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ABSTRACT 

 

Synthesis of Polyhydroxyalkanoates (PHAs) by Pseudomonas mendocina, 

using different vegetable oils such as, coconut oil, groundnut oil, corn oil and 

olive oil, as the sole carbon source was investigated for the first time. The PHA 

yield obtained was compared with that obtained during the production of PHAs 

using sodium octanoate as the sole carbon source. The fermentation profiles at 

shaken flask and bioreactor levels revealed that vegetable oils supported the 

growth of Pseudomonas mendocina and PHA accumulation in this organism. 

Moreover, when vegetable oil (coconut oil) was used as the sole carbon source, 

fermentation profiles showed better growth and polymer production as 

compared to conditions when sodium octanoate was used as the carbon 

source. In addition, comparison of PHA accumulation at shaken flask and 

fermenter level confirmed the higher PHA yield at shaken flask level production. 

The highest cell mass found using sodium octanoate was 1.8 g/L, whereas cell 

mass as high as 5.1 g/L was observed when coconut oil was used as the 

feedstock at flask level production. Moreover, the maximum PHA yield of 60.5% 

dry cell weight (dcw) was achieved at shaken flask level using coconut oil as 

compared to the PHA yield of 35.1% dcw obtained using sodium octanoate as 

the sole carbon source. 

Characterisations of the chemical, physical, mechanical, surface and 

biocompatibility properties of the polymers produced have been carried out by 

performing different analyses as described in the second chapter of this study. 

Chemical analysis using GC and FTIR investigations showed medium chain 

length (MCL) PHA production in all conditions. GC-MS analysis revealed a 

unique terpolymer production, containing 3-hydroxyoctanoic acid, 3-

hydroxydecanoic acid and 3-hydroxydodecanoic acid when coconut oil, 

groundnut oil, olive oil, and corn oil were used as the carbon source. Whereas 

production of the homopolymer containing 3-hydroxyoctanoic acid was 

observed when sodium octanoate was used as the carbon source. MCL-PHAs 

produced in this study using sodium octanoate, coconut oil, and olive oil 

exhibited melting transitions, indicating that each of the PHA was crystalline or 

semi-crystalline polymer. In contrast, the thermal properties of PHAs produced 

from groundnut and corn oils showed no melting transition, indicating that they 



v 

 

were completely amorphous or semi-crystalline, which was also confirmed by 

the X-Ray Diffraction (XRD) results obtained in this study. Mechanical analysis 

of the polymers produced showed higher stiffness of the polymer produced from 

coconut oil than the polymer from sodium octanoate. Surface characterisation of 

the polymers using Scanning Electron Microscopy (SEM) revealed a rough 

surface topography and surface contact angle measurement revealed their 

hydrophobic nature. Moreover, to investigate the potential applicability of the 

produced polymers as the scaffold materials for dental pulp regeneration, 

multipotent human Mesenchymal stem cells (hMSCs) were cultured onto the 

polymer films. Results indicated that these polymers are not cytotoxic towards 

the hMSCs and could support their attachment and proliferation. Highest cell 

growth was observed on the polymer samples produced from corn oil, followed 

by the polymer produced using coconut oil. 

In conclusion, this work established, for the first time, that vegetable oils are a 

good economical source of carbon for production of MCL-PHA copolymers 

effectively by Pseudomonas mendocina. Moreover, biocompatibility studies 

suggest that the produced polymers may have potential for dental tissue 

engineering application. 
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1. Introduction:  

 

1.1. Polyhydroxyalkanoates (PHAs) and its importance 

 

Plastics are synthetic or semi-synthetic organic solids, which are widely used for 

manufacturing industrial product since the 1940s (Shultz 1979, Panchal et al., 

2012). Moreover, the relatively low price, versatile nature and excellent physical 

and mechanical properties have made them a necessity in our lives to enhance 

the comfort and quality of life. Plastics are very much advantageous because as 

synthetic polymers, their structure can be chemically manipulated to have a 

wide range of strengths and shapes (Reddy et al., 2003). Moreover, they can be 

easily moulded into almost any desired shape including fibres and thin films. 

Synthetic polyethylene, polyvinyl chloride and polystyrene are largely used in 

the manufacture of plastics (Reddy et al., 2003). They have high chemical 

resistance and are more or less elastic, hence they are popular in many 

durable, disposal goods and as packaging materials (Panchal et al., 2012). Due 

to their outstanding features, they have been used for different purposes 

worldwide such as components in automobiles, home-appliances, computer 

equipment, packages, construction, sports and leisure equipment and also in 

medical applications (Abou-Zeid 2001, Panchal et al., 2012). Currently, the 

worldwide demand for plastics has increased to more than 240 million metric 

tonnes per year (Zinn et al., 2001, Panchal et al., 2012). However, uncontrolled 

usage of these plastic materials has led to the accumulation of huge amounts of 

non-degradable waste materials, which become a major concern in terms of the 

natural environment. In the UK, only about 3.2 million tonnes of domestic plastic 

refuse was collected annually, while about 150 million tonnes of plastic waste 

was disposed of by industry (Philip et al., 2007, Panchal et al., 2012). Moreover, 

the increased cost of crude oil, depletion of the world’s oil reserves and public 

awareness of the environmental effects of synthetically produced materials has 

created a lot of interest in the development of biodegradable plastics (Philip et 

al., 2007, Keshavarz and Roy 2010). Biodegradable plastics synthesised from 

renewable resources are now being considered as a potential replacement for 

commercial synthetic plastics due to their biodegradability and non-toxicity. This 

would help in resolving the problem of plastic waste disposal (Abou-Zeid 2001). 

http://en.wikipedia.org/wiki/Organic_chemistry


Chapter 1: Introduction 

3 

 

Most synthetic plastics are non-degradable polymers; for instance polyamides, 

polyfluorocarbons, polyethylene, polypropylene, and polycarbonate. However, 

some synthetic polymers are semi-degradable by microorganisms such as 

polyether-polyurethanes. Natural polymers are generally more biodegradable 

than synthetic polymers; specifically polymers with ester groups like aliphatic 

polyesters (Shultz 1979). Therefore, several bio-based materials such as 

polynucleotides, polyamides, polysaccharides, polyoxoesters, polythioesters, 

polyanhydrides, polyisoprenoids and polyphenols are potential candidates for 

the substitution of synthetic plastics (Steinbuchel 2001) and have been the 

focus of attention in recent years (Zinn et al., 2001). Amongst these, 

polyhydroxyalkanoates (PHAs) belong to the polyoxoester group and have 

received much attention due to their biodegradable thermoplastic properties 

(Albuquerqueet et al., 2007). 

 

1.2. Discovery of PHAs 

 

Polyhydroxyalkanoates (PHAs) are naturally occurring biodegradable and 

biocompatible polymers commonly found as storage compounds of carbon, and 

therefore energy, in various microorganisms. These are produced in the 

presence of excess carbon and under limiting conditions of other nutrients for 

example nitrogen, phosphorus, sulphur, magnesium or oxygen (Lee 1996, 

Steinbuchel 1991, Du 2001). The most simplest PHA is poly(3-hydroxybutyrate) 

(P(3HB)) which was discovered in 1925 by a French scientist Lemoigne (Doi, 

1990). After the first discovery of P(3HB), several bacterial strains 

(archaebacteria, Gram positive and Gram negative bacteria and photosynthetic 

bacteria including cyanobacteria) have been known to produce P(3HB) (Doi, 

1990, Findlay and White 1983, Williamson and Wilkinson, 1958, Forsyth et al., 

1958, Hassan el al., 1998, Hassan et al., 1996, Hassan et al., 1997, Hashimoto 

et al., 1993, Jau et al., 2005, Jensen and Sicko 1971). It was noted by Dawes 

and Senior that P(3HB) was similar to starch and glycogen as a storage 

compound (Dawes and Senior 1973) and was produced by Bacillus megaterium 

under high C/N ratio. In carbon deficient conditions, the organism started to 

utilise the accumulated P(3HB) (Macrae and Wilkinson 1958, Macrae and 

Wilkinson 1958). Before 1974, P(3HB) copolymers were the only known 

members of the PHA family. However,  3-hydroxyvalerate  (3HV),  
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3- hydroxyhexanoate (3HHx) and 3-hydroxyheptanoate (3HHp) monomer units 

were discovered by Wallen and Rohwedder from activated sewage sludge 

(Wallen and Rohwedder 1974, Steinbuchel and Valentin 1995, Sudesh et al., 

2000).  In 1983, two other members of the PHA family such as 3HHp and 

P(3HO) were also discovered from B. megaterium and Pseudomonas 

oleovorans respectively (Findlay and White 1983, De Smet et al., 1983). It was 

also observed in the above study that production of different PHA monomer 

units is dependent on the carbon source used for the organisms. Hence, it was 

possible to produce PHA copolymers of different monomer compositions with 

straight, branched, saturated, unsaturated and also aromatic structures (Witholt 

and Kessler 1999). To date, more than 150 different monomer constituents of 

PHAs have been discovered (Steinbuchel 2001, Steinbuchel and Valentin 1995) 

and more than 300 different types of PHA producing microorganisms have been 

identified. The producers include Ralstonia eutropha reclassified from 

Alcaligenes eutrophus, Alcaligenes latus, Azotobacter vinelandii, Azotobacter 

chroococcum, Methylotrophs, Pseudomonads, Rhodobacter sphaeroides and 

recombinant Escherichia coli (Sudesh et al., 2000). 

 

1.3. Properties and different classes of PHAs 

 

 

Figure 1.1: General structural formula of PHAs. 

(x = 1, 2, 3; n = 100-30000; R1, R2 = alkyl groups, C1-C13) (adapted from Philip et al., 2007) 

 

PHAs with different physical and mechanical properties have been identified. 

Several factors can affect these properties such as the distance between the 

ester linkages in the polymer backbone, length and type of the side groups and 

number of the repeating units in the polymer chain (Rai et al., 2011). For 

instance, flexibility, crystallinity, melting point and glass transition temperature of 

the polymer produced are dependent on the length and the type of the side 

groups of the repeating units (Volova 2004, Rai et al., 2011). As the length of 
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the side chain on the -carbon of the PHA increases, the physical property of 

polymer is changed from a glassy state to more soft and sticky material (Hazer 

et al., 2012). Fermentation conditions, the producing organism and the carbon 

source used have a direct effect on the PHA monomer composition and thereby 

polymer properties, as well as PHA yield (Ojumu et al., 2004, Rai et al., 2011).                                                                               

 

PHAs are degraded by several microbes in the environment and by enzymes 

present in the human body (Valappil et al., 2006, Philip et al., 2007). PHAs are 

thermoplastic and elastomeric materials with different mechanical, physical and 

thermal properties (Philip et al., 2007, Chen 2010). They are water insoluble 

biodegradable polymers. Moreover, PHAs are also known to be biocompatible 

polymers due to their non-toxic degradation products and have ability to support 

cell adhesion, migration, differentiation and proliferation functions for tissue 

engineering applications (Saad et al., 1999, Chen and Wu 2005, Zhao et al., 

2003, Philip et al., 2007). PHAs have piezoelectric property which makes them 

suitable for bone regeneration, nerve repair as well as nerve regeneration 

(Williams et al., 2000).  

 

Basically, PHAs can be broadly subdivided into three groups based on the 

number of carbon atoms present in its monomer units (Hazer et al., 2012):  

 

(a) Short-chain-length PHAs consisting of 3-5 carbon atoms (PHA
SCL

).  

(b) Medium-chain-length PHAs consisting of 6-14 carbon atoms (PHA
MCL

).  

(c) Long-chain-length PHAs consisting of more than 14 carbon atoms (PHA
LCL

). 

 

1.3.1. SCL PHAs 

 

The most thoroughly investigated PHA is the poly(3-hydroxybutyrate) (P(3HB)), 

known as SCL-PHA. The other common example of SCL-PHA is poly(4-

hydroxybutyrate) (P(4HB)) (Hazer et al., 2012). R. eutropha is widely used for the 

P(3HB) production (Hazer et al., 2012). It is a highly crystalline, brittle, stiff and 

piezoelectric material. It has melting temperature in the range of 175-179°C, 

glass transition temperature of -3-4°C, crystallinity of 60-80%, tensile strength up 

to 40 MPa and elongation at break of 5-6% (Saad et al., 1999). It has ideal 



Chapter 1: Introduction 

6 

 

biocompatibility because the polymer and its degradation product,                       

3-hydroxybutyric acid is the product of cell metabolism and is present in blood 

and tissues. Hence, many in vitro investigations have shown that P(3HB) is 

biocompatible to various cell lines, including osteoblasts, epithelial cells and 

ovine chondrocytes, which triggered commercial interest in the polymer (Zhao et 

al., 2003). However, P(3HB) has been found to induce some inflammatory 

responses (Bhubalan et al., 2007). Due to the brittle nature and high stiffness of 

P(3HB), its application is significantly limited (Bohmert et al., 2002). Due to the 

poor physical properties of P(3HB), the incorporation of a second monomer unit 

into P(3HB) can significantly enhance its properties. This has led to an increased 

interest to produce copolymers with improved qualities. The incorporation  of    

3-hydroxyvalerate (3HV) into P(3HB) results in poly(3-hydroxybutyrate-co-3-

hydroxyvalerate) (P(3HB-co-3HV)) which is more flexible and tougher than 

P(3HB), and is easier to degrade when discarded into the environment (Doi 1990, 

Kunioka et al., 1989, Saito et al., 1996). 

 

1.3.2. MCL PHAs 

 

MCL-PHAs are polyesters accumulated by fluorescent Pseudomonads. After 

the discovery of MCL-PHAs in 1983, more than 100 different monomer units 

have been characterised within MCL-PHAs, in order to achieve different 

physical as well as mechanical and thermal properties, to be utilized in various 

applications (Witholt and Kessler, 1999). The melting point (Tm~40-60oC) and 

glass transition temperature (Tg~-50 to -25oC) of MCL-PHAs are much lower 

than those of P(3HB) (Witholt and Kessler, 1999, Rai et al., 2011). The most 

common examples of MCL-PHAs are thermoplastic elastomers such as poly(3-

hydroxyhexanoate) (P(3HHx)) and poly(3-hydroxyoctanoate) (P(3HO)) (Basnett 

2014). These materials have lower crystallinity, are rather flexible and soft. They 

have elastomeric nature which increases with the length of the side chain. 

These are also biodegradable, water resistant and biocompatible, which could 

be utilized in medical implants, such as scaffolding for the regeneration of 

arteries and nerve axons (Rai et al., 2011, Hazer et al., 2012). The major 

advantage of the MCL-PHAs is the variability in their biological as well as 

material properties which can be tailored by altering the culture conditions, 

carbon source and organism used. Also, they have less acidic end products 
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compared to synthetic biodegradable elastomeric polymers, PGA (poly-glycolic 

acid), PLLA (poly-L-Lactic acid) , poly(lactic-co-glycolic acid) (PLGA), hence 

induce lesser inflammatory reaction when used in vivo (Williams et al., 1999, 

Martin and Williams 2003, Rezvan et al., 2006). Moreover, synthetic polymers 

such as polycaprolactone (PCL) (Rezvan et al., 2006, Prabhakar et al., 2005) 

contain traces of undesirable chemical impurities such as the catalysts used for 

the synthesis, which are not present in MCL-PHAs. Hence, PHAs are truly 

considered as “environmentally friendly” biodegradable and highly 

biocompatible materials, suitable for two promising range of applications: as a 

potential replacement for synthetic plastics; the other as a biomedical material 

(Rachana et al., 2008, Ashby and Foglia 1998). However, until recently only a 

few PHAs such as poly(3-hydroxybutyrate) and poly(-3-hydroxybutyrate-co-3-

hydroxyvalerate) were available commercially. 

 

 As a result of research developments, PHAs are being considered for use in 

different industrial applications such as: packaging industry, medicine, 

pharmacy, agriculture, food industry, paint industry and biomedical applications: 

medical device development including sutures, stents, nerve repair devices and 

wound dressing which are discussed in section 1.6. in detail (Rai et al., 2011, 

Grage et al., 2009, Keshavarz and Roy 2010, Hazer et al., 2012). 

 

1.4. Biosynthesis of PHAs  

 

As mentioned earlier, PHAs are storage compounds of carbon, and therefore 

energy, in various microorganisms and accumulated in the form of granules in 

the organisms. The size and the number of these granules per cell depend on 

the PHA producing bacterial species (Ojumu et al., 2004).  In the previous study 

carried out by Byrom, it was observed that Alcaligenes eutrophus synthesised 8 

to 13 such granules with the diameter of 0.2 to 0.5 μm per cell (Byrom 1994, 

Ojumu et al., 2004). When there is a short supply of carbon and energy, 

organisms start to utilise accumulated PHAs to survive difficult conditions 

(Byrom 1994, Ojumu et al., 2004). Moreover, PHAs can also help bacteria to 

survive in harsh environmental conditions such as ultraviolet (UV) irradiation, 

heat and osmotic shock by protecting their DNA from damage (Kadouri et al., 

2005, Giin-Yu et al., 2014). PHAs are mainly made up of R(-)-3-hydroxyalkanoic 
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acid monomer units containing carbon atoms ranging from C3 to C14. They are 

saturated or unsaturated polymers with straight or branched chains comprising 

aliphatic or aromatic side groups (Doi et al., 1992, DeSmet et al., 1983, Ojumu 

et al., 2004). This is due to the substrate specificity of the PHA biosynthetic 

enzymes in the particular organism (Anderson and Dawes 1990, Ojumu et al., 

2004). For example, only SCL 3-hydroxyalkanoates (3HAs) can be polymerized 

by the A. eutrophus, PHA synthase enzyme. While, in case of Pseudomonas 

oleovorans, the PHA synthase enzyme can only polymerize MCL                      

3-hydroxyalkanoates (3HAs) (Ojumu et al., 2004). MCL-PHAs can possess 

different functional groups such as olefins, branched hydrocarbyls, halogens, 

aromatic and cyano with different physical and mechanical properties. Hence, 

they are attractive biomaterials for a range of different applications (Anderson 

and Dawes 1990, Ojumu et al., 2004). 

 

There are three different pathways known for the PHA biosynthesis which are 

interconnected with the anabolic/catabolic pathways such as glycolysis, Krebs 

Cycle, -oxidation, de novo fatty acids synthesis, amino acid catabolism, Calvin 

Cycle, and serine pathway of the producing organism (Lu et al., 2009, Giin-Yu 

et al., 2014).  Acetyl-CoA is the common intermediate between PHA synthesis 

and metabolic pathways. When there are nutrient rich conditions, acetyl-CoA is 

transferred into the Krebs Cycle by excessive coenzyme A production which 

inhibits 3-ketothiolase (PhaA) and blocks PHA synthesis (Ratledge and 

Kristiansen 2001). However, when there is nutrient limiting conditions, the level 

of coenzyme A is non-inhibitory which allows acetyl-CoA to be channelled into 

PHA synthetic pathways (Ratledge and Kristiansen 2001, Jung and Lee 2000).  

Biosynthesis of PHAs involves two main steps: 1) Synthesis of hydroxyacyl-

CoA, 2) Polymerisation of hydroxyacyl-CoA into PHAs (Rehm and Steinbüchel 

2001). As mentioned above, three different pathways are involved in the 

production of the 3-hydroxyacyl CoA units (Figure 1.2) from which, in two 

pathways, carbohydrates are being utilised as the feedstocks for the organisms 

in the PHA production. While, in the third pathway, PHA production is carried 

out using fatty acids as the carbon source for the organisms (Byrom 1994, Doi 

and Abe 1990, Poirier et al., 1995, Steinbüchel 1991). 
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Figure 1.2: Metabolic pathways involved in the biosynthesis of PHAs from related and 

unrelated carbon sources (adapted from Kazunori et al., 2001). 

 

The first pathway involves three key enzymes, β-ketothiolase, NADPH-

dependent acetoacetyl-CoA reductase and PHA synthase, for SCL-PHAs 

biosynthesis by using structurally unrelated carbohydrates as the carbon 

feedstocks for the producer organisms (Kazunori 2001). β-ketothiolase 

combines two molecules of acetyl-CoA to acetoacetyl-CoA which can then be 

converted into 3-hydroxybutyryl-CoA by NADPH-dependent acetoacetyl-CoA 

reductase. The third and the final step is the polymerisation of 3-hydroxybutyryl-

CoA units into P(3HB) catalysed by PHB synthase (Philip et al., 2007). P(3HB-

co-3HV) can also be synthesised using the same pathway. A second pathway, 

called β-oxidation pathway, uses structurally related fatty acids as the carbon 

source for MCL-PHAs production. There are three main enzymes involved in 

this pathway for PHA biosynthesis: 1) enoyl-CoA hydratase which converts      

2-trans-enoyl-CoA into (R)-3-hydroxyacyl CoA , 2) hydroxyacyl-CoA epimerase 
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which converts (S)-3-hydroxyacyl-CoA into (R)-3-hydroxyacyl CoA and,           

3) β-ketoacyl-CoA reductase which converts 3-ketoacyl-CoA to (R)-3-

hydroxyacyl CoA (Huisman et al., 1989). Finally, the last step involves 

polymerization of the produced (R)-3-hydroxyacyl CoA into MCL-PHAs using 

PHA synthase (Rehm 2007). In this pathway, the resulting polymer is similar in 

structure to the carbon source used and sometimes shortened by 2, 4 or 6 

carbon atoms (Huisman et al., 1989). The last pathway is called the de novo 

fatty acid biosynthesis pathway, which uses structurally unrelated 

carbohydrates as the feedstocks for the organisms in MCL-PHA production 

(Kazunori 2001). After the oxidation of the sugars, the generated acetyl-CoA 

molecules are directed into de novo fatty acid biosynthesis pathway which ends 

up into (R)-3-hydroxyacyl-ACP precursor molecules. Finally, (R)-3-hydroxyacyl-

ACP is converted into (R)-3-hydroxyacyl- CoA by (R)-3-hydroxyacyl-ACP-CoA 

transacylase and gets polymerized into MCL-PHAs by the PHA synthase (Chen 

2010). 

 

1.5. PHA production using renewable resources 
 
 
There has been a great interest in commercialising PHA production due to their 

various advantages. However, petrochemically derived plastics are still the 

material of choice due to their comparatively lower production costs. Moreover, 

utilising the expensive carbon feedstocks for PHA production, high recovery 

cost and relatively low PHA yield has put up the overall price of PHA production 

(Jiun-Yee et al., 2010, Chenyu 2012).  If expensive raw materials have been 

used for the PHA production, it contributes about 30-40% of the total 

fermentation cost (Chenyu 2012). Hence, the major cost in the PHA production 

is the cost of the substrate (Yamane 1993). Therefore, to make PHA production 

more economical, many researchers are focusing on the identification of 

renewable, inexpensive and readily available carbon substrates, which not only 

reduce the production costs but also increase the polymer yields (Ashby and 

Foglia 1998). To make the PHA production commercially viable, there are few 

criteria which could be highlighted. Main criteria involve the utilization of the 

inexpensive carbon source. Moreover, an effective PHA production strategy 

such as efficient bacterial strains, fermentation and recovery processes are also 

very important in commercialisation of PHAs (Grothe et al., 1999, Lee 1996). 
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In recent years, there has been significant increase in the agricultural and food 

processing industries. Hence, large amount of waste materials from these 

industries are being discarded each year. These waste materials could be used 

as the carbon feedstocks for the PHA producing organisms. Therefore, by using 

waste effluents of agricultural and food processing industries would not only 

decrease the PHA production cost but also solve the problem of waste 

management (Yu 2007). Moreover, various bacterial strains have been 

identified for PHA production using renewable inexpensive carbon sources such 

as complex waste effluents, plant oils (Fukui and Doi 1998), fatty acids (Eggink 

et al., 1992), alkanes (Lageveen et al., 1988) and carbohydrates. In recent 

years, the use of organic wastes (swine waste liquor, palm oil mill effluents, and 

vegetable and fruit wastes), many agricultural and dairy by-products (whey, 

molasses) and vegetable oils have been studied as an alternative substrate for 

PHA production. Among these, vegetable oils are considered as the most 

suitable and desirable feedstocks for PHA production due to their high 

productivity. In contrast to the other carbon sources, the theoretical yield 

coefficients of PHA production from vegetable oils are as high as over 1.0 g-

PHA per g-vegetable oil used, since they have a much higher number of carbon 

atoms per unit weight. Thus, vegetable oils can reduce production cost and 

increase polymer productivity when compared with sugar substrates such as 

glucose or sucrose (Daniel 2006, Chenyu et al., 2012, Chee et al., 2010). 

Furthermore, there are some studies which show that vegetable oil could 

significantly improve PHA production compared to sugars, which are normally 

used for the PHA accumulation by various bacteria. Additionally, previous 

studies have shown that for each gram of either glucose or plant oils, the 

P(3HB) yields produced from plant oils were almost twofold higher (0.8 g PHA 

per 1 g of plant oil) as compared to when glucose (0.3 g PHA per 1 g of 

glucose) was used as the sole carbon source (Akiyama et al., 2003). Although 

fats and oils are renewable and inexpensive agricultural co-products, there are 

a small number of reports published demonstrating the use of fats and oils for 

PHA production (Fukui and Doi 1998). Below are some examples of the 

industrial by-products, such as molasses, whey, lignocellulosic raw materials, 

fats and oils, glycerols and carbon dioxide, used for the production of PHAs. 
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1.5.1. Fats, vegetable oils and waste cooking oils 

 

In the 1990s, relatively low prices and renewability of triacylglycerides (TAG) 

(such as fats, vegetable oils and waste cooking oils) and its derived fatty acids 

attracted interest for the fermentative PHA production (Chenyu et al., 2012). In 

comparison to carbohydrates, fatty acids deliver more energy per mole when 

they are converted to PHAs (Solaiman et al., 2006). Shimamura et al. (1994) 

first investigated the PHA production directly from TAGs by Aeromonas caviae. 

Cromwick et al. (1996) showed Pseudomonas resinovorans accumulated PHA 

up to 15% of its cell dry weight from tallow. Ashby and Foglia (1998) further 

investigated PHA production by Pseudomonas resinovorans using a whole 

range of TAGs, such as lard, butter oil, olive oil, coconut oil, and soybean oil for 

the production of MCL-PHA. Plant oils such as soybean oil, palm oil and corn 

oil are desirable carbon sources for PHA production as they are cheaper than 

most sugars. The production of PHAs using sugars has been optimised to 

achieve high productivity. However, the cost of PHA production using sugars is 

higher than the ‘acceptable’ level as it results in low PHA yield (Lee and Choi 

1999). Approximately 0.3 to 0.4 g of P(3HB) per g of glucose has been reported 

to be the highest yield of PHA production. On the contrary, plant oils are 

predicted to provide higher yield for both cell biomass and PHA production (0.6 

to 0.8 g of PHA per g of oil) as they contain higher carbon content per weight 

compared to sugars (Akiyama et al., 2003). Kahar and coworkers (2004) 

investigated P(3HB) homopolymer and P(3HB-co-5 mol% 3HHx) copolymer 

production of up to 80 wt% PHA of the dry cell weight by C. necator H16 and its 

recombinant strain (harbouring the PHA synthase gene from A. caviae) 

respectively from soybean oil as the sole carbon source (Fukui Doi 1998, Kahar 

and coworkers 2004). Recombinant C. necator H16 was also able to utilise 

palm oil as the sole carbon source (Loo 2005). There are also few other 

bacteria that are known to produce PHA from plant oils, such as Burkholderia 

cepacia (Alias and Tan 2005) and Comamonas testosteroni (Thakor et al., 

2005). Chee and co-workers have isolated Burkholderia sp. USM (JCM15050) 

from oil polluted wastewater and reported that this bacterium could produce 

P(3HB) up to 70 wt% of dry cell weight from palm oil (Chee et al., 2010). C. 

testosteroni has been studied for its ability to synthesize MCL-PHA from 

vegetable oils such as castor seed oil, coconut oil, mustard oil, cotton seed oil, 
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groundnut oil, olive oil and sesame oil (Thakor et al., 2005). This bacterium was 

shown to accumulate PHA up to 80 wt% of dry cell weight with major monomer 

compositions consisting of 3HO and 3HD (Thakor et al., 2005). Owing to the 

absence of lipase activity in P. putida, plant oils in the form of triglycerides could 

not support both the cell growth and PHA production in P. putida. Therefore, an 

additional saponification step was needed to break down the triglycerides into 

free fatty acids, which can be assimilated by P. putida for growth and PHA 

production (Tan et al., 1997). Kim and coworkers (Kim et al., 1997) performed a 

two-stage fed-batch cultivation using P. putida by supplying octanoic acid in the 

first step, which resulted in good growth and could stimulate the biosynthesis of 

MCL-PHAs efficiently. 

 

1.5.2. Glycerol 

 

Glycerol is the main by-product of the biodiesel production plant and palm oil 

refining industry. In 2009, the biodiesel production in Europe exceeded 10 

billion litres, resulting in about 1 billion litres of coproduced glycerol. Hence, 

there has been decrease in the world wide market price for glycerol, which 

makes it a potential carbon feedstock for PHA production (da Silva et al., 2009, 

Chee et al., 2010, Ashby 2005, Madden et al., 1999). In the early nineties, 

Pseudomonas putida KT2442 was shown to produce MCL-PHA from glycerol 

which had similar polymer characteristics to the polymer produced by the same 

strain from glucose or fructose as a carbon source (Solaiman et al., 2006, 

Huijberts et al., 1992).  Bormann and Roth (1999) demonstrated the production 

of P(3HB) up to 50% and 65% dcw from glycerol using Methylobacterium 

rhodesianum and C. necator. Ashby et al. 2005 investigated PHA synthesis by 

Pseudomonas oleovorans NRRL B-14682 and Pseudomonas corrugata 388. A 

recombinant E. coli strain with the phaC1 gene from Pseudomonas sp. LDC-5 

was prepared by Sujatha and Shenbagarathai (2006) which showed 3.4 g/L 

PHAs on glycerol. As well as pure glycerol, crude glycerol has also been 

studied for PHA production. Ashby et al. (2004) used crude glycerol, derived 

from a soy-based biodiesel production site, for the microbial production of 

PHAs. It was shown that P. oleovorans NRRL B-14682 and P. corrugata 388 

could accumulate MCL-PHAs from this carbon source in shaken flasks. Koller et 

al. (2005) was able to produce 5.9 g/L P(3HB-co-3HV) copolymer, without 
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adding any precursor molecule in the feed by using crude glycerol as the 

carbon source, combined with meat and bone meals as a nitrogen source. 

Mothes et al. (2007) also investigated the usability of the different crude glycerol 

streams for P(3HB) production by C. necator JMP134 and Paracoccus 

denitrificans and noted that contaminated waste glycerol streams could be a 

more suitable stream for the PHA production (Cavalheiro et al., 2009).  

 

1.5.3. Whey and whey hydrolysates 

 

Whey is the main by-product produced in large quantities in the manufacturing 

of cheese. It is estimated that annual whey formation exceeds 40 million tons in 

the European Union (Koller et al., 2008). Whey is a lactose rich substrate, 

hence it would be of great interest for PHA production as a good and cheap 

carbon and energy source. A recombinant Escherichia coli strain expressing 

Cupriavidus necator phaC2 gene (also known as Ralstonia eutropha) was 

prepared by Lee et al. (1997) and showed 81% DCW P(3HB) yield from whey 

(Lee et al., 1997).  Lee and his co-workers also constructed a recombinant      

E. coli GCSC 6576 expressing Ralstonia eutropha PHA biosynthesis genes and 

E. coli fts Z gene, which showed 50 g/L P(3HB) from whey powder and 69 g/L 

P(3HB) from concentrated whey solution containing 210 g/L lactose (Wong and 

Lee 1998).  Ahn et al. (2000) used a recombinant E. coli strain CGSC 4401 and 

whey solution containing 280 g/L lactose, which achieved 96.2 g/L P(3HB)  in 

37.5 hours. Using the system of cell recycle membrane with the same strain 

and a lactose concentration of 280 g/L, Ahn et al. (2001) achieved 168 g/L 

P(3HB) in 36.5 hours. Some other bacteria such as Ralstonia eutropha 

DSM545, Pseudomonas hydrogenovora, Thermus thermophilus HB8 and wild 

strains, such as Methylobacterium sp. ZP24, Hydrogenophaga pseudoflava 

DSM1034 have also been explored for their PHA producing abilities using whey 

which showed comparatively lower PHA accumulation than the recombinant    

E. coli fermentations. (Chenyu et al., 2012). 

 

1.5.4. Molasses 

 

Molasses is a sugar-rich by-product of the sugar manufacturing industries 

(Albuquerque et al., 2007). Large scale PHA production from molasses has 
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been exploited due to their abundance production from refining plants (Zhang et 

al., 1994). The production of P(3HB) by Azotobacter vinelandii UWD using 

sugar beet molasses was first investigated in 1992  (Page 1992). Chen and 

Page (1997) observed P(3HB) production of 19 to 22 g/L by Azotobacter 

vinelandii UWD. Albuquerque et al. (2007) reported PHA production from cane 

molasses using a three-step fermentation strategy. Apart from normal 

molasses, fermented molasses and waste water containing volatile fatty acids 

(VFAs) were also investigated for PHA production using combination of 

bacterial strains by Pisco et al. (2009) and Bengtsson et al. (2010) which 

showed efficient PHA accumulation. Use of sugar cane molasses for PHA 

production was further studied by Wu et al. (2001) using Bacillus sp. JMa5 

which showed higher cell growth and P(3HB) accumulation of 25-35% dcw. 

P(3HB) accumulation of up to 43% dcw was observed in B. megaterium ATCC 

6748 when sugar cane molasses was used as the carbon feed for this organism 

(Chaijamrus & Udpuay 2008). Kulpreecha et al. (2009) observed 42% dcw 

P(3HB) accumulation in B. megaterium BA-019 using cane molasses. Soy 

molasses is another attractive carbon source for PHA production because it is 

very rich in sucrose. MCL-PHA production by Pseudomonas corrugate using 

soy molasses was first observed by Solaiman et al. (2006a). In this study, PHA 

accumulation of 5-7% dcw was observed giving higher concentrations of 3-

hydroxydodecanoate, 3-hydroxyoctanoate and 3-hydroxytetradecenoate 

monomer units. Lower PHA yield in this study suggested that efficient PHA 

production using soy molasses was obtained from Gram-positive bacteria, such 

as Bacillus. Sp CL1 which exhibited up to 90% dcw PHA accumulation. Bacillus 

strains, HF-1 and HF-2, were also able to accumulate P(3HB) from 

disintegrated soy and malt wastes (Law et al., 2001).  

 

1.5.5. Lignocellulosic raw materials 

 

Increasing food prices has reinforced scientist’s interest in utilizing 

lignocellulosic materials for the production of biofuel and biochemical 

compounds (Lin et al., 2012). Due to their high abundance and cellulose rich 

nature, they have been an attractive carbon feedstock for PHA production. 

Approximately 80 billion tons of woody biomass is generated annually 

worldwide, contributing to a total annual production of 180 billion tons plant 
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matter (Perlack et al., 2005). Saccharophagus degradans ATCC 43961 is 

known to produce PHA from cellulose (Munoz and Riley 2008). Lignocellulosic 

materials need hydrolysis to prepare free sugars due to their recalcitrant nature. 

Pseudomonas pseudoava exhibited P(3HB) production of 22% dcw using the 

hemicellulosic fraction of wood (Bertrand et al., 1990). Burkholderia cepacia 

ATCC 17759, Burkholderia cepacia IPT 048 and B. sacchari IPT 101 were 

found to produce P(3HB) yield of 1.6-3.7 g/L and 60% dcw from xylose 

(Ramsay et al., 1995, Young et al., 1994, Silva et al., 2004). Ramsay et al. 

(1989) and Ramsay et al. (1990) also observed the production of P(3HBV) from 

fructose and glucose using propionic acid as a co-substrate. Burkholderia 

cepacia ATCC 17759 was further investigated by Keenan et al. (2006a and 

2006b) for the production of 1.3-4.2 g/L P(3HBV) using xylose and laevulinic 

acid. Moreover, 2.0 g/L P(3HBV) accumulation was observed from the 

hemicellulosic content of the aspen and maple. Li et al. (2007) constructed an 

E. coli phosphotransferase system (PTS) mutant using Ralstronia eutropha 

phaCRe and phaABRe genes which produced SCL-PHA using a substrate 

containing a mixture of glucose and xylose. When the same mutant was 

prepared using Pseudomonas aeruginosa phaC1 gene, it produced MCL-PHAs 

using this carbon source. Recently, Van-Thuoc et al. (2008) demonstrated that 

Halomonas boliviensis LC1 could produce P(3HB) on enzymatically hydrolysed 

wheat bran. Huang et al. (2006) investigated Haloferax mediterranei bacteria for 

PHA biosynthesis ability from extruded rice bran and corn starch.  

 

1.5.6. Carbon dioxide 

 

Transgenic plants are other producers of PHAs which utilise carbon dioxide 

(CO2) (abundantly available on earth) as the carbon source for PHA 

accumulation (Braunegg et al., 1998). Poirier and coworkers (Poirier et al., 

1992) were the first to produce PHAs using genetically modified plants 

(Arabidopsis thaliana) which encode the PHA synthesis genes from C. necator. 

Another example of a PHA producer, utilizing carbon dioxide as the feedstock is 

cyanobacteria. They naturally possess the key enzyme (PHA synthase) for the 

production of PHAs (Sudesh et al., 2002). Spirulina platensis UMACC 161 (Jau 

et al., 2005) and Synechocystis sp. PCC6803 (Sudesh et al., 2001) are some of 

the cyanobacteria that can produce up to 10% dcw P(3HB) homopolymer in 
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nitrogen limiting conditions with added acetate (Jau et al., 2005, Sudesh et al., 

2001). 

 

Table 1.1: Bacteria used for production of PHAs from plant oils and wastes (adapted from 

Jiun-Yee et al., 2010). 

 

Strains PHA type Substrates PHA content (wt%) 

 

Alcaligenes latus 

DSM 1124 

 

P(3HB) 

 

Soya waste, malt 

waste 

 

33, 71 

Bacillus 

megaterium 

P(3HB) Beet molasses, date 

syrup 
~50 

Burkholderia sp. 

USM (JCM 15050) 

P(3HB) Palm oil derivatives, 

fatty acids, glycerol 
22-70 

Comamonas 

testosteroni 

MCL-PHA Castor oil, coconut 

oil, mustard oil, 

cottonseed oil, 

groundnut oil, olive 

oil, sesame oil 

79-88 

Cupriavidus 

necator 

P(3HB) Bagasse 

hydrolysates 
54 

Cupriavidus 

necator H16 

P(3HB-co- 

3HV) 

Crude palm kernel 

oil, olive oil, 

sunflower oil, palm 

kernel oil, cooking 

oil, palm olein, crude 

palm oil, coconut oil 

+ sodium propionate 

65-90 

Cupriavidus 

necator DSM 545 

P(3HB) Waste glycerol 50 

Recombinant 

Cupriavidus 

necator 

P(3HB-co- 

3HHx) 

Palm kernel oil, palm 

olein, crude palm oil, 

palm acid oil 

40-90 

Recombinant P(3HB-co- Soybean oil 6 
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Escherichia coli 3HHx-co-3HO) 

Pseudomonas 

aeruginosa 

IFO3924 

MCL-PHA Palm oil 39 

Pseudomonas 

aeruginosa 

NCIMB 40045 

MCL-PHA Waste frying oil 29 

Pseudomonas 

guezennei biovar. 

tikehau 

MCL-PHA Coprah oil 63 

Thermus 

thermophilus HB8 

P(3HV-co- 

3HHp-co-3HNco- 

3HU) 

Whey 36 

 

 

1.6. Applications of PHAs  

 

PHAs are “environmentally friendly” biodegradable and highly biocompatible 

materials; hence there has been a great amount of interest in the 

commercialisation of these biopolymers. They have shown their applicability as 

the potential replacement for synthetic plastics in bulk applications (packaging 

industry), medicine, pharmacy, agriculture, food industry and paint industry. 

Moreover, due to research developments, they have been considered as the 

efficient biomaterials for medical device development including sutures, stents, 

nerve repair devices and wound dressing. Some of the applications of PHAs are 

discussed here as follows. 

 

1.6.1. Bulk Applications of PHAs 

 

The PHAs have various properties which make them suitable replacement 

material for petro chemically derived plastics. Hence, they can be used for 

several bulk applications. The first consumer product made out of PHAs was 

biodegradable shampoo bottles made of Biopol (ICI, UK), launched in April 

1990 by Wella AG. Initially, PHAs were used in packaging films mainly in bags, 
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containers and paper coatings. Similar applications of PHAs as conventional 

commodity plastics include disposable items, such as razors, utensils, diapers, 

feminine hygiene products, foils, films and diaphragms, combs, pens, bullets, 

cosmetic containers-shampoo bottles and cups (Akaraonye et al., 2010, Chen 

2005, Reddy et al., 2003, Rehm 2006, Panchal et al., 2012). PHA latex can be 

used to cover paper or cardboard to make water-resistant surfaces. A P(3HB) 

and P(3HO) blend was commercialised by Metabolix, a US-based company, for 

the use as a food additive approved by the FDA (Philip et al., 2007, Clarinval 

and Halleux 2005, Panchal et al., 2012). One other example of a commercial 

PHA was poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-3HHx)) 

copolymer used to make flushables (wipes), nonwoven fabrics, binders, flexible 

packaging, thermoformed articles, synthetic paper and medical devices. P(3HB-

3HHx) can also be used to prepare pressure sensors for keyboards, stretch and 

acceleration measuring instruments, material testing, shock wave sensors, 

lighters, gas lighters; acoustics: microphone, ultrasonic detectors, sound 

pressure measuring instruments; oscillators: headphones, loudspeakers, for 

ultrasonic therapy and atomization of liquids due to their unique piezoelectric 

property (Panchal et al., 2012). Moreover, food packages, paper milk cartons 

and plastic beverage bottles could also be prepared due to the gas barrier 

properties of P(3HB-co-3HV) (Panchal et al., 2012). P(3HB), SCL-MCL 

copolymers (NodaxTM) and P(3HB-co-3HV) have also been used for controlled 

release of fertilisers, herbicides and insecticides (Galego et al., 2000, Ren et al., 

2005, Scholz 2000, Steinbuchel 2001, Panchal et al., 2012). Another use of 

PHAs in agriculture is as bacterial inoculants used to enhance nitrogen fixation 

in plants. This was confirmed by field experiments in Mexico with maize and 

wheat. Increase in the crop yield was observed when PHA-rich nitrogen fixing 

bacteria (Azospirillum brasilense) was used. This PHA accumulating bacteria 

was able to survive the harsh conditions and help in nitrogen fixation resulting in 

higher crop yield (Philip et al., 2007). 

 

1.6.2. Biomedical Applications of PHAs 

 

PHAs are natural polymers with biocompatibility, biodegradability and lack of 

cytotoxic properties (Valappil et al., 2006). Hence, PHAs are attractive materials 

for biomedical applications. They have been broadly utilised to prepare some 
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medical devices such as sutures, stents, nerve repair devices and wound 

dressing (Rai et al., 2011, Hazer et al., 2012). Moreover, PHAs support cell 

attachment, migration, differentiation and proliferation functions which make 

them the material of choice for biomedical applications (Zhao et al., 2003). 

Some of the biomedical applications of PHAs are discussed here as follows. 

 

1.6.2.1. PHAs as the drug-delivery systems 

 

The traditional way of administering drugs is an either intravenous or 

extravascular route including oral administration. These methods have a major 

drawback of uncontrollable drug release at the target site. Hence, more 

advanced methods should be developed to overcome this problem. One such 

approach is to utilize biodegradable polymers as the drug delivery vehicles. 

Homo and copolymers of lactate and glycolate are commercially available and 

have shown sustained drug release over a 30 day period (Pouton and Akhtar 

1996, Valapil et al., 2007). However, they do not show controlled release which 

reinforced scientists’ interst in developing an alternative material for controlled 

drug delivery systems. In early 1990s, researchers noted PHAs with 

biodegradability and biocompatibility properties which made them potential 

biomaterials for drug delivery. P(3HB) was analyzed for controlled release of the 

7- hydroxyethyltheophylline which showed that polymer composition and its 

porosity combined with molecular weight of this drug affected the controlled 

release of the drug (Korsatko et al., 1983, Gould et al., 1987). Moreover, when 

metoclopramide (a drug used in the treatment of cattle disease) was 

encapsulated in P(3HB) and implanted subdermally in cattle, long term 

controlled release of this drug showed a positive response for this particular 

application (Jones et al., 1994). P(3HB) was also investigated for the release of 

an anti-cancer agent lomustine (CCNU), which showed rapid release of the 

drug in 24 hours from P(3HB) microspheres compared to the 7 day drug release 

from PLA microspheres (Bissery et al., 1984, Bissery et al., 1985). To study the 

treatment of chronic osteomyelitis by sulbactam-cefoperazone antibiotic 

release, poly(3HB-co-22mol%-3-HV) rods were prepared with this antibiotic 

encapsulated and implanted into a rabit tibia. These studies showed a decrease 

in the infection within 15 days of implantation and complete healing within 30 

days (Yagmurlu et al., 1999). In a study by Francis et al. (2010) tetracycline, 
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was encapsulated in P(3HB) microspheres, which changed polymer film surface 

morphology and roughness. Observations revealed that drug loaded P(3HB) 

microspheres were not only efficient substrates for drug delivery but also 

enhanced human keratinocyte cell line (HaCaT) attachment (Francis et al., 

2010). In another study by Francis et al. (2011) gentamicin loaded            

poly(3-hydroxybutyrate), P(3HB) microspheres were prepared and investigated 

for drug delivery applications. The results showed burst release of the drug in 

the initial stage followed by its sustained release (Francis et al., 2011). P(3HB) 

microspheres with encapsulated rifampicin (chemoembolising agent) were 

studied for the controlled release. However, it showed almost 90% of the drug 

released in 24 h which could be prevented by regulating the drug loading and 

the particle size (Zinn et al., 2001). 

 

1.6.2.2. PHAs as the scaffold materials in wound management 

 

Efficient wound treatment sutures must meet certain criteria such as high tensile 

strength, lack of inflammatory reactions, easy handling and good absorbability.  

Mainly two kinds of wound sutures are available; absorbable and non-

absorbable. Among these, absorbable natural (catgut), as well as synthetic 

materials (polygalactin-910 (Vicryl®), polydioxanone (PDS), polyglyconate, 

polyglecaprone-25 (Monocryl), and polygalactin-910 rapide (Vicryl Rapide®)), 

are available as the wound suture applications (Valappil et al., 2006). The use 

of catgut has been prohibited due to the chance of getting Creutzfeldt-Jakob 

Disease (CJD) (Singh and Maxwell 2006). P(3HB) was first suggested as an 

absorbable suture in mid 1960s. P(3HB) in the form of nonwoven fiber was then 

investigated for wound dressing materials, such as swabs, gauze, lint or fleece, 

by Steel and Norton-Berry in 1986 (Baptist and Ziegler 1965). In earlier 

investigations, it was observed that P(3HB) and P(3HB-co-3HV) sutures had the 

required strength for myofacial (skeletal muscle) wound healing (Volova et al., 

2003, Shishatskaya et al., 2004). These sutures were also compared with 

natural absorbable (catgut) and nonabsorbable (silk) sutures. In these 

investigations, P(3HB) and P(3HB-co-3HV) sutures were implanted in female 

wistar rats in which a prominent macrophagal stage was observed throughout 

the post-surgery monitoring period (Shishatskaya et al., 2004). Moreover, a 

prolonged 1 year in vivo investigation by Shishatskaya and colleagues also 
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showed a positive response, including less inflammatory reactions, necrosis 

and carcinogenesis, when P(3HB) and P(3HB-co-3HV) sutures were used. No 

change was observed in test animals in their weights, internal organs, blood 

morphology, biochemistry and lymphoid tissue reactions after suture 

implantation. Therefore, these investigations have revealed that PHAs can be 

further explored for the development of future natural absorbable wound 

sutures. P(3HB) and P(3HB-co-3HV) were also assessed by Webb and Adsetts 

in 1986 for their use as wound plaster in case of emergency to avoid any 

contamination through airborne bacteria (Williams and Martin 2005). P(3HB-co-

4HB) film was studied for its applicability as a wound healing suture. In this 

study, the prepared film was implanted in the abdominal cavity of the rat, 

between the cuts of skin and intestine to prevent adhesions. After 1 month of 

implantation of the polymer film, a complete healing of the wound was achieved 

without adhesions. However, the film showed poor degradation properties which 

suggested further development of the polymer properties (Ishikawa 1996).  

 

1.6.2.3. PHAs as the nerve repair devices 

 

Increasing amount of interest has been noted to develop efficient strategies for 

the treatment of the peripheral nerve and spinal cord injuries in which nerve 

regeneration has got a lot of attention. Four major components such as 

scaffolds, Schwann cells (supportive cells), growth factors and extracellular 

matrix are needed for the complex nerve regenerative engineering (Yang et al., 

2005, Yang et al., 2005). Continuous growth of axonal nerves is disrupted in 

case of spinal cord injury that is why it is very hard to repair and sometimes life 

threatening compared to peripheral nervous damage. Small distance nerve 

injuries are regenerated on their own in case of peripheral nerve damage. 

However, nerve grafts from elsewhere in the body are needed to cure larger 

nerve damage (Schmidt and Leach 2003). Mostly there are two medical devices 

prepared, conduits and carrier scaffolds for peripheral and spinal cord nerve 

injuries (Valappil et al., 2006). Conduits are commonly known as guidance 

channels and bridges which are being produced using some natural (e.g. 

collagen, chitosan, alginate, laminin, fibronectin) and synthetic (e.g. silicone, 

ethylene vinyl coacetate, ethyl vinyl acetate co-polymer, poly(lactide-co-



Chapter 1: Introduction 

23 

 

glycolide) (PLGA)) polymers. However, these polymers can only be used for 

short nerve gaps (Yang et al., 2005, Yang et al., 2005).  

 

Earlier investigations showed the use of nonwoven P(3HB) sheets to repair 2-3 

mm nerve gaps in cat models. Normal tissue response was observed in the 

investigation (Hazari et al., 1999, Hazari et al., 1999). In the subsequent 

investigation, it was observed that the P(3HB) conduit was able to regenerate 

10 mm rat sciatic nerve gap with less inflammatory reactions (Hazari et al., 

1999, Hazari et al., 1999). In another report, P(3HB) filled with alginate hydrogel 

and Schwann cells (SC) showed 10 mm rat sciatic nerve gap bridging with no 

inflammatory responses (Valappil et al., 2006). Preparation of P(4HB) nerve 

guide conduits demonstrated better axonal regeneration and improved sensory 

functions compared to previously studied P(3HB) conduits. In vivo 

investigations on 30 male Sprague-Dawley rats showed 10 mm sciatic nerve 

gap restoration with 0.8 mm per day regeneration rate (Opitz et al., 2004, 

Valappil et al., 2006). Moreover, P(4HB) showed better mechanical properties 

and less inflammatory reactions to be used as the carrier scaffolds for spinal 

cord injuries. To repair spinal cord injuries, P(3HB) polymer was also 

investigated as the carrier scaffold for extracellular matrix components and cell 

lines to support neuronal survival. In vivo investigations in rat models showed 

that when P(3HB) fibers coated with alginate hydrogel and fibronectin were 

implanted in adult rats, cell loss was reduced to 50% which was comparable to 

the animals treated with neurotrophic factors such as brain derived neurotrophic 

factor (BDNF) or neurotrophin-3 (NT-3) (Novikov et al., 2002). Moreover, full 

axonal growth along the entire length was observed when neonatal Schwann 

cells were incorporated into the graft material.  

 

From the above investigations, it was demonstrated that PHAs would make 

efficient nerve tissue engineered devices for peripheral nerve and spinal cord 

injuries. Moreover, it was revealed that highly porous materials can allow the 

inflow of the growth factors and nutrients to the host cells which would enhance 

nerve regeneration by increasing cell migration, proliferation and differentiation 

(Maquet et al., 2000, Ding et al., 2010, Queen 2006, Vondran et al., 2006). 

Several electrospun fibers of 100nm - 1µm were prepared from chitosan, 

poly(β-caprolactone), poly(L-lactide-co-glycolide) (PLGA), PHAs and have been 
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studied for nerve tissue regeneration applications. P(3HB) electrospun fibers 

and solvent cast films were investigated to analyze rat cerebellar granule 

neurons (rCGNs) behavior on them. This study revealed that electrospun 

P(3HB) fibers showed higher cell growth than 2D films (Bo-Yi et al., 2009). 

 

1.6.2.4. PHAs as materials for development of cardiovascular devices 

 

In recent years there has been an increase in cardiovascular disease 

worldwide. Hence, researchers are focusing on the development of new 

efficient treatment procedures for heart diseases. Commonly synthetic polymers 

are used for this treatment. However, these polymers are mostly non- 

degradable and contain high risk of immune response. Therefore, development 

of new alternative biomaterials would help to overcome this challenge. The 

desired properties for cardiovascular devices include lack of inflammatory 

reactions, resistance to microbial infection, long endurance, supporting repair 

and regeneration by cell attachment and proliferation (Kofidis et al., 2002, 

Morosco 2002, Smaill et al., 2000).  

 

There are several examples of PHAs being utilised for cardiovascular diseases 

within which pericardial patches made of P(3HB) are the most advanced 

amongst cardiovascular devices. Such patches have been utilised to prevent 

postsurgical adhesions between the heart and the sternum (Valappil et al., 

2006, Williams and Martin 1996). To study its applicability as a pericardial 

patch, in vivo investigations with 18 sheep showed less inflammation, no 

infection and lack of adhesion formation in the test animals receiving P(3HB) 

patches compared to control animals in which the pericardium was left open 

(Malm et al., 1992a). Moreover, human studies were also carried out to 

investigate post surgical adhesions after heart bypass or vascular replacement. 

In this study, 19 patients were implanted with a P(3HB) patch and 20 patients 

were left without the P(3HB) patch (Duvernoy et al., 1995). The final 

observations of this study revealed that the group of patients receiving the 

P(3HB) patches showed lower incidence of postsurgical adhesions than 

patients without the P(3HB) patches.  
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The other examples of PHA applications in cardiovascular diseases are artery 

augmentation, atrial septal defect repair, vascular grafts and heart valves. 

Patches made of P(3HB) in a non-woven form were also investigated for their 

use as artery augmentation devices for arterial regeneration (Malm et al., 1994). 

These patches were compared with patches made of Dacron materials. The 

patches made of P(3HB) were found covered with regenerated endothelial 

layers on both sides of the patch. Moreover, the disordered host arterial tissue 

showed complete regeneration with smooth muscle cells, collagen and elastic 

fibres on it. A non-woven P(3HB) patch has also been used to repair atrial 

septal defects giving complete endothelial regeneration on both sides of the 

atrium with sub-endothelial collagen layer and smooth muscle cells (Malm et al., 

1992c). In artery augmentation device development, porous P(4HB) patches 

were also investigated as the scaffold material in autologous cardiovascular 

tissue preparations. In sheep models, scaffolds seeded with endothelial, smooth 

muscle and fibroblast cells were implanted in the pulmonary artery. This 

experiment showed tissue regeneration and lack of adverse host tissue 

reactions such as thrombus, dilation or stenosis in the sheep models containing 

P(4HB) patches. In contrast, polytetrafluoroethylene (PTFE) patches showed 

swelling at the site of implantation, less tissue regeneration and blood leakage 

in the sheep models (Stock et al., 2000a, Valappil et al., 2006, Williams and 

Martin 1996). In another study, it was found that P(4HB) scaffolds were able to 

reconstruct viable ovine blood vessels which were functionally similar to native 

aorta. Moreover, tissue engineered blood vessels were also successfully 

prepared in a bioreactor using P(4HB) scaffolds seeded with autologous cells 

(Opitz et al., 2004).  

 

Metallic materials were the material of choice for cardiovascular stent 

preparations until now. However, the major drawback of this material is the 

restenosis due to excessive growth of the blood vessel wall. Moreover, they are 

non-degradable materials hence, require a second operation to remove them 

after tissue repair. Therefore, PHAs have received a lot of attention for the 

development of the biodegradable stents which could prevent reocclusion of the 

vessel wall and also the subsequent operation to remove them. In earlier 

investigations, it was observed that drug eluting biodegradable stents made of 

P(3HB) and P(3HB-co-3HV) showed prompt degradation within four weeks of 



Chapter 1: Introduction 

26 

 

implantation in vivo with temporary atrial cell proliferation (Van dar Giessen et 

al., 1996). Recently in a study carried out by Basnett et al. (2013), it was 

observed that the drug eluting stent prepared from Poly(3-

hydroxyoctanoate)/poly(3-hydroxybutyrate), P(3HO)/P(3HB), had controlled 

release of aspirin without any burst release over the period of 25 days (Basnett 

et al., 2013). 

 

Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)(P(3HB-co-4HB)) scaffold aterials 

were studied as vascular grafts for the repair of damaged smaller diameter 

blood vessels in dog models for 10 weeks, which showed graft degradation 

after 2 weeks of implantation (Noisshiki and Komatsuzaki 1995).              

Poly(3-hydroxyoctanoate-co-3-hydroxyheptanoate) (P(3HO-co-3HH)) was also 

investigated for the same application, which showed slower degradation with 

mild tissue inflammation (Marois et al., 1999c, 2000). In another study, P(3HO-

co-3HH) conduits were prepared with non-woven PGA, Poly(glycolic acid) mesh 

coating inside and incubated for 7 days with autologous endothelial, smooth 

muscle and fibroblasts cells. After incubation, grafts were implanted in the 

lambs’ abdominal aortic segments which showed less tissue irritations with 

higher cell growth. Moreover, native aorta like tissue regeneration was observed 

with collagen formation (Shum-Tim et al., 1999). 

 

In recent years, PHAs have been considered most promising biomaterials for 

heart valve developments. The materials used for the heart valve replacement 

surgery have undesirable properties which result in subsequent surgeries. In 

the case of adults, improved valve stability is required which stimulated 

scientists to develop more reliable materials for heart valve surgeries. In earlier 

investigations, synthetic absorbable materials such as PGA (Poly(glycolic acid)) 

and PLA (Poly(lactic acid)) were studied in vivo in lambs (Williams and Martin 

2005). This study revealed that the scaffolds prepared using these materials 

were very stiff and did not have enough elasticity to function as the valve 

leaflets in a trileaflet valve. Finally, the scaffold prepared using a porous 

P(3HHx-co-3HO)-PGA mesh showed significantly improved results in in vivo 

investigations in the lamb models (Opitz et al., 2004). However, until now the 

most prominent results were observed with trileaflet heart valve scaffold 

preparations using P(4HB) coated on a nonwoven PGA mesh. In vivo 
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implantation of the engineered valve in juvenile sheep showed a fully functional 

trileaflet heart valve regeneration in 20 weeks (Hoerstrup et al., 2000). 

   

1.6.2.5. PHAs as the dental materials 

 

PHAs have also been shown to be useful in the treatment of the periodontal 

ligament and jaw bone defects. Periodontosis is a disease caused by bacterial 

infection which halts the ligament development. Galgut et al. (1991) 

demonstrated the use of P(3HB-co-3HV) membranes for guided tissue 

regeneration (GTR) or guided bone regeneration in which they functioned not 

only as a barrier to make space for tissue regeneration, but also as a permeable 

membrane for contiguous nutrient supply (Williams and Martin 2005, Zinn et al., 

2001). Comparison of P(3HB-co-3HV) membranes with the membrane 

prepared from polytetraflouroethylene, polylactic acid and polycaprolactone 

showed that P(3HB-co-3HV) membranes were mechanically more stable and 

gained better tissue regeneration (Galgut et al., 1991). Studies on P(3HB-co-

3HV) membranes to treat jaw bone defects also showed complete bone 

regeneration within 6 months of implantation in rats (Kostopoulos and Karring 

1994a).  

 

1.7. Dental pulp regeneration 

 

Dental pulp is made up of loose vascular connective tissue with fibroblasts, 

blood vessels, nerves, and a population of stem cells, which provides nutritional 

and sensory properties to dentine, vitality and sensitivity to the tooth (Liu et al., 

2006, Syed-Picard et al., 2014). Moreover, it also has its own reparative 

capability and hence plays an important role in maintaining the long life of teeth 

(Schmalz and Galler 2011, Ravindran et al., 2013, Huangqin and Mingwen, 

2007).  

 

The most common diseases of dental pulp tissue are dental caries and 

irreversible pulpitis which affectes both children and adults (Petersen et al., 

2005, Ravindran et al., 2013, Suzuki et al., 2013). Root canal therapy is the 

common practice to treat these diseases, in which the whole pulp is removed 

and the empty space created is filled with inert material such as gutta percha, 
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resilon or silicone. (Ingle and Bakland 2002, Suzuki et al., 2013, Huang 2008, 

2009b, Hai-Hua et al., 2011, Orstavik 2005). This procedure makes the tooth 

insensitive, devitalised, brittle and susceptible to reinfection (Ingle and Bakland, 

2002, Kim et al., 2010a). This would increase the chances of needing a second 

operation. This conventional root canal treatment is getting success for most 

necrotic permanent teeth. However, there is less chance of complete treatment 

of immature teeth due to some difficulties such as poor apical sealing and 

frequent cervical root fracture (Cvek 1992, Sakai et al., 2011). This could halt 

the root formation of the child’s immature teeth (Cvek 1992). The common root 

canal treatment can prevent reinfection but cannot support root development. 

(Lentzari and Kozirakis 1989, McTigue et al., 2013, Rosa et al., 2013). 

Moreover, the loss of pulp vitality in young permanent teeth terminates dentine 

formation and subsequent tooth maturation. Thus, researchers are getting 

involved in the development of alternative methods to replace the conventional 

root canal treatment and to overcome common difficulties associated with this 

treatment of dental caries and irreversible pulpitis. Moreover, due to the high 

treatment cost of root canal therapy and increasing demand for maintaining pulp 

vitality, development of pulp regenerative methods has been the focus of 

attention in dental tissue engineering (Rania et al., 2008).   

 

Further reasons for approaches to the regeneration of a functional dental pulp 

include the wetting of dentin, new dentin formation after caries attack, 

transmission of pain as an indicator of tissue damage and active tissue defense 

mechanisms against invading micro-organisms (Schmalz and Galler 2011). 

Therefore, tissue-engineering-based approaches have been considered an 

attractive strategy for dental pulp regeneration (Rosa et al., 2013). Using dental 

pulp tissue engineering strategies, it would be possible to replace the damaged 

and necrotic pulp with healthy pulp tissues which would help in completion of 

the root development in immature teeth (Nör, 2006, Sakai et al., 2010). The 

development of this strategy could possibly substitute the commonly used 

endodontic treatments and would have a positive impact on the long-term 

outcome (Syed-Picard et al., 2014, Sakai et al., 2011). Therefore, many 

scientists and dentists are working together to develop strategies to regenerate 

lost or diseased dental tissue (Hai-Hua et al., 2011).  
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1.7.1. Use of stem cells for pulp tissue regeneration 

 

There are two ways to achieve this goal: 1) In this approach host cells are used 

to regenerate the pulp tissues by inducing them to move towards the inside of 

the root canal space from the apical end and differentiate into a vascularised 

pulp tissue (Sakai et al., 2011); 2) This approach involves exogenous stem cell 

based strategies where, stem cells are delivered to the root canal space from 

outside and allowed to differentiate into a new dental pulp (Sakai et al., 2011). 

In both the approaches, stem cells play an important role for dental pulp 

regeneration due to their multipotency. They are capable of differentiating into 

odontoblasts, vascular endothelial cells, and neural cells which are the key cells 

of the pulp tissues (Sakai et al., 2011, Rania et al., 2008). Hence, using the 

multipotency of stem cells for dental pulp tissue engineering would stop the 

requirement of multiple cell types (i.e., odontoblasts, endothelial cells, neural 

cells, fibroblasts) transplantation which is technically a very challenging 

approach (Sakai et al., 2011). 

 

It was observed that dental pulp stem cells (DPSCs) (Gronthos et al., 2000), 

periodontal ligament derived stem cells (PDLSCs) (Gould et al., 1977, Gronthos 

et al., 2006), stem cells from the root apical papilla (SCAP) (Sonoyama et al., 

2006) and stem cells from exfoliated deciduous teeth (SHED) (Miura et al., 

2003) are multipotent and can differentiate into different cell types. However, it 

is very difficult to get host dental stem cells specially DPSCs for regenerative 

purposes from a clinical perspective (Demarco et al., 2011, Ravindran et al., 

2013).  Hence, it would be advantageous for pulp regenerative engineering if 

other stem cell sources or if a combination of the multipotent mesenchymal cells 

could be used (Ravindran et al., 2013). Ravindran et al. (2013) investigated 

human periodontal ligament stem cells (PDLSCs) and human bone marrow 

stromal cells (HMSCs) for their possible differentiation into odontoblasts by 

using biomimetic dental pulp extracellular matrix (ECM) incorporated scaffold. 

This study revealed that these somatic mesenchymal stem cells were able to 

form vascularised pulp like tissue. These findings also demonstrated that the 

dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of 

PDLSCs and HMSCs without the need for exogenous addition of growth and 

differentiation factors. This study represents a translational perspective toward 
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possible therapeutic application of using a combination of somatic stem cells 

and extracellular matrix for pulp regeneration (Ravindran et al., 2013). Bone 

marrow stromal cells (BMSCs) also have multipotency characteristics with high 

proliferation rate and are easy to get compared to other stem cell types. They 

can differentiate into a variety of cell types such as osteoblasts, chondrocytes, 

adipocytes, myelosupportive fibrousstroma and also muscle and neural tissues. 

Hence, they are attractive candidates for the pulp regenerative strategies 

(Gronthos et al., 2000). 

 

1.7.2. Scaffold materials for pulp tissue regeneration 

 

Together with stem cells, scaffold and growth factors are also important 

components for the success of the regenerative strategies. During the last 

decade, several studies have been carried out using different dental cell types, 

scaffolds made up of natural and synthetic materials and growth factors for pulp 

regenerative investigations which showed a positive response towards the pulp 

repair strategy (Table 1.2) (Hai-Hua et al., 2011, Ravindran et al., 2013). 

 

Table 1.2: Candidate stem cells, active factors and biomaterials for dental pulp tissue 

engineering (adapted from Hai-Hua et al., 2011). 

 

Components Suggested candidates Selected references 

Stem cells 

DPSCs 

 

Batouli et al., 2003; Gronthos et 

al., 2000, 2002; Prescott et al., 

2008; Miura et al., 2003; 

Cordeiro et al., 2008 

SHED 

Sonoyama et al., 2006; Huang 

et al., 2008; Sonoyama et al., 

2008 

SCAP 

Morsczeck et al., 2005; Wu et 

al., 2008; Guo et al., 2009; 

Tsuchiya et al., 2010 

DFPCs Iohara et al., 2009 

SPCs 

Hu et al., 2006; Sloan and 

Smith, 2007; Morsczeck et al., 

2008 
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BMSCs Ravindran et al., 2013 

Active factors BMPs 

Iohara et al., 2004; Nakashima 

and Reddi, 2003; Nakashima, 

2005 

 

TGFβ 
Chan et al., 2005; Liu et al., 

2007 

FGF-2 Ishimatsu et al., 2009 

DSP Suzuki et al., 2009 

DPP Suzuki et al., 2009 

BSP Decup et al., 2000 

DMP-1 

 

Srinivasan et al., 1999; Smith et 

al., 1995; He et al., 2003; 

Narayanan et al., 2003; He and 

George, 2004; Almushayt et al., 

2006; Prescott et al., 2008 

MEPE 
Six et al., 2007; Wang et al., 

2010 

A + 4 and A −4 Six et al., 2004 

Biomaterials Dentine chips 
Cordeiro et al., 2008; Guo et al., 

2009 

 

MTA 
Bogen et al., 2008; Kuratate et 

al., 2008 

Fibrin 
Bashutski and Wang, 2008; 

Danilovi´c et al., 2008 

Collagen 
Prescott et al., 2008; Iohara et 

al., 2009; Kim et al., 2010a 

Gelatin Ishimatsu et al., 2009 

PGA 
Mooney et al., 1996; Bohl et al., 

1998; Buurma et al., 1999 

PLG Huang et al., 2010 

PLGA El-Backly et al., 2008 

Composites 
Shi et al., 2005; Mao et al., 

2010 
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Successful pulp regeneration is mainly dependent on the scaffold material used 

which is required ultimately to support cell attachment, migration, proliferation, 

differentiation and 3D spatial organisation of the cell population required for 

structural and functional replacement of the target tissue. Hence, choosing the 

right scaffold material is a very crucial step in pulp tissue engineering. To make 

pulp regeneration more efficient and reliable, some of the 3D cell culture models 

such as porous sponges, mesh, fibers, and hydrogels that can mimic the natural 

environment have been used, as discussed earlier. (Schmalz et al., 1999, 

Camps et al., 2002, Huangqin and Mingwen 2007). Most of the time organic 

materials are being used for the regenerative strategies, due to their 

biocompatibility property which is the most impostant criteria to prevent adverse 

tissue reactions since the host cells will, in any case, interact with the scaffold. 

Secondly, biodegradability of the scaffold materials is also very important since 

it must degrade completely to be replaced by the appropriate tissues at the 

target site (Galler et al. 2011). 

 

Various investigations have been carried out recently using collagen, 

polyesters, chitosan, or hydroxyapatite as the scaffold material for pulp 

regeneration showing soft connective tissue formation and newly generated 

dentin (Galler et al., 2011). Smart materials such as self-assembling peptide 

hydrogels together with cell adhesion motifs, enzyme cleavable sites, and 

suitable growth factors would be of great interest for the purpose of dental 

tissue regeneration. Early studies carried out by Mooney et al. (1996) and Bohl 

et al. (1998) showed pulp like tissue formation on PGA scaffolds after 45 to 60 

days of in vitro cell culture using human dental pulp cells. Gronthos et al. (2000) 

and  Miura et al. (2003) also demonstrated the formation of dentin, bone, and 

dentin-pulp complexes, when dental pulp stem cells were cultured on to 

hydroxyapatite/tricalcium phosphate (HA/TCP). When collagen I and III, 

alginate, and chitosan were compared for their cell supporting abilities and 

mineralisation activity, type I collagen showed the highest results.  

 

The most promising investigation was carried out by Nor’s group (Cordeiro et 

al., 2008). They showed that when SHED cells were cultured onto PLA, 

formation of vascularised pulp-like tissue, odontoblast-like cells, and newly 

generated dentin were observed. Use of PGLA as the scaffold material was 
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carried out by Huang et al. (2010). They observed soft tissue and new dentin 

formation by culturing the stem cells from apical papilla in an empty root canal 

space (Huang et al., 2010). These studies have concluded that out of all the 

polymers used for pulp regeneration applications, collagen I and the synthetic 

polymers (PLA and PLGA) are materials of choice (Galler et al. 2011). The 

above studies carried out to find an ideal scaffold material for dental pulp 

regeneration had shown that above materials are relatively good materials that 

exhibit adequate amount of biodegradability and biocompatibility. However, 

neither of the studies demonstrated an ideal scaffold preparation for pulp 

regeneration application.  

 

Synthetic polymers (PLA, PGA and copolymers) are commonly used for the 

dental tissue engineering applications due to their cytocompatibility, 

degradability by hydrolysis, lower price and easy to prepare properties. 

Moreover, they have been approved by FDA for various applications (Chan and 

Mooney 2008). However, they do not have signal molecules commonly present 

in the natural extracellular matrix (ECM) which control the surrounding cell 

behavior. Natural polymers such as collagen, alginate and chitosan are also 

gaining much of the interests for this particular application. However, poor 

processing methods of collagen and chitosan, uncontrollable degradation of 

alginate have reinforced the interests of many scientists to develop more 

efficient and tailor made smart materials for pulp regenerative engineering 

(Boontheekul et al., 2005, Jiang et al., 2008).  

 

An ideal scaffold should combine the best properties of each of these groups of 

biomaterials. These would be structurally similar to ECM at the nanoscale, be 

able to present complex molecular information to the cells, and be easy to 

modify for specific applications. To address these deficiencies, novel synthetic 

matrices are being developed for tissue engineering. Among these, peptide-

based nanofibers are particularly promising because of their ease of synthesis, 

chemical diversity, and high control over various aspects of material behavior 

(Hartgerink et al., 2002, Zhang 2003, Silva et al., 2004). 

 

Regarding dentin-pulp-complex engineering, the scaffold should allow us to 

address the particular challenges of this approach, including contamination 
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control in the root canal, vascularization and innervation of a long and narrow 

space, the incorporation of growth and differentiation factors relevant to 

odontoblast differentiation, the support of mineral formation, and the possibility 

for creation of acellular matrices capable of recruiting resident stem cells in the 

respective tissues (Galler et al., 2011). 

 

In this study we have investigated, for the first time, the PHA production by 

Pseudomonas mendocina using different vegetable oils as feedstocks for the 

culture. The ultimate goal was to obtain novel PHAs with properties suitable for 

a range of applications, with a special focus on dental tissue engineering.  

 

Aims of the study: 

 

The aim of this work is the production and characterisation of a range of MCL-

PHAs with different structural, thermal, mechanical, physical and chemical 

properties which can be used for different applications. The organism used in 

this study was Pseudomonas mendocina. Various carbon sources used for the 

production of PHAs for the project were sodium octanoate, coconut oil, 

groundnut oil, corn oil and olive oil. The polymers produced were characterised 

in depth with respect to their chemical, physical, mechanical properties and 

biocompatibility in order for them to be assessed for biomedical applications in 

particular as the scaffold material for dental pulp tissue engineering in future.  

 

The Specific Aims of the project leading to the above overall aim were: 

 

 Production of MCL-PHAs using Pseudomonas mendocina and a range of 

vegetable oils at shaken flask level: The main objective of this section 

was to produce MCL-PHAs in shaken flasks by Pseudomonas 

mendocina using cheap carbon sources such as vegetable oils (coconut 

oil, groundnut oil, olive oil and corn oil) as the replacement of the more 

expensive carbon feedstocks for this organism. The PHA yields obtained 

using vegetable oils were then compared with that obtained during the 

production of PHAs using sodium octanoate as the sole carbon source. 

This is because sodium octanoate is predominantly being used for MCL-

PHA production from P. mendocina in our laboratory. 
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 Growth and PHA production profiles at shaken flask level: To investigate 

the temporal P. mendocina growth and PHA production profiles, flask 

level fermentations were carried out. Different parameters such as cell 

growth, pH, nitrogen concentration, dry cell weight and % PHA yield were 

measured and compared. Samples were withdrawn at regular intervals of 

time to get continuous growth and production profile. 

 Scaling up the production of polymers from shaken flask level to 2 L 

bioreactor level: PHA production from P. mendocina using five different 

sole carbon sources was also carried out in 2 L bioreactors. In order to 

produce PHAs in a more controlled manner, scaled up production in 2 L 

bioreactors were investigated using continuous air supply and agitation.  

 Growth and PHA production profiles at fermenter level: Similar to flask 

level profiling, samples were withdrawn at regular interval of time to get 

continuous growth and production profile. Overall good carbon feedstock 

was identified by comparing different parameters as mentioned in flask 

level fermentations. Finally flask level and 2 L bioreactor level 

fermentations were compared to identify the higher PHA producing 

fermentation condition. 

 Characterisation: The produced PHAs were analysed and characterised 

for their chemical nature using Gas Chromatography-Mass Spectroscopy 

(GC-MS), and Fourier Transform Infrared Spectroscopy (FTIR), 

mechanical properties using tensile testing Dynamic Mechanical Analysis 

(DMA), thermal properties using Differential Scanning Calorimetry (DSC), 

microstructural properties using X-Ray Diffraction (XRD), Scanning 

Electron Microscopy (SEM) and Static Contact Angle Analysis, molecular 

weight analysis using Gel Permeation Chromatography (GPC) and finally 

cytocompatibility of the polymers was assessed using in vitro               

cell analysis towards human Mesenchymal stem cells (hMSCs).
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2.1. Materials: 

 

2.1.1. Bacterial strain and cell line 

 

Pseudomonas mendocina (NCIMB 10542), used in this study to produce a 

range of MCL-PHAs was obtained from the culture collection of Dr. Roy’s 

laboratory, University of Westminster, London, UK. Biocompatibility studies of 

the produced polymers were investigated using human Mesenchymal Stromal 

Cells (hMSCs) which was obtained from Eastman Dental Institute of University 

College London’s cell line collection, London, UK. 

 

2.1.2. Chemicals and Reagents 

 

All the chemicals used in this study were obtained from Sigma-Aldrich or VWR 

(Leicestershire, UK). Bacterial media preparations were done using general 

purpose reagents. Analytical studies were carried out using analytical grade 

reagents. Chromatography grade reagents were used to investigate Gas 

chromatography mass spectroscopy (GC-MS) of the produced polymers. 

Distilled and HPLC grade water were used for the estimating experiments. Cell 

culture studies were carried out using cell culture grade media and reagents 

purchased from Sigma-Aldrich, UK, and VWR, UK. 

 

1. Reagents required for nitrogen estimations were prepared as follows: 

 

a) Phenol nitroprusside buffer: 3 g of sodium phosphate tribasic, 3 g of 

sodium citrate and 0.3 g ethylene diamine tetraacetic acid (EDTA) were 

dissolved in 100 ml HPLC water. pH of the solution was adjusted to 12. 

Finally, 6 g of phenol and 20 mg of sodium nitroprusside (disodium 

pentacyano(nitroso)irondiuide) were dissolved in this solution. 

 

b) Alkaline hypochlorite reagent: 2.5 ml of sodium hypochlorite (NaOCl) 

solution containing 4% chlorine was added to 40 ml of 1M NaOH 

solution. Finally, the volume was made up to 100 ml by adding HPLC 

water. 
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Note: The prepared reagents were kept in dark glass bottles and stored in a 

fridge for further use. These reagents were prepared fresh every 3 weeks. 

 

2. Trace element solution: Table 2.5 is the list of the chemicals required for 

the preparation of trace element solution. All the listed chemicals in 

Table 2.5 were well dissolved in 0.1 N HCl and then filter sterilised under 

aseptic conditions for further use. 1 ml/L filter sterilised trace element 

solution was used for preparing seed and production media at all time. 

  

2.1.3. Media 

 

In this study, PHA production was carried out using sodium octanoate 

(purchased from Sigma-Aldrich) and 4 different vegetable oils (coconut oil, 

groundnut oil, olive oil, and corn oil purchased from Sainsbury supermarket) as 

sole carbon sources. 

 

2.1.3.1. Inoculum growth medium 

 

Nutrient broth media was used for the growth and the inoculum preparation of 

P. mendocina according to the manufacturer’s specifications. The chemical 

composition of this medium is as followed: 

 

Table 2.1: Chemical composition of inoculum growth medium. 

 

Inoculum growth medium 

Chemicals Composition (g/L) 

‘Lab- Lemco’ Powder 1.00 

Yeast extract 2.00 

Peptone 5.00 

Sodium Chloride 5.00 
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2.1.3.2. MCL-PHAs production media 

 

In this study, production of MCL-PHAs was carried out from P. mendocina using 

five different sole carbon sources namely sodium octanoate and 4 different 

vegetable oils (coconut oil, groundnut oil, olive oil, and corn oil). P. mendocina 

was first grown in the inoculum media and then transferred to the production 

mineral salt medium (MSM) which was divided into two stages, seed and 

production stages.  

 

 

Table 2.2: Composition of the second stage MSM (Rai et al., 2011). 

 

Seed Mineral Salt Medium (MSM) 

Chemicals Composition (g/L) 

(NH4)2SO4 0.45 

Na2HPO4 3.42 

KH2PO4 2.38 

MgSO4 0.4 

 

 

 

 

Table 2.3: Composition of the production stage MSM (Rai et al., 2011). 

 

Production Mineral Salt Medium (MSM) 

Chemicals Composition (g/L) 

(NH4)2SO4 0.5 

Na2HPO4 3.8 

KH2PO4 2.65 

MgSO4 0.4 
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Table 2.4: List of sole carbon sources used in this study for PHA production. 

 

Sole Carbon Sources Seed Medium Production Medium 

Sodium Octanoate 
20mM concentration 

3.24 g/L 
20mM concentration 

3.24 g/L 

Vegetable Oils Seed Medium Production Medium 

Coconut oil  1% (v/v) 1% (v/v) 

Groundnut oil 1% (v/v) 1% (v/v) 

Olive oil 1% (v/v) 1% (v/v) 

Corn oil 1% (v/v) 1% (v/v) 

 

 

 

Table 2.5: Composition of the trace element solution (Basnett et al., 2014). 

 

Trace Element Solution 

Chemicals Composition (g/L) 

CoCl2 0.22 

FeCl3 9.70 

CaCl2 7.80 

NiCl3 0.12 

CrCl6.H2O 0.11 

CuSO4.6H2O 0.16 
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2.2. Methods: 

 

2.2.1. Production of PHAs 

 

The production of PHAs includes four main steps (Figure 2.1), described as 

bellow: 

 

1. Culturing of the organisms in suitable growth and PHA production medium. 

2. Harvesting of the cell biomass at specific time points and then lyophilisation. 

3. Extraction of PHAs from the lyophilised bacterial biomass. 

4. Purification of the produced PHAs. 

 

  

 

 

 

 

 

Figure 2.1: Schematic diagram of the steps involved in PHA production. 

 

 

2.2.1.1. Production of PHAs at shaken flask level  

 

Firstly, to grow the culture, nutrient broth (inoculum growth medium) was 

prepared by inoculating an isolated single colony of P. mendocina and growing 

it for 24 hours in an orbital shaker at 30°C at 150 rpm. This grown culture was 

then used to inoculate sterile second stage seed culture medium and incubated 

under the same culture conditions of 30°C at 150 rpm. The growth of the 

organism was monitored by measuring optical density (OD) readings at 450nm. 

For OD values above 0.8, a tenfold diluted culture was used to inoculate sterile 

third stage production medium and grown for 48 hours at 30°C at 150 rpm. 

Culturing the cells 

in growth media 

Culturing the cells 

in production 

media 

Harvesting the cell 

biomass 

Lyophilization of the 

cell biomass 

Extraction of the 

polymer 

Purification of 

the polymer 
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Throughout the study, while inoculating the production medium, the inoculum 

volume used was 10% of the final working volume of the production medium. 

 

 

 

Figure 2.2: Schematic diagram of the three stage PHA production at flask level 

fermentations. 

 

Note: All the PHA seed and production media (MSM, carbon sources, and 

magnesium sulphate), was set at a final pH of 7 using 1 M NaOH and 1 M HCl. 

The sodium octanoate sole carbon source and magnesium sulphate were 

prepared and sterilised separately. The remaining inorganic salt components of 

MSM of the media were sterilised together. Vegetable oil for seed and 

production media were added directly into MSM components while preparing 

and then sterilised together. All these components (MSM, carbon sources, and 

magnesium sulphate) were sterilised at 121°C for 15 minutes. At the time of 

inoculation, all these prepared components were mixed together aseptically first 

and then inoculated with the 10% grown inoculum and/or seed cultures for seed 

and production stage respectively. 1 ml/L filter sterilised trace element solution 

was used for preparing seed and production media at all time. (Rai 2010) 

 

Table 2.6: List of the components for seed/production media at flask and fermenter level 

productions. 

Components of seed/production media 

MSM 

MgSO4 

Carbon source 

Inoculum 

Trace elements 

 

1
st
 stage 

Nutrient 
broth in 

flask 

 

2
nd

 stage 
Seed culture 

in flask 

 

3
rd

 stage 
Production in 

flask 
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2.2.1.2. Growth and production profiles at shaken flask level  

 

To investigate growth and production profiles, 5000 ml Erlenmeyer flasks 

containing 2000 ml of MSM and five different sole carbon sources such as 

sodium octanoate 20 mM and four 1% vegetable oils (coconut oil, groundnut oil, 

olive oil, corn oil) were prepared and inoculated with P. mendocina when OD 

reached 1.6 (450nm). These production flasks were then incubated on rotary 

shaker at 150 rpm at 30°C temperature from which samples were withdrawn at 

regular interval of time to get continuous growth and production profile. OD was 

measured at 450nm for each time point. Samples were then centrifuged at 8700 

g for 10 minutes to separate biomass and supernatant. pH and nitrogen 

concentration were measured from the supernatant. From lyophilised cell pellet 

(biomass), dry cell weights of the harvested samples were determined followed 

by its PHA extraction. The exeperiments were carried out in triplicates where, 

three different flasks were used for experimental replications. Moreover, for 

continuous growth and production curve, day and night flasks were used for 

each experimental replication. 

 

2.2.1.3. Production of PHAs in bioreactors 

 

PHA production from P. mendocina using five different sole carbon sources was 

also carried out in 2 L bioreactors. Inoculum and seed cultures were prepared in 

the flasks, similar to shaken flask PHA production. The fermenters were 

sterilised at 121°C for 30 minutes containing MSM salts. The sodium octanoate 

sole carbon source and magnesium sulphate were sterilised separately at 

121°C for 15 minutes. Whereas, vegetable oil sole carbon sources were added 

directly to the fermenters and sterilised together with MSM. At the time of 

production stage, seed cultures, sodium octanoate, magnesium sulphate, and 

trace element solution were mixed in the fermenters aseptically. The fermenters 

were also inoculated with 10% of second stage seed cultures in all cases. pH 

was set at 7.0 at the beginning of the fermentations. Prepared fermenters were 

then incubated for 48 hours at 30°C with continuous stirring at 200 rpm and 1 

volume per volume per minute (VVM) air.  
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Figure 2.3: Schematic diagram of the three stage PHA production at 2 L bioreactor level 

fermentations. 

 

2.2.1.4. Growth and production profiles in bioreactors 

 

P. mendocina growth and PHA production were also investigated in 2 L 

bioreactor level fermentations. The working volume used in the 2 L fermenter 

was 1.5 L. Fermenters were prepared as stated in 2.2.1.3. Under aseptic 

conditions, samples were withdrawn at regular interval of time to analyse 

continuous growth and production profile as described earlier in 2.2.1.2. All 

these profiling studies were carried out in duplicates where, two different 

bioreactors were used for experimental replications. Moreover, for continuous 

growth and production curve, day and night bioreactors were used for each 

experimental replication. 

 

2.2.2. Extraction of the PHAs  

 

From production media, cells were harvested at appropriate time periods by 

centrifugation at 12,000 g for 30 minutes. Supernatant was discarded and the 

cell pellets were dried and lyophilised for 48 hours. PHAs were extracted from 

the lyophilized cells using dispersion of chloroform (CHCl3) and sodium 

hypochlorite (NaOCl) method. In this method, dried cells were incubated in 80% 

sodium hypochlorite and chloroform in 1:4.5 ratio for 2 hours at 30oC and 150 

rpm. After incubation, the suspension was centrifuged at 12,000 g for 20 

minutes. As a result of centrifugation 3 distinct layers formed in the centrifuge 

tubes. The top layer was an aqueous phase of sodium hypochlorite, the middle 

layer contained cell debris, and the bottom layer was the chloroform containing 

1
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 stage 

Nutrient 
broth in 

flask 

 

2
nd

 stage 
Seed culture 

in flask 

 

3
rd

 stage 
Production in 
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dissolved PHAs. The lower most layer of the chloroform containing polymer was 

then collected and filtered. The extract was concentrated by evaporating 

chloroform using a rotary vacuum evaporator. PHAs were finally precipitated by 

adding concentrated chloroform solution dropwise into ten volumes of chilled 

methanol with continuous stirring.  

 

2.2.3. Analytical methods used for profiling 

 

At regular time interval, samples were withdrawn to get continuous growth and 

production profiles. Optical density was measured at 450nm wavelength for 

each time point. Samples were then centrifuged to separate biomass and 

supernatant. pH and nitrogen concentration were measured from the 

supernatant. From lyophilised cell pellet (biomass), dry cell weights (dcw) and 

PHA estimations were carried out. 

 

2.2.3.1. Biomass estimation 

 

For each time intervals, 1 ml samples were taken out aseptically from the 

production medium to get biomass estimations. Optical density was measured 

using a spectrophotometer at 450nm wavelength for each time point. The 

samples were then centrifuged at 8700 g for 10 minutes and cell pellets were 

weighed after freeze drying to get dry cell weight measurements.  

 

2.2.3.2. Nitrogen estimation 

 

For each time point, the available nitrogen molecules’ estimations were carried 

out using the phenol hypochlorite reaction method in order to know the 

utilisation of nitrogen for the cell growth. As mentioned above, 1 ml samples 

were taken out aseptically from production media which were centrifuged at 

8700 g for 10 minutes. From supernatants, nitrogen concentrations were 

analysed by making dilutions of the samples. 2.5 ml of these diluted samples 

were then gently mixed with 1 ml of phenol nitroprusside buffer by swirling. The 

next step was to add 1.5 ml of the hypochlorite reagent quickly and gently mix 

by inversion. It was followed by 45 minutes of incubation at room temperature in 
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the dark. Finally, spectrophotometric readings were taken at 635nm 

wavelength. 

 

2.2.3.3. PHA estimation 

 

In case of profiling, at specific time intervals, samples were taken out aseptically 

from production media to get PHA estimations. Culture samples were then 

centrifuged at 12,000 g for 30 minutes. The collected cell mass was then freeze 

dried to follow PHA extraction method as described earlier in section 2.2.2. The 

precipitated PHAs were then weighed after drying to get PHA production 

profiles for specific time intervals. 

 

2.2.4. Purification of the produced PHAs 
 

The polymer extracted using the dispersion of hypochlorite and chloroform was 

subjected to sequential repeated steps of precipitation to reduce or remove 

contaminants. Further purification of the produced polymers was carried out 

using the following method stepwise. This procedure was repeated several 

times to obtain purified polymers. Note: In each step, polymer solution and 

solvent were used in 1:10 ratio for precipitation. 

 

Precipitation using chilled 50% methanol/ethanol 

 

Dissolve the polymer in chloroform and precipitate in chilled methanol 

 

Dissolve the polymer again in acetone and precipitate in chilled methanol 

 

Finally dissolve the polymer in acetone and precipitate in chilled 50% methanol/ethanol 

 

Figure 2.4: Flowchart of the polymer purification procedure. 

 

2.2.5. Solvent Cast film preparation  

 

Of the five PHAs extracted in this study, polymers produced from P. mendocina 

using sodium octanoate and coconut oil were fabricated into 2D films. Neat 

films were fabricated by dissolving 0.5 g of the polymer in 10 ml of CHCl3. The 
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polymers were well dissolved in chloroform after which the polymer solutions 

were filtered. The films were casted by pouring the filtered polymer solutions 

into 60 mm glass Petri dishes. The solutions were then left to air dry at room 

temperature for 1 week followed by freeze drying for 10 days.  

 

It was very difficult to prepare solvent cast films of the PHAs produced from P. 

mendocina using groundnut oil, olive oil and corn oil as sole carbon sources 

due to their very sticky nature. Therefore, thin films were made on glass cover 

slips using 100µl solution of 5 wt% polymers in chloroform followed by air drying 

at room temperature for 1 week and freeze drying for 10 days. 

 

2.2.6. Characterisation of the produced PHAs 

 

Chemical, physical, mechanical and biocompatibility properties of the produced 

polymers have been characterised by performing the following analysis. 

 

2.2.6.1. Fourier Transform Infrared Spectroscopy (FTIR) 

 

To identify the kind of the PHAs (SCL/MCL) produced, preliminary analysis of 

the polymer was performed using FTIR. Approximately 5 mg of the polymer was 

used for the study. The analysis was performed under the following conditions: 

Spectral range 4000 to 400 cm-1; window material, CsI; 10 scans and resolution 

4 cm-1. The analysis was carried out at the Department of Biomaterials and 

Tissue engineering, Eastman Dental Institute, University College London, UK.  

 

2.2.6.2. Gas Chromatography-Mass Spectroscopy (GC-MS)  

 

For identification of the produced PHAs compositions, GC-MS analysis was 

carried out on the methanolysed products of these PHAs. Methanolysed 

samples were prepared as described by Furrer et al. (2007). 10 mg of polymer 

were added into 1 ml of methylene chloride containing 10 mg/ml of 2-ethyl-2-

hydroxybutyric acid. This reaction mixture was then covered and incubated at 

room temperature for 1 hour to dissolve the polymer. Following incubation, 1 ml 

of 0.65M boron trifluoride (BF3) solution in methanol was added, after which the 

tube was tightly sealed and vigorously shaken. This reaction mixture was then 
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refluxed for 16 hours. After the reaction, the tubes were cooled on dried ice for 5 

minutes, 2 ml HPLC water was added and the tubes were vortexed for 1 

minute. After phase separation, the bottom organic phase was collected, dried 

over 10 mg anhydrous sodium sulphate and sodium carbonate. It was then 

filtered and used for carrying out the GC-MS study (Furrer et al., 2007), which 

was conducted at the School of Chemistry, University of Southampton, UK. 

 

2.2.6.3. Differential Scanning Calorimetry (DSC) 

 

The thermal properties (glass transition temperature (Tg) and melting 

temperature (Tm)) of the polymers produced were analysed by differential 

scanning calorimetry (DSC) using a Perkin Elmer Pyris Diamond DSC (Perkin 

Elmer Instruments). The sample mass used for these measurements was in the 

range of 5-13 mg. Samples were encapsulated in standard aluminium pans and 

tests were performed under inert nitrogen environment. The samples were 

heated/cooled/heated at a heating rate of 20oC min-1 between -50 and 200oC. 

The measurements were carried out in triplicates. The analysis was done at the 

Department of Biomaterials and Tissue engineering, Eastman Dental Institute, 

University College London, UK. 

 

2.2.6.4. Tensile testing 

 

Tensile strength tests were conducted on flat specimens (width: 1.15 mm, 

length: 3 mm) cut out from the solvent cast polymer films, using a Perkin Elmer 

Dynamic Mechanical Analyser (DMA 7e, Perkin Elmer Instruments, USA) at 

room temperature. The initial load was set to 1 mN and then increased to 6000 

mN at the rate of 200 mN min-1. The tests were carried out in triplicate. Young’s 

modulus, tensile strength and elongation at break were recorded during the test. 

The analysis was done at the Department of Biomaterials and Tissue 

engineering, Eastman Dental Institute, University College London, UK. 

 

2.2.6.5. Gel Permeation Chromatography (GPC) 

 

The molecular mass data of the polymers produced i.e. number average 

molecular weight, (Mn) and weight average molecular weight, (Mw) were 
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determined by carrying out gel permeation chromatography analysis. 

Chloroform was used as an eluent at a flow rate of 1.0 ml min-1. Polystyrene 

standards having a low polydispersity rate were used to produce the calibration 

curve. The samples were sent for the analysis at the Department of Chemistry, 

University of Nottingham, UK. 

 

2.2.6.6. X-ray Diffraction (XRD) 

 

Thin films of the polymers produced were made on the cover slips using 100 µl 

of 5 wt% polymer solution in chloroform as described earlier in section 2.2.5. 

These prepared films were then used to analyse the crystallinity of the produced 

polymers for X-ray diffraction (XRD) using a Bruker D8 Advance. Cu Kα 

radiation (l = 1.54 A˚) operating at 40 kV and 40 mA was used for this 

investigations. Scans were performed with a detector step size of 0.02o over an 

angular range 2θ = 10-100o and counting for 1 second per step. The analysis 

was carried out at the Department of Biomaterials and Tissue engineering, 

Eastman Dental Institute, University College London, UK. 

 

2.2.6.7. Scanning Electron Microscopy (SEM) 

 

SEM images of the produced polymers for their surface topography were 

carried out using INCAx-Sight scanning electron microscope (OXFORD 

INSTRUMENTS). The samples were placed on 8 mm diameter aluminium stubs 

and then coated with gold using the gold spluttering device (EMITECH-K550) 

for 2 minutes. The operating pressure of 7 x 10-2 bar and deposition current of 

20 mA was used. The SEM images were taken at various magnifications with 

an acceleration voltage of 5 kV (maximum) to avoid incineration of the polymer 

due to the beam heat. Analysis was carried out at the Department of 

Biomaterials and Tissue engineering, Eastman Dental Institute, University 

College London, UK. 

 

2.2.6.8. Contact angle analysis  

 

To characterise the wettability i.e. hydrophilicity/hydrophobicity of the fabricated 

films of PHA produced, the surface contact angle analysis was carried out at the 
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Department of Biomaterials and Tissue engineering, Eastman Dental Institute, 

University College London, UK. Through the profile of a liquid drop placed on a 

polymer film surface, wettability was measured using a KSV Cam 200 optical 

contact angle meter (KSV Instruments Ltd). By using a gas tight micro-syringe 

an equal volume of the liquid on each sample was placed forming a drop and 

photos (frame interval of 1 second, number of frames = 10) were taken to 

record the shape of the drops. The contact angles of the water droplets on the 

specimens were measured by analysing the recorded drop images using the 

Windows based KSVCam software.  

 

2.2.7. Cell culture studies  

 

The in vitro cell culture studies were carried out on the PHA films           

prepared on glass cover slips using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) colorimetric assay and SEM. 

 

2.2.7.1. Cell culture preparation  

 

Human Mesenchymal Stem Cells (hMSCs) were cultured into standard tissue 

culture flasks using alpha-MEM supplemented with 10% fetal bovine serum and 

1% penicillin/streptomycin. The cells were incubated at 37oC in a 5% CO2 

humidified atmosphere until 90% confluence, and the culture medium was 

changed every 2 days. 2-3 cell passages were carried out before seeding onto 

the test samples. For each passage, cells were detached from the flask by 

trypsinisation using 5% trypsin at 37oC for 2 minutes. The reaction was stopped 

by adding equal volume of supplemented alpha-MEM. Samples were then 

centrifuged at 400 g for 10 minutes and the resulting pellet was resuspended in 

fresh supplemented alpha-MEM. Cell suspension was then distributed into two 

sterile 75 cm2 tissue culture flasks and incubated for further growth. Media, PBS 

and trypsin used in this study were pre-warmed at 37oC and filter sterilised prior 

to use. 
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2.2.7.2. Test sample preparation 

 

PHA films were prepared on glass cover slips as described earlier in section 

2.2.5. After drying, the cover slip polymer films were placed in 24 well tissue 

culture plates and sterilised under UV light for 1 hour. These prepared test 

samples were then passivated for 12 hours with supplemented alpha-MEM 

culture media prior to hMSCs seeding. 

 

2.2.7.3. hMSCs seeding onto test samples 

 

Following three passages and 90% confluence growth, cells were harvested 

using trypsinisation and centrifugation as described earlier. The cells were 

counted using haemocytometer. Passivated test samples were seeded with 2 x 

104 cells/well and maintained in supplemented alpha-MEM. Cells seeded in the 

wells without test samples were used as the positive controls. While, test 

samples incubated in culture media without cells were used as the negative 

controls. Plates were then incubated at 37oC with 5% CO2 for further analysis. 

The medium was changed every 2 days. The cells were allowed to proliferate 

for a period of 14 days. Cell culture studies were carried out in triplicate 

samples per experiment. 

 

2.2.7.4. MTT colorimetric assay 

 

Human Mesenchymal Stem Cells (hMSCs) were allowed to proliferate for 1, 4, 

7, and 14 days, and % cell viability was determined by the MTT assay. First of 

all, 100 µl (5 mg/ml) MTT assay solution was added to each sample and 

incubated at 37oC with 5% CO2 for 4 hours. Followed by incubation, films were 

transferred to a new 24 well plate and 500 µl of DMSO was added. After 10 

minutes incubation at room temperature, 100 µl of solution was transferred to a 

96 well plate and the absorbance was measured at 570nm using a microtitre 

plate reader. Negative control readings were deducted from the test samples 

readings to avoid any background absorbance. By using the following equation, 

% cell viability was measured. The positive control was normalised to 100%.  

% cell viability = Mean absorbance of samples X 100 

                          Mean absorbance of control 
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2.2.7.5. Cell proliferation SEM  

 

For each time point, constructs containing the cells were visualised using SEM 

to observe the human Mesenchymal Stem Cells spreading and attachment to 

the surface of the test samples. Immediately after incubation is over, the 

specimens were fixed in 0.1 M phosphate buffer containing 3% glutaraldehyde 

for 12 hours at 4oC. These fixed samples were then dehydrated using a series 

of graded ethyl alcohols such as 20%, 50%, 70%, 90% and 100% for 10 

minutes incubation in each solution. In the final step, samples were dried using 

hexamethyldisilazane for 2-5 minutes. The samples were then left to air dry for 

one hour in the fume cupboard. Finally, the dried samples were attached to 

aluminium stubs, gold coated and examined using INCAx-Sight scanning 

electron microscope (OXFORD INSTRUMENTS). 

 

2.2.8. Statistical analysis 

 

Data are reported as mean ± STDEV. Statistical significance was assessed 

using ANOVA single factor. Differences were considered statistically significant 

when *p<0.05, very significant **p<0.01 and highly significant when ***p<0.001.
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3.1. Introduction: 

 

In 1983, MCL-PHAs were first discovered in P. oleovorans using octane as the 

sole carbon source (Rai et al., 2011). Pseudomonas sp. belonging to the rRNA 

homology group I, are particularly known to produce MCL-PHAs.  MCL-PHAs 

contain 6-14 carbon atoms, for example poly(3-hydroxyhexanoate), P(3HHx), 

poly(3-hydroxyoctanoate), P(3HO), poly(3-hydroxydecanoate), P(3HD), poly(3-

hydroxydodecanoate), P(3HDD), poly(3-hydroxytetradecanoate), P(3HTD) and 

poly(3-hydroxyhexadecanoate), P(3HHD) (Hazer et al., 2012). Until now, more 

than 100 different monomer units have been characterised within the MCL-

PHAs from Pseudomonas strains using different carbon sources. Several 

Pseudomonas strains such as P. oleovorans, Pseudomonas sp. DSY-82, 

Pseudomonas stutzeri, Pseudomonas sp. 61-3, Pseudomonas sp. A33, 

Aeromonas sp. e.g. Aeromonas hydrophila, and Cuprivadus necator are known 

to produce MCL-PHAs using broad range of structurally related and unrelated 

carbon feedstocks (Rai et al., 2011). These organisms are not only able to 

synthesise MCL-PHAs but also accumulate SCL-MCL copolymers. 

Pseudomonas sp. predominantly produces MCL-PHA copolymers. When the 

substrate with even carbon atoms (C6, C8, C10, C12, C14) are used as the 

feedstock for the organisms, the produced polymer contains                             

3-hydroxyoctanoate as the major monomer unit. Substrate with odd number 

carbon atoms (C7, C9, C11), it was observed that the organism produced 

polymer with 3-hydroxynonanoate as the predominant monomer unit (Rai et al., 

2011).  

 

SCL-PHAs such as P(3HB) are highly rigid and brittle in nature. Hence, their 

applicability is limited to hard tissue engineering (Rai et al., 2011, Hazer et al., 

2012). MCL-PHAs are more flexible and have elastomeric nature. Moreover, 

copolymerisation of the MCL-PHAs makes them structurally more diverse than 

SCL-PHAs. This allows efficient tailoring of the physical and mechanical 

properties of MCL-PHAs for the required applications (Hazer et al., 2012). 

Although MCL-PHAs have outstanding physical and mechanical properties to 

be utilised in various applications, their development as the potential industrial 

material has been limited due to their high price (approximately US $ 16/kg) 

(Fukui and Doi 1998). Substrate costs, downstream processing costs and 
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relatively low PHA yields contribute to the high price of PHAs. Petroleum-based 

plastics are commercially viable because of their high abundance and low 

production cost. Whereas, in case of the MCL-PHA production, expensive 

carbon substrates for the producing organisms increase the overall cost of the 

polymer production. In recent years, scientists are focusing on using cheap 

renewable substrates for the organism growth and PHA accumulation in order 

to reduce the overall PHA production cost. Several inexpensive carbon 

feedstocks such as sugars, organic wastes, many agricultural and dairy by-

products and vegetable oils have been identified to be utilised as the renewable 

substrates for the organisms (Daniel et al., 2006, Chenyu et al., 2012, Chee et 

al., 2010). Amongst these, vegetable oils showed higher PHA productivity with 

the ability to reduce polymer production cost. There are few reports on using 

plant oils as the carbon feedstocks of the organisms for PHA production. 

Aeromonas caviae, Pseudomonas aeruginosa, Pseudomonas resinovorans, 

Ralstonia eutropha, Pseudomonas putida, Comamonas testosteroni, 

Pseudomonas saccharophila, Pseudomonas stutzeri have been shown to 

produce both SCL and MCL PHAs using plant oils (soybean oil, castor oil, 

sunflower oil, and palm oil) (Daniel et al., 2006, Chenyu et al., 2012, Chee et al., 

2010). Among these, Pseudomonads were able to produce MCL PHAs using 

vegetable oils (Ashby and Foglia 1998). However, there has not been a single 

study carried out on Pseudomonas mendocina for PHA production using 

vegetable oils. Hence, it remains a relatively unexplored organism for PHA 

production using vegetable oils as the carbon source. In this study we have 

investigated, for the first time, PHA production by Pseudomonas mendocina 

using different vegetable oils as the feedstocks for the culture.  

 

The main objective of this chapter was to produce MCL-PHAs using 

Pseudomonas mendocina and cheap carbon sources such as vegetable oils 

(coconut oil, groundnut oil, olive oil and corn oil) as the replacement of the more 

expensive carbon feedstock (i.e. sodium octanoate) for this organism. To 

investigate temporal P. mendocina growth and PHA production profiles using 

vegetable oil carbon feeds, different parameters such as cell growth, pH, 

nitrogen concentration, dry cell weight and % PHA yield were measured at 

regular intervals of the fermentation time. The temporal fermentation profile of 

P. mendocina using sodium octanoate sole carbon source was also assessed 
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at shaken flask and fermenter levels in this study. Finally, the results obtained 

for P. mendocina growth and production profiles using sodium octanoate and 

vegetable oils as the sole carbon sources were compared at shaken flask and 2 

L fermenter levels.  
 

3.2. PHA production at shaken flask level: 

 

Investigations of PHA productions from P. mendocina using five different sole 

carbon sources (sodium octanoate, coconut oil, groundnut oil, corn oil and olive 

oil) were first carried out at the shaken flask level. This was necessary to gain 

more information for the scaling up of the production process. To investigate 

growth and production profiles, 5000 ml Erlenmeyer flasks containing 2000 ml 

of MSM and five different sole carbon sources, sodium octanoate 20 mM and 

four 1% vegetable oils (coconut oil, groundnut oil, olive oil, corn oil), were 

prepared and inoculated using cells of P. mendocina, as described earlier. At 

the shaken flask level, the agitation speed was kept constant at 150 rpm 

throughout the duration of the fermentation and the fermentation was continued 

until the optical density of the broth culture began to decrease. At this time, the 

maximal PHA accumulation was expected to have completed. The cultivation 

time was extended for a further six hours after the death phase was attained. 

This was necessary to understand the effect of the harvesting time on PHA 

yield.  Samples were withdrawn at regular intervals of time, i.e., every 3 hours to 

monitor the growth profile of Pseudomonas mendocina throughout the 

fermentation process. Optical density of the culture was measured at 450nm. 

Samples were then centrifuged to separate biomass and supernatant. pH and 

nitrogen concentration were measured using the supernatant. From lyophilised 

cell pellet (biomass), dry cell weight of the harvested samples was determined 

and dry cells were used for PHA extraction (discussed in section 2.2.1.2. in 

detail). 
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Figure 3.1: Shaken flask level PHA production. 

 

 

3.2.1. PHA production using sodium octanoate as the sole carbon source 

 

Using 5 L flasks, batch production of MCL-PHA was carried out from                

P. mendocina using sodium octanoate as the sole carbon source. The organism 

was grown for 54 hours and samples were withdrawn every 3 hours to 

investigate the growth and production of PHAs. Figure 3.2 shows the 

fermentation  profile obtained for P. mendocina using sodium octanoate as the 

sole carbon source. 

 

The fermentation profile of PHA production shows the temporal variation in 

optical density (OD) at 450nm, dry cell weight (dcw) g/L, pH, nitrogen 

concentration (g/L), and PHA yield (% dcw), when P. mendocina was grown in 

sodium octanoate as the sole carbon source. 
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Figure 3.2: Fermentation profile for MCL-PHA production by P. mendocina using sodium 

octanoate as the sole carbon source in shaken flasks. 

 

From this profile, it can be seen that OD and dry cell weight (dcw) increased 

simultaneously as the fermentation progressed. The dcw increased from 0.6 g/L 

at the 9th hour to 1.7 g/L at the 48th hour. After the 54th hour, both OD and dcw 

became constant. PHA accumulation at 24, 36, 48, and 54 hours were 

measured and the results obtained showed that the highest amount of PHA 

accumulation observed was 35.1% dcw at 48 hour. The PHA accumulation had 

however decreased to 25.5% dcw by the 54th hour. In the beginning of the 

fermentation, nitrogen concentration was 500 mg/L. As the fermentation 

progressed, it was observed that the amount of nitrogen decreased steadily in 

the media and dropped from 500 mg/L to 0.6 mg/L. As the fermentation 

progressed, the pH of the culture medium, which was initially set to 7.00 had 

decreased and dropped to 6.74 by 24 hours. However, increase in the pH was 

observed after 24 hours reaching 7.30 at the end of the fermentation. 

 

3.2.2. PHA production using coconut oil as the sole carbon source 

 

In order to evaluate the potential of vegetable oils as the replacement of the 

more expensive carbon sources in PHA production, P. mendocina was grown 

on MSM and supplemented with 1% v/v vegetable oils as the sole carbon 

sources in 5 L shaken flasks. The first vegetable oil used for PHA production 

from P. mendocina was coconut oil as the sole carbon source and the results 

 



Chapter 3: Production of PHAs at shaken flask and fermenter level 

59 

 

obtained are shown in Figure 3.3. The production was carried out for 60 hours 

and samples were withdrawn every 3 hours to investigate growth as well as 

production profile. 
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Figure 3.3: Fermentation profile for MCL-PHA production by P. mendocina using coconut 

oil as the sole carbon source in shaken flasks.  

 

This fermentation profile showed simultaneous increase in both, the cell growth 

and dried biomass until 54 hours of the fermentation time. The dcw observed for 

the organism ranged between 1.1 to 5.1 g/L. Measurement of PHA 

accumulation at 12, 24, 36, 48, 54 and 60 hours were carried out and results 

obtained showed that the highest amount of PHA accumulated was 60.5% dcw 

at the 48th hour, after which a decrease was observed at the 54th hour. The 

amount of nitrogen decreased steadily in the media as the fermentation 

progressed and dropped from the initial value of 500 mg/L to 0.05 mg/L. At the 

beginning of the fermentation the pH was set at 7.00 and as the fermentation 

progressed the pH dropped to 6.64 at the 24th hour. This was followed by an 

increase in pH and the pH reached a value of 6.84 at the 57th hour. At the end 

of the fermentation, pH of the media dropped to 6.62. 

 

3.2.3. PHA production using groundnut oil as the sole carbon source 

 

The shaken flask PHA production was also carried out using groundnut oil as 

the sole carbon source in order to get preliminary data of cell growth and PHA 

production by P. mendocina. Fermentation was carried out for 54 hours. 
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Different parameters (OD, pH, nitrogen concentration, dcw, PHA yield) were 

measured at regular intervals of time in order to get temporal fermentation 

profile of P. mendocina using groundnut oil as the sole carbon source.  
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Figure 3.4: Fermentation profile for MCL-PHA production by P. mendocina using 

groundnut oil as the sole carbon source in shaken flasks. 

 

Groundnut oil was the next chosen carbon source for growth and polymer 

production using P. mendocina. The results obtained are shown in Figure 3.4. 

The profiles also showed steady increase in both, OD and dcw as the 

fermentation progressed. The dcw was achieved in the range of 1.0 g/L at the 

9th hour to 3.1 g/L at the 48th hour. After 48 hours, both OD and dcw seem to 

have decreased. Polymer was already starting to accumulate in the organism 

after 12 hours of the fermentation. The polymer yield ranged between 11.2% 

dcw to 31.8% dcw. The highest PHA yield of 31.8% dcw was achieved at the 

48th hour, after which the yield decreased to 18.0% dcw at the 54th hour. At this 

point, the amount of nitrogen dropped to 1.5 mg/L from the initial value of 500 

mg/L. During the fermentation, the pH of the culture medium decreased from 

7.00 to 6.53. 
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3.2.4. PHA production using olive oil as the sole carbon source 

 

The next shaken flask PHA production was carried out using olive oil as the 

sole carbon source in order monitor cell growth and PHA accumulation in P. 

mendocina. In this fermentation, cells were incubated for 60 hours and samples 

were assessed for different parameters similar to earlier fermentations. 
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Figure 3.5: Fermentation profile for MCL-PHA production by P. mendocina using olive oil 

as the sole carbon source in shaken flasks. 

 

The results obtained are shown in Figure 3.5. Simultaneous increase in OD 

and dcw was observed during this fermentation. The dcw of the organism 

ranged between 1.3 to 5.5 g/L. The highest dcw (5.5 g/L) was observed after 54 

hours of fermentation and by 57 hours, the dcw started to decrease reaching a 

value of 4.6 g/L at the end of the fermentation. Here too the polymer started to 

accumulate at very early stage of the fermentation. PHA produced by the 

organism ranged between 18.8 to 43.6% dcw. The polymer yield increased up 

to 48 hours with the highest PHA accumulation of 43.6% dcw, after which the 

yield decreased to 40.4% dcw by 54 hours. The level of nitrogen decreased 

from the initial value of 500 mg/L to that of 1.0 mg/L at the end of the 

fermentation. As the fermentation progressed, the pH of the culture medium, 

which was initially set to 7.00, decreased and dropped to 6.64 at 30 hour, after 

which it started to increase again and reached 6.79 at the 54th hour. At the end 

of the fermentation, pH again dropped to 6.44. 
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3.2.5. PHA production using corn oil as the sole carbon source 

 

The final vegetable oil used as the sole carbon source was corn oil. The shaken 

flask level PHA production was carried out for 72 hours using corn oil carbon 

feed and at regular interval of time different parameters were measured in order 

to get preliminary data of P. mendocina growth and PHA production. 
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Figure 3.6: Fermentation profile for MCL-PHA production by P. mendocina using corn oil 

as the sole carbon source in shaken flasks. 

 

Figure 3.6 shows the temporal variation of the various relevant parameters 

during the fermentation. Growth profile of P. mendocina using corn oil as the 

sole carbon source showed longer cell growth phase compared to the other P. 

mendocina growth profiles at shaken flask level. The organism entered 

stationary phase within 66 hours of the fermentation, after which it started to 

decline. The dcw of the organism ranged between 1.3 to 4.9 g/L. Here polymer 

accumulation was only observed after 24 hours of the fermentation. The 

organism exhibited maximum accumulation of the polymer at the 48th hour 

which was 29.8% dcw. By 72 hours of the fermentation, amount of nitrogen in 

the medium had dropped to 4.2 mg/L. During the fermentation, the pH of the 

medium which was set at 7.00 decreased and reached to a value of 6.62 by the 

end of the fermentation. 
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3.3. PHA production at fermenter level:  

 

Optimisation of the PHA production by P. mendocina using four vegetable oils 

(coconut oil, groundnut oil, olive oil and corn oil) as the sole carbon sources was 

also investigated in 2 L bioreactors, for the first time, in this study. The PHA 

yield obtained in the bioreactors using vegetable oils was compared to the PHA 

yield obtained using sodium octanoate as the sole carbon source in the 2 L 

bioreactors. The working volume used in the 2 L fermenter was 1.5 L. 

Fermenters were prepared as stated in 2.2.1.3. Temperature of the fermenter 

was set to 30°C followed by continuous stirring at 200 rpm and 1 vvm air flow. 

At the beginning of the fermentation pH was set at 7.0. Under aseptic 

conditions, samples were withdrawn at regular intervals of time to analyse 

continuous growth and production profiles as described earlier in 2.2.1.2. All 

profiling experiments were carried out in duplicates. 

 

 

Figure 3.7: 2 L bioreactor level PHA production. 

 

3.3.1. PHA production using sodium octanoate as the sole carbon source 

 

MCL-PHA production study using sodium octanoate as the main carbon source 

was further extended to the fermenter level (2 L). The organism was grown for 

54 hours and the samples were withdrawn at regular intervals to investigate 

growth as well as production profiles. Figure 3.8 shows the profile of the 

parameters (optical density (OD) at 450nm, dry cell weight (dcw) g/L, pH, 

nitrogen concentration (g/L), and PHA yield (%dcw)) measured during the 

study. 
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Figure 3.8: Fermentation profile for MCL-PHA production by P. mendocina using sodium 

octanoate as the sole carbon source at 2 L bioreactor level fermentation. 

 

From this profile, it can be seen that, P. mendocina cell growth and dry cell 

weight (dcw) increased simultaneously until 48 hours of the fermentation. At the 

54th hour, cells entered stationary phase. The maximum dcw/L (1.4 g/L) was 

achieved during the end of the log phase at the 48th hour. PHA accumulation at 

24, 36, 48, and 54 hours were measured and the results obtained showed that 

the highest amount of PHA accumulation observed was 27.4% dcw at the 54 th 

hour. As the fermentation progressed, it was observed that the amount of 

nitrogen decreased steadily in the medium and dropped from 500 mg/L to 0.2 

mg/L. pH of the medium increased steadily from 7.00 at 0 hour to 7.79 at the 

end of the fermentation time. 

 

3.3.2. PHA production using coconut oil as the sole carbon source 

 

To further understand the potential of P. mendocina in utilizing coconut oil as an 

alternative relatively cheaper carbon source for large scale PHA production, 

studies were extended to a 2 L bioreactor level. Fermentation was carried out 

for 60 hours. At regular intervals of time, samples were withdrawn and analysed 

for P. mendocina growth and PHA accumulation using coconut oil as the sole 

carbon source. 
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Figure 3.9: Fermentation profile for MCL-PHA production by P. mendocina using coconut 

oil as the sole carbon source at 2 L bioreactor level fermentation.  

 

The result (Figure 3.9) showed increase in the OD until 57 hours of the 

fermentation time after which, cells entered stationary phase. Dcw showed 

gradual increase after 12 hours of the fermentation until 54 hours of the 

fermentation. Decline in the cell mass was observed after 54 hours in the 

fermentation. The maximal dcw value of 17.1 g/L was observed at the 54th hour. 

Measurement of PHA accumulation at 12, 24, 36, 48, 54 and 60 hours were 

carried out. The polymer yield ranged between 1.2% dcw to 34.6% dcw. The 

highest amount of PHA accumulated was 34.6% dcw at the 54th hour, after 

which a decrease was observed at the end of the fermentation time at the 60th 

hour. The level of nitrogen started to decrease at very early stage of the 

fermentation and reached to zero at 24 hours of the fermentation time. At the 

beginning of the fermentation the pH was set at 7.00 and as the fermentation 

progressed the pH increased until 9 hours and started to decrease until 18 

hours of the fermentation. After 18 hours of the fermentation period, pH followed 

the same trend as the cell growth and reached a value of 7.13 at the end of the 

fermentation. 
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3.3.3. PHA production using groundnut oil as the sole carbon source 

 

An optimisation study of the PHA production using groundnut oil as the sole 

carbon source was also investigated further using a 2 L bioreactor. The 

organism was grown for 54 hours and different parameters such as OD, pH, 

nitrogen concentration, dcw and % PHA yield were measured at regular 

intervals of time. 
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Figure 3.10: Fermentation profile for MCL-PHA production by P. mendocina using 

groundnut oil as the sole carbon source at 2 L bioreactor level fermentation. 

 

 

The profile of the parameters measured during the investigations is shown in 

Figure 3.10. Gradual increase in the OD and dcw was observed simultaneously 

until 48 hours of the fermentation. At the 54th hour of fermentation, the rate of 

cell growth decreased. The highest value of dcw achieved at the 48th hour was 

17.6 g/L. Further extension in fermentation time resulted in a decline in the 

accumulated dry cell weight to 12.8 g/L. The polymer accumulation of the 

organism ranged between 5.1% dcw to 23.5% dcw. As the fermentation 

progressed, the amount of nitrogen started to decrease in the medium. By the 

54th hour, the amount of nitrogen dropped to 1.4 mg/L from the initial value of 

500 mg/L. During fermentation, the pH of the culture medium decreased from 

7.00 to 6.58 until 30 hours. A slight increase in the pH was observed until 42 

hours of the fermentation, followed by a sudden decrease of up to 6.18 until the 

end of the fermentation. 
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3.3.4. PHA production using olive oil as the sole carbon source 

 

Based on previous work at shaken flask level PHA production using olive oil as 

the sole carbon source, production in 2 L bioreactor was chosen for further 

investigations. To understand in detail, the role of the olive oil carbon source in 

the production medium towards cell growth and PHA accumulation, several 

parameters were analysed for 60 hours of fermentation.  
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Figure 3.11: Fermentation profile for MCL-PHA production by P. mendocina using olive 

oil as the sole carbon source at 2 L bioreactor level fermentation. 

 

Figure 3.11 shows the profile of different parameters’ (optical density (OD) at 

450nm, dry cell weight (dcw) g/L, pH, nitrogen concentration (g/L), and PHA 

yield (%dcw)) measured during the study. Lag phase was noticed at the 

beginning of the fermentation until 9 hours into the cell growth after inoculation 

with 10% of the seed culture followed by gradual cell growth increase until 57 

hours of the fermentation. Slow progress in the dcw was observed until 48 

hours of the fermentation. A decline in the dry cell mass was noticed at the 54th 

hour of the fermentation. The maximum dry cell weight and PHA yield achieved 

were 12.9 g/L and 26.3% dcw respectively. The level of nitrogen decreased 

from the initial value of 500 mg/L to that of 0.8 mg/L at the end of the 

fermentation. Decrease in the pH of the medium was observed until 30 hours 

after which it started to increase again and reached a value of 6.77 at the end of 

the fermentation. 
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3.3.5. PHA production using corn oil as the sole carbon source 

 

MCL-PHA production study using corn oil as the sole carbon source was also 

further extended to the fermenter scale (2 L). To analyse the effect of the use of 

corn oil as the carbon feed on P. mendocina growth and PHA production, 

different parameters were investigated for 54 hours in a bioreactor at regular 

intervals of time.  
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Figure 3.12: Fermentation profile for MCL-PHA production by P. mendocina using corn 

oil as the sole carbon source at 2 L bioreactor level fermentation. 

 

Figure 3.12 shows the profile of the results obtained from the study. Gradual 

increase in the cell growth was observed until 48 hours after which the cells 

entered the stationary phase. Dcw also followed the same trend of cell growth 

until 42 hours of fermentation. The maximum dcw achieved at the end of log 

phase was 8.9 g/L. PHA accumulation was only observed after 24 hours of the 

fermentation. The maximum PHA yield obtained using corn oil was 20.5% dcw 

at the 48th hour. The nitrogen amount in the media decreased as the 

fermentation progressed and dropped from 500 mg/L to 5.4 mg/L. pH started to 

decrease until 24 hours followed by an increase at the end of the fermentation, 

reaching to a value of 6.68. 
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3.4. Comparison of growth and production profiles in shaken flask and 2 L 

fermenter level: 

 

In this study, P. mendocina growth and production profiles were investigated in 

shaken flask and 2 L bioreactor level fermentations. Overall comparison of the 

values obtained for the parameters measured during the growth of 

Pseudomonas mendocina in mineral salt medium, containing five different sole 

carbon sources showed that when vegetable oils were used as the sole carbon 

sources, more cell growth was observed in the fermenter (2 L) than in the 

shaken flask (5 L) (Figure 3.13 and 3.14). However, higher PHA yields were 

obtained in shaken flask level fermentations for all five carbon sources (Figure 

3.14). When sodium octanoate was used as the sole carbon source, more cell 

growth and PHA yield was observed in the shaken flask (5 L) than in the 

fermenter (2 L) study. Also, these results obtained showed that coconut oil as 

the sole carbon source supported comparatively higher cell growth and PHA 

accumulation for Pseudomonas mendocina in both shaken flask and fermenter.  

 

3.4.1. Comparison of PHA production at shaken flask level 

 

Table 3.1: Summary of the shaken flask level PHA production studies using different 

carbon sources by P. mendocina. 

 

Carbon Source 

% PHA Yield 

(%dcw) 

Time 

(hours) 

PHA 

(g/L) 

Time 

(hours) 

Sodium octanoate 35.1  48 0.3  48 

Coconut oil 60.5 48 1.8  48 

Groundnut oil 31.8 48 0.4 48 

Olive oil 43.6 48 1.0 48 

Corn oil 29.8 48 0.4 48 
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3.4.2. Comparison of PHA production at 2 L fermenter level 

 

Table 3.2: Summary of the 2 L bioreactor level PHA production using different carbon 

sources by P. mendocina. 

 

Carbon Source 

% PHA Yield 

(%dcw) 

Time 

(hours) 

PHA 

(g/L) 

Time 

(hours) 

Sodium octanoate 27.4 54 0.3 54 

Coconut oil 34.6 54 1.0 54 

Groundnut oil 23.6 48 0.3 48 

Olive oil 26.3 48 1.2 48 

Corn oil 20.5 48 0.7 48 

 

 

3.4.3. Comparison of cell growth in shaken flask and 2 L fermenter level 

productions  

 

 

Figure 3.13: Comparison of the maximum P. mendocina growth (g/L) obtained using 1) 

sodium octanoate, 2) coconut oil, 3) groundnut oil, 4) olive oil and 5) corn oil as the sole 

carbon source in shaken flask and 2 L bioreactor level fermentations (n=2-3, Error bars = 

±SD). 
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3.4.4. Comparison of PHA yields in shaken flask and 2 L fermenter level 

productions 
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Figure 3.14: Comparison of the maximum PHA yield (%dcw) accumulated by P. 

mendocina using 1) sodium octanoate, 2) coconut oil, 3) groundnut oil, 4) olive oil and 5) 

corn oil as the sole carbon source in shaken flask and 2 L bioreactor level fermentations 

(n=2-3, Error bars = ±SD). 

 

3.5. Discussion: 

 

Investigations of PHA production by the Gram negative bacteria, P. mendocina 

have been recently published showing P(3HO) production in the range of 27 - 

45% dcw, when grown on sodium octanoate as the sole carbon source (Rai 

2010, Bagdadi 2013, Basnett 2014). However, production of PHAs by P. 

mendocina using vegetable oils has not been reported in literature previously. 

Hence, PHA production using P. mendocina and vegetable oils as the sole 

carbon source was the main focus for the production of PHAs during this study. 

One of the aims was to make the production of PHAs using P. mendocina more 

economical through the utilisation of cheap and readily available carbon 

sources such as vegetable oils (coconut oil, groundnut oil, olive oil and corn oil). 

In this work, the use of vegetable oils as the sole carbon source was 

investigated at shaken flask (5 L) level. To further optimise PHA yield, fermenter 

(2 L) level PHA production was also investigated in order to study in detail the 
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effect of fermentation conditions (air supply and agitation) on cell growth and 

PHA accumulation using these sole carbon sources. Throughout this study,     

P. mendocina was grown using five different carbon sources to see which 

carbon source resulted in higher cell growth and accumulation of PHAs. 

Detailed results of these studies are discussed below. 

 
It was found that, when P. mendocina was grown in the MSM media with 

different sole carbon sources such as sodium octanoate, coconut oil, groundnut 

oil, olive oil and corn oil, the organism was able to grow and accumulate a 

range of different PHAs with varying yields. In the previous reports by Ashby 

(1998) and Daniel et al. (1999), it was observed that Pseudomonas 

resinovorans and Pseudomonas saccharophila were able to produce MCL-

PHAs from vegetable oil substrates. In both of these organisms,                       

P. resinovorans and P. saccharophila, extracellular esterase (lipase) activity 

was reported by Cromwick et al. (1996) and Hou and Johnson (1992). The 

inability of other PHA producing Pseudomonads without lipase activity to grow 

and produce PHA from triglycerides suggests that the esterase (lipase) activity 

is necessary for PHA biosynthesis by the organism (Ashby and Foglia 1998). 

Therefore, the cell growth and PHA accumulation results obtained in this study 

also suggest that P. mendocina should have esterase activity in order to utilise 

vegetable oils for PHA biosynthesis. The results obtained in the production 

studies revealed that coconut oil as the sole carbon source was able to increase 

cell growth and PHA accumulation in the organism giving higher PHA 

productivity (60.5% at shaken flask level and 34.6% dcw at fermenter level) as 

compared to the other sole carbon sources used in this study. Throughout the 

study for all five sole carbon sources, the parameters such as fermentation 

conditions and the producing organism were kept identical. Previous studies 

have demonstrated that there are three important fermentation criteria i.e. the 

culture conditions, type of the carbon feedstock and finally the producer 

organism that have a direct effect on the polymer accumulation or PHA yield 

(Basnett 2014). It could therefore be suggested that the higher productivity in 

coconut oil fermentation was largely due the carbon feedstock used for the PHA 

accumulation in P. mendocina.                                                                                                                                                                                                                                                                                   
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In order to investigate the temporal variation of P. mendocina cell growth and 

PHA production profiles, different parameters as shown in Figures 3.2 – 3.13 

were measured and compared. When sodium octanoate, groundnut oil, and 

olive oil were used as the sole carbon sources, both OD as well as dcw seemed 

to have increased up to 48 hours after which they started to decrease at 54 

hours. The decrease could be due to the level of carbon source reaching to 

insufficient and could no longer support the growth of the organism. However, 

when coconut oil and corn oil were used as the sole carbon sources, both OD 

and dcw still increased simultaneously as fermentation progressed during the 

final stage of the fermentation. Vegetable oils contain a much higher number of 

carbon atoms per unit weight as per their chemical compositions, compared to 

the other carbon sources used as the feedstocks. The available carbon 

fractions for P. mendocina growth in case of coconut and corn oil fermentations 

could be higher compared to the other carbon sources in this study. Hence, the 

level of the carbon source left in the media at the end of the fermentation could 

still support the growth of the organism. In the second section, growth and 

production profiling were carried out in 2 L bioreactors which showed  gradual 

increase in the cell growth up to 54 hours when sodium octanote, groundnut oil 

and corn were used as the sole carbon sources. In case of coconut and olive oil 

feedstocks; organism grew until 60 hours of fermentation period. Thus, 

bioreactor level fermentation results showed much longer cell growth phase 

compared to the shaken flask cultures.  This difference could be due to the 

variation of the agitation speed (200 rpm) and continuous air supply (1 vvm) in 

bioreactor level fermentations compared to shaken flask fermentations 

(agitation 150 rpm).  

 

As can be seen from the temporal profiles observed in Figure 3.2 – 3.6 at 

shaken flask level, the maximum dcw (5.5 g/L) accumulated at 57 hours when 

olive oil was used as the sole carbon source (Figure 3.5). The lowest dcw (1.7 

g/L) at 48 hour was achieved when sodium octanoate was used as the sole 

carbon source. Coconut oil, groundnut oil, and corn oil showed significantly 

higher cell mass (5.1, 3.1 and 4.9 g/L respectively) compared to sodium 

octanoate. At fermenter level profiling, maximum dcw (17.6 g/L) accumulation 

was obtained at 48 hour using groundnut oil, followed by 17.1 g/L dcw at 54 

hour from coconut oil feedstock. Olive oil, corn oil and sodium octanoate gave 
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maximum of 12.9, 8.6 and 1.4 g/L dcws respectively. The nature of the carbon 

source thus plays a very important role for the growth of the organism. 

Moreover, the organism has selective preference for the carbon source used 

supporting maximal cell growth due to its genetic makeup which leads to the 

metabolism of the specific carbon feed (Ashby and Foglia 1998). Study carried 

out by Daniel et al. (1999) showed that P. saccharophila grew well in plant oils 

that contained saturated fatty acyl components. For example, coconut oil, which 

contains lauric acid (C12) as its major (47%) fatty acid component (Canapi et al., 

1996), supported P. saccharophila growth to a high density within 48 hours of 

incubation. On the other hand, soybean and sunflower oils (Davidson et al., 

1996, Sipos and Szuhaj 1996), with their high contents (50-75%) of unsaturated 

linoleoyl (C18:2) and oleoyl (C18:1) groups, gave lower density cell growth after 

72-hour incubation (Daniel et al., 1999). Vegetable oils used for PHA production 

in this study apart from coconut oil such as groundnut oil, olive oil and corn oil 

have some degree of unsaturation in their fatty acid composition. For instance, 

groundnut oil has the high content of oleic acid (52-60%) and linoleic acid (13-

27%). Olive oil has an unsaturated fatty acid content of oleic acid (65-80%) and 

linoleic acid (4-10%). Corn oil also has unsaturated fatty acid components such 

as oleic acid (19-49%) and linoleic acid (34-62) (Chempro-Edible-Oil-Refining-

ISO-TUV-Austria). However, in the study carried out by Chaudhry et al. (2011) 

excellent results were observed of Pseudomonas cell growth and biomass 

production of 12.53 g/L dcw after 24 hours of fermentation using corn oil as the 

sole carbon source. PHA accumulation seemed to have decreased after this 

point while biomass remains relatively high until 72 hours. These results 

showed that this strain has ability to utilise medium-chain-length fatty acids and 

give good results. Moreover, Shang et al. (2008) also observed much higher 

biomass (109 g/L dcw) production in P. putida KT2442 using corn oil 

hydrolysate (Chaudhry et al., 2011). In the study carried out by Ashby and 

Foglia (1998), six triglycerides (lard, butter oil, olive oil, high-oleic-acid sunflower 

oil, coconut oil, and soybean oil) were used as substrates for PHA production in 

Pseudomonas resinovorans. Each of these triglyceride supported relatively high 

average cell growth (3.3 g/L) after 48 hours of fermentation compare to the 

values previously reported for tallow (Cromwick et al., 1996). In Cromwick 

study, cell density of 3.4 g/L and 3.8 g/L were obtained using olive oil and 

coconut oil as sole carbon sources respectively. These results revealed that 
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even though corn oil contains highly unsaturated fatty acid composition, some 

Pseudomonas sp. are able to utilise corn oil more efficiently. This could be 

depending on the organism’ lipase specificity. In the present study, the lowest 

P. mendocina growth was observed from corn oil sole carbon source compared 

to the other vegetable oils used as the sole carbon sources. This demonstrates 

P. mendocina’s lipase specificity for saturated fatty acids.  

 

In the study carried out by Thakor et al. (2005), different vegetable oils such as 

castor seed oil, coconut oil, mustard oil, cotton seed oil, olive oil, groundnut oil 

and sesame oil were used as sole source of carbon/energy and also for PHA 

accumulation in C. testosteroni. It was observed that C. testosteroni degrades 

Long Chain Fatty Acids of vegetable oils by β-oxidation and synthesises (R)-3-

hydroxyacyl CoA from the intermediates of this pathway, which can act as a 

substrate for PHA synthase. Under physiological conditions permissive for 

synthesis and accumulation of MCL-PHAs, the fatty acids are not completely 

degraded to acetyl-CoA, and intermediates of the β-oxidation pathway are 

partially or completely withdrawn and converted to (R)-3-hydroxyacyl-CoA by 

enoyl CoA hydratases for PHA biosynthesis (Thakor et al., 2005). Previous 

investigations have revealed that Pseudomonas sp. uses the structurally related 

carbon sources for PHA accumulation by fatty acid β-oxidation pathway (Rai 

2010). While, structurally unrelated carbon sources are being utilised by the de 

novo fatty acid synthesis pathway (Rai 2010). Steinbuchel and Fuchtenbusch 

(1998) observed that when Pseudomonas putida and Pseudomonas 

aerugenosa synthesise MCL-PHA from glucose or gluconic acid, they 

synthesise fatty acid by de novo biosynthesis pathway. In the present study, P. 

mendocina was able to grow and produce PHAs using sodium salts of fatty 

acids like sodium octanoate and vegetable oils which suggests that this 

organism is able to utilise both the fatty acid β-oxidation pathway and the de 

novo biosynthetic pathway for MCL-PHA production. 

 

At the shaken flask level of PHA production, the maximum PHA yield of 60.5% 

dry cell weight (dcw) was achieved using coconut oil as the sole carbon source 

as compared to PHA yield of 35.1% dcw obtained using sodium octanoate as 

the sole carbon source. Olive oil, groundnut oil and corn oil showed PHA yield 

of 43.6%, 31.8% and 29.8% dcw respectively at shaken flask cultures. PHA 
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accumulation using all five carbon sources were also investigated at 2 L 

bioreactor level which also observed the highest PHA accumulation (34.6% 

dcw) with coconut oil as the sole carbon source. Sodium octanoate, groundnut 

oil, olive oil and corn oil showed PHA yield of 27.4%, 23.6%, 26.3% and 20.5% 

dcw respectively at fermenter level PHA production. When groundnut oil and 

corn oil were used as the sole carbon sources, the maximum dry cell weights 

obtained were 3.1 g/L and 4.9 g/L respectively, which were higher in 

comparison to the dry cell weight (1.7 g/L) obtained using sodium octanoate as 

the carbon source. However, PHA yields obtained using groundnut oil and corn 

oil (31.8% dcw and 29.8% dcw) were lower in comparison to the 35.1% dcw 

PHA yield obtained with sodium octanoate.  Similar observations were also 

obtained in case of fermenter level profiling, where higher cell mass and lower 

PHA yields were obtained compared to flask level production. This suggested 

that under the specific conditions used, maximum energy was utilised in growth 

instead of PHA biosynthesis when groundnut oil and corn oil were used as the 

sole carbon sources. Previously, it was reported by Rai (2010) and Durner et al. 

(2000) that when hexanoate was used as the carbon feed for P. mendocina and 

P. oleovorans, organisms grew well but no polymer was produced. This 

indicates that hexanoate possibly led to the induction of the fatty acid               

β-oxidation related enzymes, but not the PHA biosynthesis related enzymes. 

Therefore, in the present study comparatively high cell growth and low PHA 

yield using groundnut and corn oils demonstrate that these carbon feeds 

induced β-oxidation related enzymes more compared to PHA synthesis related 

enzymes in P. mendocina. The above observation indicates that the PHA yield 

obtained using coconut oil as the sole carbon source in this study was one of 

the highest yields of polymer obtained from Pseudomonas mendocina. One 

study carried out by Chaudhry et al. (2011) demonstrated that corn oil is also a 

good carbon source for PHA accumulation in other producing Pseudomonas sp. 

since having the high carbon number fatty acids. Results showed that the 

maximum PHA content of 35.6% dcw was observed in the first 24 hours of 

fermentation. In another study by Shang et al. (2008), PHA content of 28.5% 

dcw from P. putida KT2442 was observed when grown using corn oil 

hydrolysate. Ashby and Foglia (1998) obtained 43.1% and 51% dcw PHA yields 

from P. resinovorans using olive oil and coconut oil as the sole carbon sources 
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respectively. While Cromwick et al. (1996) showed that P. resinovorans 

accumulated PHA to 15% of its cell dry weights from tallow. 

 

The rate of accumulation of PHA at the early stage of fermentation is slightly 

slower with sodium octanoate as the sole carbon source compared to vegetable 

oils used as the carbon source. Pseudomonas sp is able to produce MCL PHAs 

using linear and branched alkanes, 1-alkenes, and alkanoate substrates. 

Previously, it was reported that when these substrates are used as the carbon 

feedstock for the organism, they are either immiscible or toxic to the bacteria 

even at low concentrations (Yao et al., 1999, Tian et al., 2000, Durner et al., 

2000). Thus, the lower PHA yield from sodium octanoate as the sole carbon 

source at early fermentation stage suggests that the higher concentration of this 

carbon source in the beginning of the fermentation hindered the organism’s 

growth due to its toxic nature and prevented PHA accumulation.  

 

Nitrogen limitation triggers the accumulation of PHAs (Lageveen et al., 1988). In 

this study, nitrogen limitation was maintained during all the fermentation 

experiments. It is also known that the depletion of the nitrogen concentration in 

the media guides the cells into the stationary phase and causes the 

accumulation of PHAs (Lageveen et al., 1988, Kim et al., 1994, Wang and Lee, 

1997, Choi and Lee 1999). The concentration of the nitrogen in sodium 

octanoate fermentation reduced gradually compared to the other vegetable oil 

fermentations. Hence, PHA accumulation in the early phase of the fermentation 

was not obtained in the organism when sodium octanoate was used as the sole 

carbon source. While for vegetable oil fermentations, nitrogen concentration 

decreased during the early hours of fermentation maintaining a nitrogen limiting 

condition throughout the course of the fermentation. This could be the major 

reason for the higher yield of PHA accumulation in P. mendocina when 

vegetable oils were used as the sole carbon sources. Hence, it could be 

concluded that nitrogen limitation was a major factor for the triggering of the 

polymer production.  

 

Decline in the cell growth and simultaneous increase in the polymer 

accumulation by the organism was observed during the stationary phase, where 

the cells were unable to grow further due to the depletion of the nutrients in the 
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culture media. Hence, the amount of residual biomass decreased due to decline 

in the cell growth. However, increase in polymer production was noted at this 

stage without any simultaneous growth of the organism. This is due to the 

amount and the size of the PHA granules, which increases during the early 

stationary phase and occupies a large proportion of the intracellular space. 

Hence, maximal PHA production was achieved at the early stationary growth 

phase without a simultaneous increase in the dry cell weight. In a previous 

study carried out by Daniel et al. (1999) it was observed that approximately 80% 

of the P. saccharophila cells contained PHA inclusion bodies. These results 

also revealed that P. saccharophila growing on triacylglycerol substrates 

continued to produce PHA granules even after an extended growth period in 

contrast to the observation by Young et al. (1972) with cells grown on sucrose. 

 

When P. mendocina was grown using sodium octanoate as the sole carbon 

source in the present study, the pH of the production medium which was set at 

7.00 at the beginning of fermentation, increased and reached 7.3 (flask) and 7.8 

(fermenter). In the study carried out by Rai (2010), similar observations were 

made which showed that when P. mendocina was grown using octanoate, 

heptanoate and nonanoate, pH of the media increased from 7.00 to 7.82, 7.72 

and 7.35 respectively. However, when vegetable oils were used as the sole 

carbon sources (coconut oil, groundnut oil, olive oil and corn oil), the pH of the 

medium, which was set at 7.00, dropped gradually and decreased. Similar 

observations were also reported by Basnett (2014) that when P. medocina was 

grown using sugarcane molasses, biodiesel waste and glycerol, the pH of the 

media dropped from 7.00 to 6.5. In the present study, it was observed that at 

shaken flask level PHA productions using coconut and olive oil as sole carbon 

sources when pH of the media decreased, comparatively higher PHA yields 

were obtained. Previously, it was revealed that low pH conditions inhibit PHA 

degradation (Valappil et al., 2006, Valappil et al., 2007). However, relatively 

lower PHA yields were obtained with groundnut oil and corn oil fermentations, 

which point out that along with pH of the media, there must be some other 

fermentation conditions which also play an important role in PHA accumulation. 

Kim (2002) showed that for Pseudomonas sp, pH stat fermentations at 7.00, led 

to an increase in the yield of MCL-PHA production when compared to non pH 

stat study. This could be looked into in future in order to better understand the 
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effect of the pH on cell growth and PHA accumulation using vegetable oils as 

feedstock for P. mendocina. 

 

Pseudomonas sp requires more oxygen for cell growth (Sun et al., 2007). 

However, PHA accumulation could be observed in oxygen limiting conditions. In 

this study, continuous air supply of 1 vvm was set with 200 rpm agitation at 2 L 

bioreactor level fermentations. This suggests that there was never oxygen 

limiting conditions obtained in 2 L bioreactors throughout the study. Hence, this 

could be the main reason of getting higher cell growth and lower PHA yield at 2 

L bioreactor level PHA productions compared to shaken flask level productions. 

However in general, it is expected that polymer yields in fermenters should be 

greater than those achieved in shaken flask fermentation since the physical 

parameters can be well controlled in order to improve the performance of the 

organism. Nevertheless, the results obtained in this study showed maximum 

polymer yield in the shaken flask level fermentation (Figure 3.14). Hence, the 

conditions for polymer production using Pseudomonas mendocina in the 

fermenter needs optimisation to further enhance the polymer yield. 

 

At the end of the fermentation, both the levels of carbon and nitrogen present in 

the media seemed to have decreased. After 48 hours of fermentation the 

polymer yield dropped for all the carbon sources possibly due to the utilisation 

of PHA for growth under carbon deficient conditions. As PHAs are accumulated 

as energy resources, therefore it is seen that under carbon limiting conditions 

the organism starts to utilise the accumulated PHAs to sustain its growth. Since 

all the fermentation studies in this project were carried out in batch production, 

the media was not replenished. Therefore, the organism has higher possibility 

of utilizing the accumulated PHA granules when faced with nutrient limiting 

conditions. (Anderson and Dawes 1990, Huijberts and Eggink 1996). This 

finding suggested that the mode of fermentation plays a very important role in 

PHA accumulation (Kim et al., 2007). Therefore, to achieve a high yield of PHA 

production this further utilisation of the accumulated PHAs by the organism 

needs to be eliminated. One such approach is to carry out a two step 

fermentation, whereby a high cell concentration is achieved in the first step 

followed by limiting the organism growth in the second step in order to induce 

maximum PHA accumulation. For example Kim et al. (1997) carried out a two 



Chapter 3: Production of PHAs at shaken flask and fermenter level 

80 

 

step fed batch cultivation of P. putida by combining the use of glucose and 

octanoate. Continuous cultivation has also been proposed which allows growth 

of an organism under a defined limitation under prolong periods of time (Durner 

et al., 2000). High PHA productivity (0.68 g L−1 h−1 ) was achieved when corn oil 

hydrolysate was used as carbon source in fed batch cultures of Pseudomonas 

putida KT2442, giving cell densities of up to 109 g/L (Shang et al., 2008). In 

another study by Lee et al. (2000), it was observed that when oleic acid was 

used as the carbon feed, high density P. putida cells were obtained in fed batch 

cultures showing 141 g/L dcw in 38 hours of fermentation time (Lee et al., 

2000). 

 

In this report, the results have clearly demonstrated that P. mendocina is 

capable of producing PHAs effectively from vegetable oils and are excellent 

carbon sources for both cell growth and PHA biosynthesis. The application of 

inexpensive vegetable oils as carbon sources for PHA biosynthesis is predicted 

to reduce the production cost of bacterial polyhydroxyalkanoates. Hence in 

conclusion, as observed at the shaken flask and fermenter levels, the coconut 

oil sole carbon source, used in the study, was by far the best carbon source in 

terms of both the cellular growth (5.1 g/L) and PHA accumulation (60.5% dcw) 

in P. mendocina. Overall, reasonably high level of polymer accumulation and 

cell growth was achieved in this study; a maximal PHA content of 60.5% dcw 

was achieved from shaken flask investigations with coconut oil as the sole 

carbon source. These results therefore confirm that P.mendocina was able to 

accumulate PHAs with a yield ranging from 30-61% dcw at shaken flask and 

20-35% dcw at fermenter levels, when grown on the structurally related carbon 

sources, such as sodium octanoate, coconut oil, groundnut oil, olive oil and corn 

oil. In order to know, wether P. mendocina is able to utilise vegetable oils for 

growth and PHA accumulation, initial investigations were carried                      

out in this study. To enhance PHA yield and further reduce the production    

cost, optimisation of the MCL-PHA production using vegetable oils                    

as the sole carbon source would be an area of interest in the future.
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4.1. Introduction: 

 

Biomedical applications of SCL-PHA such as P(3HB) have been significantly 

limited to hard tissue engineering due to its brittle nature. In contrast, for soft 

tissue engineering such as heart valves, cardiac patches and other vascular 

applications, skin tissue engineering, wound healing and controlled drug 

delivery, more flexible and elastomeric polymer materials are required (Rai et 

al., 2011, Hazer et al., 2012). MCL-PHAs such as poly(3-hydroxyhexanoate) 

P(3HHx) and  poly(3-hydroxyoctanoate) P(3HO) are elastomers (Rai et al., 

2011, Basnett 2014). MCL-PHAs have lower crystallinity with higher flexibility 

and softness than SCL-PHAs, which make them materials of choice for 

biomedical applications. Moreover, different physical, mechanical and thermal 

properties have been achieved due to compositional variations allowing MCL-

PHA utilisation in various applications. 

 

Root canal treatment is the only choice of treatment until now for dental caries 

and pulpitis. In this treatment the whole pulp is removed and filled with inert 

sealing materials such as gutta percha, rasilon (Ingle and Bakland 2002). After 

this surgery, the tooth becomes dead and if the infection spreads again, 

subsequent operation is needed. Therefore, there has been great amount of 

interests in the regenerative endodontics of dental pulp and dentin. 

Combinations of stem cells, scaffolds and growth factors have been 

investigated previously for the dental pulp tissue engineering applications (Hai-

Hua et al., 2011, Ravindran et al., 2013). Scaffold materials used for the dental 

tissue engineering will have a direct effect on the success of the pulp 

regeneration. Therefore, choosing a right material for regenerative endodontics 

is a very crucial step. An ideal material should be biodegradable, biocompatible, 

permeable and facilitate cell support. Natural as well as synthetic polymers 

have been investigated as the potential scaffold materials in the pulp tissue 

engineering applications. Natural polymers (collagen, gelatin, dextran and 

fibronectin) show good cytocompatibility and bioactivity, whereas synthetic 

polymers (PGA) show better degradation rate and appropriate physical and 

mechanical properties for pulp tissue regeneration (Vasita and Katti 2006). 

However, none of the above scaffold materials have proved to be an ideal 

scaffold preparation for pulp regeneration application. 

http://en.wikipedia.org/wiki/Gutta_percha
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PHAs have been extensively studied for their biomedical applications in the 

development of medical devices such as cardiac patches, sutures, stents, nerve 

repair devices, drug delivery tablets and wound dressings (Rai et al., 2011, 

Hazer et al., 2012). Previously, PHAs have been investigated as the scaffold 

materials for the treatment of periodontal ligament and jaw bone defects 

(Williams and Martin 2005, Zinn et al., 2001). However, their use as the scaffold 

materials for dental tissue engineering remains relatively unexplored.  

 

The main objective of this chapter was to characterise PHAs, produced by 

Pseudomonas mendocina using five different sole carbon sources, sodium 

octanoate, coconut oil, groundnut oil, olive oil and corn oil. These polymers 

were characterised with respect to their chemical and material properties and 

finally assessed for their cytocompatibily using human Mesenchymal Stem Cells 

(hMSCs) in order to investigate their possible application as the scaffold 

materials for dental tissue engineering, with a particular interest in the dental 

pulp regeneration application. 

 

 

4.2. Characterisations: 

 

The polymers produced were extracted and analysed for their physical, 

chemical, mechanical and cytocompatibility properties as described below. The 

resulting polymers are shown in Figure 4.1. 

 

 

 

(a)                    (b)                    (c)                    (d)                      (e) 

 
Figure 4.1: Polymers produced by P. mendocina using different sole carbon sources;    

(a) sodium octanoate, (b) coconut oil, (c) groundnut oil, (d) olive oil, (e) corn oil. 
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4.2.1. FTIR   

 

Preliminary confirmation of the chemical structure of the polymers produced 

from P. mendocina using different sole carbon sources was carried out using 

FTIR. Figure 4.2 shows the combined FTIR spectra of these polymers. FTIR 

analyses of the polymers produced from different carbon sources confirmed the 

presence of the characteristic marker ester carbonyl bond and C-O stretching 

bond for MCL-PHAs which is observed in the range between 1728-1736 cm-1 

and 1159-1162 cm-1 respectively (Randriamahefa et al., 2003), as shown in 

Figure 4.2. The bands at 2954-2956cm-1, 2922-2928 cm-1 and 2853-2858 cm-1 

correspond to the aliphatic C-H group of the polymer backbone (Sánchez et al., 

2003). Hence, the results indicated that the polymers produced contain 

structural elements characteristic of MCL PHAs. 

 

 

Figure 4.2: Combined FTIR spectra of the PHAs produced by P. mendocina using 

different sole carbon sources: sodium octanoate, coconut oil, groundnut oil, olive 

oil and corn oil. 

 

4.2.2 GC-MS  

 

Further detailed structural characterisation of the monomers present in the 

extracted PHAs was carried out using GC-MS. The methanolysis of the PHA 

obtained using sodium octanoate resulted in a GC peak, the MS spectrum of 

which was identical to that of the methyl ester of 3-hydroxyoctanoate in the 

NIST (National Institute of Standards and Technology) library. The total ion 
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current chromatogram for the methanolysed product of the polymer produced 

from sodium octanoate can be seen in Figure 4.3 (a). The mass spectrum of 

the molecular ion related mass fragment peak was observed at an Rt of 6.67 

minutes. The peaks obtained due to the fragmentation of the molecular ion is 

the same as that for the methyl ester of 3HO. The MS fragmentation pattern of 

3HO in Figure 4.3 (b) showed the following main peaks at m/z 40.9, 70.8, 74.9 

and 102.8. The peak at m/z 40.9 corresponded to the alkyl end of the molecule 

formed due to the cleavage between the C5 and C6 carbon atoms. The peak at 

m/z 70.8 represented the alkyl end of the molecule occurring due to the 

cleavage between C3 and C4 carbon atoms. The peak at m/z 74.9 represented 

the carbonyl end of the molecule occurring due to the cleavage between C3 and 

C4 carbon atoms. The peak at 102.8 corresponded to the hydroxyl end of the 

molecule occurring due to the cleavage between C3 and C4 atoms. Thus, it was 

confirmed that polymer produced from P. mendocina, using sodium octanoate 

as the sole carbon source, was indeed a homopolymer of 3-hydroxyoctanoic 

acid.  

 

 

 

 

Figure 4.3: GC-MS analysis of the polymer produced when P. mendocina was grown on 

sodium octanoate: (a) Total ion chromatogram of the methanolysis product of PHA,      

(b) Mass spectrum of the methylester of 3-hydroxyoctanoic acid with a Rt of 6.67 

minutes.  

(a) 

(b) 
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The polymers extracted from coconut oil, groundnut oil, olive oil and corn oil 

were also analysed using GC-MS. The analysis confirmed the presence of three 

different monomers in the methanolysed product of these polymers. The total 

ion current chromatogram for these methanolysis products is shown in Figures 

4.4 and 4.5. The molecular ion related mass fragment peak at Rt of 6.64 

minutes, due to the methyl ester of 3HO was observed again in polymers 

produced from groundnut, olive and corn oil. Whereas, in case of the polymer 

produced from coconut oil, it was observed at 10.73 minutes. The peaks 

obtained due to the fragmentation of the molecular ion were the same as the 

methyl ester of 3HO produced and discussed previously from P. mendocina 

using sodium octanoate. 

 

  

 

 

 

 

 

(b) 

(a) 
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Figure 4.4: GC-MS analysis of the polymers produced when P. mendocina was grown on 

coconut oil, (a) Total ion chromatogram of the methanolysis product of PHA (b) Mass 

spectrum of the methylester of 3-hydroxyoctanoic acid with a Rt of 10.73 minutes           

(c) Mass spectrum of methylester of 3-hydroxydecanoic acid with a Rt of 12.14 and        

(d) Mass spectrum of methylester of 3-hydroxydodecanoic acid with a Rt of 13.39 

minutes.  

 

The peaks at Rt of 7.38 and 8.00 minutes in groundnut, olive and corn oil 

polymers, showed excellent similarity to the mass spectra of the methyl esters 

of 3-hydroxydecanoate and 3-hydroxydodecanoate respectively in the MS 

(NIST) library. In case of polymer produced from coconut oil, these peaks were 

observed at Rt of 12.14 and 13.39. The fragmentation pattern of 3HD showed 

(Figure 4.4 (c)) a peak at m/z 74.1, which originates from the carbonyl end of 

the molecule due to the cleavage between C3 and C4 carbon atoms following 

McLafferty rearrangement (Rai 2010, Basnett 2014, McLafferty 1956). The peak 

at m/z 103.0 occurred due to the fragmentation ion of the hydroxyl end of the 

molecule following the cleavage between C3 and C4 carbon atoms; similarly the 

alkyl end of this cleavage resulted in the peak at m/z 71.1. The peak at m/z 43.1 

(c) 

(d) 
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occurred due to the alkyl end of the molecule following the cleavage between 

C7 and C8 carbon atoms. 3HD fragmentation patterns for polymers produced 

from groundnut, olive and corn oils showed similarity with the methyl ester of 

3HD produced from P. mendocina using coconut oil. Finally, the fragmentation 

pattern for 3HDD produced from groundnut, olive and corn oils, Figure 4.5 (f), 

showed the m/z peak at 103.0 which originated from the carbonyl end of the 

molecule. This was due to the cleavage between C3 and C4 carbon atoms 

following McLafferty rearrangement. The peaks at m/z 43.2 occurred due to the 

alkyl end of the molecule following cleavage between C9 and C10 carbon atoms. 

Polymer produced from coconut oil also showed similar fragmentation pattern of 

the methyl ester of 3HDD. Hence, these results confirmed the production of the 

terpolymer of poly(3HO-co-3HD-co-3HDD) when coconut, groundnut, olive, and 

corn oil were used as the sole carbon sources. 

 

  

 

 

(a) 

(b) 

(c) 
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Figure 4.5: GC-MS analysis of the polymers produced when P. mendocina was grown on 

groundnut oil, olive oil, and corn oil, (a)-(c) Total ion chromatogram of the methanolysis 

product of PHA produced using groundnut oil, olive oil, and corn oil, (d) Mass spectrum 

of the methylester of 3-hydroxyoctanoic acid with a Rt of 6.64 minutes (e) Mass spectrum 

of methylester of 3-hydroxydecanoic acid with a Rt of 7.38 and (f) Mass spectrum of 

methylester of 3-hydroxydodecanoic acid with a Rt of 8.00 minutes. 

 

All the other peaks obtained were due to impurities and some of the fatty acids 

used as the carbon source. In case of P(3HO) the fragment peaks at a retention 

time (Rt) of 7.57 and 8.73 minutes were identical to the mass spectrum of the 

methyl ester of undecanoic acid and hexadecanoic acid in the MS (NIST) 

library. Moreover, some additional peaks of impurities were also obtained in the 

P(3HO) sample. In case of polymers produced using olive, ground and corn oil, 

additional peaks of hexadecanoic acid and octadecanoic acid were observed. 

(f) 

(e) 

(d)  
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Hence, further purification of the polymers was carried out before carrying out 

further characterisation. The compositions of the PHAs produced are calculated 

as follow and summarised in Table 4.1. 

 

               % Monomer composition =  Height of the monomer peak X 100 

                                                           Total height of the monomers’ peaks 

  

Table 4.1: The monomer composition of polyhydroxyalkanoates produced from P. 

mendocina using sodium octanoate, coconut oil, groundnut oil, olive oil, and               

corn oil as the sole carbon sources. Abbreviations used: 3-hydroxyoctanoate (3HO),      

3-hydroxydecanoate (3HD), and 3-hydroxydodecanoate (3HDD). 

 

 

4.2.3 DSC 

 

A representative DSC thermograms of MCL-PHAs are shown in Figure 4.6. 

Corresponding values of glass transition (Tg) and melting temperature (Tm) have 

been compiled in Table 4.2. All terpolymers except that produced using corn oil 

as carbon source were observed to have lower Tg values compared to the 

homopolymer P(3HO). The presence of large pendant alkyl chain in terpolymers 

increases the polymer free volume allowing polymer segment movements at 

lower temperatures than in P(3HO). Higher glass transition of terpolymer 

produced with corn oil might be due to alternating sequence of monomer units 

since this copolymer has similar content of various monomers compared to the 

other terpolymers.  

Type of the 

carbon source 

PHA composition 

(mol%) 
Molecular structure 

3HO 3HD 3HDD 3HO 3HO-3HD-3HDD 

Sodium 
Octanoate 100 - - 

 

 

Coconut oil 30.43 60.87 8.70 

Groundnut oil 21.15 55.77 23.08 

Olive oil 29.76 38.10 32.14 

Corn oil 33.65 39.42 26.92 
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During the first heat scan, the polymer chains in the crystalline phase of the 

polymer melted and became disordered. P(3HO) melted around 50oC. 

Terpolymers can melt at higher temperature compared to P(3HO), for example, 

the terpolymer produced with olive oil or lower temperature than P(3HO) as in 

case of polymer produced with coconut oil. Two of the terpolymers did not show 

a melting event. As can be seen, from the Figure 4.6, there is no crystallisation 

during the cooling cycle for semi-crystalline P(3HO). This indicates that MCL-

PHA crystallise very slowly. Thus the absence of melting peaks in case of two 

terpolymers cannot be attributed to their amorphous nature. Crystalline phases 

might develop in these copolymers with the increase of storage time. An 

additional longer term study will need to be conducted to clarify the feasibility of 

crystallisation of these copolymers. The molar fraction of each monomer unit 

plays a very important role in controlling the polymer’s thermal properties. 

Therefore, although all the polymers produced using vegetable oils are 

terpolymers containing 3HO, 3HD and 3HDD monomer units, they all have 

different Tg and Tm values probably depending on the molar fraction of these 

monomer units.  

 

 

Table 4.2: Compilation of the thermal properties of the polymer produced from different 

sole carbon sources: Abbreviations used: Tg = glass transition temperature, Tm = melting 

temperature, and (-) = not observed. 

 

Type of the carbon 

source 
Polymer produced Tg Tm ΔH J/g 

Sodium Octanoate P(3HO) - 40.9
o
C 49.8

o
C 11.9 

Coconut oil P(3HO)-co-P(3HD)-co-P(3HDD) - 45.1
o
C 41.7

o
C 15.4 

Groundnut oil P(3HO)-co-P(3HD)-co-P(3HDD) - 42.9
o
C - - 

Olive oil P(3HO)-co-P(3HD)-co-P(3HDD) - 45.7
o
C 65.8

o
C 1.0 

Corn oil P(3HO)-co-P(3HD)-co-P(3HDD) - 35.5
o
C - - 
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(a) 

(b) 

 (c) 
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Figure 4.6: Thermal profiles of the polymers extracted from lyophilised P. mendocina 

cells grown on sodium octanoate (a), coconut oil (b), groundnut oil (c), olive oil (d), and 

corn oil (e). The figures show the normalised DSC heating curve with mathematical 

derivatives to detect the smallest changes in the curves.  

 

4.2.4 Tensile testing 

 

Tensile testing on the solvent cast thin films (Figure 4.7) of the polymers 

produced using sodium octanoate and coconut oil as the sole carbon source 

was performed and stress v/s strain curve was plotted (Figure 4.8) in order to 

determine their strength and stiffness (Young’s modulus) (Table 4.3). The 

polymer produced using coconut oil exhibited a slightly higher elastic modulus 

of 4.4 MPa compared to 3.6 MPa Young’s modulus of the polymer obtained 

 
(d) 

(e) 
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using sodium octanoate. Moreover, the tensile strength and the percentage 

elongation values of the polymer produced using coconut oil were also higher 

than the P(3HO) produced using sodium octanoate. These results indicated that 

the stiffness of the polymer from coconut oil was higher compared to that of the 

polymer from sodium octanoate. This lower stiffness of P(3HO) homopolymer 

obtained using sodium octanoate could be due to the long uniform carbon 

backbone containing the C8 side chains as compared to the random terpolymer 

with the carbon backbone containing the random C8,C10 and C12 side chains 

(Rai 2010).  

 

 

 

                                         (a)                                (b) 

 

Figure 4.7: Solvent cast films prepared using PHAs produced from (a) sodium octanoate 

and (b) coconut oil. 

 

 

 

 

Table 4.3: Compilation of Young’s modulus (E), tensile strength and elongation at break 

values for the polymers obtained using sodium octanoate and coconut oil (n=2, ± =SD). 

 

Type of the carbon 

source 
Polymer produced 

Young’s 

modulus 

Tensile 

strength 

Elongation 

at break 

Sodium Octanoate P(3HO) 
3.62 MPa 

±2.26 

4.27 MPa 

±0.13 

341.64 % 

±30.56 

Coconut oil P(3HO)-co-P(3HD)-co-P(3HDD) 
4.42 MPa 

±0.28 

4.89 MPa 

±0.01 

393.70 % 

±3.37 
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Figure 4.8: Stress–strain profile of the fabricated 5 wt% PHA films produced using  

(a) sodium octanoate, and (b) coconut oil, as the sole carbon source.  

 

4.2.5 GPC 

 

Samples of the produced polymers were sent to Nottingham University for GPC 

analysis. The molecular weight and the polydispersity index (PDI) values 

obtained are compiled in Table 4.4. PDI is a measure of the distribution of the 

molecular masses in a given polymer sample. The PDI values of the polymers 

(a) 

(b) 
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produced were found to be between 1.10 - 1.84, indicating a reasonably mono-

disperse polymer preparation. Interestingly, the homopolymer of P(3HO) 

produced from P. mendocina using sodium octanoate as the sole carbon source 

showed the highest Mw and Mn values of 2.25 x 105 and 1.22 x 105 respectively, 

compared to the rest of the polymers produced using vegetable oils as the sole 

carbon sources. Terpolymers produced using the vegetable oils as sole carbon 

sources exhibited Mw and Mn values in the range of 0.1-0.6 x 105 and 0.1-0.5 x 

105 respectively as shown in Table 4.4. These polymers are hence much lower 

in molecular weight compared to the P(3HO) homopolymer obtained using 

sodium octanoate.  

 

Table 4.4: Molecular weight analysis of the PHAs produced using sodium octanoate, 

coconut oil, groundnut oil, olive oil, and corn oil. 

 

 

 

4.2.6 XRD  

 

To investigate the effect of the different carbon sources on the crystallinity of the 

PHAs produced, XRD studies were carried out. The XRD pattern (Figure 4.9) 

showed wide peaks at around 2θ=20° for each polymer which is indicative of 

the amorphous nature of the polymers produced. Hence, it was confirmed that 

the polymers produced in this study were predominantly amorphous in nature 

(Rai 2010). An increase in the variety of side chains within one polymer chain of 

MCL-PHA can decrease its ability to crystallise and therefore there are some 

distinct differences in the crystallinity of MCL-PHAs as compared to SCL-PHAs. 

Sanchez et al. (2003) observed that for MCL-PHAs and its copolymers low 

crystallinity is possibly due to the presence of large and irregular pendant side 

groups which inhibit close packing of the polymer chains in a regular three 

dimensional fashion to form a crystalline array. The terpolymer produced using 

Type of the carbon 

source 
Polymer produced 

Mn (X10
5

) Mw (X10
5

) PDI 

Sodium Octanoate P(3HO) 1.22 2.25 1.84 

Coconut Oil P(3HO)-co-P(3HD)-co-P(3HDD) 0.11 0.14 1.29 

Groundnut Oil P(3HO)-co-P(3HD)-co-P(3HDD) 0.31 0.37 1.17 

Corn Oil P(3HO)-co-P(3HD)-co-P(3HDD) 0.16 0.22 1.49 

Olive Oil P(3HO)-co-P(3HD)-co-P(3HDD) 0.48 0.53 1.10 
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groundnut oil showed the highest intensity of the peak followed by polymers 

produced using olive oil, corn oil, sodium octanoate and coconut oil 

respectively. This result indicated highly amorphous nature of the polymer 

produced using groundnut oil as compared to all the other polymers produced in 

this study.  

 

Figure 4.9: X-ray diffraction patterns of PHAs produced using sodium octanoate, coconut 

oil, groundnut oil, olive oil and corn oil. 

 

4.2.7 SEM 

 

Surface and microstructural features of a biomaterial can have important 

implications on its biocompatibility and hence its applications. Therefore, to 

evaluate these microstructural properties and understand its impact on the 

biocompatibility, the surface of the fabricated films were observed using 

scanning electron microscopy (SEM). The SEM micrographs (Figure 4.10) 

showed that the polymer produced from corn oil had highly rough surface when 

compared to the polymers produced from sodium octanoate, coconut oil, 

groundnut oil and olive oil.   

  

                              (a)                                                         (b) 
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                               (c)                                                                            (d) 

 

   (e)             

Figure 4.10: SEM micrographs of polymer films produced from (a) sodium octanoate,    

(b) coconut oil, (c) groundnut oil, (d) olive oil, (e) corn oil taken at different 

magnifications   (3 samples were scanned for each polymer). 

 

4.2.8 Static contact angle 

 

The surface of a material is crucial in determining its compatibility with other 

materials as well as its ability to interact with the surrounding environment; 

especially cell adherence and viability is determined to a large extent by the 

surface properties of the material. Hence, investigating the material’s surface 

properties is very important to assess its suitability in a particular application, 

particularly in biomedical applications. The water contact angle (θH2O) is a 

measure of the hydrophilicity/hydrophobicity of a material surface. Surfaces with 
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θH2O less than 90o are considered to be hydrophilic in nature whereas, surfaces 

with θH2O greater than 90o are considered to be hydrophobic in nature (Peschel 

et al., 2007). Water contact angle measurements of the fabricated polymer films 

are shown in Figure 4.11. The θH2O value obtained for most of the produced 

polymer was greater than 90o, hence confirming their hydrophobic nature. 

Polymer produced using groundnut oil showed the highest water contact angle 

indicating its highest hydrophobicity followed by polymers produced using 

sodium octanoate, corn oil, olive oil, and coconut oil. These measurements 

showed that the presence of 3HO, 3HD and 3HDD resulted in the presence of 

long aliphatic side chains on the surface of the polymer, leading to the 

hydrophobic nature of the surface of the polymers.  

 

Figure 4.11: Comparison of the water contact angle values of the fabricated PHA films. 

(n=3; error bars=±SD, error bars are based on the measurements of different samples 

from same batch) 

 

 

4.2.9 Cell culture study 

 

Human Mesenchymal Stem Cells (hMSCs) were used in this study since they 

are multipotent stromal cells that can differentiate into a variety of cell types 

including: osteoblasts, odontoblasts, ameloblasts, cementoblasts, fibroblasts 

and vascular endothelial cells. These cell types can ultimately lead to the 

formation of different tooth parts such as bone, dentin, enamel, cementum and 

pulp ligaments respectively. To investigate cell attachment, migration and 

proliferation, hMSCs were cultured (2x104 cells/sample) for 1, 4, 7, and 14 days 

on the surface of the polymer films and MTT assays were performed to evaluate 

cell attachment and proliferation. The results obtained are shown in Figure 
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4.12. Although cell growth was higher on tissue culture plastic compared to that 

on the polymer films, a gradual increase in cell growth was observed during the 

14 days of measurements. These results indicated that these polymers are not 

cytotoxic towards the human mesenchymal stem cells and could support cell 

attachment and proliferation. Highest cell growth was observed on the polymer 

samples produced from corn oil, followed by the polymer produced using 

coconut oil. Cell growth observed on the polymer films produced using 

groundnut oil, sodium octanoate and olive oil showed comparatively lower 

values than the cell growth on polymer films produced using corn and coconut 

oils. Figure 4.12(a) shows the cell proliferation results highlighting a significant 

increase in the growth of hMSCs during the 14 days of incubation, on all the 

polymer samples. Figure 4.12(b) shows the cell proliferation results of all the 

samples compared to the control (control was normalised to 100%). Thus the 

polymer produced using corn oil as the sole carbon source was found to be the 

most cytocompatible. SEM analysis of the test samples also confirmed that 

these polymer materials were able to support hMSC attachment and 

proliferation (Figure 4.13). 

Figure 4.12: Cell proliferation study for 1, 4, 7, and 14 days, using MTT assay on PHAs 

produced using sodium octanoate, coconut oil, groundnut oil, olive oil, and corn oil,     

(a) cell proliferation measured using the MTT assay, (b) % cell viability for all tested 

samples relative to the control (control set at 100%). The data (n=3; error bars=±SD, 

based on experimental replication) were compared using ANOVA and differences were 

considered significant when *p < 0.05, **p < 0.01 and ***p < 0.001. 

 

(a) (b) 
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                         (a)                                                         (b) 

 

 

 

 (c)                                                            (d) 

 

Figure 4.13: SEM images of the seeded hMSCs on to the polymer films prepared from;  

(a) sodium octanoate polymer: showed hMSCs attachment, proliferation and spreading 

(b) coconut oil polymer: showed hMSCs spreading on the film forming a cell layer,        

(c) olive oil polymer: showed hMSCs attachment and proliferation, (d) corn oil polymer: 

showed hMSCs spreading on the film forming a cell layer. 1) Polymer surface, 2) hMSCs, 

arrows indicate filopodia. 
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4.3. Discussion: 

 

Using all five sole carbon sources investigated in this study, a range of PHAs 

were produced. Preliminary characterisation using FTIR suggested that the 

polymers produced in this study are medium chain length PHAs. There are 

several factors which define the monomer composition of MCL-PHAs produced 

using long-chain fatty acids. The major factor is the fatty acid used as carbon 

feedstock, the specificity of the PHA-synthesising system, the degradation 

systems for fatty acids and finally the PHA-synthesising pathways (Eggink et al., 

1993). Triglycerides contain different proportions of saturated and unsaturated 

fatty acids, hence MCL-PHA produced using these triglycerides should vary in 

their monomer composition. This reflects the substrates and the enzymatic 

make-up of the organism (particularly those involved in -oxidation of 

unsaturated fatty acids) (Ashby and Foglia 1998). GC and GC–MS analysis of 

the purified PHAs obtained from P. mendocina during cultivation on different 

vegetable oils showed the presence of 3-hydroxyalkanoic acids with chain 

length ranging from C8 to C12. The composition and structure of each 

constituent of the polymers were confirmed by GC–MS analysis (Thakor et al., 

2005). Vegetable oils used in this study always contained long chain fatty acids 

(LCFAs) like, myristic acid (C14), palmitic acid (C16), stearic acid (C18), arachidic 

acid (C20), palmitoleic acid (C16), oleic acid (C18) and linoleic acid (C18) as 

constituents, and coconut oil also contained caproic acid (C6), caprylic acid (C8), 

capric acid (C10) and also lauric acid (C12) along with LCFAs (Thakor et al., 

2005). PHAs obtained from P. mendocina during growth on coconut oil, 

groundnut oil, olive oil and corn oil showed almost similar patterns                    

of 3HAs incorporation into a heteropolymer. 3-hydroxyoctanoaic acid,               

3-hydroxydecanoic acid and 3-hydroxydodecanoic acid were found common in 

PHAs obtained from P. mendocina using different vegetable oils in this study. 

Coconut oil used in this study contained a high concentration of saturated fatty 

acids (86%) and low concentration of unsaturated fatty acids (6%) (Ashby and 

Foglia 1998). Whereas groundnut oil, olive oil and corn oil are mainly composed 

of unsaturated fatty acids ranging from 78-85%. When coconut oil was used as 

a feedstock, 3-hydroxyoctanoic acid, 3-hydroxydecanoic acid and                     

3-hydroxydodecanoic acid were incorporated at concentrations of 30.43, 60.87, 
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and 8.70 mol% respectively. From this result, it can be seen that the least 

incorporated 3HA moiety was 3-hydroxydodecanoic acid when coconut oil was 

used as the sole carbon source. Thus, it demonstrated the high concentration of 

C8 and C10 moieties in the MCL-PHA produced from coconut oil sole carbon 

source, suggesting the enhanced PHA synthase specificity for                          

3-hydroxyoctanoyl-CoA and 3-hydroxydecanoyl-CoA. Moreover, this could be 

the result of the low concentration of unsaturated fatty acids in coconut oil 

(Ashby and Foglia 1998). In a previous study when Ps. saccharophila was 

grown using coconut oil, it showed that the organism grew well and gave 

maximum MCL-PHA production at 48 hours. This study also observed the 

incorporation of the 3-hydroxyoctanoic acid and 3-hydroxydecanoic as the 

major monomer repeat units with higher concentrations (Daniel et al., 1999, 

Ashby and Foglia 1998). Thus, it was confirmed that when coconut oil was used 

as the sole carbon source, higher concentrations of the saturated hydroxy fatty 

acids (HFA) monomers were incorporated in the PHA produced (Daniel et al., 

2006, Chenyu et al., 2012). Moreover, P. resinovorans also showed the 

synthesis of MCL-PHA with intact oils and fats, reflecting the monomer repeat 

unit composition with the fatty acids of the oil or fat substrate used for their 

synthesis (Daniel et al., 2006, Chenyu et al., 2012). When groundnut oil, olive 

oil and corn oil were used as the carbon source, 3-hydroxydodecanoic acid was 

incorporated at concentrations of 23.08, 32.14 and 26.92 mol% respectively. 

The high degree of polyunsaturation resulted in the additional incorporation of 

3-hydroxydodecanoic acid repeat units into the PHAs produced when groundnut 

oil, olive oil and corn oil were used as the feedstock. It was probably due to the 

higher specificity of the -oxidation enzymatic system for unsaturated fatty acids 

of the groundnut, olive, and corn oils. 

 

The material properties of PHAs are very important criteria to determine the 

applications of the particular type of polymer. For example, the MCL-PHAs have 

elastomeric behaviour with an elongation at break of about 300%. This, together 

with other properties such as high cytocompatibility, means MCL-PHAs could 

be used as a scaffold material in tissue engineering (Chenyu et al., 2012, Hazer 

et al., 2012).  
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PHAs are normally crystalline polymers. Their thermal properties are presented 

in terms of the glass transition temperature (Tg) of the amorphous phase and 

the melting temperature (Tm) of the crystalline phase. The thermal properties of 

each MCL-PHA are given in Table 4.2. During the first heat scan, the polymer 

chains in the crystalline phase of the polymer melted and became disordered. 

This absorption of energy for the melting of the polymer chains in the crystalline 

phase was reflected as the Tm peak. MCL-PHAs produced in this study using 

sodium octanoate, coconut oil, and olive oil exhibited some degree of melting 

transition, indicating that each of these PHAs had some degree of crystallinity. 

In contrast, the thermal properties of the PHAs produced from groundnut and 

corn oil showed no melting transition, indicating that they could be completely 

amorphous or semi-crystalline which needs further confirmation. In previous 

studies, the Tg value of MCL-PHA is found to decrease with the increase in 

average length of the pendant group, caused by the increased mobility of the 

polymer chains. When P. oleovorans was grown on a range of n-alkanoates 

from C6 to C10, a decrease in Tg of the PHA produced using hexanoate           

(Tg = -25°C) to that produced from decanoate (Tg = -40°C), was observed, 

corresponding to an increase in the average length of the predominant side-

chain. A similar observation was made with a decrease of Tg value of almost 

18°C for MCL-PHAs produced from coconut oil fatty acid (-43.7°C) to that 

produced from linseed oil fatty acid with a Tg value of -61.7°C (Rai 2010). 

Moreover, Ouyang et al. (2007) found that in the mutant strain of P. putida 

KTOYO6, with the increasing content of 3-hydroxydodecanoate, (3-HDD from 

15 to 39 mol%), in the accumulated MCL-PHA, Tm increased from 53 to 65°C 

and ΔHf from 18 to 28 J/g. In general, crystallisation occurs slowly in MCL-PHAs 

and for some copolymers no Tm value is observed because the copolymers do 

not crystallise at all (Rai 2010). In the present study, relatively low Tg values 

were obtained for the MCL-PHAs produced, which presented low rigidity and 

high elasticity. These properties make them potential material of choice for 

biomedical applications (Hazer et al., 2012).  

 

An increase in the variety of side chains within one polymer chain of MCL-PHA 

can hamper its ability to crystallise and therefore there are some distinct 

differences in crystallinity of MCL-PHAs. Previously Barbuzzi et al. (2004) 

confirmed that crystallisation of the MCL-PHAs is possible due to the formation 
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of layerlike order of both the backbone and the side chains. Moreover, the 

structural regularity of the repeating units will affect the crystalllinity of the 

polymers (Ashby and Foglia 1998). Sanchez et al. (2003) reported that for MCL-

PHAs and its copolymers low crystallinity is possibly due to the presence of 

large and irregular pendant side groups, which inhibit close packing of the 

polymer chains in a regular three dimensional fashion to form a crystalline 

array. In fact, saturated MCL-PHAs, which are able to crystallise due to their 

isotactic configuration, are also seen to crystallise with alkyl side chains in an 

extended conformation to form ordered sheets, but they still show a reduced 

degree of crystallinity. Copolymers of P(3HO) are amongst the common MCL-

PHAs studied and in the study carried out by Gagnon et al. (1992) using wide 

angle X-ray diffraction (WAXD) and 13C nuclear magnetic resonance (13C 

NMR), it was found that the copolymer of MCL-PHA containing 86% of HO and 

minor quantities of 3-hydroxydecanoate and 3-hydroxyhexanoate was 

approximately 30% crystalline. A two phase morphology, was therefore 

proposed to be present in P(3HO), the amorphous phase and the crystalline 

phase (Rai 2010). 

 

MCL-PHAs are elastomers with the crystalline parts acting as physical 

crosslinks and therefore have mechanical properties very different from those of 

SCL-PHAs and its copolymers. The introduction of a comonomer into the 

polymer backbone is seen to significantly increase the flexibility (elongation to 

break) and toughness of the polymer (Rai 2010). Results obtained in this study 

indicated that the flexibility of polymer from coconut oil was higher compared to 

the polymer from sodium octanoate. This higher rigidity of the polymer from 

sodium octanoate could have been due to the homopolymeric nature of the 

P(3HO) films, which have long carbon backbones of the same type (all C8 

monomers) making layerlike order arrangements of the polymer. Hence, this 

study showed that the fabricated P(3HO) films were less stiff than the 

copolymer produced from coconut oil (Basnett 2014).   

 

Molecular weights of the produced polymers are likely to be affected by several 

criteria such as the producing organism, the state of inoculums, production 

media composition, fermentation conditions and downstream processes. 

Molecular weights can vary depending on the stage of the cultivation. 
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Downstream processing such as biomass pre-treatment, polymer extraction and 

purification methods also affected the molecular weights of the produced 

polymers (Ranjana et al., 2011). In this study, high cell and polymer yields using 

vegetable oils as the sole carbon source indicated that the triglycerides are 

used by the bacterium as carbon sources. This was further suggested by the 

similar molecular masses of each PHA produced from vegetable oils. It has 

been shown that the molecular masses of microbially produced polymers vary 

as a function of the stage of growth when the cells are harvested (Birrer et al., 

1994). Because the polymerisation efficiency of a bacterial system is based on 

enzyme activity or number of enzymes present, it is likely that relatively equal 

molecular masses are the result of a similar polymerisation process (Daniel et 

al., 1999, Ashby and Foglia 1998). The P(3HO) produced using sodium 

octanoate as the sole carbon source showed the highest molecular weight 

compared to the polymers produced using vegetable oil sole carbon sources. 

Hydrolysis of oils by lipases produces free fatty acids and glycerol. It has been 

observed that the presence of glycerol in the culture medium decreases the 

molecular weight of the PHA (Madden et al., 1999). Thus, in this study lower 

molecular weight polymers were obtained using vegetable oil as the sole carbon 

sources compared to the polymer synthesised using sodium octanoate as the 

sole carbon source. 

 

Water contact angle measurements (also an indication of the wettability) 

showed that addition of the comonomers in the polymeric backbone and 

increase in the length of the side chains decreased the wettability of the 

polymers. Hence confirmed the hydrophobic nature of the polymers produced 

from vegetable oils (Superb et al., 2008). 

 

Many studies have been carried out to understand cell and material interfacial 

relationships, particularly related to biocompatibility of the material used. This is 

because most mammalian cells are anchorage dependent and need a 

biocompatible surface for attachment, differentiation, and migration to form new 

tissue. For tissue regeneration applications, the scaffold should be 

biocompatible, biodegradable and the degradation products should be non-toxic 

and resorbable. Moreover, the scaffold should facilitate the attachment, 

migration, proliferation, and three-dimensional spatial organisation of the cell 
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population required for structural and functional replacement of the target 

tissue. Biocompatibility is of utmost importance to prevent adverse tissue 

reactions (Galler et al., 2011). The biocompatibility of PHAs, like for any other 

biomaterial, is dependent on factors such as shape, surface porosity, surface 

hydrophilicity, surface energy, chemistry of the material, the environment where 

it is incorporated and its degradation products. Interestingly, the cytotoxicity of 

oligo-hydroxyalkanoates (OHA) decreased with increasing OHA side chain 

length thus indicating that medium chain length OHAs containing PHA, such as 

poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), P(3HB-co-3HHx) and MCL-

PHAs are more biocompatible then short chain length hydroxyalkanoates. 

These results indicated that these polymers are not cytotoxic towards the 

human mesenchymal stem cells and could support cell attachment and 

proliferation. Highest cell growth was observed on the polymer samples 

produced from corn oil, followed by the polymer produced using coconut oil. 

Previous studies have shown that the cells prefer to attach to the rough surface 

of the material compared to the smooth surface. Surface properties of the 

polymer film samples were studied using SEM which indicated a considerably 

rough surface of the polymer produced using corn oil compared to all the other 

produced polymers which explains the higher cell growth on polymer samples 

produced using corn oil. In case of the polymer produced using groundnut oil 

the highest water contact angle was observed, indicating its highly hydrophobic 

nature, followed by polymers produced using sodium octanoate and olive oil. 

Previous studies have shown that hydrophilic surfaces are favorable for cell 

attachment and proliferation. Thus, these results could also be correlated to the 

cell growth observed on the polymer films produced using groundnut oil, sodium 

octanoate and olive oil (Basnett 2014, Daniel et al., 1999). To increase the 

biocompatibility of polymer scaffolds, attempts have also been made to increase 

the hydrophilicity of the polymer which may enable better adherence of the 

seeded cells on the scaffolds. Another approach to increase the biocompatibility 

of the polymer is by coating the surface of the polymer with a biocompatible 

compound (Rai 2010). Moreover, the reaction of cells and tissues to PHAs 

depends not only on the chemical composition of the material but also on the 

degree of purity, methods of processing the material into scaffolds,            

physical mechanical properties of these scaffolds, properties of the surface                 

and methods of its treatment (Shishatskaya and Volova 2004). 
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5.1. Conclusions: 

 

PHAs are a good replacement for the petroleum-based plastics. However, 

commercialisation of PHAs has been limited due to their overall high production 

cost. A major factor that adds to their relatively high production cost is the cost 

of expensive carbon feedstocks for the organism. Hence, to make PHA 

production more economical, much research is involved in identifying and using 

renewable and cheap carbon sources, which not only reduces the production 

costs but also increases polymer yields (Ashby and Foglia 1998). In recent 

years, the use of organic wastes, agricultural and dairy by-products and 

vegetable oils have been investigated as alternative substrate, for PHA 

production. Among these, vegetable oils are considered as the most suitable 

and desirable feedstocks for PHA production due to their high productivity. 

Vegetable oils can reduce both production cost and energy consumption when 

compared with sugar substrates such as glucose or sucrose (Daniel et al., 

2006, Chenyu et al., 2012, Chee et al., 2010). However, there are only few 

reports published using some vegetable oils, including soybean oil, castor oil, 

sunflower oil, and palm oil, have been used to obtain high yields of PHAs 

(Daniel et al., 2006, Chenyu et al., 2012, Chee et al., 2010). The bacterial 

species that have been shown to produce MCL-PHAs from plant oils include 

Aeromonas caviae, Pseudomonas aeruginosa, Pseudomonas resinovorans, 

Pseudomonas saccharophila, and Comamonas testosteroni. Pseudomonads 

belonging to the rRNA homology group I are particularly known to produce 

MCL-PHAs from vegetable oils (Ashby and Foglia 1998). In this study we have 

investigated, for the first time, the PHA production by Pseudomonas mendocina 

using different vegetable oils as the feedstocks for the culture.  

 

The ultimate goal of the first part of this study was to investigate PHA 

production using vegetable oils as the sole carbon sources. Moreover, there is 

no report published for PHA production by Pseudomonas mendocina using 

vegetable oils. Hence, Pseudomonas mendocina was the chosen organism in 

this study. Growth and production profiles were investigated at shaken flasks 

and (2 L) fermenter levels. In order to identify an overall good sole carbon 

source for PHA accumulation from P. mendocina, different parameters such as 

cell growth, pH, nitrogen concentration, dry cell weight and % PHA yield 
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measured and compared. The PHA yields obtained using vegetable oils 

(coconut oil, groundnut oil, olive oil and corn oil) were then compared with that 

obtained during the production of PHAs using sodium octanoate as the sole 

carbon source. It was found that, when P. mendocina was grown in the MSM 

media at shaken flask level with different sole carbon sources such as sodium 

octanoate, coconut oil, groundnut oil, olive oil and corn oil, the organism was 

able to grow and accumulate a range of different PHAs with varying yields. 

Moreover, the organism had selective preference for one of the carbon sources 

used i.e. coconut oil, giving higher values of the cell growth and PHA 

accumulation. Fermentation profile results for shaken flask level PHA 

production revealed that coconut oil was by far the best sole carbon source for 

supporting cell growth as well as PHA accumulation. It resulted in the highest 

PHA yield of 60.5% dcw at shaken flask level. PHA yield (43.6% dcw) achieved 

using olive oil as the sole carbon source was significantly higher than the PHA 

yield (35.1% dcw) using sodium octanoate as the sole carbon source. This was 

followed by a decreased PHA yield of 31.8% dcw from groundnut oil and the 

least PHA yield (29.8% dcw) was achieved when corn oil was used as the sole 

carbon source.  

 

2 L Fermenter level PHA production using all five sole carbon sources also 

revealed that the highest PHA accumulation was obtained when coconut oil was 

used as the sole carbon source. Results at fermenter level showed the PHA 

yield of 34.6% dcw was obtained when coconut oil was used. PHA yield          

(% dcw) of 27.4, 26.3, 23.6 and 20.5 were obtained when sodium octanoate, 

olive oil, groundnut oil and corn oil were used respectively at 2 L bioreactor level 

production. 

 

Overall comparison of the growth and production profiles at shaken flask and 

fermenter levels showed that when vegetable oils were used as the sole carbon 

sources, more cell growth was observed in fermenters (2 L) than in shaken 

flasks. However, higher PHA yields were obtained in shaken flask level 

fermentations for all five sole carbon sources. When sodium octanoate was 

used as the main carbon source, more cell growth and PHA yield were 

observed in shaken flask than in fermenter (2 L) study.  
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The above results also concluded that the coconut oil as the sole carbon source 

supported comparatively higher Pseudomonas mendocina cell growth and PHA 

accumulation in both the fermentation conditions. These results are 

encouraging and show that coconut oil is a promising renewable feedstock for 

an economical and commercially viable production of PHA by Pseudomonas 

mendocina. This will ultimately decrease the cost of PHA production and could 

enhance its widespread usage. 

 

The main objective of the chapter 4 was to characterise PHAs, produced by 

Pseudomonas mendocina using five different sole carbon sources (sodium 

octanoate, coconut oil, groundnut oil, olive oil and corn oil) for their chemical, 

mechanical, thermal, physical, surface properties and biocompatibility in order 

for them to be assessed for biomedical applications, in particular as the scaffold 

material for dental pulp tissue engineering in future. Using all five sole carbon 

sources in this study, a range of PHAs was produced. Preliminary 

characterisation using FTIR suggested that the polymers produced in this study 

have characteristic marker bonds for medium chain length PHAs. GC and    

GC-MS analysis of the purified PHAs obtained from P. mendocina during 

cultivation on different vegetable oils showed presence of 3-hydroxyalkanoic 

acids with chain length ranging from C8 to C12. Monomer compositions of the 

polymers produced were confirmed by GC-MS analysis which revealed that     

3-hydroxyoctanoaic acid, 3-hydroxydecanoic acid and 3-hydroxydodecanoic 

acid were found common in PHAs obtained from P. mendocina using different 

vegetable oils in this study. When sodium octanoate was used as the            

sole carbon source, the organism accumulated a homopolymer of                            

3-hydroxyoctanoate (P(3HO)). MCL-PHAs produced in this study using sodium 

octanoate, coconut oil, and olive oil exhibited some degree of melting transition, 

indicating that each of the PHAs were semi-crystalline. In contrast, the thermal 

properties of PHAs produced from groundnut, and corn oil showed no melting 

transition, indicating that they could be completely amorphous or semi-

crystalline which needs further confirmation. Copolymers showing low 

crystallinity could possibly be due to the presence of large and irregular pendant 

side groups which inhibited close packing of the polymer chains in a regular 

three dimensional fashion to form a crystalline array. The introduction of a 

comonomer into the polymer backbone is seen to significantly affect its 
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mechanical property, hence resulting in an increase in flexibility (elongation to 

break) and toughness of the polymer (Rai 2010). Therefore, results obtained in 

this study revealed the higher flexibility of polymers from vegetable oils 

compared to polymer from sodium octanoate. Because the polymerisation 

efficiency of a bacterial system is based on enzyme activity, it is likely that 

relatively equal molecular masses are the result of a similar polymerisation 

process (Daniel et al., 1999, Basnett 2014, Ashby and Foglia 1998). Hence, 

GPC study showed the similar molecular masses of each PHA produced from 

vegetable oils. The P(3HO) produced using sodium octanoate as the sole 

carbon source showed the highest molecular weight compared to the polymers 

produced using vegetable oil sole carbon sources. X-Ray Diffraction analysis 

revealed the amorphous or semi-crystalline nature of the polymers produced 

using vegetable oils. Moreover, water contact angle measurements (also an 

indication of the wettability) showed that addition of the comonomers in the 

polymeric backbone and increase in the length of the side chains decreased the 

wettability of the polymers. Hence, the hydrophobic nature of the polymers 

produced from vegetable oils was confirmed (Superb et al., 2008). 

 

Furthermore, biocompatibility studies demonstrated that the polymers were not 

cytotoxic to the hMSCs and were able to support their attachment and 

proliferation. The terpolymer produced using corn oil showed the highest 

hMSCs growth during the 14 days cell culture studies, compared to the 

polymers produced using other sole carbon sources in this study. The main 

reason for this could be the comparatively rough surface of the polymer 

produced using corn oil as observed in SEM analysis. Hence, to further develop 

these polymers produced using renewable carbon feedstocks, construction of 

the composite materials using phosphate glass and polymers produced in this 

study would be carried out in future. This would improve cell growth on all the 

PHA films. Moreover, phosphate glass is known to have higher biological 

activity. Therefore, it will be possible to prepare scaffold materials of choice for 

dental pulp regeneration application in particular. 
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5.1.1. Concluding remarks 

 

This study has shown for the first time that Pseudomonas mendocina is capable 

of producing copolymers of MCL-PHAs using a range of vegetable oils. The 

fermentation profiles obtained demonstrated that all the vegetable oils were 

relatively good feedstock for supporting cell growth and MCL-PHA production. 

Moreover, their mechanical, physical and surface characterisation revealed that 

these polymers were elastic, amorphous or semi-crystalline and hydrophobic in 

nature. Biocompatibility studies demonstrated that the polymers were not 

cytotoxic to the hMSCs and were able to support their attachment and 

proliferation. The terpolymer produced using corn oil showed the highest cell 

growth in this study perhaps due to its rough surface. In future, in order to 

improve cell growth on all the PHA films, phosphate glass containing 

composites of the polymers will be produced, leading to higher biological activity 

and increased surface roughness. The preliminary cell culture data suggests 

that the polymers produced in this study may encourage the dental tissue 

regeneration which is one of the targets of this work. If successful, in future, this 

work will potentially lead to the use of cheap vegetable oils for the production of 

PHA-based dental polymers.     

 

5.2. Future work:  

 

The application of inexpensive vegetable oils as carbon sources for PHA 

biosynthesis is predicted to reduce the production cost of bacterial 

polyhydroxyalkanoates. However, there are many potential areas that could be 

the focus of the future research to gain more understanding on the different 

MCL-PHAs produced in this study. Some potential experiments that would need 

to be performed are: 

 

5.2.1. Optimisation of MCL-PHAs production  

 

In order to identify an overall good sole carbon source for PHA accumulation 

from P. mendocina, initial investigations were carried out. It would be interesting 

to carry out more research in optimisation of the MCL-PHA production using 

vegetable oils as the sole carbon sources to enhance PHA yield and further 
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reduce the cost of production of the polymer. Further optimisation of the 

physical parameters for MCL-PHA production in the fermenter would need to be 

performed using pH, C/N and agitation as the varying parameters.  

 

5.2.2. Development of MCL-PHA/SCL-PHA blends 

 

As observed in this study, it was really very difficult to handle the polymers 

produced from P. mendocina using groundnut oil, olive oil and corn oil sole 

carbon sources due to their very sticky nature. These polymers were sticking to 

everything they contacted. Therefore, it was impossible to prepare solvent cast 

films of the PHAs produced using groundnut oil, olive oil and corn oil sole 

carbon sources, which would limit their possible applications. To overcome this 

problem, blending of these polymers with brittle nature SCL-PHAs would be 

advantageous. Using different concentrations of the SCL-PHAs for blending 

would give appropriate amount of elasticity to these MCL-PHAs and would help 

in controlling their very sticky nature. This tailor made property could be 

exploited in their applicability in Dental Tissue Engineering, which is the ultimate 

goal of this study. Finally, analysis of the prepared blends for their chemical, 

physical, mechanical, and biocompatibility properties would be another 

interesting area to look into for their further development. 

 

5.2.3. Composite preparation and characterisation 

 

The polymers produced in this study will be used to prepare composites in 

combination with phosphate glass for dental pulp regeneration applications. 

Phosphate glass is known to have, high degree of bioactivity which helps them 

to bind with living tissues by forming an apatite layer, bioresorption and 

osteoconduction. Moreover, dissolution products from phosphate glass can 

enhance gene transduction pathways in cells by increasing cell differentiation 

and osteogenesis which could be beneficial for dental pulp cell regeneration. 

The prepared scaffolds will then be analysed and characterised for their 

chemical, physical, mechanical, and biocompatibility properties. 
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5.2.4. Development of controlled antimicrobial/bio factor delivery systems 

 

Not only scaffold materials but also the transcription factors, growth factors and 

a series of ECM molecules are necessary in order to trigger somatic stem cells 

to differentiate into specific host cell type for pulp tissue regeneration. 

Therefore, they are very important molecules for controlling cell behaviour and 

activity in dental tissue repair and regeneration. Injured host tissues or 

disordered development of the teeth prevents the required growth factor 

production. Hence, constructing the scaffold materials as the biofactor delivery 

vehicles would be an interesting and advantageous strategy for appropriate 

pulp repair. Another interesting area of research would be novel scaffold 

material preparation with antimicrobial ions released at a controlled level in 

order to kill residual bacteria to prevent any infection. 

 

5.2.5. Applicability of the composites as the dental pulp tissue 

engineering material  

 

The multipotency of hMSCs will be investigated for different time periods when 

grown on the neat polymers and the composite materials. This study will focus 

on the differentiation of these cells into functional odontoblasts and into vascular 

endothelial cells. Cellular responses including proliferation, ALP activity 

(Casagrande et al., 2010, Sakai et al., 2010), and expression of indicative 

markers, such as Dentin sialophosphoprotein (DSPP), Dentin matrix 

phosphoprotein 1 (DMP-1) or Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), will be evaluated for their odontogenic differentiation. Moreover, for 

the angiogenic potential of hMSC populations can be studied in vitro with 

capillary tube formation assays (Hirschi et al., 2008, Sakai et al., 2010). 

Moreover, detection of endothelial-cell-specific markers such as platelet 

endothelial cell adhesion molecule 1 (PECAM-1), vascular endothelial growth 

factor receptor-2 (VEGFR2),  vascular cell adhesion molecule-1 (VCAM1), 

intercellular adhesion molecule-1 (ICAM-1), and vascular endothelial cadherin 

(VE-cadherin) will be investigated for the evidence of the differentiation of stem 

cell population into endothelial cells (Jazayeri et al., 2008, Marchionni et al., 

2009, Sakai  et al., 2010).
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