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Introduction

• Lower costs due to airline disruptions
• Usually, Disruption solution man made by rule of thumb
• Aircraft or flight swapping
• Reinforcement learning
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Current work

• J. Clausen et al. “Disruption management in the airline industry — concepts,
models and methods”, 2009

• R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2017
• V. Mnih et al., “Playing Atari with deep reinforcement learning”, 2013

Work done here
Machine learning technique to discover interesting swap combinations
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Specification of simulator

Purpose
• Evaluate the delay on a fleet, on a day of operation
• estimate generated costs
• perform actions on the fleet

Does
• model reactionary delay
• include other delays as probability

distributions
• simulate aircraft swapping and its

consequences

Does not
• model crew management, nor

passengers flow
• manage stand-by aircraft,
• modify or cancel legs
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Mechanisms
Timestep
∀i ∈ J1, mK, ti is the time of the ith landing of the day

(t1, t2, . . . , tm)

Actions
Allow to alter the simulation,

“swap with aircraft a”

Cost
Immediate cost of a swap

“swapping with a costs c”
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Cost & calibration

Cost of what
Delay at departure of the flight after swap

Characteristics
• non linear
• increasing derivative

c(d1 + d2) > c(d1) + c(d2)
• depends on the aircraft type

Calibration
Calibrated against Eurocontrol “Coda Digest 2017”
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Principle

Reinforcement learning
• Interaction between an agent and its environment
• Find a policy π : state→ action

Environment

Agent

ActionNew state Reward

Figure: Reinforcement learning principle
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Theoretical basis
State s ∈ S, action a ∈ A.

Maximised value

E

 Tf
∑

t=0
rt

!

←→ Q(s, a) (1)

Bellman equation

Q∗(s, a) = r(s, a) +
∑

s′∈S
p(s′|s, a) max

a′
Q∗(s′, a′) (2)

• Dynamic programming
• Monte Carlo simulations
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Q learning algorithm

procedure Q-learning(Q)
s ← initial state
while episode not finished do

a← choose an action from a set
play a, observe reward r and new state s′
Q ← update Q with (s, a, r , s′)
s ← s′

end while
end procedure
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Lookup table implementation

Q =

















Q(s0, a0) Q(s0, a1) · · ·
Q(s1, a0) Q(s1, a1) · · ·

...
...

Q(s, a)

















Update formula
State s, action a, reward r and next state s′.

Q(s, a)← Q(s, a) + α
�

r + max
a′

Q(s′, a′) – Q(s, a)
�

(3)
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Choosing an action

Bandit methods
Maximise reward, minimise regret

Upper confidence bound

Qt(s, a)
︸ ︷︷ ︸

exploitation

+

c

√

√

√

ln t
Nt(s, a)

︸ ︷︷ ︸

exploration

(4)
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Choosing an action

Bandit methods
Maximise reward, minimise regret

Upper confidence bound

Qt(s, a)
︸ ︷︷ ︸

exploitation

+c

√

√

√

ln t
Nt(s, a)

︸ ︷︷ ︸

exploration

(4)
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Final algorithm

procedure Q-learning(Q, c,α,A)
s ← initial state
while episode not finished do

a← ChooseAction(A, c)
(r , s′)← SimulationStep(s, a)
Q(s, a)← Q(s, a) + α

�

rt + maxa′∈A Q(s′, a′) – Q(s, a)
�

s ← s′
end while

end procedure
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Implementing the training

Hyperparameters
• Exploitation exploration trade off
• Initial Q value

Learning rate
∑

n≥0
αn = ∞;

∑

n≥0
α2

n ∈ R (5) αn =
1

Nt(s, a)
(6)

Chaining training sessions

Q1 training
−−−−→ Q2 training

−−−−→ · · ·
training
−−−−→ Q∗ (7)
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State space

Observation
Partial information of the environment, O the set of observations,

(S,A)
ϕ
−→ (O,A) Q

−→ R

Choice of ϕ
• Carries enough information
• But not too specific
• Time independent
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Experimental setup

• Schedule: Vueling, October 12, 2014
• 6 aircraft, 14 stations, 35 flights

Observation
Two different observations tested.

Disruption
Artificial delay added.

Hyperparameters

(pd , c, qi) = (0.06, 10, –90000)
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Output format

Spreadsheet like parquet files

Columns
• delays

• atfm delay
• departure delay
• miscellaneous delays
• reactionary delay
• artificial delay added
• taxi time

• action and reward
• action number
• swap or not
• cost
• cumulative reward

• simulation information
• departure destination
• departure origin
• leg duration
• departure sobt
• tail number
• tail number of swapped aircraft
• time in the simulation

• Q learning data
• state-action couple visit count
• Q value
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Learning process

0 1,000 2,000 3,000 4,000 5,000
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·104
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t r

t�

obs.1
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Figure: Average maximum Q values over 5000 episodes.
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Comparing with idle behaviour

–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2 0
·106

ag. 1

idle

ag. 2

reward

Figure: Comparing the idle behaviour with the agent.
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Conclusion

Results
Cost reduced in some conditions, not reliable enough. Potential lines of research.

Perspectives
• refine observations
• more sophisticated reinforcement learning techniques
• develop further the simulator


