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ramework to support the digital life cycle management of Energy Intensive Industries
vestigate the interplay between process mining and simulation modelling to support sustainability
telligence needs to be embedded to improve energy efficiency and material efficiency
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A B S T R A C T
Energy intensive industries can be classified into those that process metal, glass, ceramics, pa
cement, and bulk chemicals. They are associated with significantly high proportions of car
emissions, consume a lot of energy and raw materials, and cause energy wastage as a resul
heat escaping from furnaces, reheating of products, and rejection of parts. In alignment with
sustainable development goals of industry, innovation, infrastructure and responsible consumption
production, it is important to ensure that the energy consumption of EIIs are monitored and redu
such that their energy efficiency can be improved. Towards this aim, it is possible to employ
concepts of digitalization and smart manufacturing to identify the critical areas of improvement
establish enablers that can help improve the energy efficiency. The aim of this research is to rev
the current state of digitalisation in energy-intensive industries and propose a framework to sup
the realisation of sustainable smart manufacturing in Energy Intensive Industries (EIIs). The
objectives of the work are i) the investigation of process mining and simulation modelling to sup
sustainability, ii) embedding intelligence in EIIs to improve energy and material efficiency and
proposing a framework to enable the digital transformation of EIIs. The proposed five-layer framew
employs data acquisition, process management, simulation & modelling, artificial intelligence,
data visualisation to identify and forecast energy consumption. A detailed description of the var
phases of the framework and how they can be used to support sustainability and smart manufactu
is demonstrated using business process data obtained from a machining industry. In the demonstr
case study, the process management layer utilises Disco for process mining, the simulation l
utilises Matlab SimEvent for discrete-event simulation, the artificial intelligence layer utilises Ma
for energy prediction and the visualisation layer utilises grafana to dashboard the e-KPIs. The find
of the research indicate that the proposed digital life-cyle framework helps EIIs realise sustain
smart manufacturing through better understanding of the energy-intensive processes. The study
provided a better understanding of the integration of process mining and simulation & model
within the context of EIIs.

roduction
rgy Intensive Industries (EIIs) are important for the
ic growth of a country since they produce raw mate-
h as paper, glass, steel and metal. They produce basic
s that are sold to other industries downstream in the
hain and while they only account for approximately
the end-user product value, they are accountable

rge proportion, typically 60-80%, of the industrial
use gas emissions (Åhman, Nilsson and Johans-
17). Technological improvements in EIIs, improv-
rgy efficiency, and investing in cleaner production
gies can help achieve the goal of reducing 𝐶𝑂2ns to at least 80% by 2050 (Chowdhury, Hu, Haltas,

zkan, Matthew and Varga, 2018; Liu and Wang,
owever, barriers such as lack of interest in energy
y, inertia, energy price distortion, complex decision
improper evaluation criteria, lack of information

ial investment costs impede the transition. Nonethe-
re exist drivers to achieve sustainable EIIs, stemming
ernational competition, environmental management

responding author
.kaniappanchinnathai@westminster.ac.uk (M.K.C. );
bu.ac.uk (B. Alkan)
ID(s): 0000-0001-7044-3120 (M.K.C. ); 0000-0002-5994-4351 (B.

systems, long-term energy strategy, rising energy prices, a
renewable energy incentives (Chowdhury et al., 2018).

Owing to the above-mentioned drivers, it is possible
address energy efficiency improvements at multiple levels
designing for environment, re-using wasted energy, upgr
ing legacy systems, analysing the product life-cycle fr
raw material extraction to end-of-life, improving mater
efficiency and implementing the best available technologi
Large-scale implementation of such methods can result
improving the energy efficiency by around 15-30%. Ho
ever, further improvement depends on the realisation
breakthrough technologies and fundamental changes to
core process (Åhman et al., 2017). Existing literature
highlighted key enabling technologies that can support t
endeavour; this includes big data analytics, artificial in
ligence, digital twin, Internet-of-Things, advanced robot
and cloud computing (Murri, Streppa, Colla, Fornai a
Branca, 2019; Majeed, Zhang, Ren, Lv, Peng, Waqar a
Yin, 2021).

A review of current knowledge presents the lack o
systematic framework to support digital transformation
EIIs partly due to the limited understanding of exist
processes and their deviations. A few research articles
using big data analytics, AI, and digital twins to supp
EIIs have been published, however, they do not consi
an Chinnathai, M. and Alkan, B.: Preprint submitted to Elsevier Page 1 of 18
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A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries

efits of integrating process mining and simulation.
ion to this, EIIs do not have proper infrastructure to
he holistic digital transformation to support energy
y. In summary, the research gaps can be highlighted

e limited research on systematic approaches to sup-
rt energy efficiency in EIIs;
e lack of existing knowledge on the integration of
ocess mining and simulation;
e lack of necessary infrastructure and policies in
IIs to enable digital transformation towards sustain-
ility;
e limited integration between digital models and AI
r sustainability.
ights from literature review enabled the authors to
te the following research questions.

can the integration of digitalisation and AI support
bility in EIIs?

t strategies can be employed to improve the process
nding of EIIs?

article aims to answer the questions by providing an
ing methodology that encompasses AI, data acqui-

ata visualisation in addition to process management,
ulation & modelling in order to support the digital
mation in EIIs. The main contributions of this article
ummarised as below.
survey of the key enablers for improving energy
ciency, the current state of digitalisation in EIIs,

e opportunities to improve energy efficiency, and the
rriers to sustainable smart manufacturing (SSM).

roposing a framework to support the digital life cycle
anagement of EIIs which is then demonstrated with
e help of a case study.
he integration of process mining and simulation to
pport sustainability.

he introduction of process mining within the context
EII digital transformation.

mbedding intelligence within EIIs to improve energy
d material efficiency.
ion 2 of the article explains the state-of-the art in
ble smart manufacturing and digitalisation of EIIs
ntifies the key enabling technologies. This is fol-
y a detailed review of frameworks that are relevant
ainable EIIs. The summary of the literature review
ts research gaps and how the proposed framework
ed to fulfill them. Section 3 explains the methodol-
comprises of five different layers: data acquisition,

management, simulation & modelling, AI, and data
ation. Section 4 discusses the implementation of the

framework in a test case and section 5 explains poten
applications for the methodology and reviews the challen
to digital transformation in EIIs. Section 6 concludes t
article and scopes out the future work.

2. Sustainable Smart Manufacturing (SSM)
The term ‘Sustainable Smart Manufacturing’ is defin

by Ren et al. (2019) as "the paradigm that integrates d
analytics with up-to-date information to support operatio
and decision making with the ultimate aim of achiev
intelligent and sustainable production." The goal of SS
encompasses responding to dynamic markets, optimis
and enabling flexibility, improving economical and en
ronmental aspects and improving intelligence in decis
making for the whole life-cycle. Towards this aim, Abub
et al. (2020) identify the opportunities for implementat
of sustainable practices for SSM and the challenges fac
by industries in the implementation of SSM. Dincer a
Acar (2015) highlight three different routes to achiev
sustainability, namely, the use of renewable sources that
environmentally friendly, optimisation of system resou
utilisation, and recycling and waste recovery.

A work-center digital twin for smart and sustaina
manufacturing is presented by Park, Lee and Noh (2020)
their research, a work center for textile dyeing and finish
is chosen as the test case and a digital twin is employ
for functionalities such as planning, scheduling, and di
nosis; the steps involved in the practical implementat
of the digital twin are also discussed in detail. From
perspective of developing frameworks, Ren et al. (20
have proposed a conceptual framework of big data a
lytics in Sustainable Smart Manufacturing. In their wo
a comprehensive review of big data analytics and its r
in SSM is explored. The author concludes the article
highlighting the key contributions in smart manufacturi
The framework comprises of Intelligent design, Intellig
production, Intelligent maintenance and service, and Inte
gent recovery. Although the approach is detailed and cov
various aspects, it does not consider some enablers such
simulation & modelling, and process management.

A data driven sustainable smart manufacturing fram
work is proposed by Mahiri et al. (2020) that compri
of following components: (i) smart design of product a
production, (ii) smart production planning, (iii) smart p
duction, (iv) smart equipment maintenance and servi
(v) smart product recycling and (vi) re-manufacturing. T
framework provides an overview of the key enablers a
high level of abstraction and does not delve deeper into
details of implementation. In a work proposed by Maje
et al. (2021), a framework combining big data analyti
additive manufacturing and sustainable smart manufact
ing technologies is presented. Their framework, named B
Data-Driven Sustainable and Smart Additive Manufactur
(BD-SSAM), targets the additive manufacturing indus
and comprises of the following phases: i) perception and
quisition of big data, ii) big data storage and pre-processi
an Chinnathai, M. and Alkan, B.: Preprint submitted to Elsevier Page 2 of 18
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A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries

mining and decision making, and iv) big data appli-
ervices. The BD-SSAM framework is demonstrated
st case where the optimisation of process parameters
ve product quality and reduce energy consumption

nted. In another related work, Mahiri et al. (2022)
d a 5G enabled IIoT (Industrial Internet of Things)
ture for sustainable smart manufacturing comprising
erent layers: business, application, support, edge
ng, and perception. The focus of the architecture is
ling IIoT in smart manufacturing. Following the brief
on frameworks and approaches to support Sustain-
art Manufacturing, the next section explores the Key
g Technologies for SSM in EIIs.
ey Enablers for SSM in EIIs
ficial Intelligence (AI), a branch of computer sci-
mprises of a set of tools and techniques that allow

behaviour to be transferred to a machine (Simmons
ppell, 1988; Taulli and Oni, 2019). AI, when cou-
th simulation models, has been found to support
ion optimisation, performance monitoring, schedul-
lt diagnosis and predictive maintenance through the
hes of descriptive, prescriptive, predictive, and diag-
ata analytics supported by surrogate modelling and
ve modelling (Örs, Schmidt, Mighani and Shalaby,
Data Analytics is an important base technology of

4.0 and is a core element of smart manufactur-
nk, Dalenogare and Ayala, 2019). Big data essen-
presents the significant amount of structured, semi-
ed and unstructured data obtained through various
uisition technologies and allows the exploration of

value and information about a system (Qi and Tao,
hrough analysis of the collected data, various appli-

such as health and condition monitoring, asset main-
, and defect detection and prevention have become a

here are opportunities to improve the sustainability
of manufacturing systems that are associated with
nvironmental impact, waste management, energy
ption, etc., by leveraging AI technologies (Kishawy,
and Saad, 2018). However, there exist challenges
ed with the cost of implementing sustainability mea-
ck of knowledge, lack of guidance on AI-enabled
d lack of metrics to measure sustainability (Tanco,

erian and Santos, 2021).
rgy simulation and modelling encompasses physics-
mulations, discrete-event simulations, virtual com-
ing model, kinematic models, etc., that enable decision-
and production planning when connected to the

l entities in real-time. The term ‘Digital Twin’ (DT)
ginally coined by NASA in the aerospace domain
grated multi-physics, multi-scale, probabilistic sim-
of a vehicle or system that uses the best available
l models, sensor updates, fleet history, and so forth,
r the life of its flying twin " (Shafto, Conroy, Doyle,
en, Kemp, LeMoigne and Wang, 2012). Over the
T technology has evolved and established itself as

an imperative element in various domains for i) collect
impact assessment, ii) AI-based ecosystem decision s
model, and iii) independent interlinked ecosystem cont
submodel (Miehe, Waltersmann, Sauer and Bauernhan
2021). Through the use of digital twins, it is possible
represent a physical entity and its behaviour as a virt
model for various analyses throughout the lifecycle of
system (Qi and Tao, 2018).

In EIIs, the digital transformation starts with first m
suring the energy consumption and other relevant da
Smart meters and soft sensors can capture and calcul
energy consumption while protecting the sensor eleme
from harsh environmental conditions; various dashboa
and platforms can then be used to display the real-ti
consumption (Meijer, Wang and Heidary, 2018). On est
lishment of the energy monitoring system, digital mod
and data analytics can capture the behaviour of the syst
and enable the comparison of different scenarios and supp
autonomous decision-making.

The term ‘Edge Computing’ refers to computing p
formed in close proximity to the data source (Satyanarayan
2017; Shi, Cao, Zhang, Li and Xu, 2016). This op
up various possibilities such as edge analytics, higher
sponsiveness, and reduced concerns regarding privacy;
processing of data is done at the edge and raw data d
not need to be shared to the cloud (Shi et al., 2016). Ed
computing is beneficial for SSM due to the ability to proc
high volumes of data generated from smart sensors with
the need to rely on external cloud services.

Within the context of business process manageme
process mining is a technique that can be used to disco
business processes and support decision making with
use of event logs (Van der Aalst, 2012). The state-of-the
research in process mining pertains to the development
process mining algorithms, particularly for the healthc
sector (Zerbino, Stefanini and Aloini, 2021a). This elic
the opportunity to adopt and apply process management a
mining to discover and analyse process flows and proc
deviations in EIIs.

The key strategies to realise digital transformation r
on leveraging the above-mentioned key enabling techno
gies for fault diagnosis, condition monitoring, implement
planned maintenance, avoiding energy expensive resta
(Abubakr et al., 2020), better capture of energy data, pl
ning or optimisation for energy efficiency, building no
soft sensors for extreme working conditions, and be
management of the temperatures used for energy intens
processes. A thorough comprehensive review of enabl
technologies for smart manufacturing is available in
study published by Ren et al., (2019).
2.2. Current state of digitalisation in EIIs

The Digital Intensity Index (DII) of metals sector
found to be lower than chemical manufacturers which co
be attributed to the fact that the metals industry had a
riod of stability and focussed on continuous improvemen
Interviews with 27 global metals and mining industri
an Chinnathai, M. and Alkan, B.: Preprint submitted to Elsevier Page 3 of 18
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A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries

the lack of existing capabilities in EIIs to bring
ch radical changes. This is due to the fact that current
s do not align with digital transformation and creates
nt system with lack of focus. Furthermore, the lim-
port from managerial personnel, inadequate training
l tools, cynical attitude to AI, concerns regarding
and data breach, challenging operating environment,
afety policies as an excuse to improve, and fear of
yment create a challenging ecosystem with barriers
ation (Gao, Hakanen, Töytäri and Rajala, 2019).

er, the EIIs are not considered as an attractive work-
r people with digitalisation and IoT skills. Therefore,
uitment of younger workforce who are familiar with
hnologies and the training and bridging the gap
older and younger employees might act as catalysts
e radical changes (Branca, Fornai, Colla, Murri,
and Schröder, 2020b; Murri et al., 2019; Branca,

Colla, Murri, Streppa and Schröder, 2020a).
view of the pulp and paper, steel, and chemical

es in Sweden highlighted that EIIs comprehend the
nce of digitalisation; however, the digital maturity
is not high and digitalisation is not linked to energy
y measures. As previously highlighted, the level

al maturity varies across the sectors and was the
or steel industries and strongest for the pulp and
dustries (Jasonarson, 2020). A report on the Swedish

ent protection agency showed that 34% of green-
as emissions are from the Iron and Steel sector. Pulp
er industry have high energy consumption but their
n is low due to use of bio fuels and low carbon
ty.
tinuous improvements and small-scale changes can
step change in the consumption of energy in EIIs.
ment with this notion, steel-specific decarbonisation
chieved by: i) replacing coal with biochar, ii) use of
n or biogas as reducing agent, iii) electrolytic steel
ion, and iv) carbon capture and storage. In the case
g, improvements achieved by renewable electricity
on, electrifying the mining equipment, innovations
ss and technology, and replacing fossil energy with
can drive the progress in sustainability. In case of

ent industry, fuel switching, electrification, carbon
and storage and clinker substitution are some of the
hes that can be employed. In the pulp and paper
, fuel switching and electrification can help reduce
missions. The chemical industry is continuous and

ny problem in equipment could result in unexpected
ance cost. Improving equipment reliability plays a
in achieving better energy efficiency in such indus-

w other techniques include the use of LED lighting,
waste heat, better insulation, equipment redesign,
h that the energy efficiency can be increased. Al-
such improvements are beneficial, the emissions in
steel refineries is expected to be higher in 2045 due
ked increase in production. On the other hand, pulp
er and cement industries are expected to have lower
issions by 2045 (Nurdiawati and Urban, 2021).

To ensure attainment of sustainability goals, it is e
dent that there is need for radical changes to policies a
manufacturing paradigms in EIIs. This section highlights
extent of such advancements, particularly in steel worki
Approximately 156 projects on coal and steel manufactur
research have been funded for the realisation of digitali
tion and Industry 4.0 (Arens, 2019). It is envisioned t
the research on digitally connected products and proces
can allow for intelligent automation (Zsifkovits, Kapel
Reiter, Weichbold and Woschank, 2020). In alignment w
this notion, the following projects highlight the extent
which innovation and energy efficiency in steel product
is currently realised. The ‘NewTech4Steel’ project focus
on advanced data analytics in steel processing (Avelli
Grieco, Piedimonte, Ressegotti, Zangari, Ferraiuolo, Ors
and Paluan, 2022), the ‘DROnes for autonomous MOnit
ing of Steel PLANts’ (DROMOSPLAN) project explo
the use of Unmanned Aerial Vehicles (UAV) for steelwo
(Piancaldini, Chiarotti, Piedimonte, Belloni, Kremeyer, T
len, Polzer, Clees, Bancallari, Barbieri et al., 2019),
‘Robotic workstation in harsh environmental conditions
improve safety in the steel industry’ (RoboHarsh) proj
identifies opportunities for human robot collaboration
the steel industry (Colla, Matino, Schröder, Schivaloc
and Romaniello, 2021), the ‘DEtection of Steel DEfe
by Enhanced MONitoring and Automated procedure
self-inspection and maintenance’ (DESDEMONA) proj
utilised robotics and automation for steel defect detect
(Kazemi Majd, Fallahi and Gattulli, 2022), the ‘Optimi
tion of the management of the process gases network wit
the integrated steelworks’ (GASNET) project uses neu
networks and predictive modelling to improve energy
ficiency in steelworks (Dettori, Matino, Colla, Weber a
Salame, 2019), the AdaptEAF project focusses the optim
sation of energy efficiency of electric arc furnaces (Co
mission, for Research, Innovation, Schlinge, Pierre, Kord
Gogolin, Haverkamp, Hellermann, Rekersdrees, Elsaba
and Kleimt, 2019), and the Cyber-POS project emplo
concepts of cyber-physical production systems for the st
industry (Iannino, Denker and Colla, 2022). Research
embedding intelligence in steel manufacturing is done
part of the steel 4.0 paradigm (Hsu, Kang, Lin, Fu, L
Weng and Chen, 2018). Another interesting work done w
respect to Internet of Things is the tracking of product fr
steelmaking to delivery, and the use of data analytics
prevent error and improve safety (Branca et al., 2020a). T
shift from product-based to consumer-centric services us
digital technologies to create a shared digital ecosystem c
bring about some innovation in EIIs (Newman and McC
mans, 2017). An interesting research pursued by the faci
for intelligent fabrication in Australia is on the use of CA
designs, integration of smart sensors, and use of AR and V
for enhanced robotic handling in steel industries (Institu
2020). In summary, the extent of research and project fund
in this domain highlights the attention provided for susta
able steelworking. The majority of work conducted emp
one or more key enabling technologies to ensure ene
an Chinnathai, M. and Alkan, B.: Preprint submitted to Elsevier Page 4 of 18
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A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries

steel production. The next section will highlight the
les that are relevant to this research and identify the
gaps that need to be fulfilled.
view of frameworks related to Sustainable
Is

ng et al. (2018) address the need for a big data driven
al framework for EIIs wherein they consider four
ents: i) energy data perception and acquisition, ii)
big data storage and pre-processing, iii) energy big
ning and energy intensive decision making, and iv)
ion services of energy big data. Their approach is
ented in a ceramic industry test case and their frame-
ovides a comprehensive overview of the current state
The focus of their work is on Big Data Analytics
ortunities for integration with other enabling tech-
such as data acquisition devices. However, there

to improve the work by considering other enabling
gies such as process management tools and virtual

ng.
amework for sustainable intelligent manufacturing
is proposed by Ma et al. (2020). Their framework
es of three different layers: the perception layer,
ment layer and application service layer. The pri-
cus of their work is the impact of data-driven energy
ption analysis on Circular Economy. A case study in
industry is used as the proof of concept. While their
h is detailed and applicable in the manufacturing
an EII, it could be improved by considering further

ion with other enablers. In another related article, an
ture of energy cyber-physical system and synergistic
of energy flow material flow and information flow is
d (Ma, Zhang, Lv, Yang and Wu, 2019). Their work
nstrated in a test case and the energy consumption
ng is discussed.
amework for sustainable smart manufacturing by

ing concepts of big data and digital twin is proposed
et al. (2022). In their work, the energy monitoring
agement across the production lifecycle is analysed
ith the creation of an energy digital twin. Nilsson
021) propose an industrial policy framework that
the changes that need to be brought about in EIIs

ve zero emission targets. Their work predominantly
on the unexplored area of bringing about green

hanges in EIIS and presents a brief discussion of
onomic implications and international coherence.
cept of Industrial Symbiosis in EIIs by symbiotic
of iron and steel, thermal power and cement indus-

roposed by Xue et al. (2023). The implementation in
se highlights the benefits of the approach for energy
ssion reduction.
mmary of literature review

ummary of the literature review is presented in
. A brief review of relevant articles elicits the various
sustainable smart manufacturing; it can be seen that

lot of attention towards implementation of Big Data

Analytics, IoT and Artificial Intellgience in SSM. Althou
the concept of SSM continues to garner attention, it
evident that there is a lack of research highlighting the te
nical know-how and implementation of SSM framewo
in EIIs. Specifically, it can be seen that i) there is limi
practical research and implementation of the integration
multiple enabling technologies to support sustainable sm
manufacturing in EIIs, ii) the existing knowledge on sm
manufacturing cannot be adapted seamlessly to EIIs due
limited knowledge and understanding of the processes a
energy monitoring, and iii) there is lack of research on
use of simulation & modelling and process managem
tools to support energy consumption analyses in EIIs desp
their benefits for intelligent energy decision making.
Therefore, this research aims to:

• propose a framework to support the digitalisation
EIIs along with a detailed approach highlighting
information flow between the various steps;

• investigate the interplay between process mining a
simulation modelling to support sustainability in E
and SSM.

3. Methodology
The proposed methodology can help realise two m

strategies, directly improving energy efficiency by reduc
the energy consumption and indirectly improving ene
efficiency by reducing the material wastage (also referred
as improving the material efficiency). The key enablers su
as data acquisition using IoT, simulation & modelling, a
ficial intelligence, and process management are integra
to create a comprehensive framework to support susta
able smart manufacturing in EIIs. As seen from literat
on existing frameworks for EIIs, the link between proc
management, and simulation for sustainability is an area t
is least explored. The authors present Figure 1 as a synthe
of the organisational enablers and technological enabl
for smart sustainable manufacturing at various stages o
manufacturing system lifecycle. Extending this further,
Figure 2, the authors identify steps to monitor and impro
energy efficiency at each stage of product lifecycle, start
from raw material extraction to end-of-life. From Figur
and Figure 2, the scope of this research pertains to
technological enablers of smart sustainable manufactur
and the steps to improve energy efficiency in the operat
phase of the system and product lifecycle.

The proposed framework is constructed on five main l
ers that are indicated in Figure 3; the data acquisition lay
process management layer, simulation & modelling lay
artificial intelligence layer, and data visualisation layer. Ea
layer is explained in detail in the following paragraphs a
it is important to note that the various layers are not to
viewed as sequential steps.
an Chinnathai, M. and Alkan, B.: Preprint submitted to Elsevier Page 5 of 18
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y of literature review.

Big Data CPS IoT AI Process mgt Simulation Overview

al., 2018) ✓ ✓ ✓ Focus on big data analytics and energy data mining for EIIs
2019) ✓ ✓ ✓ Focus on energy CPS and energy management for EIIs
2020) ✓ ✓ ✓ Focus on data analytics & circular economy for EIIs
2022) ✓ ✓ ✓ ✓ Focus on digital twins and big data for energy efficiency for EIIs

, 2019) ✓ ✓ ✓ Focus on Big Data and its application in Sustainable Smart Manufacturin
al., 2020) ✓ ✓ ✓ Focus on improving intelligence in Sustainable Smart Manufacturing
al., 2021) ✓ ✓ ✓ Focus on big data analytics for sustainable and smart additive manufactu

approach (2023) ✓ ✓ ✓ ✓ Focus on data acquisition, AI, process mining and simulation for EIIs

: Organisational and technological enablers for Sustainable Smart Manufacturing [adapted from (Malek and Desai, 20
al., 2011)].

Figure 2: Energy efficiency strategies at various stages of product lifecycle.
an Chinnathai, M. and Alkan, B.: Preprint submitted to Elsevier Page 6 of 18
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A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries

Figure 3: Digital Life-cycle Management framework.

ta Acquisition layer
data acquisition layer comprises various compo-
ch as smart sensors, smart meters, IoT, RFID, ther-
les, energy monitoring devices, Enterprise Resource
g (ERP), Manufacturing Execution Systems (MES),
s, Excel/CSV, and data warehouses that capture
ect and indirect energy consumption and carbon

ns.
irect energy consumption - refers to recording of
mperature, pressure, vibration, acoustics, water us-
e, gas usage, electricity usage, power usage, and fuel
nsumption that enable the calculation of machine-
vel or manufacturing system-level energy consump-
on. An example of direct energy consumption is the
cording of temperature values using thermocouples.
direct energy consumption - refers to the record-
g of number of parts rejected, reworked, machine
ilisation statistics and process-related statistics that
able the calculation of wasted energy. An example
indirect energy consumption is the use of RFID tags
record products that are rejected or sent for rework.

a acquisition is the first step in the methodology and
ured data is crucial for forecasting and monitoring
gy consumption. It is important to note that data

might be available in different formats and needs to be p
processed, cleaned, filtered and stored either locally or
the cloud. Therefore, this initial step is significantly tim
consuming and becomes tedious as the volume and variety
data increases; strategies to convert unstructured and sem
structured data to structured data will alleviate the proble
associated with big data.
3.2. Process Management layer

This layer retrieves information from the data acquisit
layer to actively manage and monitor the process. Consid
ing the operation stage of the system lifecycle, existing p
cess records play an important role in energy consumpt
forecasting and prediction. Process mining is a data-driv
technique that can extract hidden evidence from event lo
and records (Zerbino, Stefanini and Aloini, 2021b) that ex
in the data acquisition layer. Since EIIs lack an understa
ing of existing processes, the authors believe that the proc
management layer and process mining can help overco
the issue. This layer comprises of various components
process discovery, process conformance checks, knowled
representation, and process analysis and can be reali
using tools such as ProM, Disco, etc.
an Chinnathai, M. and Alkan, B.: Preprint submitted to Elsevier Page 7 of 18



Journal Pre-proof

• P
ar
in
tr
un
in

• P
ru

• K
ed
to

• S
be
ca
m
co

cy
ess
nly
for
are
ith
nts

po-
ics
the
ess
ave
sis
put

Kaniapp

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries

Figure 4: ERP data used for process discovery.

rocess discovery - the process-related information
e discovered from event logs through process min-
g. For example, event logs obtained from database,
ansaction logs or workflow systems can be used to
earth and visualise the factual representation of the
dustrial process.
rocess conformance - the event log ‘traces’ can be re-
n to check for conformance and process deviations.
nowledge representation - the existing process knowl-
ge can be mapped to products and equipment using
ols such as Protêge.
tatistical analysis - process metrics such as the num-
r of events, cases, case variants, events per case,
se duration, case utilisation, mean activity duration,
ean waiting times, etc., can be obtained using this
mponent.

Through process discovery and analysis, the frequen
of the processes, the variants catered to, and the proc
routes through the system can be obtained. This not o
enables further understanding of the industrial process
policy generation and continuous improvements that
much needed in EIIs, but also helps analyse the process w
metrics such as mean duration of processes, process varia
and their frequencies, part rejection and rework, etc.
3.3. Simulation & Modelling layer

The simulation & modelling layer comprises of com
nents such as Discrete-Event Simulation (DES), kinemat
model and digital twins that can be generated with
process logs and process metrics obtained from the proc
management layer. Energy flow simulation paradigms h
benefits such as process improvements, efficiency analy
and can help calculate yearly cost savings, production out
an Chinnathai, M. and Alkan, B.: Preprint submitted to Elsevier Page 8 of 18
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A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries

rgy consumption (Herrmann, Thiede, Kara and Hes-
2011). Therefore, the authors believe it is a suitable

or the framework.
iscrete-Event Simulation - this component is used
model the stochastic behaviour of a system and

alyse ‘what-if’ scenarios.
gent-based models - this component can be used to
present the behaviour of various resources, people,
d products in a manufacturing system and their
teraction with each other.
nergy Digital Twin - represents the physics and
haviour of energy intensive equipment such as fur-
ces, heat treatment and annealing chambers.

se models can support decision making, analyse
scenarios’, virtual commissioning, reconfiguration

, and process planning. Majority of EIIs have limited
nding of their processes that makes it difficult to
ata such as rework rate, process flow, product vari-
., for simulation & modelling.
tificial Intelligence layer
hine learning techniques can be coupled with sim-
models for explainable analytics, improving system
ance, predictive visibility, and optimising perfor-
(Biller and Biller, 2023). Specifically, the energy
ption, scrap rate and product rework data can be anal-

onitor assets, detect failures, and realise preventive
ance measures. Therefore, the artificial intelligence
introduced in the proposed framework such that
energy consumption data can be used to forecast

gy consumption for subsequent weeks. It can also be
with an online real-time simulation model to enable
e energy predictions using data streaming platforms
Apache Storm and Kafka.
ta Visualisation layer
data obtained from the AI layer such as the forecast
y consumption and cost, and forecast of machine
n be displayed in the form of graphs and plots using
ualisation software such as PowerBI, Tableau, and
. This layer can also be coupled with the simulation
lling layer to display real-time energy and usage

s at varying levels of granularity. When displayed
boards and reports, it can help making informed
s about the system. For purposes of communication
the different layers, OPC-UA servers can be estab-
ensure that the dashboards are regularly updated.

point to note is that the dashboards from this layer
isplayed in desktops, hand-held devices, laptops or
Machine Interfaces (HMIs) to managers and engi-
ubsequently, any discrepancy in the system can then
lised and necessary actions could be taken before it
tes to a serious problem.
next section delves deeper into each of the layers and
trates one possible application of the methodology

as proof of concept. Please note that there are multi
applications for the proposed framework, but only one
discussed in detail.

Figure 5: Process discovery using event logs in Disco.

4. Case study
To demonstrate the framework, a test case in an ind

try that does machining operations on metal parts such
drills, bearing, ball nuts, springs, etc., is presented. T
dataset (Levy, 2014) used in this research is sourced fr
Enterprise Resource Planning (ERP) and Manufactur
Execution Systems (MES). As a proof of concept, only o
possible application of the framework is discussed start
with process discovery using ‘Disco process mining so
ware’. As machining operations are energy-intensive (Sha
Gao, Jiang and Lu, 2019; Moradnazhad and Unver, 201
the authors believe that the following demonstration c
provide guidance on the practical implementation of
digital lifecycle management framework in EIIs.
4.1. Process discovery

The data provided in Figure 4 is the event log t
was used for process mining. Each row in the event
represents a ‘trace’ that is a set of activities. By import
this data into the process mining software (Disco), the ‘
is’ process is discovered. The process flow in Figure
provides a high-level view of the actual activities that ta
place in the industry. It can be seen that the most frequ
an Chinnathai, M. and Alkan, B.: Preprint submitted to Elsevier Page 9 of 18
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A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries

level data obtained by process mining.

e Frequency Relative Frequency Median Duration Mean Duration Duration Rang

Check 1 1193 26.26% 1 hour 15 mins 1 hour 44 mins 10 hours 47 m
1 - Lapping 369 8.12% 1 hour 15 mins 1 hour 46 mins 22 hours 41 m

277 6.1% 1 hour 1 hour -
2 - Grinding 273 6.01% 3 hours 3 mins 3 hours 55 mins 15 hours 50 m
3 - Grinding 275 6.05% 2 hours 53 mins 3 hours 48 mins 16 hours 49 m
4 - Turning and Milling 271 5.97% 5 hours 30 mins 5 hours 34 mins 22 hours 7 mi
5 - Turning and Milling 264 5.81% 5 hours 22 mins 5 hours 20 mins 22 hours 22 m
6 - Turning and Milling 261 5.75% 4 hour 28 mins 5 hours 4 mins 22 hours 24 m
7 - Laser Marking 252 5.55% 52 mins 30 secs 57 mins 45 secs 4 hours 9 min
8 - Turning and Milling 219 4.82% 2 hours 45 mins 3 hours 38 mins 14 hours 36 m
9 - Turning and Milling 198 4.36% 4 hours 1 min 4 hours 40 mins 23 hours 49 m
10 - Grinding 178 3.92% 5 hours 29 mins 5 hours 38 mins 22 hours 59 m

s are shown in dark blue and accordingly the turning
g and final inspection (quality check) processes are

t frequent. The arrows connecting the processes have
t thickness depending on the frequency of the flow

two processes. Moreover, by zooming into each
category, as seen from Figure 4, the mean process
, range of process duration, frequency of the process,
cess routes can be obtained as shown in Table 2.
e above data, the ten most frequent process flows
tified and provided in Table 3. The product variants
ough different process routes spanning across 12 ma-
five turning and milling machines, two round grind-
hines, one flat grinding, one lapping, one deburring,
r marking, and one wirecut machine. Apart from
ations carried out in these machines, two other less
ntensive operations of quality check and packing
m part of the process flow. It can be seen that the
s undergo different machining operations depending

route. For example, from Table 3, variant 8 has
ocesses: round grinding, quality check and packing
ant 1 has seven processes: turning & milling, quality
ser marking, round grinding, lapping, quality check,
ing. Therefore, variants 1 and 8 will follow different
routes through the system as a result of which they
e different process metrics. Each variant category
erent ‘cases’ or ‘instances’ of products that follow
e process flow but have different timestamps, energy
ption and machining duration. Corresponding to the
of cases in each variant, the percentage of variant
es in the system is according to the values provided
st row of Table 3.
screte-Event Simulation model
idea behind the DES model is to use the process
t was discovered in the process management layer
er understand the system. With the help of the
he KPIs such as machine-level energy consumption
hine-level utilisation are calculated using SimEvent
ric DES model in Simulink (Matlab version R2022).

An overview of the simulation model is provided in F
ure 6. An inter-arrival time that varies between the ran
of 0 to 3 hours was set in the entity generator block;
variant-specific service time for each machining proc
was set within the service blocks, as triangular probabi
distributions. The service time values were obtained fr
the process duration and mean duration statistics from
Figure 4. The order in which product variants arrive for ea
run of simulation varies and the frequency of each varian
modelled according to Table 2 and Table 3. When produ
enter quality checks, there is a 5% chance that they might
sent for rework. All queues follow First In First Out (FIF
rule and have a maximum capacity of 50. The simulation
run for a period of one week (168 hours); the weekly dema
for each product variant changes according to Table 4.
4.2.1. Assumptions for simulation

The main assumptions for the simulation are as follow
• The machining operations and transportation are p

formed using appropriate equipment but opera
manually.

• The final quality check, turning and milling qua
check and round grinding quality check are conside
as variations of the quality check process. Therefo
the same process block in DES is used to model the

• The simulation runs over a period of three shifts
day. But the labour allocation per shift is not modell
it is assumed that equipment/machines play a prim
role in energy consumption.

• The warmup time for simulation is 10 hours (based
trial runs) and the system reaches steady state after t
period; as this did not significantly affect the statisti
the warm-up time is ignored in the output statist
calculations.

• The quality inspection and packing processes are m
ual process and are assumed to consume negligi
amount of energy.
an Chinnathai, M. and Alkan, B.: Preprint submitted to Elsevier Page 10 of 18



Journal Pre-proof

ion
ne-
file
ao

the
er-
on,
the
his
en

ere
ere
the
ain

(1)

les
as

ink
𝑎𝑑𝑦ne.
the
ns,
is

the
rgy
ed

ck-
ng,
ere
the
the

ion
set
on-
ed
be

are
me

is
lab
he
of

the
are
ing
ax
lts
7.

the
pt,

Kaniapp

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
Jo
ur

na
l P

re
-p

ro
of

A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries

Ta
ble

3:
Ca

se
stu

dy
-P

roc
ess

det
ail

s.
S.N

o
Va

ria
nt

1
Va

ria
nt

2
Va

ria
nt

3
Va

ria
nt

4
Va

ria
nt

5
Va

ria
nt

6
Va

ria
nt

7
Va

ria
nt

8
Va

ria
nt

9
Va

ria
nt

10
Pro

ces
s1

Tu
rni

ng
&

Mi
llin

g
Tu

rni
ng

&
Mi

llin
g

Tu
rni

ng
&

Mi
llin

g
Tu

rni
ng

&
Mi

llin
g

Tu
rni

ng
&

Mi
llin

g
Tu

rni
ng

&
Mi

llin
g

Tu
rni

ng
&

Mi
llin

g
Ro

un
dg

rin
din

g
Tu

rni
ng

&
Mi

llin
g

Tu
rni

ng
&

Mi
llin

g
Pro

ces
s2

Qu
ali

ty
che

ck
Qu

ali
ty

che
ck

Qu
ali

ty
che

ck
Qu

ali
ty

che
ck

Qu
ali

ty
che

ck
Qu

ali
ty

che
ck

Qu
ali

ty
che

ck
Qu

ali
ty

che
ck

Qu
ali

ty
che

ck
Qu

ali
ty

che
ck

Pro
ces

s3
La

ser
ma

rki
ng

La
ser

ma
rki

ng
La

ser
ma

rki
ng

La
ser

ma
rki

ng
La

ser
ma

rki
ng

La
ser

ma
rki

ng
Pa

cki
ng

Pa
cki

ng
Fla

tg
rin

din
g

La
ser

ma
rki

ng
Pro

ces
s4

La
pp

ing
Fla

tg
rin

din
g

Fla
tg

rin
din

g
Fla

tg
rin

din
g

De
bu

rri
ng

La
pp

ing
La

pp
ing

Ro
un

dg
rin

din
g

Pro
ces

s5
Ro

un
dg

rin
din

g
Qu

ali
ty

che
ck

La
pp

ing
Qu

ali
ty

che
ck

Fla
tg

rin
din

g
Qu

ali
ty

che
ck

Qu
ali

ty
che

ck
Qu

ali
ty

che
ck

Pro
ces

s6
Qu

ali
ty

che
ck

Pa
cki

ng
Ro

un
dg

rin
din

g
Pa

cki
ng

La
pp

ing
Pa

cki
ng

Wi
re

cut
Pa

cki
ng

Pro
ces

s7
Pa

cki
ng

Qu
ali

ty
che

ck
Ro

un
dg

rin
din

g
Pa

cki
ng

Pro
ces

s8
Pa

cki
ng

Qu
ali

ty
che

ck
Pro

ces
s9

Pa
cki

ng
Pe

rc
en

ta
ge

41
%

4%
11

.7%
7.9

%
4%

15
.6%

5.8
%

2%
4%

4%

4.2.2. Simulink - energy consumption model
It is important to conceptualise an energy consumpt

model within Simulink in order to calculate the machi
level energy consumption. The machine tool power pro
was adopted from existing literature (Zhao, Liu, He, C
and Guo, 2017; Li and Kara, 2011) and considered for
energy consumption modelling. Accordingly, three diff
ent energy values for machine-level energy consumpti
namely, 𝐸𝑏𝑎𝑠𝑒, 𝐸𝑐𝑢𝑡𝑡𝑖𝑛𝑔 and 𝐸𝑟𝑒𝑎𝑑𝑦 are considered. At
start of the simulation, the 𝐸𝑏𝑎𝑠𝑒 value is updated; t
value is the idle energy consumed by the machines. Wh
a product variant enters the service block (machine), th
is a setup phase, represented by the 𝐸𝑟𝑒𝑎𝑑𝑦 value, wh
the spindles and fixtures are readied. Following this,
cutting/machining operation begins and runs for a cert
duration, represented by the 𝐸𝑐𝑢𝑡𝑡𝑖𝑛𝑔 value.

𝐸𝑚𝑎𝑐ℎ𝑖𝑛𝑒 = 𝐸𝑏𝑎𝑠𝑒 + 𝐸𝑐𝑢𝑡𝑡𝑖𝑛𝑔 + 𝐸𝑟𝑒𝑎𝑑𝑦

The 𝐸𝑏𝑎𝑠𝑒, 𝐸𝑐𝑢𝑡𝑡𝑖𝑛𝑔 and 𝐸𝑟𝑒𝑎𝑑𝑦 are defined as variab
and the energy consumption of a machine is calculated
per Equation 1. Each machine corresponds to three ‘simul
function’ blocks, one for each energy value. The ‘𝐸𝑟𝑒simulink block’ is triggered when product enters a machi
Following this, the ‘𝐸𝑟𝑒𝑎𝑑𝑦’ value is updated according to
time taken for setup. When material removal/cutting begi
the ‘𝐸𝑐𝑢𝑡𝑡𝑖𝑛𝑔 simulink block’ is triggered and the value
updated according to the time taken. The primary aim of
simulation model is to calculate the machine level ene
consumption subject to stochasticity which was achiev
using random number generators.

To test the working of the simulation model, desk che
ing, peer testing, submodel testing, model interface testi
visualisation and sensitivity analysis (Balci, 1998) w
done with the help of data inspector and signal logging;
model was subject to several iterations before recording
output data in Matlab workspace.
4.3. Forecasting the energy consumption

Twenty datasets were obtained from the simulat
model, one for each week of simulation run; each data
comprises of timestamp in the first column, energy c
sumed by machine 1 in the second column, energy consum
by machine 2 in the third column and so on. It should
noted that the timestamps at which the energy values
recorded is not equally spaced and this is because the ti
interval between events in DES vary. The timestamp data
converted to timeseries using the ‘retime’ function in Mat
to obtain the daily and weekly energy consumption. T
dataset is split into training set that corresponds to 90%
the data; the remaining is considered as the test set and
lag is ‘1’. During the training, the weights and bias values
updated using an LSTM neural network with the follow
parameters: adam solver, L2 regularization of 0.0001, m
epochs of 1000, and minimum batch size of 128. The resu
of the energy consumption forecast is provided in Figure
Although there is scope to improve the architecture of
neural network, in view of delivering the proof of conce
further details will not be discussed in this article.
an Chinnathai, M. and Alkan, B.: Preprint submitted to Elsevier Page 11 of 18
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dy - Variant details.

Variant 1 Variant 2 Variant 3 Variant 4 Variant 6 Variant 7 Variant 8 Variant 9 Variant

1 0 1 1 1 1 3 0 1
4 0 0 1 1 1 3 1 0
2 0 1 1 1 1 3 2 0
2 0 1 1 1 1 3 0 1
3 0 0 1 1 1 3 1 1
2 0 1 1 1 1 3 1 1
2 0 1 1 1 1 3 2 1
3 0 2 0 2 1 3 2 1
1 0 0 1 1 1 3 2 2

0 3 0 2 1 2 1 3 1 1
1 3 0 0 1 1 1 2 1 1
2 4 0 0 1 1 1 3 1 1
3 1 0 1 1 2 1 3 1 2
4 2 0 1 1 2 1 3 1 1
5 3 1 1 1 2 1 3 1 0
6 3 0 1 1 2 0 3 1 1
7 3 0 1 0 2 1 3 1 1
8 2 1 2 1 2 1 3 1 1
9 3 1 1 1 3 1 3 2 0
0 3 1 1 1 3 1 3 2 0

sualising the results
results obtained from both simulation and neural
s are displayed using grafana as it has good visu-
features such as charts and plots. The dashboard-
is sourced from multiple sources at different time

s and needs to be constantly updated to show the
e information. For this purpose, OPC-UA (Unified
ture) which is a protocol for machine-to-machine
ication is used. Kepware is a server that is built

PC-UA architecture and can enable the real-time
nsfer between software for interoperability. In this
atlab and InfluxDB are established as clients to the
er for real-time data transfer. Following this, grafana
ated with influx DB to create real-time dashboards.
le dashboard built for this proof of concept is shown
e 8. Further details of the real-time communication

epserver and energy KPIs for manufacturing systems
ound in a previous work by the authors (Chinnathai,
nd Harrison, 2021; Assad, Alkan, Chinnathai, Ah-
shforth and Harrison, 2019). From Figure 8, it can
that machines 6 and 12 have the lowest utilisation

ce the least efficient.

cussion
is paper, a digital lifecycle management framework
is used to demonstrate how process discovery,

-event simulation and data analytics can be used to
the energy consumption of a machining industry. It

however, be noted that the applicability of the frame-
not restricted to the above-mentioned case study. The

framework was developed to cater to the need of deliver
radical improvements in EII energy efficiency. Howev
the applicability of the framework is not restricted to E
The potential of integrating process mining and simulat
for energy efficiency in a diverse range of manufactur
systems is an area of interest for future research. Consider
the concept of Digital Twin, the proposed digital lifecy
management framework considers the integration of vario
software to create a digital representation of EIIs. Th
can be enriched with physics, electronics and data to
considered as a digital twin of the production system or
components. In this research, the operational phase of the
was considered during demonstration of the methodology
is to be noted that, in EIIs, concepts such as reconfigurat
and production system changes do not happen as frequen
as other manufacturing systems such as automobile asse
bly and semiconductor industries. However, the propo
framework is equally beneficial in the system design ph
for planning and validation of systems. EIIs can also ben
from technologies such as block-chain enabled digital tw
that can help in decarbonising the whole supply chain
addition to providing traceability, compliance, authentic
quality and safety (Yaqoob, Salah, Uddin, Jayaraman, Om
and Imran, 2020). Moreover, the proposed framework he
achieve Industry 5.0 targets of adaptability, autonomo
decision making while adhering to sustainability constrai
and goals; this is with the help of AI and advanced fo
casting to adapt to external circumstances through ad
tive scheduling, job allocations, transparent and autonomo
decision-making.
an Chinnathai, M. and Alkan, B.: Preprint submitted to Elsevier Page 13 of 18
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Figure 7: Performance measurement of the LSTM architecture.

Figure 8: Grafana dashboard.

plication for practitioners
he research can be employed for condition monitor-
g using sensors, data acquisition systems, predic-
ve and diagnostic techniques to formulate energy-

cient maintenance plans.
rocess data integrated with simulation models and
achine learning can be used for anomaly detection
d asset health monitoring. As a result, manufactur-
s can simulate maintenance strategies before imple-
entation.

• EIIs can employ the framework to improve the p
cess design and reduce wasted energy and materia
As an example, simulation-based optimisation can
employed to identify the best operating conditio
and process parameters for various energy-intens
processes while maximising profit and minimising
energy consumption.

• Engineers can automatically generate energy D
models with embedded intelligence from ontologi
knowledge representation, and AI.
an Chinnathai, M. and Alkan, B.: Preprint submitted to Elsevier Page 14 of 18
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A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries

plication for researchers
he recent environmental policies and iniatives have
t EIIs on the spotlight. As a result, EIIs are seeking
innovate and radically transform their processes

ith the support from academia and researchers. The
cus has been on the integration of big data analytics
d data acquisition systems. However, the proposed

amework will aid researchers to explore other key
ablers such as process mining and simulation &
odelling to achieve a holistic digital transformation
EIIs.

he experiment performed in this research study
rves as a proof of concept for improving energy and
aterial efficiency of EIIs.
he digital life-cycle management framework con-
ders the horizontal and vertical integration of the
rious components for real-time decision support. It
ves way for researchers to explore the concepts of
teroperability, data storage, and industrial network
r ensuring organisation-wide sustainability in EIIs.
ey findings
mprehensive evaluation of the proposed framework
dentify the below findings.
review of past studies indicates the focus of exist-

g research on IoT devices, and big data analytics.
here is a lack of technical know-how regarding the
amless transition of EIIs from legacy systems to
stainable digital factories.

he proposed framework primarily relies on existing
ta from the data acquisition layer and any issues
ith data quality are propagated throughout the frame-
ork.
he accuracy of the models developed in the sim-
ation and AI layers significantly depends on the
antity and quality of the data.

uring implementation of the framework, there exist
teroperability issues due to the use legacy systems
EIIs.

he framework can be applied in the operational phase
a system and all five layers of the framework play
important role in discovery and monitoring of the

ta.
allenges and outlook
section discusses the challenges and outlook for

ransformation from the perspective of organisational
. The first and foremost issue is that the investments
l technologies are expensive. This is compounded by
of proper digital infrastructure as a result of outdated
ystems, inexperienced personnel, lack of accurate

d challenges in data collection. Long term strategies
ical changes are not easy to implement since they
be considered at the organisational level. Existing

es lack knowledge on where and how the principles

of Industry 4.0 can be applied. In order to build intellig
digital models it is important to have a good knowledge
the complex processes in a system. However, lack of pro
documentation, and use of paper-based systems add to
isting challenges (Jasonarson, 2020). The age gap betwe
current workers and prospective employees is huge. T
experienced workers who have a better idea of the facto
are resistance to training (Murri et al., 2019). According
Newman and McClimans (2017), the key to achieving b
effective use of digital technologies is successful verti
integration, horizontal integration, as well as consider
the lifecycle assessment of the production. In order to br
about such a transformation, it is necessary to have a mu
disciplinary project team with skill set that allows dig
modelling, embedding intelligence, and performing ana
sis.
5.4.1. Research Question 1: How can the integration

of digitalisation and AI support sustainability
EIIs?

Past studies show that increased collaboration amo
researchers, industries and academia plays an important r
in digital transformation of EIIs. The digital models t
will be created should be holistic to capture the differ
stages of the lifecycle along with integration of lifecy
assessment tools. To answer this research question, the di
tal life-cycle management framework considers five diff
ent layers that enable the integration of digitalisation a
AI for asset monitoring, measuring utilisation, zero-def
manufacturing, traceability, adaptive online control and
fective process plans to reduce wastes. However, it sho
be noted that this necessitates proper training to person
along with improvements in safety, and working conditio
Additionally, it is worth considering cloud-based Platform
a Service (PaaS) and federated learning for specific stages
the digital transformation.
5.4.2. Research Question 2: What strategies can be

employed to improve the process understandin
of EIIs?

The benefits of process mining for EIIs is establish
as part of this study. Event logs and traces obtained fr
industries help with process discovery and improves p
cess understanding. Having established that the monitor
and understanding of processes in an EII can bring ab
a positive transformation, the proposed digital life-cy
framework enhances existing methodologies that are ba
on big data analytics, digital twin, and IoT with the addit
of process management and simulation & modelling. T
research study demonstrated the steps involved in the proc
discovery of a mining operation and identified data that c
be readily used for the development of an energy DES mod
The research can benefit from further understanding of
data model schema and interoperability between proc
mining and simulation.
an Chinnathai, M. and Alkan, B.: Preprint submitted to Elsevier Page 15 of 18
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A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries

clusion and future works
is research, the authors have reviewed the current

digitalisation in energy-intensive industries and pro-
framework to support the realisation of sustainable
anufacturing in Energy Intensive Industries (EIIs).
estigation of process mining and simulation mod-
support sustainability has enabled the development
-layer framework consisting of i) data acquisition,

ess management, iii) simulation & modelling, iv)
l intelligence, and v) data visualisation, to embed
nce in EIIs such that energy and material efficiency
improved. The framework is demonstrated with a
ng industry test case and the various phases of the
rk support different facets of sustainable smart man-

ng to bring about a holistic digital transformation. It
e noted that the primary research contribution is the
ion of process mining and simulation & modelling
stand the ‘as-is’ process; the process data was used
ver process deviations, represent knowledge, and
processes to support the creation of a parametric

-event simulation model. The output of the simula-
del was used to forecast the energy consumption; the
consumption is then displayed using dashboards to
areas for improvement. The authors would like to
t that to the best of their knowledge there is no exist-
arch that explores the process understanding of EIIs
the use of process mining integrated with simulation
lling. The study also indicated the importance of the
of data and the accuracy of the modelling process.

er, the barriers associated with interoperability and
e/software compatibility were also discovered. As
the future work, the limitations associated with as
lity issues, interoperability and compatibility with

systems, can be addressed by: i) considering and
ing data quality checks and data governance policies
ateway of each of the five layers, ii) identifying
l datasets that are relevant to the current processes
uating their suitability to train the models used in the
, iii) identifying open source software and APIs that

overcome issues with real-time data transfer and
bility issues. Additionally, there are plans to extend
arch work with the inclusion of detailed knowledge
tation, ontologies and mapping in the process man-

t layer, consideration of cloud-computing and edge
ng, and self-adapting automation & manufacturing
.
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