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Abstract 

Pancreatic cancer (PC), particularly pancreatic ductal adenocarcinoma (PDAC), is a significant global 

health issue with high mortality rates. PDAC, though only 3% of cancer diagnoses, causes 7% of 

cancer deaths due to its severity and asymptomatic early stages. Risk factors include lifestyle 

choices, environmental exposures, and genetic predispositions. Conditions like new-onset type 2 

diabetes and chronic pancreatitis also contribute significantly. Modifiable risk factors include 

smoking, alcohol consumption, non-alcoholic fatty pancreatic disease (NAFPD), and obesity. 

Smoking and heavy alcohol consumption increase PC risk, while NAFPD and obesity, particularly 

central adiposity, contribute through chronic inflammation and insulin resistance. Refined sugar and 

sugar-sweetened beverages (SSBs) are also linked to increased PC risk, especially among younger 

individuals. Hormonal treatments and medications like statins, aspirin, and metformin have mixed 

results on PC risk, with some showing protective effects. The gut microbiome influences PC through 

the gut-pancreas axis, with disruptions leading to inflammation and carcinogenesis. Exposure to 

toxic substances, including heavy metals and chemicals, is associated with increased PC risk. 

Glycome changes, such as abnormal glycosylation patterns, are significant in PDAC development 

and offer potential for early diagnosis. Interactions between environmental and genetic factors are 

crucial in PDAC susceptibility. Genome-wide association studies (GWAS) have identified several 

single nucleotide polymorphisms (SNPs) linked to PDAC, but gene-environment interactions remain 

largely unexplored. Future research should focus on polygenic risk scores (PRS) and large-scale 

studies to better understand these interactions and their impact on PDAC risk. 

 
Keywords: Exposome, Pancreatic Cancer, Risk factors 
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1.      Introduction 

Pancreatic cancer (PC), particularly pancreatic ductal adenocarcinoma (PDAC), has emerged as a 

significant global health challenge, marked by rising incidence and persistently high mortality rates. 

Over recent decades, the global burden of PC has escalated, with PDAC now recognized as one of 

the most lethal malignancies due to its severity and asymptomatic presentation in the early stages 

[1]. Although it accounts for only 3% of all cancer diagnoses, PDAC is responsible for 7% of cancer-

related deaths, underscoring its disproportionate lethality. Furthermore, according to the World 

Health Organization (WHO), the incidence and mortality rates are nearly identical (8.0 per 100,000 

vs. 7.3 per 100,000, respectively), emphasizing its serious incidence-to-mortality ratio [2]. 

PC is a complex disease, whose development has been linked to several lifestyle (e.g., smoking and 

obesity), environmental, and genetic risk factors[3, 4]. Additionally, conditions such as new-onset 

type 2 diabetes mellitus (NOD) and chronic pancreatitis have been shown to significantly contribute 

to its development [3]. The identification of additional risk factors, whether external or endogenous, 

will be pivotal in enhancing our comprehension of the disease and, in the long term, in the 

establishment of preventive and screening programs designed to identify individuals at high risk. 

This review presents the current state of knowledge regarding the exposome and its relationship 

with PC risk (Figure 1). It begins by outlining the lifestyle and environmental risk factors that 

contribute to this disease and then examines the interaction between these factors and an 

individual's genetic background. 

2.       Non-modifiable risk factors 

Non-modifiable risk factors are defined as those which cannot be altered during a lifetime. These 

include age, sex, the presence of diabetes, allergies, blood group, genetic background, metabolic 

syndrome, cholelithiasis and dyslipidemia. These are described in detail below, while Table 1 

summarizes the characteristics, mechanism and epidemiological findings. 

2.1. Age, sex,  blood group and allergies  

PDAC incidence is increasing over time across all ethnicities and both sexes in the U.S. and Europe 

[4, 5]. Although a recent study has shown a sharper rise in incidence among women under 55 years, 

with the highest incidence observed in those aged 15 to 34 years [4], larger European studies 
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consistently report a higher incidence of PDAC in males compared to females across all age groups. 

In addition, worldwide, the incidence rate for PDAC is slightly higher for males (5.5/100,000 new 

cases every year in males, compared to 4.0/100,000 new cases every year in females)[2]. These 

gender differences are partially attributed to modifiable factors such as tobacco smoking and 

alcohol consumption, which are higher in males than in females [6, 7].  

Additionally, older individuals have a higher incidence of PDAC, highlighting the need for early 

prevention and control programs. Interestingly, a recent study has reported that age at diagnosis is 

a significant and negative prognostic factor for PDAC [8]. Nonetheless, a retrospective study also 

showed that outcomes of patients aged 70 years or older undergoing surgical resection are not 

inferior to those of younger patients[9]. 

Non-O blood groups have been associated with increased risk of PDAC. Individuals with A, B, or AB 

blood groups have a higher risk compared to those with blood group O[10]. Although the biological 

mechanisms underlying these differences are not fully understood, studies have suggested that 

changes in blood-type antigens might interfere with cell signaling, adhesion, and the immune 

system’s ability to kill preneoplastic cells[10]. It has been demonstrated that ABO antigens can 

influence disease outcomes by modulating tumor onset and behavior [11]. However, additional 

studies are needed, as no direct evidence has proven that blood-type antigens interfere with host 

immunity. 

Allergies and asthma represent other medical conditions that may impact PDAC risk[12-15]. Large 

studies and meta-analyses consistently indicated that allergies reduce PDAC risk[15, 16]. Although 

the protective effect of allergies is consistent, it is stronger for specific allergies and less for others. 

For instance, atopic allergies have a clear protective effect on PDAC onset [12, 17]. In contrast the 

association with asthma remains controversial, with studies reporting a potentially protective 

effect[13] or no effect on disease risk [16]. These findings suggest a role for immune surveillance, 

leading to increased detection and elimination of pre-tumoral cells. This hypothesis is supported by 

evidence indicating that the inverse association with PDAC risk is stronger for more aggressive 

allergies of longer duration[13].  

The primary epidemiological data can be found in Table1. 

 

2.2. Diabetes 
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Type 2 diabetes mellitus (T2D) has been demonstrated to be both a risk factor for pancreatic cancer 

and a consequence of PC. Indeed, both long-standing and newly diagnosed cases have been 

associated with an elevated risk of developing the disease. It has been reported that up to 85% of 

PDAC patients present with either NOD or impaired glucose tolerance at the time of diagnosis [11], 

underscoring the crucial role of T2D in PDAC.  

Approximately 15% of cases of T2D in patients with PDAC are long-standing (with a duration of T2D 

of more than three years[18]. This condition is associated with a range from 1.5 to 2.4-fold increased 

risk of PDAC[3]. Two studies have reported that individuals diagnosed with diabetes for 15-20 years 

may not have an increased risk of PC[19, 20]. In contrast, other studies suggest that individuals with 

diabetes for more than 20 years continue to have a higher risk of PC[21]. 

Patients with NOD represents a high-risk group for PC, as NOD is associated with a significantly 

higher risk of developing PC, with estimates ranging from 3.81 to 5.2-fold[22, 23]. Furthermore, 

individuals with NOD who are over 50 years of age have a 6–8-fold higher risk of PDAC in comparison 

to the general population[18, 22, 24]. This condition presents specific risk factors including 

gallstones, pancreatitis, weight loss, and high or rapidly increasing glycemia or insulin use[25]. 

Despite the undeniable link between NOD and PDAC, the exact underlying biological mechanisms 

remain unidentified. Nonetheless, efforts to establish early and close follow-up programs, 

particularly for individuals with early-onset T2DM, along with improved glucose control, may be 

effective strategies for enhancing the detection and treatment outcomes of pancreatic cancer [26]. 

 

2.3. Genetic background 

Genetic variants associated with PDAC risk are usually classified in two groups: rare high penetrance 

mutations and common low penetrance mutations, the majority of which are single nucleotide 

polymorphisms (SNPs). Increased risk of PDAC is associated with the presence of inherited 

pathogenic mutations in 12 genes (BRCA2, PALB2, BRCA1, ATM, STK11, CDKN2A, PRSS1, MLH1, 

MSH2, MSH6, PMS2, APC)[3]. In addition, several common germline variants increase the risk of 

developing PDAC. The two most widely used approaches to identify new susceptibility loci are: 

candidate gene studies and genome wide association studies (GWAS). In the past decade, a 

substantial number of studies have been conducted on polymorphisms of candidate 

genes/pathways[27-34]. The first GWAS on PDAC was conducted in 2009 by Amundadottir in the 

context of Pancreatic Cancer Cohort Consortium (PanScan) in European population[35]. To expand 

the knowledge on PDAC susceptibility, in the following years additional GWAS and meta-analysis 
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were also conducted in samples of European descent by PanScan and the Pancreatic Cancer Case 

Control Consortium (PanC4) and the PANcreatic Disease ReseArch (PANDoRA) consortium [36-40]. 

Also, three GWASs and a meta-analysis were performed in Chinese[41]and Japanese[42-44] 

populations. 

The main epidemiological information has been reported in Table 1. 

 

2.4. Metabolic syndrome, Cholelithiasis and dyslipidemia 

 
Metabolic syndrome  

Metabolic syndrome (MetS) and PC are both complex conditions that share intriguing connections, 

though the direct link between them is still being explored. Metabolic syndrome is characterized by 

high blood pressure, insulin resistance, obesity, excess body fat around the waist, and abnormal 

lipid levels. These conditions can contribute to chronic inflammation and oxidative stress, promoting 

tumor growth and progression, and potentially increasing the risk of PC. Several epidemiological 

studies have observed an increased risk of PC in individuals with MetS [45-48]. A recent population-

based cohort study reported a 31% increased risk of PC in participants with MetS compared to those 

without MetS [49]. Furthermore, a recent meta-analysis of nine studies found a strong correlation 

between PC and MetS (relative risk (RR) of 1.34, 95% CI: 1.23–1.46), with females having an 

increased risk compared to males (male: RR 1.26, 95% confidence interval (CI):1.03–1.54; female: 

RR 1.64, 95% CI: 1.41–1.90)[50]. Another population-based cohort study reported that recovering 

from MetS was associated with a reduced risk of PC, suggesting that restoration of metabolic heath 

may help avoid PC development [51]. Therefore, managing metabolic syndrome through lifestyle 

improvements such as a healthy diet, regular physical activity, and maintaining a healthy weight 

may help reduce the risk of PC.  

 

Cholelithiasis 

People with gallstones have a slightly increased risk of developing PC compared to those without 

gallstones [52]. However, the exact mechanism underlying the association between cholelithiasis 

and PC is not fully understood. It likely involves chronic inflammation caused by gallstones [53], 

biliary obstructive diseases [54], or high cholecystokinin levels in cholecystectomized patients [55]. 
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Despite this, most PCs occur in individuals without a history of gallstones, indicating the need for 

additional research to fully understand the underlying mechanisms. 

 

Dyslipidemia 

The relationship between abnormal lipid levels and PC is complex, involving the interplay between 

several mechanisms such as metabolic syndrome, insulin resistance, chronic inflammation, lipid 

metabolism, and the secretion of various adipokines and cytokines that can influence cancer 

growth[56]. Animal studies have shown that manipulating lipid levels can influence PC development 

[57]. Several epidemiological studies have found an association between dyslipidemia and a higher 

risk of PC [58-61]. In a large sample of 1 million subjects, dyslipidemia was associated with 40% 

higher PC risk[62]. Recent meta-analyses evaluated the effect of dietary cholesterol and serum total 

cholesterol on the risk of PC, concluding that dietary cholesterol may be associated with an 

increased risk of PC in worldwide populations, except for Europeans [63]. This evidence highlights 

the need to develop effective regional strategies for screening, early detection, and lifestyle 

intervention in individuals with dyslipidemia to reduce the risk of PC. 

 

The key epidemiological information regarding metabolic syndrome, cholelithiasis and dyslipidemia 

has been reported in Table 1. 
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3.       Modifiable risk factors  

Modifiable risk factors are those that can be changed through lifestyle modifications. This category 

includes smoking habit, alcohol consumption, non-alcoholic fatty pancreatic disease, body mass 

index (BMI), diet, intake of refined sugar and sodas, physical activity, exposure to local environment, 

sleep quality, stress, hormonal treatments, prescription medications, infectious agents and the 

influence of the microbiota, exposure to toxic substances and heavy metals, and glycome changes. 

These are described in detail below, while Table 2, Table 3 and Table 4 summarize the 

characteristics, mechanism and epidemiological findings. 

3.1.   Smoking habit  

Tobacco smoking has been attributed to approximately 11-32% of PC cases worldwide [64]A recent 

meta-analysis including 45,527 PC cases from 38 case-control and 40 cohort studies reported a RR 

of 1.80 (95% CI:1.70-1.90) for current vs. never-smokers and 1.20 (95% CI:1.10-1.20) for former vs. 

never-smokers [65]. This meta-analysis included different genetic ancestries and observed 

significant heterogeneity in the results. A PanC4 analysis on 6,507 cases and 12,890 controls from 

12 case-control studies reported a 20% (95% CI:1.00-1.30) and more than two-fold increased risk 

(95% CI:1.70-2.80) for former and current smokers, respectively, compared to never-smokers [66]. 

Similarly, a pooled analysis from eight nested case-control studies from the PanScan (1,481 cases 

and 1,539 controls) reported an odds ratio (OR) of 1.77 (95% CI:1.38-2.26) when comparing current 

with never-smokers [67]. These risk estimates are similar to those of other smoking-related cancers 

like esophageal, colorectal, kidney, and urinary bladder cancers [68]. 

The risk increases with the duration and intensity of exposure, with long-time smokers having a 

higher risk than short-time smokers. Zou and colleagues conducted a meta-analysis of 42 studies 

comprising different genetic ancestry populations and found a non-linear relationship between the 

number of cigarettes per day and risk[69]. Park and colleagues suggested a linear trend in a 

nationwide study on over 7 million Korean subjects, including 22,543 PC cases[70]. A recent 

Australian study based on seven prospective cohorts including 365,084 individuals reported an 

increased risk only if smoking more than 10 cigarettes/day [71]. However, the study included only 

604 subjects with incident PC. 

Lynch and colleagues reported a relationship between the intensity and duration of exposure, 

suggesting that, given the same total smoking exposure (total pack years), longer smoking duration 

at lower intensity was associated with higher PC risk compared to shorter smoking duration at 
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higher intensity [67]. It has been estimated that PC risk decreases after at least ten years since 

smoking cessation, reaching a risk comparable to non-smokers [66, 67, 72]. 

The relationship between smoking and early-onset (EO) PDAC (and very EO-PDAC) has been 

investigated to a lesser extent [73]. A retrospective study comprising 1,789 individuals, including 

156 EO cases, suggested an association between smoking and EOPDAC risk, reporting a lower age 

at diagnosis in smokers compared to non-smokers [74]. However, a pooled analysis of 5,232 

individuals (1,954 EO cases) from eight case-control studies in the PanC4 consortium[75], a 

retrospective analysis of 36,145 individuals (526 EO cases) from the Japanese Cancer Registry[76], 

and other smaller studies [77, 78] did not find evidence for such an age difference between smokers 

and non-smokers in EO PDAC. Moreover, smoking was recognized as a key risk factor for EO PDAC 

risk in some studies[75, 79], but not in others[78]. Possible explanations may reside in the slightly 

different thresholds used for defining EO PDAC (ranging from 40 to 60 years of age) and the limited 

number of cases analyzed. Data from the European Prospective Investigation into Cancer and 

Nutrition (EPIC) study (465,910 participants and 524 PC cases) suggested that passive smoking may 

also increase PC risk (Hazards ratio (HR) 1.54, 95% CI:1.00-2.39)[80]. However, other studies did not 

find a statistically significant association [81-84], leaving the question without a definitive answer. 

The key epidemiological data can be found in Table 2. 

 

3.2.   Alcohol consumption  

Alcohol consumption is a well-known risk factor for pancreatitis[85], which in turn is a recognized 

risk factor for PC [3]. However, the direct relationship between alcohol consumption and PC risk has 

been long debated. A meta-analysis of 21 case-control and 11 cohort studies from the U.S., Europe, 

and Asia estimated a pooled RR of 1.22 (95% CI:1.12–1.34) for heavy drinkers (≥ 3 drinks/day) 

compared to non-drinkers or occasional drinkers [86]. Data from the PanC4 consortium, which 

included 5,585 cases and 11,827 controls, suggested an OR of 1.6 (95% CI:1.20–2.20) for heavy 

drinkers (≥ 9 drinks/day) compared with non-drinkers or occasional drinkers (≤ 1 drink/day) [87]. A 

prospective study of over 500,000 Chinese individuals, including 688 incident cases, reported an 

increased risk in weekly drinkers compared to non-drinkers (HR 1.33, 95% CI:1.11–1.58), with heavy 

drinkers having a higher risk (HR 1.60, 95% CI:1.12–2.30) [88]. Wang and colleagues performed a 

pooled analysis of data from 4,211,129 individuals of mixed ethnicities, including 11,846 incident 

cases, and suggested a higher risk in heavy drinkers compared to non-drinkers (RR 1.15, 95% 

CI:1.06–1.25)[6]. Another pooled analysis of cohort studies comprising 862,664 individuals, 
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including 2,187 incident cases, reported an association between high alcohol intake (≥ 30 

grams/day) and PC risk compared to non-drinkers (RR 1.22, 95% CI:1.03-1.45)[89]. 

No strong association has been identified between low-to-moderate alcohol drinking and PC risk[6, 

87, 88, 90]. Notably, a PanScan study on 1,530 cases and 1,530 controls did not report a statistically 

significant association between alcohol consumption and PC risk at all [91]. The relationship 

between alcohol consumption and PC risk may be partly confounded by tobacco smoking[90, 92, 

93]. Mendelian randomization studies, which minimize confounding, did not support a causal effect 

of alcohol drinking on PC risk [94, 95]. In summary, growing evidence supports the association 

between heavy alcohol drinking and an increased risk of PC, but there is no strong evidence linking 

low-to-moderate alcohol consumption with PC risk. 

The key epidemiological data can be found in Table 2. 

 

3.3.   Non-alcoholic fatty pancreatic disease  

Non-alcoholic fatty pancreatic disease (NAFPD) is characterized by fat accumulation in pancreatic 

tissue and is considered an emerging clinical entity [96] that might affect PDAC risk [51, 97-99]. 

Although NAFPD is not explicitly classified as a modifiable risk factor for PDAC, it is associated with 

several conditions that are known risk factors for PDAC, such as age, obesity, metabolic syndrome, 

and T2D[100]. However, its effect on PDAC risk occurs in both obese and non-obese subjects, 

suggesting it might act independently of obesity [51]. Several pathways may link NAFPD to PDAC, 

including insulin resistance, cellular damage due to the direct interaction of fatty tissue with 

pancreatic cells, chronic oxidative stress, and local secretion of inflammatory markers. Additionally, 

pathological activation of lipid-glucose metabolism and imbalance of hormone homeostasis may 

play a role [96]. Furthermore, NAFPD is associated with inflammatory cell infiltration in the 

pancreatic tissue and the release of pro-inflammatory cytokines and adipocytokines, which may 

increase the risk of PDAC in patients with T2D[98, 100], a condition often comorbid with NAFPD. 

Although the exact mechanisms involved require further investigation, evidence suggests that pro-

inflammatory cytokines and adipocytokines released in NAFPD could drive sustained inflammation, 

fibrosis, and insulin resistance, thereby increasing the risk of PDAC. The key epidemiological data 

can be found in Table 2. 
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3.4.   Body mass index  

Obesity, defined as BMI > 30 kg/m², is a pathological condition that impacts a wide range of 

physiological processes and is one of the main risk factors for PDAC development and mortality 

[101]. A large study pooling data from 846,340 individuals in 14 cohorts, mostly comprising 

Caucasian individuals, reported a 47% increased risk of PDAC in obese subjects [102]. Similarly, a 

large meta-analysis of 19 studies estimated RRs of 1.36 for men and 1.34 for women [103]. A 

national-level Israeli study on over 1.7 million individuals reported that overweight and obesity 

conditions in adolescence are associated with higher PC risk in adulthood, with HRs of 1.68 (95% 

CI:1.27-2.21) and 3.89 (95% CI:2.76-5.50), respectively [104]. 

A study based on PanScan data, including 2,170 cases and 2,209 controls, reported a statistically 

significant trend between decreasing median age at diagnosis and higher BMI, categorized into 

normal, overweight, and obese conditions [105]. The study by Pang and colleagues, consisting of a 

case-control analysis of 841 cases and 754 controls, additionally reported a stronger association 

between young adulthood (30-39 years) obesity and PDAC risk, with an OR of 3.03 (95% CI:1.88-

4.90). This result was replicated in a population of 512,891 Chinese individuals from the China 

Kadoorie Biobank, comprising 595 incident cases: HR of 1.36 (95% CI:1.16-1.61) for young adulthood 

BMI and HR of 1.11 (95% CI: 0.97-1.27) for later adulthood BMI [106]. 

It has been proposed that measures of obesity like waist-to-hip ratio (WHR), waist circumference 

(WC), and hip circumference (HC) may indicate distinct functional consequences of location-

dependent fat accumulation on cancer risk [107-110]. A pooled analysis of 846,340 individuals 

reported a BMI-independent association between WHR and PC risk (HR 1.35, 95% CI:1.03-1.78), but 

not with WC and HC [102]. An EPIC cohort study, which included 324 incident PC cases and 438,081 

controls, reported statistically significant associations between WC (RR 1.13, 95% CI:1.01-1.26) and 

WHR (RR of 1.24, 95% CI: 1.04-1.48) and PC risk[111]. A U.S. study on more than 200,000 individuals, 

including 290 incident PDAC cases with data on different central adiposity measures, reported a 

BMI-independent association between WC and PC risk in females (HR 2.53, 95% CI:1.13-5.65), but 

not in males[112]. 

Despite the high heterogeneity, probably due to the limited number of cases included in the studies, 

these results clearly indicate an association between overweight and obesity and PC risk. Supporting 

observational associations, Mendelian randomization analyses provided further evidence for a 

causal role of BMI on PC risk, indicating causal ORs of 1.34 (95% CI:1.09-1.65) [113] and 1.96 (95% 

CI:1.10-3.48) [114]]. 
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The key epidemiological data can be found in Table 2. 

 

3.5 Diet  

The effect of diet on PC risk is still a matter of debate, with conflicting evidence emerging from 

different studies. An umbrella review analyzing 23 meta-analyses that included data from case-

control studies, cohort studies, or a combination of the two types, suggested an association 

between adherence to healthy/prudent or plant-based dietary patterns and reduced risk of PC 

[115]. Healthy/prudent patterns were associated with reduced risk of PC in two of the four meta-

analyses evaluating this aspect. One meta-analysis, conducted on seven case-control and six cohort 

studies (3,197 cases and 655,223 controls), estimated a OR of 0.84 (95% CI:0.75–0.95) [115]. 

Another meta-analysis on three case-control studies (4,932 cases and 23,107 controls) reported a 

random RR of 0.67 (95% CI: 0.50–0.91) [116]. The association between adherence to a plant-based 

dietary pattern and reduced risk of PC was supported by two different meta-analyses. The first one, 

conducted on three case-control studies (1,586 cases and 46,634 controls), found a random OR of 

0.66 (95% CI: 0.55–0.78) [117]. While the other was conducted on two cohort studies (3,150 cases 

and 587,502 controls) and reported a RR of 0.72 (95% CI:0.60–0.86) [117].  

Diets characterized by a high "dietary inflammatory index" (DII) or adherence to unhealthy or 

Western dietary patterns were associated with an increased risk of PC. A meta-analysis conducted 

on four case-control and two cohort studies (5,889 cases and 644,717 controls), compared the 

highest vs. lowest DII categories and estimated a RR of 1.45 (95% CI:1.11-1.90)[118]. A smaller meta-

analysis included two case-control studies and evaluated the effect of a 1-unit increment of the DII 

(1,143 cases and 2,408 controls), reporting a RR of 1.16 (95% CI:1.05-1.28)[119].  

An umbrella review including only meta-analyses of prospective cohort studies or randomized 

control trials was also conducted by Qin and colleagues, which did not find an association between 

DII and PC in a total of 3,152 cases and 450,000 controls [120]. An association between unhealthy 

diet and increased PC risk was described in case-control studies (1,443 cases and 8,575 controls; RR 

of 1.38, 95% CI: 1.11–1.70)[115, 116], but not in cohort studies (622 cases and 82,135 controls) [115, 

116].  

A meta-analysis including one case-control and one cohort study found no association between 

adherence to the "Mediterranean diet" and reduced PC risk, but a limited number of case subjects 

was evaluated (735 cases and 79,355 controls) [121], while data from four cohort studies showed a 

weak association [120, 122]. Aside from dietary patterns, the association between various foods 
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and specific food components and PC has been evaluated. Two meta-analyses based on three (2,332 

cases and 372,692 controls) and four (2,386 cases and 604,266 controls) cohort samples reported 

that nut intake was negatively associated with PC with a RR of 0.83 (95% CI: 0.72-0.97) and 0.89 

(95% CI: 0.81-0.98), respectively[123, 124]. Contrasting results were obtained when analyzing the 

intake of total fruit, citrus fruit, total vegetables, and cruciferous vegetables[115, 120]. An 

association between red meat consumption and increased PC risk was reported in two meta-

analyses, with a RR of 1.27 (95% CI: 1.10-1.47) in 3,511 cases and 1,036,747 controls [125] and a 

male-specific RR of 1.21 (95% CI:1.07-1.37) in 6,819 cases and 2,504,431 controls [126]. Another 

meta-analysis conducted on 11 cohort studies (8,427 cases and 2,307,787 controls) found a similar 

trend (RR 1.16, 95% CI: 0.96–1.39)[127]. Lastly, suggestive evidence exists of an association between 

fructose intake and increased PC risk in a meta-analysis of six cohort studies (2,430 cases and 

1,031,605 controls; RR=1.22, 95% CI: 1.09–1.55)[128]. 

In conclusion, adherence to plant-based or, in general, healthy/prudent dietary patterns results in 

a slightly reduced risk of developing PC, while a diet characterized by a high inflammatory index 

conferred an increased risk. Red meat consumption seems to significantly affect PC risk, although 

not all studies reported a statistically significant association. Overall, the link between dietary habits 

and PC risk seems weak and not easily reproducible across different studies, suggesting that while 

diet may slightly affect the risk, other predominant etiological factors are probably determinants in 

the onset of PC. The key epidemiological data can be found in Table 2. 

 

3.6.   Refined sugar and sodas  

In addition to well-established modifiable risk factors, studies have linked sugar-sweetened 

beverages (SSBs) and refined sugar consumption to increased risks of developing PDAC[129]. A large 

Chinese study showed that individuals who drank two or more soft drinks per week had an 

estimated 87% higher risk of developing PDAC compared to never-drinkers [130]. Similarly, a large 

cohort study found that consuming two or more servings of SSBs per day was associated with a 50% 

increase in PDAC mortality[129]. The effect of SSBs on PDAC risk showed a dose-response 

relationship, with risk increasing progressively based on SSB intake [129, 131]. 

Considering that people under 40 years have a higher prevalence and frequency of SSB consumption 

compared to older subjects, it was suggested that consuming two or more SSBs daily tripled the risk 

of PDAC in this group. Additionally, people who added sugar to drinks such as coffee or milk (at least 
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five times a day) had a 70% greater risk of PDAC compared to those who did not[130]. Similar results 

were found for those adding sugar to their diets in other ways [130], suggesting that sugar intake, 

insulin production, insulin resistance, and inflammation could be key factors in determining disease 

onset [132]. 

However, some studies have failed to find an association between SSB consumption and PDAC 

risk[133], indicating that additional research is needed. Moreover, it remains unclear whether the 

observed effect of sugar or sodas is influenced by other PDAC risk factors, such as tobacco smoking 

and alcohol consumption, age, sex, and diabetes, which could potentially explain the observed 

tumor-promoting effects and the contradictory findings among studies. Some studies have reported 

a sex-specific effect of soft drinks on PDAC risk that may depend on factors like BMI or physical 

activity [134]. On the other hand, it is important to rule out the idea of an effect of specific food 

intake and diet regimens rather than SSBs on PDAC risk and whether this affects disease progression 

[133, 135-137], indicating that additional research is needed. The key epidemiological data can be 

found in Table 2. 

 

3.7.   Other lifestyle habits (i.e. stress, work-related factors, income, exercise, leisure social 

activities)  

 

Physical activity 

In addition to the well-established risk factors for PDAC, numerous other potential exposures have 

been investigated. These include physical activity, local environmental factors, stress, work factors, 

sleep quality and duration, and occupational status. 

Among these, physical activity is the most extensively studied variable in relation to PDAC 

susceptibility [114, 138-143]. These studies examine various aspects of physical activity, including 

intensity and type. Regarding intensity, only the study by Brenner and colleagues found a statistically 

significant association between light and moderate physical activity and a reduced risk of developing 

PDAC (OR 0.43, 95% CI: 0.25–0.75, and OR 0.57, 95% CI: 0.37–0.88, respectively) [133]. In contrast, 

other studies did not identify a significant correlation between different intensities of physical 

activity and PDAC susceptibility [138, 141, 143]. 

Another extensively investigated aspect is the categorization of physical activity into occupational 

and leisure domains. The findings across various studies are highly inconsistent. Notably, Brenner 

and colleagues demonstrated a statistically significant correlation between leisure physical activity 
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and a reduced risk of PDAC (OR 0.65, 95% CI: 0.52–0.87)[139]. In contrast, research by Bao and 

colleagues and O'Rorke and colleagues identified a significant association between occupational 

physical activity and decreased susceptibility to PDAC (OR 0.75, 95% CI: 0.58-0.96 and OR 0.75, 95% 

CI: 0.59-0.96, respectively)[138, 141]. 

In addition to examining the role of physical activity, the study conducted by Peduzzi and colleagues 

also considered variables indicative of a sedentary lifestyle, including the use of computers, 

telephones, television viewing, and time spent driving. The findings indicated that prolonged 

telephone use, as well as higher intensity, increased the risk of developing PDAC (OR1.88, 95% CI: 

1.53-2.31, and OR 4.70, 95% CI: 2.71-7.64, respectively)[143]. It is unlikely that mobile phone use 

per se is the causal factor in this association; however, it may serve as an excellent proxy for a low 

level of physical activity. Gentiluomo et al. recently conducted a Mendelian randomization analysis 

to elucidate the causality of physical activity and sedentary behaviours on PDAC risk. They reported 

that the amount of time spent watching television increased PDAC risk with an OR of 1.52 (95% 

CI:1.17-1.98) and found that more than half of the observed effect was mediated by BMI[114]. The 

principal epidemiological data are presented in Table 3. 

 

Local Environment 

Since the International Agency for Research on Cancer (IARC) classified outdoor air pollution and 

airborne particulate matter as human carcinogens (Group 1) for lung cancer[144], a growing number 

of studies have investigated whether these exposures could increase the risk of other cancers, 

including PC. Although several studies have examined the association between particulate matter 

(PM2.5 and PM10) and PC[145-151], few statistically significant associations have been reported, and 

results are often heterogeneous. 

Wang et al. and Bogumil et al. indicated an association between PM2.5 and an elevated risk of 

developing PC (HR1.16, 95% CI: 1.13-1.20, and HR1.61, 95% CI: 1.09-2.37, respectively)[146, 151]. 

Conversely, Craver and colleagues suggested a negative association between PM2.5 and the risk of 

developing PC (OR 0.65, 95% CI: 0.52–0.80)[148]. Additionally, Ancona and colleagues identified a 

link between PM10 exposure and increased risk of PC in both sexes (HR1.40, 95% CI: 1.03-1.90 in 

males and HR1.47, 95% CI: 1.12-1.93 in females)[145]. Nevertheless, these associations remain 

unconfirmed in the Turner, Coleman, and Felici studies[147, 149, 150]. In addition to particulate 

matter, other environmental variables were examined, including nitrogen oxides (NOx), nitrogen 

dioxide (NO2), hydrogen sulfide (H2S), sulfur oxides (SOX), ozone (O3), noise pollution, urban traffic, 
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distance from the coast, percentage of green space, natural environment, water, and domestic 

gardens within 1000 meters from residential coordinates. Notably, only two variables, O3 [150] and 

SOX [145] have been associated with increased risk of developing PC. 

Based on the data available to date, there is no conclusive evidence that the local environment 

significantly affects PC susceptibility. The principal epidemiological data are presented in Table 3. 

 

Sleep Quality 

Over the past decade, there has been a notable increase in research aimed at elucidating the extent 

to which altered sleep patterns, including habitual short sleep, exposure to light at night, or shift 

work, are associated with various adverse health outcomes, such as PC. Three studies and a meta-

analysis investigated the relationship between sleep duration and susceptibility to PC[143, 152-154]. 

However, the results have been inconclusive, not providing evidence to support an association 

between sleep duration and the risk of PC. 

Xiao and colleagues investigated the effects of light at night (LAN) and suggested that higher 

exposure to LAN is associated with increased PDAC risk (HR1.24, 95% CI: 1.03-1.49)[155]. Despite 

these findings supporting the hypothesis that LAN and circadian disruption may be risk factors for 

PDAC, further research is needed to replicate these results. 

The potential role of circadian disruption in PC susceptibility has also been explored in the context 

of shift work, but the results have been inconclusive to date. Specifically, Parent et al. identified an 

elevated risk of developing PC among individuals engaged in shift work (OR 2.31, 95% CI: 1.48-3.61) 

[156], but three other studies did not confirm this association [143, 152, 157]. In summary, definitive 

evidence is still lacking for the association between sleep quality and PC. The principal 

epidemiological data are presented in Table 3. 

 

Stress 

The potential role of psychological stress in susceptibility to PC has rarely been the subject of 

investigation in epidemiological studies. The few studies conducted to date have investigated stress 

in various forms, such as psychological stress or stress caused by traumatic events like the loss of a 

child, divorce, or income-related issues. 

Li Peng and colleagues examined the potential role of pre-existing anxiety and depression at the 

onset of PC as risk factors. The findings suggest that a pre-existing state of anxiety may be associated 
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with an increased risk of PC (OR 1.13, 95% CI: 1.04-1.22) [158]. A few studies, including those 

conducted by Huang, Nilsen, and Peduzzi, have examined the role of stress in the context of 

traumatic events such as the loss of a child or divorce. Huang and colleagues demonstrated that the 

loss of a child increases the risk of developing PC (OR1.09, 95% CI: 1.02-1.17) [159]. Meanwhile, 

Nilsen and Peduzzi reported an association between divorce and increased PC risk (RR 3.1, 95% CI: 

1.3-7.2 and OR 2.90, 95% CI: 1.62-4.80, respectively)[143, 160]. These results indicate that traumatic 

events leading to stressful conditions can increase the risk of developing PC. 

It is evident that stress represents a particularly challenging variable to investigate, given that it can 

be induced by a multitude of causes. Nevertheless, the limited number of studies conducted have 

consistently demonstrated that stress is a factor that affects susceptibility to PC. The principal 

epidemiological data are presented in Table 3. 

 

3.8.   Hormonal treatments & prescription medications (statin, aspirin, metformin) 

 

Hormonal treatments 

The acknowledged disparity in exposure to established risk factors, such as smoking habits and 

alcohol consumption, only partially accounts for the differences in incidence rates of PDAC between 

males and females. Consequently, it has been hypothesized that hormones associated with 

pregnancy, menstrual cycle, oral contraception (OC), and hormone replacement therapy (HRT) may 

be responsible for this observed imbalance.  

Several exposure variables were analysed to ascertain whether female hormones exert an influence 

on the susceptibility of PDAC. For the sake of convenience, this paragraph will focus on the most 

studied variables, including OC and HRT use, age at menarche, menopause, and number of births.  

Twenty-five studies focused on OC use and the length, expressed in years, of OC use[161-185]. 

However, only three of them reported a statistically significant association between OC use and 

decreased PDAC risk[163, 164, 173]. Furthermore, a meta-analysis conducted in 2021 by Ilic and 

colleagues, encompassing 21 studies, found that OC use is associated with decreased PDAC risk (RR 

0.85, 95%CI: 0.73-0.98) [186]. These results suggest a protective effect of OC use in the development 

of PDAC. 

The use of HRT has also been extensively studied[161-163, 168-170, 172-176, 179-181, 184, 185, 

187, 188]. While several investigations have not identified a statistically significant association 

between HRT use and PDAC, five studies have demonstrated an association between HRT and 
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reduced risk of developing the disease [163, 174, 176, 186, 188]. Nevertheless, a recent meta-

analysis did not identify a significant association between HRT use and PDAC risk (RR 0.92, 95%CI: 

0.83-1.02)[7] (). Therefore, these results still demonstrate a degree of doubt regarding the potential 

association between HRT usage and PDAC. 

Numerous studies have investigated the potential association between ages at menarche or 

menopause and PDAC susceptibility. Regarding the age at menarche, only three studies identified a 

statistically significant association with increased PDAC risk[165, 176, 186] in women with an early 

age at menarche , which was not supported by other studies [161, 163, 164, 168-175, 177, 179-181, 

183-185]. The latest meta-analysis, suggesting the lack of association between early age at 

menarche and PDAC risk (RR 0.94, 95% CI: 0.83-1.07), was conducted in 2015 and, therefore, does 

not encompass more recent studies[183]. Regarding the age at menopause, few studies observed 

significant results, and the findings are often contradictory. Specifically, two studies indicated that 

older age at menopause is inversely associated with PDAC risk [163, 180], while only one study 

suggested a positive association[168]. The remaining studies did not indicate any impact on PDAC 

development [162, 169-175, 177, 181, 183, 184, 185. Again, the most recent meta-analysis was 

conducted by Tang in 2015 and did not confirm the association between late age at menopause and 

PDAC risk (RR 0.98, 95%CI: 0.85-1.13){Tang, 2015 #177, 189-192].  

Several studies have demonstrated that women with at least one child have a significantly reduced 

risk of developing PDAC in comparison to nulliparous women [163, 172, 173, 175, 181, 184, 189, 

190]. However, other studies did not confirm this association[161, 162, 164, 168-170, 174, 179, 180, 

183, 185, 191, 192]. The most recent meta-analysis identified a statistically significant association 

between having children and reduced risk of PDAC, with a RR 0.91 (95% CI: 0.85-0.97)[193]. 

In addition to exposure variables, common genetic variability related to signalling and biosynthesis 

of sex hormones was also investigated in two studies[170, 194]. Duell and colleagues investigated 

common genetic variability within the CYP17A1 gene, which plays an essential role in the 

biosynthesis of glucocorticoids and sex steroids. No significant association was observed between 

the studied SNPs, either individually or in haplotype combinations with the risk of developing 

PC[170]. Peduzzi and colleagues evaluated the role of common SNPs in 208 genes involved in 

pregnenolone biosynthesis, oestrogen biosynthesis and oestrogen receptor-mediated signalling in 

the development of PDAC, but no associations were reported[194]. Therefore, despite differences 

in incidence between males and females, common genetic variability in genes related to the 

signalling and biosynthesis of sex hormones does not appear to play a role in PDAC susceptibility. 
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The hormone hypothesis has been subjected to extensive investigation in numerous case-control 

and cohort studies. However, the results of these studies are discordant, and the role of hormones 

in the onset of PDAC remains a topic of considerable debate. The relevant epidemiological data are 

provided in Table 4. 

 

Aspirin 

Aspirin has long been recognized as an important chemopreventive agent, particularly for colon 

cancer, where it is even prescribed solely for prevention [195]. Its effect appears to be linked to its 

ability to modulate cyclo-oxygenase-2, thereby influencing prostaglandin E2, which increases 

cellular proliferation, promotes angiogenesis, and reduces apoptosis. Its roles in NFκB signaling, Wnt 

signaling, DNA repair, and polyamine metabolism have also been demonstrated[196-198]. Regarding 

PDAC risk, the most recent meta-analysis by Bosetti C et al.[199] included fifteen studies with a total 

of 12,193 cases, reporting a RR of 0.78 (95%CI: 0.68-0.89), with a favorable effect increasing with 

longer duration of use. While a previous meta-analysis also showed a risk reduction[200], an earlier 

one did not observe significant protection[201] . Newer studies, such as the retrospective cohort 

study by Florensa et al. with over 118,000 individuals, identified a protective effect with an HR of 0.5 

[202]. Additionally, the Women’s Health Initiative reported a 39% risk reduction among more than 

117,000 women [203, 204]. Other studies found a protective effect for specific subgroups, such as a 

population-based study from the U.S. including over 30 million individuals, which observed a risk 

reduction associated with aspirin use in patients with chronic pancreatitis (CP) and those older than 

65; a subgroup analysis found this significant only for white males [204]. However, two recent 

studies, one from the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) Cancer Screening Trial 

cohort with about 140,000 participants[205] and another case-control study on 470 PDAC 

patients[206]), showed no association between aspirin use and disease risk. 

Aspirin use might also be beneficial in reducing the risk of disease recurrence after PDAC surgical 

resection, with recent studies describing an association with disease-free survival (HR 0.62)[207]. 

The relevant epidemiological data are provided in Table 4. 

 

Metformin 

Metformin is well-known for its ability to control glucose metabolism in diabetes[208]. Its role in 

inhibiting tumor development and growth seems related to both the reduction of glucose and insulin 

levels in the blood, thereby suppressing the mTOR pathway and inhibiting cancer cell proliferation 
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[209, 210]. It has been suggested that metformin might reduce the risk of PDAC onset, with multiple 

meta-analyses on the topic. Several meta-analyses reported statistically significant risk reduction in 

PDAC onset, with a RR or OR ranging between 0.56 and 0.63[211-215]. Zhang et al. in 2021 also 

reported a significant risk reduction with an OR of 0.62[216]. More recently, a meta-analysis by Chen 

et al. on biguanides in general (which include metformin and other diabetes drugs) showed no 

association with the risk of developing PC, although a reduced risk was observed in case-control 

studies [217]. Zhao et al. also reported no association in their meta-analysis of 9 observational 

studies [218]. However, the most recent and comprehensive meta-analysis by Hu et al., including 29 

studies on more than 2 million patients, reported a risk reduction compared to no metformin use 

(OR 0.82, 95% CI: 0.69-0.98) [212]. This effect could be enhanced when metformin is used in 

combination with simvastatin, as shown in mouse models[219]. Furthermore, a few studies have 

investigated its use in prolonging the prognosis of patients already diagnosed with PDAC, with meta-

analyses showing a HR on overall survival ranging between 0.77 and 0.88, despite the majority being 

of low quality and having several biases related to the retrospective nature of the included studies 

[220]. The relevant epidemiological data are provided in Table 4. 

 
Statins 

Statins are cholesterol-lowering drugs commonly prescribed for primary and secondary 

cardiovascular prevention, acting as inhibitors of the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG 

CoA) reductase [221]. Beyond their well-known action, the mevalonate pathway impacts numerous 

intra- and intercellular cascades, with pleiotropic effects including carcinogenesis and tumor 

progression [222]. Both in vitro and in vivo studies have demonstrated that statins inhibit the cell 

cycle and DNA synthesis [223], exert direct cytotoxic effects in human cancer cells via pro-apoptotic 

activity [224], and reduce angiogenesis [225]. Consistent evidence highlights the role of statins in 

reducing the risk of developing PDAC. Karbowska et al. [226] meta-analyzed 26 interventional 

studies (retrospective and prospective trials), showing a significant difference in PDAC occurrence 

between the statin and non-statin groups (0.4% vs 0.6%, OR 0.83, 95% CI: 0.72-0.96), although a 

sub-analysis showed similar PDAC occurrence in randomized controlled trials (RCTs). Another recent 

meta-analysis by Bagheri et al.[227] included 32 studies (observational and interventional) with a 

sample size of almost 6 million patients, showing that individuals who received statins had a reduced 

risk of developing PDAC compared to those who did not (risk ratio for statin recipients 0.75, 95% CI: 

0.66-0.86), indicating a 25% decrease in risk. However, it remains unclear whether statins benefit 
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patients with diagnosed PDAC. Tamburrino et al. [228] analyzed 14 studies showing that statin use 

is associated with reduced mortality risk, especially in patients with resectable disease who 

underwent surgery (HR 0.87; 95% CI: 0.82-0.93), as did Anbari et al. [229] in a pooled cohort of 

100,888 patients (HR 0.86, 95% CI: 0.80-0.92). Conversely, in a large retrospective cohort of upfront 

resected patients, statin treatment did not influence survival [230]. Considering specific statin 

subtypes, rosuvastatin is significantly associated with reduced mortality in resected patients (HR 

0.88, 95% CI: 0.81-0.96)[228], while simvastatin and atorvastatin have the highest 

chemoprophylactic effect [231, 232]. Unfortunately, the protective effect of statins has not been 

demonstrated in advanced stages, even when combined with chemotherapy [231]. Recent studies 

suggest that statins may enhance epithelial-to-mesenchymal transition (EMT) through TGFβ 

signaling, leading to chemoresistance and poorer outcomes [233]. The relevant epidemiological data 

are provided in Table 4. 

 

3.9.   Infectious agents and the influence of the microbiota 

Emerging evidence indicates that the gut microbiome can influence pancreatic disease via the gut-

pancreas axis[234]. This axis involves complex interactions where gut microbiota and their toxic 

products can reach the pancreas, affecting its function and contributing to inflammation and 

carcinogenesis. Disruptions of the microbiota homeostasis due to imbalances in microbial 

abundances, changes in their activity or function, or a shift in their spatial niche can cause a state 

transition from eubiosis to a potentially pathogenic dysbiosis, which has been associated with 

multiple gastrointestinal cancers [235]. Metagenomic studies have consistently shown differences 

in bacterial abundances in the fecal microbiomes of PDAC patients and controls, as reviewed by 

Pandya and colleagues [236]. Although there are large variations between populations and 

individuals, increases in Fusobacterium, Veillonella, and Streptococcus and decreases in 

Bifidobacterium, Faecalibacterium, and Eubacterium species have repeatedly been observed in the 

feces of PDAC patients [237-241]. The mycobiome, particularly Malassezia species, has also been 

observed to be significantly altered in PDAC, suggesting a potential role in tumorigenesis[242]. Most 

existing evidence remains correlative, with thus possible issues of reverse causality. Mendelian 

randomization studies significantly contributed to this field, suggesting causal associations between 

the abundance of Romboutsia genus and circulating metabolites related to the gut microbiome with 

PDAC risk [243]. Metagenomic analyses performed on PDAC tumor tissue samples showed that 
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increased abundances of Acinetobacter, Pseudomonas, and Sphingopyxis were associated with a 

more aggressive tumor phenotype. RNA-seq analyses also revealed that abundances of these 

genera were positively associated with the expression of genes involved in cancer-associated 

processes, including DNA replication, EMT, and KRAS and MAPK signaling, suggesting a potential 

pro-oncogenic mechanism [244]. 

However, the mechanisms underlying how the gut microbiome may promote PDAC development 

are currently the subject of emerging investigation. The relevant epidemiological data are provided 

in Table 4. 

 

Microbial Translocation 

Increased intestinal permeability and disruption of the mucosal barrier may allow bacterial 

translocation, a process by which low levels of viable bacteria, their genetic material, and metabolic 

products, such as mRNA, lipopolysaccharide (LPS), flagellin, and colibactin, escape the intestinal 

lumen and migrate to other organs [245].  

Porphyromonas gingivalis (P. gingivalis) is an established periodontal pathogen that has been 

increasingly linked with PDAC. A higher level of antibodies against P. gingivalis (and crucially before 

disease onset in this large, European prospective study) and studies showing higher levels of this 

bacterium in the oral microbiome have observed associations with an increased risk of PC [246-248]. 

Mechanistically, intracellular P. gingivalis can promote proliferation as seen in PDAC cells[249], 

while infection induces a pro-inflammatory tumor microenvironment (TME) with an elevation of 

neutrophil elastase, which ultimately promotes PDAC progression as observed in murine 

models[250]. Results from qPCR performed on DNA extracted from PDAC tumor tissue samples 

found that Fusobacterium species were positively associated with markedly worse prognosis [251]. 

Mechanistically, this may be explained by increased secretion of GM-CSF, CXCL1, IL8, and MIP3α, 

which in turn promotes proliferation, migration, and invasion as evidenced by inoculation of PDAC 

cells with Fusobacterium nucleatum [252]. The relevant epidemiological data are provided in Table 

4. 

 

Microbial Metabolites 

Short‐chain fatty acids (SCFAs) are products of bacterial fermentation and play roles in energy 

synthesis, regulating inflammation, immunomodulation, and supporting intestinal health [253]. 

Peripheral blood mononuclear cells taken from PDAC patients and treated with SCFA butyrate 
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showed decreased levels of MDSCs and enhanced functioning of CD8+ T cells [254]. Additionally, 

metagenomic sequencing and gas chromatography performed on fecal samples from PDAC cases 

and controls have shown significant reductions in butyrate-producing bacteria such as Eubacterium 

rectale, Faecalibacterium prausnitzii, and Roseburia intestinalis, as well as reduced fecal butyrate 

content in cases relative to controls [241]. 

Indoles are products of dietary tryptophan metabolism by commensal bacteria and play roles in gut 

barrier homeostasis [255]. The expression of the aryl hydrocarbon receptor (AhR), a sensor of 

indoles, is associated with an immunosuppressive tumor-associated macrophage (TAM) phenotype 

as well as rapid progression and mortality in PDAC patients [256].  

In conclusion, the gut-pancreas axis appears to significantly influence pancreatic carcinogenesis 

through microbial translocation, production of circulating metabolites, and immunomodulation. 

While notable progress has been made, there remains a rudimentary understanding of the 

microbiome's role in PDAC. For example, Helicobacter pylori (H. pylori) infection has a potential 

association with PC. Several studies have found no association [257-259], while others have found 

a weak but significant association in some populations [155, 260, 261]. As such, the link between H. 

pylori infection and PDAC remains equivocal. This illustrates the need for robustly designed 

longitudinal studies on microbial translocation and gut microbiome composition, including non-

bacterial components, specific species, and community interactions. Additionally, clinical studies on 

the interactions between the microbiome and cancer drugs, along with better mechanistic insights 

into the multifaceted roles of bacterial metabolites, are essential to further elucidate the complex 

role of the gut microbiome in PDAC development and progression. The relevant epidemiological 

data are provided in Table 4. 

 

3.10 Exposure to toxic substances and heavy metals 

Hundreds of everyday products, including food wrappers, non-stick cookware, and pan coatings, are 

made with highly toxic fluorinated chemicals such as perfluorooctanoic acid (PFO), also known as 

"Forever chemicals" [262, 263]. Exposure to toxic substances varies depending on factors such as 

location (urban versus rural areas) and dietary and cooking habits. Given the objective of this review, 

the focus will be on some of the more common toxic substances that circulate in the food chain, 

which could increase the risk of developing PC. 
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Heavy Metals 

Elements such as lead (Pb), nickel (Ni), iron (Fe), cadmium (Cd), chromium (Cr), manganese (Mn), 

and zinc (Zn) are often classified as heavy metals and can accumulate in the body over time, 

potentially leading to various health issues, including PC [264].  While some of these metals are 

essential micronutrients at low concentrations, human activities have significantly increased their 

levels, raising concerns about their potential toxicity. Heavy metals disrupt various biological 

functions, including cell proliferation, differentiation, damage repair, and apoptosis. Comparing 

their mechanisms of action reveals that these metals often induce toxicity through common 

processes, such as the generation of reactive oxygen species (ROS), weakening of antioxidant 

defenses, enzyme inactivation, and the promotion of oxidative stress [265]. In nature, these metals 

typically exist at low levels [266]. Fish and seafood are likely the most exposed to these heavy metals 

through various pathways: consuming contaminated food, absorbing metals that enter aquatic 

environments and their sediments from fertilizers used in intensive farming, as well as from 

industrial effluents, tannery waste, etc. [267]. There are some epidemiological studies evaluating 

the relationship between dietary mineral intake and PC [268]. While some studies show a potential 

association between certain minerals like Ca and Mg and a reduced risk of PC, the evidence remains 

inconsistent. A recent retrospective cohort study in 2024 found decreased serum levels of Mg, K, 

Ca, Fe, Zn, Se, As, and Hg, along with increased levels of Mo, were associated with an increased 

PDAC risk[268, 269]. Additionally, lower serum levels of selenium, iron, and calcium, and higher 

levels of manganese were significantly associated with poorer overall survival in PDAC patients 

[270]. An increase in serum molybdenum was observed in stage II or III/IV patients but not in stage 

I when compared with healthy controls [270]. Focusing on heavy metals, a significant increase was 

observed in the adjacent normal pancreas of PDAC patients compared to the control group with 

intraductal papillary mucinous neoplasm (IPMN) patients. Therefore, it could be hypothesized that 

As, Pb, and Hg are involved in PDAC development, suggesting that higher heavy metals-

contaminated food intake should be avoided to prevent PDAC [270]. 

On the other hand, despite the limitation of assessing heavy metals exposure through 

questionnaires, a clinic-based case-control study from 2000 to 2014 at the Mayo Clinic observed no 

association between regular exposure to chromium and nickel and PC [271]. The relevant 

epidemiological data are provided in Table 4. 
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Cadmium 

Cd and Cd-containing compounds have been classified as carcinogenic by IARC [272, 273].  Several 

studies have shown an association between Cd exposure and an elevated risk of PC [264, 274-276]. 

At the molecular level, Cd exposure modulates ROS, causing DNA damage, lipid peroxidation, and 

protein modifications that contribute to cellular transformation and tumor progression [277]. It was 

reported that Cd activates NF-κB and AP-1 signaling pathways, which promote cell proliferation and 

inhibit apoptosis [278]. Lower doses of Cd exposure led to tumor cell characteristics and changes in 

apoptotic pathways and microRNA expression [279-281]. These data point towards Cd exposure as 

a significant risk factor for PDAC development. The relevant epidemiological data are provided in 

Table 4. 

 

Nickel 

IARC has classified Ni compounds as a ‘group 1’ human carcinogen [282, 283]. It was reported that 

Ni-induced carcinogenesis involves hypoxia-inducible factor pathways and the generation of 

oxidative stress, which further leads to DNA damage and the targeting of DNA repair pathways [284, 

285]. Moreover, recent studies indicated a link between Ni content, pancreatic dysfunctions, and 

PDAC [286, 287]. Ojajärvi found that occupational exposure to Ni compounds significantly raised the 

risk of PC among workers in the Ni refining industry (meta-risk ratio (MRR) 1.90, 95% CI: 1.20-3.20); 

however, a later review of this analysis suggested that more studies are needed [288, 289]. 

Moreover, Ni has been shown to inhibit DNA repair mechanisms, compounding its genotoxic effects 

and promoting malignant transformation [290]. In addition to its direct genotoxic effects, Ni disrupts 

cellular signaling pathways in cell growth and impacts microRNA expression signatures in vitro [291]. 

Overall, the evidence indicates that Ni exposure plays a significant role in PC development through 

mechanisms involving oxidative stress, DNA damage, non-coding RNA expression, and disruption of 

critical signaling pathways. The relevant epidemiological data are provided in Table 4. 

 

Arsenic  

Arsenic is a poisonous heavy metal abundantly found in the earth's crust. Previously, it was reported 

that exposure to contaminated drinking water wells may be associated with an increased risk of PC 

[292]. As exposure induces oxidative stress, generating ROS that causes DNA damage and genomic 

instability. Studies have shown that Arsenic can induce DNA methylation changes, thereby altering 
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the expression of oncogenes and tumor suppressor genes [293]. Reichard et al.[294], demonstrated 

that exposure resulted in hypermethylation of the tumor suppressor gene p16, thus contributing to 

the dysregulation of cell cycle control in pancreatic cells. The relevant epidemiological data are 

provided in Table 4. 

 

Acrylamide 

In 1994, acrylamide was classified as a probable human carcinogen by IARC. However, the PanC4 

case-control studies conducted in North America, Europe, and Australia found no association 

between dietary acrylamide and PC risk [295]. Similarly, no association was found in the EPIC cohort 

[296], an Italian case-control study [297], or among Japanese individuals [298]. Therefore, current 

data support the absence of a significant association between dietary acrylamide and PC. The 

relevant epidemiological data are provided in Table 4. 

 

Heterocyclic Aromatic Amines and Polycyclic Aromatic Hydrocarbons  

Heterocyclic Aromatic Amines (HCAs) and Polycyclic Aromatic Hydrocarbons (PAHs) are mutagens 

and carcinogens commonly found in food, formed during cooking processes such as boiling, frying, 

barbecuing, and grilling of meat and fish [299, 300]. In general, the estimated daily intake of HCAs 

varies significantly between countries, with the USA having the highest consumption and Japan and 

Singapore the lowest [301, 302] 

In a North American case-control study, it was observed that HCAs and benzo(alpha)pyrene 

(representative of PAHs) derived from well-done barbecued and pan-fried meats may be associated 

to an elevated risk of PC (OR 2.20, 95% CI: 1.20-4.00)[303].  

In the study by Anderson and colleagues, conducted in the PLCO Cancer Screening Trial, it was found 

that meat cooked at high temperatures is associated with an increased risk of PC (Proportional 

Hazard Estimates (PHE) 1.63, 95% CI: 1.13-2.34) [304]. Moreover, the NIH-American Association of 

Retired Persons (NIH-AARP) Diet and Health Study cohort included 537,302 individuals. Over 5 years 

of follow-up, 836 cases of PC were identified (281 females and 555 males). This study revealed that 

high total meat intake was linked to a 26% increased risk of PC in both men and women [305]. 

Furthermore, another study using data from the same cohort with a longer follow-up period of 9.2 

years also found significant associations between PC risk and total meat intake (HR 1.20, 95% CI: 

1.02–1.42,), red meat intake (HR 1.22, 95% CI: 1.01–1.48), and exposure to high cooking 
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temperatures (HR 1.21, 95% CI: 1.00–1.45) [306]. The relevant epidemiological data are provided in 

Table 4. 

 

3.11 Glycome changes in the PDAC development  

Minimally invasive serum biomarkers are highly attractive for their low risk to patients and ease of 

access. In PC [307], the most used biomarkers for PDAC include carbohydrate antigen 19-9 (CA 19-

9) and carcinoembryonic antigen (CEA). The CA 19-9 epitope is a Lewis antigen (sLeA) carried by 

mucin-1 (MUC1), mucin-5AC (MUC5AC), and mucin-16 (MUC16) proteins. Although these 

biomarkers are used clinically, their limitations highlight the continued need for more reliable 

diagnostic tools for detecting and diagnosing PDAC. Both biomarkers lack sufficient specificity and 

sensitivity for early PDAC screening, as elevated levels of CA 19-9 or CEA may indicate not only PDAC 

but also CP or benign pancreatic diseases [308, 309]. 

A key hallmark of PDAC is its complex TME, characterized by an extracellular matrix containing 

stromal cells, tumor cells, and immune cells. Abnormal glycosylation patterns, including sialylation, 

are a universal feature of malignant transformation in various cancers, including PDAC [307, 310]. 

In humans, there are twenty different sialyltransferases identified to date. These enzymes are 

responsible for adding sialic acid to glycolipids or to the sugar chains (N- or O-linked) of glycoproteins 

[307]. 

The emergence of glycomics, alongside transcriptomic and genomic methodologies, has significantly 

enhanced our understanding of the molecular mechanisms and glycoprofiling changes that occur 

during PDAC development. Over the past decade, various N-glycan biomarker signatures have been 

identified and validated for PDAC. These novel biomarkers hold promise for enhancing surveillance 

in individuals at risk of PDAC, potentially enabling early detection and improving patient outcomes. 

Experiments conducted in different cell lines have demonstrated that the activation of several cell 

surface receptors, such as TGF-β, can induce aberrations in the N-glycome. Common changes 

observed include elevated levels of sugar branching, core fucosylation, and sialylation [311]. 

Furthermore, transcriptomic analysis of tissue samples from PDAC patients, as well as studies 

involving organoids and cell lines, identified two distinct glycan profiles associated with PDAC [312]. 

In detail, two glyco-clusters were defined. Cluster A (the fucosylated subtype) is characterized by 

increased expression of genes involved in fucosylation and O-glycosylation and is associated with 

the classical PDAC subtype. Cluster B presented a higher expression of genes encoding galectin-1 
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and the mucins MUC4 and MUC16 and it is more linked to the PDAC basal subtype[312]. MUC4 is a 

glycosylated protein aberrantly expressed in PDAC, promoting tumorigenesis[313]. Additionally, 

aberrant expression of MUC16 has been associated with PDAC progression and metastasis. MUC16 

activates the AKT and GSK3Beta oncogenic signaling pathways through its interaction with ErbB 

[314]. In addition, the two glycan profiles have been found to correlate with EMT status which is 

recognized as a critical mechanism driving metastasis in PDAC[312]. 

Manfred Wuhrer and collaborators identified glycome biomarkers that distinguish PDAC patients 

from healthy individuals, highlighting three key N-glycosylation differences through cross-sectional 

and longitudinal analysis in two Dutch surveillance cohorts [315, 316]. A classification model built 

with these three glycosylation traits was used for discovery (area under the curve, AUC 0.88) and 

independent validation (AUC 0.81), with sensitivity and specificity values of 0.85 and 0.71 for the 

discovery set, and 0.75 and 0.72 for the validation set. 

In the longitudinal study by Levink and colleagues that built upon the cross-sectional findings, 

significant advancements were made in understanding glycosylation changes preceding PDAC. The 

research revealed that a majority of PDAC cases exhibited alterations in 13 glycosylation traits 

evaluated from 3 to 50 months before PDAC development. Among these traits, the N-glycan trait 

A3F, which denotes fucosylation of triantennary glycans, showed the most notable increase 

compared to controls during the 3-50 months period prior to PDAC development [315]. 

Furthermore, Wagatsuma et al. (2020) and Kurz et al. (2021) also detected increased levels of α-2,6-

sialic acid (sialoglycans) and identified the overexpression of a specific sialyltransferase, ST6 beta-

galactoside alpha-2,6-sialic acid (ST6GAL1) in PDAC. These studies highlighted that elevated 

expression of ST6GAL1 confers protection against DNA damage induced by gemcitabine, which is a 

frontline treatment for PC. The ability of ST6GAL1 to withstand cytotoxic stimuli may be through 

fostering cancer stem cells that are resistant to apoptosis [310]. 

Finally, a recently published case-control study of Chinese PDAC patients highlighted two promising 

glycan markers that showed potential for distinguishing between early (stage I and II) and advanced 

(stage III and IV) PDAC. These glycan markers are NGA2FB (agalacto core α-1,6 fucosylated bisecting 

biantennary glycan) and NA2FB (bigalacto core α-1,6 fucosylated bisecting biantennary 

glycan)[317]. 

Considering these studies and recent clinical research, they highlight the substantial potential of 

glycans to serve as valuable biomarkers for PDAC, offering significant benefits for disease 

surveillance. The relevant epidemiological data are provided in Table 4. 
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4. Links with pancreatic diseases (pancreatitis & mucinous cystic neoplasms) and co-morbidities  

 

Chronic Pancreatitis 

CP is a known risk factor for PDAC onset. However, careful interpretation of study results is 

necessary, as PDAC is often initially misdiagnosed as CP. PDAC can cause Wirsung duct stenosis with 

upstream dilation and parenchymal atrophy, which could be misdiagnosed as CP [318]. A history of 

CP has been associated with a HR for PDAC of 6.9 (95% CI: 5.6-8.6) in a Danish nationwide study 

[319], and in Korean populations with an HR of 3.9 (95% CI: 2.7-5.5) [320] and an incidence ratio of 

18.1 (95% CI: 10.4-29.5) [321]. A recent meta-analysis by Gandhi et al. reported an even higher risk, 

with a standardized incidence ratio ranging from 13.3 (95% CI: 6.1-28.9) to 22.61 (95% CI: 14.42-

35.44) [322]. Regarding the risk of bias, some papers focused specifically on the lag time between 

the diagnoses of PDAC and CP. Kirkegard et al. [323] reported that the risk of PDAC in CP patients is 

highest at 2 years (pooled effect estimate 16) from diagnosis, decreasing with longer follow-up (7.9 

at five years and 3.5 at nine years). Conversely, Munigala et al. described a PDAC risk increasing in 

CP patients after two years of follow-up, with the risk being consistent and sustained beyond 5 and 

10 years of follow-up [324]. The risk of PDAC onset also varies based on CP etiology. Genetic causes 

have different risks based on the affected gene, with PRSS1 mutations conferring the highest risk 

(44% risk at 70 years from symptom onset, a standardized incidence ratio of 67 (95% CI: 50-82) [325, 

326] .Other affected genes also carry an increased risk, with SPINK1-mutated patients bearing a 12-

fold RR [325] and CFTR mutations bearing a 1.41-fold RR [327]. Even when no mutation is found, a 

family history of autosomal dominant pancreatitis increases the risk of PDAC onset [328]. 

Furthermore, the risk increases in cases of acute pancreatitis developing on CP, especially with a 

higher number of acute pancreatitis episodes [329]. The risk of PDAC in CP with toxic etiologies is 

more complex to evaluate, as heavy alcohol use and smoking are already independent known risk 

factors for PDAC, even in patients without a diagnosis of CP, though data on the topic are scant [3, 

330]. Autoimmune pancreatitis (AIP) has also been linked to an increased risk of PDAC, especially 

type 1 AIP, typically metachronous, developing 2 years after the diagnosis of AIP and in the same 

part of the pancreas affected by AIP [331]. The reason behind CP being a risk factor for PDAC seems 

to be the ongoing inflammatory process during CP, which can lead to a range of molecular 

alterations promoting tumor development [331]. Oxidative stress and the generation of reactive 

oxygen species and reactive nitrogen species are known to cause acinar cell necrosis and fibrosis. 

Furthermore, as with sporadic cancers, there is an initial activation of the oncogene KRAS, followed 
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by the epigenetic or genetic inactivation of tumor suppressor genes such as CDKN2A, TP53, and 

DPC4, with a well-known progression from pancreatic intraepithelial neoplasia (PanIN) to cancer 

[332]. In animal models, an additional step of this process has been observed with acinar-to-ductal 

metaplasia development. Other pathways also seem to be involved, with Cox2, NF-κB, and STAT3 

generating secondary oxidative injury, promoting inflammatory infiltration and acinar cell damage, 

and promoting de-differentiation of the acinar component, making them susceptible to KRAS-

initiated and promoted transformation [333]. 

 

IPMN 

IPMN is a recognized risk factor for developing PDAC. The risk is related to the potential adenoma-

carcinoma progression from low-grade dysplasia (LGD) to high-grade dysplasia (HGD)/invasive 

carcinoma (IC) [333], driven not only by specific mutations (KRAS, TP53, CDKN2A, SMAD4, GNAS) 

[334], but also by exposure factors such as smoking [335]. Studies from Japan have shown a higher 

possibility of developing concomitant PDAC, 3 to 5-fold compared to the general population[336], 

and recent studies from other countries have demonstrated similar risk [337]. Predictive factors of 

HGD/IC are the so-called high-risk stigmata (HRS) and worrisome features (WF), primarily defined in 

2012 [338]. HRS are the strongest predictors of malignancy, with a risk ranging from an OR of 1.09 

(95% CI: 104-1.14) for a main pancreatic duct (MPD) ≥10 mm [339], to an OR of 2.93 (95% CI: 1.77-

4.84) for smaller nodules (between 5 mm and 10 mm), reaching the highest OR of 7.9 (95% CI: 4.66-

13.40) for larger mural nodules (>1 cm) [339]. On the other hand, WF alone are not strong predictors 

of malignancy, with a risk ranging from an OR of 1.27 (95% CI: 1.01-1.59) in the case of new-onset 

diabetes [340] to an OR of 3.51 (95% CI: -) with a septal thickness ≥2.5 mm [339]. The presence of 

multiple WF increases the risk exponentially, reaching 100% in the presence of 4 or more [341]. 

Therapeutic management of patients is usually discussed in a multidisciplinary setting, considering 

not only the presence of HRS/WF but also general conditions, age, comorbidities, and personal 

choices [338]. In most patients not undergoing surgery, follow-up remains a debated issue, 

considering the economic burden linked to the high prevalence of IPMN in the general population. 

It is still unclear, considering the low long-term risk of malignancy, whether follow-up 

discontinuation after 5 years, especially in older patients with small and stable cysts, might be 

suitable. Growing evidence in recent years supports this possibility. In a long-term retrospective 

study on 1,036 BD-IPMN without WF/HRS at diagnosis, only 4.2% developed WF or HRS, and 1.1% 

developed PDAC after a median of 62 months [342]. In a multicenter international cohort of 3,844 
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patients with BD-IPMN without WF/HRS at diagnosis, 1.8% developed HRS, and the incidence of PC 

in patients with stable cysts for at least 5 years and who were at least 75 years old was not 

significantly higher than that of the general population [337]. 

 

MCN 

Unlike IPMN, mucinous cystic neoplasms (MCN) of the pancreas are mucin-secreting cystic tumors 

that do not communicate with the ductal system [343]. MCNs can progress to invasive cancer, with 

a reported risk ranging from 10% to 39% [344]. A recent meta-analysis found a low global risk of 

progression (16%) in more than 3,000 resected MCNs, questioning the current liberal policies 

regarding surgical indications [345]. The risk of malignancy in MCNs depends on specific features. 

Several large series of resected MCNs have reported no incidence of cancer in small (<3 cm) lesions 

without solid nodules. Conversely, a tumor size ≥4 cm has been identified as a strong predictor of 

malignancy (OR 16.9 95% CI: 2.04-140) [346, 347]. Mural nodules have also been reported as 

predictors of malignancy in many studies [348, 349], with a pooled OR of 4.34 (95% CI: 3.00-6.29) 

[345]. Therefore, current guidelines recommend surgical resection for MCNs ≥4 cm, when patients 

are symptomatic, or have risk factors (e.g., mural nodules), regardless of their size [350]. Despite 

these aggressive indications, risk factors for developing malignant MCNs are still not well 

characterized, with a lack of defined high-risk features compared to their intraductal counterparts. 

Consequently, despite being two different entities, MCNs usually follow the same management 

flowchart and malignancy risk estimation as IPMN[345]. 

 

A summary of all information regarding characteristics, mechanisms and epidemiological findings of 

this chapter is included in Table 5.  

5. Interactions between environmental and genetic factors in differential susceptibility to PDAC 

development 

In addition to the effect of the exposome, several SNPs have been identified through genome-wide 

association studies (GWAS) or secondary analysis of GWAS data done in large consortia 

{Amundadottir, 2009 #30;Childs, 2015 #33;Klein, 2018 #35;Petersen, 2010 #31;Wolpin, 2014 

#32;Zhang, 2016 #34; 

Corradi, 2021 #350;Corradi, 2023 #351;Galeotti, 2021 #353;Gentiluomo, 2022 #349;Pistoni, 2021 

#352}. The identification of interactions between lifestyle, environmental exposure, and genetic 
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variability in cancer has been a long-sought goal of many scientists. For common cancers, such as 

breast and prostate, many studies carried out using very large populations reported promising, 

although heterogeneous, results. 

Several researchers have tried to characterize the possible gene-environment (GxE) interactions in 

PDAC. The earlier attempts were based on simple logistic regression fitting SNPs, environmental 

factors (E), and an interaction (SNP x E) term into the model comparing cases and controls [351]. 

These studies had many limitations: they were all carried out before GWAS data availability and 

therefore focused on candidate genes. Furthermore, they used inadequate sample sizes, hampering 

their statistical power, and a method that is prone to false positives[351]. A detailed list of these 

studies has been reviewed elsewhere [351]. After these first approaches, later studies took 

advantage of GWAS data and used different methodologies. However, it was clear from studies 

carried out in other cancers that rarely, if ever, have the GWAS hits shown interaction with common 

risk factors for a specific tumor. For example, there were no clear indications of the interaction 

between breast cancer susceptibility loci and common etiologic risk factors [352-354]. Therefore, 

the most common way to explore GxE was the genome-wide gene interaction study (GWIS) strategy. 

The idea is to extend the interaction analysis (using various methods, including simple logistic 

regression) to all SNPs genotyped in a specific study and test the possible interaction of all the 

variants with one or more environmental factors. 

Tang and coworkers tested the interaction of 870,000 SNPs with diabetes and obesity. The large 

sample size comprised 8,255 PDAC cases and 11,900 controls of European ancestry from the 

PanScan I-III and the PanC4 studies. In addition to single SNPs, a gene-level analysis was also 

performed. The authors did not observe any genome-wide significant interactions with the 

individual SNPs, whereas the gene-level analysis showed an association of the family with sequence 

similarity 63 member A (FAM63A) gene and diabetes [140]. This gene plays a role in genome 

stability, but there is no direct link with either PDAC or diabetes. Mocci and colleagues conducted a 

genome-wide smoking interaction analysis using genotyping data of 7,937 PDAC cases and 11,774 

controls from PanC4 and PanScan I-III studies. The authors identified a locus on 2q21.3 that 

significantly modified PDAC risk by smoking status [355].  A recent GWIS study by Ni and colleagues 

of heavy alcohol consumption (defined by the authors as more than 3 drinks per day) identified a 

promising interaction on 10p11.22 [356]. 

Although these three studies show promising results, GWIS suffers from inherent difficulties in data 

interpretation. Many tests are performed, and usually, the link between the genetic variant and the 
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environmental factor remains unclear. Additionally, the small effect of the SNPs decreases the 

statistical power. An alternative approach is the use of the cumulative effect of a polygenic risk score 

(PRS) instead of the individual SNPs [361]. This approach, which was successfully employed in breast 

cancer [362], has been attempted only using a limited number of PDAC cases from the UK Biobank 

cohort and did not show any statistically significant interactions [143, 149]. 

In conclusion, GxE interactions in PC are largely unexplored, and studies that use the most promising 

approach, PRSs by environment, need to be conducted in large studies such as PanScanI-III or 

PANDoRA. 

6. Conclusions and future research 

PC, particularly PDAC, remains a formidable global health challenge due to its rising incidence and 

high mortality rates. Despite accounting for only 3% of all cancer diagnoses, PDAC is responsible for 

7% of cancer-related deaths, underscoring its disproportionate lethality. The asymptomatic nature 

of early-stage PDAC further complicates timely diagnosis and treatment, emphasizing the need for 

improved screening and preventive measures. 

Understanding the multifaceted risk factors for PDAC, including lifestyle choices, environmental 

exposures, and genetic predispositions, is crucial for developing effective prevention and early 

detection strategies. Modifiable risk factors such as smoking, heavy alcohol consumption, non-

alcoholic fatty pancreatic disease (NAFPD), and obesity highlight the importance of lifestyle 

interventions in reducing PC risk. Additionally, the role of refined sugar and sugar-sweetened 

beverages (SSBs) in increasing PC risk, particularly among younger individuals, warrants further 

investigation and public health initiatives to reduce consumption. 

Emerging evidence on the influence of the gut microbiome and exposure to toxic substances, 

including heavy metals and chemicals, on PC development opens new avenues for research. The 

gut-pancreas axis and microbial translocation, along with microbial metabolites, present potential 

targets for therapeutic intervention. Furthermore, advancements in glycomics have identified 

distinct glycan profiles and potential biomarkers for early PDAC detection, offering promise for 

improved diagnostic tools. 

The interplay between environmental and genetic factors in PDAC susceptibility remains an area of 

active research. Genome-wide association studies (GWAS) have identified several single nucleotide 

polymorphisms (SNPs) linked to PDAC, but gene-environment (GxE) interactions are still largely 
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unexplored. Future research should focus on polygenic risk scores (PRS) and large-scale studies to 

better understand these interactions and their impact on PDAC risk. 

In conclusion, addressing the complex etiology of PDAC requires a multidisciplinary approach, 

integrating insights from epidemiology, genetics, microbiology, and glycomics. Continued research 

into the mechanisms underlying PDAC development and progression, along with the identification 

of novel biomarkers and therapeutic targets, will be essential for improving patient outcomes. 

Public health initiatives aimed at reducing modifiable risk factors and enhancing early detection 

efforts will also play a critical role in combating this deadly disease. 
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Figure 1. Modifiable and non-modifiable risk factor for pancreatic cancer 

 
Table 1. Key facts of non-modifiable risk factors 

Condition 
Characterist
ics 

Mechan
isms 

Epidemiological Findings 

Age 
Increase in 
age 

not 
defined 

PDAC incidence is increasing over time across all ethnicities and 
both sexes in the U.S. and Europe (Gaddam et al. 2021; Beral and 
Peto 2010). 

Older individuals have a higher incidence of PDAC and a worse 
prognosis. Since patients diagnosed at an early stage have the best 
survival rates, this emphasizes the need for early prevention and 
control programs (Wang et al. 2020). 

Sex 
Female or 
male sex 

Differen
t 
exposur
e 
betwee
n sex 
and 
differen
t 
hormon
al level 

Larger European studies consistently show that pancreatic ductal 
adenocarcinoma (PDAC) occurs more frequently in males than in 
females across all age groups. Globally, the incidence rate is also 
slightly higher in males, with 5.5 new cases per 100,000 each year 
compared to 4.0 per 100,000 in females (Bao et al., 2008). This 
gender disparity is partly explained by modifiable risk factors—
such as tobacco use and alcohol consumption—which tend to be 
more common among males (Wang et al., 2016a; Jiang et al., 
2023) 

Type 2 
diabetes 

Chronic 
metabolic 

Hyperin
sulinemi

Both long-standing and newly diagnosed cases associated with 
elevated risk of PDAC [11]. 
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condition 
characterize
d by 
insuline 
resistence 

a, 
insuline 
resisten
ce, 
chronic 
inflamm
ation, 
hypergly
caemia 

Up to 85% of PDAC patients present with either new-onset T2D 
(NOD) or impaired glucose tolerance at the time of diagnosis (De 
Souza et al. 2016); NOD patients have a 3.81 to 5.2-fold higher risk 
of PC [22, 23], and those over 50 years old face a 6-8-fold higher 
risk [18, 22, 24].  15% of T2D cases in PDAC patients are long-
standing, with a 1.5 to 2.4-fold increased risk of PDAC [3, 18]. 

 Gallstones, pancreatitis, weight loss, and high or rapidly 
increasing glycemia or insulin use are specific risk factors for NOD  
(Mellenthin et al. 2022). 

Allergies 
Presence of 
allergies 

Immune 
surveilla
nce 

Allergies and asthma represent other medical conditions that may 
impact PDAC risk (Cotterchio et al. 2014; Gomez-Rubio et al. 2017; 
Huang et al. 2018; Olson et al. 2013).   

Large studies and meta-analyses consistently indicated that 
allergies reduce PDAC risk (Gandini et al. 2005; Olson et al. 2013). 

Although the protective effect of allergies is consistent, it is 
stronger for specific allergies and less for others. Atopic allergies 
have a clear protective effect on PDAC onset (Cotterchio et al. 
2014; Holly, Eberle, and Bracci 2003). 

Blood 
group 

A, B, AB or 
O blood 
group 

Changes 
in 
blood-
type 
antigens 
might 
interfer
e with 
cell 
signaling
, 
adhesio
n, and 
the 
immune 
system’s 
ability 
to kill 
preneop
lastic 
cells 

Individuals with A, B, or AB blood groups have a higher risk 
compared to those with blood group O (Kim, Yuan, et al. 2023). 

Changes in blood-type antigens might interfere with cell signaling, 
adhesion, and the immune system’s ability to kill preneoplastic 
cells (Kim, Yuan, et al. 2023). 

Genetic 
backgrou
nd 

Presence of 
germline 
high or low 
pentrance 
mutation 

Mechani
sms 
could 
vary 
dependi
ng on 
the 
genetic 
variatio
n, many 
are still 

Genetic variants associated to PDAC risk are categorized as rare 
high-penetrance mutations or common low-penetrance muation 
(the majority of which are single nucleotide polymorphisms 
(SNPs)). 

Increased risk of PDAC is associated with the presence of inherited 
pathogenic mutations in 12 genes (BRCA2, PALB2, BRCA1, ATM, 
STK11, CDKN2A, PRSS1, MLH1, MSH2, MSH6, PMS2, APC) (Klein, 
2021). 

The two most widely used approaches to identify new 
susceptibility loci are: candidate gene studies and genome wide 
association studies (GWAS). 
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not 
defined 

Five GWAS and one meta-analysis was conducted in the context of 
Pancreatic Cancer Cohort Consortium (PanScan), Pancreatic 
Cancer Case Control Consortium (PanC4) and the PANcreatic 
Disease ReseArch (PANDoRA) in European population 
(Amundadottir et al., 2009; Petersen et al., 2010; Wolpin et al., 
2014; Childs et al., 2015; Zhang et al., 2016; Klein et al., 2018). 

Three GWASs and a meta-analysis were performed in Chineseand 
Japanese populations (Wu et al., 2014; Lin et al., 2020; Nakatochi 
et al., 2018).  

Metabolic 
Syndrom
e 

High blood 
pressure, 
insulin 
resistance, 
obesity, 
excess body 
fat around 
the waist, 
abnormal 
lipid levels 

Chronic 
inflamm
ation 
and 
oxidativ
e stress 
promoti
ng 
tumor 
growth 
and 
progress
ion 

Metabolic syndrome (MetS) Increases risk of pancreatic cancer 
through mechanisms like chronic inflammation and oxidative 
stress (Inoue et al. 2009; Miyashita et al. 2024; Park et al. 2020; 
Rosato et al. 2011) 

One cohort study reporting a 31% increased risk (Xia et al. 2020) 

A meta-analysis of nine studies confirmed a strong association  (RR 
1.34, 95% CI 1.23–1.46, P < 0.001) especially in females ( women: 
RR 1.64, 95% CI 1.41–1.90, P < 0.001 versus RR 1.26, 95% CI 1.03–
1.54, P = 0.022 in males) (Zhong et al. 2023) 

Importantly, recovery from MetS has been linked to a lower risk of 
PC, suggesting that improving metabolic health through lifestyle 
changes may reduce PC risk (Park, Hong, et al. 2022) 

Cholelithi
asis 

Presence of 
gallstones 

Chronic 
inflamm
ation 
caused 
by 
gallston
es, 
biliary 
obstruct
ive 
diseases
, high 
cholecys
tokinin 
levels 

Individuals with gallstones (cholelithiasis) have slightly increased 
risk of pancreatic cancer (Naudin et al. 2020). It likely involves 
chronic inflammation caused by gallstones [53], biliary obstructive 
diseases [54], or high cholecystokinin levels in cholecystectomized 
patients [55].  

Most pancreatic cancers occur in individuals without a history of 
gallstones 

Dyslipide
mia 

Abnormal 
lipid levels 

Interpla
y 
betwee
n 
metabol
ic 
syndro
me, 
insulin 
resistan
ce, 
chronic 
inflamm
ation, 
lipid 

Abnormal lipid levels  have been associated with higher risk of 
pancreatic cancer (Wang et al. 2021; Huang et al. 2022; La Torre et 
al. 2014; Bian et al. 2022) 
In a large study of 1 million subjects, the risk of pancreatic cancer 
was estimated to be 40% higher in those with dyslipidemia (Tseng 
2013) 

Dietary cholesterol may be associated with increased risk except 
for Europeans (Wang et al. 2015) 
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metabol
ism, 
secretio
n of 
adipokin
es and 
cytokine
s 

 
Table 2. Key facts of diet and addictive habits 

Condition 
Charac
teristic
s 

Mechanisms Epidemiological Findings 

Tobacco 
Smoking 

Smokin
g 
tobacc
o 

Chronic 
inflammation, 
oxidative stress, 
genetic 
mutations 

Contributes to approximately 11-32% of pancreatic cancer 
cases worldwide (Maisonneuve and Lowenfels 2015b) 

A large meta-analysis reported: RRs of 1.8 (95% CI 1.7-1.9) 
for current vs. never-smokers and 1.2 (95% CI 1.1-1.2) for 
former vs. never-smokers (Lugo et al. 2018) 

PanC4  analysis reported: 20% (OR 1.2, 95% CI 1.0-1.3) 
and more than two-fold increased risk (OR 2.2, 95% CI 1.7-
2.8) for former and current smokers, respectively (Bosetti 
et al. 2012) 

PanScan study reported: OR of 1.77 (95% CI 1.38-2.26) for 
current vs. never-smokers (Lynch et al. 2009) 

Risk increases with duration and intensity of exposure 

Meta-analysis of 42 studies: RR estimates of 1.5 (95% CI 
1.4-1.6) for 10 cigarettes/day, 1.9 (95% CI 1.8-2.0) for 20 
cigarettes/day, 2.0 (95% CI 1.9-2.1) for 30 cigarettes/day, 
and 2.1 (95% CI 1.9-2.3) for 40 cigarettes/day (Zou et al. 
2014) 

Nationwide study: HRs of 1.33 for <10 cigarettes/day, 1.45 
for 10-19 cigarettes/day, and 1.55 for >20 cigarettes/day 
(Park, Seo, et al. 2022) 

An Australian study based on seven prospective cohorts 
reported an increased risk only if smoking more than 10 
cigarettes/day (Arriaga et al. 2019) 

Risk decreases after at least ten years since smoking 
cessation 

Relationship between smoking and early-onset PDAC is 
less clear, possibly because of  different thresholds used 
for defining early-onset PDAC (ranging from 40 to 60 years 
of age) and the limited number of cases analyzed. 

EPIC study suggested that also passive smoking may 
increase pancreatic cancer risk (HR of 1.54, 95% CI 1.00-
2.39) (Vrieling et al. 2010) 

Alcohol 
Consumption 

Heavy 
drinkin
g (≥ 3 
drinks/
day) 

Chronic 
inflammation 
and pancreatitis 

Meta-analysis of 21 case-control and 11 cohort studies 
from the U.S., Europe, and Asiareported a pooled RR of 
1.22 (95% CI 1.12–1.34) for heavy drinkers compared to 
non-drinkers or occasional drinkers (Tramacere et al. 
2010) 
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PanC4 consortium: OR of 1.6 (95% CI 1.2–2.2) for heavy 
drinkers compared with non-drinkers or occasional 
drinkers (Lucenteforte et al. 2012) 

Prospective study of  Chinese individuals: HR of 1.33 for 
weekly drinkers compared to non-drinkers; HR of 1.60 for 
heavy drinkers compared to non-drinkers (Pang et 
al.,2018) 

Pooled analysis from 4,211,129 individuals of mixed 
ethnicities: RR of 1.15 for heavy drinkers compared to 
non-drinkers (Wang et al.,2016) 

Pooled analysis of 14 prospective cohort studies: RR of 
1.22 for high alcohol intake (≥ 30 grams/day) compared to 
non-drinkers (Genkinger et al.,2009) 

No strong association between low-to-moderate alcohol 
drinking and pancreatic cancer risk in several studies 
(Lucenteforte, La Vecchia et al. 2012, Rahman, Cotterchio 
et al. 2015, Wang, Gou et al. 2016, Pang, Holmes et al. 
2018).  

PanScan study: No statistically significant association 
between alcohol consumption and pancreatic cancer risk 
(Michaud et al.,2010) 

Relationship may be confounded by tobacco smoking (Ye, 
Lagergren et al. 2002, Duell 2012, Rahman, Cotterchio et 
al. 2015) 

Mendelian randomization studies did not support a causal 
effect of alcohol drinking on pancreatic cancer risk  (Lu, 
Gentiluomo et al. 2020, Yuan, Chen et al. 2023).  

Non-alcoholic 
fatty 
pancreatic 
disease 
(NAFPD) 

Fat 
accum
ulation 
in 
pancre
atic 
tissue 

Insulin 
resistance, 
cellular damage, 
chronic oxidative 
stress, local 
secretion of 
inflammatory 
markers, 
pathological 
activation of 
lipid-glucose 
metabolism and 
imbalance of 
hormone 
homeostasis. 

NAFPD is not explicitly classified as a modifiable risk factor 
for PDAC, but it is associated with age, obesity, metabolic 
syndrome, and T2D that are known risk factor for PDAC 
(Duan et al., 2021).  

Effect of NAFPD on PDAC risk occurs in both obese and 
non-obese subjects (Park et al., 2022) 

Body Mass 
Index (BMI) 

Obesit
y (BMI 
> 30 
kg/m²) 

Location-
dependent fat 
accumulation, 
chronic 
inflammation 

A large study pooling data from 14 cohorts reported 47% 
increased risk of PDAC in obese subjects (Genkinger et al. 
2011) 

A large meta-analysis of 19 studies estimated RRs of 1.36 
for men and 1.34 for women (Dobbins, Decorby, and Choi 
2013) 

A higher pancreatic cancer risk in adulthood for 
overweight and obesity conditions in adolescence (Zohar 
et al. 2019) was reporte  in a national-level Israeli study ; a 
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case control study (Li, Morris et al. 2009) and a study on 
Chinese incident case  (Pang, Holmes et al. 2017) 

BMI-independent association between  waist-to-hip ratio 
(WHR)and hip circumference (HC)and pancreatic cancer 
risk may reflect site-specific fat effect  (Genkinger et al. 
2011; Berrington de Gonzalez et al. 2006; Stolzenberg-
Solomon et al. 2008) 

Mendelian randomization analyses provided further 
evidence for a causal role of BMI on pancreatic cancer risk  
(Carreras-Torres,  et al., 2017; (Gentiluomo, et al., 2024) 

Specific Foods 
and 
Components 

Intake 
of total 
nut, 
tree 
nut, 
peanut
, 
peanut 
butter, 
total 
fruit, 
citrus 
fruit, 
total 
vegeta
bles, 
crucife
rous 
vegeta
bles, 
red 
meat, 
fructos
e  

Varied 
associations with 
pancreatic 
cancer risk 

Total nut consumption associated with reduced PC risk in 
two meta-analyses (D. Zhang et al., 2020; (Naghshi, 
Sadeghian et al., 2020). 

Contrasting results for total fruit, citrus fruit, total 
vegetables, and cruciferous vegetables (Gianfredi et al., 
2022; Qin et al., 2023) 

Red meat consumption associated with increased PC risk 
in two meta-analyses (Paluszkiewicz et al., 2012; Z. Zhao 
et al., 2017). Similar trend,but not statistically significant, 
found in another meta-analysis (S. C. Larsson & Wolk, 
2012) 

Fructose intake associated with increased PC risk in one 
meta-analysis (Aune et al., 2012) 

Dietary 
Inflammatory 
Index (DII) 

High 
DII, 
adhere
nce to 
unheal
thy or 
Wester
n 
dietary 
pattern
s 

Increased risk of 
pancreatic 
cancer 

High DII associated with increased risk of PC in two meta-
analyses (Z. Guo, Hong, & Cheng, 2021; Jayedi, Emadi, & 
Shab-Bidar, 2018), but no association was found in cohort 
studies (Qin et al., 2023) 

 

Unhealthy diet associated with increased PC risk in case-
control studies (Grosso et al., 2017); but no association 
was found in cohort studies(Grosso,  et al., 2017; 
Gianfredi,  et al., 2022). 

Dietary 
Patterns 

Adhere
nce to 
healthy

Reduced risk of 
pancreatic 
cancer 

Healthy/prudent patterns associated with reduced risk of 
PC in two meta-analyses (Gianfredi et al., 2022; Grosso et 
al., 2017) 
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/prude
nt or 
plant-
based 
dietary 
pattern
s 

Plant-based dietary pattern associated with reduced risk 
of PC in two meta-analyses of case- control or cohort 
studies (Y. Zhao et al., 2022) 

Mediterranea
n Diet 

Adhere
nce to 
Medite
rranea
n diet 

Weak association 
with reduced risk 
of pancreatic 
cancer 

No association found in one meta-analysis (Schwingshackl 
& Hoffmann, 2015) 

Weak association with reduced PC risk in four cohort 
studies (Jiali Zheng et al., 2017) 

Sugar-
Sweetened 
Beverages 
(SSBs) and 
Refined Sugar 
Consumption 

Consu
mption 
of SSBs 
and 
refined 
sugar 

Sugar intake, 
insulin 
production, 
insulin 
resistance, 
inflammation 

Increased risk of PDAC with SSB consumption (Chen et al. 
2022; Larsson, Bergkvist, and Wolk 2006) 

Dose-response relationship with risk increasing 
progressively from as little as one serving (Chen et al. 
2022; Davis et al. 2023) 
A higher prevalence of PDAC has been associated with 
increased frequency of SSB consumption among 
individuals under 40 years of age.  Estimating, in this age 
group, a threefold increase in PDAC risk in individuals 
consuming two or more SSBs per day ( Larsson, Bergkvist, 
and Wolk 2006). 

70% greater risk of PDAC in people adding sugar to drinks 
at least five times a day (Larsson, Bergkvist, and Wolk 
2006) 

Some studies failed to find a correlation between SSB 
consumption and PDAC risk (Navarrete-Munoz et al. 
2016), Confounders possibly affecting results are tobacco, 
alcohol, diabetes, BMI, age, sex, physical activity, and 
overall dietary patterns (Schernhammer, Hu et al. 2005; 
Li, Go et al. 2015; Nucci, Nardi et al. 2023). 

Sex or age specific effect of soft drinks on PDAC risk may 
depend on BMI or physical activity (Schernhammer et al. 
2005) 

 
Table 3. Key facts of life-style 

Conditi
on 

Characte
ristics 

Mecha
nisms 

Epidemiological Findings 

Physica
l 
Activity 

Intensity 
and type 
of 
physical 
activity, 
occupati
onal and 
leisure 
domains
, 
sedentar

Reduce
d risk 
with 
light 
and 
modera
te 
physical 
activity; 
Prolong
ed 
sedenta

Statistically significant association between light, moderate, leisure and 
occupational ivity physical activity and reduced risk of PDAC ((Bao and 
Michaud 2008; O'Rorke et al. 2010; Brenner et al. 2014) 

Inconsistent findings across studies for different intensities of physical 
activity 

Prolonged telephone use and higher intensity  (Peduzzi et al. 2023), as 
well as, time spent watching television(Gentiluomo et al. 2024) 
increased risk of developing PDAC 
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y 
lifestyle 

ry 
behavio
r 
increas
es risk 

Local 
Environ
ment 

Exposur
e to 
outdoor 
air 
pollution
, 
particula
te 
matter 
(PM2.5 
and 
PM10), 
nitrogen 
oxides 
(NOx), 
nitrogen 
dioxide 
(NO2), 
hydroge
n sulfide 
(H2S), 
sulfur 
oxides 
(SOX), 
ozone 
(O3), 
noise 
pollution
, urban 
traffic, 
distance 
from the 
coast, 
percenta
ge of 
green 
space, 
natural 
environ
ment, 
water, 
and 
domesti
c 
gardens 
within 
1000 

Potenti
al 
carcino
genic 
effects 
of air 
pollutio
n and 
particul
ate 
matter 

Several studies have investigated the association between particulate 
matter (PM2.5 and PM10) and PC, with mixed and often inconclusive 
results 

Association between PM2.5 and elevated risk of developing pancreatic 
cancer (HR of 1.16, 95% CI 1.13-1.20) (Wang et al. 2018); (HR of 1.61, 
95% CI 1.09-2.37) (Bogumil et al. 2021) and between PM10 exposure and 
increased risk of pancreatic cancer (Ancona et al. 2015) 

Negative association between PM2.5 and risk of developing pancreatic 
cancer (OR of 0.65, 95% CI 0.52–0.80) (Craver et al. 2024) 

No significant associations were observed in studies by Turner et al. 
(2017), Coleman et al. (2020), and Felici et al. (2024). 

Additional environmental exposures were examined, but only O3 (Turner 
et al. 2017), and SOX (Ancona et al. 2015) were associated with a higher 
risk of PC. 
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meters 
from 
residenti
al 
coordina
tes 

Sleep 
Quality 

Altered 
sleep 
patterns
, 
habitual 
short 
sleep, 
exposur
e to light 
at night, 
shift 
work 

Circadia
n 
disrupti
on, 
exposur
e to 
light at 
night 

Inconclusive results on the association between sleep duration and PDAC 
risk (Freeman et al. 2024; Stone et al. 2019; Titova et al. 2021; Peduzzi et 
al. 2023) 

Higher exposure to light at night associated with increased PDAC risk (HR 
of 1.24, 95% CI 1.03-1.49) (Xiao, Wang, and Gao 2013) 

Elevated risk of developing PDAC among individuals engaged in shift 
work (OR of 2.31, 95% CI 1.48-3.61) (Parent et al. 2012) 

Other studies did not confirm the association between shift work and 
PDAC risk (Peduzzi et al. 2023; Freeman et al. 2024; Lin et al. 2013) 

Stress 

Psycholo
gical 
stress, 
stress 
caused 
by 
traumati
c events 
like loss 
of a 
child, 
divorce, 
income-
related 
issues 

Psychol
ogical 
stress, 
anxiety, 
depress
ion 

Pre-existing anxiety associated with increased risk of PDAC (OR of 1.13, 
95% CI 1.04-1.22) (Li et al. 2023) 

Loss of a child increases risk of developing PDAC (OR of 1.09, 95% CI 
1.02-1.17) (Huang et al. 2013) 

Association between traumatic events and increased PDAC risk (RR of 
3.1, 95% CI 1.3-7.2 and OR of 2.90, 95% CI 1.62-4.80) (Nielsen and 
Peduzzi) 

 
Table 4. Key facts of exposure to toxic substances, heavy metals and prescription medications 

Condition 
Characteristic
s Mechanisms 

Epidemiological Findings 

Hormonal 
Treatments & 
Prescription 
Medications 

OC use, HRT 
use, age at 
menarche, 
menopause, 
number of 
births 

Hormones 
associated 
with 
pregnancy, 
menstrual 
cycle, oral 
contraceptio
n (OC), 
hormone 

25 studies investigated OC use; of which 3 studies( 
(Krieger et al. 2001; Azeem et al. 2015; Archibugi et al. 
2020) and a 2021 meta-analysis(Ilic et al. 2021) found 
OC use linked to reduced PDAC risk. 

5 studies showed a reduced PDAC risk with HRT use 
(Watkins 1989; Lee et al. 2013; Lujan-Barroso et al. 
2016; Archibugi et al. 2020; Ilic et al. 2021), while a 
meta-analysis (Jang et al. 2023)found no significant 
association 
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replacement 
therapy 
(HRT) 

Age at menarche associated with increased PDAC risk 
(Ilic, Milicic, e Ilic 2021; Lujan-Barroso et al. 2016; 
Bueno de Mesquita et al. 1992) while many other 
studies (Alvarez, Benjaminsen Borch, e Rylander 2021; 
Teng et al. 2017; Masoudi et al. 2017; E. Lee et al. 
2013; Duell et al. 2013; Ersilia Lucenteforte et al. 2011; 
Duell et al. 2009; Prizment et al. 2007; Navarro Silvera, 
Miller, e Rohan 2005; Duell e Holly 2005; Kreiger, 
Lacroix, e Sloan 2001; Archibugi et al. 2020; Y. Zhang et 
al. 2010; Kalapothaki et al. 1993; Ji et al. 1996; Hanley 
et al. 2001; Skinner et al. 2003; Teras et al. 2005; Y. Lin 
et al. 2006; Stevens et al. 2009; Azeem et al. 2015; 
Kabat, Kamensky, e Rohan 2017)and a meta-analysis 
(Teng et al. 2017) found no association . 

Findings in studies on association between age at 
menopause and PDAC risk  are inconsistent: 
Two studies suggest late menopause is protective 
(Prizment et al. 2007; Archibugi et al. 2020). 
One study suggests increased risk with late menopause 
(Duell and Holly 2005). 
Others studiest (Kalapothaki, Tzonou et al. 1993, 
Fernandez, La Vecchia et al. 1995, Ji, Hatch et al. 1996, 
Kreiger, Lacroix et al. 2001, Skinner, Michaud et al. 
2003, Teras, Patel et al. 2005, Lin, Kikuchi et al. 2006, 
Duell, Maisonneuve et al. 2009, Stevens, Roddam et al. 
2009, Zhang, Coogan et al. 2010) and meta-analysis 
(Tang et al. 2015) found no impact. 

Findings in studies on association between parity and 
PDAC risk  are inconsistent:  
Several studies women (Kreiger, Lacroix, e Sloan 2001; 
Archibugi et al. 2020; Ersilia Lucenteforte et al. 2011; 
Kalapothaki et al. 1993; Skinner et al. 2003; Teras et al. 
2005; Kabat, Kamensky, e Rohan 2017; Fernandez et al. 
1995)and a Meta-analysis (Zhu et al. 2014): found that 
having ≥1 child is linked to reduced PDAC risk 
However, many other studies reported no association 
(Azeem et al. 2015; E. Lee et al. 2013; Alvarez, 
Benjaminsen Borch, e Rylander 2021; Teng et al. 2017; 
Duell et al. 2013; Duell et al. 2009; Prizment et al. 
2007; Navarro Silvera, Miller, e Rohan 2005; Duell e 
Holly 2005; Y. Zhang et al. 2010; Y. Lin et al. 2006; 
Stevens et al. 2009; Andersson, Borgquist, e Jirström 
2018) 

Common genetic variability related to signalling and 
biosynthesis of sex hormones not associated with 
PDAC susceptibility (Duell et al. 2013; Peduzzi et al. 
2022) 
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Aspirin, 
metformin, 
and statins 

Aspirin, 
metformin, 
and statins 
have all been 
studied for 
their potential 
chemopreven
tive and 
survival-
improving 
effects in 
pancreatic 
ductal 
adenocarcino
ma (PDAC). 

Aspirin, 
Metformin 
and Statins 
may 
interfere 
with 
proliferation
, 
angiogenesis
, and 
inflammatio
n. 

Some studies reported an association between asprin 
use and reduced PDAC risk (Risch et al. 1993; Langman 
et al. 2004; Baine et al. 2010).Others show no 
association (Bao et al. 2010; Anderson et al. 2002). also 
metanalysi findings are mixed: Risch et al. 2017and 
Bosetti et al. 2012: indicating protective effect. 
Sun et al. 2021 reported no significant effect. Kim et al. 
2017: Showed a dose-response relationship, but results 
were not always statistically significant.  

Multiple meta-analyses reported significant risk 
reduction in pancreatic ductal adenocarcinoma (PDAC) 
with metformin use.(Noto, Goto et al., 2012; Franciosi, 
Lucisano et al., 2013; Singh, Singh et al., 2013; Wang, 
Lai et al., 2014; Hu, Fan et al., 2023;Zhang, Bai et al., 
2021; Hu et al. (2023):). 
Other metanalysis reported confliting results: Chen et 
al. (2023): Found no overall association between 
biguanides (incl. metformin) and PDAC risk, but 
observed reduced risk in case-control studies Zhao et 
al. (2023): No association in a meta-analysis of 9 
observational studies  

Meta-analyses suggest improved overall survival for 
metformin users with PDAC, with HRs ranging from 
0.77 to 0.88.(Nowicka, Matyjek et al., 2023). 

Two large meta-analysis showed lower PDAC incidence 
in statin users vs. non-users: Karbowska et al. (2024) 
Bagheri et al. (2024): 
two studies Tamburrino et al. (2020) and Anbari et al. 
(2023): reported an improved survival    for statin users 
with resectable PDAC. Another study Joliat et al. 
(2023): Found no survival benefit in a retrospective 
cohort of upfront resected patients  
studies on use of different sub types of statin reported: 
Use of Rosuvastatin was linked to reduced mortality in 
resected PDAC (HR 0.88, 95% CI: 0.81–0.96) 
(Tamburrino, Crippa et al., 2020). While Simvastatin & 
Atorvastatin showed strongest preventive effects 
(Archibugi, Piciucchi et al., 2017; Archibugi, 
Arcidiacono et al., 2019). 
No demonstrated protective effect in advanced PDAC, 
even when combined with chemotherapy (Archibugi, 
Arcidiacono et al., 2019). 

Infectious 
Agents and 
the Influence 
of the 
Microbiota 

Gut 
microbiome, 
microbial 
translocation, 
immune 
modulation 

Gut-
pancreas 
axis, 
disruptions 
in 
microbiota 
homeostasis, 
bacterial 
translocatio

Differences in bacterial abundances in fecal 
microbiomes of PDAC patients and controls (Pandya et 
al., 2022) 

Increases in Fusobacterium, Veillonella, and 
Streptococcus and decreases in Bifidobacterium, 
Faecalibacterium, and Eubacterium species in PDAC 
patients (Kartal et al., 2022; Nagata et al., 2022; Ren et 
al., 2017; Hashimoto et al., 2023; W. Zhou et al., 2021) 

Altered mycobiome, particularly Malassezia species, in 
PDAC (Bellotti et al., 2021) 
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n, immune 
modulation 

Increased abundances of Acinetobacter, Pseudomonas, 
and Sphingopyxis associated with more aggressive 
tumor phenotype (W. Guo et al., 2021) 

High levels of P. gingivalis antibodies or presence in 
oral microbiome associated with higher risk of 
developing pancreatic cancer (Olsen, 2017; Olsen & 
Yilmaz, 2019; D. S. Michaud et al., 2013) 

Fusobacterium species positively associated with 
worse prognosis (Mitsuhashi et al., 2015) 

Ablation of microbiome via oral antibiotics caused 
increase in intra-tumoral T cells and reduction of 
MDSCs (Pushalkar et al., 2018) 

Increased IL-1β following activation of TLR4 signaling 
by LPS promoted immunosuppressive milieu (Das et 
al., 2020) 

LPS promoted tumor T cell infiltration but also T cell 
exhaustion (Yin et al., 2021) 

Bacteroides, Lactobacillus, and Peptoniphilus 
associated with decrease in tumor-infiltrating CD4, 
CD8, and CD45RO positive T cells and reduced survival 
times (Abe et al., 2024) 

Microbial 
Metabolites 

Production or 
alteration of 
metabolites 
by the 
microbiome 

Microbiome-
mediated 
metabolism 
of primary 
bile acids to 
secondary 
derivatives, 
production 
of short-
chain fatty 
acids 
(SCFAs), 
indoles, 
polyamines 

Secondary bile acid deoxycholic acid increases EGFR, 
MAPK, and STAT3 signaling in PDAC cells (Nagathihalli 
et al., 2014); ; ; ; ;  

Secondary bile acid lithocholic acid inhibits 
proliferation and induces mesenchymal-to-epithelial 
transition in PDAC cells (Schwarcz et al., 2024) 

Reduced levels of butyrate-producing bacteria and 
fecal butyrate content in PDAC cases (W. Zhou et al., 
2021) 

Expression of aryl hydrocarbon receptor (AhR) 
associated with immunosuppressive tumor-associated 
macrophage (TAM) phenotype and rapid progression 
in PDAC patients (Hezaveh et al., 2022) 

Elevated serum polyamine levels in murine PDAC 
models and patients (Mendez et al., 2020; Löser et al., 
1990) 

Potential association between Helicobacter pylori 
infection and pancreatic cancer remains equivocal (B.-
G. Zhou et al., 2023; Hirabayashi et al., 2019; A. A. Lee 
et al., 2023; M. Xiao, Wang, & Gao, 2013; Panthangi et 
al., 2022; Trikudanathan et al., 2011) 

Heavy Metals 

Exposure to 
heavy metals 
like lead (Pb), 
nickel (Ni), 
iron (Fe), 
cadmium 
(Cd), 
chromium 
(Cr), 

Accumulatio
n in the 
body, 
oxidative 
stress, DNA 
damage, 
disruption of 
cellular 

Increased PDAC risk associated with decreased serum 
levels of magnesium, potassium, calcium, iron, zinc, 
selenium, arsenic, and mercury, and increased levels of 
molybdenum (Byeon et al., 2024) 

Significant increase in heavy metals in adjacent normal 
pancreas of PDAC patients (Byeon et al., 2024) 

No statistically significant association between regular 
exposure to chromium and nickel and pancreatic 
cancer (Antwi et al., 2015) 
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manganese 
(Mn), zinc 
(Zn), arsenic 
(As) 

signaling 
pathways 

Correlation between cadmium exposure and elevated 
risk of pancreatic cancer (Schwartz & Reis, 2000; 
Amaral et al., 2012; Manić et al., 2022; Forte et al., 
2024); Nickel exposure linked to pancreatic 
dysfunctions and PDAC (Gómez-Tomás et al., 2019; 
Wallace, Djordjević, & Benton, 2020) 

Occupational exposure to nickel compounds 
significantly raised the risk of pancreatic cancer among 
workers in the Ni refining industry (Ojajärvi et al., 
2000) 

Arsenic exposure associated with increased risk of 
pancreatic cancer (Liu-Mares et al., 2013) 

Acrylamide 
Exposure to 
acrylamide in 
food 

Probable 
human 
carcinogen 

No association between dietary acrylamide and 
pancreatic cancer risk (Pelucchi et al., 2017; Obón-
Santacana et al., 2013; Pelucchi et al., 2011; Kito et al., 
2020) 

Heterocyclic 
Aromatic 
Amines (HCAs) 
and Polycyclic 
Aromatic 
Hydrocarbons 
(PAHs) 

Exposure to 
HCAs and 
PAHs formed 
during 
cooking 
processes 
such as 
boiling, frying, 
barbecuing, 
and grilling of 
meat and fish 

Mutagens 
and 
carcinogens 

HCAs and benzo(alpha)pyrene from well-done 
barbecued and pan-fried meats linked to elevated risk 
of pancreatic cancer (Anderson et al., 2005) 

Higher meat consumption positively associated with 
increased risk of pancreatic cancer, particularly in 
individuals over 60 years old (Beaney et al., 2017) 

Meat cooked at high temperatures associated with 
increased risk of pancreatic cancer (Anderson et al., 
2012) 

High total meat intake linked to 26% increased risk of 
pancreatic cancer in both men and women 
(Stolzenberg-Solomon et al., 2007; Taunk, Hecht, & 
Stolzenberg-Solomon, 2016) 

Glycome 
Changes in 
PDAC 
Development 

Non-invasive 
serum 
biomarkers, 
abnormal 
glycosylation 
patterns, 
glycan profiles 

Changes in 
glycosylation 
patterns, 
sialylation, 
fucosylation, 
O-
glycosylation
, EMT 

CA 19-9 and CEA used as biomarkers for PDAC but have 
limitations  lack sensitivity and specificity, especially for 
early detection. Elevated levels can also occur in CP or 
benign diseases  (Hanna-Sawires et al., 2021; Xu et al., 
2023) 

 Characterized by stromal, tumor, and immune cells; 
abnormal glycosylation, especially sialylation, is a 
hallmark of PDAC and other malignancies (Marciel et 
al., 2023; Wagatsuma et al., 2020) 

 Integration with transcriptomic/genomic tools has 
revealed diagnostic N-glycan signatures for PDAC. 
Common changes: increased branching, core 
fucosylation, and sialylation (Zhang, Zhang et al. 2022). 
PDAC Glycan Subtypes (Rodriguez, Boelaars et al. 
2022): 
Cluster A (fucosylated/classical): ↑ fucosylation/O-
glycosylation gene expression. 
Cluster B (basal): ↑ MUC4, MUC16, galectin-1; 
associated with EMT and metastasis. 

MUC4 and MUC16 aberrantly expressed in PDAC and 
promote tumorigenesis (Sagar et al., 2021; Thomas et 
al., 2021) 
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Glycome biomarkers distinguish PDAC patients from 
healthy individuals (Vreeker et al., 2020; Levink et al., 
2022) 

Increased levels of α-2,6-sialic acid and overexpression 
of ST6GAL1 in PDAC (Wagatsuma et al., 2020; Kurz et 
al., 2021) 

Two promising glycan markers (NGA2FB and NA2FB) 
for distinguishing early and advanced PDAC (Wen et al., 
2024) 

 
Table 5. Key facts on links with pancreatic diseases and co-morbidities 

Conditio
n 

Charac
teristic
s Mechanisms 

Epidemiological Findings  

Chronic 
pancreati
tis 

Long-
term, 
progre
ssive 
inflam
matory 
of the 
pancre
as 

Inflammation 

CP is a known risk factor for PDAC onset.  

A history of CP has been associated with a HR for PDAC of 6.9 
(95% CI: 5.6-8.6) in a Danish nationwide study, and in Korean 
populations with an HR of 3.9 (95% CI: 2.7-5.5) and an 
incidence ratio of 18.1 (95% CI: 10.4-29.5) (bang et al., 2014; 
Han et al., 2022;  Kim et al., 2023).   

 

A recent meta-analysis reported a standardized incidence 
ratio ranging from 13.3 (95% CI: 6.1-28.9) to 22.61 (95% CI: 
14.42-35.44) (Gandhi et al., 2022). 

 

The risk of PDAC in CP patients is highest at 2 years from 
diagnosis, decreasing with longer follow-up (Kirkegard et al., 
2017). 

 

Intraduct
al 
Papillary 
Mucinous 
Neoplas
m (IPMN) 

Mass-
formin
g cystic 
lesions 

Progression to 
high-grade 
displasia or 
invasive 
carcinoma 

IPMN is a recognized risk factor for developing PDAC, related 
to the potential adenoma-carcinoma progression from low-
grade dysplasia (LGD) to high-grade dysplasia (HGD)/invasive 
carcinoma (IC) (Saiki et al., 2021). 

 

Studies have shown a higher possibility of developing 
concomitant PDAC, 3 to 5-fold compared to the general 
population (Oyama et al., 2020). 

 

Predictive factors of HGD/IC include high-risk stigmata (HRS) 
and worrisome features (WF) (Ohtsuka et al., 2024). 

 

Mucinous 
Cystic 
Neoplas
ms 
(MCN) 

Mucin-
secreti
ng 
cystic 
tumors 
that do 
not 
comm
unicate 
with 
the 
ductal 
system 

Progression to 
invasive 
carcinoma 

MCNs are mucin-secreting cystic tumors that do not 
communicate with the ductal system and can progress to 
invasive cancer, with a reported risk ranging from 10% to 
39% (Park et al., 2014). 

 

A recent meta-analysis found a low global risk of progression 
(16%) in more than 3,000 resected MCNs (Pollini et al., 
2023). 

 

The risk of malignancy depends on specific features such as 
tumor size and presence of mural nodules (Pollini et al., 
2023; Marchegiani et al., 2021; Servin-Rojas et al., 2023; 
Ohtsuka et al, 2020; Kim et al., 2022). 
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