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Abstract

Identifying potentially disruptive technologies is crucial to safeguarding competitive advantage by enabling 
stakeholders to assign resources in a manner that increases the chances of exploiting the disruption and/or 
mitigating the ensuing risks.  However, disruptive technologies and emergent trends within known 
disruptive domains are mostly identified ex-post. This paper contributes to the ex-ante prediction of 
emergent technologies within disruptive domains by proposing a literature-driven method for the 
forecasting of potentially disruptive technological trends. It adopts a keyword network analysis and 
visualisation approach for uncovering emergent thematic, structural and temporal developments within 
publications and applies it as a forecasting tool to an empirical study of seven disruptive domains: 3D 
Printing, Big Data, Bitcoin, Cloud Technologies, Internet of Things, MOOCs and Social Media. Maturing 
trends were found to share influential common topics identified by high degree, betweenness and 
closeness centrality scores. Niche and potentially emerging trends within groups were detected by means 
of eccentricity and farness metrics. Visualisation techniques were found effective for further clarification and 
trend identification. Finally, potentially disruptive trends within domains were found to be associated with 
high closeness paired with low degree centrality. The findings were distilled into a framework for assisting 
the forecasting of potentially disruptive trends.

Keywords: disruptive technologies, emerging technologies forecasting, keyword network 
analysis, trend forecasting.

1. Introduction

In an ever-changing technological landscape where innovation is a crucial driver for economic 
growth and survival, it is desirable to be able to predict which technologies, when established, 
have the potential to revolutionise an industry, create new markets, increase accessibility and 
affordability. Studies describing innovation trends, trajectories and future patterns identify drivers 
such as geographical factors, firm clusters, knowledge flows and spill-over effects (Hausman & 
Johnston, 2014; Doloreux & Shearmur 2012; Huber 2012; Tappeiner et al., 2008; Gertler & 
Levitte, 2005). With information technology an integral part of all aspects of organisational life, 
research on IT innovation constitutes an important driver of organisational competitiveness 
(Hamel, 1998; Finchman 2004) promoting scalability, sustainability and affordability (Helal, 2015). 

Unlike sustaining innovation which supports established improvements to existing products and 
services, disruptive innovation defines the process transforming a product or service that 
historically has been accessible at the top of a market access (i.e. for a high price or specialised 
skill-set) to become accessible to a new and larger population of consumers at the bottom of that 
market (Christensen, 1997). Disruptive innovation creates a new market and value network which 
eventually disrupt and displace their predecessors (Christensen & Raynor 2003; Christensen et 
al., 2004). Depending on the application aspect, disruptive innovations can be categorised as 
product, business-model or technological innovations (Markides, 2006). A disruptive technology 
can be thought of as a technology that changes the essence of competition among firms by 
transforming the performance metrics (Danneels, 2004).   

There is evidence suggesting that smaller firms have a potential advantage over larger 
organisations in that they can leverage their capabilities for innovative solutions and are more 
agile in dealing with organisational change and with managing disruptive innovation (Hyvonen & 
Touminen, 2006; Moore & Manring, 2009). In contrast, organisational barriers in large 
corporations may hinder innovation. These barriers include the existence of a successful 
dominant design or profitable business concept, possible inability to learn and adopt change, a 



risk-averse management, the mishandling of the innovation process and an absent or 
underdeveloped infrastructure (Assink, 2006). Learning competencies in smaller but established 
companies have been found to have high impact on the degree of novelty of innovation (Amara et 
al., 2008), which influences marketing positioning and boosts growth (Dotsika & Patrick, 2013). 
European funding, such as the Open and Disruptive Innovation (ODI, 2014) scheme, aims to 
promote ideas of high disruptive potential through business innovation grants and the facilitation 
of consequent commercial exploitation. 

Despite these initiatives disruptive innovation trajectory and forecasting are inadequately covered 
and poorly understood. Disruptive technologies are difficult to predict and are mostly identified ex 
post (Christensen & Raynor, 2003). Studies on disruptive innovation forecasting recognise the 
potential of literature based methods (Kostoff et al., 2004). However, no actual method has been 
proposed. Can the existing literature on current disruptive technologies provide clues on 
determining future potential trends? What can we learn from the bibliographic differences 
between business and academic publications on disruptive technologies? And, can keyword 
network analysis help identify disruptive trends and influencing themes by interpreting the 
thematic relationships within subject groups? These are the questions addressed in this paper. In 
it we present a literature-founded approach to uncovering emergent, potentially disruptive trends 
by analysing the sub-theme associations and timeline of disruptive technologies identified 
through their presence in business and scholarly articles. In order to do this, we first:

• Identify the major current trends in the field of disruptive technologies.
• Determine and compare the distribution of each of these trends from onset to present in 

leading business reports and academic publications.

Then, adopting a network approach, we perform a statistical and visual analysis of the data 
concentrating on its thematic, structural and temporal characteristics with the intention to:

• Investigate and demonstrate the thematic and temporal relationships of relevant academic 
publications in terms of domain, influence and popularity

• Propose a literature-based framework for assisting the forecasting of emergent trends within 
disruptive domains.

The rest of the paper is organised as follows: section 2 reviews disruptive technologies’ 
forecasting. Section 3 presents the research design and data collection and section 4 follows the 
data analysis and interpretation. We discuss our findings in section 5 and identify the implications 
for research and practice. In the last section, we draw our conclusions and outline future work.

2. Forecasting the trajectory of disruptive technologies

Identifying new potentially disruptive technologies and/or new disruptive trends and applications 
is a challenge that may be met by anticipating change and preparing for it by way of 
understanding the dynamics of innovation, identifying the drivers of the future and collecting 
intelligence (Paap & Katz, 2004). Dissatisfied with plain empirical evidence and ex-post success 
verification, researchers in the field have debated the predictive use of the theory of technological 
disruption (Danneels, 2004; Christensen 2006). Models and methods proposed include diffusion 
forecasting which takes into account the servicing of multiple markets (Linton, 2002), measures of 
disruptiveness for predicting the disruptive innovation potential of incumbent firms (Govindarajan 
& Kopalle, 2005; Govindarajan & Kopalle, 2006) and research on R&D strategies for the 
purposeful creation of technologies with high disruptive potential (Yu & Hang, 2011).

Disruptive innovations are mostly identified ex post (Christensen & Raynor, 2003). Ex ante 
prediction frameworks are not well established. Adapting existing technology forecasting methods 
can help with forecasting potentially disruptive technologies (Danneels, 2004) while ex ante 
predictions about companies with potential to develop disruptive innovations can be made 
through the disruptive innovation framework (Govindarajan & Kopalle 2006). Technology 
roadmapping is often used for the forecasting of disruptive technologies (Vojak & Chambers, 
2004; Phaal et al, 2004). Use of scenarios can be successfully applied to aid analysis that 



particularly suits disruptive innovation (Drew, 2006). Approaches to identifying disruptive 
technologies are discussed in existing roadmaps. Literature-based discovery is recognised as a 
starting point which leads to better results when combined with a roadmap development process 
(Kostoff et al., 2004) but not as a method in its own right. Obstacles include the frequent lack of 
standards, dominant designs and the potential presence of competing and/or complementary 
manufacturing technologies (Walsh, 2004) as well as a variety of uncertainty factors including 
technological, market, regulatory/institutional and social/political uncertainty (Jalonen, 2011).  

Perspective is critical in understanding and untangling competing terminology issues. For 
identification and classification purposes it is important to consider marketing, technological, 
macro- and micro-level perspectives (Garcia & Calantone, 2002). Within a business setting, 
innovation is managed differently within large companies than it is in small firms (Dotsika & 
Patrick, 2013).  

Existing approaches of ex ante identification of disruptive innovation can be grouped into three 
categories depending on the focus and analysis position (Keller & Husig, 2009). Scoring models 
analyse the disruptive potential of new innovations (Rafii and Kampas, 2002; Christensen et al., 
2004; Hüsig et al., 2005; Govindarajan & Kopalle, 2006; Sainio & Puumalainen, 2007; Ganguly et 
al., 2008; Keller and Hüsig, 2009; Hang et al., 2011). The other two groups use scenario analysis, 
simulating a potential entry and distribution. Economic models focus on an economic perspective 
(Adner & Zemsky, 2001; Adner, 2002; Schmidt, 2008) and situational models focus on other 
aspects (Kostoff, 2004, Paap and Katz, 2004 and Vojak and Chambers, 2004). 

Continuous monitoring of the technology landscape in one’s own industry to identify technologies 
that are better performance drivers is a necessity (Paap & Katz, 2004). Integrating the literature in 
technology forecasting is one way to deal with this and help to reveal trends, identify technology 
or product candidates for potential disruptive innovation (Young et al. 2008; Yu & Hang, 2010). 

Literature-based detection of disruptive technologies and, in particular, disruptive trends within 
existing disruptive domains, is recognised among the studies on disruptive innovation forecasting 
(Kostoff et al., 2004; Fageberg, 2004; Young et al. 2008). Keyword co-occurrence and network 
analysis methods have been used for bibliometric analysis in the area to identify technological 
trends (Choi et al., 2011a; Li et al., 2016; Wu, 2016), analyse research topics (Wang et al., 2016), 
follow their evolution (Ye et al., 2015) and track the development of innovation system research 
(Liu et al., 2015). Similar methods have been implemented on patent analysis for the 
identification of appropriate technology opportunities (Lee et al., 2014; Kim et al., 2014), the 
detection of technology trends, significant patents and novel technologies that enable strategic 
technology planning (Park et al., 2013) and the improvement of technology development 
efficiency (Choi & Hwang, 2014). Social network analysis methods focusing on centrality 
measures have been successfully employed to identify dominant areas of operations 
management research (Behara et al., 2014) while visualisation methods have been found 
effective in creating knowledge maps exploring research themes, monitor research trends and 
discover interdependencies between research areas (Yoon et al., 2010; Lee & Su, 2010; Yang et 
al., 2016). Forecasting research has employed keyword network analysis focusing on clustering 
and distribution to identify and predict research trends (Choi et al., 2011b) and visualisation to 
understand advances of emerging technologies (Kim et al., 2008)

The research presented in this paper extends the use of network analysis in forecasting by 
employing positional influence metrics and visualisation to complement distribution and clustering 
and by applying it in the domain of disruptive technologies. Our contribution is a literature-based 
method and resulting framework for the identification and forecasting of emergent technologies 
within disruptive domains. We assume known disruptive domains and existing publications on 
these domains.   

3. Research design

The study adopts a network analysis approach and applies it to bibliometric data of publications 
on selected disruptive technologies. Network analysis methods are best known for their 



application in social environments (social network analysis) where they are applied to the study of 
social relations among a set of actors (Borgatti et al., 2002; Wasserman & Faust, 1994). 

Here, authors’ keywords, considered representative of the core concept and focus of an article, 
are used as the network’s focal entities. A group of publications in a thematic domain is 
represented as a conceptual network of keywords (nodes) and keyword relationships (edges). 
Keywords are considered related if they are co-occurring in a publication. The network 
conceptualises structure as themes and patterns of relations among these themes. By 
substituting keywords for actors, the method investigates, maps and analyses the thematic 
relationships, trend distribution and thematic flows within a semantic domain.

Keyword network analysis has been explored in similar research in language topologies and 
cognitive science (Motter et al., 2002), bibliometrics (Chiu & Ho, 2007; Lee & Su 2010) and trend 
discovery (Duvvuru et al, 2012). The method’s suitability is based on the fact that it is distinctive 
from other perspectives in that it uses relational information to study structural properties and, as 
such, it focuses on the resulting structures, their impact and evolution (Wasserman & Faust, 
1994). 

The publications selected were on the top seven technologies identified as disruptive, current and 
influential by business research on top trends (Gartner 2015; Forbes 2015; Frost & Sullivan 2015; 
McKinsey, 2015; KPMG, 2015) and government policy publications (EUCommissionA 2015; 
EUCommissionB 2015; NESTA 2015; OECD, 2015). The technologies considered were:

1. 3D Printing
2. Big Data (the potential of their analysis as opposed to the data itself)
3. Bitcoin
4. Cloud Technologies
5. Internet of Things (IoT)
6. Massive Online Open Courses (MOOCs)
7. Social Media

From the above there was general consensus on the disruptive nature of 3D printing, big data, 
cloud technologies, IoT and social media. Bitcoin and MOOCs appear in all reports but there is 
partial agreement about their disruptive character. However, they were included due to their 
relative newness and idiosyncratic nature: MOOCs (Kop & Hill 2008) for bringing forth a 
disruptive education model (Gasevic et al., 2014; Bulfin, 2014; Kovanovic et al., 2015; Salmon et 
al., 2015) and bitcoin (Nakamoto, 2008) for its particularly challenging nature in terms of 
regulatory issues and monetary policy (Grinberg 2012; Dwyer, 2015; Liping, 2013).

Bibliographic data was collected from scholarly articles and business publications. Each 
disruptive technology corresponds to a semantic domain. Each domain comprises all articles 
published on the specific technology from its onset to the end of June 2015, conceptualised as a 
network of keywords.   

Academic publications’ data were collected through the Thompson Reuters’ Web of Science API. 
The authors’ keyword data formed seven groups, one for every thematic domain. The keywords 
used in the search can be seen in Table 1. The wild character “*” substitutes one or more 
characters. Keywords correspond to the Web of Science TS (Topic) field. In the case of MOOC 
we cleaned the data to exclude the Multiple Optical Orthogonal Codes (also MOOC). All 
keywords were collected and cleaned for synonyms (e.g. some authors use “IOT”, others 
“internet of things”), homonyms (e.g. internet of things, internet-of-things), discrepancies in 
granularity (i.e. IOT, IOTs) and possible misspellings. Keywords appearing on the same article 
formed linked pairs. Information on each domain was modelled as a graph providing a means of 
representing relations between nodes and quantifying structural properties (Wasserman & Faust, 
1994). For each group of publications, a network (graph G) was created with the keywords 
serving as nodes (V) and their links as edges (E). All resulting networks are undirected (i.e. the 
edges are bidirectional, that is if keyword A is co-occurring with B, the opposite also holds) and 
weighted (multiple possible occurrences of keyword pairs). 



Domain Keyword (Web of Science Topic, or 
TS field) Cleaning filter

Bitcoin "bitcoin*" OR "bit-coin" N/A

MOOCs "MOOC*" OR
"massive online open course*" 

-"multiple 
optical 
orthogonal 
codes"

3D 
Printing

"3D print*" OR "three dimensional 
printing" N/A

Internet of 
Things

"internet*of*things" OR "iot" OR 
"internet of things" N/A

Big Data "big data" OR "big*data" N/A

Social 
Media "social media” OR "social*media” N/A

Cloud

"cloud computing" OR "cloud security" 
OR "cloud technolog*" OR "cloud 
serv*" OR 
"cloud networking" OR 
"cloud infrastructure" OR "cloud 
solution*" OR "private cloud" OR 
"virtuali*ation"

N/A

Table 1. Web of Science keyword search 

Business reports were sourced from the top five industry analyst sources chosen due to (a) their 
quality standing and capacity as a key source of knowledge about technological innovations 
(Wang & Ramiller, 2009) and (b) their influence on customers worldwide (Ikeler, 2007; Bernard & 
Gallupe, 2013). The sources were Forrester, Frost & Sullivan, Gartner, IDC and Ovum.  The data 
collected were compared to the academic publications to establish disparities in volume and time 
and ascertain whether business/practitioners, researching emerging technologies, would be 
better off focusing their research sources accordingly (Ware, 2009; Hughes et al., 2008). 
Business publications, however, are proprietary and the data collected was limited to keyword 
searches returning the number of publications per subject per year. Without subscription access 
the data is of lesser quality, mainly due to search disparity, inconsistency in the type of 
publications across providers and lack of reserved keywords.  Business publications’ constraints 
on data (heterogeneous searching facilities, accessibility issues and lack of author keywords) 
disqualified their use in network analysis. 

4. Data analysis

The first part of the analysis (Distribution of academic and business publication) compares the 
distribution of the identified disruptive technologies in the chosen business reports and academic 
publications. The rest of the analysis applies network analysis techniques to investigate and 
demonstrate the publications’ thematic and temporal relationships in terms of domain, influence 
and popularity. 

The keyword networks were analysed in three parts. The first part analyses the networks’ general 
characteristics (The keyword networks). These are of interest because of what they imply about 
network structural cohesion, thematic sub-groups and communities and what they reveal about 
thematic relationships between domains. The second and third parts carry out analysis on 
centrality measures which are the indicators of positional influence within sets. Mature sets (each 
set comprising all publications on a given domain to date) were analysed first (Positional 
influence section). Positional influences of forecasting nature were tested upon earlier sets for 
validation (Pre-maturity positional influence).  

4.1. Distribution of academic and business publications

The entire dataset comprises 61,308 business and 31,386 academic publications (Table 2). 



Gartner Forrester IDC
Frost & 
Sullivan Ovum

Web Of 
Science

3D printing 345 39 349 325 3 1250
Big data 3281 2038 4636 997 646 3834

Bitcoin 62 30 36 12 7 87
Cloud 15297 3903 5827 1967 1827 15149

Internet of Things 1807 472 2118 572 183 2937
MOOCs 52 2 15 8 18 285

Social media 4613 5319 2746 1444 312 7844
Total 25457 11803 15727 5325 2996 31386

Table 2. Publications by subject and source

The relationships and contributions of the individual items are depicted in the stacked column 
chart in Figure 1.  
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Figure 1. Overall publications by subject area

The chronological distribution of publications by subject area is presented in Figure 2. Contrary to 
popular belief that expects business publications to be ahead of scholarly articles in covering 
innovation and technology trends, ignoring the volume difference (which may well be attributed to 
noise in the results), there is no overall ‘lagging behind’ evidence (time-wise) in the scholarly 
publications.
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Figure 2. Chronological distribution by subject area
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4.2. The keyword networks

For the academic articles we followed a graph-based network approach through a statistical and 
visual analysis of the seven networks’ characteristics. This was carried out by means of UCINET 
(Borgatti et al., 2002) and Gephi (Bastian et al., 2009). 

Network analysis formally expresses concepts of structure and position (Borgatti et al, 2013). 
Basic network properties were calculated as the first step towards understanding each network’s 
structure. The next step was to compare the metrics with those of existing models and match the 
networks to topologies of similar statistical properties, thus obtaining a platform on which we 
could investigate and analyse thematic relationships within domains.

The metrics included the network size (thematic richness), density (ratio of the number of 
keyword co-occurrences to the number of all possible co-occurrences), diameter (the longest of 
all the calculated shortest paths) and average degree (degree of a keyword is the number of 
edges connected to it). Therefore, for graph G=(V,E), where V is the set of nodes and E‐V×V the 
set of links, the size is n=|V|, the number of links m=|E|, the average degree k=(2m/n) and the 
density δ(G)=(2m/n(n−1)). 
Clustering and sub-network metrics were applied to analyse the formation of thematic clusters 
and the integration of themes within them. The metrics calculated were clustering coefficient 
(clustering coefficient of a node is the ratio of existing links connecting a node's neighbours to 
each other to the maximum possible number of such links), Erdös number (distance of a node to 
a given Erdös node; here the main keyword), average path length (average number of steps 
along the shortest paths for all possible pairs of keywords), average embeddedness 
(embeddedness of an edge is the number of common neighbours the edge’s endpoints have), 
modularity (the strength of clustering calculated as the fraction of edges falling within the given 
groups minus the expected such fraction if edges were randomly distributed). Community 
detection was done by means of the Louvain method (Blondel et al., 2008). Cliques were not 
considered, as they are a very strict definition of a cohesive group (absence of a single edge 
disqualifies an otherwise fully connected subgroup) and do not provide much information, 
especially in large data sets (Wasserman & Faust, 1994). An additional constraint here was the 
existence of papers with a large number of keywords that create instant pseudo-cliques (bitcoin: 
10; MOOCs: 13; 3D printing: 24; internet of things: 50; big data: 41; social media: 65; cloud: 37). 
The results can be seen in Table 3. The network visualisations are indicative of the 
corresponding network populations. Due to network size and tool constraints they are neither 
standardised nor comparable.

Bitcoin MOOCs 3D Printing Internet of 
Things  Big Data Social 

Media Cloud

 Nodes (keywords) 116 601 2657 5686 7480 12452 20342
 Edges (keyword 
co-occurrence) 310 2110 9959 23534 31844 62017 89552

 Density 0.046 0.012 0.003 0.001 0.001 0.001 <0.001
 Diameter 4 5 6 8 8 8 9
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 Average degree 5.345 7.002 7.496 8.278 8.514 9.961 8.805
 Clustering 
coefficient

0.945 0.922 0.923 0.868 0.908 0.874 0.879

 Erdos number 1.135 1.166 1.319 1.495 1.399 1.449 1.534

 Weakly connected
 components 4 7 63 114 179 181 283

 Average path length 2.162 2.286 2.571 2.857 2.759 2.803 2.903
 Average 
embeddedness

4.026 5.079 6.369 10.305 7.879 8.962 7.098

 Modularity 0.646 0.486 0.624 0.547 0.566 0.478 0.470

 Communities 140 63 214 451 417 460 797
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Table 3. Network metrics

Basic and clustering network metrics show that all networks share several nontrivial properties of 
large real-world networks which distinguish them from random networks (Wasserman & Faust, 
1994; Newman, 2003; Latapy et al., 2008). These include low density (most pairs of keywords 
are not co-occurring) and high clustering coefficients (there is high overall interconnectivity 
between keywords). So, while most pairs of keywords are not directly linked due to low density, 
they have a common neighbour. This topology enables shortcuts between clusters connecting 
varied thematic domains by a short average path length. Another shared characteristic, in line 
with real-world networks, is a highly skewed degree distribution, indicating the existence of a 
main body of keywords with a large number of direct links (main theme), followed by a long tail of 
keywords with a small number of connections (related, weakly-connected subjects within 
thematic domains). Marginal and emerging trends belong in the latter category. The degree 
distributions suggest scale-free network formations: they are highly heterogeneous and follow 
approximately a power law p k ‐k− α  where α is a constant (Faloutsos et al., 1999). The individual 
distributions can be seen in Figure 3 (log-log plot). 

Figure 3. Degree distributions for the seven networks

All seven networks are highly modular in nature with positive modularity values (possible values 
are between -1 and 1). The Bitcoin and 3D Printing groups have the highest modularity scores 
with Cloud coming last (0.470). They all fit the small-world type characterised by short average 
path length and high clustering coefficient. The modularity metric that measures the strength of 
clustering is high among all groups (Cloud has the lowest modularity of 0.470). Each network 



comprises tightly-knit, loosely connected thematic communities with short distance between 
keywords. These combine together to form larger but less cohesive communities.  

By design all networks have a giant component (centred on the theme key node) where most 
nodes belong. The Erdös number (the average distance to the Erdös node, i.e. main keyword in 
each network) is low in all networks, ranging from 1.135 to 1.534.

Embeddedness implies thematic shared context and quantifies how well nodes/keywords are 
connected to the rest of their community/theme. The Internet of Things group has the highest 
average embeddedness (10.305). The group has the lowest clustering coefficient (0.868). 
However, the value is still high and not considerably lower to the rest of the group to justify 
alternative interpretation.  

4.3. Positional influence

Positional analysis of the networks was carried out by means of centrality metrics. Centrality 
measures indicate which nodes occupy significant positions in the network (Freeman, 1979; 
Wasserman & Faust, 1994). Degree centrality (number of ties of a node), eigenvector centrality 
(relative score indicating how well a node is connected to other well-connected nodes), 
betweenness centrality (how many times a node acts as a bridge along the shortest path 
between two other nodes), closeness centrality (a node’s distance to all other nodes) and 
eccentricity (distance from a node to the farthest node) were considered. Centrality metrics here 
correspond to the popularity of keywords/themes and the influence their position holds in bridging 
trends and controlling thematic flows. 

Degree centrality of node i is defined as   where  is a tie from node i to node j. CD
(i) =  ∑

n
j = 1xij xij

The higher the centrality, the more central in terms of semantic importance the node/keyword is 
in the network. The nodes with the highest degree and eigenvector centralities are the same in 
each group. This is not surprising because eigenvector centrality (calculated here with power 
iteration of 100) expands on the notion of degree centrality, as it is the sum of a node’s ties to 
other nodes weighted by their degree centrality. The nodes with the highest betweenness 
centrality are more varied though still overlapping. Betweenness centrality of node i is defined as 

 where  is the number of geodesics (i.e. shortest paths) connecting j CB
(i) =  ∑gjk(i)/gjk,i ≠ j ≠ k gjk

and k and  is the number of geodesics connecting j and k that pass through node i. In the gjk(i)

current setting, the higher the betweenness centrality, the more times the keyword acts as a 
bridge between other nodes and therefore the more influential it is in the flow of information in the 

network. Closeness centrality is defined as  where  is the distance connecting Cc
(i) =  ∑

n
j = 1dij dij

node i to node j. It captures the degree to which a keyword/theme is near all other keywords in a 
network. It seems a misnomer as in fact the calculation represents the farness score of the node: 
the higher the score the greater the distance.  

Notable results identifying central thematic trends within groups can be seen in Table 4 below. 
For degree, eigenvector, betweenness and closeness centralities the two keywords with the 
highest values were recorded in the table, excluding the groups’ core (i.e. main keyword). In the 
case of multiple keywords with the same centrality, the two with the higher other centralities are 
recorded in the table.

Metric Bitcoin MOOCs 3D Printing Internet of Things  Big Data Social 
Media Cloud

Degree 
centrality

security
silk road

e-learning
connectivis

m

rapid prototyping
additive manufacturing

cloud computing
wireless sensor 

networks

cloud computing
social media

twitter
facebook

 
virtualizati

on 
security 

Eigenvector 
centrality

security
silk road

e-learning
connectivis

m

rapid prototyping
additive manufacturing

cloud computing
wireless sensor 

networks

cloud computing
social media

twitter
facebook

virtualizati
on 

security 

Betweenne
ss 
centrality

security
trust

e-learning
online 

education

rapid prototyping
additive manufacturing

wireless sensor 
networks

rfid

cloud computing
mapreduce

twitter
facebook

virtualizati
on

network



Closeness 
centrality

cryptograp
hy

privacy

higher 
education
e-learning

hybrid cell-biomaterial 
printing

computer aided 
biomodeling

security
saving energy

event recognition 
data-driven 

learning

adult 
learning 

politicalfor
ums

health 
cloud 

security

Table 4. Central trends within groups

The overall results show certain strong thematic relationships between groups and especially 
among the four ‘older’ domains (Internet of Things, Big Data, Social Media and Cloud). The Big 
Data group nodes with the highest degree and eigenvector centrality are ‘social media’ and 
‘cloud’ (‘internet of things’ comes 7th), and the highest number of ties in the Internet of Things 
group belongs to ‘cloud computing’. High degree and betweenness centralities belong to popular 
and bridging keywords, a relationship that suggests recurring and/or established themes. High 
betweenness and closeness centralities suggest central keywords that act as hubs to 
thematically related flows of information. 

The highest centrality common (and recurring with various modifiers) keyword in most groups is 
‘security’. Other keywords with relatively high degree and/or closeness centralities are ‘quality’ 
(without or with various modifiers such as ‘- control’, ‘- of service’, etc.), ‘privacy’ and 
‘learning’/‘education’. Keywords associated with profit (e.g. ‘profit maximization’, ‘revenue’, 
‘revenue maximization’) have high centrality in Cloud but are almost non-existent in the other 
groups. Keywords associated with finance (e.g. ‘finance’, ‘financial performance’) have very low 
centrality metrics in all groups. Despite expectations, the keyword ‘innovation’ (with or without 
descriptors, e.g. ‘- management’, ‘- adoption’, etc.) is not an obvious link term in any group (i.e. 
has relatively low betweenness centrality). A collection of common recurring keywords of 
influence in all groups is presented in Table 5. 

Keyword Bitcoin MOO
Cs 3D Printing IoT  Big 

Data SM Cloud

C
'

D - 0.15 0.01 0.01 0 0.02 0.01

C
'
C - 0.52 0.62 0.42 0.73 0.75 0.50education/

learning
C

'
B - 0.04 0 0 0 0 0

C
'

D 0.06 0.01 0.01 0.02 0.01 0.08 0.01

C
'
C 0.51 0.46 0.43 0.44 0.43 0.48 0.44internet

C
'
B 0.02 0 0 0.01 0 0.03 0

C
'

D 0.08 0.01 0 0.01 0.01 0.01 0.04

C
'
C 0.36 0.46 0.44 0.43 0.48 0.44 0.51performan

ce
C

'
B 0 0 0 0 0 0 0.01

C
'

D 0.05 - - 0.03 0.03 0.02 0.03

C
'
C 0.75 - - 0.45 0.48 0.49 0.48 privacy

C
'
B 0 - - 0.01 0 0 0.01

C
'

D - 0.03 0 0 0.01 0 0.02

C
'
C - 0.48 0.44 0.43 0.43 0.43 0.47quality

C
'
B - 0 0 0 0 0 0.01

C
'

D 0.11 - - 0.16 0.08 0.02 0.05

C
'
C 0.53 - - 0.71 0.43 0.42 0.71security

C
'
B 0.12 - - 0.02 0.01 0 0.02

C
'

D - - 0.01 - 0.57 0.02 0

C
'
C - - 0.44 - 0.71 0.44 0.42big data

C
'
B - - 0 - 0.67 0.01 0

C
'

D 0.03 0.03 0 0.10 0.15 0.01 0.48

C
'
C 0.48 0.48 0.43 0.49 0.50 0.42 0.65 cloud

C
'
B 0 0 0 0.07 0.04 0 0.61

C
'

D - - 0.01 0.50 0.03 - 0
 IoT

C
'
C - - 0.44 0.67 0.44 - 0.41



C
'
B - - 0 0.65 0 - 0

C
'

D 0.03 0.07 0 0 0.07 0.54 0

C
'
C 0.48 0.49 0.43 0.42 0.47 0.69 0.41social 

media
C

'
B 0 0 0 0 0.01 0.67 0

Table 5. Common influential keywords

Single occurrences have been recorded here, leaving out composite terms (e.g. ‘quality’ but not 
‘quality of service’). The degree, betweenness and closeness centralities have been normalised. 
Normalised degree centrality is  where n is the number of nodes. Normalised C

'
D

(i) = CD(i)/n - 1

betweenness is . Normalised closeness is .C
'
B

(i) = CB(i)/[(n - 1)(n - 2)/2] C
'
C

(i) = [CC
(i)] - 1

(n - 1)

Closeness (here in its original definition of “farness”) together with eccentricity yield some further 
interesting results. Eccentricity of node i is a complementary metric, defined as E(i) = max‐

 and is the largest geodesic distance between i and any other node j (diameter is { gij, ‐j ‐ V}
the maximum eccentricity). It captures the distance between a node/theme and the node that is 
furthest away from it. Low scores of both measures (indicating high centrality of the node) give 
results not dissimilar to the other closeness metrics. Low farness indicates central 
keywords/themes that have a short average distance to all other keywords in the network. Low 
eccentricity similarly captures well-connected themes, with low distance to the farthest keywords 
in the network. Unsurprisingly, the most notable examples of lowest farness and eccentricity were 
the keywords ‘cryptography’ in Bitcoin, ‘e-learning’ in MOOCs and ‘security’ Internet of Things. 
High scores however indicate niche themes within groups. The highest scores for closeness 
centrality and eccentricity belong to special connected but not central keywords which may 
correspond to specialised publications or represent emerging trends within a given semantic 
domain. Nevertheless, there is no obvious way to distinguish between specialist keywords and 
emerging trends.  Noteworthy examples of the highest scores can be seen in Table 6.

Metric Bitcoin MOOCs 3D Printing Internet of 
Things  Big Data Social Media Cloud

Closenes
s 
(farness) 
centrality

governance

leon4processo
r

persistence

non-
traditional 
students

pneumatic 
diaphragm 
actuator

micro-droplet 
jetting

design for the 
environment

massive 
machine 

communicatio
ns

surveillance

length of stay

url pattern learning

itf regex

forum crawling

kishino knot

bracket 
polynomial

minimal surface 
representation

Eccentrici
ty

governance

drug markets

passive 
resource 
discovery

leon4processo
r

persistence

non-
traditional 
students

open virtual 
worlds

3D web

pneumatic 
diaphragm 
actuator

micro-droplet 
jetting

orthodontic 
appliances

cnc milling 
machine

design for the 
environment

ultra-reliable 
communicatio

ns

massive 
machine 

communicatio
ns

future mobile 
communicatio

n system

demand-driven 
improvement

nursing
assessment

computerised 
medical 
records

surveillance

multi-query 
optimisation

itf regex

url pattern learning

forum crawling

canonical 
correlation analysis

heterogeneous 
feature spaces

kishino knot

bracket 
polynomial

minimal surface 
representation

complexity 
analysis

gustafson’s law

Table 6. Specialised themes within groups

Graphic representations of the MOOCs network with nodes ranked according to their (a) 
closeness centrality and (b) eccentricity can be seen in Figure 4. The closest and least eccentric 
nodes are light grey. Higher centrality (farness) or eccentricity nodes are larger and deeper grey: 
the higher the score the deeper the colour. These suggest marginal or emerging trends. The 
MOOCs network was chosen because of its size which is small enough to achieve useful 
visualisation and large enough to convey interesting information. 

The least central and most eccentric keywords can be seen on the right of each diagram 
connected to the rest of the network through the keyword retention. The diagrams are similar 
apart from differences in the range (denoted by the size and shade of the nodes) and the “lack of 
eccentricity” of certain nodes that stand out in the second graph.  



Figure 4. Closeness (here Farness) and Eccentricity as an identifier for marginal trends

Keywords with degree metrics at odds, that is, keywords whose degree, betweenness and 
closeness were not positively related, provided a different insight to the network structure (Liang 
& Chen, 2011). Table 7 interprets the findings and presents selected results. 

Not all keywords with centralities at odds are recorded here. Common keywords of general, non-
domain-specific nature (e.g. digital technologies, manufacturing, classification) were omitted. 
Keywords acting as descriptors or modifiers (e.g critical, distributed, allocation) were perceived as 
‘incomplete’ and were similarly excluded.

Low Degree Low Betweenness Low Closeness

High Degree Popular mature keyword. 
Thematic links bypass it. 

tissue engineering (3DP)
social media (BD)
anonymity (Bitcoin)
security (Cloud)
zigbee (IoT)

Popular niche 
keyword. Embedded in 
thematically linked 
faraway cluster.

nitinol wire (3DP)
silk road (Bitcoin)

High 
Betweenness

Bridging infrequent keyword. 
Its few ties are crucial to 
thematic network flow. 

exoskeleton (3DP)
[relative oddness]
mapreduce(BD)

Bridging niche 
keyword. Monopolises 
thematic ties between 
mainstream and 
marginal trends.

None found

High 
Closeness

Central and infrequent 
keyword. It’s linked to key 
themes

alginate-hyaluronic acid 
scaffold (3DP)
proteomics (BD)
stacked autoencoders (BD)
distributed denial-of-service 
(Bitcoin)
block chain (Bitcoin)
organic computing (IoT)

Central and mature 
keyword. Well established 
along with many others.

saas, iaas (Cloud)
cloud (BD)
bioinformatics (BD)
money (Bitcoin)
cryptography (Bitcoin)
wireless sensor networks 
(IoT)
m2m (IoT) 
connectivism (MOOCs)
higher education (MOOCs)
adult learning (SM)

Key

3DP: 3D Printing

BD:   Big Data

IoT:   Internet of Things

SM:   Social Media

Table 7. Centralities and trend interpretation

4.4. Pre-maturity positional influence 

The thematic trends identified in the previous section correspond to a level of disruptive maturity: 
the disruptive technologies have been about for a number of years and are well established. The 



last part examines temporal variations by identifying earlier thematic trends within groups. This 
allows for some retrospective validation of the findings. The cut-off points were chosen to 
correspond with the end of linear distribution of the number of publications. This corresponds to 
publications before 2009 for Cloud, 2010 for IoT and Social Media, 2012 for 3D Printing and Big 
Data and 2013 for MOOCs. The Bitcoin publications are still following a linear distribution so the 
whole sample was considered. 

The central trends within groups and influential keywords were identified by high centrality 
metrics and found not dissimilar to those studied in the whole samples. The groups are 
thematically linked though the common threads are not as well-established as in the mature 
groups. As such, these central themes were not studied further. Likewise, farness and 
eccentricity identified marginal trends for the selected time period. Some of these trends could be 
classified as low–end potentially disruptive (e.g. mesh networks, bio-/syndromic- surveillance) but 
there is no way to distinguish between them and niche topics.  

Similarly to the mature sets considered in the previous section, keywords whose degree, 
betweenness and closeness were not positively related, provided again the most interesting 
results (Table 8).

Low Degree Low Betweenness Low Closeness

High Degree Popular mature keyword. 
Thematic links bypass it. 

cloud computing (BD)
web 2.0 (BD)
performance (Cloud)
biometrics (IoT)
social networks (SM)
anonymity(Bitcoin)

Popular niche keyword. 
Embedded in 
thematically linked 
faraway cluster.

data  grid (BD)
storage visualisation 
(Cloud)
future internet (IoT)
sensors (IoT)
silk road (Bitcoin)

High 
Betweenness

Bridging infrequent keyword. Its 
few ties are crucial to thematic 
network flow. 

digital divide (SM) 
[relative oddness]

Bridging niche keyword. 
Monopolises thematic 
ties between mainstream 
and marginal trends.

None found

High 
Closeness

Central and infrequent keyword. 
It’s linked to key themes

biological applications of 
polymers (3DP)
programmable networks (Cloud)
fuzzy clustering (BD)
communication system security 
(IoT)
rfid technology (IoT)
twitter (SM)
youtube (SM)
facebook (SM)
e-campaigning(SM) 
distributed denial-of-service 
(Bitcoin)

Central and mature 
keyword. Well established 
along with many others.

artificial organs (3DP)
rapid tooling(3DP)
prototype(3DP)
visualisation (BD)
data grid (Cloud)
intelligent storage(Cloud)
SOA (IoT)
diversity (MOOCs)
openness (MOOCs)
web 2.0 (SM)
money (Bitcoin)
cryptography (Bitcoin)

Table 8. Trend interpretation 

From the above, the keywords with high closeness and low degree are the most noteworthy. 
They represent central but infrequent trends at the time. Twitter’s popularity makes it an obvious 
example. Looking at the whole collection of publications (up to July 2015), Twitter has the highest 
degree, eigenvector and betweenness centrality scores. A snapshot of Twitter’s ego network is 
highlighted in Figure 5 (2010 top right; 2015 bottom right; corresponding whole network on left). 



Twitter ego network 2010 SM network (Twitter-related nodes in dark) 2010

Twitter ego network 2015 SM network (Twitter-related nodes in dark) 2015

Figure 5. Twitter trend within Social Media (SM) 2010 & 2015 

Twitter and the rest of the social media applications (Facebook, Youtube and e-Campaigning) are 
not the only examples.  Most of the keywords/trends identified with high closeness and low 
degree have become disruptive trends in their own right in their respected groups:

• Distributed Denial of Service (DDoS - attacks launched from multiple connected devices 
disrupting intended users' access to services) which is one of the most significant current 
concerns for security professionals (Alomari et al., 2012; Zargar et al., 2013);  

• Fuzzy clustering (a clustering method which allows data to belong to more than one clusters) 
with current applications in the fields of pattern recognition and image processing, parameter 
estimation to medical diagnostics, weather forecast and time series predication (Gao & Xie, 
2010; Zhao, 2013);

• Ground-breaking biological applications of polymers (Blanazs et al., 2009; Jagur‐Grodzinski, 
2010);

• The idea of programmable networks which is gaining considerable momentum at present with 
the emergence of the radical concept of Software-defined Networking (SDN) (Xie et al., 2009; 
Nunes et al., 2014; Feamster et al., 2014);

• And RFID technology (Radio Frequency Identification) applications on supply-chain 
management, communications and bioinformatics (Ustundag & Tanyas, 2009; Zhu & Kurata, 
2012; Ohashi et al., 2010).



An equally interesting combination is high betweenness paired with low closeness. This keyword 
would identify a trend both bridging and niche. However, there are no examples of such theme in 
any of the groups.

5. Discussion and implications for practice

Identifying potentially disruptive technologies is crucial to safeguarding competitive advantage by 
enabling stakeholders to assign resources in a manner that increases the chances of exploiting 
the disruption and/or mitigating the ensuing risks.  This paper contributes to technology 
forecasting by proposing a new method for the identification of emergent technologies with 
disruptive potential by means of keyword network analysis. Here we discuss our findings in line 
with the paper’s research objectives.

Seven major domains were identified in the field of disruptive technologies: 3D printing, big data, 
bitcoin, cloud technologies, internet of things, MOOCs and social media. Data from business 
(Gartner, Forrester, IDC, Frost & Sullivan and Ovum) and academic publications (Reuters’ Web 
of Science) were collected on the identified technologies from onset to June 2015. A total of 
61,308 business and 31,386 academic publications were considered. No temporal distribution 
differences were detected between business and academic publications on the disruptive 
technologies investigated. This promotes an understanding of the role of “timing” in publishing 
and represents an important finding for practitioners/companies researching disruptive trends. 
Providing there are no access barriers, information on emergent technologies appears in 
academic and business publications without significant temporal differences.  

Social network analysis techniques were employed to investigate and demonstrate the thematic 
and temporal relationships in the academic publications and identify the nature of important 
and/or emerging trends. 

Based on basic network metrics we found that thematic networks within the academic 
publications fit well the small-world type and share its properties. Most keywords are not 
neighbours but can be reached from every other by a small number of steps. Having small world 
properties means that links between themes and therefore information flows are not constrained 
to spatial or temporal proximity and there is no impediment to hub formation. As a result, there is 
an abundance of (identifiable) thematic hubs mediating thematic network flows. It is the existence 
and topological characteristics of these thematic hubs that enable further analysis and 
identification of potentially disruptive trends.

Six influential common subjects were identified by means of high degree, betweenness and 
closeness centrality scores. The corresponding keywords (education/learning, internet, 
performance, privacy, quality, and security) denote central popular themes which, while generic, 
are influential in all groups and reflect a level of alignment as an idea, or concept (here identified 
as a disruptive trend) reaches a level of maturity. Gauging the level of maturity of a disruptive 
technology helps to determine the stage of adoption and leverage it appropriately. Emerging 
technologies correspond to pioneer adopters and high transformational potential while mature 
technologies are associated with extensive adoption and moderate differentiation of competitive 
advantage.  However, the identified common trends signify an indicator of maturity only. The 
actual state of maturity would need to be triangulated by other measures (e.g. sales). 

Niche and potentially emerging trends within groups can be detected (but remain 
undistinguished) by means of eccentricity and farness scores. In smaller networks (V < 500) 
visualisation is an effective tool as it depicts these marginal trends, their thematic relationships 
and their corresponding neighbourhoods with relative precision and clarity. 

Temporal comparison between developing and maturing networks detected distinctive thematic 
flows associated with disparity in centrality scores. Among the combinations, high closeness 
paired with low degree centrality is associated with disruptive trends within groups. Apart from the 
well-known and equally well-documented disruptive nature of the social media applications 
identified (Twitter, Facebook, Youtube and e-Campaigning), this method detected also the 
following trends which have since proved to be of disruptive nature: Distributed Denial of Service, 



fuzzy clustering, biological applications of polymers, programmable networks and RFID 
technology applications. 

Not all keywords identified by high closeness and low degree centrality can be associated with 
disruptive trends, even after discarding non-domain specific keywords, those acting as 
modifiers/descriptors and those covering a broad area (e.g. communication system security/IoT, 
health cloud service/cloud, theoretical chemistry/3d printing, etc.). From the remaining keywords, 
there evidence suggesting that some may come to be identified as disruptive trends. The above 
findings were grouped in the framework depicted in Figure 6. The framework can be used for 
assessing the level of maturity of disruptive trends and for assisting the forecasting of emergent 
technologies with disruptive potential.   

Figure 6. Potentially disruptive trend detection framework.

6. Conclusions and future work

The paper presents a new, literature-driven method for the forecasting of emerging technologies 
within disruptive domains. We collected data from academic publications on seven technologies 
identified as disruptive and adopted social network analysis techniques in order to investigate and 
demonstrate key thematic and temporal relationships among keywords. The research carried out 
shows that a keyword network approach is well suited to the analysis of the thematic, structural 
and temporal characteristics of disruptive technologies through their presence in the literature. 
Furthermore, there is evidence to suggest that the method can be used for the forecasting of 
potentially disruptive trends. Visualisation is possible and meaningful for smaller sets of data but 
becomes problematic when it comes to large networks. Based on our findings we proposed a 
framework for assisting this forecasting which is the contribution of this paper. 

The theoretical implications are two-fold. The first relates to the application of social network 
analysis methods to the domain of disruptive technologies. The results are in line with similar 
research in other domains (Choi et al., 2011a; Choi et al., 2011a; Behara et al., 2014; Li et al., 
2016). The second implication and main contribution of this paper, is the combination, ordering 
and systematic grouping of network analysis metrics to create discrete modules of reference 
which are then combined into the proposed framework. The framework’s modularity enables the 
output of intermediate modules to be fed into exit components where the disruptive potential of 
emerging technologies is ascertained.

The shortcomings encountered can be grouped in two main categories: 

1. Keyword networks: there are issues with syntax, misspellings and multiple uses of certain 
keywords (with identifiers and/or as part of composite topic). This may influence the positional 



metrics of certain keywords appearing multiple times with various identifiers. The process is 
non-trivial and requires synthesis of multiple occurrences and re-positioning of edges. It is 
therefore difficult to automate and needs further investigation. 

2. Business publications: keyword analysis needs to be extended to include business 
publications. While there is no time difference, academic articles are by nature tightly focused 
and specialised whereas business publications cover wider areas and may be better suited to 
include wider area thematic flows and influence considerations.

Future research will aim to validate the proposed framework. In order to do this we intend to test 
and evaluate the trajectory of current trends which have been identified as potentially disruptive 
by our method.  Examples include the alginate-hyaluronic acid scaffold (3D printing), proteomics 
and stacked auto-encoders (Big Data), organic computing (IoT) and blockchain (bitcoin). 

Further validation of the framework’s robustness in identifying disruption and the overall suitability 
of keyword network analysis to literature-based forecasting is also being investigated. This will 
require the application of the method to different contexts and/or industries.  
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