
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Tableaux and Sequent Calculi for CTL and ECTL: Satisfiability

Test with Certifying Proofs and Models

Bolotov, A., Garcia-Closas, M., Lucio, P. and Abuin, A.

NOTICE: this is the authors’ version of a work that was accepted for publication in

Journal of Logical and Algebraic Methods in Programming. Changes resulting from the

publishing process, such as peer review, editing, corrections, structural formatting, and

other quality control mechanisms may not be reflected in this document. Changes may

have been made to this work since it was submitted for publication. A definitive version

was subsequently published in Journal of Logical and Algebraic Methods in

Programming, DOI: 10.1016/j.jlamp.2022.100828, 2022.

The final definitive version in Journal of Logical and Algebraic Methods in Programming

is available online at:

https://doi.org/10.1016/j.jlamp.2022.100828

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

https://creativecommons.org/licenses/by-nc-nd/4.0/

The WestminsterResearch online digital archive at the University of Westminster aims to

make the research output of the University available to a wider audience. Copyright and

Moral Rights remain with the authors and/or copyright owners.

https://doi.org/10.1016/j.jlamp.2022.100828
https://creativecommons.org/licenses/by-nc-nd/4.0/

Tableaux and Sequent Calculi for CTL and ECTL:
Satisfiability Test with Certifying Proofs and Models

Alex Abuina,∗, Alexander Bolotovb,1, Montserrat Hermoc,1, Paqui Lucioc,1

a Ikerlan Technology Research Centre (BRTA), Arrasate-Mondragón, Gipuzkoa, Spain
b University of Westminster,W1W 6UW, London, UK

c Computer Languages and Systems, University of the Basque Country, San Sebastián, Spain

Abstract

Certifying proofs are automated deductive proofs obtained as outcomes of a formal
verification of temporal properties, where model checking is one of the most promi-
nent approaches. The satisfiability problem for the Computation Tree Logic (CTL)
cannot be reduced to the CTL model checking problem. Hence model checking algo-
rithms for CTL cannot be adapted for testing CTL satisfiability. However, any decision
procedure of CTL satisfiability can perform model checking tasks. Our context-based
tableau approach to CTL satisfiability introduces a tree-style one-pass tableau that does
not require auxiliary constructions or extra-logical rules for branch pruning. As a con-
sequence this method brings the classical duality between tableaux and sequent calculi
in temporal logic. For any input formula, a closed tableau represents a formal sequent
proof that certifies the unsatisfiability of the input, whereas an open tableau provides at
least a model certifying the satisfiability of the input formula. Hence, in this framework
the satisfiability test can be performed and complemented with certifying proofs and
models. This is also true in relation to more expressive branching-time logic, Extended
CTL (ECTL), which enriches CTL with simple fairness formulae. This paper contin-
ues the development of dual systems of tableau method and sequent calculi, introduc-
ing these techniques for CTL and ECTL. We prove the soundness and completeness of
both methods and define algorithms for obtaining systematic tableaux which produce
models and formal proofs (as certificates) depending on whether the input formulae are
satisfiable or not. We also describe the implementation of this technique and provide
experimental results.

Keywords: Temporal logic, fairness, branching-time, certified model checking

1. Introduction

Temporal logic is nowadays essential for the specification and verification of con-
current and reactive systems. There are two types of temporal logics in relation to

∗Corresponding author
1These authors have been supported by the European Union (ERDF funds) under the grant PID2020-

112581GB-C22, and also by the University of the Basque Country under the LoRea GIU21/044 Project.

Preprint submitted to Elsevier October 12, 2022

the treatment of the future of a given moment of time. When each moment of time
has a unique possible future we have timelines as linear sequences of this moments
(or states). Thus linear temporal logic extends classical propositional logic by future
time temporal operators such as - ‘at the next moment of time’, - ‘eventually
in the future’, - ‘always in the future’ U - ‘from now until’, and R - ‘releases’.
When each moment of time is allowed to have several possible futures (or paths) we
have branching temporal logics. The language of branching-time logics extends the
language of linear temporal logic with paths quantifiers A - ‘for all paths’ quantifier,
and E - ‘there exists a path’ quantifier. Thus, in linear temporal logics, the underlying
models of time are discrete, linear sequences of states, finite in the past and infinite in
the future. For branching temporal logics the underlying models of time are trees (or
computation trees) where each branch is a discrete, linear sequence of states, finite in
the past and infinite in the future. Recall that the formulation of temporal logic with the
future-time temporal operators only is based on the remarkable Gabbay’s separation
result [17, 18].

The method of semantic tableaux, invented in the 1950’s by Beth and Hintikka
and later perfected by Smullyan [35] and Fitting [16], is nowadays well established
in the field of Automated Deduction. It brings together the proof-theoretical and the
semantic approaches to the presentation of a logical system as a set of inference rules.
A tableau is a tree-like structure designed to make semantic reasoning fully systematic
to decide whether a set of formulae is satisfiable or not. The construction of a tableau
is guided by a set of rules that decompose formulae according to the semantics of its
logical operators. Temporal tableaux, first introduced in [36], tackling the problem that
formulae must be analysed in a infinite sequences of states, introduce a mechanism
which controls repeated appearances of formulae and identify periodic situations in
finite time. Later, we explain the two options to cope with this problem. For the survey
of the tableau method for temporal logic we refer an interested reader to [24].

The hierarchy of CTL-type family of Branching-time logics (BTL) is defined by
releasing restrictions on the concatenations of temporal operators and paths quantifiers
which define classes of admissible state formulae distinguished for these logics. As in
Computation Tree Logic (CTL) [10] every temporal operator must be preceded by a
path quantifier, this logic cannot express fairness which requires at least the concate-
nation of and. These are tackled by Extended Computation Tree Logic (ECTL)
[14] which enables simple fairness constraints but not their Boolean combinations.
ECTL+ [15] further extends the expressiveness of ECTL allowing Boolean combi-
nations of temporal operators and ECTL fairness constraints (but not permitting their
nesting). The logic ECTL# [7] extends ECTL+ by allowing the combinations(AU B)
or AU B, referred to as modalitiesU and U . The logic CTL⋆, often considered
as the full branching-time logic’ overcomes all these restrictions on syntax allowing
any arbitrary combinations of temporal operators and path quantifiers.

Model checking (MC) [5, 12] is one of the most developed and applied approaches
to formal verification of temporal properties. In this paper we continue our investiga-
tion of deductive techniques for temporal logic targeting their potential application in
MC. Our particular interest is in so called certified model checking (CMC) [30]. This
type of model checking aims to

2

• generate proofs as certificates of the properties that are verified,

• produce counterexamples for those properties that are invalidated.

Certification of proofs is the process of obtaining automated deductive proofs as out-
comes of a formal verification process. Traditional model checkers integrate some
deductive methods for generating proofs, however, typically for invariant properties
only. This idea has been recently extended to the certification of general linear-time
properties [25]. It is known that for linear temporal logic both satisfiability and MC
are PSPACE-complete [34] and can be reduced to each other. However, the MC prob-
lem for CTL is known to be P-complete [11], while the satisfiability problem for CTL
is EXPTIME-complete [14]. As a consequence, an MC algorithm for CTL properties
(for example implemented in NuSMV [9]) cannot be adapted for testing CTL satis-
fiability. However, any decision procedure of CTL satisfiability can be used to per-
form MC tasks and if based on a deductive system, such procedure enables certifying
proofs. More precisely, if ϕS is the formula that characterises the computation tree of
a system S ,2 then the verification problem S |= ψ for some property ψ reduces to
the (un)satisfiability problem of the formula ϕS ∧¬ψ , where a model of the formula
ϕS ∧¬ψ is a counterexample of the former verification problem. At the same time the
proof of the unsatisfiability of ϕS ∧¬ψ (i.e. its refutation proof) certifies that S |= ψ .

There are two known ways to build tableau constructions for temporal logic for-
mulae. Two-pass constructions check the validity of the given tableaux input in two
passes - in the first pass a tableau graph is obtained and the second ‘pass’ checks the
fulfillment of all eventualities. The one-pass tableau method [33] checks the fulfillment
of eventualities on-the-fly along the construction on the branches using an extra-logical
mechanism. This mechanism prevents the formulation of a sequent calculus dual to the
tableau method. More recently, [19, 7, 3] introduced the context-based tableau method
as a one-pass method that does not require any extra-logical auxiliary construction and
therefore keeps the mentioned classical duality. Therefore it enables not only to certify
satisfiability results by means of a model of the input set, but also the construction of
certifying sequent proofs of the unsatisfiability of the input. The core context-based
tableau construction is based on the concept of a context of an eventuality, which is a
set of formulae that ‘accompanies’ the eventuality in the label of a node of a tableaux
graph. Our specific tableau rules that involve context force the earliest fulfilment of
eventualities.

This paper continues the development of (one-pass) context-based tableau method
for temporal logics [19, 7, 2, 3]. We aim at the formulation of a ‘generic’ approach to
CMC for a variety of branching-time logics based on context-based tableaux method
and dual sequent calculi. Here the crucial aspect of the developments of deductive tech-
niques is that the same reasoning mechanism applies for both tasks - providing certifi-
cates and generating counterexamples. In previous works this context-based tableaux
approach has been developed for propositional linear-time temporal logic, PLTL [19],
and for the branching-time logic ECTL# [7]. The latter formalism specifically allows

2In the sense that the set of Kripke models of ϕS exactly represents the set of all possible computations
of the system S (see e.g. [8]).

3

to reason about a richer than ECTL+ class of branching-time fairness constraints util-
ising the ‘until’ temporal operator. It has also been shown how, in the linear-time case,
the method, being mingled with a SAT solver, can be invoked as part of the certified
model checking for PLTL [2]. For the branching-time case, the developed context-
based tableaux for ECTL# has quite complex rules. We also note that the distinguished
(and unavoidable) feature of context-based technique for ECTL# is the utilisation of
two types of contexts: the so-called ‘outer’ (similar to PLTL) context which is a col-
lection of state formulae, is complemented by so called ‘inner’ context, a collection of
path formulae. The context-based tableau methods for CTL and ECTL, similarly to the
one for PLTL, only need the "outer" context, yet, similarly to ECTL#, the generated
tableaux are AND-OR trees. Subsequently, the application of a model checking proce-
dure for CTL simply based on the existing technique for ECTL# would become far too
‘non-intuitive’.

Hence, the development of a simpler context-based method for CTL and ECTL
is an important task. This paper extends our earlier work [3] where context-based
tableaux methods for CTL and ECTL were introduced. Our results provide a more
intuitive tableau algorithm for CTL and ECTL, along with the dual sequent calculi
and the extension of the tableau algorithm that constructs both the proof certificates
and also the countermodels. We prove soundness and completeness of the method,
and illustrate its practical implementation that produces certificates and counterexam-
ples. All these bring us one step closer to the formulation of a ‘generic’ approach
to certified model-checking applicable to a variety of branching-time logics based on
context-based tableaux method and dual sequence calculi –the same reasoning mecha-
nism applies for both tasks– providing certificates and generating counterexamples.

A useful comparison of five satisfiability procedures for CTL can be found in [23]
(two of these procedures are tableau-based). The first method [6] is a two-pass tableau
which, in the first pass creates a cyclic graph. In this graph, a ‘bad loop’ is a loop
containing some eventuality that is not fulfilled along it. Therefore, in the second pass,
‘bad loops’ are pruned. The second method [1, 22] is a single-pass tableaux decision
procedure based on Schwendimann’s one-pass procedure for PLTL [33]. This tableau
method uses an additional mechanism for collecting information on the set of formulae
in the nodes and passing it to subsequent nodes along branches. The information on
previously generated nodes helps detecting ‘bad loops’ without constructing the whole
graph.

To evaluate the feasibility of our approach we have implemented a prototype, called
MomoCTL, of our tableau method for CTL that returns sequent proofs for unsatisfiable
inputs, as well as models for satisfiable ones. MomoCTL has been tested against the
benchmarks used in [23]3. We also compare our results with another, unique, one-pass
tableau for CTL which was introduced in [1] and, in turn, compared in [23] with other
methods. Finally, we note that, to the best of our knowledge, there has been no explicit
formulation of a tableau (one or two pass) method for ECTL.

3Available in http://users.cecs.anu.edu.au/~rpg/CTLComparisonBenchmarks/

4

Outline of the paper. In §2 we define the syntax and the semantics of CTL and ECTL as
sublogics of CTL⋆. The formulation of the tableau method is presented in §3, where we
first give some preliminaries and then overview the tableau construction as an AND-OR
tree and provide examples. A systematic tableau construction and illustrative examples
are presented in §4. Soundness and completeness of the tableau method for CTL are
proved in §5. In §6 we introduce the dual sequent calculus for CTL. In §7, we describe
our implementation that tests the satisfiability of a set of CTL formulae, and returns a
formal proof (refutation certificate) for an unsatisfiable input and, otherwise, a model.
In §8 we introduce further extension of the method for the logic ECTL. In §9 we draw
the conclusions and prospects of future work that the presented results open.

2. Syntax and Semantics of CTL and ECTL as sublogics of CTL⋆

As all logics we are interested in are subsumed by CTL⋆, for the sake of generality,
we first present the CTL⋆ syntax and then, by restricting it, derive the syntax for each
of ECTL#, ECTL+, ECTL and CTL. In §2.2.1 we introduce the syntax and semantics
of CTL⋆. In §2.2.2 we discuss a hierarchy of sublogics of CTL⋆. In §2.2.3 and §2.2.4,
we respectively define the grammars and the sets of modalities for CTL and ECTL
formulae in negation normal form.

2.1. The logic CTL⋆

Definition 2.1 (Syntax of CTL⋆). Given Prop is a fixed set of propositions, and p ∈
Prop, we define sets of state (σ) and path (π) CTL⋆ formulae over Prop as follows:

σ ::= T | p | ¬σ | σ1 ∧σ2 | Eπ

πCTL⋆ ::= σ | ¬π | π1 ∧π2 |π | π1U π2

Two observations are needed here. Definition 2.1 above introduces the minimal
CTL⋆ grammar: we only use one path quantifier - E, and two temporal modalities -
and U . From this combination we can derive a richer syntax, which is often more ap-
propriate to use when we speak about the intuitive interpretation of formal specification
of targeted systems: the other path quantifier - A and the remaining temporal operators
(, and R). In particular, the ‘falsehood’ constant F ≡¬T and the classical disjunc-
tion operator is defined as follows: ϕ1∨ϕ2 ≡de f ¬(¬ϕ1∧¬ϕ2) (here and below we will
use the notation ϕ1 ≡de f ϕ2 to abbreviate that the structure ϕ1 is defined as ϕ2). The ‘for
all paths’ quantifier Aϕ ≡de f ¬E¬ϕ and the remaining temporal operators are defined
as follows: ϕ ≡de f TU ϕ ,ϕ ≡de f ¬¬ϕ , and ϕ1Rϕ2 ≡de f ¬(¬ϕ1U ¬ϕ2).

Second, observe that in Definition 2.1 for the set of path formulae, πCTL⋆ , we de-
liberately used an index CTL⋆ to indicate that this grammar introduces a set of path
formulae specifically for CTL⋆. At the same time we did not use any index for the set
of state formulae. This reflects the tradition in defining the grammar for BTL logics
in a way that the grammar for the path formulae determines relevant changes in the
grammar for the set of state formulae. For CTL⋆, ‘no restrictions’ on the construction
of path formulae determine ‘no restriction’ on the construction of the arguments of
the ‘path’ quantifiers. For each of CTL⋆ sublogics that we will define later, CTL and
ECTL, their specific restrictions on the construction of path formulae will determine

5

relevant classes of their state formulae (however, the grammar scheme to generate state
formulae remains as presented here for CTL⋆ formulae).

For interpreting CTL⋆ formulae, we invoke Kripke structures that are labelled di-
rected graphs corresponding to Emerson’s R-generable structures, i.e. the transition
relation R is suffix, fusion and limit closed [13].

Definition 2.2 (Labelled Kripke Structure). A Kripke structure, K , is given by a
quadruple (S,R, I,L) where S ̸= /0 is a set of states, R ⊆ S×S is a total binary relation,
called the transition relation, I is a finite non-empty set of initial states, and L : S →
2Prop is a labelling function.

A path x through a Kripke structure K is an infinite sequence of states si,si+1,si+2 . . .
(i ≥ 0) such that (s j,s j+1) ∈ R for any j ≥ i. Note that the totality of the transition rela-
tion R causes the infinity of paths. It is possible that a path in a Kripke structure, from
some point onward, contains a repetitive sequence of states - a cycle. Later, in Defini-
tion 2.7, we introduce the notion of a cyclic Kripke structure that we will essentially
use in this paper. A fullpath x through a Kripke structure K is an infinite sequence of
states s0,s1,s2 . . . , where s0 ∈ I. By fullpaths(K) we denote the set of all fullpaths in
K . Given a fullpath x ∈ fullpaths(K) such that x = s0,s1 . . . , the state si (0 ≤ i) is
denoted by x(i).

Given a path x = si,si+1, . . . and k ≥ 0, we denote by x<k a finite prefix of x of
length k and by x≥k we denote its infinite suffix starting at state si+k. Hence x<k =
si,si+1 . . . ,si+k−1 and x≥k = si+k,si+k+1, Note that, x = x<k,x≥k (which means that
this path x starts with prefix x<k to the k-th state and then, from this k-th state, continues
with the suffix x≥k).

Given a Kripke structure K = (S,R, I,L) and a state s ∈ S, let K ′ = (S′,R,{s},L)
be a Kripke structure obtained from K by restricting S to S′ such that S′ is the set of
all states of S that are R-reachable from s, we will denote K ′ by K ↾ s. Note that
if I ̸= {s} then K ↾ s is a proper substructure of K with the unique initial state s.
Intuitively, K ↾s represents the behaviour of a system from state s ‘forward’. The set I
helps modelling systems whose initial state is not definitely determined, for each s ∈ I,
K ↾s represents the behaviour of the system for the initial state s.

For a given x∈ fullpaths(K) such that x= s0,s1 . . . , and given i≥ 0, K ↾x(i) is the
Kripke structure that allows us to express path’s fusion closure: if y ∈ fullpaths(K ↾
x(i)) then x≤i−1,y ∈ fullpaths(K).

For the convenience of the subsequent presentation (as we will be presenting the
context-based tableaux and the dual sequent calculi for the sublogics of CTL⋆), in
Definition 2.3 below we introduce the evaluation of CTL⋆ state and path formulae
constructed with the extended grammar - with both classical F and ∨, with both path
quantifiers, and the full set of temporal operators - , , , U and R. In our for-
mulation of the CTL⋆ semantics below we will also label the conditions related to the
evaluation of state CTL⋆ formulae by ‘s’ followed by the reference to the relevant con-
straint (for example, ‘(s¬)’ labels the condition evaluating a state formula ¬σ in some
state). Similarly, we label the conditions related to the evaluation of path CTL⋆ for-
mulae by ‘p’ followed by the reference to the relevant constraint (for example, ‘(p∨)’
labels the condition evaluating a path formula π1 ∨ π2 along some path). Recall that

6

any CTL⋆ state formula is also a path formula and that any rule (pσ) applies when the
path formula is really an state formula.

Definition 2.3 (Models). Given the structure K = (S,R, I,L), the relation |=, which
evaluates path formulae in a given path x and state formulae at the state index i of the
given path x, is inductively defined as follows.

(sT) K ,x, i |= T
(sF) K ,x, i ̸|= F
(sprop) K ,x, i |= p iff p ∈ L(x(i)).
(s¬) K ,x, i |= ¬σ iff K ,x, i |= σ does not hold.
(s∨) K ,x, i |= σ1 ∨σ2 iff K ,x, i |= σ1 or K ,x, i |= σ2.
(s∧) K ,x, i |= σ1 ∧σ2 iff K ,x, i |= σ1 and K ,x, i |= σ2.
(sE) K ,x, i |= Eπ iff there exists y ∈ fullpaths(K ↾x(i))

such that K ,y |= π.
(sA) K ,x, i |= Aπ iff K ,y |= π holds for all y ∈ fullpaths(K ↾x(i)).
(pσ) K ,x |= σ iff K ,x,0 |= σ .
(p¬) K ,x |= ¬π iff K ,x |= π does not hold.
(p∨) K ,x |= π1 ∨π2 iff K ,x |= π1 or K ,x |= π2.
(p∧) K ,x |= π1 ∧π2 iff K ,x |= π1 and K ,x |= π2.
(p) K ,x |=π iff K ,x≥1 |= π.
(p) K ,x |=π iff there exists j ≥ 0 such that K ,x≥ j |= π.
(pU) K ,x |= π1U π2 iff there exists k ≥ 0 such that K ,x≥k |= π2 and

K ,x≥ j |= π1 for all 0 ≤ j < k.
(p) K ,x |=π iff K ,x≥ j |= π holds for all j ≥ 0.
(pR) K ,x |= π1Rπ2 iff either K ,x≥k |= π2 holds for all k ≥ 0, or there

exists some k ≥ 0 such that K ,x≥k |= π1 ∧π2
and K ,x≥ j |= π2 for all 0 ≤ j ≤ k.

Given a Kripke structure K = (S,R, I,L). For a state formula ϕ , we say that K |=
ϕ (in words, K models ϕ) if and only if K ↾ s0 |= ϕ for all s0 ∈ I. For a set of state
formulae Σ, K |= Σ if and only if K |= ϕ holds for every ϕ ∈ Σ. Mod(ϕ) (resp.
Mod(Σ)) denotes the set of all models of ϕ (resp. Σ).

To illustrate the semantics, we will consider the following CTL⋆ formula

A(p∧E¬p) (1)

To show that this formula does not have a model, let us reason by contradiction as-
suming that there exists a model, say K , for this formula. We will show that this
assumption leads us to a contradiction when trying to build such a model. To start
with, we pick a state s0 from the set of the initial states of K and assume that formula
(1) is true at K ↾ s0. Note that fullpaths(K ↾ s0) ⊆ fullpaths(K). This means that
for any fullpath, x ∈ fullpaths(K), K ,x |=(p∧E¬p). Now pick a path from
fullpaths(K), say x1. Among the states of x1, let x1(i) (i ≥ 0) be the first state satis-
fying the condition K ,x≥i

1 |=p∧E¬p. This state must exist following the CTL⋆

semantics. Therefore, both p and E¬p are satisfied along x≥i
1 . This means that

7

p itself is satisfied at the state x1(i+ 1), i.e. at the successor of x1(i) on the path x1.
Since K ,x≥i

1 |= E¬p there should be a path starting at state x1(i) such that ¬p is
satisfied along this path. As ¬p can not be satisfied at the state x1(i+1) ∈ x≥i

1 where p
has been already satisfied, this new path, call it x2, to satisfy ¬p should differ from
x≥i

1 . Now we invoke the fusion closure property which we have already discussed in
this section (after Definition 2.2). Due to the fusion closure property there is a fullpath
in K with the prefix x<i

1 and the suffix x2, namely y1 = x<i
1 ,x2. Since in the given

formula (1), (p∧E¬p), is in the scope of the A path quantifier, any fullpath,
hence, also y1, must satisfy(p∧E¬p). Hence, we must have a state x2(j) such
that j > i and K ,y≥ j

1 |=p∧E¬p. Considering this state x2(j), we invoke the same
reasoning as we applied to the state x1(i) evaluating E(p∧E¬p) on the path x1.
This leads us to the analogous conclusion, that there must be another path x3 starting
at x2(j) such that ¬p is true along it. Again, the path y2 = x<i

1 ,x< j
2 ,x3 should sat-

isfy the property E(p∧E¬p), hence we must have a state x3(k) such that k > j and
K ,y≥k

1 |=p∧E¬p. Therefore (due to limit closure), there exists y∈ fullpaths(K)

formed by the finite prefixes x<i
1 ,x< j

2 ,x<k
3 . . . , such that K ,y ̸|=(p∧E¬p). So,

our assumption on the satisfiability of (1) was wrong. Note that limit closure of the
underlying Kripke structures was important for the above proof. Without the limit clo-
sure, for example, for so called bundled structures [21], the situation would have been
different as we would not be able to assemble this new path y.

The following Definition 2.4 introduces notions of satisfiability, validity and equiv-
alence for CTL⋆ formulae and generalises satisfiability and validity for the sets of CTL⋆

formulae. These are based on the concept of Mod introduced in Definition 2.3.

Definition 2.4 (CTL⋆ Satisfiability, Validity and Logical Equivalence).

• A state formula ϕ is satisfiable (denoted Sat(ϕ)) whenever Mod(ϕ) ̸= /0, other-
wise ϕ is unsatisfiable (denoted UnSat(ϕ)).

• A state formula ϕ is valid whenever K |= ϕ for all K .

• A set of state formulae Σ is satisfiable (denoted Sat(Σ)) if Mod(Σ) ̸= /0. Other-
wise Σ is unsatisfiable (denoted UnSat(Σ)).

• A set of state formulae Σ is valid whenever K |= Σ for all K .

• State formulae ϕ and ϕ ′ are logically equivalent if Mod(ϕ) =Mod(ϕ ′) (denoted
as ϕ ≡ ϕ ′).

2.2. Sublogics of CTL⋆

For each of the BTL logics - ECTL#, ECTL+, ECTL and CTL- which are sublog-
ics of CTL⋆, we define its syntax over a fixed set of propositions Prop, preserving the
definition of state formulae from CTL⋆ (Definition 2.1) and formulating in Definition
2.5 the specific restrictions for these logics on the CTL⋆ grammar that generate cor-
responding sets for path formulae. Note that similarly to the CTL⋆ grammar, we also
utilise here the minimal set of operators, for the sake of consistency of the presentation
and its rigor.

8

Definition 2.5 (Path Formulae for ECTL#, ECTL+, ECTL and CTL).

logic inherited | characteristic

πECTL# ::= πECTL+ | σ1U (σ2 ∧ (TU σ3)) |
¬(TU ¬(TU (¬σ1 ∧ (TU ¬σ2)))) |
σ1U ¬(TU ¬σ2) | ¬(TU ¬(σ1U σ2))

πECTL+ ::= πECTL | π1 ∧π2
πECTL ::= πCTL | ¬(TU ¬(TU ¬σ)) | TU ¬(TU ¬σ)
πCTL ::= σ | ¬π |σ | σ1U σ2.

Our aim is to highlight different kinds of path formulae that are generated in each
sublogic of CTL⋆ and those characteristic to it. For example, for ECTL, the character-
istic path formulae are those expressing linear-time fairness - ¬(TU ¬(TU ¬σ)) and
TU ¬(TU ¬σ). Now, if, similar to the case of CTL⋆, we extend this minimal grammar
by the derivable constraints, these fairness constraints are read as σ and σ .
The characteristic path formulae for ECTL+ are π1∧π2 - those that allow Boolean com-
bination of linear-time temporal operators and fairness constraints. Finally, the charac-
teristic path formulae for ECTL# are σ1U (σ2 ∧σ3),(σ1 ∨σ2),σ1U (σ2) and
(σ1U σ2).

It is important to note that the nesting of ‘pure path formulae’, totally unrestricted
in CTL⋆, is restricted in its sublogics by relevant grammar cases for path formulae.
Below, for each of the logics CTL⋆, ECTL#, ECTL+, ECTL and CTL, we will provide
an example of a formula which is expressible in this logic but is not expressible in
its sublogic. The structures of these formulae reflect the characteristic path formulae
for the considered sublogic. Hence, we will refer to these formulae as characteristic
formulae for a dedicated logic under consideration. For example, an indicative CTL⋆

formula A(p∧E¬p) mentioned above (1) is not an ECTL# formula. Rewriting
it as A(TU (p∧E¬p)) we can see thatp∧E¬p, the right-hand side argument
of the U operator, does not meet the ECTL# criteria: it is neither a state formula of the
form σ1 ∧σ2 nor σ . Recall that the validity of (1) is directly linked to the limit
closure property [13]. If we consider an ECTL# formula

A((pU q)∧ (sU ¬q)) (2)

we can see that this is not an ECTL+ formula because ECTL+ only allows Boolean
combinations of the fairness constraints. In this ECTL# formula, pU q and sU ¬q,
hence their conjunction, are not admissible ECTL+ formulae. Further, an ECTL+ for-
mula (3) that does not belong to ECTL is

E(q∧¬q) (3)

asq∧¬q is not an admissible ECTL path formula.
Finally, the fairness constraint (4) which is expressible in ECTL cannot be con-

structed in CTL syntax as every temporal operator

Eq (4)

in a CTL formula must be preceded by a path quantifier. Obviously, writing, for ex-
ample, an E quantifier before theq we obtain an admissible CTL structure EEq.

9

However, comparing EEq with Eq, we can see that the latter requires a model
where there exists a path, along which q is satisfied, while the former requires a
model where there exists a path where each state gives rise for a path along whichq
is satisfied.

Note that it is important to distinguish the problem if a formula of a superlogic
belongs to a sublogic and the problem if a formula of a superlogic can be expressed
in a sublogic. For example, E(q ∨¬q), similarly to formula (3) does not
belong to ECTL but unlike (3), it is expressible in this logic, as E(q∨¬q) ≡
Eq∨E¬q which is an ECTL formula if we define ∨ via ∧.

BTL Logic Eq E(q
∧¬q)

A((pU q)
∨ (sU ¬r))

A(p
∧E¬p)

Dual
T & SC

B(U ,) (CTL) X X X X This paper
B(U ,,) (ECTL)

√
X X X This paper

B+(U ,,) (ECTL+)
√ √

X X
√

B+(U ,,U) (ECTL#)
√ √ √

X
√

B⋆(U ,) (CTL⋆)
√ √ √ √

X

Table 1: Classification of context-based tableaux systems for CTL-type logics and relevant difficult cases of
concatenations of temporal operators and path quantifiers.

In Table 1, following the notation initially proposed in [13] and further tuned in
[29], we represent BTL logics (listed in the first column) classified by their expres-
siveness using ‘B’ for ‘Branching’, followed by the set of only allowed modalities as
parameters; B+ indicates admissible Boolean combinations of the modalities and B⋆

reflects ‘no restrictions’ in either concatenations of the modalities or Boolean combi-
nations between them. Columns 2-5 of Table 1 illustrate the indicative formulae for the
logics under considerations as follows:

• for ECTL, column 2: Eq, formula (4)

• for ECTL+, column 3: E(q∧¬q), formula (3)

• for ECTL#, column 4: A((pU q)∧ (sU ¬q)), formula (2)

• for CTL⋆, column 5: A(p∧E¬p), formula (1)

Writing the ‘
√

’ in Table 1 against the listed logics we indicate if a logic meets
these grammar rules. For example, column 2 now illustrates which of the logics can
express the property Eq: while this property is not expressible in CTL, it becomes
expressible in ECTL and any of its extensions. In this respect, ECTL has those minimal
grammar requirements enabling to express the property, hence, we can treat Eq as
ECTL indicative formula.

The last column in this table reflects the development of the dual system of context-
based tableaux (T) and sequent calculus (SC) for CTL-type logics. The method has
been developed for ECTL# [7] where the motivation was to cope with more complex
cases of fairness. We note that this method developed for ECTL# is obviously ap-
plicable to all weaker logics. However, it only tackles one weaker logic - ECTL+-

10

efficiently, introducing unnecessary complications for other ECTL# sublogics. This is
based upon the fact that ECTL+ and ECTL# have similar cases of the Boolean combi-
nations of eventualities in the scope of A and E: disjunctions of the eventualities in the
scope of the A quantifier and conjunctions of eventualities in the scope of the E quan-
tifier, see [7] for details. Thus, Table 1 also reflects syntactical cases of concatenations
of temporal operators and path quantifiers that are difficult for context-based tableaux.

To manage these cases, in addition to α- and β -rules, that are standard to the
tableaux, we introduce novel β+-rules which use the context to force the eventualities
to be fulfilled as soon as possible. As ECTL# is more expressive than ECTL+ in allow-
ing new type of fairness constraints that use the U operator, the relevant rules intro-
duced in [7] cover all difficult concatenations of operators in ECTL+. However, simply
treating the case of context-based tableaux for the other two sublogics of ECTL#–ECTL
and CTL– as solved by the relevant development for a richer logic ECTL#, would in-
troduce extra unnecessary complexity in the construction of dual system of relevant
tableaux and sequent calculi. Hence, for both ECTL and CTL, simpler context-based
tableaux methods are required. In this paper we concentrate on bridging this gap in our
roadmap in supplying BTL logics by this technique, and develop the method for CTL
and ECTL.

Subsequently, we proceed by defining the CTL and ECTL semantic conditions in
Definition 2.6. These are derived from the CTL⋆ semantic evaluation rules given in
Definition 2.3.

Definition 2.6 (CTL and ECTL Semantics).

• The semantics for logic CTL is obtained from the CTL⋆ semantics given in Def-
inition 2.3 by preserving the evaluation conditions (sT) - (sA) and (p) - (pR)
and setting π,π1 and π2 to be a state formula.

• The semantics for logic ECTL is obtained from the above CTL⋆ semantics by
deleting the evaluation conditions (p∨) and (p∧) and also restricting π in the
following rules as follows:

– in the (p) rule π is a state formula,

– in the (p) rule π is a state formula or a formulaσ ,

– in the (p) rule π is a state formula or a formulaσ , and

– in the (pU) and (pR) rules π1,π2 are state formulae.

For technical convenience, we will use the fact that cyclic Kripke structures have
the ability to characterise satisfiability in branching temporal logics.

Definition 2.7 (Cyclic Sequence, Path and Kripke Structure). Let K = (S,R, I,L)
be a given Kripke structure. Let z be a finite sequence of states z = s0,s1, . . . ,s j in S
such that (sk,sk+1) ∈ R for every 0 ≤ k < j. Then

• z is a cyclic sequence if and only if there exists si, 0 ≤ i ≤ j such that (s j,si)∈ R.
In this case, the subsequence si, . . . ,s j of z is called a loop denoted as ⟨si, . . . ,s j⟩ω .

11

• If z is a cyclic sequence, then the path

s0,s1, . . . ,si−1⟨si,si+1, . . . ,s j⟩ω

is denoted by path(z) and is called cyclic.

A Kripke structure K is cyclic if every fullpath is a cyclic path over a cyclic sequence
of states.

The fact that branching-time satisfiability can be reduced to the interpretation over
cyclic models only, is derived from the existence of the finite model property [14], see
also [26]. In particular, for any CTL (ECTL) formula ϕ , such that Mod(ϕ) ̸= /0, there
always exists a model K ∈Mod(ϕ) such that K is cyclic. Therefore, when speaking
about the satisfiability in CTL (hence ECTL) we can consider cyclic Kripke structures.
Cyclic paths are also known as ultimately periodic paths.

2.3. Negation Normal Form Grammars for CTL and ECTL
In this section, we introduce the grammars for CTL and ECTL formulae in negation

normal form (shortly, nnf). Along the rest of this paper we only deal with formulae in
this normal form.

From now on, we abbreviate by Q either of the path quantifiers A or E.

Definition 2.8 (Syntax of CTL and ECTL in nnf). Let Prop be a fixed set of proposi-
tions, then the sets FCTL

nnf of CTL formulae and F ECTL
nnf of ECTL formulae in nnf (over

Prop) are given by the grammar (where the elements of Lit are called literals):

Lit := F | T | p | ¬p where p ∈ Prop
σCTL := Lit | σ1 ∧σ2 | σ1 ∨σ2 | Qσ | Qσ | Q(σ1U σ2) | Qσ | Q(σ1Rσ2)
σECTL := σCTL | Qσ | Qσ

Proposition 2.9 (Closure under negation). For any ϕ ∈FCTL
nnf , we also have nnf(¬ϕ)∈

FCTL
nnf . For any ϕ ∈ F ECTL

nnf , we also have nnf(¬ϕ) ∈ F ECTL
nnf .

Proof. By structural induction on the formulae, using the following well-known equiv-
alences (e.g. [13]):
¬T ≡ F ¬Aϕ ≡ E¬ϕ ¬A(ϕRψ)≡ E(¬ϕU ¬ψ)
¬F ≡ T ¬Eϕ ≡ A¬ϕ ¬E(ϕRψ)≡ A(¬ϕU ¬ψ)
¬¬ϕ ≡ ϕ ¬Aϕ ≡ E¬ϕ ¬Aσ ≡ E¬σ

¬(ϕ ∧ψ)≡ ¬ϕ ∨¬ψ ¬Eϕ ≡ A¬ϕ ¬Eσ ≡ A¬σ

¬(ϕ ∨ψ)≡ ¬ϕ ∧¬ψ ¬A(ϕU ψ)≡ E(¬ϕR¬ψ) ¬Aσ ≡ E¬σ

¬Aϕ ≡ E¬ϕ ¬E(ϕU ψ)≡ A(¬ϕR¬ψ) ¬Eσ ≡ A¬σ

¬Eϕ ≡ A¬ϕ

The following result (e.g. [28]) is easily established using the above equivalences
and the semantics of the constraints used in nnf.

12

Proposition 2.10 (nnf preserves satisfiability and unsatisfiability). For any σ ∈ FCTL
nnf

it holds that Mod(σ) = Mod(nnf(σ)). Similarly, for any σ ∈ F ECTL
nnf it holds that

Mod(σ) =Mod(nnf(σ)).

For simplicity, we will write ∼ϕ instead of nnf(¬ϕ). Also, for a finite set Φ =
{ϕ1, . . . ,ϕn}, we let ∼Φ = nnf(¬

∧n
i=1 ϕi).

For the formulation of our tableaux technique we will need a concept of a consistent
(inconsistent) set of formulae, which is introduced in the following definition.

Definition 2.11 (Syntactically Consistent and Inconsistent Sets of Formulae). A set
Σ of state formulae of CTL and ECTL in nnf is (syntactically) inconsistent (denoted
Incons(Σ)) if and only if F ∈ Σ or {σ ,∼σ} ⊆ Σ for some σ . Otherwise, Σ is said to be
consistent.

2.4. ECTL and CTL Basic Modalities
Next, we introduce a concept of a basic modality which reflects the restrictions

on forming the basic admissible combinations of temporal operators in the scope of a
path quantifier. We consider a basic modality of CTL or ECTL logic to be of the form
QT, where T is a temporal operator. The structure QT is generated by the grammar
rules for these logics in Definition 2.5. We can identify all basic modalities in a given
formula ϕ by finding its most embedded modality(es), say M1, then looking at the
next basic modality in which M1 is embedded, etc. For example, a basic modality
for CTL is any admissible combination of Q and a temporal operator, i.e. Q, Q,
QU , Q, and QR, while ECTL basic modalities are those identified above for CTL
and, additionally, the modalities that appear due to new admissible combinations
and in the scope of a path quantifier –Q and Q. If we analyse a CTL
formula EAp then the most embedded basic modality, M1, would be Ap, which
is embedded as EM1. These are generalised in Definition 2.12.

Definition 2.12 (ECTL and CTL Basic Modalities).

MCTL ::= c | QM | QM | Q(MU M) | QM | Q(MRM).
MECTL ::= MCTL | QM | QM.

where c stands for a purely classical formula (we can consider a purely classical for-
mula as a zero-degree basic modality) and M stands for any basic modality of CTL in
the definition of MCTL and of ECTL in the definition of MECTL.

In what follows, every CTL modality QU or Q is called eventuality and (Q)i

stands for i consecutive occurrences of a basic modality Q.
CTL tableau rules are based on fixpoint characterisation of its basic modalities:

(in the equations below µ and ν stand for ‘minimal fixpoint’ and ‘maximal fixpoint’
operators, respectively)

Eϕ = νρ(ϕ ∧Eρ) E(ϕRψ) = νρ(ψ ∧ (ϕ ∨Eρ))
Aϕ = νρ(ϕ ∧Aρ) A(ϕRψ) = νρ(ψ ∧ (ϕ ∨Aρ))

Eϕ = µρ(ϕ ∨Eρ) E(ϕU ψ) = µρ(ψ ∨ (ϕ ∧Eρ))
Aϕ = µρ(ϕ ∨Aρ) A(ϕU ψ) = µρ(ψ ∨ (ϕ ∧Aρ))

(5)

13

This fixpoint characterisation of basic CTL and ECTL modalities as maximal or mini-
mal fixpoints give rise to their analytical classification as α- or β -formulae which are
associated, in the tableau with α- and β -rules: Q, and QR as maximal fixpoints are
classified as α-formulae while Q and QU as minimal fixpoints are β -formulae. This
is also reflected in the known equivalences:

Eϕ = ϕ ∧EEϕ E(ϕRψ) = ψ ∧ (ϕ ∨EE(ϕRψ))
Aϕ = ϕ ∧AAϕ A(ϕRψ) = ψ ∧ (ϕ ∨AA(ϕRψ))

Eϕ = ϕ ∨EEϕ E(ϕU ψ) = ψ ∨ (ϕ ∧EE(ϕU ψ))
Aϕ = ϕ ∨AAϕ A(ϕU ψ) = ψ ∨ (ϕ ∧AA(ϕU ψ))

(6)

3. Context-based Tableau Method for CTL

The tableau method determines whether a given set of CTL state formulae, Σ, is
satisfiable or not. In addition, in the affirmative case a model (Kripke structure) of Σ

can be generated from the tableau, whereas in the negative case we can generate a
proof in the dual sequent calculus. In this section, we introduce the tableau method:
we define the set of tableau rules and a general view and intuitions on how tableaux
are constructed. In §4 we provide a precise algorithm for constructing tableaux in a
systematic way. The generation of models and proofs will be explained in §7. Recall
that we assume that every formula is in nnf.

We precede the formal introduction of the technique by its informal overview. The
main concepts are informally introduced here and technically defined later in this sec-
tion or in §4. A tableau for a set of CTL formulae is a graph, namely an AND-OR-
Tree (for the account on AND-OR-Trees we refer an interested reader to [27]), where
nodes are labelled by sets of CTL formulae. The initial node (or root) of the tableau
is labelled by some given set of CTL formulae whose satisfiability we want to check.
Non-terminal nodes are further expanded by applications of the tableau rules to their
labelling sets. There are two kinds of terminal nodes. First, any node labelled by an
inconsistent set of formulae (see Definition 2.11) is terminal. The second type are the
so-called loop-nodes. Intuitively, we say that a branch (i.e. a path from the root to
some node n) has a loop (or lasso) when the label of n (or some superset of it) has
already appeared in this branch. In this case, n is is called a loop-node. Loop-nodes are
terminal whenever some precise eventuality fulfilment conditions hold in the branch.
Intuitively, such conditions ensure that the (systematic) tableau for any satisfiable set
of formulae represents a model of this set.

For the node expansion, we have the following types of tableau rules: α- and β -
rules, the ‘next-state’ rule, which reflects a ‘jump’ from a ‘state’ to a ‘pre-state’, and,
finally, characteristic to our approach, β+-rules, where the use of the context (of an
eventuality) is essential (recall that the context is a collection of state formulae accom-
panying the eventuality in the label of the node). The use of the context forces the
soonest fulfillment of eventualities, preventing their useless delays. In our procedure,
the application of β+-rules to eventualities is essential to detect ‘bad’ loops. Only if
β+-rules have already been applied to every eventuality in the branch and there is no
inconsistent node in this branch, then we can establish if all the eventualities have been

14

fulfilled. When this check for fulfilment of eventualities is positive we have a ’good
loop’ and this branch would be part of a model of the input formula. Otherwise, when
there is at least one unfulfilled eventuality, we choose one to which a corresponding
β+-rule has not been applied.

Next we proceed with formally defining the construction of the tableaux and intro-
ducing necessary concepts and tableau rules.

Definition 3.1 (Tableau, Consistent and Incons. Node, Closed and Open Branch).
A tableau for a set of CTL state formulae Σ is a labelled tree ⟨T,τ,Σ⟩, where T is a tree,
and τ is a mapping of the nodes of T to sets of state formulae, such that the following
two conditions hold:

• The root is labelled by the set Σ.

• For any other node m ∈ T , its label τ(m) is a set of state formulae obtained as
the result of the application of one of the rules in Figures 1, 2 and 3 to its parent
node n. When the applied rule is R, we term m an R-successor of n.

A node n of a tree T is consistent if its label, τ(n), is a (syntactically) consistent set of
formulae (see Definition 2.11), else n is inconsistent. If a branch b of T , contains an
inconsistent node, then b is closed else b is open.

(∧) Σ,σ1 ∧σ2

Σ,σ1,σ2
(Q)

Σ,Qσ

Σ,σ ,QQσ

(∨) Σ,σ1 ∨σ2

Σ,σ1 | Σ,σ2
(QU)

Σ,Q(σ1U σ2)

Σ,σ2 | Σ,σ1,QQ(σ1U σ2)

(QR)
Σ,Q(σ1Rσ2)

Σ,σ2,σ1 ∨QQ(σ1Rσ2)
(Q)

Σ,Qσ

Σ,σ | Σ,QQσ

Figure 1: α- and β -rules.

Figure 1 follows the standard for the tableaux classification of rules into α-rules and
β -rules - this is based on the analytic classification of CTL modalities and reflects their
interpretation as fixpoints (see equations 6) of the formula (in the node label) that is
‘designated’ for the rule application. In the systematic tableau construction, at each
node, the designated formula is chosen following some strategy that we specify later
(in 4). An α- or β -rule is applied to a node labelled by a set of formulae Σ,ϕ , where
ϕ is a designated formula that determines the rule (to be applied), and Σ is a possibly
empty set of formulae that accompany ϕ in the label of the node. Then, if ϕ is an
α-formula - ∧, Q, or QR - then a corresponding α-rule applies, while if ϕ is a β -
formula - ∨, QU , or Q- then a corresponding β -rule applies. These applications of
α- and β -rules generate the set of formulae in the conclusion of the rule as label(s) for
the successor node(s): one successor in case of an α-rule, or two successors in case of
a β -rule. In β -rules we use | to emphasize that successors are OR-siblings.

When a node n is labelled by an elementary set of formulae – i.e. a set which is
exclusively formed by literals and formulae of the form Qσ – then this structure is

15

analogous to a ‘state’ in the terminology of [36]; it enables us to construct the succes-
sors of n corresponding to ‘pre-states’ [36].

Let Σ,A ,E be an elementary set of formulae where

• Σ is a set of literals,

• A is a possibly empty set of A formulae {Aσ1, . . . ,Aσℓ}, and

• E is a non-empty set of E formulae {Eσ ′
1, . . . ,Eσ ′

k}.

(E)
Σ,A ,E

A ↓,σ ′
1 & . . . & A ↓,σ ′

k
(A)

Σ,A

A ↓

where A ↓ = {σ1, . . . ,σℓ}. Hence, A ↓ is empty if and only if A is empty.

Figure 2: Next-state rules (‘&’ joins AND-successors in the conclusion of (E)).

According to the next proposition we are guaranteed to reach such a tree structure,
where the last node of every branch, at this stage of the construction, is a state.

Proposition 3.2. Any set of CTL state formulae has a tableau T such that the last node
of every branch is labelled by an elementary set of state formulae.

Proof. Repeatedly apply to every expandable node any α- or β -rule until all expand-
able nodes are labelled by elementary sets of formulae. Then, the appropriate next-state
rule must be applied to every expandable node depending on the number of formulae
starting by E appearing at the node.

Proposition 3.2 enables the application of the so-called ‘next-state rules’ depicted
in Figure 2. Applying rule (E) we split the current branch at node n where the set

Σ,Aσ1, . . . ,Aσℓ,Eσ
′
1, . . . ,Eσ

′
k (7)

is satisfied, 0 ≤ l and k ≥ 1, into k branches: the number of branches is equal to
the number of E constraints, where the successors of n along these branches, say
m1, . . . ,mk are AND-successors of n. We label each AND-successor m j (1 ≤ j ≤ k) in
the following way. As any constraint Aσi (1 ≤ i ≤ l) in the premise of the rule would
propagate σi to any successor node, then each of these successor nodes, m j should have
the set σ1, . . . ,σl as part of its label. The next part of the label of m j is coming from the
corresponding Eσ ′

s (1 ≤ s ≤ k) as this existential constraint only determines the label
for one of the AND-successors. Thus, each AND-successor m j of n has its label of
the form σ1, . . . ,σl ,σ

′
s. The rule (E) splits branches in a ‘conjunctive’ way, and we

use the symbol & to represent the generation of AND-successors of node n. Thus, the
graphs generated with the application of the ‘next-state’ rule (E) are indeed AND-
OR trees. When k = 0 in the elementary set of formulae that labels node n (7), the rule
(A) is applied. The application of both rules (E) and (A) represents a ‘jump’ to
the next state, hence the set of literals Σ in (7) disappears in every child produced by
these rules.

16

(QU)+
Σ,Q(σ1U σ2)

Σ,σ2 | Σ,σ1,QQ((σ1∧ ∼Σ′)U σ2)
(Q)+

Σ,Qσ

Σ,σ | Σ,QQ((∼Σ′)U σ)

where Σ′ = Σ\{(A)iAσ ∈ Σ | i ≥ 0}

Figure 3: β+-Rules

Next we extend our set of tableau rules with the new two rules named as β+-rules
(Figure 3). Note that the (Q)+ rule can be derived from the application of the (QU)+

to the CTL formula TU σ . These rules, similarly to β -rules, also split a branch into
two branches. Moreover, whenever a β+-rule -(QU)+ or (Q)+- is applicable, so is
the respective β -rule -(QU) or (Q). Which rules, β -rules or β+-rules are applied
at each step of the tableau construction, does not affect the correctness. However, for
completeness, some strategy is required. It is easy to see that the extension with β+-
rules preserves the property given in Proposition 3.2.

These β+-rules are the only rules in our system that make use of the context -
their application forces the eventualities to be satisfied as soon as possible (from the
point of the tableau construction where an eventuality is selected to be expanded with
a β+-rule). The context is given by the possibly empty set Σ that accompanies the
designated formula, which in this case is an eventuality. Inside one of formulae of the
right-hand child of each β+-rule we add a conjunct ∼Σ′ that is calculated by deleting
some specific formulae from Σ (the context). In particular, if Σ is empty, then so is Σ′

and the formula ∼Σ′ is the constant F.
In what follows, any formula of the form Q((σ1∧ ∼Σ′)U σ2) (respectively, Q((∼

Σ′)U σ)) is called the contextualised variant of Q(σ1U σ2) (resp. Qσ) provided
that QQ((σ1∧ ∼Σ′)U σ2) (respectively, QQ((∼Σ′)U σ)) has been obtained by
the application of the corresponding β+-rule to a formula Q(σ1U σ2) (resp. Qσ)
with a context Σ. Note that the contextualised variants will appear after one application
of the rule (E) or (A), which removes all Q prefixes.

Recall that ∼Σ′ is the nnf of the negation of the conjunction of all formulae in Σ′

that are left from Σ after performing the set-theoretical difference constraint indicated
in the formulation of the rule. The idea now is that ∼Σ′ should also be satisfied until σ2
becomes satisfied. This prevents the repetition of the context while σ2 is ‘delayed’.
Note that Σ′ does not include the A constraint (prefixed by any sequence of the A
constraints) because these formulae would be necessarily repeated along any branch -
indeed, if we use ∼Σ instead of ∼Σ′ we will generate a branch for each A that will
be immediately closed.

Example 3.3. Consider Σ = {q,E¬p,Aa} to be the context of the formula Ap.
Then, Σ′ = {q,E¬p} and ∼Σ′ is the formula ¬q∨Ap. Consequently, the con-
textualised variant A((¬q∨Ap)U p) of Ap, preceded by A, is introduced in
the branch where Ap is delayed. This variant says that p should be fulfilled (in all
branches) after the next state, but while p is not fulfilled some formula in the context
{q,E¬p,Aa} should be ‘violated’. Since Aa is a formula that cannot be violated
in any branch (it is in the initial node), then either ¬q or ¬E¬p (in nnf, Ap) should
be satisfied in all path until p is satisfied. If the context of eventuality Ap was empty
or, for example, {Aa}, then the contextualised variant of Ap would be A(FU p).

17

Next, we illustrate in Example 3.4 the application of the β+-rule (EU)+ to a node
labelled by {E(pU q),A(FR¬q)}. A tableau for {E(pU q),A(FR¬q)} is also exhib-
ited in [1, 22]. In Section 4 we will use this tableau as a running example, complete its
construction, and compare it with the tableau presented in [1, 22]. From now on, we
highlight with the gray color the formula (or subformula) to which the β+-rule is (or
will be) applied.

E(pU q) ,A(FR¬q)

q,A(FR¬q) p,E E((p∧E(TU q))U q) ,A(FR¬q)

(EU)+

Figure 4: Application of rule (EU)+

Example 3.4. In Figure 4, the context of the eventuality E(pU q) in the root is the
formula A(FR¬q). The rule (EU)+ splits the tableau into two branches. In the right-
hand successor the middle formula EE((p∧ E(TU q))U q) contains the contextu-
alised variant of the eventuality E(pU q) that is constructed by the conjunction of p
and nnf(¬A(FR¬q)) = E(TU q) as new left-hand component of the until formula.
The effect is that along the future states (from the next one), while q is not satisfied, not
only p should be satisfied, but also the negation of the current context (i.e. E(TU q))
should be satisfied.

4. Systematic Tableau Construction

In this section we define a recursive algorithm, A sys, that constructs a fully ex-
panded systematic tableau for a given set of formulae Σ. Intuitively, ‘fully expanded’
means that we ‘complete’ the formation of the tableau in the sense that every expand-
able node has been already expanded. In §7 we explain how this algorithm, with more
parameters and results, returns a model when the resulting tableau is open or, other-
wise, a proof in the dual sequent calculus that corresponds with the closed tableau. We
first define all the main concepts involved in the algorithm.

A branch is a finite linear structure – formed by the successive nodes, from the root
to a leaf– inside the tree-shaped structure of the tableau. When the leaf of a branch has
occurred previously in the branch, it is called a loop-node, and the sequence of nodes
finitely represents an infinite loop branch. We will load the current branch by ‘stages’
instead of ‘node-by-node’ mode.

Definition 4.1 (Stage). Given a branch b of a tableau T , a stage in b is every maximal
subsequence of successive nodes ni,ni+1, . . . ,n j in b such that τ(nk) is not a (E)-
child or (A)-child of τ(nk−1), for all k such that i < k ≤ j. We denote by Stages(b)
the sequence of all stages of b. The successor relation on Stages(b) is induced by the
successor relation on b. The labelling function τ is extended to stages as the union of
the original τ applied to every node in a stage.

18

When the input is a satisfiable set of formulae, the systematic tableau aims to obtain
one loop-node since it represents a cycle in a cyclic Kripke structure that could be part
of a model of the input set of formulae.

Definition 4.2 (Loop-node). Let b = n0,n1, . . . ,ni (where i > 0) be a tableau branch
and Stages(b) = s0,s1, . . . ,sm (where m > 0 and ni ∈ sm). Then, ni is a loop-node if
there exists some 0 ≤ j < m such that τ(ni) ⊆ τ(s j). We say that s j is the companion
stage of the node ni and s j, . . . ,sm are the stages in the loop.

AA(FR¬q),EE(pU q)∧E¬q

AA(FR¬q),EE(pU q),E¬q

E(pU q),A(FR¬q) A(FR¬q),¬q

F∨AA(FR¬q),¬q

F,¬q AA(FR¬q),¬q

A(FR¬q)

(∧)

(E)

Closed Tableau (Figure 7) (AR)

(∨)

⊗ (A)

Figure 5: A closed tableau for {AA(FR¬q),EE(pU q)∧E¬q}.

Example 4.3. To illustrate the notions of stage and loop-node, let us consider the tree
(tableau) in Figure 5, which contains our running example as a sub-tree. Note that the
application of rule (E), at step 2, generates two AND-successors (AND-edges are
denoted with a big circle). The left successor is our running example and will be fully
expanded later (Figure 7). The right-most branch is formed by five nodes. This branch
has three stages, the first one is formed by the first two nodes, hence its label is the union
of their labels, i.e. the set {AA(FR¬q),EE(pU q)∧E¬q,EE(pU q),E¬q}.
The second stage in that branch is labeled by {A(FR¬q),¬q,AA(FR¬q)}. The last
node A(FR¬q) is a loop-node because it is included in the second stage, which is its
companion stage.

When a loop-node is found, the fulfilment of eventualities along the branch must be
ensured. When this fulfillment condition holds we say that the branch is eventuality-
covered. It is obvious that universal eventualities (AU or A) should be fulfilled in
all branches that go across the node where these eventualities appear, as reflected by
rules (Q). However, as a consequence of the distribution of existential formulae in
different branches performed by the rule (E), an existential eventuality (EU or E)
should be fulfilled only along the branch it belongs to after the (E) splitting, but not
in the other branches. Indeed, more than one existential eventuality could appear in the

19

stages of a tableau branch b, however not all of them should be fulfilled in b but, on the
contrary, some of them could be ‘delayed’ and then, by an application of rule (E),
could be ‘sent’ to a different tableau branch.

Example 4.4. For example, in Figure 5 after the splitting by (E) in two AND-
successors, the existential eventuality E(pU q) goes to the left subtree, hence it could
not be satisfied in the right subtree, where E¬q forces to satisfy ¬q.

Hence, the notion of eventuality coverage (in branches) differentiates existential even-
tualities from universal ones es explained above.

Definition 4.5 (Eventuality Fulfillment and Eventuality-covered Branch). Let b be
a tableau branch such that Stages(b) = s0, . . . ,sn. An eventuality Q(σ1U σ2) (resp.
Q(σ)) is fulfilled in the branch b if and only if σ2 ∈ τ(sk) (resp. σ ∈ τ(sk)) for
some 0 ≤ k ≤ n. The branch b is eventuality-covered if and only if the following two
conditions hold:

• Every eventuality AU or A that occurs at some stage of b is fulfilled in b.

• For every eventuality ϕ = E(σ1U σ2) (resp. ϕ = Eσ) that occurs in some
stage of b either ϕ is fulfilled in b or Eϕ ̸∈ sk for some 0 ≤ k ≤ n.

We only need to check the above two conditions for those eventualities that have
not been selected in the branch, because loops cannot contain an unfilled eventuality
that has been selected at some point.

In the next example we have a branch with two existential eventualities.

Example 4.6. Consider a branch of five nodes labelled by the following sets:

1. ¬p,¬q, Ep ,Eq

2. ¬p,¬q,E E((p∨q∨A¬q)U p) ,Eq

3. ¬p,¬q,E E((p∨q∨A¬q)U p) ,EEq

4. E((p∨q∨A¬q)U p)
5. p

This branch would be generated by successively applying the rules (E)+ to the se-
lected eventuality Ep in 1, (E) to eventuality Eq in 2, (E) in 3, and (E)+

in 4, and taking only one of the children at each step. This branch is eventuality cov-
ered, though Eq is not fulfilled in the branch. Indeed the application of the rule (E)
at item 3 generates two AND-branches and the other branch starts with node Eq.

Since (E)-children are AND-siblings, whenever one of them does not have a
possible model, the parent node is unsatisfiable. On the contrary, to ensure the sat-
isfiability of a node where (E) is applied it should have a collection of satisfiable
branches that includes all the (E)-successors of any node labelled by an elementary
set of formulae. These collections of branches are called bunches. Next, we define the
notion of a bunch and how bunches determine whether a tableau is open, closed and
fully expanded.

20

Definition 4.7 (Bunch, Closed Bunch and Closed Tableau). A bunch H is a collec-
tion of branches which is maximal with respect to (Q)-successors, i.e. every (A)-
successor and every (E)-successor of any node in H is also in H. A bunch H is closed
if and only if at least one of its branches is closed, otherwise it is open. A tableau is
closed if, and only if, all its bunches are closed.

Definition 4.8 (Fully Expanded Bunch and Tableau). A branch b is fully expanded
if and only if either b is closed (see Definition 3.1) or the last node in b is a loop-node
and b is eventuality-covered. A bunch is fully expanded if all its branches are fully
expanded. A tableau is fully expanded if all its bunches are fully expanded.

Example 4.9. The tableau in Figure 5 is closed in spite of the open sub-tableau at the
right (E)-successor of the second node. Any bunch in this tableau should include
at least one branch across the left node {E(pU q),A(FR¬q)} and at least one branch
across the right node {A(FR¬q),¬q}. Independently of the branch chosen in the right-
hand tree (the closed or the open one), any branch in the left-hand subtree is closed (the
details of the closed tableau for {E(pU q),A(FR¬q)} are given later). Therefore, any
bunch in the tableau of Figure 5 is closed.

Any open tableau has at least one open bunch, formed by one or more open branches.
Open branches are ended in a loop-node. Open bunches represent models, specifically
cyclic models as defined in Definition 2.7.

AA(pR¬q),E¬p∧E¬q

AA(pR¬q),E¬p,E¬q

A(pR¬q),¬p

¬q, p∨AA(pR¬q),¬p

¬q, p,¬p ¬q,AA(pR¬q),¬p

A(pR¬q)

A(pR¬q),¬q

p∨AA(pR¬q),¬q

p,¬q

/0

AA(pR¬q),¬q

A(pR¬q)

(∧)

(E)

(AR)

(∨)

⊗ (A)

(AR)

(∨)

(A) (A)

Figure 6: An open tableau for {AA(pR¬q),E¬p∧E¬q}.

Example 4.10. In Figure 6 we depict an open tableau that is a slight modification of
the closed tableau in Example 4.3 (Figure 5). This tableau has three open branches.
One open branch is crossing the left-hand (E)-child of the second node. Two open
branches cross the right-hand child of that node. Hence, there are two possible open
bunches, depending on which of the latter two branches we choose.

21

Next, we introduce the recursive Algorithm 1, called A sys, that constructs a fully
expanded systematic tableau for any input Σ and returns a Boolean value saying if such
tableau is closed. The current branch of the tableau construction is passed through the
recursive calls. We can see the branches as lists of stages, which in turn are lists of
formulae. Hence, in the first call the branch that receives A sys as input is [[Σ]]. We
illustrate the steps of the algorithm with details of the construction of the tableaux in
Figures 5, 6 and 7.

Algorithm 1: A sys

Input = Σ: set of formulae, b: Branch.
Output = is_closed: boolean, b′: Branch.

1 if Σ = /0 then
2 is_closed,b′ := FALSE, b;
3 else if Incons(Σ) then
4 is_closed,b′ := TRUE, b;
5 else if Σ ⊆ τ(s) for some stage s in b & Ev_Covered(b) then
6 is_closed,b′ := FALSE, b;
7 else if β+_is_applicable(Σ) then
8 select_eventuality(Σ) ;
9 is_closed,b′ := apply_β+_rule(Σ,b)

10 else if α_β_is_applicable(Σ) then
11 is_closed,b′ := apply_α_β_rule(Σ,b)
12 else // Σ is an elementary set
13 Let Σ = Φ,A(Ψ),Eσ1, . . . ,Eσk, Φ is a set of literals and k ≥ 0.
14 if k ≥ 1 then
15 Let Σi = Ψ,σi for all 1 ≤ i ≤ k;
16 n := k;
17 else
18 Σ1,n := Ψ,1
19 end
20 i, is_closed :=0, FALSE;
21 while is_closed = FALSE & i < n do
22 is_closed,b′ := A sys(Σi,b+[[Σi]]);
23 i := i+1 ;
24 end
25 end

Lines 1-6 gives the three non-recursive (or simple) cases of A sys. Lines 1-2 deal
with the case of the empty input which is trivially satisfiable. Note that by application
of the rule (A) when A is empty we could get this case. Indeed, this is a special case
of loop-node labelled by the empty set, whose companion is itself. In Figure 6 there is
a node {p,¬q} where (A) is applied and the loop on the empty set is produced. Lines
3-4 deal with the terminal nodes by inconsistency. For example, the four terminal nodes
in Figure 7 correspond to this case. Three of their labels contain q,¬q or F or both. The

22

fourth (right-most) terminal node contains the inconsistent set {E(TU q),A(FR¬q)}.
In line 5, Algorithm 1 detects a ‘good loop’. An example of this is the last node in

the right-most branch in Figure 5.
Otherwise, there is either a ‘bad loop’ (i.e. a loop in a non-eventuality-covered

branch) or not a loop, and the algorithm tries to apply (if possible) a β+ rule to some
selected eventuality. This is the goal of lines 7-9.

E(pU q) ,A(FR¬q)

q,A(FR¬q)

q,¬q,F∨AA(FR¬q) p,E E((p∧E(TU q))U q) ,A(FR¬q)

p,E E((p∧E(TU q))U q) ,¬q,F∨AA(FR¬q)

p,E E((p∧E(TU q))U q) ,¬q,F

p,E E((p∧E(TU q))U q) ,¬q,AA(FR¬q)

E((p∧E(TU q))U q) ,A(FR¬q)

q,A(FR¬q)

q,¬q,F∨AA(FR¬q)

p∧E(TU q),E E((p∧E(TU q))U q) ,A(FR¬q)

p,E(TU q),E E((p∧E(TU q))U q) ,A(FR¬q)

(EU)+

(AR)

⊗
(AR)

(∨)

⊗

(E)

(EU)+

(AR)

⊗

(∧)

⊗

Figure 7: A closed tableau for {E(pU q),A(FR¬q)}

Line 7 stands for the first checked case whenever some tableau rule must be applied
to Σ. The rules α,β could really be applied in any order. However, next-state rules can
only be applied to elementary sets of formulas. For generating simplest contextualised
variants, we just prioritised the application of the β+-rules. Note that at each stage
at most one eventuality can be selected, and at most one β+ rule is applied. More
precisely, the call select_eventuality(Σ) selects an unfulfilled eventuality to force its
fulfilment by application of the corresponding β+-rule. Since β+-rules keep the con-
textualised variant as selected, the predicate call β+_is_applicable(Σ) gives true if and
only if either there is already a selected eventuality QU ∈ Σ or else, both of the fol-

23

lowing hold: there exists a not selected QQU ∈ Σ and there exists a (non-fulfilled)
eventuality to be selected. In the former case, select_eventuality(Σ) keeps the selec-
tion. In the latter case, it does perform a selection.

Example 4.11. For example, in Figure 7 the eventuality E(pU q) is selected in the
root, and its contextualised variant E((p ∧ E(TU q))U q) is kept selected along the
right-most branch.

The application of a specific β or a β+ rule R, inside the calls of the procedures
apply_β+_rule(Σ,b) or apply_α_β_rule(Σ,b), produces two R-children, namely Σ1
and Σ2, that are OR-siblings. Hence, in these cases, lines 9 and 11, first do the re-
cursive call is_closed,b′ := A sys(Σ1,b1). Then, only if is_closed is true, do the call
is_closed,b′ := A sys(Σ2,b2). The above branches b1 and b2 stand for the adequate
actualisation according to Σ1 and Σ2. As an example, in Algorithm 2, we provide the
details for applying the rule (EU)+ to input Σ,E(σ1U σ2). Note that branches are
conveniently updated in recursive calls. In fact, function update(b,Σ) adds to the last
stage of b the formulae in Σ that previously did not occur in that stage.

Algorithm 2: Apply (EU)+ to Φ = Σ,E(σ1U σ2).

1 Σ := Φ\{E(σ1U σ2)};
2 is_closed,b′ := A sys(Σ1,b1) where Σ1 = Σ∪{σ2} and b1 = update(b,Σ1);
3 if is_closed = TRUE then
4 is_closed,b′ := A sys(Σ2,b2) where Σ2 = Σ∪{σ1,E((σ1∧ ∼Σ′)U σ2)}
5 and b2 = update(b,Σ2);
6 end

Example 4.12. In the tableau of Figure 7, the first application of (EU)+ to the root
node, calls A sys(Σ1,b) for Σ1 = {q,A(FR¬q)} which returns true in is_closed after
the construction of the left-most sub-tree. Then, the call A sys(Σ2,b) where Σ2 contains
the contextualised variant, constructs the right sub-tree to return also true. Hence,
the whole tableau is closed. Note that, in Figure 7, there is a second call to apply
(EU)+ that works in a similar way. At this second application the selected eventuality
E((p∧ (E(TU q))U q), which is kept selected from the previous nodes in the branch,
has the same context that at the first application. Therefore, as we simplify ϕ ∧ϕ to ϕ ,
the contextualised variant for the next step becomes unchanged.

For each rule that splits branches (i.e. β or β+) there is an application algorithm
similar to Algorithm 2. For the α-rules, that enlarge the branch with one node, a
recursive call to A sys on the only one child suffices.

In line 10, the algorithm checks and applies applicable α- or β -rules. When no α-
or β -rules are applicable, it means that Σ is an elementary set of formulae (line 12).
Therefore, in lines 13-23, the rule (E) or (A) is applied, by iterating recursive calls
to A sys(Σi,b+ [[Σi]]) for each child labelled by Σi. Note that, each application of a
tableau rule (Q) produces a recursive call for a (Q)-child Σi, where the current
branch b is actualised to include a new stage containing just Σi (this is expressed in
the algorithm by b+[[Σi]]). Let us also observe that (E)-children are AND-siblings,

24

hence the iteration on the (E)-children terminates as soon as one of them is closed.
On the contrary, if every (E)-child is open the tableau should have a collection of
open branches including all the (E)-successors of any node labelled by an elementary
set of formulae, i.e. and open bunch. Any open bunch of the systematic tableau,
constructed by the algorithm A sys introduced in this section, enables the construction
of a model for the initial set of formulae.

Example 4.13. For example, in Figure 5, if the left-most sub-tableau (i.e. the closed
tableau in the figure) is firstly constructed, then its right-hand child would not be con-
structed, since any bunch would be necessarily closed (see Example 4.3). In Example
4.10 we show an open tableau that contains two open bunches.

Example 4.14. The call A sys with input Σ = {E(pU q),A(FR¬q)} constructs the
closed tableau in Figure 7 as explained along this section. A tableau for the same in-
put Σ is also exhibited in [1, 22]. Note the direct correspondence between our context-
based tableau (Figure 7) and the one in [1, 22] – they have exactly the same nodes. The
right-most branch, in our case, closes by (syntactical) inconsistency, likewise all the
other branches. The difference is that, in this branch, the inconsistency comes from the
use of the context in the selected eventuality. The corresponding branch in the tableau
in [1, 22] is closed by the detection of a “bad loop" using information loaded during
the construction of the previously constructed branches.

Let us recall that in [7] some (subsumption-like) simplification rules were intro-
duced to ensure the termination of the tableau method for the logic ECTL#. The method
for CTL (and also for ECTL) requires the following simplification rule:

(<QU) {Q((σ1 ∧χ)U σ2),Q(σ1U σ2)} −→ {Q((σ1 ∧χ)U σ2)} (8)

By means of this rule, any contextualised variant of an eventuality ϕ subsumes the
original eventuality ϕ that could repeatedly appear otherwise. Our algorithm system-
atically performs these simplifications in nodes.

To complete this section, we provide an example of systematic tableau construc-
tion involving a universal eventuality A where bunches should cross along the two
applications of (E).

Example 4.15. Figure 8 presents a closed fully-expanded tableau for the unsatisfiable
set of formulae {p,AEp,AE¬p,A¬p}. The systematic construction starts
by selecting the unique eventuality and applying the rule (A)+. The successive con-
textualised variants of this eventuality are kept selected and the rule (AU)+ is applied
to them after each application of the next-state rule (E). The rules (A) and (∧)
are applied to reach the elementary sets where (E) is applied. For saving space, we
sometimes represent two applications of the rule (A) in the same step.

It is worth noting that, in spite of the two open branches (see the two loops in Fig-
ure 8), every bunch in the figure is closed. Indeed, any bunch should contain branches
for crossing the four (E)-nodes (underlined in Figure 8). It is easy to see that any
bunch contains at least one closed branch. The “bad loop detection approach" ([1, 22])
would create a "bad loop" branch similar to the largest branch of our tableau in which
p is satisfied. For that, the information of the other branches (where p is satisfied)
should be used.

25

p,AE¬p,AEp, A¬p

p,AE¬p,AEp,¬p p,AE¬p,AEp,A A(¬pU ¬p)

p,E¬p,Ep,AAE¬p,AAEp,A A(¬pU ¬p)

¬p,AE¬p,AEp, A(¬pU ¬p)

¬p,AE¬p,AEp

¬p,AE¬p,AEp,A A((¬p∧ p)U ¬p)

¬p,E¬p,Ep,AAE¬p,AAEp,A A((¬p∧ p)U ¬p)

¬p,AE¬p,AEp, A((¬p∧ p)U ¬p)

¬p,AE¬p,AEp

¬p,AE¬p,AEp,¬p∧ p,A A((¬p∧ p)U ¬p)

¬p,AE¬p,AEp, p,A A((¬p∧ p)U ¬p)

p,AE¬p,AEp, A((¬p∧ p)U ¬p)

p,AE¬p,AEp,¬p

p,AE¬p,AEp,(¬p∧ p),A A((¬p∧ p)U ¬p)

p,AE¬p,AEp,¬p,A A((¬p∧ p)U ¬p)

p,AE¬p,AEp, A(¬pU ¬p)

p,AE¬pAEp,¬p

p,AE¬p,AEp,¬p,A A(¬pU ¬p)

(A)+

⊗
(A)+(A)

(E)

(AU)+

(A)+(A)

(E)

(AU)+

(∧)

⊗

(AU)+

⊗

(∧)

⊗

(AU)+

⊗

⊗

Figure 8: A closed tableau for {p,AEp,AE¬p,A¬p}.

5. Soundness and Completeness

The logics CTL and ECTL are sublogics of ECTL# and the tableau method pre-
sented here is the adaptation of the method in [7]. In this section we essentially adapt
to CTL the soundness and completeness proofs developed in [7]. In §8 we extend both
results to ECTL. To prove the soundness of the tableau method for CTL (Theorem 5.2),
we show that every tableau rule in Figures 1, 2 and 3 preserves satisfiability in the sense
of the next Lemma 5.1.

Lemma 5.1 (Soundness of the Tableau Rules for CTL). Consider all the rules in Fig-
ures 1, and 2 and 3.

1. For any α-rule of the form
Σ

Σ1
, we have Sat(Σ) if and only if Sat(Σ1).

2. For any β -rule and any β+-rule of the form
Σ

Σ1 | Σ2
, we have Sat(Σ) if and only

if Sat(Σ1) or Sat(Σ2).

26

3. If Σ is a consistent set of literals, then
(a) Sat(Σ,∪{Aσ1, . . . ,Aσℓ,Eσ ′

1, . . . ,Eσ ′
k}) if and only if

Sat({σ1, . . . ,σℓ,σ
′
i }) for all 1 ≤ i ≤ k.

(b) Sat(Σ∪{Aσ1, . . . ,Aσℓ}) if and only if Sat({σ1, . . . ,σℓ}).

Proof. All these statements follow very easily from the ‘systematic’ application of the
semantic definitions of the temporal modalities, except the ‘if’ direction‘ for the β+-
rules. Next we prove the ‘if’ direction of the rules (QU)+ for Q = E and Q = A,
because this proof entails the proof for the rules (Q)+ as particular cases (using the
abbreviationσ = TU σ).

For the ‘if’ direction of the rule (EU)+, let K |=Σ,E(σ1U σ2) and let x be the path
in K such that K ,x |= Σ,σ1U σ2. Then, let j be the least i ≥ 0 such that K ,x, i |= σ2.
If j = 0, then K ,x,0 |= Σ,σ2. Otherwise, if j > 0 then K ,x,m |= σ1, for all 0≤m< j.
Consider k to be the greatest of those m such that K ,x,m |= Σ. Hence, K ,x,h |=∼Σ,
for all h such that k+1 ≤ h < j. In particular, by definition of Σ′ (obtained from Σ) it
is easy to see that K ,x,h |= σ for every σ ∈ (Σ \Σ′). Therefore, K ,x,h |=∼Σ′, for
all h such that k+1 ≤ h < j. Consequently,

K ,x,k |= Σ,σ1,EE((σ1∧ ∼Σ
′)U σ2).

For the ‘if’ direction of rule (AU)+, let us suppose that

UnSat(Σ∪{σ2}) and UnSat(Σ∪{σ1,AA((σ1∧ ∼Σ′)U σ2)}).

We will show that UnSat(Σ∪{A(σ1U σ2)}). For that, let us consider any arbitrary
K such that K |= Σ to show that K ̸|= A(σ1U σ2). By the above unsatisfiability
hypothesis, if K |= Σ, then both K ̸|= σ2 and K ̸|= σ1 ∧AA((σ1∧ ∼Σ′)U σ2).
Then, there are two possible cases. First, if K |= ¬σ1 ∧¬σ2, then it is obvious that
K ̸|= A(σ1U σ2). Second, if K |= ¬σ2 ∧¬AA((σ1∧ ∼Σ′)U σ2), then there ex-
ists x1 ∈ fullpaths(K) and i1 > 0 that satisfy both K ,x1, j |= ¬σ2 for all j such that
0 ≤ j ≤ i1, and K ,x1, i1 |= ¬σ1 ∨Σ′. Since all the formulae in Σ\Σ′ are satisfied in all
states along all paths, indeed K ,x1, i1 |= ¬σ1 ∨Σ. Therefore, if K ,x1, i1 |= ¬σ1, then
obviously K ̸|= A(σ1U σ2). Otherwise, if K ,x1, i1 |= Σ, applying the same reasoning
for K ↾ x1(i1) as we did above for K , we can conclude that there should be a path
x2 ∈ fullpaths(K ↾x1(i1)) and some i2 > 0 such that either K ↾x1(i1),x2, j |= ¬σ2 for
all j such that i1 ≤ j ≤ i2 and K ↾x1(i1),x2, i2 |=¬σ1∨Σ. Hence, if K ↾x1(i1),x2, i1 |=
¬σ1, then trivially K ̸|= A(σ1U σ2). Otherwise, K ↾x1(i1),x2, i1 |= Σ. Hence, there
are two possible scenarios: 1.) After a finite number of iterations we get a path
y = x<i1

1 ,x<i2
2 , · · · ,x<ik

k · · · such that K ,y, j |= ¬σ2 for all j such that 0 ≤ j ≤ ik and
K ,y, ik |= ¬σ1. 2.) The infinite iteration of the second case yields a path y =

x<i1
1 ,x<i2

2 , · · · ,x<ik
k , · · · (that exists by the limit closure property) such that K ,y, i |=¬σ2

for all i ≥ 0. In both scenarios we have K ̸|= A(σ1U σ2) holds for any arbitrary K
that satisfies Σ. Thus, UnSat(Σ∪{A(σ1U σ2)}).

According to Lemma 5.1 and the definition of the closed tableau, we prove the
following result.

Theorem 5.2 (Soundness of the Tableau Method for CTL). Given any set of state
formulae Σ, if there exists a closed tableau for Σ then UnSat(Σ).

27

Proof. In a closed tableau for Σ, at least one leaf in each bunch must have an incon-
sistent set of formulae that labels it. Therefore, this set is unsatisfiable. Then, by (the
converse of) Lemma 5.1, the label of the root node, Σ, is unsatisfiable.

Next, we prove the refutational completeness of the tableau method for CTL (The-
orem 5.7). For that, we firstly define the notion of a saturated stage and prove some
auxiliary properties of the stages and bunches of the systematic tableau. These proper-
ties are necessary to prove that every open bunch in the systematic tableau represents a
model of the initial set of formulae Σ (Lemma 5.6).

Definition 5.3 (αβ+-saturated Stage). We say that a stage s= ni, . . . ,n j in the tableau
A sys for Σ is αβ+-saturated if and only if it satisfies the following conditions:

1. For all σ1 ∧σ2 ∈ τ(s): {σ1,σ2} ⊆ τ(s).

2. For all Qσ ∈ τ(s): {σ ,QQσ} ⊆ τ(s).

3. For all σ1 ∨σ2 ∈ τ(s): σ1 ∈ τ(s) or σ2 ∈ τ(s).

4. For all Q(σ1Rσ2) ∈ τ(s) : {σ2,σ1 ∨QQ(σ1Rσ2)} ⊆ τ(s).

5. For all Q(σ1U σ2) ∈ τ(s): σ2 ∈ τ(s) or {σ1,QQ(σ1U σ2)} ⊆ τ(s) or
{σ1,QQ((σ1∧ ∼Σ′)U σ2)} ⊆ τ(s), where
Σ′ = (τ(ni)\{Q(σ1U σ2)})\{(A)iAϕ | i ≥ 0 and (A)iAϕ ∈ τ(ni)}.

6. For all Q(σ) ∈ τ(s) : σ ∈ τ(s) or {QQ(σ)} ⊆ τ(s) or
{QQ((∼Σ′)U σ)} ⊆ τ(s), where
Σ′ = (τ(ni)\{Qσ})\{(A)iAϕ | i ≥ 0 and (A)iAϕ ∈ τ(ni)}.

The construction of the systematic tableau applies exactly one β+-rule to exactly
one selected eventuality (if any) at the first node of the stage, and then applies exhaus-
tively all the applicable α- and β -rules to the formulae in the stage, until the branch
closes, or its leaf is labelled by an elementary set, or it contains a loop-node. Conse-
quently, the following result can be trivially proved by construction.

Proposition 5.4. Given any set of state formulae Σ, the systematic tableau A sys for Σ

is fully expanded.

Proof. It is trivial, by construction, that every stage in A sys is αβ+-saturated.

Next we prove a crucial property of the systematic tableau management of eventu-
alities by means of the selection policy.

Proposition 5.5. Let b be an open branch of the tableau A sys for Σ.

1. If a formula Q(σ1U σ2) is selected at some stage si ∈ Stages(b), then there exists
some stage sk ∈ Stages(b) (for some k ≥ i) such that σ2 ∈ τ(sk) and σ1 ∈ τ(s j)
for all j ∈ {i, . . . ,k−1}.

2. If a formula Q(σ) is selected at some stage si ∈ Stages(b), then there exists
some stage sk ∈ Stages(b) (for some k ≥ i) such that σ ∈ τ(sk).

28

Proof. We will prove item 1. Item 2 is the particular case where σ1 = T and σ2 = σ .
If Q(σ1U σ2) is the selected formula at stage si ∈ Stages(b), by algorithm 1, the set
labelling the first node at each stage s j (j ≥ i) of b has the form

Σs j ,Q((σ1 ∧ (∼Σsi ∧·· ·∧ ∼Σs j−1))U σ2)

where each Σs j is the context of the selected formula containing the contextualised vari-
ant of Q(σ1U σ2) at the first node of each stage s j. Since no other β+-rule is applied
each Σs j is a subset of the finite set formed by all state formulae that are subformulae
of some formula in Σsi and their negations. Hence, there are a finite number of dif-
ferent Σs j . Therefore, after finitely many applications of the β+-rule, Σsh = Σs j , for
some h >= i, for some j ∈ {i, . . . ,h− 1}, and σ1 ∧ (∼Σsi ∧ ·· ·∧ ∼Σsh−1) ∈ τ(sh). In
particular, ∼Σsh ∈ τ(sh), hence, Σsh must be inconsistent. Since b is open, this is a
contradiction. This means that, for some k ≥ i the application of the corresponding
β+-rule should force that σ2 ∈ τ(sk). In addition, by Proposition 5.4 and Definition
5.3(5), σ1 ∈ τ(s j) for all j ∈ {i, . . . ,k−1}.

Lemma 5.6 (Model Existence). Let Σ be any set of formulae. For any fully expanded
bunch H of the tableau A sys for Σ, there exists a Kripke structure KH such that
KH |= Σ.

Proof. Let H be any fully expanded bunch of A sys. We define KH = (S,R,L) such that
S =

⋃
b∈H Stages(b) and for any s ∈ S: L(s) = {p | p ∈ τ(n)∩Prop for some node n ∈

s}. R is the relation induced in Stages(b) for each b ∈ H. Any branch in b ∈ H is
open, hence b ends in a loop-node. Moreover, every eventuality has been selected in
some stage of b. Therefore, there exists a (possibly empty) set Σℓ such that for some
i ≥ 0: b = s0,s1, . . . ,si−1,si,si+1, . . . ,s j,nℓ, where each sh stands for a stage and nℓ is
a non-expandable loop-node labelled by Σℓ whose companion node is the first node at
stage si. We are going to prove the following fact:

KH ,sa,0 |= σ for any a ∈ {0, . . . , j} and any formula σ in L(sa)

by structural induction on the formula σ .
The base of the induction, for σ = p ∈ Prop, follows by definition of KH . The

cases where σ has one of the forms σ1 ∧σ2, Qσ , σ1 ∨σ2 and Q(σ1Rσ2) are trivial
by Definition 5.3 and the induction hypothesis. Hence, to complete the inductive proof
we will show that KH ,sa,0 |=Q(σ1U σ2) for any Q(σ1U σ2)∈ L(sa). The case for all
Qσ ∈ L(sa) follows as a particular case byσ ≡ TU σ . Consider any Q(σ1U σ2)∈
L(sa). Since b is eventuality-covered and nℓ is a loop-node, Q(σ1U σ2) must be the
selected eventuality at some node between the states sa and s j. Hence, by Proposition
5.5 and the definition of KH , there should be a state sk ∈ S (for some a ≤ k ≤ j)
such that σ2 ∈ L(sk) and σ1 ∈ L(sz) for all z ∈ {a, . . . ,k − 1}. Then, by induction
hypothesis, KH ,sk,0 |= σ2 and KH ,sz,0 |= σ1 for all z ∈ {a, . . . ,k − 1}. Therefore,
KH ,sa,0 |= Q(σ1U σ2).

To complete the proof, we show that the successor relation between states in KH is
well-defined. For that, consider any tableau node in any stage sa that is labelled by an
elementary set

{Σ,Aσ1, . . . ,Aσn,Eσ
′
1, . . . ,Eσ

′
k}

29

where Σ is a consistent set of literals, by rule (E), sa has (in KH) a successor state
si

a+1, for each i ∈ {1, . . . ,k}, such that L(si
a+1) = {σ1, . . . ,σn,σ

′
i }. We can assume

(by the above proved fact) that KH ,si
a+1,0 |= {σ1, . . . ,σn,σ

′
i } for all i ∈ {1, . . . ,k}.

Therefore, we can infer that KH ,sa,0 |= {Σ,Aσ1, . . . ,Aσn,Eσ ′
1, . . . ,Eσ ′

k}.

Next, we prove the refutational completeness of the tableau method.

Theorem 5.7 (Refutational Completeness for CTL). For any set of state formulae Σ, if
UnSat(Σ) then there exists a closed tableau for Σ.

Proof. Suppose the contrary, i.e. there exists no closed tableau for Σ. Then the sys-
tematic tableau A sys for Σ is open. Hence, there is at least one fully expanded bunch
H in A sys. By Lemma 5.6, there exists a Kripke structure KH such that KH |= Σ.
Consequently, Sat(Σ).

Finally, we prove the completeness of our tableau method for CTL, and the first
step here is to show that the method terminates.

Theorem 5.8 (Termination of the Tableau Method for CTL). For any set of state for-
mulae Σ, the construction of the fully expanded tableau A sys for Σ terminates.

Proof. Tableau rules produce a finite branching, hence König’s Lemma, applies. There-
fore, it suffices to prove that every branch is finite. By Proposition 5.5, the application
of a β+-rule to a selected formula stops after a finite number of steps. Since the number
of selectable eventualities in any open branch is finite, any open branch is eventuality-
covered after a finite number of eventuality selections. Recall that we assume the even-
tuality selection strategy to be fair.

Theorem 5.9 (Completeness of the Tableau Method for CTL). For any set of state
formulae Σ, if Σ is satisfiable then there exists a (finite) open fully expanded tableau
for Σ.

Proof. By Theorems 5.2 and 5.8, and the fact that the fully expanded systematic tableau
A sys for Σ is finite and cannot be closed.

6. The Dual Sequent Calculus for CTL

In this section we introduce a sequent calculus for CTL, called C⊢, that is dual to the
tableau method presented in previous sections. Indeed, the sequent calculus, given in
Figure 9, is simply a reformulation of the tableau rules as a one-sided sequent calculus,
the right-hand side of every sequent is the constant F.

The calculus C⊢ contains classical rules, such as (∧) and (∨) for Booleans, and
(Ctd) and (F) for contradictions. The last two rules correspond to the branch closing
conditions of the tableau method and they are premise-free, while all the other rules
have at least one premise.

30

(∧) Σ,σ1,σ2 ⊢ F

Σ,σ1 ∧σ2 ⊢ F
(∨) Σ,σ1 ⊢ F | Σ,σ2 ⊢ F

Σ,σ1 ∨σ2 ⊢ F
(Ctd)

Σ,σ ,∼σ ⊢ F
(F)

Σ,F ⊢ F

(QR)
Σ,σ2,σ1 ∨QQ(σ1Rσ2) ⊢ F

Σ,Q(σ1Rσ2) ⊢ F
(Q)

Σ,σ ,QQσ ⊢ F

Σ,Qσ ⊢ F

(QU)
Σ,σ2 ⊢ F Σ,σ1,QQ(σ1U σ2) ⊢ F

Σ,σ1U σ2 ⊢ F
(Q)

Σ,σ ⊢ F Σ,QQσ ⊢ F

Σ,Qσ ⊢ F

(QU)+
Σ,σ2 ⊢ F Σ,σ1,QQ((σ1∧ ∼Σ′)U σ2) ⊢ F

Σ,Q(σ1U σ2) ⊢ F

(Q)+
Σ,σ ⊢ F Σ,QQ((∼Σ′)U σ) ⊢ F

Σ,Qσ ⊢ F

(E)
Σ,σ ⊢ F

Σ0,AΣ,Eσ ⊢ F
(A)

Σ ⊢ F

Σ0,AΣ ⊢ F

Figure 9: The Sequent Calculus for C⊢.
In (QU)+ and (Q)+, Σ′ = Σ\{(A)iAσ ∈ Σ | i ≥ 0}. In (E) and (A), Σ0 is a set of literals.

In the rules (QR),(Q),(QU),(Q),(QU)+, and (Q)+, the symbol Q again
denotes either of the path quantifiers, E or A. Therefore, each of these rules stands
for a pair of analogous rules for each path quantifier, which correspond directly to the
tableau rules of the same name.

Note that the children of an elementary set with more than one formula starting by
E are AND-siblings, so that in the calculus it is enough to refute one of this AND-
children. This corresponds to the tableau notion of a closed bunch (Definition 4.7).

The soundness and completeness of C⊢ easily follows from its duality with the
tableau method for CTL presented in the previous sections.

Theorem 6.1 (Soundness). For any set of CTL formulae Σ, if there exists a sequent
proof of Σ ⊢ F, then UnSat(Σ).

Proof. By induction on the length of the sequent calculus proof, it suffices to prove
that every sequent rule is correct in the sense that if the set of formulae in the left-
hand-side of each premise is unsatisfiable then the set of formulae of the conclusion is
unsatisfiable. For the rules (Ctd) and (F) is trivial. For the rest of the sequent rules the
proof is similar to the proofs of the analogous tableaux rules in Lemma 5.1.

Theorem 6.2 (Completeness). For any set of CTL formulae Σ, if UnSat(Σ), then there
exists a sequent proof of Σ ⊢ F.

Proof. If UnSat(Σ), then the tableau A sys for Σ is fully expanded and closed. Each leaf
of A sys corresponds to an axiom obtained by application of the sequent rule (Ctd) or
(F). A sequent proof of Σ ⊢ F is obtained from axioms by an application of the sequent
rule corresponding to a tableau rule in the construction of A sys.

31

Example 6.3. In Figure 10, we show the sequent proof that corresponds to the closed
tableau in Figure 7.

(Ctd)

q,¬q,F∨AA(FR¬q)) ⊢ F
(AR)

q,A(FR¬q) ⊢ F

(F)

p,ψ,¬q,F ⊢ F

See Figure 11

p,ψ,¬q,AA(FR¬q) ⊢ F
(∨)

p,ψ,¬q,F∨AA(FR¬q) ⊢ F
(AR)

p,EE((p∧E(TU q))U q)︸ ︷︷ ︸
ψ

,A(FR¬q) ⊢ F

(EU)+

E(pU q),A(FR¬q) ⊢ F

Figure 10: Sequent proof for {E(pU q),A(FR¬q)}.

(Ctd)

q,¬q,F∨AA(FR¬q) ⊢ F
(AR)

q,A(FR¬q) ⊢ F

(Ctd)

p,E(TU q),ψ,A(FR¬q) ⊢ F
(∧)

p∧E(TU q),ψ,A(FR¬q) ⊢ F
(EU +)

E((p∧E(TU q))U q),A(FR¬q) ⊢ F
(E)

p,ψ,¬q,AA(FR¬q) ⊢ F

Figure 11: Sequent proof for {p,ψ,¬q,AA(FR¬q)} where ψ = EE((p∧E(TU q))U q).

7. MomoCTL: Implementation and Experimentation

In this section we describe our implementation of the context-based tableau for
CTL, called MomoCTL, and also compare its performance results with Gore’s CTL-
prover [1, 22], called TreeTab. The benchmarks used were presented in [23] and they
are available in http://users.cecs.anu.edu.au/~rpg/CTLComparisonBenchmarks/.

7.1. Implementation

Recall that our aim was to develop deductive techniques for branching-time logics
with a reasoning mechanism capable of providing both certificates and counterexam-
ples. Thus, we have implemented a prototype that, given a set of formulae Σ as input,
decides whether Σ is satisfiable or unsatisfiable and returns either a Kripke structure
that certifies the satisfiability of Σ or a sequent calculus proof that refutes Σ.

First we extend the algorithm A sys (see Algorithm 1) to E (see Algorithm 3), so
that depending on the value of is_closed, E is able to return either a proof or a model,
but not both.

We can easily construct a model from an open tableau. Models are represented as
trees. Each branch of the tree corresponds to a branch of the open tableau, which ends

32

Algorithm 3: E
Input = Σ: set of formulae, b: Branch, P: Proof, M: Model.
Output = is_closed: boolean, b′: Branch, P’: Proof, M’: Model.

1 if Σ = /0 then
2 is_closed,b′ := FALSE, b;
3 M′ := EmptyLea f _Model;
4 else if (F) applies to Σ then
5 is_closed,b′ := TRUE, b;
6 P′ := Proo f Lea f ((F),Σ);
7 else if (Ctd) applies to Σ then
8 is_closed,b′ := TRUE, b;
9 P′ := Proo f Lea f ((Ctd),Σ);

10 else if Σ ⊆ τ(s) for some stage s in b & Ev_Covered(b) then
11 is_closed,b′ := FALSE, b;
12 M′ := ModelLea f (s,b);
13 else if β+_is_applicable(Σ) then
14 select_eventuality(Σ) ;
15 is_closed,b′,P′,M′ := apply_β+_rule(Σ,b,P,M)

16 else if α_β_is_applicable(Σ) then
17 is_closed,b′,P′,M′ := apply_α_β_rule(Σ,b,P,M)
18 else // Σ is an elementary set
19 Let Σ = Φ,A(Ψ),Eσ1, . . . ,Eσk where k ≥ 0;
20 if k ≥ 1 then
21 Let Σi = Ψ,σi for all 1 ≤ i ≤ k ;
22 n := k;
23 else
24 Σ1,n := Ψ,1
25 end
26 i, is_closed :=0, FALSE;
27 ListModels := EmptyList ;
28 while is_closed = FALSE & i < n do
29 i := i+1 ;
30 is_closed,b′,Pi,Mi := E (Σi,b+[[Σi]],P,M);
31 if is_closed = FALSE then add(Mi,ListModels);
32 end
33 if is_closed = TRUE then
34 if k = 0 then P′ := Proo f Node((A),Σ, [Pi]) ;
35 else P′ := Proo f Node((E),Σ, [Pi]) ;
36 else
37 M′ := ModelNode(Atoms(Σ),ListModels)
38 end
39 end

33

with a leaf pointing to some ancestor in the branch. Each non-leaf node in a branch of
the tree is the set of atoms appearing in one of the stages of the corresponding branch
in the tableau. Example 7.1 displays the model returned by E when executed over a set
of formulae.

The representation of a proof is also a tree whose nodes are steps of the proof.
Thus, each leaf contains the inconsistent sequent and the name of the premise-free rule
(Ctd) or (F) that applies to it. Non-leaf nodes contain the sequent Σ and the name of the
rule (R) that applies to prove that Σ ⊢ F. Its children contain the proofs of the subgoals
that result from applying (R) to Σ ⊢ F. In the initial call to algorithm E , the proof and
the model are both empty, therefore to decide the satisfiability of a set Σ and generate
a proof or a model, we call E (Σ, [[Σ]],EmptyProo f ,EmptyModel). Note also that the
branch contains just one stage that consists of Σ.

Lines 1-12 are the non-recursive cases. In line 3, the algorithm returns a model
of the empty set of formulae, which is a linear model that consists of an empty state
(every atom is false in it) that is infinitely repeated. In lines 6 and 9, it returns just one
sequent which is a proof by one of the premise-free rules (F) and (Ctd), respectively.
In line 10, the algorithm detects that Σ gets an eventuality-covered loop at the stage s in
the current branch b. Therefore, the algorithm creates a branch of the potential model
with the atoms that are loaded (as formulae) at each stage of b from s to the current
node. This branch terminates by a leaf which is just a pointer to stage s.

Recursive constructions of proofs and models, are performed in lines 15, 17 and
26-36 of Algorithm 3.

Algorithm 4: Apply (EU)+ to Φ = Σ,E(σ1U σ2) that returns a proof, when
it exists.
1 Σ := Φ\{E(σ1U σ2)};
2 is_closed,b′,P1,M′ := E (Σ1,b1,P,M) where
3 Σ1 = Σ∪{σ2} and b1 = update(b,Σ1);
4 if is_closed = TRUE then
5 is_closed,b′,P2,M′ = E (Σ2,b2,P,M) where
6 Σ2 = Σ∪{σ1,E((σ1∧ ∼Σ′)U σ2)} and
7 b2 = update(b,Σ2);
8 if is_closed = TRUE then
9 P′ := Proo f Node((EU)+,Σ, [P1,P2]);

10 end
11 end

The calls to apply_β+_rule and apply_α_β_rule apply the corresponding rule
to a designated formula in the node label, and recursively call E with the children
produced by the applied rule. For example, see Algorithm 4, to apply the β+-rule
(EU)+ to Φ = Σ,E(σ1U σ2). The procedure E is called on parameters Σ1 = Σ∪{σ2},
the extended branch b1, with the proof P, and the model M. Both P and M where
the parameters of the call apply_β+_rule(Σ,b,P,M) (in line 15). If this recursive call
returns in is_closed the value true, E is called with Σ2 = Σ∪{σ1,E((σ1∧∼Σ′)U σ2)}
and the value of this call is assigned to is_closed.

34

The recursive calls for Σ1 and Σ2 also construct either a proof or a model depending
on the value of is_closed. When both calls report that is_closed is true, then P1 contains
a proof for the sequent Σ1 and P2 contains a proof for the sequent Σ2, then Algorithm 4
(line 9) returns in P′ a proof for Σ whose last step is the application of the rule (EU)+

to the sequents proved by P1 and P2. Consequently, when at least one of the two calls
(for Σ1 and Σ2) reports that the tableau is not closed, the tableau for Σ is open and
Algorithm 4 returns the model M′.

The application of α , β and β+ rules does not construct models, they only load
atoms in stages that will be collected and structured according to the application of the
next-state rules when a cycle is detected. In lines 26-36 of Algorithm 3, one next-state
rule is applied to an elementary set Σ with a number k ≥ 0 of formulae Eσi. If k = 0
then n := 1 and, depending on the value of is_closed for the only recursive call, the
algorithm constructs a proof for Σ from the returned proof P1 of Σ1 whose last step
is the application of the rule (A). Otherwise, if k > 0, then n := k and there is a
recursive call for each AND-child of Σ, namely Σ1, . . . ,Σn. If some of these calls for Σi
returns in is_closed the value true, then it also returns in Pi a proof for Σi. Therefore
it constructs in P′ a proof for Σ that applies the rule (A). Otherwise, it collects a
list a models M1, . . . ,Mn, one for each of the n ≥ 1 calls with respective parameters
Σ1, . . . ,Σn. Note that each call returns that is_closed is false. Then, this list of n ≥ 1
models is used to compose a model of Σ whose root contains the atoms of Σ and this
root has n children M1, . . . ,Mn. Recall that the leaves of our models are either empty
leaves (line 3) or pointers to some previous stage in the branch (line 12).

c ba

Figure 12: Graphic representation of the Kripke structure returned by the prototype.

Example 7.1. Let Σ be the following set of formulae.

{ A(a →¬(b∨ c)), A(b →¬(a∨ c)), A(c →¬(b∨a)),
EAa, EAb, EAc }

Our prototype returns the following Kripke structure as a model of Σ that certifies its
satisfiability.

State 0: {}
Subtree 1 of State 0
---State 1: {c} --> cycle to State 1
Subtree 2 of State 0
---State 1: {b} --> cycle to State 1
Subtree 3 of State 0
---State 1: {a} --> cycle to State 1

35

Figure 12 shows a graphical representation of this model.

Algorithm 3 is the basis of our implementation, however, we have implemented
some improvements mainly aimed at the efficiency and the usability in CMC. The for-
mulae of the form Aϕ , that we call global invariants, are the most common in a
model checking problem. In model checking, the formula that characterises a compu-
tation tree of a system is a (usually large) conjunction (collection) of global invariants.
To provide shorter, clearer and readable proofs in CMC applications, we take advan-
tage of the fact that, for each invariant Aσ , either this formula itself or AAσ

are in the node of the tableau, and both formulae are at every stage. Hence, proofs
are easier to follow if we discharge all global invariants (and all (Aϕ) where ϕ is a
global invariant). Indeed, the user could consult the system specification to follow the
reasoning, though we specify in the proof when a rule is applied to an invariant formula
(see sequent 2 in Example 7.2). Moreover, we do not load global invariants along the
stages of the current branch.

Example 7.2. Consider the set of formulae Σ = {p,A(p → Ap),E¬p}. In the
model checking framework the first formula could be seen as the initial state condi-
tion, the second formula as the model specification, and the third as the negation of
the property Ap, which the user is asking to check. Our prototype on this input Σ

returns the expected result – that Σ is unsatisfiable (therefore, the property Ap holds
in any model of {p,A(p → Ap)}) and also gives the following ’detailed’ proof as
certificate:

0.E¬p, p. apply (E+)
-1.¬p, p. by (Ctd)
-2.E(E(¬pU ¬p)), p. apply (A) to Inv : A(¬p∨Ap)
--3.¬p∨Ap,E(E(¬pU ¬p)), p. apply (∨)
---4.E(E(¬pU ¬p)),¬p, p. by (Ctd)
---5.E(E(¬pU ¬p)),Ap, p. apply (E)
----6.E(¬pU ¬p), p. apply (EU +)
-----7.¬p, p. by (Ctd)
-----8.E(E(¬pU ¬p)),¬p, p. by (Ctd)

It is worth to note that sequent 2 is derived by the application of (E+) to sequent 0.
In 0, the context of E¬p is just {p}. This context cannot be repeated from the next-
state onwards until the eventuality would be fulfilled. Therefore, the contextualised
variant E(¬pU ¬p) (of E¬p) should be fulfilled from the next-state on.

Our prototype provides proofs with two grades of granularity: small-step proofs and
big-step proofs. A small-step proof includes all rule applications (as the proof in Ex-
ample 7.2). A big-step proof includes only the sequents before the application of a
next-step rule, i.e. the elementary sets that have been refuted. In particular, the big-
step version for Example 7.2 consists of just one elementary sequent:

---5. E(E(¬pU ¬p)),Ap, p.

Big-step proofs are useful when proofs are very long and especially in the CMC, when
the user wants just to see the evolution of the system that leads to contradiction. In the

36

previous example, the unique sequent informs that the system evolves to satisfy p,Ap
while it should satisfy EE(¬pU ¬p) (to satisfy the initial eventuality E¬p), and
that this leads to contradiction. Next, we show the big-step version of a larger proof.

Example 7.3. The following set of formulae is obtained by substituting in Example 7.1
the formula EAa by AEAa, which makes it unsatisfiable

{ A(a →¬(b∨ c)), A(b →¬(a∨ c)), A(c →¬(b∨a)),
AEAa, EAb, EAc }

The small-step proof provided by our prototype has about 350 sequents, however the
big-step proof contains the following five sequents:

--76.EE(FU Ab),E(EAa),AAc,¬b,¬a,c
---145.EE((AE¬b)U Ac),EEAa,AAb,¬c,¬a,b
--240.EE((AE¬b)U Ac)),EEAb,EEAa,¬c,¬b,¬a
----278.EE((a∨b)U Aa),AAc,¬b,¬a,c
-----345.EE(FU Ac),EEAa,AAE¬b,¬c,¬b,¬a

Since all sequents of a big-step proof are elementary sets of formulae, to which the
appropriated next-state rule is applied, we do not report that implicit information. In the
proof above, (E) is applied to the indicated five sequents because all these sequents
have one or more E formulae. The two first lines (steps 76 and 145) show that
constructing a path to fulfill Ab, while Ac is satisfied, is not possible. The last
three lines (steps 240, 278 and 345) show that constructing a path to fulfill Ac is also
impossible, because once Ac is fulfilled, Aa cannot be fulfilled.

We have implemented the sets of formulae by ordered sequences of formulae. For
that we have defined an ad-hoc ordering on formulae (in nnf) to quickly detect a se-
lected eventuality and to check if a sequence is elementary by just looking at the first
element. In addition, we exploit the ordering to detect more quickly that a sequence is
not a subsequence of another sequence, hence branches also keep ordered sequences
of stages, in particular to detect cycles. We have also implemented some rules of sub-
sumption (such as ϕ subsumes ϕ ∨ ψ) in sequences and in the construction of the
contextualised variants of eventualities –the latter is very important for the feasibility
of our method. Of course, we have implemented the subsumption-like simplification
rule (8) (See §4) by which any contextualised variant subsumes the original eventuality.

Our systematic tableau construction produces many repetitions of subtrees. We
prevent to repeat the refutation (closed tableau) of any sequent that is a child of an
elementary sequent. When one of them is refuted, it is loaded in a set called ‘As Proved
Above (APA)’. In the output proofs, we use the word APA to indicate that a sequent
has been previously refuted. Moreover, we consider as refuted any sequent that is a
superset of another sequent, already refuted. In other words, if a sequent Σ ∈ APA
and Σ ⊆ Σ′, then the sequent Σ′ is immediately classified as refuted. Since loading all
refuted sequents is really costly, we choose some sequents as candidates to be loaded
in APA. This choice clearly determines the efficiency of the prototype. In the current
prototype, we only add to APA the sequents produced after the application of the next-
state rule. Further experimentation is needed to evaluate and compare the performance

37

of the implementation with different selection criteria of the sequents-candidates for
the APA.

Most of the code (written in Java) is automatically generated from the language
Dafny [32]. Though Dafny is a program verifier of functional correctness, we note that
our implementation is only partially verified, i.e. only some crucial properties have
been verified by the time of writing this paper. For example, the ordering in formulae
has been proved to be total. The methods that exploit this ordering to perform more
efficient operations in sequences (e,g, insertion, deletion) have been proved to preserve
the order. Other methods that decide properties of sequences more efficiently thanks to
the order (e.g. elementarity check) have also been proved correct. The verification of
the functional correctness of our prototype remains as an encouraging and challenging
future work.

7.2. Experimental results
In order to assess the feasibility of our context-based tableau, we have tested the

prototype MomoCTL on the collection of benchmarks, namely GBext, borrowed from
http://users.cecs.anu.edu.au/~rpg/CTLComparisonBenchmarks/ that was created
for the comparison of various CTL-provers made in [23]. In this section we report on
our performance results and compare them with the other one-pass tableau for CTL
([1]) that is called TreeTab in [23]. It is worth noting that our current Java code have
been automatically generated from Dafny, therefore it is not an optimised Java code.
GBext is very well elaborated and gives a comprehensive, fair, and objective collection
of CTL theorem-proving problems. We expect that an in-depth analysis of our results
will allow us to identify what type of heuristics, strategies, etc. are convenient to
improve MomoCTL.

In GBext there are three logically equivalent versions of each formula, which indi-
cates that in [23], the comparison performed takes into account the syntactic form of
the input. As expected, when translated to our input format –a set of formulae in nnf–
the three versions give similar performance result. Therefore, we really use one version
of each benchmark in GBext and this reduced set is called GB. We have automatically
translated each unique formula in each file in GB to a file with the logically equivalent
set of formulae in nnf. The obtained collection is denoted as MB. Both GB and MB col-
lections are divided into different classes, some of which are further divided into sub-
classes for satisfiable and unsatisfiable instances or for different types of formula pat-
terns. MB and MomoCTL are available at https://github.com/alexlesaka/MomoCTL.
The executable (.JAR) runs full MomoCTL when it is called with a single file .ctl (i.e.
it returns certificates). However, when that .JAR runs over a folder of benchmarks files,
it runs the version of MomoCTL that returns just SAT/UNSAT values.

Both TreeTab and MomoCTL have been applied, respectively, to GB and MB.
To made a fair comparison, we have run the version of MomoCTL that does not return
certificates. We know that the delay between this simplified version and full MomoCTL
is about 2%. These experiments were performed with an Intel Xeon Dual core 2.60GHz
CPU with 64 GB RAM computer. As the authors of [23] did, we imposed a stack limit
of 512MB and a 1000 seconds time limitation for each problem instance.

In the rest of this section, we compare MomoCTL and TreeTab performance results
on the most significant classes and subclasses of MB and GB, which are: Alternat-

38

ing Bit Protocol (abp), Business Processes (busproc), Exponential Formulae (exp_sat
and exp_unsat), Montali’s Formulae (montali_sat and montali_usat), Pattern_AE, and
Reskill.

abp

busproc

exp_sat

exp_unsat

montali_sat1

montali_sat2

montali_sat3

montali_sat4

montali_sat5

montali_unsat1

montali_unsat2

montali_unsat3

montali_unsat4

montali_unsat5

pattern_ae

reskill

0,00% 25,00% 50,00% 75,00%

MomoCTL SUCCESS RATE TreeTab SUCCESS RATE

Figure 13: Percentage of solved instances (by class) within time limit

In Figure 13, we show the percentage of files in each class that are solved within
the time limit, i.e those that return a value –satisfiable or unsatisfiable– and do not
produce timeout or some error –e.g lack of memory. We use gray color for TreeTab
and black color for MomoCTL. Instances are ordered by the increasing complexity. As
we will detail bellow, for MomoCTL it takes longer than for TreeTab to solve smaller
instances, but the former solves (in 1000 s.) greater instances –in classes abp, exp_sat,
exp_unsat, montali_sat– that TreeTab cannot solve (in 1000 s.). TreeTab solves more
instances than MomoCTL in busproc and montali_unsat1. Next, for each class, we
compare the running times of both CTL-provers and analyse possible causes of their
differences. In the plots, the abscissa is the number of different variable symbols in the
input and the ordinate is the running time in milliseconds. The plots are given using a
logarithmic scale (the same scale used in [23]).

1. Alternating Bit Protocol (abp). This class has three instances that encode whether
three different properties are valid for a protocol specification (see [23]). All instances
are unsatisfiable and the problem is quite difficult for CTL-provers based on tableaux.
Tableaux methods necessarily should produce a huge number of closed branches. In
the simplest problem (abp5), each branch contains four eventualities and a releases-
formula that cannot be fulfilled in any order, therefore 120 combinations should be
tested. The other two instances (abp8 and abp9) add to abp5 one extra eventuality with
the releases-formula included in it, which increases the combinations up to 720. As
shown in Figure 14, only the simplest instance (abp5) is solved by TreeTab in 0.081 s.
while MomoCTL is able to solve the three instances in 0.249 s., 11.952 s., and 13.370
s. respectively.

39

1

10

100

1000

10000

100000

1000000

5 6 7 8 9

Time MomoCTL Time TreeTab

ABP

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6

Time MomoCTL Time TreeTab

BUSPROC

Figure 14: abp and busproc formulae

2. Business Processes (busproc). This class arises from a synthesis problem ([4]).
All the instances have a huge amount of different models that exponentially increases
with the input size. For tableau methods, to find just one model it suffices to decide
the satisfiability. Consequently, (as showed in [23]) tableau methods perform better
than other approaches for satisfiable inputs. However, CTL models of busproc prob-
lems are non-linear Kripke-structures. Figure 14 compares TreeTab and MomoCTL.
TreeTab solves the three first instances –busproc1 in 0.139 s., busproc2 in 0.762 ms.
and busproc3 in 34.991 s. MomoCTL only solves busproc1 and busproc2 in 6,226
s. and 326,316 s. respectively. In the case of busproc1, (the full version) returns a
model of depth five with four branches. For this construction, MomoCTL collected
about 400 refuted sequents, hence in the tableau there are many closed branches that
are constructed before the first model is found.

Analysing these refuted sequents (for busproc1 and other benchmarks with many
models), we saw that most of them are attempts to fulfill an eventuality at some state
where it can not be fulfilled, although there are many possibilities to explore to get
to decide it. We conclude that MomoCTL strategy of forcing eventualities to be sat-
isfied “as soon as possible” does not work very well with satisfiable problems with
a big amount of models. Indeed, contexts could produce a big explosion of tableau
OR-branches when the selected eventuality is delayed to the next step. We think that
MomoCTL should be equipped with some heuristics for eventuality selection. The
class busproc is a useful collection of problems for our further work.

3. Exponential Formulae. Both satisfiable and unsatisfiable exponential formulae
have a similar difficulty for TreeTab and MomoCTL. The subclass of satisfiable in-
stances has models with exponentially larger paths. The tableau for unsatisfiable in-
stances builds an exponentially increasing number of non-repeated tableau branches
that are closed.

In Figure 15 we can see that MomoCTL has an exponential growth of the running
time from small instances in both subclasses, while TreeTab does not. Nevertheless
TreeTab runs out of memory from size 12, whereas MomoCTL is able to solve the
instance of size 13 inside the time limit. Allowing more time, MomoCTL solves the
unsatisfiable instance of size 14 in 1,551 s. This is thanks to the strategy of not re-
peating refutations that have been made previously. To solve the satisfiable instance of
size 14, MomoCTL needs 6,000 s. because the model of this formula is extraordinarily

40

large. Therefore, MomoCTL solves more difficult instances as the time increases. This
is one of the main features of our prototype which makes it different from the TreeTab.

1

10

100

1000

10000

100000

1000000

5 10 15 20

Time MomoCTL Time TreeTab

EXP UNSAT

1

10

100

1000

10000

100000

1000000

5 10 15 20

Time MomoCTL Time TreeTab

EXP SAT

Figure 15: Exponential satisfiable and unsatisfiable formulae

4. Montali’s Formulae.

1

10

100

1000

10000

100000

1000000

20 40 60 80 100

Time MomoCTL Time TreeTab

MONTALI SAT3

1

10

100

1000

10000

100000

1000000

10 20 30 40 50

Time MomoCTL Time TreeTab

MONTALI UNSAT3

Figure 16: Montali’s satisfiable and unsatisfiable formulae with depth 3

These formulae are CTL-reformulations of LTL-specifications of business processes
([31]) that has been used for comparing LTL-provers ([20]). Montali’s formulae are pa-
rameterised by n and m.

ϕ
i
1 = Api ϕ

i
m = A(pi ∧Aϕ

i
m−1) ϕn = ∧n−1

i=0 A(¬pi ∨AApi+1)

Satisfiable instances are of the form ϕ0
m ∧ϕn, whereas unsatisfiable instances have the

form ϕ0
m ∧ϕn ∧¬ϕn

m.
Figure 16 shows the results for satisfiable and unsatisfiable subclasses where m = 3

and n is in the abscissa. For m = 1,2,4,5 the plots are very similar. In the case of
satisfiable formulae, MomoCTL finds a model in the first (leftmost) branch when doing
the depth-first search.

Regarding unsatisfiable formulae, MomoCTL is able to respond more (until size
33) but it requires more time than TreeTab, which runs out of memory at size 23.
Note the similarity of the plots for montali_unsat and exponential formulae. As we
mentioned above, MomoCTL can solve larger and larger instances as time increases.
The main reason is that the systematic forcing of eventualities takes more advantage

41

as the number of eventualities grows – they produce always-formulae that reduce the
search space.

5. Pattern_AE and Reskill. In [23], the authors introduce these two classes and show
that methods based on BDDs and resolution perform badly on inputs containing many
conflicting E temporal formulae (in the case of pattern_ae) and when there are many
potential resolution-steps in a satisfiable formula (in the case of reskill). The class
pattern_ae contains formulae of the form

(
n∧

i=0

AEpi)∨ (
n∧

i=0

AE¬pi).

while the class reskill contains these kinds of formulae

¬p ∧ (¬p ∨ (p ∧ A(
n−1∧
i=0

Aqi) ∧
n−1∧
i=0

A(¬qi ∨
n−1∨

j=0, j ̸=i

Eq j) ∧

n−1∧
i=0

A(¬qi ∨
n−1∨

j=0, j ̸=i

¬q j)))

1

10

100

1000

10000

100000

1000000

50 100 150 200

Time MomoCTL Time TreeTab

PATTERN AE

1

10

100

1000

10000

100000

1000000

5 10 15 20

Time MomoCTL Time TreeTab

RESKILL

Figure 17: Pattern_AE and Reskill formulae

The instances of both classes are satisfiable. Figure 17 shows that both –TreeTab
and MomoCTL– run very fast on the two classes of formulae. In pattern_ae, MomoCTL
is faster than TreeTab in small instances until n= 25. MomoCTL performs with a mod-
erate increase of time, while TreeTab is more constant with some insignificant increase
or decrease of the number of steps. The model returned by MomoCTL to pattern_ae of
size n is:

State 0 : {p0,. . .,pn−1} --> cycle to State 0

Both MomoCTL and TreeTab perform extremely fast on the class reskill because
they are able to find the simplest model, which is returned by MomoCTL as follows:

State 0 : {}
---State 1 : {} --> cycle to State 1

Finally, we again remark that MomoCTL does not run out of memory on any bench-
mark. Indeed, with unlimited execution time, MomoCTL solves some benchmarks, on

42

which TreeTab runs out of memory. We believe that these errors of TreeTab are due to
the fact that the branches it produces are too large. We know that the way how we use
contexts to handle eventualities prevents the generation of such extra large branches.
However, the price we pay is the increased number of the shorter branches to analyse.
This makes MomoCTL run slower than TreeTab for some not very complex problems.
We are convinced that a more intelligent eventuality selection procedure, in addition to
different heuristic strategies could solve this problem and improve notably MomoCTL’s
performance.

8. Extending the Tableau Method and the Sequent Calculus to ECTL

p,Ep,Ap

p,Ep,Ap

p, Ep ,EEp,Ap

p,EEp,Ap

p,EEp,AAp

Ep,Ap

p,E E(¬pU p) ,EEp,Ap

p,E E(¬pU p) ,EEp,AAp

p, E(¬pU p) ,Ap

p,Ap p, EE(¬pU p) ,Ap

p, EE(¬pU p) ,AAp

E(¬pU p) ,Ap

p,Ep,Ap

p,Ep, Ap ,AAp

(A)

(E)

(E)+

(A)

(E)

(A)

(E)

(EU)+

(A) (A)

(E)

Figure 18: ECTL systematic tableau for {p,Ep,Ap}.

p

Figure 19: Graphic representation of the model for {p,Ep,Ap}.

In this section we explain a (relatively easy) way to extend the CTL tableau method
and its dual sequent calculus to the more expressive logic ECTL. This is achieved

43

by adding the new tableau rules given in Figure 20 and their dual sequents rules in
Figure 21. These rules correspond to the following logical equivalences for the basic
modalities that extend CTL to ECTL:

Eσ ≡ Eσ ∧EEσ Eσ ≡ Eσ ∨ (Eσ ∧EEσ)
Aσ ≡ Aσ ∧AAσ Aσ ≡ Aσ ∨ (Aσ ∧AAσ)

(9)

(Q)
Σ,Qσ

Σ,Qσ ,QQσ
(Q)

Σ,Qσ

Σ,Qσ | Σ,Qσ ,QQσ

Figure 20: Additional tableau rules for ECTL

The rule (Q) is added to the set of α-rules and the rule (Q) is added to
the set of β -rules. There are no additional β+-rules. Indeed the eventualities Qσ

introduced by the rules in Figure 20 are CTL-modalities that are handled by the β+-
rules of the method for CTL.

Next, we illustrate that issue with an example of systematic tableau for an ECTL
input where additional rules for ECTL are applied, along with CTL rules.

Example 8.1. Figure 18 partially shows an open tableau with the application of two
of the rules added to extend CTL to ECTL. We just outline some branches to illustrate
how the ECTL-rules (A), and (E) (in Figure 20) are applied. The tableau for
the right-most node, which is also open, is not depicted for space reasons. Note that
our algorithm constructs just the left-most branch to decide that the label of the root
is satisfiable and returns a very simple model depicted in Figure 19, which is a cyclic
Kripke structure with the single fullpath {p}w.

We extend soundness and completeness results (for CTL) to ECTL. Firstly, we
extend Lemma 5.1 to the rules in Figure 20.

Lemma 8.2. For any ECTL set of state formulae Σ and any state formula σ :

1. Sat(Σ∪{Qσ}) if and only if Sat(Σ∪{Qσ ,QQσ}).
2. Sat(Σ∪{Qσ}) if and only if Sat(Σ∪{Qσ}) or

Sat(Σ∪{Qσ ,QQσ}).

Proof. It follows by ‘systematic’ application of the semantic definitions of the modal-
ities Q and Q given by the equivalences (9) in §8.

As a consequence of Lemma 8.2, the soundness Theorem 5.2 easily extends to
ECTL. For refutational completeness of ECTL, we firstly extend Definition 5.3 with
the following additional conditions for a stage to be αβ+-saturated:

Definition 8.3. We say that a stage s = ni, . . . ,n j in the ECTL systematic tableau for
Σ is αβ+-saturated if and only if it satisfies the conditions in Definition 5.3 and the
following two additional conditions:

7. For all Qσ ∈ τ(s): {Qσ ,QQσ} ⊆ τ(s).

44

8. For all Qσ ∈ τ(s): {Qσ} ⊆ τ(s) or {Qσ ,QQσ} ⊆ τ(s).

It is obvious that the conditions 7. and 8. are satisfied in any stage of the system-
atic tableau by construction. Using these conditions, it is routine to prove that KH ,
as defined in Lemma 5.6, satisfies the fact that: KH ,sa,0 |= σ for any a ∈ {0, . . . , j}
and any formula of the form Qσ ,Qσ that belongs to L(sa). Therefore, refu-
tational completeness (i.e. Theorem 5.7) extends to ECTL. Finally, for the termination
result (see the proof in Theorem 5.8), it suffices to ensure that the rules in Figure 20 do
not affect the behaviour of the β+-rules on the selected eventualities in the sense that
Proposition 5.5 is preserved. Furthermore, although each application of a rule in Fig-
ure 20 introduces a new Qσ , the simplification rule (<QU) (see (8) in Section 8)
ensures that any occurrence of an eventuality is subsumed by its contextualised variant.
Therefore, Proposition 5.5 holds and hence Theorem 5.8 extends to ECTL.

(Q)
Σ,Qσ ,QQσ ⊢ F

Σ,Qσ ⊢ F

(Q)
Σ,Qσ ⊢ F Σ,Qσ ,QQσ ⊢ F

Σ,Qσ ⊢ F

Figure 21: Additional sequent rules for ECTL.

The calculus C⊢ is also extended by adding the sequent rules that are dual to the
tableau rules in Figure 20. These additional sequent rules are given in Figure 21 and
the duality of the extended tableau and sequent calculus for ECTL is trivial.

9. Conclusion

We introduced sound and complete systems of tableaux and sequent calculus for
temporal logics CTL and ECTL, illustrating the methods on a number of examples, and
reporting on their implementation MomoCTL and experimental results. MomoCTL is
available at https://github.com/alexlesaka/MomoCTL.

The distinctive feature of the tableau methods presented in the paper, is that the
core tableau construction is based on the concept of a context of an eventuality. The
method developed in the paper is much simpler than the analogous technique obtained
earlier (see [7]) for a richer logic - ECTL# where two types of contexts (both outer
and inner contexts) are used. Indeed, the construction presented in this paper only uses
the "outer" context, however, similar to ECTL#, generates tableaux as AND-OR trees.
Our context-based approach to deduction systems for branching-time temporal logics
preserves the classical duality of tableaux and sequent calculus, enabling a framework
where both certifying proofs and models can be constructed as byproducts of the satis-
fiability test. This makes our approach specifically important in the area of CMC.

The methods presented in this paper have double-exponential time worst case com-
plexity. Indeed, a trivial adaptation of [19] allows us to say that the so-called clo-
sure –the set of all formulae that could appear in a tableau– has in the worst case size
O(2O(2n)), where n is the size of the input (this complexity characterisation matches

45

the one of [1, 22]). However, in practice the worst case is very unusual. For example,
when the context of an eventuality mostly contains modalities A –which is typical
in reactive systems specifications and model checking practical problems– the number
of possible contexts is much smaller and consequently the overall performance of the
technique developed is much better.

Our experimentation with MomoCTL on a large and interesting suite of bench-
marks (http://users.cecs.anu.edu.au/~rpg/CTLComparisonBenchmarks/) has given
encouraging results and many ideas for future improvements. We plan to perform more
experimentation and efficiency improvements, before extending the prototype to cover
the methods for logics ECTL, ECTL+, and ECTL# [7].

Future work also includes the mechanical check of proof certificates extending the
ideas in [2], the graphical representation of models, and the correspondence of the one-
side sequent calculus with a two-side sequent calculus (in line with what is done in
[19] for the linear temporal logic). The formal verification of the complete functional
correctness of the presented algorithms in Dafny is also in our plans.

References

[1] P. Abate, R. Goré, and F. Widmann. One-pass tableaux for computation tree logic.
In N. Dershowitz and A. Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning, pages 32–46, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[2] A. Abuin, A. Bolotov, U. Díaz-de-Cerio, M. Hermo, and P. Lucio. Towards cer-
tified model checking for PLTL using one-pass tableaux. In Johann Gamper,
Sophie Pinchinat, and Guido Sciavicco, editors, 26th International Symposium
on Temporal Representation and Reasoning, TIME 2019, October 16-19, 2019,
Málaga, Spain, volume 147 of LIPIcs, pages 12:1–12:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[3] A. Abuin, A. Bolotov, M. Hermo, and P. Lucio. One-pass context-based
tableaux systems for CTL and ECTL. In E. Muñoz-Velasco, A. Ozaki, and
M. Theobald, editors, 27th International Symposium on Temporal Representation
and Reasoning, TIME 2020, September 23-25, 2020, Bozen-Bolzano, Italy, vol-
ume 178 of LIPIcs, pages 14:1–14:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

[4] A. Awad, R. Goré, J. Thomson, and M. Weidlich. An iterative approach for
business process template synthesis from compliance rules. In Proceedings of the
23rd International Conference on Advanced Information Systems Engineering,
CAiSE’11, page 406–421, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

[6] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time.
Acta Inf., 20(3):207–226, September 1983.

46

[7] A. Bolotov, M. Hermo, and P. Lucio. Branching-time logic ECTL# and its tree-
style one-pass tableau: Extending fairness expressibility of ECTL+. Theoretical
Computer Science, 813:428 – 451, 2020.

[8] M. C. Browne, E. Clarke, and O. Grümberg. Characterizing finite Kripke struc-
tures in propositional temporal logic. Theor. Comput. Sci., 59(1–2):115–131, jul
1988.

[9] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-
bolic model checking: 1020 states and beyond. Information and Computation,
98(2):142 – 170, 1992.

[10] E. M. Clarke and E. A. Emerson. Using Branching Time Temporal Logic to Syn-
thesise Synchronisation Skeletons. Science of Computer Programming, 2:241–
266, 1982.

[11] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst., 8(2):244–263, 1986.

[12] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press,
London, Cambridge, 1999.

[13] E. A. Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science (Vol. B), pages 995–1072. MIT Press, Cam-
bridge, USA, 1990.

[14] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. Journal of Computer and System Sciences,
30(1):1 – 24, 1985.

[15] E. A. Emerson and J. Y. Halpern. Sometimes and not never revisited: On branch-
ing versus linear time temporal logic. J. ACM, 33(1):151–178, 1986.

[16] M. Fitting. Tableau methods of proof for modal logics. Notre Dame J. Formal
Log., 13(2):237–247, 1972.

[17] D. M. Gabbay. Expressive functional completeness in tense logic (preliminary
report). In Aspects of Philosophical Logic, pages 91–117, Dordrecht, 1981. Rei-
del.

[18] D. M. Gabbay. The declarative past and imperative future: Executable temporal
logic for interactive systems. In Behnam Banieqbal, Howard Barringer, and Amir
Pnueli, editors, Temporal Logic in Specification, Altrincham, UK, April 8-10,
1987, Proceedings, volume 398 of Lecture Notes in Computer Science, pages
409–448. Springer, 1989.

[19] J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, and F. Orejas. Dual systems of
tableaux and sequents for PLTL. Journal of Logic and Algebraic Programming,
78(8):701–722, 2009.

47

[20] V. Goranko, A. Kyrilov, and D. Shkatov. Tableau tool for testing satisfiability in
ltl: Implementation and experimental analysis. Electronic Notes in Theoretical
Computer Science, 262:113–125, 2010. Proceedings of the 6th Workshop on
Methods for Modalities (M4M-6 2009).

[21] V. Goranko and A. Zanardo. From linear to branching-time temporal logics:
Transfer of semantics and definability. Log. J. IGPL, 15(1):53–76, 2007.

[22] R. Goré. And-or tableaux for fixpoint logics with converse: LTL, CTL, PDL and
CPDL. In Stéphane Demri, Deepak Kapur, and Christoph Weidenbach, editors,
Automated Reasoning - 7th International Joint Conference, IJCAR 2014, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 19-22,
2014. Proceedings, volume 8562 of Lecture Notes in Computer Science, pages
26–45. Springer, 2014.

[23] R. Goré, J. Thomson, and F. Widmann. An experimental comparison of theorem
provers for CTL. In C. Combi, M. Leucker, and F. Wolter, editors, Eighteenth
International Symposium on Temporal Representation and Reasoning, TIME
2011, Lübeck , Germany, September 12-14, 2011, pages 49–56. IEEE, 2011.

[24] R. Goré. Tableau methods for modal and temporal logics. In Marcello
D’Agostino, Dov M. Gabbay, Reiner Hähnle, and Joachim Posegga, editors,
Handbook of Tableau Methods, pages 297–396. Springer, Netherlands, Dor-
drecht, 1999.

[25] A. Griggio, M. Roveri, and S. Tonetta. Certifying proofs for ltl model checking.
In 2018 Formal Methods in Computer Aided Design (FMCAD), pages 1–9, 2018.

[26] R. Kashima. An axiomatization of ECTL. J. Log. Comput., 24(1):117–133, 2014.

[27] R. Kowalski. AND/OR graphs, theorem-proving graphs and bi-directional search.
In Machine Intelligence 7, pages 167–194, 1972.

[28] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems -
specification. Springer, 1992.

[29] N. Markey. Temporal logics. Course notes, Master Parisien de Recherche en
Informatique, Paris, France, 2013.

[30] A. Mebsout and C. Tinelli. Proof certificates for SMT-based model checkers for
infinite-state systems. In Proceedings of the 16th Conference on Formal Methods
in Computer-Aided Design, FMCAD ’16, pages 117–124, 2016.

[31] M. Montali, P. Torroni, M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, and
P. Mello. Verification from declarative specifications using logic programming.
ICLP ’08, page 440–454, Berlin, Heidelberg, 2008. Springer-Verlag.

[32] K. Rustan and M. Leino. Dafny: An automatic program verifier for functional
correctness. In Edmund M. Clarke and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning, volume 6355 of Lecture
Notes in Computer Science, pages 348–370. Springer, April 2010.

48

[33] S. Schwendimann. A new one-pass tableau calculus for PLTL. In Harrie
C. M. de Swart, editor, Automated Reasoning with Analytic Tableaux and
Related Methods, International Conference, TABLEAUX ’98, Oisterwijk, The
Netherlands, May 5-8, 1998, Proceedings, volume 1397 of Lecture Notes in
Computer Science, pages 277–292. Springer, 1998.

[34] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985.

[35] R. M. Smullyan. First-Order Logic. Berlin, Germany: New York [Etc.]Springer-
Verlag, 1968.

[36] P. Wolper. The tableau method for temporal logic: An overview. Logique Et
Analyse, 28(110-111):119–136, 1985.

49

