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Abstract⎯ The human brain is obviously a complex system, 

and exhibits rich spatiotemporal dynamics. Among the non-
invasive techniques for probing human brain dynamics, 
electroencephalography (EEG) provides a direct measure of 
cortical activity with millisecond temporal resolution. Early 
attempts to analyse EEG data relied on visual inspection of EEG 
records. Since the introduction of EEG recordings, the volume 
of data generated from a study involving a single patient has 
increased exponentially.  Therefore, automation based on 
pattern classification techniques have been applied with 
considerable success.  In this study, a multi-step approach for 
the classification of EEG signal has been adopted. We have 
analysed sets of EEG time series recording from healthy 
volunteers with open eyes and intracranial EEG recordings 
from patients with epilepsy during ictal (seizure) periods. In the 
present work, we have employed a discrete wavelet transform to 
the EEG data in order to extract temporal information in the 
form of changes in the frequency domain over time – that is they 
are able to extract non-stationary signals embedded in the noisy 
background of the human brain. Principal Components 
Analysis (PCA) and Rough Sets have been used to reduce the 
data dimensionality. A multi-classifier scheme consists of 
LVQ2.1 neural networks have been developed for the 
classification task. The experimental results validated the 
proposed methodology. 
Index Terms⎯ Discrete wavelet transform (DWT), 
electroencephalogram (EEG), neural networks, principal 
component analysis, and rough sets 

I. INTRODUCTION 

The human brain is obviously a complex system, and 
exhibits rich spatiotemporal dynamics. Among the non-
invasive techniques for probing human brain dynamics, 
electroencephalography (EEG) provides a direct measure of 
cortical activity with millisecond temporal resolution. Early 
on, EEG analysis was restricted to visual inspection of EEG 
records. Since there is no definite criterion evaluated by the 
experts, visual analysis of EEG signals is insufficient. For 
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example, in the case of dominant alpha activity delta and 
theta activities are not noticed. Routine clinical diagnosis 
needs to analysis of EEG signals. Therefore, some 
automation and computer techniques have been used for this 
aim [1]. Since the early days of automatic EEG processing, 
representations based on a Fourier transform have been most 
commonly applied. This approach is based on earlier 
observations that the EEG spectrum contains some 
characteristic waveforms that fall primarily within four 
frequency bands—delta (1–4 Hz), theta (4–8 Hz), alpha (8–
13 Hz), and beta (13–30 Hz). Such methods have proved 
beneficial for various EEG characterizations, but fast Fourier 
transform (FFT), suffer from large noise sensitivity. 
Parametric power spectrum estimation methods such as AR, 
reduces the spectral loss problems and gives better frequency 
resolution. Also AR method has an advantage over FFT that, 
it needs shorter duration data records than FFT [2]. A 
powerful method was proposed in the late 1980s to perform 
time-scale analysis of signals: the wavelet transforms (WT). 
This method provides a unified framework for different 
techniques that have been developed for various applications. 
Since the WT is appropriate for analysis of non-stationary 
signals and this represents a major advantage over spectral 
analysis, it is well suited to locating transient events, which 
may occur during epileptic seizures. Wavelet’s feature 
extraction and representation properties can be used to 
analyse various transient events in biological signals. Adeli et 
al. [3] gave an overview of the discrete wavelet transform 
(DWT) developed for recognising and quantifying spikes, 
sharp waves and spike-waves. They used wavelet transform 
to analyze and characterise epileptiform discharges in the 
form of 3-Hz spike and wave complex in patients with 
absence seizure. Through wavelet decomposition of the EEG 
records, transient features are accurately captured and 
localised in both time and frequency context. The capability 
of this mathematical microscope to analyse different scales of 
neural rhythms is shown to be a powerful tool for 
investigating small-scale oscillations of the brain signals. A 
better understanding of the dynamics of the human brain 
through EEG analysis can be obtained through further 
analysis of such EEG records. 

Numerous other techniques from the theory of signal 
analysis have been used to obtain representations and extract 
the features of interest for classification purposes. Neural 
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networks and statistical pattern recognition methods have 
been applied to EEG analysis. Neural network (NN) detection 
systems have been proposed by a number of researchers. 
Pradhan et al. [4] used the raw EEG as an input to a neural 
network while Weng and Khorasani [5] used the features 
proposed by Gotman with an adaptive structure neural 
network, but his results show a poor false detection rate. 
Petrosian et al. [6] showed that the ability of specifically 
designed and trained recurrent neural networks (RNN) 
combined with wavelet pre-processing, to predict the onset of 
epileptic seizures both on scalp and intracranial recordings 
only one-channel of electroencephalogram. In order to 
provide faster and efficient algorithm, Folkers et al. [7] 
proposed a versatile signal processing and analysis 
framework for bioelectrical data and in particular for neural 
recordings and 128- channel EEG. Within this framework the 
signal is decomposed into sub-bands using fast wavelet 
transform algorithms, executed in real-time on a current 
digital signal processor hardware platform. Neuro-fuzzy 
systems harness the power of the two paradigms: fuzzy logic 
and NNs by utilising the mathematical properties of NNs in 
tuning rule-based fuzzy systems that approximate the way 
human process information. A specific approach in neuro-
fuzzy development is the adaptive neuro-fuzzy inference 
system (ANFIS), which has shown significant results in 
modelling nonlinear functions. In ANFIS, the membership 
function parameters are extracted from a data set that 
describes the system behaviour. The ANFIS learns features in 
the data set and adjusts the system parameters according to a 
given error criterion. Successful implementations of ANFIS 
in EEG analysis have been reported [8]. 

As compared to the conventional method of frequency 
analysis using Fourier transform or short time Fourier 
transform, wavelets enable analysis with a coarse to fine 
multi-resolution perspective of the signal. In this work, DWT 
has been applied for the time–frequency analysis of EEG 
signals and NNs for the classification using wavelet 
coefficients. EEG signals were decomposed into frequency 
sub-bands using discrete wavelet transform (DWT). A neural 
network system was implemented to classify the EEG signal 
to one of the categories: epileptic or normal. The aim of this 
study was to develop a simple algorithm for the detection of 
epileptic seizure which could also be applied to real-time. 

In this study, a new approach based on the multiple-
classifier concept will be presented for epileptic seizure 
detection. A neural network classifier, Learning Vector 
Quantisation (LVQ2.1), is employed to classify unknown 
EEGs belonging to one set of signal. 
Here we investigated the potential of new statistical 
technique, Rough Set and Principal Component Analysis 
(PCA) that capture the second-order statistical structure of the 
data. Figure1 shows overall computation scheme. 
 
 
 
 
 

 
 

Dimensionality Reduction 
     (PCA or RS) 

 
 
 

LVQ (Classification) 
 
 
 
 
Fig1. Computation scheme for classifying signals 

II. DATA SELECTION AND RECORDING 

We have used the publicly available data described in 
Andrzejak et al. [9]. The complete data set consists of f two 
sets (denoted A and E) each containing 100 single-channel 
EEG segments. These segments were selected and cut out 
from continuous multi-channel EEG recordings after visual 
inspection for artefacts, e.g., due to muscle activity or eye 
movements. Sets A consisted of segments taken from surface 
EEG recordings that were carried out on five healthy 
volunteers using a standardised electrode placement scheme 
(Fig. 2).  

 
 
Fig. 2: The 10–20 international system of electrode placement c images of 
normal and abnormal cases. 
Volunteers were relaxed in an awake-state with eyes open 
(A) . Sets E originated from EEG archive of pre-surgical 
diagnosis. EEGs from five patients were selected, all of 
whom had achieved complete seizure control after resection 
of one of the hippocampal formations, which was therefore 
correctly diagnosed to be the epileptogenic zone. Segments , 
set E only contained seizure activity.  

 Input Signal 
Fig. 2: Examples of five different sets of EEG signals taken from different 
subjects. 
 

Feature extraction Wavelet Here segments were selected from all recording sites 
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exhibiting ictal activity. All EEG signals were recorded with 
the same 128-channel amplifier system, using an average 
common reference. The data were digitised at 173.61 samples 
per second using 12 bit resolution. Band-pass filter settings 
were 0.53–40 Hz (12dB/oct). In this study, we used two 
dataset (A and E) of the complete dataset. Typical EEGs are 
depicted in Fig. 2. 

III. ANALYSIS USING DWT 

Wavelet transform is a spectral estimation technique in 
which any general function can be expressed as an infinite 
series of wavelets. The basic idea underlying wavelet analysis 
consists of expressing a signal as a linear combination of a 
particular set of functions (wavelet transform, WT), obtained 
by shifting and dilating one single function called a mother 
wavelet. The decomposition of the signal leads to a set of 
coefficients called wavelet coefficients. Therefore the signal 
can be reconstructed as a linear combination of the wavelet 
functions weighted by the wavelet coefficients. In order to 
obtain an exact reconstruction of the signal, adequate number 
of coefficients must be computed. The key feature of 
wavelets is the time-frequency localisation. It means that 
most of the energy of the wavelet is restricted to a finite time 
interval. Frequency localisation means that the Fourier 
transform is band limited. When compared to STFT, the 
advantage of time-frequency localisation is that wavelet 
analysis varies the time-frequency aspect ratio, producing 
good frequency localization at low frequencies (long time 
windows), and good time localisation at high frequencies 
(short time windows). This produces a segmentation, or tiling 
of the time-frequency plane that is appropriate for most 
physical signals, especially those of a transient nature. The 
wavelet technique applied to the EEG signal will reveal 
features related to the transient nature of the signal, which are 
not obvious by the Fourier, transform. In general, it must be 
said that no time-frequency regions but rather time-scale 
regions are defined [10]. All wavelet transforms can be 
specified in terms of a low-pass filter g, which satisfies the 
standard quadrature mirror filter condition 

    (1) 

where G(z) denotes the z-transform of the filter g. Its 
complementary high-pass filter can be defined as 

                   (2)

A sequence of filters with increasing length (indexed by i) 
can be obtained 

   (3) 

with the initial condition G0(z) = 1. It is expressed as a two-
scale relation in time domain 

    (4) 

where the subscript [. indicates the up-sampling by a 

factor of m and k is the equally sampled discrete time. 
] m↑

One area in which the DWT has been particularly 
successful is the epileptic seizure detection because it 
captures transient features and localises them in both time 
and frequency content accurately. DWT analyses the signal at 
different frequency bands, with different resolutions by 
decomposing the signal into a coarse approximation and 
detail information. DWT employs two sets of functions called 
scaling functions and wavelet functions, which are related to 
low-pass and high-pass filters, respectively. The 
decomposition of the signal into the different frequency 
bands is merely obtained by consecutive high-pass and low-
pass filtering of the time domain signal. The procedure of 
multi-resolution decomposition of a signal x[n] is 
schematically shown in Fig. 3. Each stage of this scheme 
consists of two digital filters and two down-samplers by 2. 
The first filter, h[.] is the discrete mother wavelet, high-pass 
in nature, and the second, g[.] is its mirror version, low-pass 
in nature. The down-sampled outputs of first high-pass and 
low-pass filters provide the detail, D1 and the approximation, 
A1, respectively.  

Selection of suitable wavelet and the number of 
decomposition levels is very important in analysis of signals 
using the DWT. The number of decomposition levels is 
chosen based on the dominant frequency components of the 
signal. The levels are chosen such that those parts of the 
signal that correlates well with the frequencies necessary for 
classification of the signal are retained in the wavelet 
coefficients. In the present study, since the EEG signals do 
not have any useful frequency components above 30 Hz, the 
number of decomposition levels was chosen to be 4. Thus, 
the EEG signals were decomposed into details D1–D4 and 
one final approximation, A4. Usually, tests are performed 
with different types of wavelets and the one, which gives 
maximum efficiency, is selected for the particular 
application. The smoothing feature of the Daubechies wavelet 
of order 2 (db2) made it more appropriate to detect changes 
of EEG signals. Hence, the wavelet coefficients were 
computed using the db4 in the present study. The proposed 
method was applied on both data set of EEG data (Sets A and 
E). Fig. 4 shows approximation (A4) and details (D1–D4) of 
an epileptic EEG signal. 
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Fig. 4: Approximate and detailed coefficients of EEG signal taken from 
unhealthy subject (epileptic patient). 

 

A. Feature Extraction  
The extracted wavelet coefficients provide a compact 

representation that shows the energy distribution of the EEG 
signal in time and frequency. Table 1 presents frequencies 
corresponding to different levels of decomposition for 
Daubechies order-2 wavelet with a sampling frequency of 
173.6 Hz. In order to further decrease the dimensionality of 
the extracted feature vectors, statistics over the set of the 
wavelet coefficients was used [11]. The following statistical 
features were used to represent the time frequency 
distribution of the EEG signals: 

• Maximum of the wavelet coefficients in each 
sub-band. 

• Minimum of the wavelet coefficients in each 
sub-band. 

• Mean of the wavelet coefficients in each sub-
band 

• Standard deviation of the wavelet coefficients in 
each sub-band 

Extracted features for two recorded class A and E shown in 
Table 2. The data was acquired using a standard 100 
electrode net covering the entire surface of the calvarium (see 
Figure 1).  
 

TABLE 1: FREQUENCIES CORRESPONDING TO DIFFERENT LEVELS OF 
DECOMPOSITION 

 
 
The total recording time was 23.6 seconds, corresponding to 
a total sampling of 4,096 points. To reduce the volume of 
data, the sample (time points) was partitioned into 16 
windows of 256 times points each.  From these sub-samples, 
we performed the DWT and derived measures of dispersion 

statistics from these windows (each corresponding to 
approximately 1.5 seconds). The DWT was performed at 4 
levels, and resulted in five sub-bands: d1-d4 and a4 (detail 
and approximation coefficients respectively).  For each of 
these sub-bands, we extracted four measures of dispersion, 
yielding a total of 20 attributes per sample window.  Since 
our classifiers use supervised learning, we must also provide 
the outputs, which was simply a class label (for the 
experiments presented in this paper, there were 2, 
corresponding to classes A and E).  
 

TABLE2:    THE EXTRACTED FEATURES OF TWO WINDOWS FROM A & E 
CLASSES 

 

 

IV. INTELLIGENT CLASSIFIERS 

Recently, the concept of combining multiple classifiers 
has been actively exploited for developing highly reliable 
“diagnostic” systems [12]. One of the key issues of this 
approach is how to combine the results of the various systems 
to give the best estimate of the optimal result. A 
straightforward approach is to decompose the problem into 
manageable ones for several different sub-systems and 
combine them via a gating network. The presumption is that 
each classifier/sub-system is “an expert” in some local area of 
the feature space. The sub-systems are local in the sense that 
the weights in one “expert” are decoupled from the weights in 
other sub-networks. In this study, 16 subsystems have been 
developed, and each of them was associated with the each of 
the windows across each electrode (16/electrode). Each 
subsystem was modelled with an appropriate intelligent 
learning scheme.  In our case, two alternative schemes have 
been proposed: the classic MLP network and the RBF 
network using the orthogonal least squares learning 
algorithm. Such schemes provide a degree of certainty for 
each classification based on the statistics for each plane. The 
outputs of each of these networks must then be combined to 
produce a total output for the system 

A. Learning Vector Quantization network 
The Vector quantisation (VQ) methods are closely related to 
certain paradigms of self-organising Neural Networks. 
Learning Vector Quantisation (LVQ) [13] found a very 
important role in statistical pattern classification [14]. 
A detailed description of LVQ training algorithm can be 
found in [15].   
LVQ can be included in a broad family of learning algorithms 
based on Stochastic Gradient Descent [8lvq].  In the 1980’s, 
Kohonen proposed a number of improvements in his 
algorithm generating the LVQ2, LVQ2.1, and LVQ3 [15, 
13].  
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Categorisation of signal patterns is one of the most usual 
Neural Network (NN) applications. In this study we used 
LVQ2.1 algorithm to locate the nearest two exemplars to the 
training case. 
 
Step1: Initialise the codebook (centre) vector.  
 
Step2:Find Min (di/dj, dj/di) >(1-w )/(1+w)  where di and dj 
are the Euclidean distances from 2 classes and window( w) in 
range 0.2 to 0.3 around the mid-plane of neighbouring 
codebook vectors mi  and mj  .Let  mi   belong to class Ci      and 
mj   to class Cj   repectively. 
 
Step3: Update the centres (codebook vectors) at each step, 
namely, the “winner” and the “ runner-up”                
mi(t+1)=mi(t) – α(t)[x(t)-mi(t)] 
mj(t+1)=mj(t) + α(t)[x(t)-mj(t)]  where x is the codebook 
vector. 
 
B. Rough Sets 
 
Rough set theory is a relatively new data-mining technique 
used in the discovery of patterns within data first formally 
introduced by Pawlak in 1982 [17,18].  Since its inception, 
the rough sets approach has been successfully applied to deal 
with vague or imprecise concepts, extract knowledge from 
data, and to reason about knowledge derived from the data 
[19, 20]. We demonstrate that rough sets has the capacity to 
evaluate the importance (information content) of attributes, 
discovers patterns within data, eliminates redundant 
attributes, and yields the minimum subset of attributes for the 
purpose of knowledge extraction. 

The first step in the process of mining any dataset using 
rough sets is to transform the data into a decision table.  In a 
decision table (DT), each row consists of an observation (also 
called an object) and each column is an attribute, one of 
which is the decision attribute for the observation {d}.  
Formally, a DT is a pair A = (U, A∪{d}) where d ϖ A is the 
decision attribute, U is a finite non-empty set of objects 
called the universe and A is a finite non-empty set of 
attributes such that  a:U->Va is called the value set of a. Once 
the DT has been produced, the next stage entails cleansing 
the data. 

There are several issues involved in small datasets – such 
as missing values, various types of data (categorical, nominal 
and interval) and multiple decision classes. Each of these 
potential problems must be addressed in order to maximise 
the information gain from a DT.  Missing values is very often 
a problem in biomedical datasets and can arise in two 
different ways.  It may be that an omission of a value for one 
or more subject was intentional – there was no reason to 
collect that measurement for this particular subject (i.e. ‘not 
applicable’ as opposed to ‘not recorded’).  In the second case, 
data was not available for a particular subject and therefore 
was omitted from the table. We have 2 options available to 
us: remove the incomplete records from the DT or try to 
estimate what the missing value(s) should be.  The first 
method is obviously the simplest, but we may not be able to 
afford removing records if the DT is small to begin with.  So 
we must derive some method for filling in missing data 

without biasing the DT.  In many cases, an expert with the 
appropriate domain knowledge may provide assistance in 
determining what the missing value should be – or else is 
able to provide feedback on the estimation generated by the 
data collector.  In this study, we employ a conditioned 
mean/mode fill method for data imputation.  In each case, the 
mean or mode is used (in the event of a tie in the mode 
version, a random selection is used) to fill in the missing 
values, based on the particular attribute in question, 
conditioned on the particular decision class the attribute 
belongs to.   There are many variations on this theme, and the 
interested reader is directed to [17, 18] for an extended 
discussion on this critical issue.  Once missing values are 
handled, the next step is to discretise the dataset. Rarely is the 
data contained within a DT all of ordinal type – they 
generally are composed of a mixture of ordinal and interval 
data.  Discretisation refers to partitioning attributes into 
intervals – tantamount to searching for “cuts” in a decision 
tree.  All values that lie within a given range are mapped onto 
the same value, transforming interval into categorical data.  
As an example of a discretisation technique, one can apply 
equal frequency binning, where a number of bins n is selected 
and after examining the histogram of each attribute, n-1 cuts 
are generated so that there is approximately the same number 
of items in each bin.  See the discussion in [18] for details on 
this and other methods of discretisation that have been 
successfully applied in rough sets.  Now that the DT has been 
pre-processed, the rough sets algorithm can be applied to the 
DT for the purposes of supervised classification. 

The basic philosophy of rough sets is to reduce the 
elements (attributes) in a DT based on the information 
content of each attribute or collection of attributes (objects) 
such that the there is a mapping between similar objects and a 
corresponding decision class.  In general, not all of the 
information contained in a DT is required: many of the 
attributes may be redundant in the sense that they do not 
directly influence which decision class a particular object 
belongs to.  One of the primary goals of rough sets is to 
eliminate attributes that are redundant.  Rough sets use the 
notion of the lower and upper approximation of sets in order 
to generate decision boundaries that are employed to classify 
objects.  Consider a decision table A = (U, A∪{d}) and let 

 and  X ⊆ U. What we wish to do is to approximate X 
by the information contained in B by constructing the B-
lower (B

B A⊆

L) and B-upper (BU) approximation of X.  The 
objects in BL (BLX) can be classified with certainty as 
members of X, while objects in BU are not guaranteed to be 
members of X.  The difference between the 2 
approximations: BU  - BL, determines whether the set is rough 
or not: if it is empty, the set is crisp otherwise it is a rough 
set.   What we wish to do then is to partition the objects in the 
DT such that objects that are similar to one another (by virtue 
of their attribute values) are treated as a single entity.  One 
potential difficulty arises in this regard is if the DT contains 
inconsistent data.  In this case, antecedents with the same 
values map to different decision outcomes (or the same 
decision class maps to two or more sets of antecedents).   The 
next step is to reduce the DT to a collection of 
attributes/values that maximises the information content of 
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the decision table.  This step is accomplished through the use 
of the indiscernibility relation IND(B) and is defined for any 
subset  ( ) as follows: B A⊆ B A d⊆ ∪ { }

IND(B)= 
   (1) ( ){ x y U U a Ba x a y, : ( )∈ × ∈ =for every  }( )

The elements of IND(B) correspond to the notion of an 
equivalence class.  The advantage of this process is that any 
member of the equivalence class can be used to represent the 
entire class – thereby reducing the dimensionality of the 
objects in the DT.  This leads directly into the concept of a 
reduct, which is the minimal set of attributes from a DT that 
preserves the equivalence relation between conditioned 
attributes and decision values.  It is the minimal amount of 
information required to distinguish objects with in U. The 
collection of all reducts that together provide classification of 
all objects in the DT is called the CORE(A).  The CORE 
specifies the minimal set of elements/values in the DT which 
are required to correctly classify objects in the DT.  
Removing any element from this set reduces the classification 
accuracy.  It should be noted that searching for minimal 
reducts is an NP-hard problem, but fortunately there are good 
heuristics that can compute a sufficient amount of reducts in 
reasonable time to be usable. In the software system that we 
employ an order based genetic algorithm (o-GA) which is 
used to search through the decision table for approximate 
reducts [19].  The reducts are approximate because we do not 
perform an exhaustive search via the o-GA which may miss 
one or more attributes that should be included as a reduct.  
Once we have our set of reducts, we are ready to produce a 
set of rules that will form the basis for object classification. 
 Rough sets generates a collection of ‘if..then..’ decision 
rules that are used to classify the objects in the DT.  These 
rules are generated from the application of reducts to the 
decision table, looking for instances where the conditionals 
match those contained in the set of reducts and reading off 
the values from the DT.  If the data is consistent, then all 
objects with the same conditional values as those found in a 
particular reduct will always map to the same decision value.  
In many cases though, the DT is not consistent, and instead 
we must contend with some amount of indeterminism.  In this 
case, a decision has to be made regarding which decision 
class should be used when there are more than 1 matching 
conditioned attribute values.  Simple voting may work in 
many cases, where votes are cast in proportion to the support 
of the particular class of objects.  In addition to 
inconsistencies within the data, the primary challenge in 
inducing rules from decision tables is in the determination of 
which attributes should be included in the conditional part of 
the rule. If the rules are too detailed (i.e. they incorporate 
reducts that are maximal in length), they will tend to overfit 
the training set and classify weakly on test cases.  What are 
generally sought in this regard are rules that possess low 
cardinality, as this makes the rules more generally applicable.  
This idea is analogous to the building block hypothesis used 
in genetics algorithms, where we wish to select for highly 
accurate and low defining length gene segments.  There are 
many variations on rule generation, which are implemented 
through the formation of alternative types of reducts such as 
dynamic and approximate reducts.  Discussion of these ideas 

is beyond the scope of this paper and the interested reader is 
directed towards [20] for a detailed discussion of these 
alternatives. 
 
C. Principal Component Analysis (PCA) 
 
One well-known linear transform for dimensionality 
reduction is PCA (Devijver and Kittler, 1982 , 11pca).  PCA 
reduces a large number of original variables in to a smaller 
number of “components” that represent most of the variance 
in the original data. The transform is derived from 
eigenvectors corresponding to the largest eigenvalues of the 
covariance matrix for data of all classes. 
Computation of the principal components can be presented 
with the following algorithm: 

1. Calculate the covariance matrix from the input data. 
2. Compute the eigenvalues and eigenvectors and then 

sort them in a decending order with respect to the 
eigenvalues. 

3. From the actual transition matrix by taking the 
predefined number of components (eigenvectors) 

4. The lower-dimensional matrix can be obtained by 
multiply the original feature space with the obtained 
transition matrix. 

Table 3 shows how the variation is partitioned between the 8 
factors.  

V. RESULTS 

The proposed diagnostic system consists of a pre-
processing /feature selection and one classifier subsystem. 
Duabechies Wavelets order-2 with 4 levels have been used 
for pre-processing in order to achieve the same 
dimensionality reduction of wavelet coefficients. In this 
work, the 100 time series of 4096 samples for each class 
partitioned by a rectangular window composed of 256 
discrete data and then training and test sets were formed by 
3200 vectors (1600 vectors from each class) of 20 
 
Table 3.  This table displays the total variance for the first 8 
principle components contained within the original dataset. 
 

 
 
Table 4. Principal Component Analysis, displaying the first 8 
components that were extracted (in the form of a component 

Comp
onent Initial Eigenvalues 

Extraction Sums of Squared 
Loadings 

  Total 

% of 
Varianc

e 
Cumula
tive % Total 

% of 
Varianc
e 

Cumulativ
e % 

1 13.404 67.019 67.019 13.404 67.019 
2 2.302 11.509 78.528 2.302 11.509 78.528 
3 1.125 5.624 84.152 1.125 5.624 84.152 
4 .905 4.525 88.677 .905 4.525 88.677 
5 .818 4.092 92.769 .818 4.092 92.769 
6 .620 3.098 95.867 .620 3.098 95.867 
7 .213 1.066 96.933 .213 1.066 96.933 
8 .148 .741 97.674 .148 .741 97.674 
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matrix).  The symbols in the left most column refer to the 
level of the detail (D) or approximation (A) coefficients.  The 
order is the following: Max, Min, Mean, and Standard 
Deviation. 
 

 Component    Matrix (a) 

  1 2 3 4 5 6 7 8 
D1 .926 -.008 -.040 -.028 .244 -.025 -.151 -.115
D1 -.945 .002 .070 -.008 -.172 .032 .109 .112
D1 .164 .896 -.054 -.028 -.137 -.373 -.013 .010
D1 .948 .002 -.018 .044 .240 -.047 .116 .111
D2 .953 -.019 -.043 -.019 .225 -.003 -.097 -.019
D2 -.959 .002 .079 -.015 -.183 .030 .081 .015
D2 -.116 -.965 -.113 .104 .000 .141 .010 -.004
D2 .956 .007 -.032 .047 .209 -.036 .143 .115
D3 .970 .000 -.031 -.008 .141 .005 -.006 -.013
D3 -.973 .006 .063 -.016 -.088 .016 -.001 -.013
D3 -.083 .733 .084 .096 .136 .648 -.010 .013
D3 .972 .006 -.021 .033 .085 -.004 .194 .067
D4 .943 .001 .023 -.079 -.236 .060 .037 -.141
D4 -.937 .009 -.010 .016 .273 -.076 -.047 .103
D4 .021 -.114 .767 -.611 .151 -.008 .023 -.005
D4 .923 .016 .002 -.041 -.246 .054 .214 -.127
A .885 -.021 .106 .005 -.369 .065 -.125 .076
A -.920 .113 -.070 .071 .206 -.036 .151 -.152
A .153 -.032 .685 .700 .025 -.113 -.008 -.040
A .927 -.058 .075 .015 -.281 .063 -.044 .118

 
dimensions (dimension of the extracted feature vectors).  The 
proposed multi-classifier scheme consists of 16 sub-
systems/classifiers. For each one of these sub-systems, LVQ 
network structure has been utilized. The average concept of 
combining the individual output of the 16 classifiers has been 
adopted in this study. The architecture of LVQ is based on 
straightforward approach with 20 input and two outputs, with 
2000 epochs training. The 20 inputs correspond to the four 
features times the number of wavelet decomposition (D1-D4 & 
A4). 

Table 5. Summary of the correctly classified objects in the 
testing set for each of the classification algorithms employed 
in this study (note the maximum number was 1,600) 
 

LVQ Applied to Class A Class E 
All A & E Attributes 1600 1558 
Attribute MaxD4 1600 1596 
 8 attributes using PCA  1568 1558 
Rough sets 1600 1600 

 

VI. CONCLUSIONS 

 
The results from this study indicate that the hybrid approach 
to the classification of a complex dataset such as an EEG 
time series can be achieved with a high degree of accuracy.  

This dataset contains both a spatial and a temporal 
component – the electrodes are placed on spatially distinct 
regions of the calvarium.  There are several diseases that 
yield a characteristic signature that can be detected 
reproducibly using standard EEG equipment.  For instance 
epilepsy yields a characteristic change in the  power spectrum 
within the temporal lobe region.  This would indicate that 
there will be a spatial signal that requires proper spatial 
localisation within the appropriate brain region.   In addition, 
symptoms may change over time – and thus the temporal 
resolution of the recording must be such that it is samples at 
the correct frequency – without yielding Nyquist or other 
sampling errors.  In the present work, we employed a discrete 
wavelet transform to the dataset in order to extract temporal 
information in the form of changes in the frequency domain 
over time – that is they are able to extract non-stationary 
signals embedded in the noisy background of the human 
brain.  In this study, we examined the difference(s) between 
normal and epileptic EEG signals – over a reasonable 
duration of approximately 24 seconds.   We extracted 
statistical information from the wavelet coefficients, which 
we used as inputs to a set of supervised learning algorithms – 
LVQ 2.1 based neural networks.  The attributes (inputs) used 
were measures of dispersion – which captured the statistical 
variations found within the particular time series. The results 
from this preliminary study will be expanded to include a 
more complete range of pathologies.  In this work, we 
focused on the extremes that are found within the EEG 
spectrum – normal and epileptic time series.  These two 
series were chosen as they would more than likely lead to the 
maximal dispersion between the 2 signals and is amenable for 
training of the classifiers.  In the next stage of this research, 
we have datasets that are intermediate in the signal changes 
they present.  This will provide a more challenging set of data 
to work with – and will allow us to refine our learning 
algorithms and/or approaches to the problem of EEG 
analysis. We will also consider additional attributes - are 
these attributes the most critical in terms of classification? 
These are interesting research questions that need to be 
addressed.  Lastly, we may also investigate additional pre-
processing steps such as clustering and related techniques.  
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