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Abstract

The inherent analogue nature of 'th_e signals encountered in the real world in
conjunction with the abundant merits provided by digital techniques together with the
increasing use of mixed-signal based systems have created considerable demand for high
performance A/D and D/A  Z-A converters. Furthermore, the increasing need to perform
high-precision data conversion for narrow-band high-frequency signals in communications
and broadcasting systems as well as special-purpose instrumentation provide ample
justification for development and innovation in the very important field of bandpass T-A
modulation.

The overall aim of this research programme is to investigate, establish, develop and
confirm through a combination of theoretical analysis and behavioural level simulations
suitable techniques for the design of accurate and simple-to-implement bandpass Z-A
modulators.

First of all, the low-to-bandpass frequency transformation technique is further
developed to enable the simultaneous specification of the signal bandwidth and noise-
shaped band-location for any arbitrary centre frequency. The second technique involves the
coincidental placement of the noise transfer function zeros at the centre of the signal region
to achieve variable-band noise-shaping. The third approach, which is absolutely novel,
employs a first-order sum-filter in combination with fractional-delayers to spectrally shift
the noise-shaped band to the desired signal region. Fourthly; a practical step-by-step
method is presented for the design of variable-band Butterworth or Chebyshev 2 bandpass
Z-A modulators. These techniques are extended to design different as well as combinations
of single-loop, multi-stage and multi-bit real and complex coefficient bandpass Z-A
modulators. ‘

This thesis, in addition, presents the design analysis and evaluation of a novel class of
Z-A modulators that are capable of providing concurrent multiple-band noise-shaping for
multi-tone narrow-band input signals. Noise transfer functions which utilise comb filters,
slink filters, fractional delay filters, FIR multi-notch and IIR multi-notch bandstop filters
are applied for the design of these multi-band Z-A modulators.

Detailed models of these modulators incorporating the quantiser non-linearities and
the effect of non-ideal loop-filters are evaluated at the behavioural level. Evaluation tools
in Matlab to verify the design by simulation are created, explained and supported with
examples to demonstrate that these theoretical techniques work in practice.

The stability of bandpass £—A modulators is evaluated at the behavioural level using
a mixture of Root Locus techniques and the Jury Criterion to determine the stable range of
the quantiser gain values. A comprehensive coverage of the main factors that affect
stability in high-order £-A modulators is presented and supported with simulation results.

Detailed guidelines for the choice of modulator topologies as well as coefficient
complexity are obtained and presented in tabular form. Graphs and charts are provided
which depict modulator performance including in-band signal-to-noise ratios, dynamic
ranges as well as regions of stability
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Chapter 1

Introduction to the Concepts of Sigma-Delta Modulation

1.1 Introduction to Sigma-Delta Modulation

Sigma-delta (Z-A) modulation utilises oversampling, noise-shaping as well as

simple-to-implement and relatively high tolerance analogue components to accomplish

high precision Analogue-to-Digital A/D and Digital-to-Analogue D/A conversion for low

to medium signal bandwidth applications. Several comprehensive publications, which

explain the basic underlying principles and detail the operation of these highly useful
modulators can be found in [Azi96]-[Can92]-[Hau91]-[Nor97]-[Ste98]-[Tom94] and

[Ben99)]. A summary of some of the major milestones in the history of Z-A modulators

since their inception in the mid 1950s is presented below in Table 1.1

Authors Description Year Ref

Cutler Earliest reported description employing the concept of feedback to | 1960 | [Cut60]
enhance the resolution of a coarse quantiser.
Spang and Development of Cutler’s system by proposing to include a FIR 1962 | [Spa62]
Schultheiss loop-filter in the feedback path.
Inose and Yasuda | The creation of the -A modulator in its current form, where the | 1963 | [Ino63]
loop-filter was transferred inside the loop.
Candy The complete design, analysis and fabrication of a 1¥-order lowpass | 1974 | [Can74]
Z-A modulator operating at f; = 40 MHz having 8-bit resolution.
Candy The design, building and testing of a lowpass £-A modulator with | 1976 | {Can76]
13-bit resolution operating at fs = 8 MHz.
Ritchie The creation of a high-order £-A modulator in the form of a chain | 1977 | [Rit77]
of integrators with distributed feedback to avert instability.
Candy Detailed analysis and characterisation of the double-loop single- 1985 | [Can85]
stage lowpass Z-A modulator.
Hayashi The invention of the multi-stage (MASH) Z-A modulator as an 1986 | [Hay86]
alternative for the design of stable higher-order Z-A modulators.
Lee and Sodini Presentation of a technique for the design of stable high-order =-A | 1987 | [Lee87]
modulators.
Adams Proposition of a simple design approach and several easy-to- 1991 | [Ada%1]
implement topologies for higher-order £-A modulators.
Table 1.1  Milestones in the History of £-A modulation.




Despite the significant and popular use of Z-A modulators, there is not, to-date, a
universal closed form solution that fully describes the dynamic properties of these
modulators. The existing models for the analysis of £-A modulators can be broadly
categorised into approximate linear models, accurate statistical models and non-linear
dynamic models. The linear model approach used in [Agr83]-[Can85]-[Cha90]-[Ada91] is
relatively accurate at predicting the overall shape of the noise transfer function. However, it
fails to predict stability and tonality behaviour, because it does not take into consideration
the constant output power criterion of single-bit Z-A modulators. Developments of the
linear model so as to comply with the constant power criterion were attempted, but these
were partially successful [Qiu93]. More accurate linear methods that employed Describing
Function techniques to model the non-linear quantiser are documented in [Ard87]-[Ris94].
These methods did not completely characterise the stability and tonality of T-A
modulators, because they assumed a particular mathematical function for the quantisation
noise. Root Locus Techniques were applied in [Bai94]-[Sti88], where the quantiser was
modelled as a variable gain block. The motivation there was to plot the modulator poles
with respect to the quantiser gain in order to establish a more realistic stability range for the
modulator.

Accurate models based on ergodic theory, which fully describe the output spectra of
first-order and multi-stage Z-A modulators are documented in [Gra90]. Non-linear
dynamics techniques to estimate the bounds of the internal states of these modulators are
fully analysed in [Fee96]. These techniques are more rigorous compared with their linear
counterparts, but are very much modulator-specific.

The lack of a theoretical model that can precisely predict the stability range and tonal
properties of Z-A modulators, when in overload mode, provides ample justification for
resorting to behavioural level simulations. These are shown by many designers and
practitioners to be the most appropriate means of evaluating the performance of Z-A
modulators, because they take into account the actual non-linearity of the quantiser.

Lowpass Z-A modulators have appeared in many commercial products for A/D and
D/A conversion applications as well as mixed-signal DSP devices with on-chip coding
[Ste98]. A summary of some of these products with their web-site addresses is given below
in Table 1.2.



Product Company Web-site address
AD1859 Analog Devices http://www.analog.com
AD1879 Analog Devices http://www.analog.corh
ADS1212 Burr-Brown http://www.burr-brown.com
DAC1719 Burr-Brown http://www.burr-brown.com
CS4390 Crystal Semiconductor http://www.crystal.com
CS5334 Crystal Semiconductor http://www.crystal.com
MC145073 Motorola http://www.mot-sps.com
ADC16071 National Semiconductor http://www.national.com
ADC16471 National Semiconductor http://www.national.com
SAA7350 Philips http://www.semiconductors.philips.com
SAA7360 Philips http://www.semiconductors.philips.com
TLC320ADS8C Texas Instruments http://www.ti.com

Table 1.2 A Selection of Commercial Products that £-A Modulators.

A major literature survey, which was carried out at the outset of this research
programme showed that there was a large gap in the area of bandpass Z-A modulation.
Indeed Table 1.2 confirms that to the best knowledge of the author and [Ste98] that there is
not a commercial product to-date that employs bandpass -A modulators. This coupled
with the increasing demand for high-resolution and relatively simple-to-implement A/D

converters represented the prime motivation behind this work.

1.2 Contributions by the Author

The contributions by the author in this thesis can be broken down into two categories:
First, original contributions covering novel propositions, techniques and topologies
specifically-related to’ the field of bandpass Z-A modulation. Second, extensions or
developments of the work of other =-A experts, which was judged by the author to be

worthy of research.

1.2.1 Original Contributions

e A novel technique is proposed for the design of narrow-band variable-band Z-A
modulators, whose noise transfer functions utilise a first-order sum-filter in
conjunction with fractional delayers to accommodate different passband centre to
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sampling frequency ratios. These FIR and allpass IIR fractional delay filters result in
the spectral shifting of the zeros of the noise transfer function to the signal band of
interest for any specified centre frequency input waveform.

The design, analysis and evaluation of complex variable-band and fractional-delay
filter based bandpass MASH X-A modulators.

The design, analysis and evaluation of the double-stage variable-band resonator-
bandpass Z-A modulator.

The design, analysis and evaluation of the double-stage single-loop inverse-

comb/bandpass Z—A modulator.

The design, analysis and evaluation of the double-stage double-loop inverse-
comb/bandpass Z—A modulator.

The complete design analysis and evaluation of double and triple band I-A
modulators. These are based on the noise transfer functions of comb, slink, fractional
delayer comb, FIR and IR multi-notch filters. These analyses are extended to complex
comb, complex slink, complex multi-notch FIR and complex multi-notch IIR NTF
based £-A modulators.

The derivation of analytical expressions, which employ the Jury Criterion in

conjunction with Root Locus Techniques, in order to determine the stable range of

quantiser gain values of variable-band bandpass £—A modulators.

1.2.2 Development/Extended Contributions

® The development of the lowpass-to-bandpass transformation technique where the signal

bandwidth as well as the centre of the variable noise-shaping band can be defined for
any high-level narrow-band specification.

The developmént of a technique that is well suited for the design of variable-band
bandpass £~A modulators based on the noise transfer functions of FIR notch-filters, IIR
notch-filters, complex FIR notch-filters and complex IIR notch-filters.

A practical step-by-step methodology for the design of bandpass £-A modulators.

The design, analysis and evaluation of different combinations of variable-band
bandpass MASH Z-A modulators, whose constituent stages contain single- and multi-

bit lower-order Z—A modulators.



® The design analysis and evaluation of MASH I-A modulators, which utilise non-
resonator based loop-filters in their individual stages and IIR bandstop filters in their
cancellation circuitry.

e The development of simple-to-use routines in Matlab, which can compute the loop-
filter, feedback and feedforward coefficients for a variety of single-stage, multi-stage
and multi-band Z—-A modulator topologies.

e The creation of a library in Simulink/Matlab, which contains over fifty single-stage,
multi-stage and multi-band X-A modulators.

e The development of Matlab routines that can quantitatively evaluate the resolution and

stability of any variable-band bandpass £-A modulator.

® A detailed treatment of the factors that affect stability in Z~A modulators including
modulator order, feedback coefficients, feedforward loop-filter gains, number of
delayers, initial conditions, noise-shaping band location, dither, number of quantisation

levels as well as the amplitude and type of the input signal.

1.3 Organisation of the Thesis

In chapter 1, the fundamentals of Nyquist rate and oversampling rate A/D converters
are reviewed, focusing in particular on the theory and advantages of oversampled Z-A
converters. A brief comparison is then made between A/D and D/A Z-A modulators. This
is followed by a discussion of the merits and limitations of the linear white noise model in
the context of £-A modulator analysis. The operation of a first-order Z-A modulator is
explained and is supported with time-domain and frequency-domain analysis. The chapter
continues by providing an overview of high-order distributed feedback, multi-stage and
multi-bit £-A modulators. The chapter culminates by explaining the simulation approach
and defining specifically the performance criteria that are employed for the evaluation of
T~-A modulators throughout this thesis.

Chapter 2 presents an overview on bandpass Z~A modulators including an up-to-date
review of hardware implementations and potential applications. Mid-band resonator based
T~-A modulators are analysed and evaluated. The prime objective of this chapter is to
develop and present novel single-stage single-bit Z-A modulators that can accommodate
different passband to sampling frequency ratios overcoming the popular f /4 restriction.
Four techniques are presented for the design of variable-band bandpass £-A modulators.

The first involves the development of the lowpass-to-bandpass transformation technique
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where the signal bandwidth as well as the noise-shaping band centre frequency can be
defined for any high-level narrow-band specification. The seéond referred to as the
Coincidental-Zero-Placement (CZP) technique involves placing the zeros of the noise
transfer function at the centre of the desired noise-shaping band. The third method, which
is novel, utilises a first-order sum-filter in conjunction with fractional delayers to spectrally
transfer the noise-shaping band to the desired signhl region. The fourth technique details a
practical step-by-step methodology for the design of variable-band Butterworth or
Chebyshev 2 based bandpass ¥-A modulators. Simulation results demonstrating the
applicability of these techniques to complex variable-band and multi-bit bandpass Z-A
modulators are also shown. Several commonly used £-A modulators are analysed and
where appropriate structural modifications are made so as to allow variable-band noise-
shaping. The chapter also provides linearised analysis supported with detailed simulations
on the effect of non-idealities of the performance of these modulators.

Chapter 3 provides the design procedure and analysis of variable-band resonator-
based multi-stage (MASH) bandpass Z-A modulators. The four techniques considered are
based on the noise transfer functions of real-coefficient FIR notch filters, complex FIR
notch filters, fractional delayers in conjunction with first-order sum-filters and
Butterworth/Chebyshev 2 bandstop filters. The design analysis and use of several new
bandpass MASH Z-A modulators are presented including the double-stage resonator/non-
resonator and double-stage inverse comb/bandpass £-A modulators. A comparative study
is given based on a mixture of linear modelling, behavioural level simulations and maximal
achievable performance such as in-band Signal-to-Noise Ratio (SNR), Dynamic Ranges
(DR) and tonality. '

Chapter 4 presents the design analysis and evaluation of a novel clas:s of
programmable narrow-band bandpass Z-A modulators, that can achieve concurrent
multiple noise-shaping bands for multi-tone input signals. Five different techniques based
on the noise transfer functions of comb filters, slink filters, fractional-delay comb filters,
FIR multi-notch and IIR multi-bandstop filters, are applied for the design of these multi-
band Z-A modulators. It is also demonstrated through analysis and simulations that these
techniques can be easily extended to design complex multi-band noise-shaping T-A
modulators.

In chapter 5, the stability of bandpass Z-A modulators is evaluated by using a
variable gain model for the quantiser. Root locus techniques in combination with the Jury

Criterion are employed to determine the stable range of the quantiser gain values. The
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chapter continues to discuss in detail and evaluate the main factors that affect the stability
of Z-A modulators such as input amplitude, modulator order, feedback coefficients,
feedforward loop-filter gains, number of delayers, initial conditions, noise-shaping band-
location and composition of the input signal. The ultimate, but yet the most important
objective of this chapter is to provide more accurate guidelines for the design of single- and

multi-bit bandpass Z-A modulators.

1.4 Conventional Nyquist Rate A/D Converters

Analogue-to-digital conversion is the process of converting a continuous time
analogue signal to an equivalent discrete sequence of numbers having finite precision.
Typical examples include flash converters, serial-parallel (subranging/ripple) converters,
pipelined converters, multiplexing converters and successive approximation converters
[Mit93].

Conventional Nyquist converters can be described in terms of three separate
processes namely, Anti-Aliasing (AA) filtering, uniform time-domain sampling and
amplitude quantisation [Ism94]-[Mit93]. A block diagram of a general Nyquist rate

converter is shown in Figure 1.1.

Anti Aliasing ‘g
(AA) Filter T g:;;lﬁ:;tr D)
x
x(1) —> x"‘(t)> AAK: x“(kn» Q - Output _ff.,
1 Sampler Ale;/tels N-bits
- Steps
e 1o I T=11/f, P
X Xul)

Figure 1.1  Block Diagram of a Conventional Nyquist Rate A/D Converter.

The purpose of the AA filter is to limit the bandwidth of the incoming signal x(¢) to
a maximum of half the sampling frequency f,in order to avoid the overlapping of signals
(i.e. aliasing). The sampler converts the band-limited continuous-time analogue input
signal x ,,(f) to a signal that is discrete in time and continuous in amplitude x ,,(kT).
This signal is sampled at uniformly spaced intervals of time 7, where T is the inverse of
the sampling frequency fs . In the frequency domain, the sampling process generates
periodic replicas of the signal spectrum at multiple frequency intervals of f. Therefore, it

is essential to comply with the Nyquist criterion, which stipulates that f has to be at least



twice the highest frequency component of the input signal. This criterion may also be
expressed in terms of f =22 f,, where f is the input signal bandwidth. If the highest
frequency harmonic is more than half f, then interference between the repeated versions
of the signal spectrum will take place resulting in distorted outputs [Ism94]-[Mit93]-
[Pro92].

Conventional rate converters sample the analogue signal at the Nyquist frequency
fn =2fp. Sampling at the Nyquist rate necessitates the use of an AA filter with a very
sharp transition band in order to ensure adequate aliasing protection. This stringent
specification increases the complexity of the analogue AA filter considerably [Pro92]-
[Mit93].

The quantisation process involves the discretisation of the amplitude of the signal.

The signal x,,(k7T;) that enters the quantiser is converted to a signal that is discrete in

both time and amplitude x 4,5 (k7). A quantiser with O output quantisation codes may be

represented by Q =2, where N is the number of resolution bits. Another important
parameter is the quantisation step-size A, which is defined by A =2V /(Q-1), where

represents voltage. One of the main disadvantages of Nyquist rate A/D converters is the
requirement for extremely small quantisation step sizes for modest resolutions. For
example, a converter that has 16 bits of resolution will have 0 = 216 = 65536 quantisation
levels resulting in a quantisation step-size of A =2V /(Q-1)=305uV for an input range
of £1V. This simple calculation shows that such accuracies are virtually unattainable with
the majority of analogue integrated circuit components [Azi96]-[Orf96]. Various
calibration and laser trimming techniques exist, but these have their limitations [Tom94].
One of the main problems encountered in any A/D device is that it is a non-linear
system due to the presence of the quantiser. The simplest approach to represent the non-
linear quantiser is to adopt the additive white noise model with its associated assumptions

and statistical properties in order to enable the application of linear theory [Azi94]-[Orf96]-

2

[Opp99]-[Pro92]. The quantisation noise power o,° or variance for a Q=2" output

quantisation levels and A =2V/(Q-1)=2V /(2" -1) is given by

o.z_(A_z) LY g
» {12) 122V (1.1



High resoluﬁon Nyquist converters are difficult to implement in existing VLSI
technologies due to the need for high precision analogue components, greater vulnerability
to noise and interference as well as the very steep roll-off demanded of the analogue AA
filter. These practical limitations have contributed towards the resurgence of oversampling

converters [Tom94].

1.5 Oversampling A/D Converters

Oversampling converters achieve high resolution by using simple and relatively high
tolerance analogue components at the expense of the requirement for faster and more
complicated digital circuitry. These converters reduce the necessity for precise sample and
hold circuitry, overcome the need for trimming or calibration and impose less restrictions
on the performance requirements of the analogue AA filters that precede the sampling
operation. However, these advantages are gained at the price of greater digital complexity
for the decimation filter [Azi96]-[Ism94]-[Pro92]-[Tom9%4].

These converters perform sampling and quantisation at significantly higher rates

compared with the Nyquist frequency f >> f) . This implies that more samples are taken

from the analogue input waveform over a given time interval. The much larger ratio of the
sampling rate to that of the signal bandwidth means that this excess sampling speed can in
general be traded for improved amplitude resolution. The resultant magnitudes of the
quantisation errors are considerably lower in oversampling converters, because more
samples are taken over the same time interval. From the frequency-domain point of view,
the effect of oversampling is to uniformly distribute this constant quantisation noise power
over a much wider frequency range, thereby substantially reducing the amount of
quantisation noise in the in-band region. [Azi96]-[Pro92]. A block diagram of an

oversampled A/D converter is shown in Figure 1.2.
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Figure 1.2  Block Diagram of an Oversampling A/D Converter.



This in-band noise power is given by

S8
2 = % gf = nz(-z—fi) 1.2
o} Jf f =0, (12)

The design specifications of the analogue AA filter are substantially reduced because
oversampling results in a much wider transition band between the cut-off and Nyquist
frequencies, (i.e. AA filter passband is much narrower compared with its transition band).
However, a price is paid in the digital domain, which requires the subsequent digital filter
to attenuate as much out-of-band quantisation noise power as possible [Azi96]. A less
obvious advantage that is served by the use of this digital filter is that any other noise that
may have remained in the transition band after the AA filter will be furthermore attenuated
[Azi96].

Practical difficulties still exist with standard oversampling converters in spite of
their numerous advantages. Extremely high resolutions are virtually unattainable because
gigantic sampling frequencies are needed which to-date are beyond the scope of existing
CMOS techniques [Azi96]-[Ste98].

1.6 Sigma-Delta Modulation

Sigma-delta (Z-A) modulation is a popular technique that may be employed in A/D
conversion for low to medium signal bandwidth applications. Typical areas of application
include high-fidelity audio, speech processing, metering applications, data-acquisition and
voiceband data telecommunications [Azi96]-[Can92]-[Hau91].

Z-A modulation utilises oversampling and noise-shaping in order to achieve a high
level of resolution. It is well known that oversampling leads to the reduction of
quantisation noise power in the signal band of interest by distributing this fixed amount of
noise over a much wider frequency range. This in-band quantisation noise can be further
suppressed by a process known as noise-shaping. This technique does not reduce the
magnitude of the quantisation noise, but instead causes most of this shaped noise to be
shifted outside the signal band of interest, where it can be subsequently removed by using
an appropriate digital filter [Azi96]-[Can92]-[Ste98].

A comparison based on the amount of quantisation noise power for Nyquist,

oversampling and Z-A A/D converters is shown in Figure 1.3. It is seen that all the
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quantisation noise power occurs across the signal bandwidth for the Nyquist case. In
oversampling converters, the in-band quantisation noise power is significantly reduced,
because this fixed noise is distributed over a much greater frequency area. Noise-shaping
T-A modulation achieves more quantisation noise attenuation in the signal region by
pushing away significant amounts of this unwanted noise outside the signal band. Since the
signal power is the same in all three cases, this implies that the best in-band SNR is
accomplished by using Z-A modulators [Kal96]-[Mor96c].

P Nyquist rate PCM
A/D Converter

Oversampled PCM /
A/D Converter S

igma-Delta
A/D Converter

-OSR* j, 4 A OSR* ;,

Figure 1.3  Comparison of Quantisation Noise PSD for three A/D Converter Techniques.

The benefits of Z-A A/D converters include inherent linearity due to the 1-bit
quantiser, reduced AA filter complexity, greater tolerance to device and component non-
idealities and a straight-forward trade-off between bandwidth and resolution. The general
block diagram of a T-A A/D converter is shown in Figure 1.4. This system contains a
continuous-time AA filter, a uniform sampler, a discrete-time analogue filter embedded in
feedback loop and a digital decimator.

The analogue section may be implemented using Switched Capacitor (SC) [Baz98]-
[Chu98]-[Jan93]-[Lon93]-[Sin95] or Switched Current (SI) [Pat94]-[Ros95]-[R0s99]
technology. Continuous-time £—A modulators have been designed and implemented for
numerous communication systems applications [Che99]-[Eng99b]. They are different from
discrete-time implementations in that they can be implemented by using LC filters
[Gao098]-[Sho94]. Continuous-time modulators can operate at very high sampling rates,
because they do not require input sample and hold circuits. In addition, the use of
continuous-time filters allows very low noise figures compared with discrete-time filters.
However, good linearities of the loop-filter and D/A converter are quite difficult to attain
for continuous-time modulators [Che99]-[Sho94].
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Figure 1.4  Block Diagram of an Oversampled Noise-Shaping Z-A A/D Converter.

1.7 Digital-to-Analogue Z-A Modulators

Oversampled £-A modulators can be equally used to improve the accuracy of D/A
conversion, where digital complexity and speed can be traded for relatively high-tolerance
analogue circuitry [Can92]-[Nor97, pp. 309]-[Tom94, pp. 224], Figure 1.5 contrasts the
block diagrams of A/D and D/A Z-A modulators.

1-Bit ADC :
pilcme-'l'imy - +1 ] - :
() Switch J.r* . el i » x(k) m-bits | Discrete-Time |m-bit: +1 1-bit | Th
-1 ' J x(k) Digital Loop- [#-3] | oo [ 0
] - Filter H(z .1 1
N 1-bit
DAC 1
' '
Discrete-Time Anglog | Digital Digital '
gital | Analog
4- | —k ‘ X ’
€Y (b)

Figure 1.5  Z-A Modulator Configuration (a) as A/D converter (b) as D/A converter.

The input x(k) to the D/A structure is a multi-bit digital signal. This signal then feeds into
the loop-filter, which with the aid of the feedback pushes the quantisation noise
components outside the signal region. The multi-bit digital signal leaving the loop-filter is
truncated to a single-bit before entering the 1-bit D/A converter. Note also that the circuitry
in D/A Z-A modulators is predominantly digital as opposed to A/D -A modulators where

it is mainly analogue. Detailed design analysis for high resolution multiplier-free T-A
modulators for D/A applications are reported in [Hau95].
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1.8 The Classical Linear White Noise Model

Quantisation is an inherently non-linear operation making the exact analysis of Z-A
modulators a very complicated process, thus necessitating the use of approximate linear

methods. The simplest model can be represented by a summer having two inputs as shown

in Figure 1.6.
e T 7
! .
LI ] o e ot e
[ N ]
1-Bi?Quantiser Multi-quAt Quantiser Equivalent Additive White Noise Model

Representative of the of NTF  (Linear Model More Accurate)

Figure 1.6 The Equivalent Linearised White Noise Model.

The first represents the signal components and the second input depicts the quantisation
noise. The latter is modelled by a unity-gain white noise source and is assumed to be
uncorrelated with the input signal.

This model has several limitations, which have to be considered when investigating
the behaviour and performance of the overall modulator [Ada91]-[Gra90b]. First; it
assumes that the quantisation noise has unity gain neglecting the fact that the quantiser gain
depends on the properties of the modulator input signal. Second; this model cannot predict
the effect of the input signal and loop-filter initial conditions on the stability of the
modulator. Third; the tonal behaviour including the location and strength of the limit cycle
oscillations cannot be established from such a model. Fourth; the inclusion of a scaling
factor prior to the quantiser in the modulator will not affect the decision of the quantiser as
the sign of a number does not change by multiplication. However, this gain factor will
affect the transfer function of the modulator in a significant way. Fifth; this mode) does not
obey the constant output power criterion, which is an inherent feature of single-bit T-A
modulators. In other words, making the linear model stable does not guarantee that the real
non-linear modulator is stable [Ada91]-[Gra90b]-[Nor97, pp. 44].

Despite these constraints, the additive white noise model is straightforward to apply
and is widely used by many practitioners in the field for preliminary design analysis. It
provides a reasonably accurate representation of the overall spectral shape of the noise

transfer function for single-bit Z—A modulators. More accurate analysis and performance

13



evaluation can be achieved subsequently by detailed simulations that take into account the
actual non-linearity of the quantiser [Can92].

This model depicts the quantisation spectra of high-order single-bit modulators,
dithered modulators or multi-bit modulators more accurately as the quantisation noise in all

these cases becomes more randomised [Azi96]-[Nor97, pp. 44].

1.9 First-Order Z-A Modulator

The first-order Z—A modulator shown in Figure 1.7 consists of a loop-filter and a 1-
bit quantiser (A/D converter) in the feedforward path as well as a 1-bit D/A converter in
the feedback path. The modulator input goes to the quantiser via the loop-filter. The
quantiser output signal is fedback and subtracted from the input at the summing junction.
The positive and negative errors between the input and output signals are all accumulated
in the loop-filter. These errors, which essentially depend on the amplitude and complexity
of the input signal, cancel each other out after a number of clock cycles. It is seen from
Figure 1.7 that the digital output is converted by means of a 1-bit D/A converter and then
subtracted from the analogue input. The resultant error is transmitted through the loop-filter
and the 1-bit quantiser respectively [Azi96]-[Can92]-[Tom94].

The loop-filter is designed so as to provide a large gain in the in-band region. The
modulator output at these frequencies is dependent on the feedback implying that the
modulator performance is quite insensitive to the tolerance of the constituent analogue
circuitry of the loop-filter. The tolerance for imprecise analogue components is a key
advantage and is directly responsible for the robustness of Z-A modulators. The feedback
must contain a delay equal to at least one sample period to make the modulator realisable.
This delay could also be embedded in the loop-filter as shown in Figure 1.7 [Can92]-
[Tom94].

For non-single-bit modulators, the linearity of the modulator output depends to a
large extent on the linearity of the D/A. This means that a non-linear D/A will result in
harmonic distortion, thus increasing the quantisation noise in the in-band region [Azi96]-
[Nor97, pp. 244].
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Figure 1.7  Conventional First-Order Lowpass Z-A Modulator.
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An example of the exact operation of a first-order is illustrated in Figure 1.8 for a dc input
signal of 0.6, assuming that the output initial condition of the loop filter u(k~1)=0,
where T is the period of the Limit Cycle.
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Figure 1.8  Time-Domain Response of a First-Order Lowpass Z-A Modulator: (a) d¢
input x(k), (b) error signal e(k), (c) output signal at summation node of
accumulator u(k), (d) accumulator output signal u(k-1),

(e) converted analogue signal y,(k), (f) quantised output signal y(k).

Table 1.3 shows the signal values at each node of the Z—-A modulator, where it can be seen

that a maximum of 5 clock cycles containing four 1°s and a single -1 are needed to
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represent an input amplitude of 0.6, (i.e.(4 (1)+1(=1))/5=06). This analysis
demonstrates that the average stream of 1’s and -1°s of the modulator output over the

duration of a cycle is equivalent to the input signal. A Z-A modulator generates outputs

composed of +1 for any other types of input signal, where its amplitude is determined by

the relative density of 1’s and -1°s.

k x(k) e(k) uk) | uk-1)| ya®) | ¥y
0 0.6 -0.4 -0.4 0 1 1
1 0.6 1.6 1.2 -0.4 -1 -1
2 0.6 -0.4 0.8 1.2 1 1
3 0.6 -0.4 0.4 0.8 1 1
4 0.6 -0.4 0 0.4 1 1
5 0.6 -0.4 -0.4 0 1 1
6 0.6 1.6 1.2 -0.4 -1 -1
Table 1.3  Discrete-Time Analysis of the First-Order £-A Modulator.

The stability of a £-A modulator depends on the input signal, the loop-filter
coefficients, initial conditions as well as the modulator order. The first-order ideal
accumulator-based -A modulator in Figure 1.7 can be shown to be permanently stable for
comparator output levels of 1 if the input to the system never exceeds unity. Given that
e(k) = x(k) - y,(k)and that v(k) = x(k) — y, (k) + u(k - 1), the analysis provided in Table
1.4 shows that all the internal signals within the modulator never exceed +2 for the worst
case input signal amplitude fluctuation from +1 to -1 and vice-versa. This implies that

-2 <u(k -1) < +2, which means that the quantiser can not become overloaded.

k x(k) e(k) u(k) uk-1) Ya(k) y(k)
0 1 0 0 0 1 1
1 -1 2 2 0 1 1
2 -1 0 2 -2 -1 -1
3 1 2 0 2 -1 -1
4 1 0 0 0 1 1

Table 1.4  Worst-Case Discrete-Time Analysis Demonstrating the Inherent Stability of

a First-Order £~A modulator.
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A modulator becomes unstable when the quantiser input amplitude significantly
exceeds the magnitude of the signal in the feedback path. The input signals in the
feedforward path continue growing indefinitely causing the quantiser to enter into chaotic
and unrecoverable oscillations.

The modulator stability can be more accurately evaluated by examining the
amplitude and nature of the quantiser input signal. Several comparable rules of thumb have
been proposed, which are used to estimate the point at which the quantiser input signal
diverges, thus leading to modulator instability.

The operation of a first-order Z~A modulator may be further understood by the use of
mathematical analysis in the frequency-domain where the linear model discussed in
Section 1.9 is applied. This linear modeling process enables the overall modulator to be

characterised by a Signal Transfer Function (STF) H(z) and a Noise Transfer Function
(NTF)Hy (2):

L(2)
1+ L(z2)

Hy(2)= and Hy(z)= (1.3)

-
1+ L(2)

where L(z) is the formed loop-filter. Mathematical manipulation shows that both Hg(2)

and H, (z) are inter-related as demonstrated by the expression below:
Hy(2)=1-Hg(2) (14)
The z-domain transfer function of H(z) in this case is given by

-1

L(z)= - (1.5)
-z
which implies that the overall output expression in the z-domain is
K@) =2"X@)+(1-27)0() (1.6)

where Hg(z) = z7' and Hy()=(01- zh.

It can be observed from both of the above expressions that the input signal has been merely
delayed by one sample resulting in no distortion. However, the quantisation noise has been
shaped by a first-order differencer, which is effectively equivalent to a crude highpass
filter. Thus, the quantisation noise has been shifted to higher frequencies leaving the input

signal completely intact. Closer inspection of the NTF reveals that virtually infinite
attenuation is achieved at dc (i.e. z=1).
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Figure 1.9  Magnitude Spectrum of an accumulator-based lowpass £-A modulator.

Figure 1.9 shows the simulation results of a first-order Z-A modulator in the frequency-
domain employing a simple 1-bit non-linear quantiser. An input sinusoid having a
frequency fr of 0.025. These simulation results confirm theoretical expectations in that
the input appears undistorted in the baseband region. The signal has been Fourier-
transformed to a delta function in the frequency-domain and the quantisation noise has
been shaped away to higher frequencies. Dither is added prior to the quantiser input to
substantially alleviate the level of tones in the frequency spectrum.

Theoretical expectations coupled with simulation results confirm that with sufficiently

large f5, Z—A modulators can achieve very respectable SNRs using only 1-bit quantisers.

The performance of £-A modulators is primarily dependent on the NTF which has a

magnitude frequency response of

sinz
Hy(f)=2 ff (1.7)
S
The in-band quantisation noise power is given by
2 (o} . 2
o = | 7 \Hy ()| df (1.8)
S

where 0',,2 / fs is the power spectral density of the quantisation noise. This ultimately

yields in-band quantisation noise power provided that fg; >> f; and where 0',,,,2 can be

expressed to a good approximation as
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3
2
oy 2 = gnza,,’-(fi:) (1.9)

1.10 Higher-Order Distributed Feedback Z—A Modulators

In general, the resolution (i.e. SNR as will be discussed in Section 1.13.2) of a £-A
modulator increases, when more samples are included in the averaging process. In high-
order Z—-A modulators, more of the preceding error samples are included in the cancellation
process to reduce the overall quantisation error. In the frequency-domain, this has the effect
of increasing the quantisation noise attenuation in the in-band signal region by shifting
greater quantisation noise power towards the higher frequency regions. A comparison of
the NTFs based on the linear model for first-, second-, third- and fourth-order conventional

lowpass Z—A modulators is shown in Figure 1.10.

14 1 Fourth-Order

Third-Order

Second-Order

First-Order

Linear Magnitude
@
L)

0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency, v

Figure 1.10 Comparison of the NTF Magnitude Spectra for First-, Second-, Third- and
Fourth-Order £-A modulators.

The order of a Z-A modulator may be simply increased by employing the distributed
feedback topology, where the modulator output signal feeds back in a distributive manner

at the input summing nodes of each loop-filter as shown in Figure 1.11 [Ada91]-[Rit77].
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Figure 1.11 Chain of Accumulators with Distributed Feedback.

The signal feeding into the loop-filter is the summation of two inputs. The first input path
is the output of the previous loop-filter and the second is the 1-bit output signal scaled by a
feedback coefficient. Thus, each loop-filter output contains a combination of the input
signal to the modulator as well as quantisation noise. The signal H(z)and noise Hy(z)

transfer functions of this topology are given by:

.L
HHi (2)
Hg(2) = - —— =L - (1.10)
1+a,[1H (@) +a,][H,(2)+..+a,, [ H,(z)+a,H,(2)
i=1 i=2 i=L-1
1
Hy(2)= - - - (1.11)
1+a[[H, (@) +a, ][ H(2)+..#4a,, [[H () +a,H,(2)
i=1 i=2 i=L-1

Higher-order single-bit Z—-A modulators are more prone to instability compared with
first-order £-A modulators. Their stability depends on the feedback coefficients, gain
factors in the loop-filter, the modulator input amplitude, the type of input signal and its
harmonic content as well as the total delay in the feedback loop [Bai93]. Note that the T—-A
modulator coefficients may be adjusted to ensure or improve stability as long as the desired
specifications of the noise-shaping function are maintained [Bai94]-[Nor97, pp. 141].

Higher-order single-bit structures are capable of producing respectable SNRs for
modest OSRs, are less tonal and have low sensitivity to component mismatches [Ada91].

However, the resultant sharp rise of the quantisation noise in the out-of-band region
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imposes more stringent specifications on the decimation filter [Tom94]. The desirability
for high resolution coupled with the outlined design challenges have resulted in the
existence of many alternative types and combinations of higher-order Z-A modulator

topologies as reported in [Ada%1].

1.11 Multi-bit Z-A modulators

An alternative means of improving the resolution of Z-A modulators is to replace the
single-bit quantiser with a multi-bit quantiser as shown below in Figure 1.12. Multi-bit
noise-shaping Z-A modulators generate less quantisation noise by as much as 6 dB per
additional bit, compared with conventional 1-bit modulators [Nor97, pp.244}-
[Tom, pp. 224].

| Equivalent Q(k) :
'Addmve White |+ ® '
u Noise Model :
M-Bits
+ e(k) Analog /
x(k) Loop-filter > _rrr 7 > y(k)

Multi-bit quantiser

M-bit D/A
ya(k ) Converter

Figure 1.12 General Block Diagram of a Multi-Bit Z-A Modulator.

Multi-bit quantisers containing an odd and an even number of levels were designed
by the author in Simulink. A block diagram representation of both models shows that these
consist of two-level comparators as shown in Figure 1.13, where TH represents the

threshold value for each comparator and Q; is the quantisation level.
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Figure 1.13 Multi-Level Quantiser Model (a) Odd Number (b) Even Number.
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Multi-bit Z-A modulators are capable of generating high SNRs for reasonably low

OSRs. They are much easier to stabilise, thus facilitating the design of higher-order
systems. The presence of more levels causes the quantisation noise to be more randomised,
thus reducing the occurrence of spurious tones across the frequency spectrum. The
reduction in quantisation noise alleviates the constraints on the post output filter that must
remove the out-of-band quantisation noise. The use of multi-bit quantisers makes the
modulator more linear, thus making the adoption of the additive white noise model for
analysis more realistic. Also, the gain of a multi-level quantiser tends towards unity as the
number of levels is increased [Sti88]-[Nor97, pp. 244].
The inherent linearity offered by single-bit A/D Z—-A converters is not preserved with
multi-bit A/D converters, because the latter require multi-bit D/A in the feedback path,
whose linearity directly affects that of the output signal. The errors resulting from the D/A
converter benefit from oversampling, but not noise-shaping [Sim89]-[Tom94, pp. 224].

1.12 Simulation Approach

The non-existence to-date of a theoretical model [Gra89a] that can precisely predict
the stability range and tonal properties of £—A modulators, when in overload mode,
provides ample justification for resorting to behavioural level simulations. These are shown
by many designers and practitioners to be the most appropriate means of evaluating the
performance of Z-A modulators. The time taken for behavioural methods to deliver the
results of the simulated topologies is much shorter compared with device and circuit-based
macro-models. Furthermore, Z-A modulators can be constructed and re-configured quite
easily. Needless to say, behavioural level simulations must be performed before the circuit
is designed as these help to validate the modulator performance with relative ease. The
main objective is to adequately simulate all the characteristics. Both a large number of time
steps and input values must be used to examine long term behaviour and identify any
irregularities [Ben99]-[Nor97, pp. 447].

All the £-A modulators in this thesis utilise a simulation environment, Simulink in
Matlab, to model and simulate the behaviour of Z-A modulators in discrete-time using
floating-point arithmetic for the analogue parts and the actual single-bit quantiser.

These simulations are conducted by injecting a single-tone or multiple tone sinusoids
to all Z-A modulators for an input block length of 282144 samples. The first 20000 output
samples from the modulator are excluded as transient points. The remaining 262144 (218)

output samples are transformed using a Hanning-windowed Fast Fourier Transform (FFT)
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on the output of the modulator. Note that the FFT length is always chosen to be a multiple

of 2 to enhance simulation speed in Matlab. The input amplitude is progressively increased

.. 282144]. Each modulator is evaluated with zero

in steps of 0.01 from 0 to 1 for k£ €[0 .

initial conditions at first. This procedure is then repeated for a random choice of initial

conditions, ranging from -0.1 to +0.1. Figure 1.14 shows a plot comparing the simulation
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Figure 1.14 A Comparison of Simulation Time versus Number of Simulated Samples

1.13 Performance and Accuracy Criteria

This section presents the most commonly used evaluation criteria by practitioners to

verify the operation and assess the quality of Z—A modulator topologies. A description of

how these performance measures are developed into automated routines in Matlab to

facilitate and improve simulation speed is provided. The ability to build £-A modulator

structures in Simulink with relative ease coupled with these automated Matlab based tools

provide both rapid and reliable means for novice and experienced engineers to accurately

model and evaluate any £-A modulator topology.

1.13.1 Oversampling Ratios and Bandwidth

The OverSampling Ratio (OSR) is defined as the ratio of the sampling frequency f;

to that of twice the signal bandwidth £ . This is mathematically given by:
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OSR = f3/2f5 (1.12)

The signa} bandwidth refers to the range of frequencies, where the power of the signal
components is concentrated. Given that this thesis primarily deals with the design of Z-A
modulators at the behavioural level, it is more convenient to express all frequencies in
terms of their normalised equivalents v’s (i.e. v = f/f;), where fis the input signal

frequency and f; is declared to be the reference frequency and thus set to unity. Thus, the

OSR may be alternatively expressed as:

1 1

R = =
. 2vp vy -vy)

(1.13)

where vy denotes the normalised bandwidth. The normalised signal or centre frequency
vo is always assumed to be located in the middle of the bandwidth, unless stated
otherwise, implying that the normalised low v, and high v, frequencies are equi-distant
from v.

Typical OSRs for £-A modulators lie within the range 8 to 512. The maximum f; is

restricted by technology limitations, whereas the minimum OSR is constrained by
resolution specifications.

A description of how the bandwidth is determined in Matlab is presented next. It is
well known that any discrete-time signal in Matlab is represented by samples or bins,

whose number N, s;4 y is decided by the user. For a given OSR, the bin positions of v, and

vy and consequently v, are given by:

1 1

The difference between Nv, and Nv,is the number of bins representing v,, which

simplifies to (N, /2 OSR).

1.13.2 In-Band Signal-to-Noise Ratio (SNR)

The in-band Signal-to-Noise Ratio (SNR) is a fundamental performance measure that
is used to assess the degree of resolution of any £-A modulator. It is defined as the ratio of
the signal power to that of the in-band quantisation noise power [Azi96]-[Can92]-[Pro92]

and is usually expressed in dBs as shown below:
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Signal Power )

SNR =10 10810( Inband Noise Power

(1.15)

The theoretical expression using the additive linear white noise model for the SNR of an

L -order lowpass Z-A modulator is given by

2L

SNR =10 log;y(c2)-10 loglo(cf,,)—mlogw( z J+(20L+10)log0SR (1.16)

2L +1
This analytically derived expression demonstrates that the SNR improves by approximately
9 dBs or 1.5 bits of resolution for every doubling of the OSR for a given modulator order.
A further enhancement of 6 dBs can be achieved for every corresponding increase in
modulator order. This expression only provides a rough estimate. More accurate readings
can be obtained by performing long simulation runs based on Z-A modulator models in
Simulink. The retrieved data is more reliable, because the Z—-A model uses the actual non-
linear component, i.e. the 1-bit quantiser, therefore circumventing the need to make any
assumption about the properties of the quantisation noise. The simulated SNR figures are
calculated by dividing the signal power by the sum of the powers of all the bins of the in-

band quantisation noise. The corresponding mathematical expressions are:

0.5 vg/2
SNR, = 2 IX [ D |Hy ] (1.17)
-0.5 -vg/2
0.5 ) vy )
SNRg = Y| X" [ D |Hy V) (1.18)
0 173

where the SNR for a lowpass signal, the SNR for a bandpass signal, the input signal
spectrum and the magnitude spectrum of the NTF are represented by SNR,, SNR,, X(v)
and Hy (v) respectively.

There are two simulation methods for computing the in-band quantisation noise
power. The simplest involves subtracting the input signal from the modulator output so as
to only acquire all the bins that depict the NTF. The in-band quantisation noise region can
be then computed for a given bandwidth. This method is restricted to working for input
tones that reside in the middle of the notch of the NTF. Any slight misalignment in the

signal location creates a phase-shift, which prevents the complete cancellation of the input
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signal. For the majority of such cases, the estimation of this phase-shift and the subsequent
re-adjustment of the signal notch becomes rather complicated.

The complication arising from the above method has led to the creation of the
following empirically-derived general-purpose approach. Here, the in-band quantisation
noise is computed by identifying both the location and the number of bins that represent the
input signal and then removing them from the output spectrum. This yields a good
estimation of the actual NTF, which can be used to calculate the in-band SNR. It should be
noted that the signal width in terms of bin numbers largely depends on the number of
sample points.

This method was verified with the first approach for a variety of frequencies and their
corresponding NTFs, where total input signal cancellation was accomplished. The
discrepancy between the two methods for a range of input amplitude levels was less than
0.5 dB.

The amplitude of all signals following the FFT command need to be normalised to
unity by dividing by the FFT length, before subsequent calculations are carried out. This
measure is particularly crucial for sinusoidal signals as these transform to impulses in the
frequency-domain.

It should be stated that both the signal and in-band quantisation noise powers were
scaled down by 3/8 due to the amplitude of the Hanning window. A derivation from first
principles by the author proving this value is included in Appendix A for completion.
There is no need for any correction factor as far as the in-band SNR is concerned as both
entities are reduced equally. However, if the input or in-band quantisation noise powers are
individually required, then their corresponding simulated values need to be scaled-up by
8/3 so as to normalise the amplitude back to unity.

Each SNR curve is generated from 100 input amplitudes ranging from full-scale
down to the input amplitude level, whose power equals the total in-band quantisation noise
power (i.e. until the SNR value is 0 dB). Each point is calculated using a 262144 point
Hanning windowed FFT.

Note that the in-band SNR deteriorates for very large input amplitudes due to

quantiser overloading. In addition, in-band SNR degradation also occurs for small input
levels as a result of little signal power.
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1.13.3 Maximum Stable Input Amplitude

The non-existence to date of a theoretical model [Gra90] that can precisely predict
the stability range of a *-A modulator when in overload mode provides a powerful
argument for resorting to behavioural level simulations. In this thesis, the stability of a =-A
modulator is evah}ated by increasing the input amplitude from 0 to‘ 1 in steps 0.01 for
k €[0 ... 282144] with a random choice of initial conditions ranging from 0 to 0.1. The
stability of any Z-A modulator can be reliably predicted by monitoring the quantiser input
amplitude ¢,y (k) as described in [Sch93]. Knee plots are used to establish the input
amplitude that results in g,y (k) exploding towards infinity. A knee value for g, (k) as

given below is declared to be a suitable upper-limit to indicate instability.

| g (k) |10 (1.19)

The first quantiser input amplitude that reaches 10 is declared to be the threshold quantiser
input, qux (k). Its corresponding input signal amplitude is therefore determined and
declared to be the Maximum modulator Stable Input Amplitude (MSIA). This process is
repeated 10 times with a different set of initial conditions where the worst-case MSIA
value is retained.

It may be argued that the input quantiser constraint is rather conservative. It is
plausible that g,y (k) may quite harmlessly exceed 10 momentarily, before subsiding back
to much lower values. This may especially occur in the case of higher-order single-bit Z-A
modulators. However, in the opinion of the author, it is better to underestimate as real
world signals can rarely be completely band-limited. This practicality coupled with non-
idealities in implementation support the argument for being prudent. A recommendation in
[Sch91b] goes further by stating that MSIA should never exceed 85-90% of the peak input
amplitude as a safety margin. This precaution becomes more significant in the case of

aggressive NTFs, e.g. Chebyshev as opposed to Butterworth bandstop filters.

1.13.4 Dynamic Range (DR)

Another useful type of performance measure is the Dynamic Range (DR), which is
defined as the range of input amplitudes for which the -A modulator produces a positive
SNR. A theoretically derived DR based on the linearised additive white noise model for an

L"- order lowpass £-A modulator is given by:
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3(2L+1
DR= 5(7)(2” —1)’ SR (1.20)

which shows that DR depends on the OSR, the loop-filter order L and the quantiser
resolution N [Nor97, pp. 220]-[Pro92].

As far as simulations are concerned, the DR is computed by finding the difference
between the maximum x,,, and minimum x,,y input amplitudes. x,,, refers to the
maximum input amplitude level for which the modulator remains stable. On the other
hand, x,,y is defined as the input amplitude level, where the input signal power equals
the in-band quantisation noise power. The DR is quite often expressed in dBs as shown

below:
DR=2010g10[xMAX—xM1N] (1.21)

1.13.5 Tones

Numerous publications involving precise theoretical analyses [Gra89a]-[Gra89b],
simulations studies such as [Dun96a]-[Nor97, pp. 75-140] as well as behavioural-level
simulations carried out by the author have shown that the quantisation noise spectra of Z-A
modulators exhibit discrete tones. Tones are spectral peaks, whose presence in the signal
region degrade the resolution of a £—A modulator. The emergence of these tones is
attributed to the following factors:

First; the majority of quantisers employed in Z—-A modulators only have two output
levels, thus increasing the possibility of similar patterns appearing in the output signal.
Furthermore, single-bit quantisers can not handle extremely small input amplitudes, such as
0, by periodically oscillating between +1 and -1 in the time-domain. This oscillatory pattern
is translated into a single-tone at f;/2 in the frequency domain [Azi96]-[Ris94]. Second;
the quantiser input samples become heavily correlated due to oversampling. Third; the
lower order modulators, particularly those that employ simple-coefficient loop-filters such
as accumulators and resonators tend to generate fewer, but higher-amplitude tones due to
the more finite number of internal signal amplitude levels [Hei91]. These tones become
especially undesirable, if they appear in the signal region as this leads to distorted signal
outputs and inferior resolution. The amplitude of the tones, the number of times at which

they occur as well as their locations in the frequency spectrum depend on the amplitude and
type of input signal [Sim89].
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There are essentially three techniques that can be used to suppress these tones. The
first involves deliberately injecting a white noise signal (i.e. dither) prior to the quantiser
input, which randomises the quantisation noise spectrum for a given modulator. The
inclusion of dither just before the quantiser takes advantage of noise-shaping, which has
the effect of limiting the amount of quantisation noise in the signal region [Nor97, pp. 75].
The second approach involves de-stabilising the limit cycle oscillations responsible for
these tones by making the loop-filter chaotic. A small shift in the pole positions of the
loop-filter provides a successful means of breaking-up the limit cycle oscillations
responsible for the appearance of these objectionable tones [Ris94]-[Sch94]. Third; the use
of random initial conditions in the loop-filter sections provides an alternative means of
disturbing the periodicity of these limit cycles. Care has to be taken to ensure that the upper
limit of these random initial conditions is constrained to appropriate levels, especially for

high-order single-bit Z-A modulators [K0z00].

1.13.6 Other Performance Measures

It is worth noting that there are three other types of performance measures found in
the open literature. The first is the Signal-to-Noise Distortion Ratio (SNDR) which is
defined as the ratio of the power of the input signal to the power of the in-band
quantisation noise including harmonic distortion. The second is Spurious Free Dynamic
Range (SFDR), which is defined as the power of the input signal to the power of the largest
spurious tone for a given Z-A modulator output signal in the frequency domain [Wep95].
The third is the Noise Power Ratio (NPR) which is defined as the ratio of the power
spectral density of the noise outside the frequency band to the power spectral density of the
noise inside the frequency band [Wep95].

1.14 Concluding Remarks to Chapter 1

In this chapter, the fundamental concepts of £-A modulators were discussed and
compared with conventional Nyquist rate and oversampling A/D converters. The author’s
contributions to this research programme were stated, where a clear distinction was made
between original contributions and extended/development contributions. The latter referred
to the work of other Z-A experts, which was judged to be worthy of further research. A
summary of the major milestones in the history of Z—A modulators, since their birth in the
1950’s was presented. This was followed by a detailed explanation of first- and higher-
order lowpass £-A modulators, including the popular distributed feedback topology. A
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description of multi-bit —A modulators was presented, demonstrating the models of the
used multi-level quantisers. The simulation approach that has been used to evaluate these
Z—-A modulators was described. The chapter concluded by describing the performance
criteria that are commonly used to evaluate and assess the accuracy of these modulators
such as signal-to-noise ratios and dynamic ranges. A discussion of the reasons for the
occurrence of tones in the outputs of these modulators followed by methods to reduce the

impact on the resolution of Z-A modulators was also provided.
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Chapter 2

Bandpass *—A Modulation

2.1 An Overview of Bandpass Z—A Modulation

The concepts of conventional lowpass Z-A modulation are applied to bandpass
signal frequency ranges, whose frequency content lie in a narrowband [Pea87]-[Gai89]-
[Sch89]-[Hor91]. The resulting system is referred to as a bandpass Z-A modulator
[Bry94]-[Jan91b]-[Jan93]-[Thu95]-[Tro93]. In a similar manner to the lowpass case,
bandpass T-A modulators combine oversampling and quantisation noise-shaping to trade-
off operation speed for improved amplitude resolution [Pat94]. Many of the advantages are
also retained such as reduced anti-alias filter complexity, inherent linearity for single-bit
quantiser modulators and robust analogue implementation [Fra95]-[Jan93]-[Nor97, pp.
282].

This implies that £-A modulation can now be employed to perform A/D conversion
directly for high frequency narrow-band signals overcoming the necessity of modulating
down to dc first [Fra95]. A diagram showing the constituent building-blocks of a typical
bandpass —A A/D converter is given in Figure 2.1.

Continuous-time Discrete-time Digital
Analog Analog (Switched-Capacitor)
2
i-Aliasi 1-bit Averagi
Anti-Aliasing] o , % eraging] | Down
(AnA) I-Etiilst::' Sampler| | Dgcm':e Quan X B‘F“ift;’:" Samx}e by
> Loop Filter +Hp— 7—> Laa —f >
x(f) m X440 To=1/f; 00& z; 1 1-bit lﬂ l N-bits
1 Tt 1 = |
X (kT) bt |, Decimator
DAC

X X4(Sf)

Figure 2.1 Block Diagram of a Bandpass Noise-Shaping Z-A A/D Converter.

Compared with a lowpass T-A A/D converter, the lowpass AA filter, loop-filter and
decimator are replaced with equivalent bandpass filters, whose centre frequencies may
reside at any spectral location away from dc. A single-bit bandpass -A modulator
produces an output signal normally consisting of a string of +1’s and -1’s, whose average is
equivalent to the input analogue signal to the modulator. From a frequency-domain
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perspective, bandpass £—A modulators are designed such that the bulk of the quantisation
noise is spectrally shifted to either side away from the signal band [Sch91c] as illustrated in
Figure 2.2. Note that f- and f, refer to the centre frequency and bandwidth respectively.

Signal

Shaped Quantisation

In-Band
Quantisation Noise

' X
(o fol2) ~fo (Fetfsl2) LF (fe-£al2) fo (fe+fal2)
Frequency

Figure 2.2  Quantisation Noise-Shaping in Bandpass £ — A Modulation.

The original signal, as a result, is left virtually unaffected with substantially less in-band
quantisation noise. The shifted quantisation noise as well as any out-of-band signal
harmonics and spurious tones are then attenuated by employing an appropriate bandpass
filter [Dre91]-[Sch90]. Subsequently; a down-sampler is used to reduce the sampling
frequency of the bandpass filtered signal to the Nyquist rate [Dre91]-[Sch90]-[Jan91a].

Bandpass £—A modulators can be also employed to perform high-resolution D/A
conversion [Leo97a]-[Leo97b]. However, it should be made clear from the outset that this
thesis primarily deals with the design and evaluation of bandpass £-A modulators for A/D
applications.

The sampling theorem for bandpass signals states that the sampling frequency is only
required to be twice the bandwidth of the input signal implying that much higher OSRs can
be attained for relatively modest sampling frequencies [Dre91]-[Pro92]. This means that
bandpass Z-A modulators can achieve high SNRs at these significantly lower sampling
frequencies in contrast with the lowpass case, where f is required to be many times
greater than the highest frequency component. For example, the conversion of a signal
centred at 2 MHz with 20 kHz bandwidth. With a 20 MHz sampling frequency, a lowpass
converter would provide five times oversampling, whereas a bandpass £-A converter
would achieve 500 times oversampling [Bry94]-[Dre91]-[Jan91b]-[Jan93].

This chapter starts by providing a chronological survey of reported publications, an
up-to-date review of hardware implementations and a summary of potential applications of

bandpass Z-A modulators. The existing lowpass-to-bandpass frequency transformation
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techniques for mid-band and variable-band resonator-based bandpass -A modulators are
explained and analysed in greater depth to demonstrate their limitations.

This background information sets the scene for the core objective of the chapter,
which is to present, develop and propose different approaches for the system-level design
of single-stage bandpass Z—-A modulators. A flow-line diagram summarising'all these

design procedures is illustrated in Figure 2.3.

Bandpass Design T@

NTF
Sum-Filter +
Fractional-Dela

NTF
Pole-Zero-
Placement

Practical NTF
Bandstop Filters

Frequency
Transformation

Tunable
Resonator

Complex
FIR Notch

Butterworth
Chebyshev 2

Figure 2.3  Different Techniques for the Design of Bandpass Z-A Modulators.

The following summarises the author’s contributions to this chapter: First, the
development of the lowpass-to-bandpass transformation technique, where the signal
bandwidth as well as the centre of the variable noise-shaping band can be defined for any
behavioural-level narrow-band specification. Second, the development of a technique that
is well suited for the design of variable-band bandpass £—A modulators based on the noise
transfer functions of FIR notch-filters, IR notch-filters, complex FIR notch-filters and
complex IIR notch-filters. Third, an alternative novel technique for the design of variable-
band bandpass Z-A modulators is proposed, which utilises a first-order sum-filter in
conjunction with fractional-delayers to spectrally transfer the noise-shaping band to the
desired signal location. Fourth, a practical step-by-step methodology for the design of
bandpass £-A modulators based on well-known filter family types is presented and
supported with extensive simulation fesults. Fifth, several commonly used Z-A modulator
topologies are analysed and where appropriate structural modifications are made in order to

allow variable-band noise-shaping. Simple-to-use routines, which can compute the required
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coefficients for any system-level set of specifications as well as a library containing the
corresponding £-A modulator topologies have all been created in Matlab and Simulink
respectively. Sixth, detailed simulations of the effect of non-unity gain and leaky resonators
on the overall noise-shaping response, in-band SNRs and tonality of a fourth-order
bandpass T-A modulator are also provided.

2.2 Survey of Publications to the Field of Bandpass Z—A Modulation

This section presents a chronological survey of reported publications made by
various pioneers, engineers, practitioners and theoreticians to the field of bandpass Z-A
modulation as given in Table 2.1. These publications cover rigorous theoretical analyses,
detailed behavioural investigations of new techniques and topologies as well as actual

experimental results obtained from hardware implementations.

A Resume of Publications on Bandpass £-A Modulation Ref

A method and detailed schematic diagram of a bandpass Z-A A/D converter for mobile radio | [Gai89]

applications.

Design analysis & simulation of the first reported 4"®-order bandpass £-A modulator: f; = 8 | [Sch89)
MHz, f- = 1 MHz, f3 = 8 kHz, 16-bit resolution for narrow-band communication applications.

A practical method for the design of a digital bandpass decimator for A/D bandpass Z-A [Sch90]
converters: fs= 8 MHz, f- = 1 MHz, f; = 8 kHz, OSR = 512, SNR = 107.4 dB.
The design, analysis & simulation of an interpolative bandpass A/D converter. [Dre91]

A 2™-order £-A modulator, which provides noise-shaping at any centre frequency location. [Hor91]

Design methodology of a 4™-order bandpass Z-A A/D converter for a digital AM receiver | [Jan9la]
application: 2.16 MHz< f;< 6.40 for f; =10 kHz, v¢o = %.

SC design & simulation of a 6™-order bandpass £-A modulator: f; = 3 MHz, f-= 455 kHz, [Jan91b]
f3=20kHz, SNR =94 dB for half-scale input.
Design & SC realisation of 2-stage double-input bandpass Z~A modulator using single- and | [Pin91]
multi-bit quantisers: fs = 66 kHz, 15.5 kHz < f> <16.5 kHz, in-band noise < -70 dB.
Design of a 4®-order bandpass £-A A/D converter of IF signals to baseband I/Q format: [Thu91]
fs=10 MHz, f-=2.5MHz, f;=100kHz, SFDR =95 dB.

The design, description & comparative evaluation of 3-types of bandpass Z-A converters for | [Thu92]
IF applications.

A technique for achieving centre frequency tunability in bandpass £-A modulation by | [Har93a)
employing a lowpass-to-bandpass frequency transformation.

First reported fully monolithic implementation of a 4™-order bandpass E-A A/D converter: [Jan93]
fs=1.82MHz, f-=455kHz, f; =10 kHz, SNR =63 dB for half-scale input.
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SC design & 1p CMbS implementation of a 4%-order bandpass Z~A modulator: [Lon93]
fs=T72MHz, f-=1.8MHz, f=30kHz, 15-bit resolution.

Design of 4®-order bandpass Z-A A/D converter for direct IF conversion: [Bry94]
Jfs=1.82 MHz, f- = 455 kHz, f3 = 10 kHz, OSR =91, SNDR = 65 dB.

Design and 24 CMOS fabrication of a 4-channel parallel A/D converter for wide-band | [Cor94]
signals: f5 = 4.3 MHz, noise null adjustment vg=0.2t0 0.3 steps =0.005, SNDR = 36.4 dB.

A novel 8®-order bandpass £-A modulator architecture suitable for the A/D conversion of an | [Gou94]
IF signal at 10.7 MHz, resolution = 13 bits.

A new architecture for a digital radio receiver containing a novel complex bandpass T-A | [Jan94a]
modulator is presented that allows the A/D conversion on the I/Q outputs of quadrature mixer

SI circuit design & 1.2 CMOS implementation of an 8®-order bandpass Z-A modulator: [Pat94]
fs=40 MHz, fc=10MHz, fz =150 kHz, SNR =90 dB.

Design and implementation of a CT 4".order bandpass £-A modulator based on the pulse- | [Sho94]
invariant transformation: fs= 80 MHz, f- =20 MHz, f; =1 MHz, SNR = 56.3 dB.

Describing the use of phase corrective techniques to improve the performance of CT, 1%, 2" | [Thu94a)
and 3™ order bandpass Z-A A/D converters.

A method of stabilising high-order bandpass £-A modulators is presented, where a limiter is | [Thu94b]
employed to prevent quantiser overloading.

Design, analysis & simulation of a tunable narrow-band 2**-order bandpass A/D converter for | [Yan94]
a mobile communication receiver.

Design of a 2™-order complex bandpass Z-A modulator that outperforms 4®-order real- | [Azi95]
coefficient bandpass Z—-A modulator by an SNR of 7.5 dB for v = .

Design of SC circuit of a 4®-order bandpass Z-A modulator. Eldo simulations show that for fs | [Baz95]
=102.4 MHz, f-=25.5 MHz, f; =5 MHz, SNDR =28.5 dB.

A method for the design of high-order bandpass -A modulators that uses inverse notch-filter | [Bel95]
sections and optimisation of the pole & zero positions to improve resolution & stability.

A novel 4®-order bandpass Z-A modulator SC architecture that uses fewer components is | [Fra95]
proposed. SC simulated fs= 10 MHz, f- = 2.5 MHz, fz = 200 kHz, OSR = 25, SNR = 52 dB.

SI design & 0.8 CMOS implementation of a 4®-order bandpass -A modulator: [Ros95]
fs=10 MHz, fc = 2.5 MHz, fz = 30 kHz, SNR = 60 dB for -8.2 dB sine-input.

New method for designing CT LC bandpass Z-A modulators based on DAC pulse shaping: | [Sho95]
4%_order results are fs =200 MHz, f =50 MHz, f; =2 MHz, SNR = 64.3 dB.

SC design & 0.8u BiCMOS implementation of 2™-order bandpass £-A modulators: f; = 42.8 | [Sin95]
MHz, fo=10.7 MHz, f3=200 kHz, SNR = 57 dB comparing active & passive sensitjvities.

A ratio-independent SC design technique & 2 CMOS implementation of a 4%-order | [Son95]
bandpass Z-A modulator; f;= 8 MHz, f- =2 MHz, fz= 30 kHz, SNR = 56 dB.

Overview, design & implementation of bandpass Z—-A modulation for A/D conversion of IF | [Thu95]

signals in narrow-band communication applications.
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SC design in 0.5 CMOS of a 6%-order multi-bit (9-level) bandpass —A modulator DAC, [And96]

Js=24.576 MHz, f-=6.144 MHz, fz=1.536 MHz, SNR = 60 dB.

Analytical derivation of the initial states that result in oscillations of zero-input 2"-order | [Dav96]
resonator-based bandpass Z~A modulators.

System-level design, behavioural-level and SC simulations of complex-signal Z-A | [Dia96]
modulators for quadrature bandpass A/D conversion.

Application of the theory of non-linear dynamics to the analysis of second-order bandpass | [Fee96]
T-A modulators for more accurate prediction of stability and resolution.

The use of an 8"-order bandpass Z-A modulator in a phase-locked-loop application is | [Her96)
described: fs=24 MHz, f-=6 MHz, OSR = 64, SNR =93 dB.

A technique based on placing a notch in the image band of the NTF reduces the effect of | [Jan96a]
mismatches between the real & imaginary channels of complex bandpass £-A modulators.

Design & simulation of a 6™-order bandpass T-A modulator with multi-stage polyphase | [Kru96]
decimator: fs= 3 MHz, fc = 455 kHz, f3 = 22 kHz, SNR = 124.3 dB for composite sine inputs

SC design & 0.8p BiCMOS implementation of a 4" order bandpass £-A modulator for | [Nor96b]
ultrasound imaging: fs= 160 MHz, f-= 5 MHz, f; =2.5 kHz, DR = 84 dB.

This paper gives the history and describes the theory of bandpass Z-A modulation and | [Sch96]
summarises some of the results reported in the literature.

A digital method of stabilising CT 3%-order bandpass Z-A modulator is presented, where | [T1a96]
oscillations are detected & internal variables are reset to initial values.

SC design & implementation (0.8p. BICMOS) of 8"-order bandpass Z-A modulator, [Abc9T7]
DR =130dB.

SC design & implementation (0.5p double-poly CMOS) of 4%-order bandpass I-A | [Baz97]
modulator, fs= 160 MHz, fc = 40 MHz, f; = 2 MHz, SNDR = 45 dB.

Comparison of cascade-of-integrators & cascade-of-resonators bandpass £-A modulators | [Bot97]
based on SNRs for SC implementation. A 4™-order modulator exploiting best practical

features of both is proposed.

SC design & implementation (24 CMOS) of a 6®-order cascade-of-resonators bandpass £-A | [Chu97]
modulator: 80 dB, vp=0.004 and v =0.25.

Implementation of 4®-order bandpass Z-A modulator with digital programmable passband | [Cor97)
ve=0.210 0.3; SNRs are 47 dB and 59 dB for f; of 2.36 MHz & 1.25 MHz for vz =0.005.

Analytical conditions for the state-variables of zero-input oscillation bounds are derived for a | [Dav97]
2™.order resonator based bandpass £~A modulator are derived.

Design & implementation of a 4®-order quadrature bandpass Z-A modulator converting 3.75 | [Jan97)
MHz I & Q inputs at f; = 10 MHz attaining 67 dB DR for GSM f; = 200 kHz, SNDR = 62 dB

Design & fabrication of a 4®-order bandpass £-A modulator: fs = 3.2 GHz, f- = 800 MHz, f; | [Jay97]
=30kHz, 66 dB & 41 dB SNRs for f3’s of 100 kHz & 25 MHz

Design & simulation of a high-speed multiplier-free higher-order digital bandpass £-A | [Leo97a]

modulator: fs = 42.8 MHz, £ = 10.7 MHz, f3 = 200 kHz, DR = 72 dB.
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Implementation of a high-speed multiplier-free 6®- & 8™- order digital bandpass £-A | [Leo97b]
modulators using Xilinx FPGA: f5 = 42.8 MHz, f- = 10.7 MHz, f3 = 200 kHz, DR = 72 dB.
SC design & 2p CMOS implementation of a 4®-order bandpass Z~A modulator with five | [Liu97]
digitally programmable passband locations: fs =827 kHz v =%, vp=0.0025.
SC design & 0.6y CMOS implementation of a 2-path interleaved 4™-order bandpass £-A | [Ong97]
modulator for digital IF extraction: f¢=40 MHz, f-=20 MHz, f; =200 kHz, DR =75 dB.
Design & implementation of a tunable 40 MHz-70 MHz CT 4®-order bandpass Z-A | {Sho97]
modulator: f; =200 MHz, fr =50 MHz, fz =200 kHz, SNR =46 dB for k; =k, =-10dB.
Design, simulation & breadboard prototype of a robust 4% order bandpass £-A modulator for | [Tao97a]
direct conversion to baseband with I/Q paths: /5= 100 kHz, fc =25 kHz.
SC design & implementation (0.5u double-poly CMOS) of a 4®.order bandpass I-A | [Baz98]
modulator, f5= 160 MHz, f- =40 MHz, f3 = 1.25 MHz, SNDR =45 dB.
SC design & implementation (2 CMOS) of a 4®- and a 6®-order bandpass Z-A modulators. | [Chu98]
SNRs are 73 dB & 80 dB for vg=0.0025 & 0.002 respectively for v =Y.
Design and 0.5 bipolar implementation of an integrated LC CT 2™-order bandpass Z-A | [Gao98]
modulator: fs= 3.8 GHz, fc = 950 MHz, f3 = 200 kHz, SNR =59 dB.
Design of a multi-bit 4™-order bandpass Z-A modulator for an RF-to-digital receiver | [Pel98]
providing 16-bit resolution over fz = 100 MHz for 10 MHz < f- <900 MHz.
SC design & investigation of a novel 6®-order bandpass £-A modulator, fs = 15 MHz, [Bot99]
fe=400 kHz, fz = 100 kHz, SNR = 96.4 dB.
Exact theoretical analysis of 2*-order bandpass £-A modulators for sinusoidal inputs. [Cha99]
Methods for reducing SNR, DR and MSIA losses caused by excess loop delay in CT higher- | [Che99¢]
order and multi-bit lowpass & bandpass Z-A modulators.
Stability analysis incorporating the concept of phase uncertainty and a methodology for the | [Eng99a]
design of high-order CT bandpass £-A modulators.
The effects of bandpass Z-A modulation on orthogonal frequency division multiplexing is | [Gar99]
analysed and investigated at the behavioural level.
SC design & 0.8u BiICMOS implementation of an 8®-order bandpass £—A modulator: [Lou99]
fs=42.8 MHz, fc=10.7MHz, fz =200 kHz, DR =67 dB.
Analysis of the limit-cycle behaviour of a double-loop 4®-order bandpass £~A modulator at | [Man99}
ve = Y. Scaling is applied to stabilise modulator.
Systematic analysis of SI non-idealities on bandpass -A modulator performance. Practical | [Ros99]
guidelines validated by detailed time-domain simulations are provided.
A reduced sample-rate bandpass Z-A modulator architecture is designed & simulated: [Ste99]
Jfs=124 MHz, f-=512 MHz, f;=1MHz, SNR =68 dB.
Analysis of timing jitter on the DR of discrete- & continuous-time bandpass £-A modulators. | [Ta099]

Table2.1  Chronological Survey of Contributions for Bandpass £-A Modulation.
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2.3 Survey of the Implementations of Bandpass Z-A Modulators

Bandpass £-A modulators can be realised by using continuous-time circuits [Che99]-
[Eng99b] with off-chip LC resonators [Gao98]-[Sho94], monolithic discrete-time SC
circuits [Chu98]-[Jan93]-[Lon93]-[Sin95] or SI circuits [Pat94]-[Ros95]-[R0s99]. SC is

the most preferable Mogue technique for the implementation of £-A modulators, because

of its high circuit accuracy [Baz97]. An up-to-date summary encompassing all the

hardware implementations of bandpass Z-A modulators is given below in Table 2.2.

Order fs fc Ss OSR SNR Ref
MHz MHz kHz dBs
4 10 2.5 80 62.6 60 [Dre90]
4 10 2.5 100 50 67 [Thu91]
4 1.82 0.455 10 91 63 [Jan93]
4 7.2 1.8 30 120 75 [Lon93]
4 26 6.5 200 65 55 [Tro93]
8 40 10 150 133.33 90 [Pat94]
4 80 20 1000 40 563 | [Sho%4]
4 10 2.5 30 166.67 60 [Ros95]
2 42.8 10.7 200 107 57 [Sin95]
4 8 2 30 133.33 56 [Son95]
6 24.576 6.144 1536 8 60 [And96)
4 160 5 2.5 32 65 [Nor96b]
8 42.8 10.7 200 107 - [Abc97]
4 160 40 2000 40 45 [Baz97]
6 0.5 0.127 0.0005 500 85 [Chu97]
4 125 | 0.25-0375 | 6.25 100 59 [Cor97]
4 2.358 | 0.472-0.707 | 11.79 100 47 [Cor97]
4 10 3.75 200 25 62 [Jan97]
4 3200 800 25000 64 41 [Jay97]
8 42.8 10.7 200 107 — | [Leo97b]
4 0.827 0.20675 2.067 200 67 [Liu97)
4 40 20 200 100 72 [Ong97]
4 200 50 200 500 46 [Sho97]
2 3800 950 200 9500 59 [Gao98]
8 42.8 10.7 200 107 52 [Lou99]

Table 2.2

Survey of Bandpass £-A Modulator Implementations.
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2.4 Applications of Bandpass T-A Modulators

Bandpass £-A modulators are well suited in communication systems, special-
purpose instrumentation and spectrum analysers for narrow-bandwidth input sources
[Thu92]-[Lon93]-[Sch96]-[Nor97]. A typical practical application for bandpass A/D
conversion is in digital radio systems, where the IF signal of a superhetrodyne radio
receiver can be directly digitised, allowing subsequent signal processing operations such as
IF filtering and demodulation functions to be performed with greater accuracy [Bry94]-
[Jay97]. This technique avoids dc offset and low frequency noise problems (i.e. compared
with mixing and down conversion té) baseband) [Pat94]. It also overcomes I/Q mismatches
in quadrature demodulation, since this stage is performed digitally [Abc97]-[Gao98]-
[Har93]-[Jan93]-[Lou99]-[Sin95]}-[Son95]-[Thu92]. In addition, these modulators enable
the digitisation of weak IF signals with relatively low cost and high precision [Gar99].

In AM digital radio receivers, the placement of the A/D interface closer to the
antenna eliminates the need for the mixers and IF amplifiers, resulting in a reduced
component count, robustness and greater accuracy. The use of digital filters improves the
phase linearity and facilitates programmability and testability [Jan91a]-[Lon93]-[Sch89]-
[Eng99b].

Other viable applications that require high-resolution A/D conversion include
receivers for digital mobile cellular telephony [Gou94], high-speed modems [Baz95],
satellite communication services [Chu97] and voice-band telecommunications. These
bandpass converters are also suitable for portable receiver applications with channel
allocation bandwidths under 20 MHz, RF carrier frequencies below 1 GHz [Gao98], for
example, pagers, cordless telephones, wireless electronic mail and personal communication
devices [Jan94]-[Jan97]-[Ong97]-[Ta099].

A further promising application is in phased-array ultrasoum‘i imaging using 1-bit
bandpass I-A A/D converters [Nor96], where the overall analogue hardware can be
. simplified in exchange for increased digital signal processing complexity. A more recent
applicable development is in on-chip signal generators for built-in-self-test [Vei96]. A
phase locked-loop frequency synthesiser using a bandpass Z~A digital oscillator as the

frequency reference was also reported in [Her96] as another potential application.

2.5 The Lowpass-to-Bandpass Transfofmation Method - Mid-Band Resonance
The simplest method for designing narrow-band bandpass Z-A modulators involves

starting with a suitable lowpass accumulator-based £-A modulator and then applying the

40



discrete lowpass-to-bandpass frequency transformation, z' — -z [Sch92]-[Lon93]-
[Baz95]. A physical interpretation of this is that each delay element is replaced by a double
delayer and a inversion. This has the effect of moving the zeros of the NTF from DC to the
half-Nyquist frequencies as shown by the PZPs in Figure 2.4.

v=i0.28 v=025
=05 & - o 05 & )
(2)
v=-025 v=-025
Lowpass Loop-Filter Bandpass Loop-Filter
(a) (b)

Figure 2.4  Pole-Zero Patterns of (a) 1¥-Order Accumulator, (b) 2"_Order Resonator.

Thus, the relationship between the sampling and centre frequencies for this popular special
case is given by f = Y4 fs . The loop-filter becomes a second-order resonator R(z) given
by:

1
R(v) = (1 _ g 27(029) )(l _

: = (2.1)

1+z

- j27r(—0.25)) - R)=

where both zeros are stationed at the origin and the two complex conjugate poles are placed

on the unit-circle at the half-Nyquist frequencies (z =), thus achieving resonance at

Ve = J4 . At the resonant frequency, the mid-band resonator loop-filter has no phase-shift,
whereas the double-delayer in the feedback path at this particular frequency introduces a
180° phase-shift.

ie. z72 =g /Acls = g7 = (2.2)

For this reason, the modulator output signal is added to, rather than subtracted from the

input signal at the summing node.
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Figure 2.5 Block ﬁiagrams of (a) 1"-Order Accumulator-Based Lowpass, (b) 2"-Order
Resonator-Based Bandpass Z—-A Modulators.

Figure 2.5 presents the block diagrams of a conventional lowpass first-order Z-A
modulator and the newly derived second-order mid-band resonator-based £-A modulator.
Although, the loop-filter is actually second-order containing poles at each of the one-
quarter and three-quarter sampling frequencies, it results in what is known as an effective-
first-order bandpass Z-A modulat\or, because the other pole is really contributing to noise-
shaping at the corresponding negative centre frequency.

" An output expression for this second-order Z-A modulator in the z-domain can be
obtained by representing the 1-bit quantiser by an additive white noise model and then

applying linear analysis. This resultant output ¥(z) becomes:

Y(2)= X(2)+ (1= jz7)(1+ j27)0(2) = X(2)+(1+272)Q(2) 2.3)

where X(z) and Q(z) are the input and quantisation noise signals respectively. This
approximate mathematical expression demonstrates that the quantisation noise is nulled at
the half-Nyquist frequehcy by a second-order notch-filter, leaving the original signal
undistorted. For implementation purposes, the loop and feedback filters are often combined

into a single transfer function, resulting in the slightly modified output signal shown below:

¥(z) = 272X (2) + 1 +272)Q(2) (2.4

In order to enable the second-order mid-band resonator-based £-A modulator to
produce the correct noise-shaping in a simulation environment, it needs to be excited by an
additive scaled dither signal at the quantiser input. In the absence of dither, the magnitudé
spectrum of this modulator consists of a string of strong-tones, whose location, mode of
repetition and amplitude directly depend on the signal amplitude of the input sinusoid. For
example, the magnitude spectrum for unity-amplitude input sinusoids contains purely three

distinct tones positioned at the dc, half-Nyquist and Nyquist frequencies with no noise-
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shaping. The corresponding tone strengths are -12.04 dB, -12.04 dB and -18.06 dB
respectively. For half-scale sinusoids, five tones whose amplitudes are -8.52 dB, -18.06 dB,
-18.06 dB, -18.06 dB and -24.08 dB are generated at the normalised centre frequencies of
0, 0.125, 0.25, 0.375 and 0.5 respectively.

The amplitude of the majority of these tones is reduced as their number increases
across the spectrum. This observation verifies the constant output power criterion. A very
small amplitude dither signal in the order of uV’s is required to stimulate the modulator to
achieve proper noise-shaping. In practice, however, larger amplitude dither signals (i.e.
0.1 = 05 of full-scale) are deemed necessary to accomplish more significant quantisation
noise randomisation, in order to reduce strong-amplitude tones to noise floor levels. Tone
reduction can be achieved at the expense of degraded in-band SNR.

Simulations have also revealed that this modulator can be made to deliver spectral
noise-shaping without a dither signal by exciting it with an irrational-amplitude sinusoid.
The immediate benefit is that the absence of dither does not compromise the modulator
resolution. However, this type of excitation mechanism is deemed unreliable, because it is
only restricted to making the modulator operational for non-finite-amplitude input signals.
Furthermore, all the examined noise-shaping spectra corresponding to a hundred random
input amplitude combinations exhibited strong spectral content.

Simulations have demonstrated that changing the initial conditions of the loop- and
feedback filters from zero to random numbers and vice-versa, unfortunately does not
trigger this modulator into proper operation. The location and number of these tones were
seen to be totally independent of the initial condition values for this particular second-order
T-A modulator. The amplitudes of these tones, however, were observed to vary slightly for
different combinations of random initial conditions.

It was observed through detailed simulations that the injection to the modulator input
of a sinusoid positioned at the exact band centre location produced a noise-shaping
response that exhibited a multitude of dominant tones. The shifting of the input frequency
slightly from the band-centre (i.e. by 0.01%) causes a randomisation effect to many of
these limit cycle oscillations resulting in a significantly improved noise-shaping spectrum
with fewer tones. The application of this frequency offset not only eradicated many of these
spurious tones, but it also acted as a third alternative to excite this modulator into
accomplishing spectral noise-shaping. This frequency-offset mechanism has been
employed in numerous topologies [Baz95]-[Rib94], but to the best knowledge of the
author, no explanation has been reported to-date.
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A fourth alternative means that can trigger this modulator into noise-shaping
operation in the absence of dither is to make this modulator chaotic by shifting the two
conjugate poles of the loop-filters slightly outside the unit-circle [Sch94]. The movement
of these poles substantially reduces the periodicity of these limit cycle oscillations,
resulting in weaker and fewer tones appearing in the magnitude spectrum. This method
should be applied with great care as minor shifts in the position of the poles due to non-
idealities in implementation can rendre the modulator unstable. Simulations have
furthermore confirmed that this method, unlike dither, can not suppress all the tones across
the spectrum. This complies with the observations made in [Dun96a].

This second-order £-A modulator was evaluated for an input sinusoid at v.= 0.25

for a wide range of amplitude levels. The simulations demonstrated that its magnitude
spectrum contained tones, whose locations and amplitudes varied with respect to the

magnitude of the input signal. For example, the spectrum for a half-scale input amplitude

contained two tones at 1/8 and 3/8 as shown in Figure 2.6(a).
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Figure 2.6  Second-Order Mid-Band Resonator-Based Bandpass Z—-A Modulator
(a) Magnitude Spectrum, (b) SNR Curves for OSRs.

Peak SNR values of 24.9 dB, 33.9 dB, 42.8 dB. 51.7 dB. 60.8 dB and 69.7 dB are
attainable for OSRs of 8, 16, 32, 64, 128 and 256 respectively. In addition, the average
increase in the SNR is found to be 9.2 dB for each doubling in the OSR. Furthermore, the
fluctuations in the SNR curves in Figure 2.6(b) for large input amplitudes for OSRs of 8,
16 and 32 are primarily attributed to the presence of relatively strong in-band tones. Small
OSRs imply larger bandwidths and these in turn are likely to encompass more tones. The
location, strength and frequency of these tones, as already discussed in Section 1.13.5,

depends on the amplitude and frequency of the input waveform. For very small input
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amplitude signals, the SNR curves become very non-linear, because of the presence of
many closely’ adjacent tones within the signal region. Moreover, the out-of-band tones
especially ,at dc and Nyquist become more dominant as the input signal diminishes in
amplitude. It was observed that the dc tone for a whole range of input amplitudes is always

larger than its Nyquist counterpart by as much as 5 dB.

2.6 Higher-Order Mid-Band Resonator-Based Bandpass Z—A Modulators
This transformation can be quite easily applied for the design of higher-order mid-
band resonator-based bandpass —A modulators. A generalised PZP for an L”-order mid-

band resonator-based bandpass Z—A modulator is shown in Figure 2.7 (a).

v =025 8
(L) 7t
6+ 6"-Order Bandpass
5}
=05 & v=0 §
Y (2L) 24 4%Order
s 3
27d.Order Bandpass
2
(L) 1
v=-025 0
L -order Bandpass NTF 0 0 T i e 05
(a) (b)

Figure 2.7  (a) Pole-Zero-Pattern of the NTF of an L™-Order Resonator-Based Bandpass
T-A Modulator, (b) NTF Magnitude Spectra of 2"-, 4"~ and 6"- Order
Bandpass £-A Modulators.

A further advantage, as with the lowpass case, is that smaller sampling frequencies can be
used to yield the same resolution to meet a given specification compared with lower-order
¥—A modulators. Figure 2.8 presents an L"-order chain of mid-band resonators with

distributed feedback topology.
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Y(z,)‘

Figure2.8 An [ -order chain of mid-band resonators with distributed feedback.

Using linearised analysis and assuming the feedback as well as the feedforward coefficients

to be all unity results in an output given by:
¥(2)=X(@)+(1+27)" Q) @53)

A theoretical expression corresponding to the NTF of (2.5) for the shaped quantisation

ijfT] = ;—3[(1+z'2)L
S

Integrating over the signal bandwidth f; = f/2 OSR, gives the in-band noise power a,f

noise is given by

2

a..fhn f IHN

2
] = f_s(2 cos2zfTY**  (26)

7= eJ28T

of the modulator.

fe+ %
ot =2 (ol (N)df @.7)
fe-%

o2 (u)z”fa +L‘ (u) s“‘[ ”(fc *“J(L k)T] [”(fc*-“')(L k)T]

Oy = 2L
2L gfeT |\ L L-k (238)
The in-band quantisation noise is reduced by (3L +3) dB for each octave increase in the

OSR, where L denotes the order of the notch-filter [Sch89]-[J an9lb]. The theoretical
results depicting the decrease in the in-band quantisation noise with respect to the OSR for

different modulator orders are presented in Figure 2.9.
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Second-, Fourth-, Sixth- and Eighth-Order Bandpass —A Modulators.

The magnitude spectrum of a fourth-order resonator-based bandpass Z-A modulator for a

half-scale single-tone sinusoid exactly centred at v = 0.25 is shown in Figure 2.10 (a).
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Figure 2.10 Fourth-Order Mid-Band Resonator-Based Bandpass Z—-A Modulator
(a) Magnitude Spectrum, (b) SNR Curves.

This spectrum is seen to contain six distinct tones positioned at 1/16, 2/16, 3/16, 5/16, 6/16
and 7/16 as well as two notches at DC and the Nyquist frequency. Detailed simulations
have shown that the magnitude spectrum of £—A modulators that contain a few strong-
power tones Or many low-power tones due to very low input amplitudes often exhibit
notches at the same time. Since the output power of a single-bit Z-A modulator is always
unity irrespective of the input amplitude, these notches unavoidably occur to compensate

for the presence of these tones. This modulator was evaluated for different input amplitude
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levels and zero initiail con&itions, where the number of tones and their locations were seen
to depend primarily on the amplitude of the input signal. The two notches remained at
v=0 and v =05 for all input amplitudes. .

Simulations indicate that the locations, strength and density of the tones in the
spectrum for this fourth-order Z-A modulator for an input signal amplitude of 0.5 and a
dither signal of 0.01 amplitude is very sensitive to the initial conditions of the resonators of
the loop-filter. Peak SNR values of 34.4 dB, 48.8 dB, 64.2 dB, 79.3 dB, 94.8 dB and 110.3
dB are attainable for OSRs of 8, 16, 32, 64, 128 and 256 respectively. In addition, the
average increase in the SNR is found to be 15.2 dB for each doubling in the OSR. The
simulations also reveal that the SNR curves in Figure 2.10(b) begin to decrease, when the
quantisation noise power due to overloading exceeds the power of the input signal. For
small input levels, the SNR reduction is attributed to the concurrent decrease of the input
signal power and the increased occurrence of in-band tones. Modulators containing
quantisers that have few and/or an even number of levels exhibit more tones in their
spectral content, due to the absence of the zero threshold as this increases the occurrence of
oscillations for small amplitude signals.

Higher-order single-bit resonator-based bandpass -A modulators are prone to
instability for large-amplitude input signals, because the signal levels in the modulator
feedforward path increase more rapidly compared with those in the feedback. The feedback
path is made ineffective and as a result, the 1-bit quantiser becomes constantly overloaded.

One simple heuristic solution is to choose suitable values for the feedback
coefficients to make the magnitude of the feedback signals comparable to those circulating
in the feedforward path. Intuitively, these coefficient values should be increased in powers
comparable in value with the peak amplitude increase of the modulator order NTF. These

feedback coefficients are numbered f,, f; and f, from the resonator nearest the quantiser.
Simulations have confirmed that this increase is proportional to (L-1)for feedback
coefficients closest to the quantiser decreasing in successive powers for consecutive
feedback coefficients away from the quantiser. Integer coefficient combinations are easier
to use, e.g. 1,3,90r 1,4, 16 or 1, 5,25 for f,, f; and f, respectively. Alternatively; small
gains for the resonators can be used to reduce the magnitude of the signals in the
feedforward path [Bos88]-[Baz95].

The envelope of the NTF for the 6™-order resonator-based Z~A modulator, when all
the coefficients are set to unity, rises very steeply for the out-of-band magnitude reaching a

peak value of 18.1dB at v=0 and v=105 - well above the threshold tolerated by the 1-

48



bit quantiser. The NTF magnitude can be reduced by including feedback coefficients to the
modulator, whose values have to sufficiently exceed unity so as to provide adequate signal
strength to counter-balance the large amplitude levels in the feedforward path. Figure 2.11
shows that the NTF magnitude for different combinations of feedback coefficients. It is
seen that the NTF magnitude decreases as the feedback coefficients increase - this naturally

has the desirable effect of enhancing modulator stability.

-t
|
1
'
|
e
1
1
1

b
B

7

/
0
1
1

1
1
1
1
r
1
1
1

Magnitude in dB

=25

T e o Ve ey o8

S NS, S S
LY

"
»
—_

e S e e el =

ol e R’ T et abalal! laite T TG
L o il o o i com e Bl g v s e 1 o B o e

D S

o

7 ekl il e o = St e

S il

o
o
o

0.2 0.25 0.3
Normalised Frequency, v

o
o
o
-
o

Figure 2.11 NTF Magnitude Comparison for Different Feedback Coefficients for a Sixth-
Order Bandpass Z-A Modulator.

The magnitude spectrum of a sixth-order bandpass Z-A modulator for an input
amplitude of 0.5 and dither signal of 0.01 contained distinct tones located at equi-spaced
multiples of v=1/64 as well as four notches positioned at v =0, 0.125, 0.375 and 0.5.
More unexpected notches appear in the spectrum in order to compensate for the presence
of strong-power tones, especially for large-input amplitudes. The periodicity and strength
of these tones were seen to be a function of the input amplitude. However, the location of
the extra notches was shown to be independent of the signal amplitude. Furthermore, the
use of different sets of feedback coefficients was demonstrated to be independent of the
tones and the extra notches.

Furthermore, increasing the amount of dither at the quantiser input helps to reduce
these tones considerably, but at the expense of increased quantisation noise in the signal
region. This also causes the notches to almost disappear confirming the earlier intuitive

explanation that the presence of strong-power tones is related to the existence of notches as

a means of power compensation.
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Figure 2.12  SNR Curves of Mid-Band Resonator-Based Bandpass Z—A Modulators for
different OSRs , (a) Sixth-Order, (b) Eighth-Order.

The SNR curves for a 6"-order and an 8"-order =~A modulators given in Figure
2.12 demonstrate that significant improvements in the in-band SNRs and DRs are
accomplished for higher modulator orders and OSRs. For the sixth-order £-A modulator,
peak SNR values of 47.9 dB, 64.5 dB, 79.7 dB, 95.3 dB, 113.8 dB and 134.2 dB are
attainable for OSRs of 8, 16, 32, 64, 128 and 256 respectively. In addition, the average
increase in the SNR is found to be 15.6 dB for each doubling in the OSR.
The maximum achievable SNR values for the eighth-order modulator are 31.4 dB, 55.8 dB,
85.3 dB, 112.1 dB, 138.8 dB and 157.7 dB for the same corresponding OSRs. In addition,
the average increase in the SNR is found to be 26.4 dB for each doubling in the OSR.
Furthermore, Figure 2.12 shows that the SNRs for the 6" and 8" order modulators are
substantially reduced as a result of modulator instability for all input amplitudes beyond
-2.2 dB and -10.5 dB respectively.
Mid-band resonator-based bandpass £—A modulators are relatively easy to design and
invariably exhibit symmetrical noise-shaping magnitude spectra. This symmetry helps to
maintain stability and reduce the specification requirement of the decimation filter.

However, two major limitations exist with the z 1572

transformation technique.
Firstly; it only works for one centre frequency, i.e. v = .. Secondly, it always requires a
stable lowpass Z-A modulator prototype. Fortunately; these constraints can be overcome
by employing variable-band noise-shaping modulators as will be explained in the following

sections.
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2.7 The Lowpass-to-Bandpass Transformation Method - Non-Mid-Band Resonance
This section describes a technique that was proposed in [Har93] and [Sch96] that can
achieve noise-shaping tunability for very narrow-band bandpass £—-A modulators. This
method basically involves the insertion of a tuneable allpass filter in cascade with ‘each
delayer of a stable lowpass £—-A modulator prototype, causing the loop-filter poles to be
shifted around the unit-circle to the designated centre frequency ;)f interest. This discrete-

time lowpass-to-bandpass transformation is given by

R | p+z"
sz {1+ﬁz"i| 2.9)

where B =cos(2zfc/fs) . Positive and negative B values deliver noise-shaped passbands

for the normalised centre frequency ranges 025 < v, <05 and 0 < v, <0.25 respectively,

whereas the case #=0 degenerates to the mid-band resonance case (i.e. z' = —z2) that
was discussed Sections 2.5 and 2.6.

The application of this spectral transformation to a first-order accumulator-based
lowpass £-A modulator results in the following loop- and feedback transfer functions.

These are given by:

H(z) = and F(z)=-(Bz7' +272) (2.10)

1-28z71 + 272

A suitable topology of a second-order bandpass Z-A modulator incorporating these

modifications is shown in Figure 2.13, where D(z) represents the dither gain.
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Figure 2.13 Second-Order Bandpass Z-A Modulator using Frequency Transformation.
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The magnitude spectrum for a 2" order £-A modulator tuning at v~ = 5/64 for input and

dither signal amplitudes of 0.5 and 0.01 is shown in Figure 2.14(a). Magnitude spectra
corresponding to a whole range of small and medium strength input levels exhibited
relatively fewer tones in comparison with their mid-band resonator counterparts. This is
due to the more complicated composition of the loop-filter, which imparts more state
values and thus weaker spectral tones. Figure 2.14 (b) shows that, unlike the mid-band
resonator case, the SNR curves become noticeably non-linear for input signal amplitudes
exceeding -5 dB. This non-linearity is caused by the asymmetrical noise-shaping response
for non-mid-band resonator frequencies, which is responsible for the amplification of the
internal signal levels in the modulator feedforward path. Careful behavioural-level
simulations showed that the quantiser was never overloaded for the mid-band resonator

case. However, for v, = 5/64, the quantiser input amplitude invariably exceeded the

quantiser dynamic range by as much as 2 or 3 times, giving rise to spurious tones. Some of
these manifest themselves in the in-band region, therefore accounting for the apparent SNR
dip for high-input signal amplitudes. Simulations also confirm that unlike the F g

spectral transformation, the modulator dynamics including stability are not preserved.
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Figure 2.14  Second-Order Variable-Band Resonator-Based Bandpass £-A Modulator at
Ve = 5/64 (a) Magnitude Spectrum, (b) SNR Curves for different OSRs.

Peak SNR values of 22.3 dB, 31.4 dB, 39.7 dB, 49.4 dB, 58.3 dB and 67.3 dB are
attainable for OSRs of 8, 16, 32, 64, 128 and 256 respectively.

This transformation is then extended to a second-order lowpass £—A modulator. The
loop-filters H,(z) and H,(z) as well as the feedback filter F(z) are identical to the

transfer functions in (2.9). However, this newly derived 4"_order bandpass £-A modulator
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may be simplified by embedding the feedback term into the second loop-filter making

H,(z) adelayed resonator. The new transfer functions for this modulator become:

Hy(z)=-(Bz' +27)/(1-Bz" +27) and  F(z)=1 @2.11)

while H,(z) remains unchanged.

Simulations show that this 4"_order modulator remains unstable when all its coefficients
are set to unity. In order to stabilise this modulator, the gain of the first-resonator had to be
reduced. A value of 0.125 was empirically found to suffice, thus enabling this modulator to

perform noise-shaping at v = 5/64 as can be shown in Figure 2.15(a).
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Figure 2.15 Fourth-Order Variable-Band Resonator-Based Bandpass Z—-A Modulator at
v = 5/64 (a) Magnitude Spectrum, (b) SNR Curves for Different OSRs.

A family of SNR curves for various OSRs is illustrated in Figure 2.15(b), where this
modulator is shown to become unstable for a sinusoidal input amplitude exceeding -2.1 dB.
This is in contrast to the 4"_order mid-band resonator case, which does not destabilise until
its input amplitude exceeds -1 dB. Peak SNR values of 22.8 dB, 43.8 dB, 44.2 dB. 56.5 dB,
72.4 dB and 88.7 dB are attainable for OSRs of 8, 16, 32, 64, 128 and 256 respectively.
Simulations confirm that further reductions in this gain value are deemed necessary if
this modulator is required to perform noise-shaping for centre frequencies that are smaller
than 5/64. This potential to instability is attributed to the uneven shoulder gains of the non-
mid-band resonator loop-filters H,(z) and H,(z). This 4"-order modulator was evaluated
for different-amplitude sinusoids ranging from 0 —1 for the full-range of normalised

frequencies to determine the lower and upper frequency thresholds before the onset of
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instability. When all the gain coefficients are set to unity, Figure 2.16 demonstrates that
this modulator remains only stable for the range 022 < v, <028.
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Figure 2.16 3-D Plot illustrating the Stable Range of Normalised Centre Frequencies for
a Fourth-order Variable-Band Resonator-Based Bandpass £-A Modulator.

This transformation technique is simple to apply and provides flexibility in that
noise-shaping can be provided for any centre frequency across the spectrum. However, it
has several drawbacks. First; a working lowpass £—A modulator is always required, whose
noise-shaping properties and stability are not maintained after the transformation. Second;
the uneven shoulder gains attributed to the non-mid-band resonator transfer function
jeopardise modulator stability and impose tighter specifications on the post bandpass
decimator. Third; good resolution can only be achieved for extremely narrow bandwidths,
normally a single frequency. Fourth; the designer is only limited to specifying the centre
frequency location and OSR, having no freedom over specifying the parameters that
control the stable and tonal properties of the modulator.

It is quite evident that this lowpass-to-bandpass transformation has numerous
constraints. This necessitated the development of existing techniques to circumvent some
of these limitations and explore alternative novel approaches that can deliver enhanced

noise-shaping spectra and better resolution.

2.8 Extension of the Transformation Approach to Specifying Bandwidths
The lowpass-to-bandpass transformation technique proposed in [Har93] and [Sch96]
and discussed in Section 2.7 restricts the designer to only specifying the centre frequency

of the noise-shaping band. In this section, this transformation is developed so as to allow
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the designer to specify the bandwidth as well as the centre frequency location for a given
NTF. This is given by:

2 (2ek\,-1, (k=1
-1 z +(k+l)z +(k+l)

T T (e o

where

cos [27:(VH+VL)/2] 27[(VH—VL)

*= cos [Zz(vH—VL)/Z] and k=cot (——T_J @1

Before delving into the detailed analysis, it is useful at first to discuss the main
characteristics that are associated with this technique. First; it allows the designer to define
the signal bandwidth making it more suitable for applications, whose inputs are composed
of a multitude of harmonics. This is in contrast to the procedure in Section 2.7, which only
permits the specification of the centre frequency, totally disregarding the width of the
modulator input signal. Second; the shoulder gain levels of the NTF and subsequently the
loop-filter are equal for any arbitrary band-location across the spectrum. This serves to
enhance stability, particularly, for higher-order modulators circumventing the need for the
incorporation of stability scaling factors. Third; the design process using this
transformation is straightforward to apply to any conventional lowpass £-A modulator
prototype. This simply requires the substitution of each delay element of the lowpass
prototype with the more elaborate expression given in (2.12). Fourth; the magnitude spectra
of all the examined modulators using this transformation for v, =17/64 and vy= 1/32
exhibited noticeably fewer tones in their spectra. This is attributed to the more complicated
coefficients of the loop-filter, which imparted a wider range of state values. Needless to
say, a larger variety of internal signal amplitudes helps to reduce the recurrence of similar
patterns, thus leading to fewer strong spectral tones. Simulations also confirm that the
~ quantiser input levels are almost always within the threshold boundaries of the quantiser.
This substantially reduces the formation of tones, especially for large input amplitudes.
Fifth; the poles and zeros of the NTF are coincidentally positioned on the unit-circle. This’
may simplify the complexity of the loop-filter coefficients, but certainly does not yield
optimum in-band SNRs.

In order to facilitate the design of bandpass £-A modulators using this transformation, a

programme has been written in Matlab, which can evaluate the loop-filter coefficients
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based on the specification of v, vz, modulator order and dither gain. An annotated outline

of this programme’s algorithm is given below:

STEP 1: Specify the normalised centre frequency v, as well as the bandwidth v, of the
intended design. For a symmetrical signal-band, v is defined in terms of the normalised
lower v, and upper vy frequencies as illustrated below in (2.14)

vy =ve—Avg/2 and vy =vo+Av/2 (2.14)

STEP 2: Determine the coefficients & and k using (2.13) and substitute them into the

transformation given in 2.12.
STEP 3: Select the NTF for a stable lowpass Z-A modulator.

STEP 4: Apply this transformation to each delayer term of the prototype NTF. Note that
higher-order delayers need to be replaced with a cascade combination of this

transformation, whose number equals the order of each delayer component.

STEP 5: Scale down the NTF so that its first coefficient becomes 1 in order to satisfy the
causality criterion. Note that this transformation, unlike the previous two in Sections 2.5
and 2.7, can not be directly applied to the loop-filter, because it contains constant terms in

both numerator and denominator, inevitably violating the causality criterion.

STEP 6: Verify the peak amplitude of the NTF spectrum to ensure that it complies with

Lee’s stability criterion.

STEP 7: The loop-filter L(z) can be analytically obtained by re-arranging the NTF

expression such that
L(z) = (1- NTF)/NTF 2.15)

STEP 8: Enter the coefficients of L(z) into the modulator and simulate it at the

behavioural-level to confirm the correctness of its operation.

A generalised loop-filter expression, which is used by this programme is given below:
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Bz + Bz + o P + gzt

Li(z)= = =
adp+az” vz i+ a2 127t

(2.16)

The corresponding algebraic loop-filter coefficients for the first-order differencer-based

NTF are B, =a,(1-a,), B =(022—l), ay=(1+a,), @ =-2a, and @, =(1+a,) .

The loop-filter coefficients for a second-order differencer-based NTF are:

B =2a,(1-a), 5, =-2-2a,(1-a, -a,*) +a’Qa, -3 +a,?),

G =2a12+a, -2a,2-a%), B, = Qa +a,' -1-2a,) .0, = 1+ a,)* a, = —4a,(1+a,)
a, =2(1+2a2 +2a? +a?), a; = -4a,(1+ay), , =(1+a,)%.

The numerical coefficient values for the first-, second- and third-order based NTFs and

loop-filters for the Av =1/32 case are given in Table 2.3.

Noise Transfer Function Loop-Filter

First-Order Differencer Case

m | 01970 | d, | 01793 | B | 00177 | a, | 0.1970

ny 1 d, | 08207 | & | -0.1793 | a, 1

Second-Order Differencer Case

n, 0.3940 d, 0.3586 B | 00353 | ¢ 0.3940

n, 2.0388 | d, 16735 | B, | 03653 | a, | 2.0388
n, 0.3940 | d, 02943 | B | -0.0996 | a; | 0.3940
n, 1 d, | 06735 | B, | 03265 | «, 1

Third-Order Differencer Case
n, 0.5909 d, 0.5380 | B | -0.0530 | ¢ 0.5909

n, | 3.1164 | d, | 25585 | B | -0.5579 | a, | 3.1164
n, | 1.1895 | d; | 08888 | B, | 03008 | a@, | 1.1895
n, | 31164 | d, | 20997 | B, | -1.0167 | a, | 3.1164
ns | 05909 | d; | 03623 | B | 02286 | &, | 0.5909
e 1 dy | 05527 | f; | 04473 | 1

Table 2.3  NTF and Loop-Filter Coefficients for Extended Transformation Technique
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The magnitude spectra for a second- and third-order differencer-based NTF for a sinusoidal

input amplitude of 0.4, v, = 17/64, Av=1/32 and dither signal = 0.05 are shown in
Figure 2.17.

in dBs

n 4B8s

Magnitude
Magnitude i

160
1o
005 0! 015 02 02 03 03 04 04 05 O 005 01 015 02 02 03 03 04 04 05
Normalised Frequency, v Normalised Fraguency, v

(a) (b)

Figure 2.17 Magnitude Spectra using Extended Transformation Approach of a Z-A
Modulator at v = 17/64 based on NTFs (a) 2"*-Order Differencer,

(b) 3"-Order Differencer.

The plots in Figure 2.18 show a family of SNR curves for different OSRs for the 1%, 2
and 3™ order differencer-based NTFs at v = 17/64. Peak SNRs values of 24.9 dB, 34.6

dB. 44.2 dB, 52.8 dB, 61.5 dB and 71.1 are achievable for OSRs of 8, 16, 32, 64, 128 and

256 respectively for the 1*-order case.
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Figure 2.18 SNR Curves using the Extended Transformation Approach of a 3—-A
Modulator at v = 17/64 based on the NTF of: (a) 1*-Order Differencer.
(b) 2"_Order Differencer and (c) 3"-Order Differencer.
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Similarly; the corresponding set of maximum SNRs for the 2".-differencer case are 24.6 -
dB, 35.5 dB, 48.4 dB, 61.8 dB, 75.8 dB and 90.6 dB and the for 3"-order case, these are
23.2 dB, 34.1 dB, 47.2 dB, 59.3 dB, 68.7 dB and 76.1 dB respectively. In addition, the
average increase as a result of doubling the OSR for the 1*, 2™ and 3" o'rder differencer-
based modulators are given by 8.9 dB, 13.1 dB and 17.5 dB respectively. Simulations have
also shown that this method does not deliver good SNRs for extremely narrow-bandwidths.
This is explained by the fact that the very close clustering of the NTF zeros to the poles do

not allow the zeros to accomplish sufficient attenuation in the signal region.

2.9 Criteria for the Design of Variable-Band Bandpass *-A Modulators

Most of the published work on resonator-based bandpass I-A modulators has
involved utilising a convenient centre frequency that is one quarter of the sampling
frequency as confirmed by the literature surveys in Sections 2.2 and 2.3. This section
presents several methods for the design of narrow-band bandpass Z-A modulators that can
accommodate different passband to sampling frequency ratios, overcoming the popular
fs/4 restriction.

All the considered methods will assume that the 1-bit quantiser is modelled by an
equivalent additive noise source in order to enable the application of linear theory. As
already discussed, this linear model has many limitations, but it provides an adequate
general approximation of noise-shaping properties of dithered Z—A modulators. It enables
the designer to manually derive reasonably accurate models for the loop- and feedback
filters for any noise transfer function specification. The effect of parameter variation on the
overall modular characteristics as well as useful intuitive understanding of modulator
operation can also be gained from this linear model.

The final theoretical performance of a £~A modulator has to be verified through
detailed behavioural simulations, which incorporate the actual non-linear quantiser. The
ultimate design stage may include adjusting the modulator feedforward and/or feedback
coefficient(s) to achieve more effective noise-shaping and better resolution. It may also
involve varying the amount of dither at the quantiser input or modifying the loop-filter
initial conditions to suppress in-band tones.

A block diagram of a single-stage Z-A modulator is shown in Figure 2.19, where
L(z) and F(z) depict the loop- and feedback transfer functions and X(z), ¥(z), O(z) and

D(z) represent the input, output, quantisation noise and dither signals respectively.
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Figure 2.19 Block Diagram of (a) Single-Stage Z-A Modulator, (b) Equivalent Linear

Model.

This linearised approach enables the modulator to be characterised by a Signal
Transfer Function (STF) H;(z) and a Noise Transfer Function (NTF) Hy (z) as shown in

Figure 2.19 (b). The expressions for the Hg(z) and Hy(z) are given by:

Hy(e) =) — and  Hy(2)=

1+ L(2)F(2) 217

1+ L(z)F(2)

The loop- and feedback filters can be analytically derived by re-arranging the expression
for the H) (z)as shown below:

F(2)L(2) =(1- Hy(2))/Hy(2) (2.18)

The individual transfer functions for F(z) and L(z) can be simply obtained by separating
the numerator and denominator expressions such that F(z)=(1-Hy(z)) and
L(z)=1/Hy(2).

It is useful at this stage to define a set of criteria that will ensure the design of stable
high-resolution variable-band bandpass £-A modulators.

The causality criterion requires the loop around the quantiser to contain at least one
delayer. This condition must be met to ensure that the preceding quantisation error values
are used to form the current input to the quantiser. If this criterion is not satisfied then the
modulator can not be implemented. This causality rule is usually applied to the NTF and is
mathematically depicted by

lim Hy(2) =1 (2.19)

which implies that the NTF numerator and denominator polynomials must be of the same
order with both leading coefficients set to unity. This can be accomplished by incorporating
the delayer component either in the loop-filter L(z) or feedback filter F(z). Note that the
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simultaneous insertion of delayers in both L(z) and F(z) causes unnecessarily large phase
shifts in the modulator spectral responses, as confirmed by simulations, leading to
instability.

The modulator NTF must satisfy the stability criterion according to [Lee87b].
Making the approximately derived linear model stable does not guarantee the stability of
the modulator due to the presence of the non-linear quantiser. A non-linear system may
become unstable, if the out-of-band noise gain gets too high. Extensive empirical
investigation by Lee, taking into account component and manufacturing tolerances requires
the NTF to satisfy (2.20):

|Hy(2)|< 16 (2.20)

The stability of higher-order single-bit bandpass £-A modulators can be further
enhanced by designing NTFs that do not exhibit gain peaks in the magnitude spectra in
order to control the signal amplitude levels within the modulator, thereby avoiding
quantiser overloading.

The deployment of the NTF zeros and consequently loop-filter poles exactly on the
unit-circle at the desired centre frequency accomplishes maximum in-band quantisation
noise attenuation resulting in a very deep ‘V-shaped’ notch. This can be mathematically
verified by ensuring that the squared and constant term coefficients of the resonator
denominator are both equal to unity [Sig95]. If the loop-filter poles are positioned at the
wrong frequency (i.e. wrong angle in the z-plane), then the noise notch will be improperly
centred. More seriously, the movement of the resonator poles inside the unit-circle reduces
the resonator gain (i.e. Q-factor) at the centre frequency of interest. The in-band notch
becomes shallower resulting in a poor noise-shaping response and a lower in-band SNR. If
the radii of the resonator poles are reduced by more than 5% from unity, then the noise-
shaped magnitude spectrum begins to exhibit more tones.

From a time-domain point-of-view, the leakage factor in the resonator is responsible
for the creation of a permanent error between the modulator input and output signals, thus
accounting for the lower SNR performance.

It can be reasonably argued that the internal signal levels within the modulator will
have smaller amplitudes, which implies that the limit cycle oscillations will be disturbed
less often resulting in the occurrence of more identical sample patterns in the time-domain.

The slight movement of some or all the resonator poles outside the unit-circle

increase the vulnerability of the modulator towards instability. This, however, causes the
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break-up of some of the limit cycle oscillations resulting in fewer tones appearing across
the spectrum.

The noise-shaping characteristics of the modulator are related to the loop-filter
characteristics including the accuracy and locations of its poles and zeros, the initial
conditions of the loop-filter, the number of levels in the quantiser as well as the type and
amplitude of the input signal. The use of coincidental zeros, integers or multiple of 2
coefficients in the NTFs and loop-filter simplify the hardware complexity of I-A
modulators [Nor97, pp. 282].

The NTF method circumvents the need to obtain or design a lowpass Z-A modulator
prototype by starting the design process directly for the bandpass £—~A modulator. This is
particularly useful for the design of higher-order modulators, where the maximum
magnitude gain of the noise-shaping spectrum can be exactly determined and reduced if

necessary to ensure modulator stability.

2.10 The FIR Notch-Filter (FNF) Approach
This method is based on positioning the zeros of the real-coefficient NTF in

conjugate pairs on the unit-circle at the selected centre frequency location to provide
maximum signal-band attenuation. The zeros of the NTF are located at e*/2** , where v,

is the normalised centre frequency of interest. The poles of the NTF, however, are

permanently stationed at the origin of the unit-circle. The NTF is given by:
Hy(z)=1-2cosaz™ +z72 (2.21)

The expressions for the loop L(z) and feedback F(z) filters can be analytically obtained by

substituting the H (z)into (2.21) resulting in
L(z)=1/1-2cosaz+z2 and F(z)=2cosaz™ -z (2.22)

The corresponding Pole-Zero-Patterns (PZPs) for Hy(z), L(z) and F(z) are given below:
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Figure 2.20 Pole-Zero-Patterns of (a) FIR Notch-Filter NTF, (b) Loop-Filter,
(c) Feedback Filter.

This linear analysis reveals that a double delayer on its own in the feedback path,
unlike the mid-band resonator case, is insufficient to completely cancel the denominator
components of STF and NTF in (2.17) to unity. Simulations confirm that improper

denominator cancellation lowers the in-band quantisation noise attenuation. The inclusion
of a weighted single-delayer (i.e. 2cos2z v, z“l) in summation with the double delayer in
the feedback path, depicted by F(z), achieves the necessary cancellation and thus provides
more effective noise-shaping. Note that F(z) degenerates to a double-delayer only when
ve = 1/4. Simulations confirm that smoother magnitude spectra and better in-band SNRs
are accomplished with the inclusion of the (2cos27 v, z") term in the modulator

feedback path.
The second-order Z—A modulator shown in Figure 2.5(b) is up-graded so as to enable

it to achieve noise-shaping for any normalised centre frequency in the range 0 < v, <05.
The variation of the noise-shaping band location is achieved by changing the value of S
where B =2cos27 vi. This corresponds to the movement of the poles of L(z) along the

unit-circle to the specified centre frequency location. The modified resonator-based *-A

modulator structure is illustrated in Figure 2.21. Note that = f, = 8, =1 in this case.
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Figure 2.21 Variable-Band Second-Order Bandpass Z-A Modulator.

The linearised output expression for structure shown in Figure 2.21 is
Y(2) = X(2)+ (1- Bz +27)Q(2) (2.23)

where Hg(z) is equal to unity and Hy (2) = (1- Bzt +272).

The NTF for non-mid-band centre frequencies exhibit asymmetrical magnitude responses.
This imbalance in shoulder gain levels reaches peak values of (2- /) for 0< v, <025
and (2+/) for 025<v, <05. This unevenness is transferred into the loop-filter
characteristics as a result of the NTF of (2.23) resulting in asymmetrical magnitude spectra.
This asymmetry causes the amplification of some of the internal signal levels in the
modulator, especially at the quantiser input. Figure 2.22(a) and 2.22(b) contrast the
histograms of the quantiser input for a second-order modulator for a 0.7 input amplitude
sinusoid for v = 1/4, and v, = 1/64, where larger input quantiser amplitudes are clearly

observed with the latter case.



&
|
§

1200- L
1200+
1000+
£ £ 1000,
E 800 §
A «
< % 800
£ 600- z
E § 800
z z
400+ A6
200~ 200+
% 3 B A 0 1 2 3 4 10 8 6 4 2 0 2 4 & 8 10
Range of Quantiser input Amplitude Range of Quantiser Input Amplitude
(a) (b)

Figure 2.22 Histograms of the Range of Quantiser Input Amplitude for a Variable-Band
Second-Order Z-A Modulator at (a) v = 1/4, (b) v = 1/64.

Simulations confirm that this second-order £—A modulator remains stable up to full
scale input amplitudes for all values of v, despite the large internal signal levels. The
family of SNR curves in Figure 2.23 exhibit non-linearities for large input amplitudes due
to quantiser overloading.

The degree of non-linearity becomes more noticeable for noise-shaping bands that are
positioned close to dc or Nyquist due to the disparity of the shoulder gain levels of the
NTE. Figure 2.23 also shows that this modulator exhibits better in-band SNR curves (by as
much as 3 dB) for v =5/64, v-=17/64 and v.=29/64 compared with those obtained for

the modulator in Figure 2.13. This improvement is attributed to the £ coefficient in the

feedback path, which is doubled in value compared with the Harris lowpass-to-bandpass
transformation technique. Thus, it is concluded that this bandpass £-A modulator provides
more effective noise-shaping by as much as an extra half-bit of resolution compared with

its sister topology in Figure 2.13.
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Figure 2.23 (a) Magnitude Spectrum of a Second-Order £-A Modulator at v, = 5/64,
SNR Curves versus Input Amplitudes for Variable-Band Bandpass Z-A
Modulators for Different OSRs at (b) v = 5/64, (¢) v.= 17/64 and (d) v.=
29/64.

For non-mid-band second-order X—-A modulators, the additional middle-term
coefficient, (i.e. f) leads to the creation of more state values, resulting in more tones
having smaller amplitudes. However, the magnitude spectrum corresponding to noise-
shaping bands at v =1/6 and v, =1/3 exhibits more distinct tones compared with

other centre frequencies. The strength of these tones is attributed to the simple integer
coefficients of the loop-filter, which yield fewer and more frequent state values. These
integer coefficients create finite-amplitude internal signals, which occur at exact bin

locations. This explains why the magnitude spectra for v =1/6, v =1/4 and v, =1/3
are more tonal compared with other values of v.
A more hardware-efficient second-order bandpass Z—A modulator combining L(z)

and F(z) into a single filter that is more suitable for implementation purposes as given by

(2.24). The modified linearised output expression has been altered as depicted by:

Y(@)=(Bz' -z )X (@) +(1- Bz +22)0@) (2.24)

It should be noted that in spite of this STF change, the variation in the magnitude and phase
characteristics in the in-band signal region between (2.23) and (2.24) are negligible.

This technique can be extended to higher-order £—A modulators, where improved in-
band SNRs and DRs can be accomplished for any variable centre frequency. Higher-order
NTFs can be simply designed by coincidentally positioning multiple conjugate pairs of
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zeros at the designated centre frequency. The NTF of a 4™ order bandpass —A modulator

is given by
Hy(2)=(1-2cosaz™! +z72)? (2.25)

Using linearised analysis and combining the second loop-filter with the feedback filter into
a single entity to simplify hardware implementation, the corresponding first and second

loop-filters respectively become:
L(=1/1-Bz"+27) and L()=(Bz"-z7)/(A-Bz"+27)  (2.26)

with the feedback set to unity as shown in Figure 2.24.

-
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1 Noise Model

1-bit quantiser

Figure 2.24 Variable-Resonator Based Fourth-Order Bandpass Z-A Modulator.

The linearised output expression is given by

-1, .2 - -2
aa,(Bz +27%) X(z)+(1-ﬂz‘+z )2 00) @27

Y =
@) Dy(2) Dy (@)

where

Dy(2) =1+ B(fia,az + 13 -2)z7! +(2 +/32(l—f2)—fla1a2 'fz)z_2

2.
2801, -2 + (1= )t ¢
Note that when f, f;, & and g, are set to unity, the output Y(z) degenerates to
Y@) =Bz -z2)X(2)+ (1= Lz +27H)?Q(2) (2.29)

Quantitatively; the NTF magnitude gains of this fourth-order Z-A modulator have
peak values of (2- p’and (2+p)? for the frequency ranges 0<v, <025 and
025<v, <05 respectively as shown in Figure 2.25(a). On the other hand, the peak NTF

gain corresponding to the mid-band notch filter case degenerates to 4. Given that the

frequency dependent parameter £ can reach a maximum of 2 for both dc and Nyquist, the

corresponding NTF peaks and as a result, the modulator internal signal levels are
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quadrupled in amplitude compared with the mid-band case. This explains why non-mid-
band fourth-order Z-A modulators are less stable in comparison with their mid-band
counterparts.

The 3-D plot in Figure 2.25(b) demonstrates that this fourth-order bandpass -A
modulator is stable up to an input amplitude of unity, with 1% dither and under random
initial conditions for the mid frequency range 0218 < v, <0282. The modulator
instability, outside this range, is attributed to the rising shoulder gain levels of the resonator

at low and high frequencies for 0 < v <0218 and 0.282 < v <05 respectively.
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Figure 2.25 (a) Maximum NTF Amplitude, versus Input Signal Amplitude versus
Normalised Frequency, (b) 3-D Plot illustrating the Stable Range of
Normalised Centre Frequencies for a Fourth-order Variable-Band Resonator-

Based Bandpass Z—A Modulator.

The effect of this asymmetry becomes even more significant for higher-order
variable-resonator based modulators, because the signals in the feedforward path in the
modulator are effectively amplified by the gain of L resonators in cascade, thus
overloading the 1-bit quantiser.

The modulator in Figure 2.24 can be made stable for all centre frequencies by
reducing the gains @, and @, in the feedforward path. A conservative empirical rule-of-
thumb, which was found to work for a whole range of centre frequencies involved using
the inverse of the peak NTF magnitude for the g, coefficient. The gain of the first loop-
filter is the most critical as this has global control over all the internal signal levels of the

modulator. The stability of this variable-band fourth-order £-A modulator was evaluated
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for a whole range of centre frequencies. A family of SNR curves for three different centre
frequencies are shown below in Figure 2.26. The premature instability experienced by this
modulator at frequencies very close to DC or Nyquist is caused by the disproportionate

shoulder gain levels of the loop-filter.
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Figure 2.26 Family of SNR Curves versus for the Variable-Band Fourth-Order Bandpass
Z-A Modulators at (a) v = 5/64, (b) v-=17/64 and (c) v.=29/64.
Behavioural level simulations for the 2™ and 4™-order variable resonator based
bandpass £-A modulator show that the peak SNRs and DRs remain relatively constant for
any arbitrary centre frequency as can be deduced from the results in Table 2.4. Simulations

also show that the SNR is improved by an average of 15.6 dB for every doubling of the
OSR for all examined frequencies in Table 2.4.

Ve Second-Order | Fourth-Order | Second-Order | Fourth-Order
Peak SNR/dBs | Peak SNR/dBs DR/dBs DR/dBs
1:8 55.8 94.7 59.8 101.7
1:7 33.1 93.6 59.0 99.8
1:6 55.0 93.4 58.1 98.6
3:16 54.9 92.6 58.8 97.6
b 56.8 93.3 57.8 96.8
3:8 56.3 94.8 59.7 100.4
2:5 56.7 94.7 60.5 99.4

Table 2.4  Peak SNRs and DRs for 2™ and 4" Order Bandpass £—~A Modulators

This modulator can be also stabilised by replacing the single-bit quantiser with a

multi-bit quantiser. The use of a multi-level quantiser generates small quantisation error
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signals, which help to control the amplitude levels of the internal signals in the modulator.
Compared with the single-bit quantiser case, these relatively small signal levels do not

overload the quantiser as often, resulting in more stable modulators.

a §,-levels a 9-levels a 10-levels
0.8 |0.142<v, <0353 | 0.8 | 0.124<v;<0.371 [ 0.8 | 0.108< v, <0.393
0.5 | 0.129<v, <0371 | 0.5 | 0.115< v, <0.384 | 0.5 | 0.107< v, <0.393
0.1 [0.129<v, <0371 | 0.1 |0.102<v;<0.399 | 0.1 | 0.098< v, <0.402
0.01 | 0.116 < v <0.384 | 0.01 | 0.103< v <0.402 | 0.01 | 0.098 < v, <0.397
a 11-levels a 12-levels a 13-levels
0.8 |0.093<v,<0.402 | 0.8 | 0.088<v,<0.424 | 0.8 | 0.057< v, <0.442
0.5 [0.080< v, <0420 | 0.5 | 0.068<v,<0.429 | 0.5 | 0.045< v, <0.469
0.1 |0.067<v,<0433| 0.1 |0.063<v,<0.442 ] 0.1 O<v <05
0.01 | 0.054< v <0.446 | 0.01 | 0.050< v <0.450 | 0.01 O<v. <05
a 14-levels a 15-levels a 16-levels
0.8 0< v, <046 0.8 O0<v, <0.5 0.8 0< v, <0.5
0.5 O<v. <05 0.5 O<v, <05 0.5 O<v, <05
0.1 0<v, <05 0.1 0< v, <0.5 0.1 O<v- <05
0.01 0< v, <05 0.01 0<v, <0.5 0.01 0<v, <05
Table 2.5  Stable Range of v, versus the Number of Quantiser Levels for a 4™ Order

Variable-Resonator Based Bandpass £-A Modulator.

Detailed simulation results were carried out for the 4™-order variable-resonator
based bandpass Z-A modulator to establish the relationship between the stable range of
normalised frequencies with respect to the number of quantiser levels. Table 2.5
summarises these results, where it can be clearly seen that the stable range of normalised
frequencies increases with more quantisation levels. Note that a refers to the amplitude of
the input signal to the modulator. This modulator for an amplitude dither signal of 0.01
requires at least 15 levels to remain stable up to an input signal amplitude of 0.8 and needs
16 levels (i.e. 4-bits) for it to remain stable up to full-scale input amplitude. A further
observation is that the stable range of normalised frequencies increases as the input

amplitude signal decreases in value. This confirms that the stable range of normalised

[4
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frequencies is a function of both the input signal amplitude as well as the location of the
noise-shaping band.

A family of SNR curves for the 4™-order variable-band bandpass £~A modulator for
different quantiser levels is shown in Figure 2.27, where the linearity of the SNR plots is

seen to improve as the number of quantiser levels increases.
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Figure 2.27 Family of SNR Curves for the Fourth-Order Bandpass -A Modulator
at v = 17/64: (a) 3-levels, (b) 5-levels and (c) 15-levels.

The maximum achievable SNR for this 4"-order bandpass £-A modulator for different
combinations of multi-level quantisers and OSRs are shown in Table 2.6. As expected, the
peak SNR figures increase in proportion to the number of levels in the quantiser. However,
a point is reached, where this SNR improvement ceases, making it unnecessary to utilise
quantisers with additional levels. For this modulator, the critical number of levels appears

to be between 5 and 6 based on the results presented in Table 2.6.

Peak SNRs in dBs
OSR 2-levels | 3-levels | 4-levels | S5-levels | 6-levels | 15-levels
8 26.5 36.3 42.2 43.2 43.3 43
16 41.9 51.4 57.1 58.1 58.3 58.5
32 57.1 66.4 12.2 72.9 73.4 132
64 72 81.3 87 88.5 88.4 88.5
128 87.2 96.9 102.6 102.7 103.8 103.1
256 102 111.7 117.2 117.8 119.4 118.6

Table 2.6  Peak SNR values versus the Number of Quantiser Levels for a 4"-Order
Variable-Resonator Based Bandpass -A Modulator at v =17/64.
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A third alternative of obtaining stability is to utilise IIR notch filters for the NTF as

will be explained in the next section.

2.11 The IIR Notch-Filter (INF) Approach

The uneven shoulder gain levels of the magnitude spectrum for most frequencies is a
major drawback of the FNF technique. Another limitation is that the notch has a relatively
large bandwidth implying that other frequency components, including unwanted tones,
close to the desired nulls may be included in the in-band signal region. This constraint is
also unsuitable for very narrow-band applications. These two problems can be solved by
placing the conjugate pole pairs of the NTF at the same frequency of the null, but with a
reduced magnitude as given by:

Hy(z)=(1-2cosaz™' +2z72)/(1-2pcosaz’ + p* z72) (2.30)

where p is the magnitude of the NTF poles. The deployment of the poles close to the zeros
at the same frequency creates resonance in the null region, which simultaneously reduces
the notch bandwidth and increases its attenuation at the selected centre frequency.

Theoretical analysis backed-up with simulations indicate that more effective notches
are attainable when p > 0.9. The placement of the poles close to the band edges helps to
alleviate the out-of-band gain in order to achieve stability of higher-order bandpass Z-A
modulators.

The two spectral magnitudes of FIR and IIR notch filter for v = 5/64, are shown in
Figure 2.28, where almost a threefold gain reduction is attained by making p>09.
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Figure 2.28 A NTF Magnitude Comparison of FIR and IIR Notch-Filter Based Variable-
Band Second-Order Z-A Modulator at v, = 5/64.
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The PZPs of H, (z), L(z) and F(z) belonging to this technique are shown in Figure 2.29.
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Figure 2.29 PZPs of (a) [IR Notch-Filter NTF, (b) Loop-Filter, (c) Feedback Filter.

The corresponding loop- and feedback transfer functions are given by:
L(z)=1/1-2cosaz' +z7 and F(z)=2cosa(1-p)z ' +(p* -1z (231)

Figure 2.30(a) confirms the correct operation of the INF approach by showing this
modulator achieving noise-shaping at v, = 5/64 for an input level of 0.5 and dither
amplitude of 0.05.

The family of SNR curves in Figure 2.30(b) are shown to exhibit greater linearity
compared with those obtained using the FNF approach. These linear characteristics are
attributed to less frequent quantiser overloading, which leads to the generation of fewer

tones for high input amplitudes.
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Figure 2.30 Variable-Band Second-Order Bandpass Z-A Modulator (a) Noise-Shaping
Magnitude Spectrum at v, = 5/64, SNR Curves versus Input Amplitudes

(b) v = 5/64, (c) ve=17/64 and (d) v, =29/64.

The design analysis of this technique can be quite easily extended to fourth-order
modulators, where better resolution is achievable for a broader range of centre frequencies

without having to incorporate further scaling factors. This NTF is given by:
Hy(z)=(1-2cosaz™ +z72)?/(1-2pcosaz’ + p* z72)° (2.32)

The careful placement of the poles in relation to the zeros for an IIR NTF significantly
reduces the out-of-band gains to moderate levels and therefore enhances modulator

stability. The corresponding loop and feedback filters are:
Liz)=1/0-28z"+Q+p*)z2-28z2 +27 (2.33)

F(2)=2B0-pz +Q2p* +p’' B =2~ F)z? +2B(1-p)z 2 + (1- p*)z™  (2.34)

The SNR curves for the 4" and 6M-order bandpass £—A modulators for three different Ve

values are presented in Figure 2.31 and 2.32.
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Figure 2.31 SNR Curves versus Input Amplitudes for the IIR NTF Based Fourth-Order

Bandpass Z—-A Modulators at (a) v = 5/64, (b)v.= 17/64 and (c) v.=

29/64.

These curves show that the INF approach gives better DRs especially for very small and

large centre frequencies. The use of IR NTFs allows the poles to move closer to the zero

locations, so as to even out the shoulder gain levels of NTF for any notch location in the

spectrum. However, it should be made clear that this improved resolution is obtained at the

expense of having more complicated loop-filters in the modulator.

R B

CR=18 OR=23

OR=2 o OR=2
=g R=B s aR= 9 .
: - CGR=st g o aR=64
c e [\ © ! .
o \ | \
b [ Fo
- LY 3
o o
L 3 I OSdI D B 0 5 0 L« I I S D B N S 0
At inds s Arpitucein B
(b) (c)

Figure 2.32 SNR Curves versus Input Amplitudes for the IIR NTF Based Sixth-Order

Bandpass £-A Modulators at (a) v, = 5/64, (b) v.= 17/64 and

(©) ve=29/64.

2.12 The Complex FIR Notch-Filter (CFNF) Approach

The majority of the publications on bandpass Z-A modulators have employed real-
coefficient NTFs [Sch92]-[Jan93]-[Lon93]-[Tro94] with a few exceptions such as
[Jan94a]. These have utilised complicated band-stop filters for their NTFs, which have

resulted in less hardware-efficient £-A modulators, containing many multipliers. The

75 s



motivation behind this section is to present the design analysis of complex FIR notch filter
based T—A modulators, whose building blocks constitute fewer fnultipliers.

A complex bandpass Z-A modulator can take a pair of in-phase and quadrature phase
analogue input signals and perform accurate A/D conversion directly generating a pair of
high-speed bit-streams [Jan94].

The main advantage of complex -A modulators is that the poles and zeros are not
restricted to havin:g conjugate pairs, implying that better in-band quantisation noise
attenuation can be attainable, compared with a real-coefficient modulator of the same
order. Complex Z-A modulators offer greater resolution and design flexibility at the
expense of an additional quantiser and signal paths for the imaginary components of the
signals in the modulator [Jan94].

A complex bandpass Z-A modulator is not restricted to having a symmetrical
magnitude response around dc, thus making it a viable candidate for the generation of
single side-band noise-shaping [Jan96]. The noise-shaping can be observed for the
combined complex signal, but not for either the real or imaginary part independently,
because the NTF is complex [Azi95].

Complex bandpass Z—A are suitable for the quadrature A/D conversion of signals in
monolithic radio receivers [Dia96]-[Li99]. They are also well-suited for the A/D
conversion of signals for single-IF receivers and Image-Reject (IR) receivers [Swa97].

The complex FIR notch filter technique is based on positioning the zeros of the
Complex Noise Transfer Function (CNTF) Hcy(z) on the unit-circle at the specified
positive centre frequency to achieve maximum in-band quantisation noise attenuation. This

CNTF is given by:
Hey(2) = (1-e/27%z™) (2.35)

Figure 2.33(a) shows the PZP for CNTF for an arbitrary v . Figure 2.33(b) contrasts the
real- and complex- coefficient NTFs for v, = 5/64, where it is seen that the peak

magnitude gain of the latter is almost halved. This significant reduction in the CNTF

magnitude for all v values provides a stability advantage, whose effects become more

apparent for higher-order Z—A modulators.
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Figure 2.33 (a) CNTF PZP of First-Order Notch Filter (b) NTF Magnitude of Real and
Complex First-Order Z—-A Modulator at v = 5/64.

The corresponding complex loop CL(z) and feedback CF(z) transfer functions are given
by:

CL(z)=1/1-¢/ ¥ % 7! and CF(z) = ¢/**ucz™! (2.36)
The combination of CL(z) and CF(z) simplifies the overall transfer function, thus

yielding the complex first-order resonator-based Z—A modulator shown in Figure 2.34.

D(z)
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Figure 2.34 Single-Stage Dithered Complex Resonator-Based Bandpass £-A Modulator

This structure consists of a complex programmable resonator, a Complex-To-Real-
Imaginary Converter (CTRIC), two physical quantisers (for the real and imaginary channels
respectively) and a Real-Imaginary-To-Complex Converter (RITCC) in the feedforward
path. The labels 7, iand ¢ denote real, imaginary and complex signal paths. The noise-
shaped location in the frequency spectrum is determined by the pole location of this
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_variable-band resonator. A small amount (5%) of dither D(z) is added at the output of the

resonator to alleviate the amplitude and occurrence of spurious tones.
Each of the two quantisers can be modelled as a summer having two inputs, one
representing the desired component of the signal (real or imaginary) and the other

representing white noise. This linear modelling process enables the overall modulator to be

characterised by an equivalent output expression given by:
Y(z) = e’z X (2) + (1 - e/27*¢) O(2) (2.37)

This analysis indicates that the poles and zeros of this complex modulator are simply those
of a rotated accumulator-based lowpass Z—A modulator [Jan94]. The magnitude spectrum

tuning at v = 0.125 is given below in Figure 2.35.

Magnitude in dBs

A

5 -0.4 03 -0.2 -0.1 0 0.1 02 03 0.4 05
Normalised Frequency, v

Figure 2.35 Magnitude Spectrum of First-Order Complex Modulator at v, = 0.125.

The complex variable-band NTF reaches a maximum gain of 2 for both dc and Nyquist.
This implies that the 1*-order complex variable-band £-A modulator never overloads the
quantiser provided its input does not exceed unity. This is in contrast to its real-coefficient
counterpart, which reaches a peak magnitude gain of 4. This ‘non-overloading’ situation
explains why the family of SNR curves shown in Figure 2.36 exhibit fewer non-linearities

compared with those illustrated in Figure 2.23 for the real NTF case.
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Figure 2.36 SNR Curves for the Complex FIR NTF Based First-Order Bandpass Z—-A
Modulators at (a) v = 5/64, (b) vo=17/64 and (c) v, =29/64.

This analysis is extended to a complex second-order bandpass Z-A modulator, which can
accomplish variable spectral-band noise-shaping for any positive centre frequency. The

corresponding Hy (z) and loop-filters L,(z) and L,(z) after simplification are given by:

Hy(2)=(1-e)2 Li(2) =1/(1-e7%), Ly(z) =e>"c[/(1-e>" " z7")  (2.38)

This modulator remains stable up to a full-scale amplitude input for all the noise-shaping
bands including those very close to dc and Nyquist. This robustness in stability is attributed
to the much lower magnitude gains of the CNTF, which as a result maintain significantly
smaller internal signal levels in the modulator. The presence of two instead of three
summation terms in the CNTF could quantitatively account for the improved stability
performance as the maximum possible CNTF peak is 4 instead of 16.

Complex third-order noise-shaping can be achieved, but on this occasion, additional
feedback coefficients are deemed necessary to maintain modulator stability as was
discussed in Section 2.6. The magnitude spectra for complex IIR notch-filter based second
and third order £-A modulators for a single-tone sinusoid of 0.5 and dither signal of 0.05

are shown in Figure 2.37.
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Figure 2.37 Magnitude Spectrum for Complex IIR notch-filter Based (a) Second, (b)
Third Order Z—A modulators at v = 0.125.

The family of SNR curves in Figure 2.38 show that larger DRs can be achieved with the
complex 2" order =-A modulator as opposed to its real-coefficient counterpart. However,

the SNR curves for v = 29/64 display inferior resolution for very high amplitude inputs as

depicted in Figure 2.38. The very close proximity of this particular noise-shaping band to
Nyquist in contrast with the other two frequencies means that the NTF gains are relatively
larger. The bigger gains amplify the input signal to the quantiser causing it to overload
more prematurely. This produces limit cycle oscillations in the spectrum including the in-

band region, thus accounting for the poor resolution.
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Figure 2.38 SNR Curves for the Complex FIR NTF Based Second-Order Bandpass -A
Modulators at (a) v = 5/64, (b) v-= 17/64 and (c) v.=29/64.

80



2.13 The Complex IIR Notch-Filter (CINF) Approach

Complex IIR notch filters can be employed to provide narrow-band bandpass -A
modulators that can deliver better noise-shaping responses and enhanced resolution. This
technique is based on positioning the zeros of CINF on the unit-circle at the positive centre
frequency of interest to achieve maximum quantisation noise attenuation. The CINF is

given by:
Hou()=(—e” ") [/(1-pe "ez™) (2.39)
The corresponding loop and feedback filters are:
Lz=1/(1-€?c 2T and F(z) = (1- p) 7%z (2.40)

The NTF PZP for a typical variable-band complex IIR first-order is shown in Figure 2.39
(a). The magnitude spectrum for a complex IIR based first-order £-A modulator at v, =

0.125 is presented in Figure 2.39(b).
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Figure 2.39 (a) CINF PZP of First-Order Notch Filter (b) Magnitude Spectrum of
Complex First-Order Z-A Modulator at v, = 0.125 of b) First-Order
bandpass Z-A Modulators.

The SNR curves for v = 5/64 and v-= 29/64 are relatively linear as illustrated in Figure

2.40. This linearity is attributed to the combined effect of non-quantiser overloading and
the use of IIR NTFs, which reduce the disparity of the shoulder-gain levels of the loop-
filter. However, the fluctuations of the curves for v,.= 17/64 for OSRs of 128 and 256 is

caused by the presence of tones in the in-band region.
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Figure 2.40 SNR Curves versus Input Amplitudes for the Complex IIR NTF Based
First-Order Bandpass Z-A Modulators at (a) v, = 5/64, (b) v.= 17/64 and
(¢) ve=29/64.

In a similar manner, a second-order complex IIR notch filter can be designed to

accomplish improved in-band SNRs and DRs. Its CNTF is given by:
Hoy(2)=(1=2 ez 4 o472y [(1-2p /2 Tzl 4 pRe/* P02y (2.41)
The corresponding complex loop CL(z) and feedback CF(z) filters are given by:
CL(z)=1/(1-2 27"z 4 /4 7772y (2.42)
CF(z)=(1-2 e’ (1- p)z7 + /7 (p? - 1)z7?) (2.43)

The family of SNR curves of this complex 2"order bandpass £-A modulator for three

different centre frequencies are shown in Figure 2.41. These linear-like SNR characteristics

are attributed to the IIR NTFs and the more complex loop-filters.
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Figure 2.41 SNR Curves versus Input Amplitudes for the Complex IIR NTF Based
Second-Order Bandpass £-A Modulators at (a) v. = 5/64, (b) v.= 17/64 and
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2.14 Overview on the Fractional Delay Filter (FDF) Approach

This section presents a novel technique for the design of narrow-band Z—A"
modulators with an embedded tuneable centre frequency mechanism. The method under
consideration demonstrates that the use of a sum-filter combined with a fractional-delayer
provide the flexibility of adjusting the noise-shaping band location to cater for any narrow-
band variable centre frequency input signal. It is initially demonstrated that the inclusion of
pure integer delayers in combination with sum-filters in these modulators restricts noise-
shaping to a few centre frequency locations. This limitation is overcome by designing a
NTF, which is formed by a first-order sum-filter depicted by (1+z7')[Cun92] in
conjunction with fractional-delayers [Laa96], to accommodate different passband centre to
sampling frequency ratios. These FIR and IIR allpass fractional-delayers result in the
spectral shifting of the zeros of the NTF to the signal band of interest.

The combination of a first-order sum-filter and an FIR or IIR allpass Fractional-
Delay (FD) filter [Laa96] form the NTF, whose zeros are distributed close to the unit-circle
at the selected centre frequency. The order of the NTF depends on the order of the FD filter
approximation and is represented by a generalised non-integer value D. The parameter D
can be expressed as the summation of two variables, (i.e. D= f +r), where f is the delay
of the FD filter itself (including the fractional component) and r is the additional unit-
delay, whose inclusion is compulsory to satisfy the causality criterion. This implies that the
NTF design should take into account the extra phase shift imparted by this unit-delay.

It was originally thought that the numerator of the NTF could be scaled to unity to
comply with the causality criterion without having to introduce the additional delay term
z”. However, the required scaling of the NTF was found to be very excessive (of the order
of 50-60) leading to automatic modulator instability. Regrettably; it was concluded that
NTF scaling did not provide an appropriate solution for both the FIR and IIR allpass FD
filter techniques, leaving no option but to incorporate the additional delayer.

The general expression for the FD NTF is given by:

Hy@=1+z"" =  Hy@)=1+e /2P (2.44)
Simple algebraic manipulation demonstrate that e/2"*c® = —1=1/7, yielding a simple,
but important relationship between v and D as shown below:

1 1

V—_—

2D 2(f +r) (2.45)
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This means that an arbitrary normalised centre frequency can be attained by
determining the necessary total delay D that must be incorporated in the NTF, so that the
null of the 1%-order sum-filter is spectrally transferred to the corresponding signal
frequency band. It is seen from (2.45) that the use of pure integer values for D c.an only
cater for a very limited choice of centre frequencies. For example, setting D=2 can
achieve noise-shaping at v, = 0.25, which confirm existing theory.

Figure 2.42 together with (2.45) demonstrate that v, is inversely proportional to D,

implying that centre frequencies close to dc require larger values of D. More interestingly,
the tunability of a centre frequency location between 0.25 and 0.5 using this technique can
only be achieved by employing a non-integer value for D. For example, D=13 is
required for v, = 0.385.

Toatl Delay D in samples

i i i i
0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5
Normalised Centre Frequency v

Figure 2.42 Total Delay D in Modulator versus Normalised Centre Frequency v,.

It is convenient for explanation purposes to categorise the centre frequency ranges, as far as

this method is concerned, according to their required D values as illustrated in Table 2.7.
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v Ranges D
ve £1 D23
1<y <3 32D22
t<ves<d 2>D2>%
1<y, <d 2>D2>1

Table2.7 Required Total Delay D Values for Different Centre Frequency Ranges.

Delay values in excess of 3 can be attained with accuracy for v, <1. However,
making D 2 3 leads to the creation of multiple notches across the spectrum, which increase
the amplitude level of the out-of-band quantisation noise to compensate for the redundant
notches. This rise in the out-of-band quantisation noise has two disadvantages, the
requirement of a more complicated post digital filter that has greater attenuation capability
and to a lesser extent, vulnerability to modulator instability. Detailed simulations confirm
that accurate centre frequency tunability for $ < v, <1is achievable by utilising either a
fourth-order FIR or second-order IIR allpass FD filter.

A feature of FD filters that becomes more critical, particularly, in the IIR allpass case
is the inherent delay of the FD filter itself [Laa96], making small values of D virtually
unattainable and, thus restricting noise-shaping to only half the available range, i.e.
0< v, <025. For example, Figure 2.42 shows that a D value of 1.4 is required to achieve

tunability at v = 0.367. A second-order IIR allpass filter can produce the necessary

fraction of 0.4, but in addition generates its own delay, which happens to be 2 in this case.
Moreover, r must be set to a minimum value of unity to satisfy the causality criterion
[Jan93). This means that D becomes 3.4 instead of the desired 1.4. A further shortcoming
associated with the FD filters is that their accuracy deteriorates at very high frequencies.
Fortunately; this inherent practical limitation can be circumvented by designing an
FD filter that will give a centre frequency equal to (05— v,) and then applying a lowpass

to highpass transformation (z7' = —z71) to yield the desired centre frequency. An example
demonstrating the accuracy of this procedure is shown in Figure 2.48.

An alternative solution is to design IR filters, which can provide very small group
delays. This was achieved with limited success by designing a fourth-order lowpass
Chebyshev filter that yielded a group delay of 0.1.
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The single-loop dithered Z—-A modulator shown in Figure 2.43 is a suitable topology
for the application of the FDF approach. This modulator comprises a loop-filter T(z) (with

an in-built fractional delayer) and a 1-bit quantiser in the feedforward path. In addition, an
amplitude of 0.01 of white noise dither D(z) is added prior to the quantiser input to whiten

the qua.nﬁsation noise and substantially reduce tones [Nor92]. This structure also contains a
cascade combination of a variable bulk integer delayer z™” and a FD filter
C(z) = 27/ [Laa96] in the feedback path. The noise-shaping properties of dithered Z-A
modulators may be analysed by modelling the 1-bit non-linear quantiser by an equivalent
noise source in order to make linear analysis possible. Despite the linear approximation,
this approach delivers results which are representative [Can92]. The NTF and STF of the

modulator shown in Figure 2.43 are:

1 T(2)
H = d H =
O Trcore D= e 249
e
: + }’(z):
be ==
+ I-bit
Quantiser
Xz +\T/ ) +@ al ~Y(2)
- zr —4
Il
Ce) <I]

Figure 2.43 Single-Stage Dithered FDF Based £-A Modulator.

This analysis can be extended to higher-order single-bit Z~A modulators in order to
acquire improved noise-shaping responses and more respectable in-band SNRs and DRs.
The NTF is given by:

Hy(2)=(1+zP)* (2.47)

where the order of Hy (z) is the product of L and the order of the FD filter approximation.

2.15 FIR Fractional Delay Case
The FIR FD filter C(z)is designed by the use of the maximally flat Lagrange
technique [Laa96] whose coefficients c(k) are defined as:
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k=0,1, .., N. (2.48)

The Lagrange approximation is well suited for use in Z-A modulators, because the peak of
its magnitude never exceeds unity [Laa96]. This particular property considerably reduces

the occurrence of instability. The new mathematical expression for H (z) incorporating

the FIR FD filter becomes
Hy(@) =1+z7" (g + ez + ez VP 4+ cyz7Y) (2.49)
The resultant loop 7(z) and feedback C(z) filters are:

1
1427 (co + e,z +uteyyy 27NV 4oy 27V)

I(z)= (2.50)

C@)=z"(cy+ clz'1+...+c( N_l)z"” D yeyz ) (2.51)

The coefficients for some of the FIR FD filter approximations for N = 4, are shown in

Table 2.8.

VC f r hO hl h2 h3 h4
0.238 1.1 1 1 -0.0285 0.9405 0.1045 -0.0165
0.227 12 1 1 -0.048 -0.864 0.216 -0.032
0.185 1.7 1 1 -0.0455 0.3315 0.7735 -0.0595
0.179 1.8 1 1 -0.032 0.216 0.864 -0.048

Table2.8  Loop-Filter and Feedback Filter Coefficients for Some Centre Frequencies
using the FIR FDF Approach.

These FD filters have the same numerator and denominator orders which imply that the
value for r must be at least equal to 1, so as to comply with the causality criterion [Jan93].
It should be noted that the FIR FD filter does not have a linear phase (except when FD =
0.5) due to the asymmetry of the coefficient of Hy(z) [Laa96].

2.16 Allpass IIR Fractional Delay Case

An alternative means of representing FD filters is by using the FD allpass maximally
flat group-delay approximation [Laa96]. The advantage is that an IIR digital filter can
provide the same or even better FD filter characteristics with fewer coefficients compared

with FIR filters. These allpass filters have unity magnitude and much improved group
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delay responses for the entire frequency range. The filter coefficients of an N* _order FD

filter are:
@ = (DY [T-22 " g k=0 1,2..N
k — k ,,._.oD— N+k+n or - 9 . seey (2.52)
The resultant loop and feedback filters become:
I = 1+bz "+ 57 VD + by _yz”V D 259
l+az o tay pz ¥ Vw27V '
-1 ~(N-1) | -N
o aytayz + ... taz +2z
C(z) = ~cz" —— . (2.54)

vz + oo + a2 MV +ayz

The coefficients for some of the allpass IIR FD filter approximations for N = 3, are shown

in Table 2.9.

Ve a, a, b; b; b3 aj az as
0.1 -0.8 0.2 0.8 0.2 0 -0.6 -0.6 1
0.185 0.2222 -0.021 0.222 -0.021 0 0.201 0.201 1
0.208 0.5 -0.0294 0.5 -0.0294 0 0.4706 0.4706 1
0.448 14 0.5091 -1.4 -0.0591 0 0.8919 | -0.8919 -1
Table2.9  Loop-Filter and Feedback Filter Coefficients for Some Centre Frequencies

using the IIR Allpass FDF Approach.

2.17 Evaluation of the FDF Technique

Discrete-time behavioural level simulations were carried out for the single-stage
single-bit and single-stage multi-bit Z-A modulators to demonstrate the correct operation
of the proposed approach. Figure 2.44 shows the magnitude spectra of FIR FD filter based
T-A modulators tuning at v=0.1835, where it can be observed that improved noise-shaping
performance is accomplished with the double stage eighth-order £-A modulator. Figure
2.45 shows the magnitude spectrum of a single-stage allpass IIR FD filter based T-A
modulator, where it can be seen that a lower amount of in-band quantisation noise is
retained in the signal region compared with the FIR case. Simulations reveal that this
improvement becomes even more significant at high frequencies due to the unity

magnitudes and enhanced phase responses of the IIR allpass FD filter.
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Figure 2.44 Magnitude Spectra at v = 0.185 using the FDF Approach for (a) Single-

Stage Fourth-Order £-A modulator (b) Double-Stage Eighth-Order Z-A
Modulator.
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Figure 2.45 Magnitude Spectrum of a Single-Stage Third-Order IIR Allpass £-A
Modulator at v =0.185.

Figure 2.46(a) quantitatively verifies that the in-band SNR for the allpass IIR case
improves by an average of 7.3 dB compared with the FIR FD case for a single-stage £-A

modulator. Better in-band SNRs can be alternatively accomplished by increasing the
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number of levels in the quantiser as can be observed from the SNR plots in Figure 2.46 (b)
..and Figure 2.46 (c). Quantisers with an odd number of levels outperform those with an
even number of levels, because of the presence of the zero-level threshold, which reduces
the occurrence of oscillations for small amplitude signals. For peak input ainplifudes,
nearly 1.5 and 1-bit in resolution are gained by increasing the number of levels from 2 to 5

for the FIR and IIR cases respectively.
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Figure 2.46 SNR Curves of FIR & Allpass IIR Single-Stage Z-A Modulators
(a) 2-Level, (b) 3-Level, (c) 5-Level.

Figure 2.47 (a) and (b) illustrate the in-band SNR results for oversampling ratios of 64, 128
and 256 for the single-stage, single-bit FIR and allpass IIR based £-A modulators
respectively. It is seen that the in-band SNR is improved by an average of 3 dB for every
doubling of the OSR. Furthermore, this new technique is further extended to higher-order
v-A modulators using FIR FD filters, where it is seen from Figure 2.46 that the SNR is

improved by 14 dB for each corresponding increase in modulator order.

70
0

SNR in dBs

0 £0 -0 -0 20 10 [}
Input ampitude in @Bs

@) (b)
Figure 2.47 SNR Curves of Single-Stage Z~A Modulators for (a) FIR, (b) Allpass IIR.
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Figure 2.48 demonstrates noise-shaping using the FDF approach at v = 0.448.

dB Magnitude
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Figure 2.48 Magnitude Spectrum of a Single-Stage Third-Order IIR FDF Z-A
Modulator at v =0.448.

2.18 A Methodology for the Design of Bandpass Z—A Modulators

This section presents a simple practical step-by-step approach for the design of
single-stage bandpass Z-A modulators. The NTF design of these modulators is based on
the use of Butterworth and Chebyshev 2 bandstop filters. This approach, however, can be
extended to other types of filter families. This section also provides a few guidelines that
can be applied to further improve the resolution of these custom-made NTFs.

It is important before proceeding with the actual design analysis to understand the
interrelationships between the specification parameters that affect the spectral
characteristics and resolution of Butterworth and Chebyshev 2 filters.

Butterworth filters exhibit monotonic passbands and stopbands, low pass-band
ripples and relatively wide transition bands [Cun92]-[Orf96]-[Pro92]. The peak out-of-
band spectral magnitude of 2 4™ 6" and 8™ order Butterworth NTFs are 0.78 dB, 1.16
dB, 1.64 dB and 2.14 dB respectively for Av=0.06. A higher NTF order results in a wider
stop-band with greater attenuation at the cost of a higher overall NTF gain.

Chebyshev 2 filters have a monotonic passband and an equi-ripple stopband.
Chebyshev 2 also provides low pass-band distortion and exhibit sharp transition bands,
thus requiring a lower-order filter to meet a given specification compared with Butterworth
filters. For a given a NTF order, stop-band ripples can be traded for wider stop-bands and
increased NTF magnitudes [Cun92]-[Orf96]-[Pro92].

STEP 1: Select a modulator order N, a NTF filter family type, bandwidth Av, passband
ripple (Rp) needed for (Chebyshev 1 and Elliptical filters) and stopband ripple (Ryg)
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required for (Chebyshev 2 and Elliptical filters). A straightforward procedure for obtaining
the NTF for any filter family type involves using the Matlab Signal Processing Toolbox as

indicated below:

For a Butterworth NTF:

[num,den] = butter(N, [v, vy], 'stop')

For a Chebyshev Type 2 NTF:

[num,den) = cheby2 (N, R, [v, vy), 'stop')

where num and den refer to the numerator and denominator polynomials of the NTF,
stop refers to a stop-band filter, v, and v;, represent the normalised lower and upper 3dB

frequencies and are given by:
v=ve-Av/2 and vy =V +AV/2 (2.55)

STEP 2: Scale the NTF so that the first sample of the impulse response becomes 1, in order
to meet the causality criterion. This can be achieved in Matlab by typing

nums = num / num(1) , where nums contains the newly scaled coefficients of the numerator

polynomial of the NTF.

STEP 3: Check the peak magnitude of the NTF spectrum to ensure that it does ot exceed
2 (or more practically 1.6) to comply with Lee’s stability criterion.

STEP 4: The loop- and feedback transfer functions can be analytically obtained by re-

arranging the expression for the NTF as shown below:

F(2)L(z) = (1- Hy(2))/Hy(2) (2.56)

where F(z) and L(z) may be determined by separating the numerator and denominator

expressions such that F(z) = (1- Hy(2)) and L(z) =1 [Hy (2).

STEP 5: Enter the coefficients of F(z) and L(z) into the modulator and simulate it at the

behavioural level using Simulink in Matlab to confirm the correctness of its operation.
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STEP 6: If the in-band SNR value is not sufﬁcieh.tly high then
-a) increase the modulator order provided the peak amplitude of Hy (2) satisfies Lee’s
. Criterion,- ' -
b) increase the OSR pr_ovided the bandwidth speéiﬁcation is not violated,
¢) increase the number of levels in the quantiser, '
d) reduce the dither such that the in-band tones do not become too strong.
e) resort to an optimisation algorithm where the poles and zeros of the Hy(z) are shifted

to more optimal positions in the z-plane to achieve better resolution.

The noise Hy (), loop-filter H(z)and signal Hg(z) transfer functions of an eighth-order

T-A modulator are given by

14byz bzt + bz +byz™ +bz™ +b 278 +by277 +byz™

Hy(@)= Z 2 - —
Hez) ezl +oztror vezt vez vt s o2
2= T bzltbz R S 2.5
1+b2 l+bzz 2 +b;z 3 +b4z'4 +bgz s + bz 6 + bz 7 +b82_8 (2.58)
- -2 - _ _
(4% ! +Cy2 +Cy2 3 +C4Z_4 +csz 5 +C6Z—6 +C7Z 7 +C82_8
7 3 (2.59)

Hs(2) =
S =} 2 3 3 = s = -

where the b's are the most important parameters since they are responsible for controlling
the magnitude of the in-band quantisation, the a's for reducing the overall spectral
magnitude of the NTF to avoid overloading the quantiser and the ¢'s are simply given by
cy=ay—by. The coefficients of Hy(z), H(z) and Hg(2) for these 8™-order modulators
as well as those for the 6™-order modulators are all presented in Table 2.10.

, Two 8"-order bandpass Z-A modulators that can achieve noise-shaping at v, =
0.125 were designed using this technique. The first employed a Butterwortﬁ filter for its

| NTF and its spectral magnitude response is shown in Figure 2.49(a). The second utilised a
Chebyshev 2 bandstop filter for its NTF and its magnitude spectrum is shown in Figure

2.49(b).
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Coeff 6"-Order 8"-Order

Butter Cheby2 Butter Cheby2
¢, 0.2674 0.5218 0.3496 0.5612
s -1.1020 -2.0898 -1.9228 -3.0245
3 2.0014 3.6605 4.933 7.5912
cy -2.0426 -3.6128 -7.6396 -11.5149
s 1.1568 1.9836 7.6698 11.3379
cs -0.3145 -0.5259 -5.0247 -7.2989
cs - - 1.9995 2.8593
cs - - -0.3895 -0.5501
a, -4.2616 -4.2426 -5.6821 -5.6569
a, 9.0536 8.9999 16.1072 15.9998
a; -11.3895 -11.3135 -28.5119 -28.2838
ay 9.0536 8.9999 34.2863 33.9993
as -4.2616 -4.2426 -28.5119 -28.2838
as 1 1 16.1072 15.9998
a; - - -5.6821 -5.6569
as - - 1 1

Table 2.10

Magnitude in dBs

Magnitude in dBs

Loop-Filter Coefficients for 6" and 8" Order Bandpass £-A Modulators
based on the NTFs of Butterworth and Chebyshev 2 Filters.
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Figure 2.49 Magnitude Spectra of an Eighth-Order £-A modulator at v =0.125
(a) Butterworth, (b) Chebyshev 2.

Simulations showed that the in-band SNR that is achieved by a Chebyshev 2 bandpass T-A
modulator outperforms its Butterworth counterpart by as much as 15 dB. This better
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resolution is attributed to the distribution of the zeros across the signal region, which
accomplished greater attenuation and therefore better SNRs. This is in contrast to the
Butterworth based Z-A modulator, whose zeros are plaéed in a coincidental manner.
Furthermore, the spectral responses of the Chebyshev 2 was less tonal: This is explained by
the fact that a Chebyshev 2 loop-filter is more complicated, thus resulting in the generation
of more state values. This increases the decorrelation of the quantisation noise and
therefore results in fewer tones.

The following present some considerations when designing Z-A modulators:

The loop-filter should be designed to ensure that the input signal is transmitted through the
modulator with the least amount of distortion in its spectral characteristics. Better
quantisation noise attenuation is achieved by distributing the zeros of the NTF across the
signal bandwidth as opposed to placing them coincidentally at the same centre frequency.
The STF zeros should simultaneously provide a flat magnitude in the signal region and a
low out-of-band gain. The constant magnitude helps to preserve the input signal, while the
small out-of-band gain enhances the stability of the modulator by alleviating the amplitude
of the out-of-band signals.

The zeros of the NTF should be positioned on the unit-circle and inside the signal
band to ensure adequate in-band quantisation noise attenuation [Azi95]. The selection of
NTFs whose zeros have radii below 0.9 has the effect of reducing the notch depth,
therefore resulting in lower resolution.

Placing the zeros of the NTF very close to each other accomplishes greater in-band
quantisation noise suppression for narrow bandwidths. However, spreading the zeros along
the unit-circle increases the bandwidth at the expense of lower in-band quantisation noise
attenuation. Therefore, the proximity of the zeros to each other as well as their locations
directly affects the amount of in-band noise power. Good quantisation noise suppression in
the passband region is achieved by constraining the NTF zeros to be distributed along the
bandwidth on the unit circle.

The use of multipliers should be limited as far as possible in the implementation of
D/A higher-order bandpass £-A modulators. As well as slowing down the operation of the
modulator, multipliers occupy large portions of silicon area. When used, they should be in
powers of 2 as these can be simply implemented by hardware shifts with minimum speed
penalties [Hau95].

The envelope of the quantisation noise rises more sharply as the modulator order is

increased. This may increase the modulator vulnerability to instability and at the very least
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reduce the overload point rg's_ulting in lower DRs. The demands on the decimator become
more severe as a result of tﬁe sfeepness of the quantisation noise. '

The following sections present several commonly used Z-A modulator topologies,
‘which are well-suited for the implementation of mid-band and variable-band noise-shaping

bandpass —A modulators [Ada91].

2.19 Chain of Resonators with Weighted Feedforward Summation
The chain of accumulators with weighted feeforward summation in [Tom94, pp. 235]
has been modified by replacing the constituent accumulators of the loop-filter with mid-

band resonators, thus enabling it to achieve noise-shaping at v.= 0.25. The loop-filter
consists of a cascade connection of mid-band resonators of the form z‘z/ (1+z7%) in the

feedforward path, where the output of each resonator is scaled and summed up prior to the

quantiser input as shown in Figure 2.50.

X() 4@—» Hyt2)

-A

Hy(z)

\ 4

> H,(z)

4 a, a

+1
i
1-bit quantiser

\ 4
Y(z)

Figure 2.50 Chain of Resonators with Weighted Feedforward Summation.

The generalised analytical NTF expression given in 2.61 verifies that the NTF zeros or
‘loop-filter poles are totally independent of the weighting coefficients, therefore restricting
this topology to achieve noise-shaping at mid-band resonance. The feedforward
coefficients (i.e. the a’s), however, allow the adjustment of the NTF pole locations so as to
obtain a maximally flat out-of-band gain with a reduced magnitude. The reduced NTF gain
coupled with the flat NTF magnitude enhances stability significantly, particularly for
higher-order Butterworth bandpass £-A modulators.
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-1 L
aH\(2) + a Hi(2)Hy () + ... +aJ[H,()+a, []H,(2)
t i=l l=l

HS (Z) = . L-1 L (260)
1+a H,(2) +a,Hi(D)Hy(2) + ... + qu H (D+a,[[H,(2)
i= i=1 .
1
Hy(2)= — (2.61)

' -L_l .
l+aHy(2)+ 6 Hi () H, () + .. +a [1H, (D) +a,[]H,(2)
i=1 i=1

The feedfoward coeﬁ'lcients are a,= -0.3090, a,= 0.0417 for the 4™-order Butterworth
T-A modulator and a,= -0.4390, a,= 0.0912, a,;=-0.0086 for the 6"-order Butterworth

T-A modulator. The weighting of these coefficients was seen to decrease progressively in
relation to the order of the resonators inside the modulator. In other words, the latter
coefficients diminish in value to cope with the accumulative effects of the preceding
resonators.

These modulators were simulated for an input sinusoid and dither signal whose amplitudes
were 0.5 and 0.05 respectively. The resulting magnitude spectra are shown in Figure 2.51.
Both of them contained two distinct tones at v= 0.125 and v, = 0.375 verifying that
these tones are independent of the modulator order and essentially related to the amplitude
level of the modulator input signal. As expected, the 6M-order modulator was capable of
accomplishing greater quantisation noise suppression in the signal region, compared with
its 4%-order counterpart. This observation is supported with the SNR curves shown in
Figure 2.52. The maximum achievable SNR figures for the 4™ order were 25.2 dB, 37 dB,
50.2 dB, 64.6 dB, 79.5 dB and 94 dB for OSRs of 8, 16, 32, 64, 128 and 256 respectively.
This is in contrast to the 6™-order modulator peak SNR, which were 25.5 dB, 39 dB, 57.1
dB, 77.8 dB, 99.4 dB and 119.1 dB for the same OSRs. Note that the SNR improvement
with respect to the modulator order, becomes significant for the higher OSRs. However,
there was virtually no SNR gain between the 4™ and 6™ order modulators for the lower
OSRs of 8 and 16. Figure 2.52 (b) also shows that this modulator became unstable for input
amplitudes beyond -1.5 dB. This of course is attributed to the accumulative effect of the

resonators in the feedforward path.
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Figure 2.51 Magnitude Spectra of Chain of Resonators with Weighted Feedforward

Summation Butterworth -A modulator at v.= 0.25 (a) 4™.Order, (b) 6™-
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Figure 2.52 SNR Curves atv,. =0.25 for (a) 4"-Order, (b) 6"-Order Variable-Band

Bandpass £-A Modulators.

2.20 Chain of Accumulators with Feeforward Summation & Local Resonator Feedbacks

This topology contains a summation of weighted accumulators in the feedforward

path as well as an internal negative feedback term around pairs of accumulators [Tom94,

pp. 235]. The outputs of all the constituent accumulators are summed and fed to the

quantiser input as illustrated in Figure 2.53.
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Figure 2.53 Chain of Accumulators with Feedforward Summation and Local Resonator
Feedbacks.

The presence of the internal feedback loop as well as the coefficient r provides the
flexibility of moving the loop-filter poles away from DC to any normalised centre

frequency up to Nyquist. The signal Hg(z) and noise Hy(z) transfer functions of this

topology are given by:

H
r(2) and Hy(2) = I 262)

HS(Z) = 1+HFR(Z) 1+ HFR(Z)

where the generalised transfer function of the loop-filter Hpg(2) is given by:

L-1 L

al 1 H, H
Hop(2) = aH\(2)+a, H\(2)H,(2) . 4 11;[ u(z)+aLl:i[ (2 .
B I+ nH (@ H ) 1+1/2 Hy_((2)H (2) (263)

It is demonstrated analytically that the use of a delayed accumulator followed by a delay-
free accumulator satisfy the causality criterion as well as ensuring that the poles of the
composite resonator are permanently stationed on the unit-circle to provide maximum gain
in the signal region. This is given by:

(a,+a,)z"! — a2
1-Q2-nr)z" +272

Hpp(2) = (2.64)

If both accumulators employ a delay term in the numerator, the composite resonator will be

less effective, because the poles will not be on the unit-circle as given by:
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(a, +a))z" —a;z?

1-2z7'+(1+ n )z™2

Hep(2) = (2.65)

For positive real values of 7, the poles move vertically away from the unit-circle resulting
in a significant gam reduction at the resonant frequency. For negative real values of r, the
poles move horizontally along the real axis in opposite directions leading eventually to
modulator instability.

The coefficients based on Butterworth and Chebyshev 2 NTFs were derived for this
topology with the aid of a programme written in Matlab. A listing of these coefficients

specific to this topology for different modulation orders is presented in Table 2.11.

Butterworth Chebyshev 2
Second-Order
a 0.1988 a, 0.5686
a, -0.0573 a, -0.1665
n 0.5772 n 0.5857
Fourth-Order
a, 0.2673 a 0.3575
a, -0.0475 a, -0.0483
a; 1.44.10° a; 0.0044
a, -0.0207 a, -0.0404
n 0.5772 " 0.5984
r 0.5772 r 0.5732
Sixth-Order
a, 0.3564 a 0.4289
a, -0.0441 a, -0.0353
a, 0.0061 as 0.0185
a, -0.0425 a, -0.0678
as -0.0044 as -0.0084
ag 0.0012 ag 0.0025
n 0.5722 n 0.6012
L. 0.5772 r 0.5705
r 0.5772 r 0.5857

Table 2.11  Chain of Accumulators with Feedforward Summation and Local Resonator
Feedbacks Coefficients for 2™-Order, 4%-Order and 6™-Order Butterworth
and Chebyshev 2 Bandpass £-A Modulators.
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These modulators were designed to provide noise-shaping at v, = 0.125, where the
magnitude spectra corresponding to the 6‘h-or§ier Butterworth and Chebyshev 2 cases are
shown in Figure 2.54. A tone is observed at va = 0.375 for both spectra, indicating that this
was attributed to the amplitude of the input sinusoid and independent of the NTF. The SNR
curves in Figure 2.55 and 2.56 demonstrate that the Chebyshev 2 based bandpass Z-A
modulator deliver better resolution. This is attributed to the greater flexibility of the
distribution of the NTF zeros across the spectrum, thus resulting in greater in-band
quantisation noise attenuation. For the Chebyshev 2 based modulators, Figure 2.56 shows

that there is very little SNR improvement as the OSR increases from 128 to 256.
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Figure 2.54 Magnitude Spectra of a 6"-Order Chain of Accumulators with Feeforward

Summation & Local Resonator Feedbacks £—A modulator at v-=0.125

(a) Butterworth, (b) Chebyshev 2.
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Figure 2.55 SNR Curves atv, = 0.25 for (a) 4"-Order, (b) 6"-Order Butterworth Based
Variable-Band Bandpass £—A Modulators.
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Figure 2.56 SNR Curves at v =0.25 for (a) 4“‘-Order, (b) 6"-Order Chebyshev 2 Based
Variable-Band Bandpass Z—A Modulators.

2.21 Chain of Resonators with Distributed Feedback
This topology [Tom94, pp. 235] was modified by replacing all its accumulators with

delayed resonators of the form z2/(1+272) to make it perform bandpass Z-A modulation.
This topology consists of mid-band resonators in the feedforward path together with the
distributed feedback that is subtracted from the output of the preceding mid-band resonator.

The output node of each accumulator is appropriately scaled to control the amplitude level

of the signals in the feedforward path to maintain stability as illustrated in Figure 2.57.

xe) - 3 Y He)> 2 7| R il

1-bit quantiser

Figure 2.57 Chain of Resonators with Distributed Feedback.

The signal Hg(z)and noise Hy (z) transfer functions of this topology are given by:

L L L
[Ta@+[1a@+ ... +[[HEG@+H.(2)
i=1 i=2

i=L-1

Hs(2)=—T ;: I (2.66)
1+ Ha,.H,(z) + Ha,-H,. (2)+..+ HaL_lH,- (2)+a,H,(2)
i=1 i=2 i=L-1
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1

Hy(z)= T 3 3
1+[[aE@+ [ [aH @+ 4+ [arHi@) +a,H,(2)
i=l

i=2 i=L-1

(2.67)

The distributed feedback‘topology can be made more flexible by allowing a path
from the input signal node to each summing junction of the constituent building blocks of
the loop-filter as reported in [Ada91].

Furthermore, this topology could be further extended to provide variable-band noise-
shaping by substituting the mid-band resonators with a variable centre frequency resonator
of the form a(nz™' +z72)/(1-dz"' +27?). The flexibility to vary the signal band is
achieved at the expense of greater hardware complexity. Each new resonator requires two
multipliers, one in the denominator to ensure that the poles are positioned at the specified
centre frequency on the unit-circle and the other in the numerator to provide more effective
noise-shaping.

Two modulator designs were carried out for this topology. The first and the simplest
was the 6%-order bandpass £-A modulator, which used mid-band resonators to achieve
noise-shaping at v = 0.25. The second was that of a 4" order modulator that was capable
of noise-shaping at v-= 0.125. The design process was more elaborate and required 6
coefficients. The n and d coefficients are responsible for shifting the location of the noise-
shaping band to the relevant centre frequency. The a coefficients are used to control the

amplitude of the internal signal levels in the feedforward path. A listing of the coefficients
for both designs is presented in Table 2.12.

6"-Order Butterworth at v, =0.25

a, a4 a;
-0.0943 -0.2077 -0.4390
4"®.Order Butterworth at v, = 0.125
a ) n d n d
0.1352 | -0.3091 | -0.7120 | -1.4228 | -0.7111 | -1.4228

Table 2.12  Coefficients of Chain of Resonators with Distributed Feedback Butterworth
4®.Order and 6™-Order Bandpass =-A Modulators.

The magnitude spectrum in Figure 2.58 demonstrate the correct operation of these

modulators. The SNR curves for the varaiable-band 4".order bandpass Z-A modulator are
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illustrated in Figure 2.59. Peak SNRs of 21.1 dB, 32.5 dB, 45.7 dB, 59 dB, 70.1 dB and 79
dB are achieved for OSRs of 8, 16, 32, 64, 128 and 256 respectively.
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Figure 2.58 Magnitude Spectra of Chain of Resonators with Distributed Feedback
Butterworth Z—A Modulator (a) 6M-Order at ve=0.25, (b) 4"_Order at Vo=
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Figure 2.59 SNR Curves for a 4"-Order Chebyshev 2 Based Variable-Band Bandpass Z-
A Modulators at v = 0.125.

2.22 The Sodini Interpolative Z—A modulator Topology

Interpolative modulators contain both feedforward and feedback coefficients in the
transfer function of the modulator as shown in Figure 2.60. These coefficients are chosen
to improve stability as well as ensuring quantisation noise reduction in the signal region. In

this topology, the poles of the modulator are spread across the signal region to reduce the
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in-band quantisation noise. The zeros are selected to decrease the magnitude of the

quantisation noise spectrum at high frequencies.

Xz -ﬁdzb—» Hyf)

@‘{‘
-1
1-bit quantiser

v
Y(z)
Figure 2.60 The Sodini Interpolative Z-A Modulator Topology.

The signal Hg(z)and noise Hy(z) transfer functions of this topology are given by:
L-1 L
by + b H (2) +b, Hy(2)H, (2) + ... +b[[H. (@ +b,[]H,(2)
i=1 i=]

Hg(2)= T (2.68)
1+ by + (b —a)) H (2) + (b, - ay) ) H (2) Hy (2) + ... +(}; —aL)l_!HL(z)
i=

L-1 L
1-aH,(2) -a, H|(2)H,(2) - ... -a[1H () +a, [[H(2)
Hy(2) = = = (2.69)
1+by + (b, —a))H (2) + (b, —ay)Hy(2) Hy(2) + ... +(b, -aL)I:!HL(z)

The coefficients for the 4™ and 6™ order bandpass A modulator interpolative topology
were derived for a variable noise-shaping band location at v, = 0.125 and are given in
Table 2.13. The magnitude spectra corresponding to the 6™-order Butterworth and
Chebyshev 2 bandpass Z-A modulators are shown in Figure 2.61. These modulators were
simulatéd for an input sinusoid and dither signal, whose amplitudes were 0.5 and 0.05 to
compare their spectra with the preceding topologies. A tone at v, = 0.375 can be perceived
confirming once again that the location and to a lesser extent the strength of these tones are
independent of the modulator topology and are primarily a function of the input signal
amplitude. '
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Butterworth _ Chebyshev 2
Fourﬂl-Order
b, 0.2198 b - 0.3092
b, 0.0587 b, 0.0929
b, 0.0581 b - 0.0731
b, -0.0481 b, -0.0681"
a, -1.1544 a, -1.1716
a, -1.4876 a, -1.5146
a, -0.6664 as -0.6860
a, -0.3332 a, -0.3430
Sixth-Order
b, 0.3123 b 0.3935
b, 0.2801 b, 0.3699
by 0.3110 by 0.3926
b, 0.0290 b, 0.0344
bs 0.0043 b -0.0021
b -0.0379 b -0.0492
a, -1.7316 a -1.7574
a, -<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>