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Abstract 

Recent research on digital camera performance evaluation 

introduced the Natural Scene Spatial Frequency Response (NS-

SFR) framework, shown to provide a comparable measure to the 

ISO12233 edge SFR (e-SFR) but derived outside laboratory 

conditions. The framework extracts step-edges captured from 

pictorial natural scenes to evaluate the camera SFR. Comprising 

two parts, the first utilizes the ISO12233 slanted-edge algorithm to 

produce an ‘envelope’ of NS-SFRs. The second estimates the system 

e-SFR from this NS-SFR data. 

One current drawback of this proposed methodology has been 

the computation time. Although successful in e-SFR estimation, the 

process was not optimized; it derived NS-SFRs from all suitable 

step-edges before statistically treating the results to estimate the e-

SFR.  

This paper presents changes to the framework processes, 

aiming to optimize the computation time for real-world 

implementation while maintaining e-SFR estimation accuracy. The 

developments include an improved framework structure and an edge 

isolation step that is easier to compute. The resulting code has been 

incorporated into a self-executable user-interface prototype, 

available on GitHub, allowing users to select images for e-SFR 

camera estimation, for different radial annuli and camera 

orientations.  

Introduction 
Previous publications [1–3] presented research that developed 

a novel automated methodology that estimates the standard edge 

Spatial Frequency Response (e-SFR) directly from pictorial natural 

scenes. The proposed methodology [1, 2] was split into two parts. 

The first part located, isolated and then verified step-edges from 

photographed scenes. These step-edges were put through the 

ISO12233:2017 e-SFR algorithm, providing Natural Scene derived 

Spatial Frequency Responses (NS-SFRs). The second part applied 

thresholds to the NS-SFRs to find the edges that were most likely to 

return test chart response for estimating the standard e-SFR. The 

resulting e-SFR estimates were derived for six radial annuli across 

the field of view and the entire frame [1–3]. This workflow is 

depicted in Figure 1.  

Investigations were conducted using three large, diverse image 

datasets, comprising 1-2K images each, captured for the purpose [3], 

using two near-linear digital single-lens reflex (DSLR) cameras and 

one highly non-linear smartphone system. The resulting e-SFRs 

were shown to be within the limits of the ISO12233 e-SFRs derived 

in the lab, from test chart inputs, for all the (near-)linear systems, 

i.e., the estimates stayed within +/- one standard deviation of the 

equivalent test chart measurement. Results from the highly non-

linear system showed signs of scene-and-processing dependency 

(SPD); this SPD behavior has not yet been quantified. Overall, the 

results suggest that the proposed method is a viable alternative to the 

ISO technique for characterizing linear and near-linear camera 

systems, and hints at scene-dependent image processes in the non-

linear system.  

The measuring framework can be used in several applications. 

A live-SFR measurement is of significant interest, potentially 

allowing a camera system to be monitored to ensure it is fully 

operational for decision-critical tasks. Live-SFRs can open new 

possibilities in the evaluation of autonomous vision systems, such 

as autonomous vehicles [4], CCTV and security systems. Another 

useful application is the ability to obtain SPD-SFRs for 

characterizing highly non-linear adaptive Image Signal Processing 

(ISP), which is now an integral part of modern camera systems. 

Such systems have become non-linear black boxes, where linear and 

non-linear processes are inseparable and thus difficult to fully 

characterize. NS-SFR analysis has the potential to provide further 

insight into non-linear and scene-dependent behavior [1].  

One drawback of the NS-SFR framework has been the 

computation time since priority was given to measurement accuracy 

rather than efficiency. The average computation time per image 

(calculated from 1500 RAW (green channel) 36.3-megapixel (MP) 

images) was 16 minutes. The framework first derives NS-SFRs from 

all suitable step-edges and further validates and statistically treats 

the results to estimate the e-SFR. This two-part process was shown 

to be highly inefficient since it resulted in only 3.4% of the isolated 

NS-SFRs being utilized in the e-SFR estimate. 

This paper presents changes to the framework processes, 

aiming to optimize the computation time for real-world 

implementation while maintaining e-SFR estimation accuracy. The 

rationale behind the significant optimizations made to the 

framework is described. The computational improvements and the 

error of the e-SFR estimates are presented and compared to the 

previous workflow for a standard test-chart and the datasets 

presented in the original publications [1, 2]. Finally, the updated 

measurement framework was packaged in an open-source, self-

executable application and is readily available to download via 

GitHub for SFR camera evaluation. 

Workflow Optimizations  
The primary step in optimizing the estimation of the e-SFR 

from natural pictorial images was to reorder the processes so that the 

step-edges were fully validated before they underwent heavy 

computational processing. This resulted in 96.6% of unutilized 

edges being deselected as early as possible. The flowchart of the 

previous iteration and the optimized workflow are compared in 

Figure 1. Further, the code was optimized to perform the same tasks 

with lower computational requirements.  

In detail, first, rather than re-evaluating each edge multiple 

times, the step-edge verification, contrast deselection and edge-of-

interest masking processes were combined into one process. The 

majority of edges, which were unsuitable for e-SFR estimation, 

were deselected, eliminating repetitive calculations. The edge 

contrast selection at an early stage in the workflow resulted in 66% 

less processing.  
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Secondly, an alternative to pixel stretching, a filter previously 

developed as part of the framework to isolate the edge-of-interest 

that removed unwanted scene textures and background objects, was 

established. In this, the edge isolation is achieved using an edge 

mask, extracting the region where the actual step-edge resides, see 

Figure 2. 

In the revised framework, once the edges are cropped from the 

image in regions of interest (ROIs), the NS-SFRs are measured 

using sfrmat4 [5] (ISO12233:2017 [6]). The NS-SFR measurements 

follow the methodology stated in the previous publications [1, 2]. 

Only the luminance e-SFRs are measured; RGB e-SFRs require 4x 

the processing time (for all 3 color channels and the luminance).  

To obtain the ‘sharpest’ edges, i.e., the edges most likely to 

return a test chart response, the previous iteration of the workflow 

took the 10th percentile of the distribution of the Line Spread 

Function (LSF) Full Width Half Maximum (FWHM) per radial 

annuli. This was an effective method to estimate the system e-SFR. 

However, it also deselects 90% of the already processed NS-SFRs. 

The optimized workflow has a stricter edge verification process, 

resulting in fewer but ‘sharper’ step-edges being processed. As a 

result, a ‘sharpness’ threshold is no longer required; all selected 

step-edges contribute to the e-SFR estimation.  

Previously, a multidimensional coordinate system was used to 

interpolate the NS-SFRs across multiple parameters (i.e. angle, 

contrast, noise). This is a valuable tool for NS-SFR analysis, 

removing anomalous data across parameters. However, for the e-

SFR estimation, it can result in additional unrequired processing. 

Therefore, in this optimized workflow, the multidimensional 

 
Figure 1. Comparison between the structure of the previous iteration and optimized workflows. 
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coordinate system was replaced by calculating the median NS-SFRs 

per radial annuli and a global weighted median NS-SFR across the 

field of view. 

Step-edge Isolation 
Influenced by the filtered tails procedure [7], pixel stretching 

was established for step-edge isolation and worked consistently to 

remove unwanted natural scene textures, reducing the bias of image 

noise and diminishing the error caused by non-uniformity [1, 2].  

Although effective, pixel stretching is computationally heavy 

and, with thousands of ROIs, adds significant runtime to the e-SFR 

estimation. An alternative solution was developed that uses edge 

detection (horizontal and vertical gradient direction) to establish the 

abovementioned edge mask, efficiently combining the two 

processes. The SFR algorithm (sfrmat4 [5]) was adjusted to utilize 

this edge mask directly, windowing the LSF in each ROI row before 

resampling the LSF down the slope of the edge-of-interest. 

The derived e-SFR from both edge isolation methods are 

identical (Figure 2a) and present the same advantages of noise and 

non-uniformity reduction. The step-edge isolation also improves 

results in scenarios where pixel stretching caused anomalous SFRs, 

for example, when color fringing is present in the pictorial natural 

scene ROI (Figure 2b and 2c). 

Results 

e-SFR Estimation 
The performance of the optimized workflow was evaluated 

using two characterized datasets of 1500 images from two different 

camera systems: 

i. DSLR – the green channel of the RAW images of the 

Nikon D800 DSLR camera with the Nikkor 24-70mm 

f/2.8G ED Lens, set at 24mm f/4. The sensor is 36.3MP 

with a pixel pitch of 4.87μm.  

ii. Smartphone – images captured using the Apple iPhone 

7 rear camera (4mm f/1.8). The sensor is 12MP with a 

pixel pitch of 1.22μm.  

For both systems, images were used to estimate the e-SFR 

across the frame. The DSLR system is considered (near-)linear; the 

evaluation used the green channel sensor image data. The 

smartphone is highly non-linear, where the luminance data of the 

compressed demosaiced image output was used in the evaluation. 

The absolute error between these estimates and the standard test 

chart measurements (ISO12233:2017 [6]) was calculated and 

compared to the previous iteration of the workflow.  

To obtain system e-SFR estimates across the frame, the field of 

view was divided into radial annuli. Previous works [1–3] used an 

even radial distance to segment the camera frame. However, this 

method resulted in an uneven frame area per annulus, meaning the 

part-way regions had the potential to contain more edges than the 

center and corners of the frame [1]. The data in this publication was 

calculated with adjusted segmentation to distribute the radial annuli 

frame area equally, providing a higher probability for each annulus 

to contain a similar number of edges for the e-SFR estimation.  

The number of annuli has also been changed. In the previous 

publications, six segments were used to estimate annular e-SFRs and 

provide a weighted global average of the entire frame. Whereas 

now, the number has been reduced to three. This reduction of the 

number of annuli improved the estimation accuracy by deriving e-

SFRs from a larger amount of edge data. This was a necessary step 

because, through optimizing the workflow, the step-edge selection 

resulted in fewer edges than in the previous iteration. 

 
Figure 2. Comparing the NS-SFRs that result from pixel stretching and optimized edge-masked isolation on three different pictorial natural scene ROIs. Under certain 

circumstances, the Masked ROI provided better results compared to the Pixel-Stretched ROI. 
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Figure 3 contains the vertical e-SFR estimates for the DSLR 

system. The optimized workflow is directly compared to the 

previous iteration of the framework in relation to the ISO12233 e-

SFR test chart measurements. Horizontal e-SFRs show similar 

trends. The figure also contains the absolute error between the 

estimated system e-SFR, derived from the median of the ISO12233 

e-SFR. Similarly, with results from the previous iteration, it is 

observed that the optimized framework provides estimated system 

e-SFRs that lay within, or close to (Radial Annuli 1/3), +/- one 

standard deviation of the test chart measurements. A high-frequency 

bias remains in the e-SFR estimations, caused by the ROIs 

containing image noise and high-frequency scene textures [2, 4]. 

Table 1 contains the number of edges isolated from the DSLR 

dataset compared to the number of edges utilized in the e-SFR 

estimation. The previous iteration of the workflow calculated the e-

SFR from a significantly greater number of edges than the optimized 

framework, which would account for the slight discrepancy in 

estimation between the two iterations of the workflow.  

Figure 4 contains the weighted global average system e-SFR 

estimation for the smartphone system, comparing the optimized and 

previous iteration of the framework in relation to the ISO12233 e-

SFR test chart measurement. NS-SFR measurements from highly 

non-linear systems are SPD [1, 3]. The optimized workflow also 

shows scene dependency originating from non-linear processing. 

When isolating step-edges from test charts, adaptive processing has 

an insignificant effect; chart edges are preserved and enhanced, 

resulting in a low-frequency boost in the e-SFR. In contrast, 

sharpening step-edges in complex natural scenes does not result in 

a low-frequency e-SFR boost, as the inclusion of surrounding scene 

content and textures reduces sharpening effects on natural scene 

edges [3]. In this case, the e-SFR derived from natural scenes is a 

more representative camera performance measure than the e-SFR 

derived from test charts. 

 

Figure 3. DSLR vertical system e-SFR estimation for three radial annuli and a weighted average of all annuli. The first column contains the estimated system e-
SFR in relation to the ISO12233 e-SFR. The second column contains the absolute error between the estimated system e-SFR from the median of the 
ISO12233 e-SFR. The third column contains a visual representation of the radial annuli from which the data belongs. 
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    Optimized Previous Iteration 

Edges Isolated 

Annuli 1 67 39852 

Annuli 2 41 28191 

Annuli 3 24 18915 

Edges Utilized 

Annuli 1 67 4100 

Annuli 2 41 2936 

Annuli 3 24 1898 

Utilization (%) 

Annuli 1 100 10.3 

Annuli 2 100 10.4 

Annuli 3 100 10 

Table 1. This table contains the number of horizontal edges isolated from the 
DSLR dataset using the optimized and previous iteration of the workflow, and 
the number of these edges used in the vertical system e-SFR estimation, 
shown as the number of edges and as a percentage of the isolated ROIs.  

Computation Improvement  
The framework is in two parts. The first measures the NS-

SFRs, and the second estimates the system e-SFR. There have been 

significant computational savings for both parts in the new 

optimized workflow. 

Part 1 
The computational time for the first part of the framework 

improved by a factor of 22. For instance, the optimized computation 

time to process the DSLR images took an average of 0.73 minutes 

per image, while the previous iteration for the same images took an 

average of 16 minutes per image. The computational time to process 

the entire dataset (all 1500 images) using a 16-core Central 

Processing Unit (CPU) that ran at 4.2GHz, was 68 minutes, 

compared to the previous 1470 minutes (24.5 hours).  

Part 2 
The second part of the framework was improved by a factor of 

2. The e-SFR estimation took 10 minutes for the DSLR dataset 

compared to 20 minutes in the previous workflow iteration.  

Live-SFR 
The workflow cannot yet be implemented with live systems. 

Further optimization is required. For the DSLR system, the 

computational time will need to be improved by a factor of 1314 to 

achieve a live-SFR measurement (30 frames per second). That said, 

many live systems would have a much lower pixel resolution than 

the 36.3MP DSLR sensor, significantly impacting the computation 

time per frame/image. The estimation from the smartphone 12MP 

system is approximately twice as fast as the higher-resolution 

DSLR. 

Self-Executable User Interface 

This optimized code has been packaged in a self-executable 

Graphical User Interface (GUI), shown in Figure 5. It is available 

on GitHub: https://github.com/OlivervZ11/NSSFR-GUI 

This GUI provides a means to derive camera e-SFRs by 

processing camera datasets, with control over the contrast, angle, 

and ROI thresholds, as well as upload already processed data and 

display the results. ISO12233 test chart data can be processed to 

compare results with e-SFR estimations. Results are exported as 

.xlsx files. The application also provides a modelled MTF based on 

the sensor pixel pitch and lens f/number [8].  

The unoptimized workflow is also available through this GUI. 

It has been provided for SPD-SFR evaluation, outputting the NS-

SFRs, ROI image coordinates, edge contrast and edge angle in a 

.xlsx file per image (see discussions). For the purpose, the 

unoptimized workflow has been adapted to use masked edge 

isolation instead of pixel stretching. 

Two additional tools that have not been included in the GUI are 

included as MATLAB files in the GitHub repository: 

1) a GUI that allows the selection of edges from a test chart and 

structures the e-SFR results in a .xlsx file to compare directly with 

the estimated system e-SFRs per radial annuli.  

2) A tool to label and apply scene classification to a dataset of 

images. Two scene classification tools are provided. The first is an 

automated method which is based on a modified version of AlexNet 

[9] to classify the general environment of natural scenes (Man-

made, Indoor and Nature [1, 3]). The second is a manual method of 

scene classification, using a GUI to cycle through a dataset of 

 

Figure 4. Smartphone vertical system e-SFR estimation for the weighted average of all three annuli. The first column contains the estimated system e-SFR in 
relation to the ISO12233 e-SFR. The second column contains the absolute error between the estimated system e-SFR from the median of the ISO12233 e-SFR. 

 

Figure 5. Screen Capture of the prototyped Self-Executable GUI. 
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images, allowing the user to label the main light source, the primary 

image subject and the general environment (Man-made, Indoor or 

Nature).  

Discussion 
The NS-SFR framework workflow and implementation have 

been successfully optimized, improving the computational time 

required to derive e-SFRs from natural scene images by a factor of 

22, while keeping the accuracy consistent. Hardware optimization 

can further speed up the workflow to achieve a live-SFR 

measurement by employing Graphics Processing Unit (GPU) 

acceleration. 

The original workflow version gathered more data, which was 

then culled down, and averaged the remainder to provide an 

estimated system e-SFR. In comparison, the optimized workflow 

gathered fewer step-edges but with suitable edge contrast, angle and 

ROI window size.  

 ith a ‘stri ter’ step-edge verification process, the optimized 

workflow removed the requirement for an edge ‘sharpness’ 

threshold. Previously, the narrowest 10% of LSFs were selected for 

the system e-SFR estimation, as they would most likely return a test 

chart response. The removal of this threshold has meant that all 

processed NS-SFRs are used in the e-SFR estimation. However, it 

also introduces uncertainty, as an isolated edge may have the correct 

edge profile but a low gradient, which may lower the e-SFR 

estimation. Future iterations of the workflow should measure 

‘sharpness’, perhaps measuring gradients at the edge detection/step-

edge verification stage.  

 Despite the universal use of the SFR by industry and standard 

bodies for characterizing camera system performance, to date, no 

method successfully derives SFRs from non-linear camera systems, 

which represent the large majority of digital cameras. Further 

research should study camera system performance variations 

originating from different SPD non-linear processes and link it 

statistically with original scene content variations. Examining 

contents surrounding the edges used to derive NS-SFRs and linking 

them to different camera/ISP components may produce more 

representative camera performance measure(s) than the current 

SFR, depicting real-world performance while being compatible with 

current industry standards. As the workflow was optimized with the 

estimation of the ISO12233 e-SFR in mind, the unoptimized 

workflow has also been incorporated in the e-SFR estimation GUI. 

It returns a much larger number of NS-SFRs that can be used for 

SPD SFR studies. In addition, scene classification tools have been 

provided in the GitHub repository for use in such studies. 

The next iteration of the ISO12233 standard is anticipated in 

2023. This latest standard will come with many improvements to the 

ISO12233 to increase the accuracy and precision of the measured e-

SFR. Once released, these advances in the ISO12233 [10] would 

benefit future revisions of the NS-SFR and system e-SFR estimation 

methodology. Such advantages would include the following: 

• 5th order polynomial fitting function 

• Edge angle variation correction 

• Non-uniform illumination correction 

Conclusion 
In summary, a previously established framework workflow 

used to estimate the system e-SFR from natural scene images was 

optimized to reduce processing time while keeping accuracy at the 

same levels. Using a dataset of images from a near-linear system, 

we found that the estimated system e-SFR stays within +/- one 

standard deviation of an equivalent test chart e-SFR measurement, 

whilst the processing time is 22x faster than the original version. 

Non-linear system e-SFR estimation from a smartphone camera 

image dataset requires further investigation, but showed that the 

method provides opportunities for a scene-dependent camera 

evaluation. 

The framework processes are contained in a self-executable 

prototype. The application returns median global system e-SFR 

estimation from across the entire frame, as well as localized 

estimated e-SFRs for selected radial annuli and camera orientations. 

This is done by simply uploading camera datasets and selecting the 

desired measurement functions. GPU acceleration can optimize the 

processes further to return e-SFR measurements from live imagery. 

Finally, the application also provides means to extract NS-SFR 

envelopes from natural scenes that can facilitate the investigation of 

SPD camera performance. 
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