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ABSTRACT

Introduction: Mechanical injury can greatly influence articular cartilage, propagating 

inflammation, cell injury and death – risk factors for the development of osteoarthritis. 

Melanocortin peptides and their receptors mediate anti-inflammatory and pro-resolving 

mechanisms in chondrocytes. This study aimed to investigate the potential 

chondroprotective properties of -MSH and [DTRP8]--MSH in mechanically injured cartilage 

explants, their ability to inhibit pro-inflammatory and stimulate anti-inflammatory cytokines in 

in situ and in freshly-isolated articular chondrocytes. 

Methods: The effect of melanocortins on in situ chondrocyte viability was investigated using 

confocal laser scanning microscopy of bovine articular cartilage explants, subjected to a 

single blunt impact (1.14N, 6.47kPa) delivered by a drop tower. Chondroprotective effects of

-MSH, [DTRP8]--MSH and dexamethasone on cytokine release by TNF--activated 

freshly-isolated articular chondrocytes/mechanically injured cartilage explants were

investigated by ELISA.

Results: A single impact to cartilage caused discreet areas of chondrocyte death, 

accompanied by pro-inflammatory cytokine release; both parameters were modulated by -

MSH, [DTRP8]--MSH and dexamethasone. Melanocortin pre-treatment of TNF--stimulated

freshly-isolated chondrocytes resulted in a bell-shaped inhibition in IL-1, IL-6 and IL-8, and 

elevation of IL-10 production. The MC3/4 antagonist, SHU9119, abrogated the effect of 

[DTRP8]--MSH but not -MSH on cytokine release. 

Conclusion:  Melanocortin peptide pre-treatment prevented chondrocyte death following 

mechanical impact to cartilage and led to a marked reduction of pro-inflammatory cytokines, 

whilst prompting the production of anti-inflammatory/pro-resolving cytokine IL-10. 

Development of small molecule agonists towards melanocortin receptors could thus be a 

viable approach for preventing chondrocyte inflammation and death within cartilage and 

represent an alternative approach for the treatment of osteoarthritis.

Keywords: Cartilage injury, Mechanical trauma, Chondrocyte death, Melanocortin peptides, 

Osteoarthritis.

Abbreviations: ACTH, adrenocorticotropic hormone; CLSM, confocal laser scanning 

microscopy; DMARDs, drug modifying anti-rheumatic drugs; ECM, extracellular matrix; 

GPCR, G-protein coupled receptor; IL, interleukin; MC, melanocortin receptor; MMP, matrix 

metalloproteinases; NSAIDs, non-steroidal anti-inflammatory drugs; OA, osteoarthritis; 

POMC, pro-opiomelanocortin; RA, rheumatoid arthritis; -MSH, alpha-melanocyte-

stimulating hormone.
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Table 1. Structure of melanocortin peptides used in this study. 

Melanocortin peptide Chemical structure

-MSH Ac-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2

[DTRP8]--MSH H-Tyr-Val-Met-Gly-His-Phe-Arg-DTrp-Asp-Arg-Phe-Gly-OH

SHU9119 Ac-Nle-cyclo(Asp-His-DNal(2′)-Arg-Trp-Lys)-NH2
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1. Introduction

Osteoarthritis (OA) is a disease affecting load-bearing joints, characterised by self-

perpetuating low-grade inflammation and degradative processes within the articular cartilage

of affected joints. It is a leading cause of disability affecting almost every age group, with 

prevalence increasing dramatically over the age of 50, affecting ~60% of people in this age 

group. With increasing age, obesity and longer life spans, OA represents an ever-increasing

socio-economic burden [1], for which at present there is no cure.

Traumatic joint injuries are a major risk factor for the development and progression of OA [2]

and increase the risk of arthritis 5 to 17-fold [3, 4]. Knee traumas, in particular, represent

over 40% of all sports injuries [5-7] and often result from traffic accidents with surgical 

restoration of joint stability not preventing future arthritis development [8-11]. The incidence 

of post-traumatic arthritis is therefore high – creating insistent demand for pharmacological 

intervention, directed at limiting the progression and propagation of destructive processes 

taking place in the early stages post-injury [2, 12].

In a healthy joint, the smooth surface provided by articular cartilage promotes near 

frictionless joint movement allowing the joint to withstand tensile and compressive forces 

arising from movement [13]. Mechanical loading within physiological limits is an essential 

stimulus for chondrocytes to produce extra-cellular matrix (ECM), capable of withstanding 

normal levels of stress and is responsible for triggering the synthesis, exportation and 

degradation of ECM components – collagen and proteoglycans [14]. However, when the 

joint/cartilage experiences mechanical stresses above the normal physiological range and/or 

frequency, such as in impact trauma, this results in significant chondrocyte death attributed 

to mechanical necrosis [15] and apoptotic processes [16, 17] that could trigger the

development of OA [18]. 

The effect of impact trauma on the functionality and metabolism of chondrocytes is receiving 

increasing attention [16, 17, 19, 20], because within mature articular cartilage, chondrocytes 

do not generally undergo cell division [21, 22]. Additionally, OA is featured by reduced 

cellularity [21, 23-29], a fact that is thought to contribute to the inability of the remaining 

chondrocytes to maintain normal matrix synthesis, thereby contributing to cartilage 

degradation [30].

Impact injury is associated with increased production of pro-inflammatory cytokines by 

affected chondrocytes [31]. Abnormal mechanical forces cause adult chondrocytes to initiate 

production of a large number of pro-inflammatory mediators including the cytokines TNF-

and IL-1β [18, 32], which in combination with reactive oxygen species and lipid-derived 
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inflammatory stimuli (including prostaglandins and leukotrienes) increase the catabolic 

activity of and ultimately kill chondrocytes distant from the impact-injury site [33-35]. This 

eventually leads impaired ECM synthesis, cartilage degradation and, ultimately, 

development of OA [36, 37]. 

Currently there is no treatment for OA, capable of reducing the degradation of cartilage or

improving its function. Current treatment relies largely on conservative pain management 

strategies (analgesics and non-steroidal anti-inflammatory drugs (NSAIDs)). These are only 

temporarily effective with numerous side effects, and if unsuccessful leave expensive joint 

replacement surgery as the last resort. To find highly effective drugs with an enhanced 

safety profile for OA treatment is imperative. Development of compounds displaying both 

anti-inflammatory effects along with pro-resolving/chondroprotective properties represents

an exciting therapeutic strategy.

Unravelling the mediators that provide tissue protection and developing peptide-based drugs 

targeted at the resolution phase of inflammation is an exciting concept [38, 39]. Amongst a 

host of such mediators are the melanocortins. The melanocortin peptides have long been 

shown to display anti-inflammatory effects from the early seminal studies by Lipton 

demonstrating their anti-pyretic effects [40] and their potency – they are 25,000x more 

potent than paracetamol [41]. Over the last four decades a substantial body of evidence has

exposed their beneficial effects in models of asthma [42-44], inflammatory bowel disease

[45-47], cardiovascular disease [48-53], and neuroprotection [54-56] to name just a few 

areas. 

Within the arthritic field, the melanocortin system has been evaluated in patients with RA 

and juvenile chronic arthritis; increased -MSH levels were detected in synovial fluid, with a 

correlation suggesting that higher levels of -MSH decrease the level of inflammation 

observed [57]. These important findings highlighted the prospect of harnessing the anti-

inflammatory effects of -MSH for arthritic diseases and soon after the beneficial effects of 

the peptide were proven in a model of adjuvant-induced arthritis [58], while more recently, it

was found to be beneficial in models of gouty and rheumatoid arthritis (RA) [59-62]. 

However, only a handful of studies have evaluated their effects in chondrocytes and OA

[63],[64]. This surprising lack of interest in evaluating the potential of these molecules as a 

treatment for OA may stem from the fact that although inflammation is considered causal to 

both RA and gouty arthritis, OA has historically been perceived as simply a condition of 

natural ‘wear and tear’, with inflammation not regarded as a major contributor in the 

development of the pathology. Nevertheless, this initial viewpoint is currently changing [32, 

64]. 
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Melanocortin peptides are derived from the larger, pre-cursor pro-opiomelanocortin 

(POMC) protein [65, 66] and exert their effects via the activation of melanocortin 

receptors/adenylate cyclase/cAMP signalling pathway [65]. Although five melanocortin 

receptors (MC) have been identified, all positively coupled to adenylate cyclase via Gs and

activate cAMP pathways, the anti-inflammatory effect of melanocortin peptides has been 

found to be mediated primarily via MC1, MC3 and MC5 [65, 66].

Here, we have demonstrated for the first time the ability of melanocortins to limit the 

progression of mechanical impact-induced chondrocyte death. In addition, the peptides 

inhibited the resulting production of pro-inflammatory cytokines in both in situ and TNF--

stimulated freshly-isolated articular chondrocytes, while promoting the release IL-10, thereby

aiding in the resolution of inflammation and conferring further protection against cartilage

damage.
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2. Materials & Methods

Unless specified otherwise, all reagents were purchased from Sigma-Aldrich Inc., (Poole, 

UK). 

2.1. Cartilage impact studies

2.1.1. Cartilage dissection

Four metacarpophalangeal joints from different 18–24 month old cows (obtained from local 

abattoir) were skinned, rinsed in water, and joint capsules opened under aseptic conditions 

within 12h of slaughter. Full-depth, healthy cartilage, excluding the subchondral bone, was 

harvested from the flat, load-bearing articular surfaces between the condylar ridges of each 

joint. Cartilage explants were cultured individually in HEPES-buffered high-glucose 

Dulbecco’s Modified Eagle’s Medium (DMEM, 280 mOsm/kg:H2O, abbreviated to ‘mOsm’, 

pH 7.4; Gibco®, Life Technologies, Paisley, UK), supplemented with Penicillin (50.0 U/mL) 

and Streptomycin (50.0 µg/mL) at 37ºC, and 5% CO2 in the absence of foetal calf serum 

(FCS; Invitrogen, Paisley, UK) and cultured within 24h or used for impact studies [67].

2.1.2 Mechanical loading of tissue

A vertical drop tower previously shown to cause impact damage to cartilage explants in 

aseptic conditions [30], was used to deliver a single defined impact (137g weight dropped 

from a height of 10 cm), equivalent to 1.14 N, 6.47 kPa (assuming linear acceleration), to 

individual bovine articular cartilage explants [30]. The Isolated, pre-weighed articular 

cartilage explants (~5mm2) were incubated (within 24h of dissection) in 1.0 mL serum-free 

DMEM media with or without the melanocortin peptides -MSH and [DTRP8]--MSH (3.0 

µg/mL), or dexamethasone (10-6 M), for 1h prior to impact. Individual cartilage explants were 

then positioned with the synovial (articular) surface uppermost on the drop tower base and 

exposed to single impact. Samples exposed to accidental multiple impacts were discarded. 

Explants were then immediately returned to the same media, containing the melanocortin 

peptides (-MSH or [DTRP8]--MSH) or dexamethasone for 6h, the reaction was then 

terminated and cell culture supernatants collected and stored at -20ºC prior to cytokines 

analysis by ELISA (R&D Systems Europe Ltd, Oxford, UK) as previously described [64]. 

Following treatment, the cartilage explants were transferred to dry 10 cm2 plastic dishes,

positioned flat on the dish and viewed perpendicular to the synovial surface. The tissue was 

immobilized in the center of the dish using a small drop of cyanoacrylate glue (Bostik, UK) 

[30], and incubated on a heated microscope stage (37ºC) for 30 min in fresh DMEM media 

containing Calcein-AM (5.0 µM; Anaspec Inc. Freemont, USA) and Propidium Iodide (PI; 1.0 

µM; Cambridge Bioscience, Cambridge, UK). For determination of the viability of the in situ

chondrocytes the articular cartilage explants were visualized using an upright Leica SP2 
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confocal laser scanning microscopy (CLSM) was used (Leica Microsystems, Milton Keynes, 

UK). 

2.2 Confocal Analysis

2.2.1 Microscopy and determination of chondrocyte cell viability in situ

Images were acquired using an upright microscope attached to a Leica SP2 CLSM and 

associated Leica software. Calcein and PI excited using a 488 nm (argon laser), with an 

emission measured at a bandpass of 510-535 nm and PI excited using a 543nm (He-Ne 

laser) with an emission recorded at a bandpass of 660-709nm. Chondrocytes in cartilage 

explants were viewed with a low power magnification (x10 air objective) for in situ

chondrocyte viability measurements. Z-series of individual images of the chondrocytes were 

taken at 10 µm z-steps. Scanning speed was 0.6 Hz with double frame integration, double 

line averaging for 512 x 512 pixel image with viable cells appearing green and dying cells –

red [30]. 

2.2.2 Confocal data analysis – in situ chondrocyte viability measurements

Cell viability prior to and post impact was evaluated using Imaris 7.1.1 Spots feature

(Bitplane AG, Zurich, Switzerland). The Spots feature models point-like structures in the 

data, and can be used for detecting cells. It automatically detects chondrocytes in the 

cartilage, and allows for manual correction of detection errors (such as mistaking 

background noise for a cell), visualizes the cells as spheres, and its statistics output, 

provides accurate count of the cells (spheres) in a given field of view. For the software to 

work properly, a measurement of the average size of the cells needed to be entered in the 

beginning of the analysis. As the diameter of viable cells (green) and “dying” cells (red) in 

the cartilage explants varies significantly, the diameter was measured for both entities within 

several areas of observation and the averaged parameters were entered into the Imaris Spot 

Analysis software. Viable cells had a diameter of (~10 µm), whilst dead cells were much 

smaller (~6 µm). The software utilised these values, differentiating between background 

noise and cells (separately for both laser channels), and then assigned a sphere to each of 

the detected cells. However, not all the cells in the image have the same intensity (>0 and 

<255) – threshold too high and dimmer cells will be missed, threshold too low and 

background noise will be counted as cells. Therefore, for accurate measurements of cell 

number, the threshold values for both Calcein and PI were calculated by selecting a smaller 

area with a known number of cells and threshold values from 0 – 100% were applied in 

increments of 10%. Using the resultant linear regression equation, the correct cell number 

was found at a threshold percentage of 20% for Calcein-AM-stained cells (viable cells) and 

60% for PI-stained cells (dead cells), respectively and these parameters were kept constant 

throughout all subsequent analysis to avoid data skewing. 
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2.3 Primary articular chondrocyte isolation

Articular cartilage explants were incubated in serum-free DMEM adjusted to 380 mOsm with 

sterile-filtered NaCl (Fisher Scientific, Leicestershire, UK), containing Collagenase Type I (1 

mg/mL; Gibco®, Life Technologies, Paisley, UK), for >18 h at 37ºC, 5% CO2. Tissue digests 

were filtered through a 40 m Falcon Cell Strainer (BD Biosciences, Oxford, UK), 

chondrocytes were washed twice by centrifugation (10 min, 20ºC, 500g) in serum-free 

DMEM (380 mOsm) and cultured at a density of 1.0x105 cells/cm2 in DMEM (380 mOsm;

ascorbic acid (50.0 g/mL), Penicillin (50.0 U/mL) and Streptomycin (50.0 g/mL); pH 7.4)

for 10 days prior to experimentation [67]. All experiments were performed with freshly 

isolated chondrocytes (at passage 0) in serum-free conditions as described above. 

2.4 In vitro cell stimulations

Following the 10 days of culture the chondrocytes were released following 10 min incubation 

in 0.05% Trypsin-EDTA (Invitrogen, Paisley, UK), plated in 96-well plates at density 0.2x106

cells/well and allowed to attach. Chondrocytes were stimulated for 6h with recombinant TNF-

 (0–80 pg/mL) at 37ºC, 5% CO2. In separate experiments, chondrocytes were treated for 

30 min with either DMEM (untreated control), dexamethasone (Dex; 10-6M), or 1-30 g/mL

-MSH, (purity ≥97%; Sigma-Aldrich, Poole, Dorset, UK), or [DTRP8]--MSH [68] or the 

MC3/4 antagonist SHU9119 (purity ≥97%; Bachem AG, Bubendorf, Switzerland) [69], prior to

6h stimulation with TNF- (60.0 pg/mL). Cell-free supernatants were collected and analysed 

for cytokine release as described above. In some experiments (as indicated), cells were pre-

treated for 1h with SHU9119 (10.0 g/mL) prior to addition of -MSH or [DTRP8]--MSH to 

scrutinize peptide selectivity.

2.5 Statistics and Receptor Nomenclature

All data are reported as mean ± SEM of n observations, using at least 3 experiments with 4 

determinations per group. Statistical evaluation was performed using analysis of variance 

ANOVA (Prism GraphPad Software) incorporating Bonferroni or Dunnet’s Post-tests to allow 

for post-hoc analyses, with a probability p value < 0.05 taken as significant. Receptor 

nomenclature for melanocortin receptors was in accordance with the “Guide to receptors 

and Channels (GRAC)” [70].
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3 Results

3.1 Single impact to cartilage explants causes choncrocyte death and increase 

production of pro-inflammatory cytokines

Areas of cartilage/chondrocyte injury caused by impact force are shown in Figure 1A (non-

impacted) versus Figure 1B (impacted). Spot analysis indicated a 4.5-fold increase of cell

death in articular cartilage explants subjected to a single blunt impact (13.5±1.7%) compared 

to 2.95% cell death in non-impacted explants (p<0.05). 

Single blunt impact injury to bovine articular cartilage explants caused a dramatic increase in 

the release of the potent pro-inflammatory cytokines IL-1 from the resident chondrocytes 

(Figure 1). The cartilage injury initiated a 19.5-fold upsurge in production of IL-1 from 18±5 

pg/mL/g to 351±24 pg/mL/g in impacted explants (p<0.0001; Figure 1D). Levels of IL-6 rose 

7.5-fold to 448±20 pg/mL/g above basal levels (59±9 pg/ml/g; p<0.0001) and IL-8 production 

was increased by 3-fold to 294±14 pg/mL/g, as compared to non-impacted control tissue 

(97±11 pg/mL/g; p<0.0001; Figure 1F).

3.2 -MSH and [DTRP8]--MSH prevent articular chondrocyte death caused by impact 

injury of cartilage explants and reduce pro-inflammatory cytokines production

Previously, we have suggested that melanocortins have a chondroprotective potential due to 

their ability to reverse TNF--induced chondrocyte death [64]. As an addition to this work, 

we have now investigated the chondroprotective properties of -MSH and [DTRP8]--MSH in 

a model of impact trauma of in situ chondrocytes (Figure 2). 

Pre-treatment with -MSH or D[TRP]8--MSH (3 g/mL), or dexamethasone (10-6M), 

significantly diminished chondrocyte death in the injured explants,  with improved cell 

viability of 62% (p<0.05),  66% (p<0.05; Figure 2 A,B) respectively for -MSH and D[TRP]8-

-MSH. The glucocorticoid dexamethasone, used throughout this study as a control,

triggered 50% decline in cell death in impacted cartilage explants, compared to untreated 

impacted counterparts (p<0.05). Impacted tissue, however, benefitted from pre-treatment 

with -MSH, [DTRP8]--MSH and Dex, with marked reductions of IL-1 production by 41%, 

50% and 58% respectively (p<0.0001; Figure 2C). Congruently, IL-6 production was also 

modulated by -MSH, [DTRP8]--MSH and Dex, whereby the drugs led to 65%, 71% and 

84% reduction in the cytokine production (p<0.0001; Figure 2D) and IL-8 levels were 

inhibited by 53%, 54% and 65%, respectively (p<0.0001; Figure 2D).

Notably, treatment of non-impacted articular cartilage with -MSH, D[TRP]8--MSH or Dex

had no detectable effect on chondrocyte viability (Figure 3A, B, E) and did not alter the 
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production of key pro-inflammatory cytokines (IL-1, IL-6 and IL-8) within the time point 

selected for these experiments (Figure 3C-E).

3.3 TNF- stimulates cytokine and chemokine release from bovine chondrocytes

Stimulation of freshly-isolated primary bovine chondrocytes with TNF- (0–80 pg/mL) led to 

significant increases in cytokine release (Table 2). TNF- caused a concentration-dependent 

increase in IL-6 with a maximal release observed at 80 pg/ml TNF- of 347±30 pg/mL

(p<0.001), while a bell-shaped response was observed for both IL-1 and IL-8, with 60 

pg/mL TNF- causing a near maximal or maximal release with concentrations of 46±3 pg/mL

IL-8 (p<0.01) and 22±0.2 pg/mL IL-1 (p<0.05), compared to untreated controls (0.82±0.06 

pg/mL and 2.81±1.46 pg/mL, respectively; Table 2).

3.4 -MSH and [DTRP8]--MSH modulate pro-inflammatory cytokine release from TNF-

 stimulated primary bovine chondrocytes

Production of IL-1 (Figure 4A) was potently modulated by -MSH the melanocortin receptor 

pan-agonist; -MSH (1-10 g/mL) reduced the release of the potent pro-inflammatory 

cytokine by approximately 40-% (p<0.05), when compared to levels released by TNF-

treated chondrocytes; higher concentrations of the peptide (30 g/mL) were less active, 

resulting in ~20% reduction (Figure 4A). The MC3 agonist, [DTRP8]--MSH (at 3, 10 and 30 

g/mL) potently reduced the production of IL-, triggering a bell-shaped decrease of 61%, 

76% and 39%, respectively (p<0.05). In contrast, the MC3/4 antagonist / MC1 agonist,

SHU9119, elicited just a modest inhibition of IL-1�release at 3 g/mL (23% compared to 

TNF- treated controls; Figure 4A).

Markedly, IL-6 levels were significantly modulated by -MSH with 1 g/mL causing IL-6 

production to be abrogated by 93% (from 174±15 pg/mL to 13±1 pg/mL; p<0.001), with

higher concentrations of -MSH, (3, 10 and 30 g/mL), prompting a reduced but still 

significant reduction in the release of IL-6 (87%, 76% and 48%, respectively), compared to 

TNF--treated controls.  Similar results were observed following pre-treatment with [DTRP8]-

-MSH (1 – 10 g/mL) with maximal inhibition of 72% at 3 g/mL, while 1 and 10 g/mL

caused 40% and 48% reduction, respectively (p<0.001). Higher concentrations of [DTRP8]--

MSH (30 g/mL) produced only a small, statistically insignificant, reduction in cytokine 

production, whilst SHU9119 failed to inhibit IL-6 release at all concentrations tested (Figure 

4B).

[DTRP8]--MSH attenuated TNF--induced IL-8 release (Figure 4C) in a bell-shaped 

manner, with maximal effect at 3 µg/mL, causing a 69% reduction in IL-8 secretion (p<0.01). 

At 10 and 30 g/mL, the peptide reduced the chemokine release by 57% and 45%,
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respectively. A similar observation was made for -MSH (1, 3 and 10 µg/mL), with a 67%, 

69% and 56% reduction in IL-8 secretion (p<0.01), whilst at higher concentrations (30 

µg/mL) it was largely ineffective (Figure 4C).

3.5 SHU9119 attenuates the inhibitory effects of D[TRP]8--MSH but not -MSH on

pro-inflammatory cytokine release in TNF--activated bovine primary 

chondrocytes

Freshly-isolated bovine chondrocytes were pre-treated with either -MSH or [DTRP8]--MSH

(3 g/mL) in combination with SHU9119 (10 g/mL) for 30 min prior to 6h stimulation with 

TNF- (60 pg/mL). Subsequent ELISA analysis for IL-1, IL-6 and IL-8 revealed that both 

peptides potently inhibited the secretion of these mediators at the concentrations used in this 

study (Figure 5). Interestingly, co-stimulation of SHU9119 with [DTRP8]--MSH, but not -

MSH attenuated the release of IL-1, IL-6 and IL-8 by the treated chondrocytes (Figure 5).

3.6 -MSH and [DTRP]8--MSH enhance IL-10 production by activated primary 

chondrocytes

Production of IL-10 was undetectable in both non-stimulated and TNF--activated freshly 

isolated primary bovine chondrocytes (Figure 6). However, pre-treatment with both -MSH 

(Figure 6A) and [DTRP8]--MSH (Figure 6B) enhanced the production of IL-10 above basal 

levels, with -MSH (1, 3, 10 g/mL) causing a release of 21±8 pg/mL, 34±1 pg/mL and 11±1

pg/mL of IL-10 respectively (p<0.05). [DTRP8]--MSH (1, 3, 10 g/mL) caused a 

concentration-dependent increase in IL-10 production with 20±3, 29±3 and 32±5 pg/mL IL-

10 detected, respectively (p<0.05). As previously observed the MC3/4 antagonist SHU9119 

failed to significantly inhibit the effect of -MSH (Figure 6A) but completely blocked the 

induction of IL-10 release by [DTRP8]--MSH (p<0.001; Figure 6B).
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4 Discussion

Although the exact pathogenesis of OA is not fully understood, abnormal mechanical 

stresses including sport injuries and trauma all play a role for development of OA [71]. Blunt 

trauma to articular cartilage, resulting from accidents or sport injuries are associated with 

high levels of chondrocyte death and is associated with local inflammatory reactions, thereby 

representing a major risk factor for the development of post-traumatic OA, which despite 

constant improvement of surgical techniques, still accounts for ~12% of all cases of OA [72]. 

Given the significance of trauma for the development of OA, the effect of a single blunt 

mechanical impact on chondrocyte viability and rates of pro-inflammatory mediator synthesis 

were determined. Cell death arising from the single impact has been previously revealed to 

be both temporal and spatial – an initial rapid phase rising from the mechanical trauma 

occurs at the tissue fissures and a slower wave of cell death takes place away from the 

impact lesion, thereby suggesting the release of soluble intercellular singalling molecules 

[73].  

This study has taken a particular interest in the events occurring in areas of cartilage that are

distant to the impact lesion and therefore not directly affected by the mechanical impact. In 

non-impacted cartilage, ~3% of chondrocytes were non-viable, possibly due to the excision 

of the explant from the bone and remained constant in the first 6h post-excision (data not 

shown). Single blunt impact to cartilage explants triggered surface fissuring and stress-

dependent loss of chondrocytes’ viability along tissue cracks (data not shown) [30]. We 

detected significant 4.6-fold increase in chondrocytes, resident in the morphologically normal 

area of the impacted cartilage explant. In addition to loss of viability, chondrocytes 

responded to injury through increasing the production of IL-1, IL-6 and IL-8 by and 17-, 8-

and 3-fold, respectively. 

These data clearly demonstrate that chondrocytes in injured cartilage explants are actively 

producing wide variety of pro-inflammatory cytokines well above basal levels, which may

activate neighbouring chondrocytes in an auto and paracrine manner. It is well described

that elevated levels of pro-inflammatory cytokines provoke resident chondrocytes to initiate

pathological expression and secretion of inflammatory mediators [18, 32] and cartilage-

degrading proteases [34, 74]. In addition, excess stimulation of chondrocytes with pro-

inflammatory cytokines such as TNF- and IL-1 induces apoptosis via activation of 

caspase-driven pathways [64, 75]. 

Impact injury has been directly associated with increased production of pro-inflammatory 

cytokines by affected chondrocytes. Abnormal mechanical forces appear to ‘awaken’ adult 
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chondrocytes from a state of low metabolic activity and stimulate the production of a large 

number of pro-inflammatory molecules including TNF-, IL-1β [18, 32]

We have previously proposed that melanocortin peptides display potent chondroprotective, 

anti-apoptotic and anti-inflammatory effects through their ability to inhibit TNF--induced 

chondrocyte apoptosis and inflammation [64]. However, in spite of the potential of 

melanocortin peptides to limit inflammation, few studies have looked at their 

chondroprotective properties. We have recently demonstrated that both the melanocortin 

receptor pan-agonist -MSH and [DTRP8]--MSH (structures shown in Table 1), which 

shows selectivity for MC3, ameliorate TNF--induced chondrocyte apoptosis and the release 

of pro-inflammatory cytokines and MMP's [64]. Now, we describe the ability of the of 

melanocortins to: 1) prompt a homeostatic control over impact-induced inflammatory 

cytokine production, 2) confine chondrocyte death and cartilage damage to injury site, whilst 

3) preserving the viability of chondrocytes in adjacent non-impacted areas, and 4) prompting 

the production of anti-inflammatory cytokine IL-10.

-MSH and [DTRP8]--MSH improved significantly the survival rates of chondrocytes,

resident in mechanically impacted articular cartilage. In fact, both -MSH and D[TRP]8--

MSH improved chondrocytes survival by approximately 65%, compared to 50% reduction of 

cell death by the glucorticoid Dex. These findings correlate with the effect of the peptides on 

cytokine production – the melanocortins potently modulated the production of IL-1, IL-6 and 

IL-8 by injured cartilage explants, and these effects were akin to the effect of Dex, which 

almost completely inhibited IL-6 and IL-8. Whilst the ability of -MSH and [DTRP8]--MSH to 

reduce cytokine relase is well documented both in vitro [63, 64] and in vivo models of 

inflammation [60-62, 76], this is the first time their protective properties have been studied in 

an in situ model of mechanically-induced cartilage injury, and the first indication that

targeting the melanocortin receptor system for the development of potential treatment of 

mechanical/sports injuries and trauma is a viable option.

The sensitivity of primary bovine chondrocytes to inflammatory cytokines was further 

corroborated in vitro – significant increase in production of IL-1, IL-6 and IL-8 by freshly-

isolated articular chondrocytes was detected in response to TNF- (Table 2). This finding

has been previously reported in a human chondrocytic cell-line [64] and primary canine 

chondrocytes [77], whilst in vivo these changes lead to destruction of cartilage [78]. -MSH 

and D[TRP]8--MSH, potently modulated the response of the chondrocytes to TNF-, which

is in agreement with the observed anti-inflammatory properties of the peptides in impacted 

cartilage explants. 
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In order to associate the observed effects to a specific receptor from the melanocortin 

family, the peptide SHU9119 was used, which antagonizes with high-specificity MC3/MC4, 

while displaying weak agonist profile towards MC1/MC5. Alone, SHU9119 caused a modest 

inhibition of IL-1 but had no effect on TNF--induced IL-6 or IL-8 production, consistent with 

its dual agonist/antagonist nature. Remarkably, while SHU9119 was unable to block the 

effect of -MSH, it abridged the anti-inflammatory activity of D[TRP]8--MSH, thus 

suggesting a potential role for MC3 in chondroprotection, which agrees with previous studies 

reporting MC3 agonist activity of this peptide [51, 76, 79]. Moreover, at higher concentrations 

of -MSH, the presence of SHU9119 synergistically reduced IL-6 release, thereby signifying

that SHU9119 may be concerting efforts with -MSH via either activation of MC1 and/or 

MC5. Since these effects were observed with the highest concentration of -MSH only, a 

possibility exists that MC1 sensitization is causing the receptor to internalize, a well-

described feature of GPCRs such as the 2-adrenergic receptor [80-82], while an 

upregulation in MC5 may be a compensatory mechanism. However, the exact mechanism 

needs to be further elucidated.

An important feature of the melanocortin peptides that has captured the attention of 

academia and industry alike is their well-described ability to promote resolution of 

inflammation. They reduce the host’s inflammatory response by modulating the production of 

pro-inflammatory mediators [59, 63, 64], and maybe even more importantly, by actively 

stimulating the resolution phase of inflammation through inducing IL-10 and heme 

oxygenase-1, which possess powerful anti-inflammatory and pro-resolving properties [83, 

84]. Protective effects have been demonstrated extensively in murine models of gout [59-61]

and RA [62]. In addition to these well reported effects in models of arthritis, the melanocortin 

peptides display a plethora of effects in other disease pathologies For example, in models of 

cerebral ischemia, -MSH decreased TNF- and IL-1 [85], ACTH-derived peptides have 

been shown to downgrade nitric oxide [86] and free radicals production [79, 87], whilst 

inducing IL-10 [55] and reducing apoptotic effects [54]. The ability of melanocortins to 

provoke similar responses in diverse disease models highlights their importance in restoring 

homeostatic balance to many tissues throughout the entire body. These findings are 

additionally supported by in vitro observations in primary human articular chondrocytes [63]

and chondrocytic cell-lines [64].

-MSH and [DTRP8]--MSH instilled markedly increased production of IL-10 by freshly-

isolated bovine articular chondrocytes with the MC3/4 antagonist SHU9119 abrogating the 

effect of [DTRP8]--MSH but not -MSH. To our knowledge this is the first demonstration of 

melanocortin-induced IL-10 production in primary articular chondrocytes, a significant finding 

considering the previously reported chondroprotective properties of this cytokine brought 

about through reduction in MMP1 and MMP13 gene expression [74, 88] in TNF--stimulated
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primary chondrocytes from both OA and healthy human cartilage. The pharmacological 

data shown emphasize a potential chondroprotective/anti-inflammatory role for MC1, but 

could also implicate a role for MC3 in primary bovine chondrocytes, akin to that observed in

human C-20/A4 chondrocytes [64].

In this study, chondrocyte stimulation was conducted prior to impact as an initial attempt to 

assess the ability of the melanocortins to exert similar protective effects at tissue level 

(cartilage), as those observed at cellular level using the C20/A4 chondrocyte cell-line [64]. It 

is important to note that immediately after impact, cartilage explants were returned to media 

containing melanocortin peptides and left to bathe in it for the duration of the incubation (6h), 

therefore providing wider window for the peptides to exert effects. Nonetheless, evaluating 

their effects post-impact is crucial to fully appreciate the therapeutic potential of these 

compounds for trauma injury and studies aimed at addressing this point have already 

commenced. 

Osteoarthritis resultant from traumatic joint injury is a serious complication, which leaves the 

injured individuals – frequently young people involved in sports accidents or car crashes –

with lifetime of palpable pain, disability, leading to various degree of social isolation. Yet,

current treatment options are inadequate, largely focused on pain management and often 

fail to address articular tissue degeneration. Since mechanical injury to joints leads to 

cartilage degeneration through chondrocyte death and matrix breakdown, prospective 

treatments targeting these pathways should be examined.

Intact collagen fibril

Healthy chondrocyte

Dying chondrocyte

Anti-inflammatory molecule (IL-10)

Pro-inflammatory molecule (IL-1, iL-6, IL-8)

Melanocortin peptide

Untreated Treated with melanocortin peptides

Degraded collagen fibril

Injured
articular 
cartilage

Meniscal tear

Impact 
Site
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Figure 7.
A human knee joint with injured articular cartilage and meniscus (hand drawing for 
illustrative purposes only) – melanocortin peptides were able to prevent the progression of 
trauma-induced chondrocyte death and the consequential propagation of pro-inflammatory 
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cytokines into non-impacted areas of cartilage explants, all the while promoting the 
release of reparative pro-resolving molecule.

In this study we describe the rapid response of articular chondrocytes to mechanical trauma 

– the speedy propagation of cartilage inflammation and chondrocyte death, and accentuate

on the ability of melanocortin peptides -MSH and [DTRP8]--MSH to temper this response. 

We report that activation of both MC1 and MC3 receptor subtypes prevents the progression

of trauma-induced chondrocyte death and the consequential propagation of pro-

inflammatory cytokines into non-impacted areas of cartilage, all the while promoting the 

release of reparative pro-resolving molecules (Figure 7). Altogether, we propose that 

melanocortins could provide novel chondroprotective therapies for the prevention and 

treatment of post-traumatic osteoarthritis.
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Figure Legends 

Figure 1. Single blunt impact to cartilage explant causes chondrocyte death and 

increased production of pro-inflammatory cytokines.

Pre-weighted bovine articular cartilage explants were exposed to a single blunt impact 

delivered by a vertical drop tower. Impacted (A) and non-impacted (B) cartilage explants 

were stained with 5 M Calcein-AM (green; viable cells) and 1 M propidium Iodine (red; 

dying cells) for 30 min prior to CLSM.  The projected images were used in Imaris 7.1.1 Spot 

Analysis software to determine the proportion of dead cells as a percentage of total cell 

number (C). Supernatants were collected and analysed for IL-1 (D), IL-6 (E) and IL-8 (F) 

Data are presented as Mean ± SEM of n=4 individual experiments under each condition, 

repeated in quadruplicate, *p<0.05, **p<0.01, ***p<0.0001 vs. non-impacted controls.

Figure 2. -MSH and [DTRP8]--MSH prevent impact-induced articular chondrocyte 

death and inhibit pro-inflammatory cytokine release.

Pre-weighted bovine articular cartilage explants were stimulated with -MSH or [DTRP8]--

MSH (3.0 g/mL), or dexamethasone (10-6 M) for 30 min prior to delivery of a single blunt 

impact and returned to incubate with the drugs for 6h. Explants were then stained with 

Calcein-AM (5 µM) and PI (1 µM) for 30 min prior to CLSM.  Acquired series of images were 

used in Imaris 7.1.1 Spot Analysis software to determine the proportion of dead cells as a 

percentage of total cell number (A, B). Supernatants were collected and analysed for IL-1

(C), IL-6 (D) and IL-8 (E). Dashed line represents levels detected in non-impacted samples. 

Data are presented as Mean ± SEM of n=4 individual experiments under each condition, 

repeated in quadruplicate, *p<0.05, **p<0.01, ***p<0.0001 vs. impacted controls. 

Figure 3. -MSH and [DTRP8]--MSH does not affect viability of and cytokine 

production from chondrocytes in non-impacted cartilage explants.

Pre-weighted bovine articular cartilage explants were stimulated with -MSH or [DTRP8]--

MSH (3.0 g/mL), or dexamethasone (10-6 M) for 6h. Explants were then stained with 

Calcein-AM (5 µM) and PI (1 µM) for 30 min prior to CLSM.  Acquired series of images were 

used in Imaris 7.1.1 Spot Analysis software to determine the proportion of dead cells as a 

percentage of total cell number (A, B). Supernatants were collected and analysed for IL-1

(C), IL-6 (D) and IL-8 (E). Dashed line represents levels detected in non-impacted samples. 

Data are presented as Mean ± SEM of n=4 individual experiments under each condition, 

repeated in quadruplicate, *p<0.05, **p<0.01, ***p<0.0001 vs. impacted controls. 



Page 27 of 39

Acc
ep

te
d 

M
an

us
cr

ip
t

26

Figure 4. -MSH and [DTRP8]--MSH inhibit pro-inflammatory cytokine release from 

TNF- stimulated primary bovine chondrocytes. 

Freshly isolated primary articular bovine chondrocytes were treated for 30 min with 

SHU9119, -MSH or [DTRP8]--MSH  (1 – 10 µg/mL) prior to 6h stimulation with TNF- (60 

pg/ml) and cell-free supernatants were collected and analysed for IL-1 (A), IL-6 (B) and IL-8 

(C) concentration by ELISA. Dotted line represents untreated controls, whilst dashed line 

represents TNF- stimulation alone. Data are presented as Mean ± SEM of n=4 

independent experiments repeated in triplicate, *p<0.05, **p<0.01, ***p<0.0001 vs. TNF-

alone. 

Figure 5. SHU9119 antagonises [DTRP8]--MSH but not -MSH inhibition of IL-1, IL-6 

and IL-8 release from TNF- stimulated articular bovine chondrocytes.  

Isolated primary bovine chondrocytes were left untreated or pre-incubated for 1h with 

SHU9119 (10.0 g/mL) prior to -MSH or [DTRP8]--MSH (3.0 µg/mL) treatment for 30 min. 

Cells were then stimulated with TNF- (60 pg/mL) and cell-free supernatants collected 6h 

post-stimulation and analysed for IL-1 (A), IL-6 (B) and IL-8 (C) levels by ELISA. Dashed 

line represents TNF- stimulated controls. Data are presented as Mean ± SEM of n=4 

independent experiments repeated in triplicate, *p<0.05, **p<0.01, ***p<0.0001 vs. TNF-

alone.

Figure 6. -MSH and [DTRP8]--MSH stimulate IL-10 release from freshly isolated 

articular bovine chondrocytes.   

Freshly Isolated primary bovine chondrocytes were left untreated or were pre-incubated for 

1h with SHU9119 (10.0 g/mL) prior to -MSH or [DTRP8]--MSH (1-10 µg/mL) treatment for 

30 min. Cells were then stimulated for 6h with TNF- (60 pg/mL) and cell-free supernatants 

were analysed for IL-10 release by ELISA. TNF- did not initiate production of IL-10. Data 

are presented as Mean ± SEM of n=4 independent experiments repeated in triplicate, 

*p<0.05, **p<0.01, ***p<0.0001 vs. TNF- treated controls. 

Figure 7.

A human knee joint with injured articular cartilage and meniscus (hand drawing for 

illustrative purposes only) – melanocortin peptides were able to prevent the progression of 

trauma-induced chondrocyte death and the consequential propagation of pro-inflammatory 

cytokines into non-impacted areas of cartilage explants, all the while promoting the release 

of reparative pro-resolving molecule.
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Table 2. TNF- activates IL-6, IL-8 and IL-1��release from freshly isolated bovine
chondrocytes. 

Stimulus
IL-1 release

(pg•mL-1)

IL-6 release

(pg•mL-1)
IL-8 release

(pg•mL-1)

Untreated 0.82 ± 1.06 3.20 ± 1.38 2.81 ±1.46
TNF- (20 pg•mL-1) 17.06 ±1.66* 38.54 ± 9.85* 4.44 ± 5.53

TNF- (40 pg•mL-1) 17.40 ±1.23* 78.59 ± 13.68** 46.67 ± 13.65*

TNF- (60 pg•mL-1) 21.87 ± 1.20* 174.33 ± 14.60*** 45.55 ± 2.94**

TNF- (80 pg•mL-1) 17.92 ± 1.26* 347.07 ± 29.79*** 29.89 ± 3.91*

Isolated primary bovine chondrocytes were stimulated with TNF- (0 – 80 pg/mL). Cell-free 
supernatants were collected 6h post-stimulation and analysed for IL-1, IL-6 and IL-8 by ELISA. Data 
are presented as Mean ± SEM of n = 4 independent experiments repeated in triplicate, *p≤ 0.05, **p≤ 
0.01, ***p≤ 0.001 vs. untreated controls.  
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5
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Figure 6
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