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Highlights 

 

 DSP remains a bottleneck in the sustainable and economic production of PHAs. 

 The selection of DSP should be based on final product specification. 

 Green solvents have been found to dissolve scl and mcl-PHAs. 

 Chemical-free methods have great potential in large scale recovery of PHAs. 

 

 

 

 

 

Abstract: 

Bioplastics have emerged as a platform to reduce our dependence on fossil fuels. 

Polyhydroxyalkanoates (PHAs) are a family of biodegradable polyesters with large potential in 

consumer goods and medical applications. These polymers accumulate in prokaryotic microbes 

and their recovery is a challenging, often under explored, operation. In the past, oil-derived 

solvents and chemicals have been widely used as extracting agents, compromising the 

“environmentally-friendly” claim of bioplastics. Furthermore, the large amount of chemicals 

and solvents required at the industrial level would negatively impact the economics of the 

process. The present review presents the latest advances in the field of downstream operations 

for PHA recovery emphasizing those green technologies with scaling-up feasibility. As for the 

upstream and fermentation stages, the extraction process needs to be carefully optimized to 

accomplish a competitive production of PHAs. 

 

Keywords: bioplastics, PHAs, downstream operations, green solvents, digestion, recovery, 

sustainability 

 

 

 

 

List of symbols: 

ATPE Aqueous two-phase extraction MIBK Methyl isobutyl ketone 

CAGR Compound annual growth rate MMC Mixed microbial cultures 

CP Cloud point MTBE Methyl tert-butyl ether 

DMC Dimethyl carbonate Mw Molecular weight 

DSP Downstream processing NPCM Non-polymer cellular matter 
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EDTA Ethylenediaminetetraacetic acid PEG Polyethylene glycol 

EOPO Ethylene oxide propylene oxide PHA Polyhydroxyalkanoate 

HPH High pressure homogenization P(3HB) Poly(3-hydroxybutyrate) 

ICI Imperial Chemical Industries P(3HHx) Poly(3-hydroxyhexanoate) 

LAS Linear alkylbenzene sulphonate P(3HO) Poly(3-hydroxyoctanoate) 

LCA Life cycle assessment P(3HV) Poly(3-hydroxyvalerate) 

LDPE Low density polyethylene PP Polypropylene 

LPS Lipopolysaccharides scl Short-chain length 

mcl Medium-chain length sCO2 Supercritical carbon dioxide 

MEK Methyl ethyl ketone SDS Sodium dodecyl sulphate 

 

 

1 INTRODUCTION 

Oil-derived plastics have grown at a faster rate than any other bulk material for several decades. 

Biobased polymers could serve to offset, to a certain extent, the non-renewable feedstock used 

in the plastic industry. Moreover, biodegradability is seen as a solution to the major plastic 

disposal problem. However, the process development of biobased biodegradable polymers is 

certainly at a very early stage compared to the petrol-based plastic manufacturing industry. 

Over the last years, intensive research has targeted the optimization of bioplastic production. 

The primary objective is that large-scale operation can compete with that of traditional plastics 

while reducing the environmental impact [1].  

Microbially produced plastics are promising candidates for a biobased generation of 

biopolymers. Great efforts have focused in upstream operations for example, in the selection 

and engineering of prokaryotic and eukaryotic strains, as well as in the utilisation of cheap 

substrates for their production [2,3]. Nevertheless, developments in the purification and 

recovery of bioplastics has been rather slow. Moving towards industrialization, it is clear that 

the production of biopolymers needs to go hand in hand with eco-friendly downstream 

operations [4]. 
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The global polyhydroxyalkanoates (PHAs) market size is projected to reach 23,734.65 metric 

tons by 2021, at a compound annual growth rate (CAGR) of 6.27 %, between 2016 and 2021 

[5]. These biopolymers exhibit a wide range of properties derived from the structural variation 

of their backbone/side chains and have demonstrated an outstanding biocompatibility [6]. PHAs 

can be classified, depending on the number of carbon atoms in the monomer unit, into short-

chain length (scl) PHAs (3 to 5 carbon atoms) and medium chain length (mcl) PHAs (from 6 

to 14). Scl-PHAs can be used to produce rigid plastics with properties comparable to those of 

polypropylene (PP) whereas mcl-PHAs imitate more flexible materials like low density 

polyethylene (LDPE). PHA degradation has been reported to occur in soil, fresh and salt water 

and in the human body, although the degradation time needs to be carefully evaluated before 

selecting a disposal route [7].  

Polyhydroxyalkanoates (PHAs) are energy and carbon reservoirs [8] polymerized and stored 

within the host cells. This condition makes their recovery more challenging than the separation 

of some other (extracellular) fermentation products. In the past, chlorinated and other oil-

derived solvents, harsh chemicals and energy intensive practices have been used to demonstrate 

the feasibility of producing PHAs from a microbial culture [9]. We have now reached a point 

where downstream processing (DSP) for the recovery of bioplastics cannot jeopardize the 

environmental impact of a well-established bioprocesses. 

The focus of this review is to provide the reader with an overview of the more relevant options 

for scl and mcl-PHA recovery, from pure and mixed cultures, and stress the environmental 

impact associated with each one of them. Although numerous reviews on PHAs are available, 

the emphasis of this work is to critically discuss the most recent DSP methods and highlight 

those with scalability potential and low ecological burden.   

1.1 Production of PHAs 

PHAs are synthesized by different organisms, including archaea, bacteria, yeast, algae, plants 

and their recombinant forms. Bacterial cultivation can be carried out in pure or mixed culture. 

PHA generation can be coupled or decoupled to cellular growth, and frequently the limitation 
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of an essential nutrient (nitrogen, phosphorus, oxygen, etc.) and an excess of carbon is exploited 

to trigger polymer accumulation. PHA is water insoluble and accumulates as chains surrounded 

by diverse proteins in cytoplasmatic granules. In some highly optimised microbial producers, 

PHAs can account for more than 90% of the bacterial dry cell weight in the form of multiple 

granules [10]. 

The process of producing PHAs includes a series of steps, within which downstream operations 

can account for half of the production costs [11]. The first stage after fermentation is to separate 

the biomass (cells containing PHAs) from the broth. Centrifugation, filtration, sedimentation 

are the most common methods to achieve this. Biomass can be pre-treated to increase the 

permeability of the bacterial cells by heating, freezing, adding salts, grinding in liquid nitrogen 

and using hot compressed water. Biomass, pre-treated or not, is then subjected to an extraction 

process in which there is either a solubilization of cellular material surrounding the PHA, or 

solubilization of the polymer itself. PHA is subsequently separated from the disrupted cellular 

matter and purified according to the final requirements of the final product as shown in Figure 

1. 
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Figure 1: Conventional stages involved in the recovery of PHA from bacterial fermentation and most common 

methods for each stage. 

2 RECOVERY METHODS 

2.1 Solvents 

Solvent extraction is to date the most widely spread practice for the recovery of PHAs. There 

are certain solvents that can alter the permeability of the cell membrane and selectively dissolve 

the polymer stored inside. In some cases, a pre-treatment step is used to increase the solvent 

accessibility to the polymer. After being dissolved, PHA is recovered with a precipitating agent 

e.g. ethanol or methanol, at low temperatures. 

2.1.1 Halogenated solvents 

Halogenated solvents such as chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-

trichloroethane and 1,1,2,2-tetrachloroethane have been tested to recover PHAs [12,13]. 

Lemoigne, who first discovered P(3HB) in 1926, was also the first to use chloroform for 

extraction and it is still the reference technique for comparison purposes. The Soxhlet set-up 
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allows the recirculation of hot solvents, to maximize solubility and reduce the large volumes of 

solvents used for the extraction. It provides good recovery yields and high purity of the 

extracted polymer [14]. The chloroform method allows the extraction of polymer with low 

endotoxin content, an important requirement when the polymer is targeted for medical 

applications. 

The natural morphology of the PHA granules can be affected by the use of halogenated 

solvents, which prevents the use of PHA for certain applications, for example in the production 

of strong fibres [15]. Additionally, the large amounts of solvents (20 parts of solvent per one 

part of polymer) make this approach an expensive option for application at industrial scale. 

Furthermore, chlorinated solvents are harmful compounds, suspected to induce cancer, that 

cause long-term adverse effects in aquatic environments and believed to contribute to ozone 

layer depletion. Their use is banned in consumer products in several countries, and thus, they 

should be replaced with safer alternatives. 

2.1.2 Halogen-free solvents 

In view of the negative effects of halogenated solvents, a series of patents from companies such 

as Agroferm, Procter & Gamble, Monsanto, Metabolix and Kaneka describe the use of 

alternatives to chlorinated solvents [16–21]. Table 1 lists the main halogen-free solvents used 

in the last decade. 

Kurdikar and co-workers [18] investigated mixtures of non-halogenated PHA-solvents: 

alcohols, esters, amides, cyclic and acyclic ketones, which can be used for PHA recovery and 

Narasimhan et al. [22] studied the influence of high temperature when using these types of 

solvents. Acetone extraction at high temperarute and pressure was studied by Koller and co-

workers to recover scl-PHA. As advantages, the method enabled the reutilization of the solvent 

and reduced the extraction time from 12 h to 20 minutes. Performance compared to that of 

cholorofom recovery [23]. 
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 One of the advantages of the chloroform-based method was the ability to reduce the endotoxin 

content in the final polymer; Furrer et al. achieved an endotoxin level between 10 and 15 U/g 

P(3HO) by using n-hexane followed by 2-propanol [24]. 

According to Chemat, “Green Extraction is based on the discovery and design of extraction 

processes which will reduce energy consumption, will allow the use of alternative solvents and 

renewable natural products, and ensure a safe and high quality extract/product” [25].  

Halogen-free solvents are in general less harmful than chlorinated solvents but are not 

completely sustainable. Many of them are oil derived and require special treatment for disposal. 

To assess the risk of a solvent, GSK have created a solvent selection guide that considers health, 

reactivity and stability, environmental impact, life cycle score, legislation flag, environmental 

health and safety flag, boiling and melting points and waste disposal [26]. 

To date dimethyl carbonate (DMC) and biobased solvents are seen as the most eco-friendly 

alternatives for extraction [27]. DMC is completely biodegradable, whereas ethyl acetate, ethyl 

lactate, butyl lactate and isopropanol can be produced through biochemical conversion of 

biomass.  Similarly, ethanol produced through biomass fermentation would have a lower impact 

on the overall non-renewable carbon footprint of the process. A good example of an integrated 

biorefinery in Brazil uses waste streams from ethanol distillation as solvents to recover PHAs 

[28]. 

Fei et al.  proposed an ‘environmentally friendly’ process for P(3HB) recovery, from C. necator 

cells using a solvent mixture of acetone, ethanol and propylene carbonate in the same volume 

proportions, starting with non-defatted wet biomass. When hexane was selected for polymer 

precipitation, improved polymer yield and purity were obtained (92 and 93% respectively). 

Physical properties did not differ from chloroform-extracted P(3HB) [29]. 

Table 1: Studies on halogen-free solvents for PHA recovery. 

Functional group Solvent PHA dissolved Reference 

Hydrocarbon Hexane P(3HO), P(3HB) [30–32] 

Alcohol 

Methanol P(3HB) [31,33] 
Ethanol PHA [33,34] 
Propanol PHA [31,33] 
C1 to C6 alcohol PHA [35] 

Ketone 

Acetone scl-PHA, P(3HO) [23,36,37] 
Methyl isobutyl ketone (MIBK) P(3HB-co-3HHx) [20,38] 
Methyl ethyl ketone (MEK) P(3HB-co-3HHx), P(3HO-co-3HV) [38,39] 
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Cyclo-hexanone P(3HB) [20,40,41] 
Lactone γ-butyrolactone P(3HB) [41] 

Acid 
Acetic acid P(3HB), PHA [33,42] 
Acetic acid anhydride PHA [43] 

Carbonate ester 

Dimethyl carbonate (DMC) PHA [44] 
Ethylene carbonate P(3HB) [16,33] 
1,2-propylene carbonate P(3HB), PHA block copolymers [16,45,46] 

Ester 

Methyl lactate PHA [47] 
Ethyl lactate P(3HB-co-3HHx), PHA [31,38,47] 
Ethyl acetate P(3HB-co-3HHx) [48] 
Butyl acetate P(3HB-co-3HHx) [20,31,38] 

Organosulfur Dimethyl sulfoxide P(3HB) [33] 
Amide Dimethyl formamide P(3HB) [33] 
Cyclic ether Tetrahydrofuran P(3HB) [17,49,50] 
Lactam n-methyl-pyrrolidone P(3HB) [51] 

Ether 

Diethylether mcl-PHA [52] 

Methyl tert-buthyl ether 

(MTBE) mcl-PHA [53] 

Anisole P(3HB) [40] 
Phenitole P(3HB) [40] 

 

In the search for “green solvents”, ionic liquids have also been investigated to substitute the 

large amount of volatile solvents and undesirable chemicals used in extraction processes. These 

compounds have low vapour pressure, therefore, produce no hazardous gases. Ionic liquids are 

salts with a melting temperature of 100°C or less which can dissolve substances that are 

insoluble in water [54]. The patent, owned by Procter & Gamble [54], describes how PHAs can 

be extracted in a batch or continuous system (stripping) by simple contact with an ionic liquid 

in the absence of water. Polymer is then isolated from the ionic liquid with a recovery solvent, 

such as an alcohol, followed by conventional separation methods (sedimentation, 

crystallization, centrifugation, decantation, filtration or combination of those). A particular case 

was reported by Kobayashi et al. who investigated the power of ionic liquids to dissolve NPCM 

from cyanobacteria. They reported that 1-ethyl-3-methylimidazolium methylphosphonate was 

able to dissolve cyanobacteria components but not P(3HB) [55]. 

2.2 Digestion methods 

In ideal conditions the NPCM content should be less than the polymer, therefore, dissolving 

the former should be, in principle, relatively less challenging.  

2.2.1 Chemicals 

Sodium hypochlorite 
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Sodium hypochlorite is a strong oxidizing chemical able to dissolve proteins, lipids, 

carbohydrates and nucleic acids that constitute the non-PHA matter. Although a very pure 

polymer (over 95%) can be recovered using sodium hypochlorite, the reduction of the 

molecular weight of the polymer after treatment with this harsh chemical has led to serious 

concerns [56]. 

The relationship between polymer degradation, volume of sodium hypochlorite and 

temperature was studied in Cupriavidus taiwanensis 184. Increasing the volume of sodium 

hypochlorite up to 30 mL per g of dry cells, at constant temperature (50°C), resulted in 80% 

reduction in molecular weight. The effect of temperature, at constant volume of the oxidizing 

agent (2 mL) was less deleterious but still significant: almost a 30% decrease in molecular 

weight was observed when temperature was increased from 40 to 100°C [57]. 

In order to tackle the Mw decrease, the combined effect of chloroform and sodium hypochlorite 

was implemented by Hahn et al. [58]. In the so-called dispersion method, lyophilised biomass 

was incubated with sodium hypochlorite and chloroform for 2 hours at 30℃ in an orbital shaker 

at 140 rpm (5 mL of 80% sodium hypochlorite solution in distilled water and 22.5 mL of 

chloroform were added per 0.3 g biomass). The hydrophobic P(3HB) dissolved into chloroform 

as soon as cells lysed, avoiding polymer destruction by hypochlorite. After incubation, the 

slurry was centrifuged which resulted in phase separation and three layers were formed. The 

top two layers were sodium hypochlorite and cell debris. The bottom layer, containing 

chloroform and dissolved polymer was collected, filtered and concentrated. Polymer was 

precipitated using ice-cold methanol in a 1:10 ratio under continuous stirring. 

Successful studies have been carried out using just sodium hypochlorite on a high-rate 

continuous process and at a large scale extraction process [59,60]. In the first case, yield of 

polymer recovery (around 100% w/w) and purity (more than 90% of PHA content in the 

residual solids, on a weight basis) was achieved even though it was a mixed culture system. 

Also in MMC, Samorì et al. [44] employed a combination of a green solvent, DMC, and the 

use of sodium hypochlorite in a pretreatment step. 

Sodium and potassium hydroxide 

ACCEPTED M
ANUSCRIP

T



 

11 

 

The saponification reaction between sodium hydroxide and the lipid layer in the bacterial cell 

wall destabilises the membrane and increases its permeability [61]. Sodium hydroxide or 

potassium hydroxide are mild digestion agents which can overcome some of the environmental 

concerns related to the use of harsh chemicals for PHA recovery. 

Mohammadi et al. investigated the digestion conditions with a Gram-negative PHA-

accumulating bacteria, Comamonas sp. EB173. They found that a sodium hydroxide 

concentration of 0.05 M and a digestion time of 1 h at 4°C gave the best results and achieved 

an 88.6% purity and a 96.8% recovery yield. Purification of the polymer was simply performed 

with ethanol and water. The same parameters were evaluated with recombinant C. necator cells. 

Although the length of the treatment was extended to 4 h in order to optimize the results, PHA 

was effectively recovered even from cells with low PHA content [62,63]. 

A simple procedure was adopted by Anis et al. [64] to recover P(3HB-co-3HHx) from 

recombinant C. necator cells. Best results were found when freeze dried biomass, in 

concentration ranging from 10 to 30 g/L, were incubated in 0.1 M sodium hydroxide from 1 to 

3 h at 30°C and the polymer polished using 20% (v/v) of ethanol. Under such conditions, the 

recovered copolymer P(3HB-co-3HHx) could reach 80 to 90% (w/w) of purity and recovery 

yield. 

Two digestive solutions, sodium hydroxide (1 M) and sodium hypochlorite (5% chlorine) were 

evaluated in an extraction reactor fed with biomass with a high PHA content. The fermentation 

system consisted of a high-rate continuous process with an enrichment step of the MMC. 

Sodium hydroxide was less effective than the sodium hypochlorite in the overall PHA recovery 

both in the 3 h and 24 h treatment.  The action of sodium hypochlorite (5% chlorine) resulted 

in a total recovery of the polymer with more than 90% (w/w) of PHA content in the residual 

solids. The relatively lower performance of sodium hydroxide can be attributed to the additional 

difficulty of cell disruption in mixed cultures [59]. 

Recently, Irdahayu et al. [65] proposed a recovery strategy based on the synergistic effect of 

sodium hydroxide and Lysol, a commercial detergent, for non pre-treated biomass. The 

methodology was applied to batches with varying 4HB monomer content. Beside the good 
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recovery, 90% at the largest extraction volume (100 L), the polymer exhibited high purity, 

retained its original properties and could be suitable for biomedical applications. 

Acids 

Acids can also be used to disrupt the non-PHA cellular material (NPCM) and liberate the 

intracellular PHA. With the view to identifying a cost-effective recovery system and assess the 

environmental impact of the downstream operations, López-Abelairas et al. [66] compared 

sulphuric acid with three other alkaline solutions (sodium hydroxide, sodium hypochlorite and 

sodium hypochlorite combined with dichloromethane). The lowest costs were those associated 

with the use of sodium hydroxide and sulphuric acid (1.02 and 1.11 €/kg respectively). In 

addition, the CO2 emissions of these two chemicals were only 18% of the emissions produced 

by sodium hypochlorite. Sulphuric acid was able to extract the purest polymer without polymer 

degradation thus, it was selected as the most appropriate choice. 

Yu and Chen [67] developed a promising method based on the selective dissolution of NPCM 

in aqueous acidic solution and crystallization of biopolymers. P(3HB) from Ralstonia eutropha 

cells was extracted with a 97.9% (w/w) purity and 98.7% (w/w) recovery. Even a copolymer, 

P(3HB-co-3HV) and terpolymer, P(3HB-co-3HV-co-4HV) were successfully recovered with 

very high values of purity and yield: 98.5% (w/w), 95.4% (w/w) respectively for the former 

and 96.4% and 94.8% (w/w) for the latter. Average molecular weight was described as a 

function of processing conditions. The processing parameters need to be carefully controlled in 

order to avoid a major reduction in the original value. 

2.2.2 Surfactants 

Surfactants enter the lipid membrane increasing the volume of the cell envelop until it bursts. 

Micelles of surfactants and membrane phospholipids are then formed and PHA granules 

released. Surfactants can also solubilize proteins and other molecules from the NPCM. 

Anionic sodium dodecyl sulphate (SDS) is the most widely used surfactant in PHA recovery. 

This detergent is known for its ability to recover genetic material. SDS can be directly added 

in high cell density cultures of R. eutropha cells and it has demonstrated a good recovery 
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regardless of the inclusion or not of a pretreatment option [68]. Other surfactants, such as the 

synthetic palmitoyl carnitine, naturally synthesized in mammalian cells as part of the fatty acid 

metabolism, were used with R. eutropha and Alcaligenes latus cells and exhibited a stronger 

lytic activity in the latter case [69].  

Very high purities cannot be achieved with surfactants only. Therefore, a combination with 

some other chemical or enzymatic treatment is the most usual practice. The influence of sodium 

hydroxide, sodium hypochlorite and chelating agents, together with SDS, have been 

demonstrated and purities up to 99% have been reached [70]. Surfactant concentration, in 

aqueous solution, needs to be kept below 5% (w/w) in order to avoid a disposal problem or 

increased cost. SDS concentrations in the range of 0.025 to 0.2% (w/w) have been found to be 

sufficient for the process [71]. Biobased surfactants or biodegradable detergents, such as linear 

alkylbenzene sulfonic acid (LAS-99), could be sustainable alternatives to reduce the disposal 

efforts related to traditional surfactants [72]. 

2.2.3 Enzymes 

An enzymatic process can also be used to lyse and digest major parts of NPCM. Cocktails of 

proteases, nucleases, phospholipases, lysozymes and other enzymes, in combination with 

surfactants and chelating agents (and heat treatment to accelerate degradation), have been 

known for a long time as mechanisms to recover PHAs [73–75]. For example, the added effects 

of alcalase (digest denatured proteins), SDS (solubilization) and EDTA (assist solubilization 

by complexing the divalent cations and thus destabilizing the membrane fragments) were 

selected by de Koning and Witholt [76] to extract mcl-PHAs. 

The Zeneca process developed by Imperial Chemical Industries (ICI) started with an intense 

heat treatment of the PHA-rich biomass. Enzymatic hydrolysis with pepsin, trypsin and papain 

was followed by a surfactant dissolution of the residual cellular matter. Finally, a decolorization 

step with hydrogen peroxide of the isolated polymer was performed [74]. Enzymes from 

Cytophaga species demonstrated their potential in lysing R. eutropha cells completely at 

37.5°C, a pH of 7.3, in 60 minutes of incubation, with no mechanical treatment involved [77]. 

ACCEPTED M
ANUSCRIP

T



 

14 

 

Kapritchkoff et al. [78] screened different enzymes to recover P(3HB) from R. eutropha cells, 

discovering that trypsin, bromelain and lysozyme were found to be the most promising.  

A concentration of 2% (w/w) bromelain, at 50°C and pH 9 gave a polymer with 88.8 % purity. 

Using pancreatin instead, the purity was increased to 90%, the costs associated with enzymes 

were reduced three times and the polymer did not undergo any apparent degradation. 

Yasotha et al. [79] investigated the recovery of mcl-PHA from P. putida cells. They found that 

the contribution of alcalase was the most important from a mixture of alcalase, lysozyme, 

EDTA and SDS. Cross-ultrafiltration was used to separate the granules and purification of the 

polymer was carried out by continuous defiltration. 

Neves and Müller [80], evaluated several commercial enzymes among proteases and glycosides 

for their ability to recover P(3HB) and the co-polymer P(3HB-co-3HV) from C. necator cells. 

After optimization, 93.2% recovery and 94% purity were obtained with an enzyme solution at 

0.02% (w/w) of Celumax®, a glycosidase, after 1 hour incubation at pH 4 and 60°C. 

Lakshman and Shamala [81] cultivated Microbispora species on the thermally inactivated 

fermented broth of Sinorhizobium meliloti for 24, 48 and 72 h. PHA was isolated using 

chloroform or a mixture of a non-ionic surfactant (Triton X-100) and EDTA with a polymer 

recovery of 98, 82 and 14% respectively for the different incubation times. Alternatively, they 

simply used the supernatant of Microbispora fermentation broth at 72h for hydrolysing S. 

meliloti cells and obtained 94% yield and 92% purity.  

Divyashree and colleagues [82] also used Microbispora culture filtrate, containing a protease 

activity of 3 U/mL, on a Bacillus flexus culture. The enzymatic hydrolysis proved to be better 

than sonication in lysing the cells but less efficient than a sodium hypochlorite digestion.  

Recently, Israni et al. [83] used the lytic activity of Streptomyces albus on B. megaterium cells. 

As in the case described above, two approaches were followed: co-inoculation of S. albus with 

PHA- producer cells and utilization of the lytic culture filtrate for polymer extraction. The 

enzyme-based extraction led to a 1.74-fold increase in the PHA yield as compared to co-

inoculation, attributable to the utilization of the released polymer by the growing S. albus. The 
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lytic activity of S. albus was demonstrated in a wide spectrum of Gram positive and negative 

bacteria, including B. subtilis and P. aeruginosa P6. 

 Kachrimanidou and co-workers [84] used the crude enzymes produced by Aspergillus oryzae 

in solid state fermentation to recover P(3HB-co-3HV) from C. necator. Almost 90% of cells 

were lysed under optimized temperature and pH conditions. Enzymatic lysis of bacterial cells 

was also carried out at the optimum temperature and uncontrolled pH value leading to a 

recovery yield and purity of 98% and 96.7%, respectively. Besides, the author evaluated the 

recycle of cell lysate for further P(3HB) production.  

2.2.4 Biological agents 

An innovative approach was introduced when entire organisms were used in the process of 

recovering intracellular products. These organisms digested the cellular matter from PHA 

accumulating bacteria while leaving PHA intact [85]. The biopolymer was then recovered from 

the faecal pellets and simply washed. The nutritional value of C. necator cells had been 

previously reported when this type of bacteria was used as single cell protein for rats [86]. The 

drawback of a long recovery time can be overcome if the method is integrated into other 

processes such as insect farming.  

2.3 Supercritical fluids 

Substances above their critical pressure and critical temperature exhibit an intriguing 

intermediate behaviour. They have the diffusivity properties of a gas and the solvation power 

of a liquid. For this reason, supercritical fluids can diffuse through solids and dissolve materials 

[87]. 

Supercritical carbon dioxide or sCO2 is the most common type of supercritical fluid used in 

biotechnology. It is chemically inert, non-toxic, non- flammable and is readily available at high 

purity and low cost. Additionally, its temperature and pressure values (31°C and 74 bar) allow 

working in mild conditions and the residual solvent can be simply vaporized by reducing the 

pressure, leaving no harmful products for disposal. Based on all these features, it is considered 

a green solvent [88]. 
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Supercritical fluid extraction (SFE) has been applied in industry for the recovery of high-value 

products such as essential oils and flavours and in the production of decaffeinated coffee and 

cholesterol-free butter [89]. Since it is a batch process, it rarely applies to inexpensive 

commodity products but is considered a promising tool for pharmaceuticals and biomedical 

materials intended for tissue engineering and drug delivery [90]. 

Hampson and Ashby [91] tried to implement SFE to recover mcl-PHAs synthesized by 

Pseudomonas resinovorans. They used lyophilized cells and a fluid flow of 1.5 L/min. 

Extraction conditions ranged from 40 to 100°C and 2000 to 9000 psi. sCO2 was used for the 

extraction of the lipid materials which accounted from 2 to 11% of the non-PHA cellular matter. 

The increase in the flow rate shortened the extraction time to less than 3 h. A chloroform 

extraction was still required to recover the polymer, although the SFE step reduced the amount 

of solvent needed significantly. 

Confirming the aforementioned results, Williams et al. [92,93] demonstrated that pure 

supercritical CO2 is able to extract lipids and other hydrophobic contaminants whereas mixtures 

with modifiers (conventional solvents) can be later used to extract pure PHA with a good 

recovery yield. They found that PHA can be soluble at 9% in those mixtures. In this context, 

Metabolix developed a single step process to recover 100% pure P(3HO) with 25 to 150 times 

less endotoxin than the one obtained by solvent extraction and recrystallization [94]. 

A few years later, Khosravi-Darani and colleagues [95,96] studied the solubility of P(3HB) in 

sCO2 and tested the combination of this technique in a pre-treatment. Interestingly this work 

found that the cell stage influenced the disruption process. Also, both wet and freeze-dried cells 

were used but higher purity was found with the latter. Sodium hydroxide was found to be more 

effective than sodium chloride and resulted in the achievement of a complete disruption after 

two pressure release events. Hejazi et al. [97] used the Taguchiapo’s statistical approach to find 

the optimum conditions for disruption of R. eutropha and P(3HB) recovery using SFE only. An 

89% recovery was attained using sCO2 and methanol as modifier for 100 min at 200 atm and 

40°C. 
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In a more recent review, Koller et al. [4] supported the claim that sCO2 is good for degreasing 

PHA rich biomass based on the outcomes of the 5th framework program European project 

WHEYPOL. These results are in contradiction with the claim that supercritical fluids can be, 

on its own, a suitable method for PHA recovery. A comparison of the main features of 

supercritical fluids compared to other solvent and digestion methods is shown in Table 2: 

Table 2: Advantages and disadvantages of the extraction and digestion methods for PHA recovery. 

   

   METHOD                STRENGTHS                                   WEAKNESSES 

 

Solvent extraction 

 

High yield (>90%) 

High purity (>99%) 

 

Toxicity for human health and environment 

Some of them are derived from oil 

Green solvents 

 

Biobase and/or biodegradable 

Good performance 

Relatively low toxicity  

Costs in large scale 

 

Chemical digestion 

Lower toxicity for human health 

Low capital investement 

 

Can affect polymer quality 

Costly waste water treatment/difficult to reuse 

Supercritical fluids 

 

Non toxic for human health 

Environmentally friendly 

 

Not widely availale 

Recovery mechanism under research 

Biological recovery 

 

No chemicals involved 

Valorization of NPCM 

 

Slow process 

Low purity 

2.4 Mechanical disruption 

2.4.1 Bead mill 

Cell disruption by bead milling for the recovery of intracellular products is a common practice 

in the isolation of DNA, enzymes and recombinant proteins. Complete destruction of the 

cellular wall, in a non-specific way, is achieved using solid-shear forces generated by the 

disruption agents, such as glass beads, rotating along with the cell suspension in a chamber 

[98]. The heat generated in the process needs to be dissipated with a cooling liquid flowing 

around the grinding chamber. 

Tamer et al. [99] were the first to study the disruption of A. latus. The intracellular release of 

protein served as an indicator of P(3HB) release. They used heat shock at 80°C to achieve a 

complete disruption of the cell on 8 passes through the mill. Bead milling was found to be 

effective independently of biomass concentration and could be used even at low biomass 
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concentrations. The diameter of the beads did not affect the outcome but the beads loading had 

a strong effect on the results.  

Disruption processes generally follow first order kinetics and the results that can easily be 

predicted and scaled up [99]. This fact, together with the relatively low energy consumption 

and readily available equipment, greatly favours bead milling over other DSP methods. 

Gutt et al. [100] compared different DSP methods with the same amount of starting C. necator 

biomass  and used design of experiments and ANOVA analysis to improve the performance of 

the better methods found. Mechanical disruption by bead milling coupled with SDS treatment 

was found to be the best technique and allowed a 100% recovery with 94% polymer purity 

within two hours.  

2.4.2 High pressure homogenization  

A high pressure homogenizer satisfies most of the criteria to be applied at large-scale in DSP 

[101]. In this piece of equipment, the fermented broth flows at high pressure through a narrow 

gap where is subjected to very high shear forces that cause cell disruption. Increasing the 

number of passes in the homogeniser enhances product purity as more of the cellular material 

is solubilized. 

When using used high pressure homogenization (HPH) to dirupt A. latus cells, Tamer et al. 

[99] found that the performance of the equipment depended on the biomass concentration. A 

low efficiency was achieved with low cell density broths. Homogenization of cell 

concentrations exceeding 66 g/L was neither effective due to process interruption caused by 

frequent blockages. Furthermore, micronization of P(3HB) to levels where it could not be 

precipitated was more frequent in the high pressure homogenizer than in the bead mill, resulting 

in higher losses of the polymer with an increase in the number of passes.  

Ghatnekar et al. [102] used HPH in combination with 5% (w/v) volume of SDS to attain a 98% 

yield and 95% P(3HB) purity after two cycles with Methylobacterium cells. A cell 

disintegration of more than 99.99% after a pre-treatment with a strong alkaline solution and 1% 

SDS solutions followed by HPH has also been reported [4]. Even mechanical digestion with 
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no prior treatment has yielded more than 90% disintegration which highlighted the promising 

performance of these methods for large scale operation.  

The amount of the DNA released when cell lysis can represent a challenge for the recovery 

steps that follow biomass homogenization. Heat treatment, addition of hypochlorite or 

commercial nucleases are the most common ways of reducing the viscosity and, thereby, easing 

DSP. To cut down costs, nucleases encoding genes from Staphylococcus aureus were inserted 

in PHA producing strains such as P. putida and C. necator. In both cases, the lysate viscosity 

was successfully was reduced without compromising the PHA production [103,104]. 

2.4.3 Ultrasonication 

This method uses the power of acoustic waves to break down the cells. High frequency sounds, 

produced by ultrasonic vibrators, are converted into mechanical oscillation by a transducer 

through a titanium probe immersed into the cell suspension. Bacterial and fungal cells can be 

disrupted by ultrasonic means. 

Ultrasonication has been frequently used as pre-treatment in PHA recovery for different types 

of cells including C. taiwanensis and Buskholderia in small scale, although certain species 

might be more susceptible than others [4]. Penloglou [105] used ultrasonication in combination 

with a chemical method for the production of a P(3HB) with tailor-made molecular properties. 

Ishak et al. [106] developed an ultrasound assisted process in which a frequency of 37 kHz 

facilitated the extraction in a solvent mixture of  (acetone)/marginal non-solvent (heptane). 

Samorì et al. [44] chose glass beads of 0.5 mm diameter and ultrasonication as pre-treatment 

methods for the non-halogenated solvent extraction process. 

A process for PHA recovery based on mechanical disruption was patented by Tianan Biological 

Material Co. Bead milling and ultrasonic processes were used for breaking the cells in the 

fermentation broth. The pH was adjusted to be alkaline before or after surfactant and coagulant 

agents were added. The final product was separated after one hour by centrifuge, filter press or 

vacuum suction filtration. It is claimed by the author that the invention process has low cost, 
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high extraction yield and no pollution. These attributes make it an easily scalable method (Chen 

2003). 

A different mechanical process, gamma irradiation, has been explored as cell lysis treatment 

on B. flexus by Divyashree & Shamala [108]. Gamma irradiation of 5 to 40 kGy on wet biomass, 

obtained after centrifugation of the fermentation broth, resulted in cell damage and favoured 

the PHA extractability. Irradiated biomass was then subject to chloroform extraction. Although 

little researched, this method seems to be effective for cell disruption and improvement of 

polymer properties such as molecular weight and tensile strength increase. A comparison 

among the mechanical methods presented can be found in Table 3. 

Table 3: Advantages and disadvantages of the mechanical methods for PHA recovery. 

METHOD          STRENGTHS 
 

          WEAKNESSES 

Bed mill 
Efficient at low cell concentrations 

Easily scalable 

Several number of passes required 

Pre-treatment stage involved 

HPH 
Scale-up potential 

High yield without pre-treatmetnt 

Depends on biomass concentration 

Micronization of PHA 

Ultrasonication 
Low cost 

No pollution 
Used in combination with other methods 

Gamma irradiation Can improve polymer properties 
Little researched 

Used in combination with solvents 

2.5 Cell fragility 

Pre-treatment methods (thermal, pH, osmotic pressure) and the action of solvents, chemicals 

and/or enzymes are normally applied to increase the vulnerability of the cell wall and liberate 

the PHA granules. Nonetheless, there are other factors that can indirectly influence the cell wall 

fragility. For example, Schumann & Müller [51] reported that microorganisms with high PHA 

content (60 to 80% of dried cell matter) are more fragile and can be easily broken in a few steps. 

Besides, less chemicals agents, enzymes or chelates are required and there is less risk of 

polymer damage. 

Page and Cornish [109] found that the supplement of fish peptone to Azotobacter vinelandii 

cells not only enhanced P(3HB) formation but lead to pleomorphic and osmotically sensitive 
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cells, for which fragility was exploited in a simple alkaline treatment. It is believed that the 

addition of fish peptone stimulated P(3HB) formation at a much higher rate than cell protein 

formation, impairing growth and causing partial cell lysis. Immersion of the biomass in 1 N 

NH3, at 45°C, for 10 min, was enough to yield a final product consisting of 94% P(3HB), 2% 

protein, 4% non-protein residual biomass. 

Divyashree and Shamala [110] also investigated the effect of the cultivation media on the 

robustness of the cellular wall. They demonstrated that B. flexus cells grown on inorganic 

nutrients lacked diaminopimelic acid in the cell wall and had a lower amino acid concentration 

than cells cultivated on organic sources (yeast extract or peptone) and therefore could be lysed 

more easily. 

The exposure of halobacterial cells to low salt concentrations as a procedure for extracting 

P(3HB) was patented by Escalona et al. [111]. Rathi et al. [112] used osmotic lysis in the 

presence of an alkali or detergent as a simple mechanism for P(3HB) recovery from halophilic 

bacteria. From 90% to full recovery and high purity (90%) was obtained regardless of using 

wet or dry biomass. P(3HB-co-3HV) produced by the extremely halophilic archaeon Haloferax 

mediterranei has been also extracted by osmotic pressure combined with a reduced amount of 

chemicals (SDS and sodium hypochlorite) and little solvent (chloroform) [113,114]. A similar 

treatment has been employed by Choi and Lee taking advantage of the specially fragile walls 

of recombinant E. coli cells [61].  

2.6 Genetically induced cell lysis 

In an attempt to reduce the costs associated with DSP operations for the case of intracellular 

metabolites, bacterial and yeast strains have been designed and constructed to secrete certain 

fermentation products that naturally accumulate in the cytoplasm [115]. 

Lysis genes from bacteriophages have been introduced in bacteria producing scl and mcl-PHAs 

[116–119]. Most bacteriophages have a holin-endolysin lysis mechanism, in which small 

proteins (holins) oligomerize in the membrane creating holes that allow the endolysins to reach 

the bacterial wall and degrade it.  The time at which the holins cause the permeabilization of 
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the membrane can be ‘programmed’ based on culture conditions. Resch et al. [120] provoked 

cell lysis by a switch in temperature once the fermentation was over and Zhang et al. [121] 

forced the cell wall to collapse by transferring the cells from a solution rich in magnesium to a 

buffer with a lower magnesium concentration. A two-carbon source system was used to induce 

cell disruption in B. megaterium fermentation; in this case, the regulatory system was induced 

by xylose but inhibited by glucose. Once the latter carbon source was depleted, cells 

spontaneously liberated the accumulated PHA [122].  

Sabirova et al. [123] presented an invention for extracellular production of PHAs through 

genetic modifications.  Alcanivorax borkumensis SK2 was found to overproduce PHA when 

growing on alkanes, which resulted in extracellular deposition of the polymer. The inactivation 

of a particular enzyme rechannelled the intermediate metabolites of the alkane degradation 

towards PHA synthesis.  

3 ADVANCED SEPARATION TECHNIQUES 

3.1 Aqueous two-phase systems 

Aqueous two-phase extraction (ATPE) systems are based on the transfer of a solute from one 

aqueous phase to another phase. They can be of a polymer-polymer type or polymer-salt type. 

ATPE have been used for antibiotic, enzyme, nucleic acid and protein recovery and show 

unique features: they involve relatively safe and eco-friendly phase forming components (with 

a large aqueous base), they provide a rapid separation without energy input and can handle 

large capacities, which result in an ease of scalability [124]. 

Divyashree et al. [125] used an ATPS, containing polyethylene glycol (PEG) and phosphate, to 

separate PHA produced by B. flexus cells. Three pretreatment options to lyse the cells were 

explored and the ATPS performance, on the hydrolysed cells was compared with that of 

chloroform. The mixture of PEG (12%, w/v), potassium phosphate (9.7%, pH=8.0) and cell 

hydrolysate was left to separate at 28°C for 30 minutes. In the partition system, the PEG phase 

containing PHA was the upper phase while the residual cellular material was at the bottom. In 

the case of the enzymatic hydrolysis at 37°C and for 2 hours prior to the phase separation, the 
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protease, secreted by the Microbispora used, could be recovered in the PEG phase together 

with PHA. Furthermore, the enzymatic pre-treatment yielded a higher molecular weight 

polymer than the sodium hypochlorite method. 

PEG was replaced by thermoseparating polymers, which can be more easily recyclable. They 

consist of random, diblock, and triblock copolymers of hydrophilic ethylene oxide (EO) and 

hydrophobic propylene oxide (PO), thus named as EOPO copolymers. Thermoseparating 

polymers are soluble in water up to the lower critical solution temperature or cloud point (CP). 

By raising the temperature, two phases are formed, i.e. the polymer and the waste phase. Leong 

et al. [126,127] studied the influence of the molecular weight of the thermoseparating polymers, 

their concentration, and the type of salt added to promote the partition of biomolecules to the 

targeted phase, (NH4)2SO4, K2HPO4 or NaCl. The authors acknowledged that the ATPS system 

was not a total solution but could be a primary step for purification, which would benefit from 

a volume reduction. The mechanism of separation of ATPS with thermoseparating polymers is 

shown in Figure 2. 

 

Figure 2: Schematic representation of a thermoseparating polymer based two-phase system for the recovery 

of PHA. 
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3.2 Air classification 

This technique consists of the separation of finely ground solid particles based on size or 

weight. The resulting finer fraction, with a high concentration of the product of interest, is later 

recovered with 85-95 % yield and 85-90 % purity, using physical methods such as filtration or 

centrifugation[128].  The first process patented by Procter & Gamble using air classification 

involved fine grinding of the biomass originating particles smaller than 100 μm. These particles 

were subjected to air classification and the fine fraction washed with an alcohol solution and 

the solid pellet of PHA separated from the residual supernatant [129]. 

Van Hee and colleagues [130] carried out an in-depth study on the mechanism of flotation as a 

separating mechanism of mcl-PHA granules from the cell debris of P. putida. They used a 

flotation device with an enzyme treated broth, near the iso-electric point of bacterial debris and 

inclusion bodies, and water injection. The samples recovered at the bottom and the top were 

freeze dried. PHA content was determined by GC-FID. An 86 % purity was achieved, and the 

authors pointed out that there was room to improve this value with continuous flotation, when 

non-selective transport of particles in water is reduced. A schematic representation of the 

dissolved air mechanism to separate PHA is presented in Figure 3. 

 

Figure 3: Representation of the separation of PHA from bacterial broth by selective air-dissolved flotation. 
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4 PURIFICATION 

The type of contaminants remaining in the recovered polymer depends on the extraction method 

used. Lipids and colouring substances are often co-extracted when using non-polar solvents 

while proteins are usually found when biomass has been chemically digested in an aqueous 

solution. Some of the techniques presented above can be applied, repeated or combined 

rendering a polymer suitable for a certain application [131]. 

The technology of PHA purification must satisfy strict requirements if the polymer is to be used 

in the medical field. Biologically active contaminants that can trigger immunological reactions 

need to be reduced to values that comply with United States Pharmacopeia policies.  

Lipopolysaccharides (LPS), present in the outer membrane of Gram negative bacteria, act as 

endotoxins and induce adverse effects when they are in contact with blood. Thereby, they 

represent a serious concern and medical-grade PHA needs to be meticulously purified to get rid 

of them. Repeated dissolution and precipitation of the polymer is common practice when 

purifying this grade of polymer [132]. 

To further reduce the endotoxin content, hypochlorite and inorganic and organic peroxides 

(hydrogen peroxide and benzoyl peroxide mainly) have been successfully used by Williams et 

al. [94]. Horowitz and Brennan [133] patented a purification strategy based on ozone. In 

addition to solubilisation of impurities, ozone has a bleaching and deodorizing effect on the 

polymer and eliminates the hazards of operating with hydrogen peroxide and the polymer 

degradation caused by sodium hypochlorite treatment. Zhang et al. [134] studied the endotoxin 

removal capacity of an adsorbent of crystalline calcium silicate hydrate. 

Wampfler et al. [135] improved the simultaneous extraction and adsorption-based purification 

strategy developed previously in which a large loss of product was incurred. Mcl-PHA was 

extracted from freeze-dried biomass, in the presence of activated charcoal and ethyl acetate for 

1 h (solvent to biomass ratio of 15:1v/w). An activated charcoal to solvent ratio of 0.25 or 0.5 

(v/v) was used depending on the type of polymer being extracted. Solids were eliminated by 

pressure-assisted filtration after extraction. The filtrate was next passed through a filter cake 
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and then through a membrane to remove the finest coal particles. A 55 to 75% yield was 

achieved using this optimized protocol. 

5 FACTORS AFFECTING THE RECOVERY OF PHAs 

As previously discussed, the recovery of PHAs is a complicated process that normally requires 

more than a single unit operation. The selection of a suitable combination of methods depends 

upon different factors [136]. It is crucial to specify the polymer quality requirements before 

considering any DSP method. Mechanical and physical properties, such as molecular weight, 

will be severely affected by the type of extraction method. Also the PHA natural form 

(amorphous or crystalline) might change with certain treatments [137]. Depending on the target 

purity and endotoxin level allowance, an additional purification step might be required. 

The properties of the PHA produced will determine the compatibility with certain DSP 

methods. For example, mcl-PHAs have a wider spectrum of solvents than P(3HB). Besides the 

type of polymer, its content affects the integrity of the membrane. Based on the percentage of 

PHA accumulated in the cell, the decision of solubilizing the PHA or the non-PHA cellular 

matter (NPCM) should be made [4]. The density of the polymer and average size of the 

granules finally limits the number of separation systems that can be used. 

Lastly, the type of microorganism and culture conditions can also influence the DSP. Usually 

PHA-accumulating wild type bacteria have stronger cell walls than recombinant strains [138]. 

Mixed microbial cultures (MMC) are claimed to be more resistant to cell hydrolysis than pure 

cultures [44]. The cellular density of the culture affects the efficiency of the recovery process 

too. Compared to heterotrophic bacteria, the DSP of algae and cyanobacterial cultures is 

particularly difficult due to the lower biomass concentrations achieved in the fermentation 

[139]. Remaining oily substrates can be an obstacle for PHA isolation and a degreasing step, 

with an organic solvent or supercritical fluids, might be needed [140].  

6 ENVIRONMENTAL CONSIDERATIONS 

Bioplastics are presumed to present an ecological advantage with respect to conventional 

plastics since they are derived from renewable sources. This needs to be thoroughly evaluated 
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by considering the environmental impact along the whole life cycle [141]. Results of the life 

cycle assessment of PHA production are however controversial. Different indicators such as 

global warming potential, carbon footprint, etc. and benchmarking against diverse products 

have led to contradictory results, especially when fermentation substrates and energy systems 

differ widely from one study to another. Furthermore, most studies are based on pilot-scale 

data, which do not represent a real industrial production system [142]. However, it is important 

to highlight the usefulness of LCA to pinpoint ‘ecological hotspots’[143]. 

Fernández-Dacosta et al. [144] performed a LCA on three downstream strategies for PHA 

recovery from MMC, namely alkali treatment (I), surfactant-hypochlorite (II) and solvent based 

extraction (III), results are summarised in Table 4. The former was found to be the most 

favourable from both, environmental and economic point of view. The surfactant-hypochlorite 

method required an additional step and had a higher ecological footprint due to the usage of 

chemicals (SDS). The distillation to recover and recycle DCM and ethanol in the solvent-based 

approach incurred in the highest costs and environmental impact because of the high duties in 

reboiler and condenser. Nonetheless, the polymer extracted by this route was the only one with 

enough quality to be applied as a thermoplastic.  

Table 4: Comparison of different strategies for PHA recovery, adapted from Fernández-Dacosta et al. [144]. 

Strategy Yield (%) 
Cost 

(€/kg) 

GWP 

(kg CO2-eq/kg P(3HB)) 
Non-renewable energy 

(MJ/kg P(3HB)) 

DSP contribution 

to total cost (%) 

I 73.5 1.40 2.4 106 70 

II 75.8 1.56 2.1 109 73 

III 82.8 1.95 4.3 156 79 

 

On another study, Righi et al. conducted a LCA of polyhydroxybutyrate extraction using 

simulated industrial scale data using DMC and compared the results with those obtained with 

1,2-dichloroethane. In all categories assessed (climate change, photochemical ozone formation 

and ecotoxicity), DMC showed better environmental performance than the halogenated 

hydrocarbon solvent. It was also found that the extraction applied to dry biomass resulted more 

favourable than the one from slurry biomass [145]. 
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7 REMARKS 

Solvents have been the most explored alternative for PHA recovery and good results, in terms 

of yield, purity and polymer quality, have been achieved with this method. Nevertheless, in 

order to adopt the principle of producing a sustainable replacement for an oil-derived product, 

green solvents and recycle loops need to be implemented. sCO2 can be an interesting alternative 

if the cost of production can be reduced; a biorefinery approach where the sCO2 is produced in 

the same facility could contribute towards this goal. Other promising solvents are DMC or ethyl 

lactate derived from microbially produced lactic acid [146]. 

To overcome the limitation of the most commonly used chemical, i.e. sodium hypochlorite, low 

concentrations of surfactant solutions, acids and bases can be employed which could result in 

less environmental burden. Enzymatic hydrolysis could only compete with the chemical 

approach if crude enzyme hydrolysates are produced. Mechanical systems, specially bead 

milling, have many attractive advantages over solvents and chemicals, provided a clean energy 

system is available.  

Within the advanced separation techniques, ATPE appears as a cost-effective and scalable 

method to be used as a first step in the purification process. The combination of operations must 

be carefully evaluated based on the final product specifications but ultimately Life Cycle 

Assessments should determine whether the selected route is a sustainable solution. 

As already mentioned, DSP can contribute to a high share of the total costs. Developing less 

expensive DSP operations is especially important if using MMC or starting with low value 

carbon sources. Furthermore, the anaerobic digestion of NPCM in biogas plants or the 

chemical/enzymic hydrolysis to a rich carbon and nitrogen source for subsequent microbial 

cultivations can enhance the overall feasibility of the process [147].  

As presented in this review, the suitability of an extraction technique is intimately linked to the 

system characteristics and final use of the polymer, but it can never neglect the ultimate purpose 

of the process: the production of green plastics.  
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