 0.677 0.657 

Peak NTF Magnitude 1.25 1.25 1.25 1.33 1.33 1.33 1.33 

Max Reson 1 Amp. 1.169 1.046 1.136 1.108 1.183 1.091 1.157 

Max Reson 2 Amp. 1.64 1.303 1.315 1.14 1.043 1.054 1.041 

Max Reson 3 Amp. 6.68 3.286 3.510 1.297 1.156 1.188 1.165 

Max Reson 4 Amp. - - - 2.142 1.506 1.806 1.546 

Table 5.7 Maximum Quantiser Input and Peak Resonator Output Amplitudes for 

Different Delayer Combinations of 6th-and 8th -Order L-~ Modulators for 

Zero Initial Conditions. 
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Figure 5.18 Knee Plots Depicting Resonator Output Amplitudes for Different Delayer 

Combinations of 6th -Order L-~ Modulators for Random Initial Conditions. 

:z.~-------

o~ at Q.2 03 0 4 Q! O. Q7 08 GO 1 
Modul . to r I nput 

(a) 

~r-----___ _ 
,01 

o.,.......,..-------......J 
o ~ ~ ~ ~ ~ ~ n ~ ~ 

MoGul .tor Input 

(b) 

r1:------__ 
o ~ ~ M ~ ~ ~ n ~ ~ , 

MOdul l tor Input 

(c) 

Figure 5.19 Knee Plots Depicting Resonator Output Amplitudes for Different Delayer 

Combinations of 8th-Order L-~ Modulators for Random Initial Conditions. 

Modulator Order Sixth-Order Eighth-Order 

z - I Z- 2 z - 3 Z 
- I z-2 z - 3 z - 4 

Max Quantiser Input 3.351 3.584 2.693 1.579 2.389 2.382 2.155 

Max Modulator Input 0.879 0.879 0.869 0.727 0.737 0.737 0.737 

SNR before Instability 85.17 84.03 88.17 109.2 I 10.45 109.51 109.83 

Max SNR 95.61 95.51 95.32 112.52 112.75 112.17 112.94 

Input Amp. - Max SNR 0.697 0.758 0.677 0.687 0.677 0.636 0.616 

Peak NTF Magnitude 1.25 1.25 1.25 1.33 1.33 1.33 1.33 

Max Reson I Amp. 1.095 1.192 1.017 1.106 1.182 1.18 1.102 

Max Reson 2 Amp. 1.362 1.307 1.262 1.075 1.125 1.09 1.09 

Max Reson 3 Amp. 3.282 3.58 2.649 1.183 1.227 1.246 1.209 

Max Reson 4 Amp. - - - 1.455 2.29 2.352 2.087 

Table 5.8 Maximum Quantiser Input and Peak Resonator Output Amplitudes for 

Different Delayer Combinations of 6th-and 8th -Order L-~ Modulators 

for Random Initial Conditions. 
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5.7.6 Effect of Dither on Stability 

As already discussed in Chapter 1 the injection 'of dither prior to the quantiser input 

serves to alleviate the tonal content from the output of a L-.1 m09ul,ator. How ver, thi is 

achieved at the e~p!!nse of an increase of in-band quantisation noise. Another hortcoming, 

which becomes more apparent with higher-order L-.1 modulators is the reduction in DR 
" ' 

which is further degraded due to the utilisation of dither. This section present imulation 

results of a special-case 4th -order resonator-based L-.1 modulator. It is demonstrated that 

the amplitude of the internal signal levels rise in proportion to the amplitude of the dither 

signal. The maximum amplitudes from the outputs of the first and second resonators are 

recorded for a single-tone input signal ranging from 0 to 1, as shown in Figure 5.20 (a) and 

(b). The peak amplitude quantiser input signal, which is connected after the additive dither 

signal and prior to the quantiser is recorded and compared with the output of the econd 

resonator as shown in Figure 5.20(c). A simultaneous variation of the modulator input and 

dither amplitude with respect to the in-band SNR for this modulator is shown In Figure 

5.20(d). 

(a) (b) 

236 



lC 11ll 

'; 
8 &l 

'" rg .: 
; c 

cr 60 
c z 
~ '" 0 j 

E 40 , 
g : 
~ i 20 

i 

Dnne, Amplitude Input Amplrtude Dnher Ampln ude 

(c) (d) 

Figure 5.20 (a) Maximum Resonator 1 Output Amplitude, (b) Maximum Resonator 2 

Output Amplitude, Cc) Maximum Quantiser Input Amplitude, Cd) Maximum 

SNR, versus Input Signal Amplitude versus Dither. 

The four plots in Figure 5.20 demonstrate that the injection of dither at the quantiser 

input serves to reduce tonal content especially in the signal region, but at the same time 

lower the SNRs and DRs of L-~ modulators. Simulations also confinned that relatively 

high-amplitude dithers were needed, particularly, in the case of lower-order L-~ 

modulators to sufficiently dilute in-band tones. Needless to say, the best location for the 

inclusion of dither was at the quantiser input, because that took advantage of noise-shaping, 

which ensured that the bulk of the added dither was shifted to the out-of-band region 

leaving as linle as possible in the signal band. Furthennore, higher-order L-~ modulators 

were found to require smaller amounts of dither to alleviate in-band signal content, due to 

the randomisation effect of the extra loop-filters. It was also shown that MASH L-~ 

modulators required dither in all their constituent stages, so as to avert the propagation of 

tones into the latter stages in order to preserve the overall resolution of the modulator. 

5.7.7 Dependence of Modulator Stability on the Number of Quantisation Levels 

The cumulati e magnitude imparted by a higher-order loop-filter amplifies the 

intermediate signal Ie els of a L-~ modulator causing the I-bit quantiser to prematurely 

o erload and rendering modulator instability. One means of enhancing stability is to 

replace the I-bit quantiser with a multi-level quantiser which results in the generation of 

comparali el maller-amplitude signals. The knee plots in Figure 5.21 demonstrate that 
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the stability of a tenth-order L-~ modulator improves as the number of quantiser levels is 

increased. 
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Figure 5.21 Knee Plots Depicting Resonator Output Amplitudes for a 10
th

-Order L-~ 

Modulator for Various Multi-Level Quantisers for Random Initial Conditions 

(a) 3-Level, (b) 4-Level, (c) 5-Level, (d) 6-Level, (e) 7-Level and (f) 8-Level. 

The use of multi-bit quantisers in L-~ modulators decreases the magnitude of the 

quantisation noise, consequently reducing quantiser overloading [Bai94]-[Bai96]. This 

improvement in stability relaxes the constraints on other design parameters, which can be 

exploited to enhance SNRs and DRs. 

5.7.8 Dependence of Modulator Stability on Multi-Sinusoidal Inputs 

The effect of closely-adjoining multi-tone sinusoids on the stability of higher-order 

1:-~ modulators is quantitatively evaluated at the behavioural level. A sixth-order 

distributed feedback L-~ modulator is empirically tested with 2-Input, 3-input, 4-input and 

5-lnput sinusoidal combinations given by: 

X 2 (v) = sin1.991lV+sin2.0l1lv (5.13) 

X 3 (v) = sin 1.991lv + sin 21lv + sin 2.0 17iv (5.14) 
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X 4 (V) = sin 1.991lv + sin 1.995trv + sin 2.005trv + sin2.0ltrv (5.15) 

Xs( v) = sin 1.99trv+ sin 1.9951lv+ sin2trv + sin 2.005trv + sin 2.01trv (5 .16) 

The knee-plots presented in Figure 5.22 and results Table 5.9 confirm that the stability of 

this ~-6 modulator is decreased as the number and amplitude level of the input signals 

increased. 
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Figure 5.22 Knee Plots Depicting Resonator Output Amplitudes for a 6th -Order ~-6 

Modulator for Multi-Tone Input Sinusoids under Random Initial Conditions 

(a) 2-Tones, (b) 3-Tones, (c) 4-Tones and (d) 5-Tones. 
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Modulator Order Zero Initial Conditions Random Initial Conditions 

2 lIP 3 lIP 4 lIP 5 lIP 2 lIP 3 lIP 4 lIP 5 lIP 

Max Quantiser Input 8.606 6.068 4.694 3.315 6.239 5.025 9.042 2.462 

Max Modulator Input 0.485 0.313 0.232 0.182 0.475 0.313 0.242 0.182 

Max Reson 1 Amp. 1.207 1.119 1.103 1.084 1.224 1.38 1.274 1.069 

Max Reson 2 Amp. 1.777 1.438 1.363 1.29 1.93 2.112 1.814 1.236 

Max Reson 3 Amp. 8.576 6.031 4.636 3.201 6.168 4.998 9.041 2.383 

Table 5.9 Maximum Quantiser Input and Peak Resonator Output Amplitudes for 

Different Delayer Combinations of 6th - and Sth -Order l:-~ Modulators for 

Zero and random Initial Conditions. 

Concluding Remarks to Chapter 5 

In this chapter, a brief categorisation of the different interpretations of stability as 

well as a review of existing stability rules-of-thumb were presented. An analytical method 

employing the Jury Criterion was proposed, which could be used to identify the stable 

range of quantiser gains for ideal and non-unity-gain variable-band fourth-order resonator­

based bandpass l:-~ modulators. It was demonstrated that the critical quantiser gain range 

was increased as the centre frequency approached half-Nyquist culminating in a peak value 

for mid-band resonance. It was shown that lowering the resonator gains resulted in a higher 

stable quantiser gain range and therefore more stable modulators. However, the resonator 

gains should not be reduced more than necessary in order to control the noise level in the 

in-band region. Theoretical findings coupled with root locus plots demonstrated that 

identical quantiser gain ranges and symmetrical plots about the real axes were obtained for 

all conjugal quartet centre frequencies. 

The factors that directly control stability in l:-~ modulators were investigated at the 

behavioural level. Some of these reinforced, what was intuitively expected and their effect 

on stability was supported, where appropriate by simulation results. First, simulations 

showed that the maximwn stable input amplitude to the modulator decreased as the 

modulator order was increased. It was shown that the maximwn input amplitudes were 1, 

0.99, 0.S8, 0.73, 0.60, 0.47 and 0.2S for the 2nd
_, 4th_, 6th_, Sth_, lOth_, 12th_ and 14th-order 

variable-band bandpass l:-~ modulators. Second, it was empirically confirmed that 

modulator stability could be enhanced by progressively increasing the feedback coefficients 

such that the one closest to the quantiser had the highest value. Integer coefficient 

240 



combinations were recommended as these were easier to implement. Third, an alternative 

stability approach was to use small gains for the loop-filter resonators in order to reduce the 

magnitudes circulating in the feedforward path. Intuitively; the resonator furthest away 

from the quantiser should have the smallest gain value in order to control the amplitude 

level of the first-stage signal components before they were amplified by the gains of the 

later resonator stages. Fourth, the relationship between the number of delayers and stability 

was examined for different Butterworth filters, whose coefficients varied for different 

delayer combinations. There was little difference in the maximum stable input amplitudes 

for different delayer combinations. This was attributed to the fact that the gains of the 

modulator were varied so as to preserve the modulator transfer function. Fifth, it was 

shown that the inclusion of a dither signal at the quantiser input reduced the tonal content 

of the modulator output. However, this resulted in increased in-band quantisation noise and 

a lower DR. This result implied that a trade-off should be made between the stability, 

tonality and SNRs in ~-~ modulators. Sixth, it was shown through detailed simulations that 

modulator stability was enhanced as the number of levels in the quantiser increased, 

because multi-level quantisers produced comparatively smaller-amplitude signals. It was 

also shown that this stability improvement relaxed the other constraints on other design 

parameters, which could be exploited to improve SNRs and DRs. Seventh, the type of 

input signal on the stability of l:-A modulators was examined for closely-adjoining multi­

tone sinusoids, where it was shown that modulator stability was reduced as the number of 

tones was increased. It was also shown that when the number of tones increased, it was 

necessary to reduce their amplitudes in order to ensure modulator stability. 
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Chapter 6 

Conclusions and Suggestions for Future Research 

6.1 Concluding Remarks 

In chapter 1, the fundamental principles of I-~ modulation were reviewed and 

compared with Nyquist rate and conventional oversampling AID converters. A discussion 

addressing some of the problems associated with the design analysis and evaluation of 

these I-~ modulators was presented. A major literature survey at the time showed that 

there was a considerable vacuum in the area of bandpass I-~ modulation. This in 

conjunction with the continued demand for high-resolution AID converters represented the 

prime motivation behind this work. Chapter 1 provided a detailed explanation of the 

operation of a fIrst- and higher-order lowpass I-~ modulators, including the popular 

distributed feedback topology. The chapter culminated by explaining the simulation 

approach and defining specifically the perfonnance criteria that were used for the 

evaluation of all the I-~ modulators in this thesis. 

Chapter 2 started by reviewing the fundamental principles of bandpass I-~ 

modulation. A system-level description of a typical bandpass AID converter was given, 

where the operation of each constituent building-block was briefly described. This was 

followed by a chronological survey of reported publications, an up-to-date review of 

hardware implementations and a summary of potential applications of bandpass I-~ 

modulators. The lowpass-to-bandpass frequency transfonnation Z-l ~ _Z-2 , for the design 

of mid-band resonator-based bandpass I-~ modulators was explained and analysed in 

greater depth. Several methods, based on the author's experience, of enabling the 

modulator to function correctly in a simulation environment were discussed. This 

tranSformation was extended to higher-order mid-band resonator-based bandpass I-~ 

modulators. The noise-shaping properties and the SNR characteristics were evaluated for 

the fourth-, sixth- and eighth-order bandpass I-~ modulators. The peculiar appearance of 

unexpected notches in the magnitude spectra of the higher-order modulators, which had not 

been accounted for in the open literature, was explained and supported with detailed 

simulation results. A heuristic solution based on the appropriate selection of modulator 

feedback coefficients was provided. which enabled the stabilisation of higher-order I-~ 

modulators. 
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The lowpass-to-bandpass frequency transfonnation te~hniq~e proposed by.' Harris 

[Har93] for the design of variable-band bandpass l:-~ modulators was discussed and 

mathematically analysed. Simulation results were provided to indicate the correct operation 

for the second-order variable-centre frequency bandpass l:-~ modulator. However, the 

analysis in [Har93] were extended to the fourth-order case, where it was shown with the 

aid of simulations that the noise-shaping properties were no longer preserved due to the 

asymmetrical magnitude spectrum of the loop-filter. Detailed behavioural-level simulations 

were carried out for this fourth-order variable-band l:-A modulator, where the stability of 

the modulator was examined for each noise-shaping band-location across the spectrum for 

the entire dynamic range of the modulator. This showed that when all its coefficients were 

set to unity, this modulator remained stable for the narrow-range 0.22 S Vc S 028. Despite 

its relatively straightforward application, this technique had several drawbacks. Firstly; a 

working lowpass l:-~ modulator prototype was always needed, whose noise-shaping 

properties and stability were not maintained after the transfonnation. Secondly; the unequal 

shoulder-gain levels imparted by the loop-filter worsened modulator stability and imposed 

tighter specifications on the post bandpass decimator. Thirdly; good SNR figures were only 

attainable for extremely narrow-bandwidths. Fourthly; the designer was limited to only 

specifying the central location of the noise-shaping band and OSR, having no freedom over 

setting other parameters that govern the stability and tonality properties of the modulator. 

These limitations coupled with the accelerating demand for easy-to-design variable-band 

bandpass I:-~ modulators provided ample justification for the further development of 

existing techniques and the search of alternative novel approaches that could deliver 

improved noise-shaping spectra and better resolution. 

Based upon the above comments, a starting-point involved developing the Harris 

lowpass-to-bandpass frequency transfonnation technique so as to allow the designer to 

specify the bandwidth as well as the centre frequency location for any NTF specification. A 

simple algorithm incorporating this transfonnation to facilitate the design of variable-band 

I-A modulators was presented. This algorithm was coded into Matlab to provide the rapid . 

derivation of the loop-filter coefficients for any differencer-based NTF. This approach was 

verified using behavioural-level simulations for the first-, second- and third-order 

accumulator-based I-~ modulators. 

Another technique, which was developed involved utilising variable-centre frequency 

notch filters for the NTF of these modulators to achieve maximum quantisation noise 

attenuation in the signal region. The design criteria in combination with linear 
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mathematical analysis and empirical deductions were carried out for modulators, whose 

NTFs employed FIR notch-filters, DR notch-filters, complex FIR notch-filters and complex 

DR notch-filters. The salient features for each NTF method were discussed, and where . . 
I 

appropriate supported with· simulation results. The fourth-order variable-band l:-~ 

mo~ulator using the FIR notch-filter method was shown to remain stable for a slightly 

wider range of frequencies. This was attributed to the larger coefficient in the modulator 

feedback. which delivered more effective noise-shaping. The effect of the uneven shoulder 

gain levels of the FIR notch-filter for non-mid-band centre frequencies was analysed and 

was deduced to be the primary cause behind the de stabilisation of this fourth-order l:-~ 

modulator. The variable FIR notch filter was replaced with a suitable IIR notch filter that 

was capable of delivering variable-band noise-shaping in the signal region, but for a 

broader stable range of centre frequencies. An alternative stabilisation mechanism for this 

modulator involved utilising multi-level quantisers. These helped reduce the quantisation 

errors, therefore lessening the occurrence of quantiser overloading. The results detailing the 

quantitative relationships between the stable range of normalised centre frequencies and the 

number of quantiser levels for a fourth-order variable-band bandpass 1:-~ modulator were 

empirically verified via behavioural-level simulations and documented. 

An alternative novel technique for the design of bandpass 1:-~ modulators with an 

embedded tuneable centre frequency mechanism was proposed, where the mathematical 

model for its NTF was derived from first principles. This method demonstrated that the use 

of a sum-filter combined with fractional-delayers provided the flexibility of spectrally 

transferring the noise-shaping band to the desired centre frequency location. FIR and 

allpass DR filter representations of these fractional-delayers were applied and evaluated to 

establish their suitability. The FIR FD approach was found to suffer from inadequate noise­

shaping performance at high frequencies due to errors in the amplitude of the FIR filter. 

For non-mid-array FD requirements, the FIR FD filter exhibited small phase errors, which 

caused small shifts of the noise-shaping bands towards Nyquist. The IIR allpass approach, 

on the other hand, gave better resolution at the expense of a more complicated loop-filter. 

The SNR results were comparable to those obtained from the FIR and DR notch filter 

approaches, but the magnitude spectra of the FD based l:-~ modulators contained fewer 

tones. This is attributed to the more complicated loop-filter structure, which served to 

generate a more diverse range of state values. These naturally lessened the periodicity of 

the I-~ modulator output signal resulting in fewer spectral tones. 
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A practical step-by-step method for the design of variable-b~d bandpass 1:-~ 

modulators based on Butterworth and Chebyshev 2 filters was presented with extensive 

~ysis and behavioural-level simulation resUlts. Guidelines to facilitate the design and 

enhance the resolution of these 1:-~ modulators were given as well. This was followed by 

an analysis in conjunction with structural modifications, wher~ appropriate to allow 

variable-band noise-shaping. The author's contribution specifically included structural 

modifications to the 'chain of weighted accumulators with feedforward summation' and the 

'chain of accumulators with distributed feedback' topologies to make them provide noise­

shaping for mid-band centre frequencies. The latter topology was further modified to 

enable it to accomplish variable-band noise-shaping. Simple-to-use routines, which could 

compute the required coefficients for the FIR notch filter, IIR notch filter, complex FIR 

notch filter and complex IIR notch filter, FIR and allpass IIR FD as well as the practical 

bandstop NTF approaches were written in Matlab to compute the required coefficients for 

any system-level set of specifications. These routines could be easily operated in 

conjunction with a large Simulink library created by the author, which contained a myriad 

of real and complex single-bit and multi-bit bandpass 1:-~ modulator topologies. 

This chapter culminated by establishing via behavioural-level simulations, the effect 

of non-idealities on the noise-shaping perfonnance and SNRs of a variable-band fourth­

order single-bit 1:-~ modulator. The simulation results demonstrated that this modulator 

was relatively insensitive to gain variations of the order of 10% to 20% in its loop-filter. In 

fact, moderate gain variations were shown to be beneficial in that they controlled the 

amplitude level of the internal signals propagating in the modulator. This reduced the 

occurrence of quantiser overloading and thus resulted in less tonal magnitude spectra. On 

the other hand, the use of leaky resonators was shown to impact the SNR characteristics in 

a significant way for the higher OSRs. This was attributed to the migration of the NTF 

zeros away from the unit-circle. The simultaneous and equal reductions of both resonator 

leakage factors below 0.98 produced very shallow noise-shaping responses, which helped 

to strengthen the power of the tones in the in-band region. The double effect of leakage in 

the resonators prevented the complete cancellation of the quantisation noise from the 

preceding samples. This resulted in the progressive build-up of noise as well as tones in the 

in-band region, which regrettably delivered inferior resolution, by as much as 16.5 dB for 

PI = Pz = 0.96 for an OSR of 256. 

In chapter 3, the underlining principles together with an explanation of the 

functionality of MASH 1:-.1 modulators was provided at the start. A chronological survey 
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showed that over 90% of all the reported publications to-date on MASH l:-~ modulators 

were designed for lowpass applications. The few papers on bandpass l:-~ modulators with 

the exception of [Ben93] utilised the z-l ~ _z-2 frequency transform~tion, thus restricting 

their suitability to the popular v c = 025. The clear deficiency of bandpass MASH l:-~ 
, 

modulators coupled With the massive demand for stable high-resolution bandpass l:-~ 

modulators provided sufficient ammunition for the development of the work in this 

chapter. 

A novel practical step-by-step approach was developed, which enabled the design of 

variable-band bandpass l:-~ modulators using one of three NTF techniques. The first 

method utilised either real or complex FIR notch filters for its NTF design. The second 

method employed a first-order sum-filter in cascade with a FIR FD filter to spectrally shift 

the NTF notch to the desired band location. The third method used Butterworth and 

Chebyshev 2 bandstop filters, to accomplish noise-shaping responses with slightly larger 

bandwidths. Numerous novel variable-band bandpass l:-A modulators were designed, 

analysed and evaluated to verify their correct operation. These included the 2-2, 2-2-2, 4-2, 

2-4, 2-2-2-2, 4-2-2, 2-4-2, 2-2-4 and 4-4 MASH topologies. Novel complex MASH 

variable-band bandpass l:-~ modulators were also designed and simulation-tested such as 

the complex 1-1, 1-1-1, 2-1, 2-1-1 and 2-2 MASH topologies. Moreover, new double-, 

triple and quadruple-stage FD filter based MASH l:-~ modulator topologies were also 

designed and evaluated. 

The double-stage l:-~ modulator was modified and analysed to allow it to use 

bandpass filters in stead of resonators in its loop-filters. This allowed the design of stable 

higher-order l:-A modulators having more symmetrical magnitude spectra and better 

resolution. Two versions of this topology were designed: the first employed identical loop­

filters in each section, whereas the second was capable of using different loop-filters in 

each stage. Another novel bandpass MASH topology was developed, which contained a 

fourth-order variable resonator based l:-~ modulator in its first stage and a bandpass filter 

in its second stage. This cascade modulator had many advantages and was shown to deliver 

very good SNR figures. The double-stage inverse comblbandpass filter based L-~ 

modulator, which was absolutely novel was proposed, analysed and simulated at the 

behavioural level. Two versions of this modulator were developed containing either a 

single-loop or a double-loop inverse comb filters in the first stage followed by a bandpass 
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filter in the second stage. The main benefits of this topology were the simpler first-stage 

loop-filter and multiplier-free digital filter fo~ the cancellation circuitry. I 

Chapter 4 presented the design, mathematical analysis and evaluation o~. a novel 

class of narrow-band bandp~s I:-~ modulators, which could accomplish" concurrent 

multiple noise-~haping bands for multi-tone input signals. Specifically; the analyses and 

behavioural-level simulations for equi-distant and non-equi-spaced double- and triple-band 

bandpass I:-~ modulators were presented. Five different techniques based on the NTFs of 

comb filters, slink filters, fractional-delay comb filters, FIR multi-notch filters and IIR 

multi-bandstop filters were employed to design these multi-band I:-~ modulators. These 

analyses were subsequently extended to design complex multi-band noise-shaping l:-~ 

modulators using the NTFs of complex comb filters, complex slink filters, complex FIR 

multi-notch filters and complex IIR multi-bandstop filters. All these complex multi-band 

bandpass I:-~ modulator topologies were verified via behavioural-level simulations. 

Routines in Matlab were written in order to facilitate the computation of the coefficients 

for all the above designs. These were used in conjunction with a library created in Simulink 

that contained a multitude of these multi-band topologies for evaluation purposes. 

In chapter 5, a survey containing all the major publications, which address stability in 

l:-A modulation was initially presented. This was followed by a review of the different 

interpretations of stability. A brief discussion containing all the well-known ad-hoc criteria 

for assessing stability in I:-~ modulators was presented. The stability of bandpass l:-~ 

modulators was evaluated by using a variable gain model for the quantiser. Root locus 

techniques in combination with the Jury Criterion were employed to determine the stable 

range of quantiser gain values. The chapter discussed and presented detailed simulation 

results of the main factors that affected stability in l:-~ modulators. These included the 

input amplitude, modulator order, feedback coefficients, feedforward loop-filter gains, 

number of delayers, initial conditions and the composition of the input signal. The overall 

goal of the chapter was to provide more accurate guidelines for the design of single- and 

multi-bit bandpass l:-~ modulators. 
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6.2 Suggestions for Future Research 

Based on the work carried out and the results obtained from this research programme, the 

following present suggestions for future research. 

• Investigate the use of other types of FD filters in conjunction with sum-"filters to find 

out, whether better accuracy in tunability and resolution can be obtained, especially for 

noise-shaping bands located at high frequencies. 

• Design FD filters, which impart small phase delays (including the delay of the inherent 

filter) in order to enable the design of bandpass l:-~ modulators that can deliver good 

SNR figures at high frequencies. 

• Evaluate at the behavioural level the effect of non-unity gain resonators, leaky 

resonators and mismatches between the analogue and digital sections on the resolution 

in MASH bandpass L-~ modulators. 

• Determine the effect of incorporating inter-stage coupling coefficients on the SNR, DR 

and tonal content of MASH bandpass L-~ modulators, whose constituent stages 

contain a mixture of single- and multi-bit quantisers. 

• Develop and compare two types of tonality indexes, which can assess the degree of 

tonality in the spectrum of L-~ modulators. The first quantifying tonality in the in­

band region and the second quantitatively evaluating the power of tones across the 

entire spectrum, including in-band tones. 

• Investigate the advantages gained in utilising non-equi-spaced quantisation levels in 

single-stage bandpass L-~ modulators, paying particular attention to improvements to 

resolution, tonality content and modulator stability. 

• Conduct a detailed comparative study of the effect of windowing on the spectral 

characteristics of bandpass L-~ modulators, to determine whether any SNR 

improvements can be achieved in the in-band region. 
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AppeodixA 

Derivation of the Hanning window correction factor to calculate the in-band SNR 
, . 

The impulse response of a Hanning window is given by: 

1 {27rk) w(k) =-(1+co -
2 Np 

To fmd power, the signal needs to be squared first, 

w'(k) = ! [1 +2CO{ 2;:) + COs' ( 2;:)] 

w'(k) = ! [1 +2CO{ 2;:) +~ (1 + cos ~:1rk»)] 

w2(k) = .!.[~ + 2co I 27r k) + .!.(cos (47rk))] 
4 2 \ Np 2 Np 

The power for a discrete-time signals can be evaluated using 

1 ~l 
Px = N Llw(k)12 

p k=O 

Considering each term separately 

First term 
_ _ 1_~1_3 3 3 

L = -[Np-l+l] = -
4Np k=O 2 8Np 8 

Second term 2 ~l {2trk) 1 [ {2trk) . ( 1 )] 4N L..Jco N = 2N (k+ 1) co N slink (k+ 1)'N 
Pk=O p p P p 

_l_[(k + 1) co (_2tr_k) _si_n(_k +_O,--1r ...... p ] 

2Np '- Np (k+ l)Sm(~) 

The sin term degenerates to zero since k is an integer resulting in zero for the second term. 

Third term 1 ~l I4trk) 1 [ (4trk) . ( 1 )] 
8Np ~CO\ Np = 8Np (k+l)co\ Np shnk (k+l), Np 

-- k+l co -- p 
1 [( ) {4trk) sin(k + l)~ ] 

8Np Np (k+l)sin(*) 

The sin term degenerates to zero since k is an integer resulting in zero for the third term. 
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Therefore, the net power attenuation due to the Hanning window is i . To compensate for 

this reduction, ,the required c~rrection factor i~ ~. 
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