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Pilot3 
A SOFTWARE ENGINE FOR MULTI-CRITERIA DECISION SUPPORT IN FLIGHT 
MANAGEMENT 

 

This deliverable is part of a project that has received funding from the Clean Sky Joint Undertaking 
under grant agreement No 863802 under European Union’s Horizon 2020 research and innovation 
programme. 

 

 

Abstract  

The deliverable provides the outcomes from the verification and validation activities carried during the 
course of work package 5 of the Pilot3 project, and according to the verification and validation plan 
defined in deliverable D5.1 (Pilot3 Consortium, 2020c). Firstly, it presents the main results of the 
verification activities performed during the development and testing of the different software 
versions. Then, this deliverable reports on the results of internal and external validation activities, 
which aimed to demonstrate the operational benefit of the Pilot3 tool, assessing the research 
questions and hypothesis that were defined at the beginning of the project. 

The Agile principle adopted in the project accompanying with the five five-level hierarchy approach on 
the definition of scenarios and case studies enabled the flexibility and tractability in the selection of 
experiments through different versions of prototype development. As a result of this iterative 
development of the tool, some of the research questions initially defined have been revisited to better 
reflect the validation results. 

The deliverable also reports the feedback received from the experts during the internal and external 
meetings, workshops and dedicated (on-line) site visits. During the validation campaign, both 
subjective qualitative information and objective quantitative data were collected and analysed to 
assess the Pilot3 tool. The document also summarises the results of the survey that were distributed 
to the external experts to assess the human-machine interface (HMI) mock-up developed in the 
project.   
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Executive summary 
This verification and validation report describes the results obtained through the project verification 
and validation activities execution, which aim to provide a thorough evidence of the status of the 
project prototype. Different prototype versions of Pilot3 tool have been released during the project 
development following the Agile principle and considering high-level functionalities. On each iteration, 
when a new functionality was implemented and before the release of the new version, the verification 
of the code was performed. Classical verification activities (both static and dynamic) were performed 
through the development of the prototype with software design technical reviews, code walk-through 
reviews, unit and interfaces testing, integration testing and functional testing. System testing, to verify 
that the requirements defined for Pilot3 are satisfied, was conducted prior to both software releases. 

The activities performed and reported in this deliverable are: 

1- Verification activities 

• Pilot3 prototype requirements test - the test cases results defined for the final set of 
requirements are presented, identifying for each requirement a final qualitative classification. 
Out of the 33 final requirements, 26 have been deemed as passed, 5 as not passed and 2 as 
partially passed. Considering that the 5 not-passed test case results derive from optional 
requirements, the overall verification activity of the system requirements is considered to be 
successfully performed. 

• HMI requirements test - new HMI requirements are presented in this deliverable in order to 
justify the verification status of the HMI design. A total of 18 requirements are presented, of 
which 14 have been deemed as passed, and 4 partially passed. Therefore, the overall HMI 
verification is also considered successful.  

2- Internal validation activities (IVA): 

Among the seven IVAs initially defined in deliverable D5.1 (Pilot3 Consortium, 2020c), four of them 
were finally executed. The main results are summarised as follow: 

• IVA1 - Validation of Pilot3 optimised trajectory plans with PACE FPO trajectory plans: the 
results of this action demonstrated that the trajectories generated by Pilot3 are realistic and 
of similar expected performance compared to state-of-the-art Pacelab Flight Profile Optimiser 
(FPO) tool. 

• IVA2 - Validation of indicators and estimators’ prediction: the validation activities were 
performed independently of the Pilot3 framework and they showed that Performance 
Indicators Estimator (PIE) and Operational ATM Estimator (OAE) modules of Pilot3 are able to 
improve the estimation of parameters. At this validation phase, for each specific machine 
learning model developed, standard validation activities in a machine learning pipeline were 
performed to ensure the model performs well (accuracy) and according to the expectations. 
The machine learning and heuristics models were subsequently assessed by the experts within 
consortium to ensure that the development was moving in the "right direction”. 

• IVA3 - Assessment of the optimisation framework: by using a theoretical example of flight (but 
using realistic values and aircraft performance models), this validation action demonstrated 
how different choices of priorities for the airlines would lead to different results (rankings) 
from the Performance Assessment Module. The results of this action have been used to 
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analyse the sensitivity of the AHP-VIKOR algorithm implemented in the Performance 
Assessment Module. 

• IVA4 - Pilot3 performance at generation of optimised trajectories plans: the results of the 
Pilot3 optimised trajectory plans have been analysed and compared against the operational 
flight plan (OFP) by using several metrics. The particular benefit of Pilot3 has been 
demonstrated for two types of flights: short/medium-haul (within Europe) and long-haul (with 
an oceanic segment). In addition to the metrics used for the purpose of the validation, the 
results of the Pilot3 optimised trajectory plan and the OFP were also provided in a graphical 
form depicting the vertical and speed trajectory profiles of the respective trajectories. In this 
context, the expected total cost function is also displayed, as a function of the arrival time and 
clearly identifying the incurred cost for both plans.  

• IVA7 - HMI validation: the internal validation of the HMI was performed iteratively during the 
course of the project with the active participation of all consortium members. The partners 
eventually agreed that the final version of HMI met their individual requirements and 
expectations. 

3- External validation activities (EVA): 

Two EVAs were performed from the three initially planned. Namely: 

• EVA1 - Pseudo-live demonstration of the HMI prototype and overall capabilities: the HMI 
prototype was presented in the form of mock-ups rather than an interactive dashboard 
including a number of screenshots for different HMI functionalities. The general feedback 
obtained during the Final Advisory Board meeting was that HMI prototype contains all 
important aspects relevant for the operations and may ease the decision-making process of 
the aircraft crew. A similar feedback was received by the survey sent to the Advisory Board 
members after the meeting. 

• EVA2 - Presentation of the results obtained with stand-alone simulations at trajectory level: 
the external experts acknowledged that results of Pilot3 are, in general, meaningful and in line 
with current operational strategies/practice. Consequently, Pilot3 has a considerable potential 
to support the pilot in making a proper decision during the flight execution.  

As already mentioned above, verification has been conducted in parallel to the model development 
and the internal validation actions have been executed after each software release, once the certain 
level of maturity of the prototype was ensured. EVA1 has been executed independently to the core 
prototype, since it has been a not integrated prototype design. Finally, EVA2 aimed at evaluating the 
benefits of the prototype and therefore has been executed with the external expert's panel with fully 
working versions of the code. At the end of the validation campaign, with all activities that were 
performed meanwhile, we succeeded to successfully validate 10 research questions aimed for the 
internal validation and 6 research questions defined for external validation, out of 14 and 10 initially 
planned in D5.1 (Pilot3 Consortium, 2020c), respectively. It is worth emphasising that the research 
questions that have not been validated mainly stem from IVA5 and IVA6, which require additional 
development of the tool. Nevertheless, the successfully validated research questions proves that the 
results obtained by the Pilot3 tool met the expectations defined at the beginning of the project. 
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1 Introduction 

1.1 Pilot3 background 

Pilot3 aimed at developing a software engine model for supporting crew decisions for civil aircraft in 
the execution phase of flight. By triggering the tool, this software provides the crew with at least, two 
trajectory options along with information on different KPIs to aid the crew to select the most suitable 
one. The selection is performed considering the multi-criteria business objectives of the airline, 
including the impact on the network of flights of the airline of those decisions. With the current version 
of the tool, Pilot3 is capable of providing support in several domains: 

• Gain understanding on the types of performance that airlines are seeking in order to translate 
these into high level objectives that can be formulated in measurable parameters which are 
relevant for airlines. 

• Understand different airlines policies and flight management policies in order to identify the 
best multi-criteria decision-making technique to provide the crew with the different options 
and their trade-offs. 

• Provide a tool which allows airlines define their preferences, enriching their flight policies. 
• Develop an enhanced system to estimate the different indicators for the different trajectories 

alternatives. From using only available airborne information to the use of advanced machine 
learning trained ground predictors. 

• Incorporate flexibility to select which approach to use to estimate the indicators, trading 
accuracy and complexity with efficiency, and considering the costs associated to develop 
enhanced indicators predictors by the airline and to operate the required data-links. 

• Estimate the overall impact of each trajectory option not only for the current flight, but 
considering follow-up rotations of the same aircraft. 

• Create a software engine model which can be used by crews to produce alternatives. 
• Provide the design of a possible HMI for such a tool and a software interface for the system. 

When a flight is disrupted, the crew faces different options and, nowadays, it could be difficult to 
understand their impact on the overall airline business policy. This is due to the fact that there are 
different parameters that should be considered at the same time, which can represent trade-offs such 
as total operating cost, adherence to a given flight schedule or the environmental impact of the flight. 
Moreover, understanding the full value of these indicators can be challenging as their overall value 
does not depend solely on the disrupted flight but on the whole network. For example, connecting 
passengers missing their connections might have a significant impact on the overall cost of a given 
flight, but these potential missed connections depend on the performance of other flights (e.g. if 
outbound connecting flights are delayed on their own); or uncertainty in the system means that 
suboptimal decisions can be selected, for example, speeding up a flight to encounter congestion at 
arrival airport. Pilot3 endeavoured to mitigate some of these problems by allowing the estimation of 
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the performances of each alternative, not only based on the information available within a particular 
flight, but considering trained machine learning predictors. 

One of the main objectives of Pilot3 is therefore, to provide a comprehensive selection of options 
with their associated trade-offs, considering the airline's business objectives, and to maximise the 
likelihood that estimated values of those parameters are accurate. 

1.1.1 Trajectory optimisation scope 

As presented in Figure 1, the following flight phases are considered: 

• Departure: Departure procedure at the origin airport from take-off runway. 

• En-route: From last point of the departure up to fix of the destination airport TMA (terminal 
manoeuvring area).  

• Arrival: From the destination airport TMA entry fix to a given holding fix. Typically, this phase 
of flight will correspond with a STAR (standard terminal arrival route) or a transition.  

• Holding (if any) at a given holding fix and altitude. Typically, the Initial approach fix (IAF) or just 
the end of the transition.  

• Sequencing and merging: from the holding fix to the landing runway. It is assumed the aircraft 
might be subject to some tactical path stretching due to ATC instructions in this phase. 
Depending on the concept of operations in place at the destination airport, this phase could 
be in the form of standard approach procedure, tromboning, point merge or just conventional 
radar vectoring. In all these cases, this will be translated into a given distance to be flown as 
part of this final stage of the flight. 

• Taxi-in: from the landing runway to the arrival gate in the terminal.  

 

 
Figure 1 Trajectory optimisation scope 

It should be noted that the departure phase does not correspond to the climb phase. Likewise, the en-
route phase is not the cruise phase. Climb and cruise depend on aircraft performance (and weather), 
while departure and en-route procedures are set for ATM purposes. Thus, the top of climb (TOC) - the 
transition from climb to cruise - could either fall in the departure or en-route phase. Similarly, the top 
of descent (TOD) - transition from cruise to descent - could fall in the en-route or arrival phases.  

Although the previous model is generic enough to consider a wide set of possible scenarios (airports, 
TMAs, procedures, etc.), in some busy TMAs more than one holding pattern is published along the 
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same arrival. Yet, their usage is rare and only in extremely disrupted operations (temporary runway 
closure, for instance). Only the most frequently used holding fix (typically at the IAF) is modelled in 
Pilot3. 

In the general case, Pilot3 could be triggered at any point of the flight (from the departure procedure 
to the en-route phase). Pilot3 optimises the aircraft trajectory from the current aircraft state (i.e., the 
moment Pilot3 is triggered) down to reaching FL100 at the proximity of the destination. After 
consultation with the Advisory Board, it is understood and assumed that from that altitude to the 
runway, the actions of the pilot are limited and standardised. Therefore, the trajectory plan will be 
computed assuming standard operations for this final segment (from FL100 to the runway) of the flight 
(i.e., a fixed sequence of aircraft intents). The reason of not optimising the trajectory after this altitude 
is twofold: 

1. the optimisation control space is significantly reduced since the aircraft is flying near the limits 
of the flight envelope (i.e., min/max speeds), the standard operating procedures constraint 
significantly the trajectory (e.g. approach speeds, glide path on the instrument landing system 
- ILS) and ATM strategic constraints might also be in place (e.g. speed and altitude limitations 
for certain legs); 

2. the aircraft trajectory is likely to be modified several times by tactical ATC intervention, thus 
forcing the pilot to no longer follow the Pilot3 plan.  

Besides the appropriate models to define the optimisation cost functions, the trajectory optimisation 
engine uses weather forecast and an estimation (or assumptions) on operational ATM constraints that 
might affect the planning of the trajectory ahead. Weather itself is subject to uncertainty, but the 
operational ATM operations too, since they might depend on ATC tactical interventions, traffic 
conditions, airport operations and, also, weather conditions. 

Pilot3 uses the most up to date weather mean forecast available, i.e., no uncertainty is explicitly 
modelled on the weather forecast. For the ATM uncertainty in the operations, as indicated in Figure 1, 
a significant part is experienced during the final part of the flight. Pilot3 does not models uncertainties 
which affect the lateral route length from the triggering point to reaching FL100 in the descent (e.g. 
shortcuts). Therefore, all operational uncertainty is concentrated on the following operational phases: 
holding time, if holding is experienced, distance to be flown during the sequencing and merging 
(understood as the distance from FL100 to the runway), and taxi-in time. As all these uncertainties are 
experienced after FL100 (even if the holding could be before, it is just a temporal displacement). These 
operational ATM uncertainties are directly integrated in the expected cost function used by the 
optimiser as presented in Section 1.1.2 and the optimiser is in that manner deterministic minimising 
the expected total cost of the operations. 

1.1.2 Consideration on cost function modelling 

As sown in Figure 2 the cost as a function of arrival time depends on the arrival time at the gate as this 
will be translated into potential reactionary delay, passenger compensations or missed connections, 
etc. This cost is non-linear and discontinuous. The cost function can be seen as a step-wise function, 
as increments are produced linked to events, e.g. passenger missing connections, reaching the curfew 
for having to compensate passengers due to Regulation 261, or breaching a curfew at the end of the 
day due to reactionary delay. Most of these parameters, however, have some degree of uncertainty. 
For example, if passengers miss their connection does not only depend on the arrival time of the flight 
but also on the actual time taken by passengers to do the connection at the airport and on the status 
of the remaining flights in the fleet (if the connecting flight is delayed on its own some extra-buffer is 
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generated for these connecting passengers); or breaching a curfew will depend on the propagation of 
delay through the day, which is uncertain. 

 

Figure 2 Cost of delay as a function of arrival delay at gate 

After considering all these uncertainties, the total expected cost function as the one represented in 
Figure 3 (a) can be built. This cost function takes into account these internal uncertainties and it is 
computed with respect to the arrival time at the gate. This process will be done by the Performance 
Indicator Estimator as explained in Section 1.1.3. 

 

(a) Integration from FL100 to runway 

 

(b) Expected cost as a function of arrival time at FL100 

Figure 3 Integration of uncertainty from FL100 to runway on cost function 

As shown in Figure 3 (a) given an arrival time to FL100, the actual time of arrival at the gate will be in 
average that time plus the expected time at holding, the expected time of sequencing and merging 
and the expected taxi-in time. If the whole distributions are considered, their stochastic processes will 
be added, i.e., convolved, to produce the distribution of times when the flight will arrive to the gate as 
a function of the arrival time to FL100. Then as presented in the Figure, the expected cost can be 
computed considering the probability of arriving at the different times at the gate as a function of the 
arrival time at FL100 computing the expected value with a sliding-window. 
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Therefore, after integrating in a sliding-window the stochastic process of the holding, sequencing and 
merging and taxi-in times, the results is an expected cost function (as shown in Figure 3 (b)), which will 
be smoother and shifted in average the expected time of the arrival processes, that will be experienced 
by the flight as a function of the arrival time at FL100. In this way, all the arrival uncertainty has been 
directly considered in this cost function. As presented in Section 1.1.3 Section, this integration of 
uncertainty will be carried out by the Objective Function Generator with the uncertainties estimated 
by the Operational ATM Estimator. 

1.1.3 Architecture and components  

Figure 4 presents the high-level view of the different components of Pilot3. The main characteristics 
and responsibilities of the different modules are as follow: 

• Performance Indicators Estimator: Provides to the objective function estimator the cost of 
fuel and the expected costs at the arrival gate incorporating their intrinsic uncertainties. Some 
uncertainty on the materialisation of costs might exist (e.g. costs associated with potential 
reactionary delay or passenger related costs to miss connections which might or not occur). 
These uncertainties are estimated an integrated in the cost of delay functions by the 
Performance Indicator Estimator. Three main estimators are implemented: cost fuel, IROP 
costs and other costs estimators. These three estimators, however, require a set of different 
costs and operational estimators to individually compute the different components of the cost 
function (e.g. models to estimate the reactionary delay and associated costs). Therefore, not 
only the aggregated cost functions are produced but also information on their components, 
which might be useful for human-machine interface (HMI) purposes. Moreover, during the 
configuration of Pilot3, the user can indicate which estimator should be used for each 
component (e.g. heuristic or machine learning). 

• Operational ATM Estimator: Which estimates uncertainties associated with operational 
aspects which might affect the trajectory and the cost such as taxi time, sequencing and 
merging distance or holding time. Like with previous module, the user can configure different 
ways to perform these estimations (e.g. heuristic or machine learning).  

• Alternative Generator: The alternatives generator is in charge of the optimisation of the 
trajectory from the triggering point. It is composed, in turn, of different elements: 

o Objective function estimator: which, using the outcome of the Performance 
Indicators Estimator and of the Operational ATM Estimator, integrates the uncertainty 
in the cost of delay function producing the expected cost as a function of arrival time 
at FL100 in the descent towards the destination airport. 

o Trajectory optimiser, which using an optimisation framework and produces 
trajectories which minimise the total expected cost (delay - IROP and other- and fuel) 
by modifying the vertical and speed profile of the flight plan. This can be done by 
optimising the Cost Index or with a full altitude/speed grid-search. 

o Trajectory predictor: is used to estimate the fuel and time from FL100 to the runway, 
to translate the uncertainty from the Operational ATM Estimator into uncertainty on 
time and fuel. 

• Performance assessment module: Filters and ranks the different available trajectories 
considering if they meet or not OTP and their costs following the airline policy on prioritisation 
of cost components. 
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• Human machine interface: Mock-up designed in Pilot3 to provide the crew with information 
on the different alternatives generated and their impact on the airline objectives. 

• Data manager: in charge of provide with the required data to the different components of 
Pilot3. The architecture allows for the distinction of air and ground data, and system status 
data 

All these components have been created during the project with a certain technology readiness level 
(TRL) which is mainly 4. More details on the approach followed in Pilot3 are presented D4.3 – Crew 
Assistant Decision model description (final release) (Pilot3 Consortium, 2022a). 

 
Figure 4 Different components of Pilot3 

1.2 Verification and validation plan 

The verification and validation plan initially defined in deliverable D5.1 (Pilot3 Consortium, 2020c), is 
a complex document built on the principle of the Agile methodology. The Agile methodology proposes 
breaking up the project into several parts in order to manage it in a more efficient way. In addition, it 
also involves constant collaboration within stakeholders and continuous improvement at every stage. 
Following the Agile principles, during the course of the project different prototype versions have been 
developed by gradually upgrading each subsequent version until we finally reached the fully functional 
prototype. However, D5.1 already acknowledged that the line between verification and validation is 
very often blur, indicating that some verification and validation activities may overlap. In this vein, we 
attempted to follow the guidelines defined in the verification and validation plan in order to minimise 
the potential deviation from the plan and enable the seamless workflow. 
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1.3 Verification and validation activities and limitations 

According to the definitions provided in D5.1, the software developed in Pilot3 was first subject to a 
verification process, which was carried as part of the developed following the Agile methodology 
explained above (Pilot3 Consortium, 2020c). On each iteration, when a new functionality was 
implemented and before the release of the new version, the verification of the code was performed. 
Classical verification activities (both static and dynamic) were performed through the development of 
the prototype with software design technical reviews, code walk-through reviews, unit and interfaces 
testing, integration testing and functional testing. System testing, to verify that the requirements 
defined for Pilot3 are satisfied, was conducted prior to both software releases. 

In addition, the validation actions performed during the project aimed at quantifying the performance 
of the fully functional prototype (with internal validation actions) and evaluating the acceptance of the 
solution with external experts (external validation actions). These actions targeted the functionalities 
of Pilot3 (considering the optimised trajectories plan) and the Human Machine Interface (HMI) 
designed for the tool. Among the seven different internal validation actions that were envisioned to 
be performed by the plan, the five of them were eventually executed during the course of the project. 
Namely: 

• Actions aiming at validating the different components of the model 

o IVA1 - Validation of Pilot3 optimised trajectory plans with PACE FPO trajectory plans 
- the aim of this action is to compare the result of Pilot3 with state-of-the-art FPO tool, 
ensuring that the trajectories generated by Pilot3 are realistic and with similar (or 
better) expected performance. These actions focus on evaluating the Trajectory 
Generator of Pilot3. 

o IVA2 - Validation of indicators and estimators’ prediction - the aim of these actions 
is to validate the capabilities of the performance indicators (from the Performance 
Indicators Estimator module of Pilot3), and of the ATM uncertainties estimations (from 
the Operational ATM Estimators module). 

o IVA3 - Assessment of the optimisation framework - the objective of these actions is 
to assess how Pilot3 is able to generate different alternative trajectories and trade-
offs. 

• Actions aiming at assessment the benefit of Pilot3 

o IVA4 - Pilot3 performance at generation of optimised trajectories plans - the 
objective of this step is to assess the benefits of Pilot3 optimised trajectories plans 
against several baseline plans at the moment of considering the decision by the pilot. 
I.e., comparison of Pilot3 alternatives suggested to pilot with respect to baselines 
(original flight plan, or basic pilot trajectory behaviour). 

• Actions aiming at the validation of the HMI 

o IVA7 - HMI -these action aims to ensure that HMI prototype is well designed with 
respect to the information and mechanism available to the pilot. 
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For the purpose of internal validation actions and to address the benefits of Pilot3, a set of experiments 
were employed accompanied by a set of research questions (RQs) and their corresponding hypotheses 
(HPs). As some validation actions (i.e., IVA5 and IVA6) have not been performed during the project, it 
is worth mentioning that some RQs and HPs related to these actions, were eventually discarded. 
Instead of organising two internal workshops that were scheduled in D5.1, the internal validation 
activities were rather conducted in a more iterative way encompassing a large number of bi- and three 
lateral meetings among the partners within the consortium (Pilot3 Consortium, 2020c). In this way, we 
succeeded to refine the experiments and discuss the results obtained by different prototype versions 
in order to bring them closer to real operations and thus, maximising the benefits of Pilot3 tool. 

The external validation was conducted using fully functional versions of the prototype and based on 
the results of experiments studies performed in the internal validation. Two external workshops were 
organised, as well as a continuous interaction with the Advisory Board was maintained in order to 
provide input into the project. The first external workshop aimed at collecting the feedback on the 
PIlot3 architecture and general capabilities. In addition, at the second external workshop, some results 
obtained with fully-matured version of the software were presented and discussed together with the 
experts from the Advisory Board. The external validation was performed through two main types of 
actions: 

1. EVA1 - Live or pseudo-live demonstration of the HMI prototype and overall capabilities - the 
objective of this external validation action is to validate the interface, how the information is 
presented to and gathered from the crew, and to show the overall capabilities of Pilot3. 

2. EVA2 - Presentation of results obtained with stand-alone simulations at trajectory level - in 
this case, the results from the experiments executed in the internal validation IVA4 were used. 
The objective was to validate the relevance of the findings. 

However, it is worth mentioning that the verification and validation activities performed during the 
course of the project slightly deviate from what was planned in D5.1 (Pilot3 Consortium, 2020c). This 
is anticipated due to the complex nature of the project with a backlog of tasks emerged during the 
preparation of different datasets and developments of different software versions. For instance, in the 
absence of the simulator which would enable to perform several simulations considering different 
realisations of uncertain parameters, IVA5 were eventually exempted from the report. In similar 
manner, IVA6 that aimed at evaluating the impact of operating a fleet of aircraft equipped with Pilot3 
through a day of operations, was not performed during validation campaign. Namely, this action 
required the substantial effort to be allocated to the configuration of the fast time simulations, which 
was not critical for Pilot3. 

Bering in mind that EVA3 fully relies on the results of IVA6, this is the main reason why this validation 
action is not reported in this deliverable either. 

1.4 Deliverable structure 

This document is organised in seven sections and four appendices: 

• Section 1 introduces the context of Pilot3 decision support tool for crew support on trajectory 
management. Then it briefly presents the verification and validation activities performed 
during the Pilot3 prototype development. 
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• Section 2 provides an overview of the different scenarios and case studies that were 
considered in the project. 

• Section 3 lays out the verification activities performed during the development of different 
software versions. The final list of functional and non-functional requirements is also described 
in this section. 

• Section 4 reports the validation activities performed during the project. It separately details 
validation activities performed internally within the consortium and those conducted in a close 
interaction with the experts from the Advisory Board. 

• The document closes with some conclusions (in Section 5). 

• References and acronyms are provided in Sections 6 and 7 respectively. 

• Finally, the document contains four Appendices:  

o Appendix A provides the weather analysis for scenario 201 (Madrid - Frankfurt) to 
identify weather forecast which are representative of specific operational days. 

o Appendix B presents the HMI for Pilot3 and the results of the survey distributed to the 
Advisory Board members as a part of external validation of HMI. 

o Appendix C provides a literature review on the modelling of uncertainty with machine 
learning models. 

o Appendix D contains a detailed example of the computation of reactionary cost as 
performed in Pilot3 step by step for the consideration of pre-tactical/strategic actions. 
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2 Definition of scenarios 

The Agile methodology adopted in the project required a special consideration for definition of the 
experiments that will be eventually run for verification and validation purposes. As already explained 
in detail in D5.1 (Pilot3 Consortium, 2020c), the validation of Pilot3 will be based on the simulation of 
specific flights in given conditions taking into account operational aspects (e.g. airline type, cargo, 
number of passengers and connections), environmental/external considerations (e.g. weather, ATFM 
(Air Traffic Flow Management) conditions), the event which triggers the use of Pilot3 (e.g. late arrival 
at TOC (top of climb) with respect to planned), or the configuration of Pilot3 tool itself. 

In order to efficiently track the progress of different verification and validation activities and their 
associated experiments, we followed a five-level hierarchy that has been defined in D5.1. For the sake 
of traceability of D5.2, we will recall the definition of each of the five components that constitutes 
experiments: 

1. Scenario is high-level item linked to specificities of the routes and operations that are 
modelled. A scenario specifies operational variables such as origin-destination pair, airline 
characteristics, baseline flight used to define this scenario. 

2. Sub-scenario further particularises the operational environment (i.e., "external" factors), such 
as, type of weather ATM characteristics. 

3. Case study is related to the different events that may trigger Pilot3. 

4. Sub-case study is related to the different possible configurations of Pilot3 (e.g. different ways 
to estimate the performance indicators). 

5. Parametrisation refers to changing parameters that define a (sub)scenario or (sub)case-study 
to allow sensitivity studies. 

The combination and particularisation of these five components provide a specific condition into 
where to test Pilot3 and this is considered an experiment. 

2.1 Scenarios used for the verification and validation 

The scenario is placed at the first hierarchy level specifying the most basic variables which help to 
particularise the specific flight (see the columns of Table 1). Among the nine scenarios initially 
identified in D5.1, four of them are executed as listed in Table 1. Note that since the scenarios were 
highly data-driven, their creation was typically time and effort consuming as it required different 
activities involving data collection, data preparation, development and verification and validation. 
Nevertheless, the four scenarios cover different operational contexts and were identified as relevant 
in close interaction with the experts from the Advisory Board that was continuously maintained along 
the whole project. Following the methodology for the creation of experiments defined in D5.1., a batch 
of experiments encountering different instantiation have been run to identify those that can reflect 
the benefit of Pilot3 in its most magnitude. Table 1 summarises the four different scenarios eventually 
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executed and assessed internally among the consortium teams. As shown in Table 1, the particular 
benefit of Pilot3 have been demonstrated for two types of flights: 

• short/medium-haul (within Europe). For this type of flight, the following scenario have been 
considered: 

o Athens (LGAV) - London Heathrow (EGLL) (scenario ID 100) 
o Madrid (LEMD) - Frankfurt (EDDF) (scenario ID 201) 

• long-haul (with oceanic segment). The following long-haul flights were investigated: 
o New York (KJFK) - Frankfurt (EDDF) (scenario ID 600) 
o New York (KJFK) - London Heathrow (EGLL) (scenario ID 800) 

 
Table 1: Description of scenarios used in the verification and validation campaign 

Scenario 
ID 

Example Airline  

OD pair 
Type of 
route 

En-route 
uncertainty 

Destination 
characteristics 

Airline 
type 

Destination 
Type 

Time of 
the day 

P3-SCN-
100 

BAW:  

LGAV (ATH)- EGLL (LHR) 

Intra-
ECAC 

Normal Holding FSC Hub Morning 

P3-SCN-
201 

DLH:  

LEMD (MAD) - EDDF 
(FRA) 

Intra-
ECAC 

Normal Tromboning FSC Hub Morning 

P3-SCN-
600 

DLH: 

 KJFK (JFK) - EDDF (FRA)  

North - 
Atlantic 

High Tromboning FSC Hub Morning 

P3-SCN-
800 

BAW:  

KJFK (JFK) - EGLL (LHR) 

North - 
Atlantic 

High Holding FSC Hub Morning 

 

The distinctive characteristics of two arrival airports considered in the experiments (i.e., London 
Heathrow and Frankfurt) with respect to their arrival procedures in terminal manoeuvring area (TMA) 
allows us to observe the benefits of Pilot3 in the context of the very dense TMA currently found at the 
ECAC area and operating with two different main methodologies for sequencing and merging arrival 
traffic: tromboning (Frankfurt) and holdings (London Heathrow). 

Next subsections further particularise each of the four scenarios identified above providing the 
information on their respective operational flight plans (OFP) and cost function specification. The OFP 
description contains the information split into three categories: 

• Flight schedule -this section provides the information on: 
o Aircraft type operated, 
o Origin and destination airports, 
o Schedule off-block time (SOBT) - the time that an aircraft is scheduled to depart from 

the parking position, 
o Schedule in-block time (SIBT) - the time that an aircraft is scheduled to arrive at its first 

parking position, 
o Scheduled block time - the time duration between the scheduled departure time and 

the scheduled arrival time for a given flight. 
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• Flight dispatch - the information provided within section are as follows: 
o Nominal cost index (CI) - the CI is the ratio of the time-related cost of an airplane 

operation and the cost of fuel. Nominal CI for the scenarios with short/medium-haul 
routes (LGAV-EGLL and LEMD-EDDF) was set to 10 kg/min, while for long-haul 
scenarios (KJFK-EDDF and KJFK-EGLL) the CI was specified to 20 kg/min. 

o Payload - total amount of payload in the flight divided into cargo and passenger load. 
According to the EU-OPS 1.620 (Official Journal of European Union, 2008) for the flight 
"within the European region", the standard mass of an adult passenger accounts for 
84kg in addition to 13kg of luggage. In the case of "Intercontinental" flight, the 
regulation specifies the same mass for an adult passengers (i.e., 84kg) but with 15 kg 
of luggage mass. 

o Number of connecting passengers. 
o Weather forecast - the nominal weather forecast for LEMD - EDDF route is based on 

the statistical analysis of a large datasets containing the information on weather 
ensembles of the whole 2018 year. The day eventually selected was 02-07-2018 based 
on two criteria: average wind and ISA temp and small forecasting error (see additional 
information on weather analysis in Appendix A). The weather forecast for the three 
other scenarios (LGAV-EGLL, KJFK-EDDF and KJFK-EGLL) considered the available 
weather forecast for 28-07-2016. 

• Other operational information further details the following aspects: 
o The published standard instrumental departures, arrivals and approaches in the 

concerned TMAs. 
o Taxi-in time and buffer: the OFP computed provides the information on the expected 

landing time (ELDT), which in combination with SIBT allows us to calculate taxi-in time 
and buffer (i.e., difference between SIBT and ELDT) 

o Taxi-out time: the time spent by a flight between its actual off-block time (AOBT) and 
actual take-off time (ATOT). 

The OFP trajectory has been computed using the same trajectory optimisation engine that is 
embedded in the Pilot3 software prototype, based on the UPC in-house tool Dynamo (Dalmau et al., 
2018). The lateral trajectory (i.e., sequence of waypoints) was directly taken from EUROCONTROL’s 
Demand Data Repository 2 (DDR2). Then, the vertical trajectory was optimised with Dynamo taking 
into account the flight schedule, dispatch and operational considerations enumerated above. The 
optimisation criterion for this vertical optimisation was the standard direct operating cost function 
(i.e., Fuel + CI·Time) and it is assumed that (for each cruise flight level) the cruise Mach is kept constant. 
In this optimisation, aircraft performance data (and models) were taken from EUROCONTROL’s BADA 
V4.2. 

Modelling the cost function that will be then used when triggering Pilot3, is a very complex task as it 
considers passenger related cost (connecting and non-connecting) and other costs (including 
reactionary delay, curfew, etc). In this regard, it substantially differs from the most widely used 
approach, which is based on the cost index definition (such the cost function used to compute the 
OFP). For each specific scenario that has been used during the validation campaign, Pilot3 has 
modelled the expected costs at gate and, taking into account uncertainty for taxi-in and sequencing 
and merging operations, the expected costs at FL100 are derived. Below FL100, the trajectory is no 
longer optimised and a predefined sequence of aircraft intents is used to compute the remaining 
trajectory down to the runway threshold, which take into account operational restrictions in the TMA 
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and the operating particularities for each aircraft type. The detailed description of each specific cost 
functions will be provided in Section 4.4 

Next sections provide, for each scenario, the details on the OPF trajectory that will follow for the 
different validation experiments. 

2.1.1 OFP description for SCN 100: LGAV (ATH) to EGLL (LHR) 

The main characteristics of the operational flight plan (OFP) for the flight between Athens and London 
Heathrow are summarised in Table 2 below.  

Table 2: Main characteristics of SCN 100 OFP  
Flight schedule Flight dispatch Other operational 

information 

• Airline: British Airways 
(BAW) 

• Aircraft type: A320-231 
• LGAV - EGLL 
• Scheduled off-block time 

(SOBT): 5h 15min UTC 
• Scheduled in block time 

(SIBT): 9h 10min UTC 
• Scheduled block time: 235’ 

• Nominal Cost Index: 10 kg/min 
• Payload: 

o Passengers 144 
o Cargo: 1,000 kg 

• Number of connecting pax: 124 
• Weather forecast: nominal, issued 2016-07-28 
• Passengers entitled to Regulation 261 

compensation if delay thresholds meet 

• Taxi-out: 10’ 
• OFP trip time: 216’ 
• Taxi-in + padding at 

arrival: 9’ 
• LOGAN 2H arrival 
• Holding at LAM 
• ILS approach to 

RWY 09R 

 

Figure 5 below depicts the horizontal and vertical trajectory profiles of the OFP. The horizontal 
trajectory (see Figure 5 (a)) is given as a sequence of waypoints defining the OFP route. Climb, cruise 
and descent phases are represented, respectively, by green, blue and red trajectories in this figure. 
Figure 5 (b), in turn, shows the vertical and speed profiles of the OFP trajectory, along with the along 
track and cross-wind components at different altitudes (coloured background). In these plots, pressure 
altitude (hp) for the whole trajectory is depicted together with Mach number (M), calibrated airspeed 
(CAS), true airspeed (TAS) and ground speed (GS). It is worth mentioning that the (apparently) sudden 
changes in ground speed of these figures (such as observed at around 1300 NM from the destination 
airport) are due to track changes in the lateral route, which change the relative wind direction along 
and cross-track and therefore the resulting ground speed. Finally, these plots also depict the maximum 
operational speeds for that aircraft type: MMO (maximum Mach in operation) and VMO (maximum 
CAS in operation). 

As observed in Figure 5 (b) the OFP for this scenario consists on an initial cruise at FL360 followed by a 
step-climb to FL380 at around 850 NM from the destination airport. The optimal cruise speed resulting 
for this OFP is M0.77. As observed in the figures, the first half of the cruise is mainly affected by a 
relative strong crosswind component (around 60 kt), while a relative mild headwind and crosswind 
components dominate the remaining cruise. 
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a) Horizontal trajectory profile 

 
b) Vertical and speed trajectory profiles (with wind components) 

Figure 5 Resulting trajectory for SCN-100 operational flight plan (OFP) 

For this scenario, the STAR procedure LOGAN 2H is used in London Heathrow TMA, which ends at 
Lambourne fix (LAM), where the holding pattern is located. Then, for flight and fuel planning purposes 
(i.e., to compute the OFP), the approach to runway 9R is chosen, since it is the longest possible. The 
AIRAC 2111 (issued on Nov 4th 2021) was taken from the UK AIP (NATS, 2021) and these procedures 
are depicted in Figure 6 (a), while Figure 6 (b) provides a screenshot of the decent of the OFP generated 
by Dynamo to RWY 09R and following the STAR and approach mentioned before. 
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a) Arrival and initial approach procedure charts published in the AIP 

 
b) Computed descent trajectory 

Figure 6 Descent and arrival for SCN-100 operational flight plan (OFP)  
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2.1.2 OFP description for SCN 201: LEMD (MAD) to EDDF (FRA) 

The main characteristics of the operational flight plan (OFP) for the flight between Madrid and 
Frankfurt are summarised in Table 3 below. 

Table 3: Main characteristics of SCN 201 OFP  
Flight schedule Flight dispatch Other operational 

information 

• Airline: Lufthansa (DLH) 
• Aircraft type: A320 
• LEMD-EDDF 
• Scheduled off-block time 

(SOBT): 6h 35min UTC 
• Scheduled in block time 

(SIBT): 9h 10min UTC 
• Scheduled block time: 155’ 

• Nominal Cost Index: 10 kg/min 
• Payload: 

o Passengers: 171 
o Cargo: 1,000 kg 

• Number of connecting pax: 65 
• Weather forecast: nominal, issued 2018-02-07 
• Passengers entitled to Regulation 261 

compensation if delay thresholds meet 

• Taxi-out: 10’ 
• OFP trip time: 138’ 
• Taxi-in + padding 

at arrival: 7’ 
• EMPAX 1C arrival 
• ILS approach to 

RWY 07C 

 

Figure 7 below depicts the horizontal and vertical trajectory profiles of the OFP. For this OFP, we have 
a single cruise altitude at FL360 at M.77. Winds are relatively calm (around 10-20kt of headwind in the 
last part of the cruise, with a relatively small crosswind component. 

To compute the OFP for this scenario, the AIRAC 2013 (issued on Dec 3rd 2020) was taken from the 
German AIP (DFS, 2020). For flight and fuel planning purposes (i.e., to compute the OFP), EMPAX 1C is 
the longest STAR in Frankfurt (taking into account that EMPAX 1D and EMPAX1A are labelled "by ATC 
only" and therefore, cannot be used for flight planning). Furthermore, since Frankfurt operates with a 
tromboning philosophy, the actual distance that will be flown in the tromboning is not known when 
planning the flight. Hence, the German AIP asks the operators to consider 83 NM from SPESA to the 
landing runway as average flight distance for fuel planning purposes. All these considerations have 
been taken into account when computing the OFP for this scenario. 

 
a) Horizontal trajectory profile 
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b) Vertical and speed trajectory profiles (with wind components) 

Figure 7 Resulting trajectory for SCN-201 operational flight plan (OFP) 

 

 
a) Arrival and initial approach procedure charts published in the AIP 
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b) Computed descent trajectory 

Figure 8 Descent and arrival for SCN-201 operational flight plan (OFP) 

Figure 8 (a) shows the AIP charts for the arrival and initial approach considered, while Figure 8 (b) 
provides a screenshot of the OFP decent generated by Dynamo to RWY 07C. 

2.1.3 OFP Description SCN 600: KJFK (JFK) - EDDF (FRA) 

The main characteristics of the operational flight plan (OFP) for the flight between Madrid and 
Frankfurt are summarised in Table 4 below. 

Table 4: Main characteristics of SCN 600 OFP 
Flight schedule Flight dispatch Other operational information 

• Airline: Lufthansa (DLH) 
• Aircraft type: B747-400 
• KJFK-EDDF 
• Scheduled off-block time (SOBT): 

1h 45min UTC 
• Scheduled in-block time (SIBT): 9h 

20min UTC 
• Scheduled block time: 455’ 

• Nominal Cost Index: 20 kg/min 
• Payload:  

o Passengers: 303 
o Cargo: 20,000 kg 

• Number of connecting pax: 246 
• Weather forecast: nominal, 

issued 2016-07-28 

• Taxi-out: 30 min 
• Taxi-in + padding at arrival: 

22’ 
• OFP trip time: 403’ 
• UNOKO 1B arrival 
• Tromboning procedure 
• ILS approach to RWY 25C 

 

Figure 9 depicts the horizontal and vertical trajectory profiles of the OFP. For this OFP, we observe an 
initial cruise at FL320 and M.81 followed by a step-climb to FL360 and M.83. All flight benefits from 
tailwind conditions that increase when approaching to the European continent, while the cross-wind 
component is relative moderate along the flight. 

To compute the OFP for this scenario, the AIRAC 2013 (issued on Dec 3rd 2020) was taken from the 
German AIP (DFS, 2020). For flight and fuel planning purposes (i.e., to compute the OFP), UNOKO 1B 
is the longest STAR in Frankfurt. Furthermore, since Frankfurt operates with a tromboning philosophy, 
the actual distance that will be flown in the tromboning is not known when planning the flight. Hence, 
the German AIP asks the operators to consider 113 NM from UNOKO to the landing runway as average 
flight distance for fuel planning purposes. All these considerations have been taken into account when 
computing the OFP for this scenario. Figure 10 (a) shows the AIP charts for the arrival and approach 
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considered, while Figure 10 (b) provides a screenshot of the OFP decent generated by Dynamo to RWY 
25C. 

 
b) Horizontal trajectory profile 

 
b) Vertical and speed trajectory profiles (with wind components) 

Figure 9 Resulting trajectory for SCN-600 operational flight plan (OFP) 

 



EDITION 01.00 

32 
 

© – 2020 – University of Westminster,  Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved.  

 

 

 
a) Arrival and initial approach procedure charts published in the AIP 

 
b) Computed descent trajectory 

Figure 10 Descent and arrival for SCN-600 operational flight plan (OFP) 
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2.1.4 OFP description SCN 800: KJFK (JFK) - EGLL (LHR) 

The main characteristics of the operational flight plan (OFP) for the flight between New York and 
London Heathrow are summarised in Table 5 below. Figure 11 below depict the horizontal and vertical 
trajectory profiles of the OFP. 

Table 5: Main characteristics of SCN 800 OFP  
Flight schedule Flight dispatch Other operational information 

• Airline: British Airways (BAW) 
• Aircraft type: B747-400 
• KJFK/EGLL 
• Scheduled off-block time (SOBT): 

0h 40min UTC 
• Scheduled in block time (SIBT): 

7h 35min UTC 
• Scheduled block time: 410’ 

• Nominal Cost Index: 20 kg/min 
• Payload: 

o Passengers: 234 
o Cargo: 0 kg (no cargo) 

• Number of connecting pax: 79 
• Weather forecast: nominal, 

issued 2016-07-28 

• Taxi-out: 30’ 
• OFP trip time: 365’ 
• Taxi-in + padding at arrival: 15’ 
• BEDEK 1H arrival 
• Holding at OCK 
• ILS approach to RWY 27R 

 

For this OFP, we observe an initial cruise at FL340 and M.80 followed by a step-climb to FL380 and 
M.83 at approximately 2200 NM from the destination airport. Then, the optimal trajectory includes a 
step-descent to FL360 at approximately 800 NM from destination with a reduction of the cruise speed 
to M.078. These altitude and speed changes can be explained with the wind profile forecasted for that 
route. As observed in the same figure, all flight benefits from tailwind conditions and some moderate 
cross-wind. Yet, at the beginning of the cruise (around 2900 to 2000 NM from destination) there is a 
region with small tailwind components (or even some headwind) at altitudes above the chosen cruise 
altitude. This fact, together with a heavier aircraft at the beginning of the flight could explain the 
optimal altitude chosen for the first cruise flight level. Then, between 800 to 100 NM from destination 
stronger tailwind is found at lower altitudes. This explains the step-descent of the OFP and the 
selection of a rather low Mach number for that portion of the cruise: the trajectory is taking advantage 
of the stronger tailwind found at FL360 and although cruise Mach is reduced the ground speed still 
increases at this altitude, saving in this way some fuel and time. 

 
a) Horizontal trajectory profile 
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b) Vertical and speed trajectory profiles (with wind components) 

Figure 11 Resulting trajectory for SCN-800 operational flight plan (OFP) 

For this scenario, the STAR procedure BEDEK 1H is used in London Heathrow TMA, which ends at 
Ockham fix (OCK), where the holding pattern is located. Then, for flight and fuel planning purposes 
(i.e., to compute the OFP), the approach to runway 27R is chosen, since it is the longest possible. The 
AIRAC 2111 (issued on Nov 4th 2021) was taken from the UK AIP (NATS, 2021) and these procedures 
are depicted in Figure 12 (a), while Figure 12 (b) provides a screenshot of the decent of the OFP 
generated by Dynamo to RWY 27R and following the STAR and approach mentioned before. 

2.2 Sub-scenarios used for the verification and validation 

The sub-scenario aims to further particularise the given scenario in terms of operational environment 
and weather. Among the five different variables which particularise the sub-scenario, we eventually 
used the four of them, each of which is further defined by different values (see Table 6 below). At the 
beginning of the project, TTA (Target Time of Arrival) and ATFM parametrisation of the sub-scenarios 
was envisioned in order to further explore Pilot3 usability for an extended contextualisation of each 
scenario. Nevertheless, the grade of complexity has been developed only including the sub-scenarios 
defined in Table 6. 

A default setup for the sub-scenarios used in the different validation activities has been defined as 
follows: 

• Curfew; .destination airport default  
• Regulation 261: YES 

Hence, if not stated otherwise these are the values used in all experiments. 
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a) Arrival and initial approach procedure charts published in the AIP 

 
b) Computed descent trajectory 

Figure 12 Descent and arrival for SCN-800 operational flight plan (OFP) 
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Table 6: The description of sub-scenario identified for the validation campaign 
Weather Curfew Entitlement to compensation (Reg. 

261) 

• Nominal 
• Strong beneficial wind 
• Strong decremental wind 

• No 
• Yes, at arrival 
• Yes, at the end of the day 

• Yes 
• No 

2.3 Case studies used for the verification and validation 

As already explained above, the case study refers to different events that may trigger Pilot3. Table 7 
identifies the final four case studies, among the nine initially identified in D5.1, that were considered 
in the specification of different experiments. 

Table 7: The description of case study identified for the validation campaign 
Case study ID Case study – Pilot3 triggering events Possible parametrisation for this case-study  

CS-10 Early/Late take-off • Amount of departure delay 
CS-40 Delay at destination TMA updated in cruise • Amount of expected delay at TMA (holding 

and/or sequencing and merging time at 
arrival) 

CS-60 Updated weather forecast • Weather characteristics 
CS-80 Turbulence in current FL • Turbulence volume (i.e., restricted airspace) 

characteristics. 

2.4 Sub-case studies used for the verification and validation 

The sub-case study particularises how the performance indicators and the operational ATM 
parameters are estimated, and the airline flight policy with respect to the prioritisation of different 
airline costs (see Table 8). At the beginning of the project, it was envisioned an additional 
parametrisation of the sub-case studies, where ground or air information could be used for the 
estimation. Nevertheless, the grade of complexity has been reduced to only contemplate a single 
source of data. 

Unless otherwise stated, the default setup for sub-case study is as follows: 

• PIE: Uncertainty modelled. All estimators modelled with heuristics except for reactionary delay 
which is modelled with machine learning models (i.e., block time and ground time estimated 
with machine learning models). 

• OAE: Uncertainty modelled. All estimators modelled with heuristics. 
• Optimisation ranking: IROPS, other and fuel. 

Table 8: The description of sub-case study identified for the validation campaign 
Performance Indicator 
Estimator 

ATM Operational Estimator Optimisation ranking (airline 
policies to configure Pilot3) 

• Heuristic  
• Machine Learning  

• Distance sequence and merging -heuristic 
• Distance sequence and merging -machine learning 
• Holdings – heuristic 
• Holding - machine learning 
• TMA distance to FL100 – heuristic 
• Taxi-in - heuristic 

• Cost of fuel 

• Cost of IROPs 

• Other cost 



D5.2 VERIFICATION AND VALIDATION REPORT 

 

 
 

 

© – 2022 – University of Westminster, Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved. 

 
37 

 

3 Verification 

In early stages of the project life-cycle, a set of preliminary requirements were defined for the aimed 
Pilot3 prototype. Two requirement sets were defined, one for the system definition of the Pilot3 
software prototype, and one for the functional definition of the Pilot3 HMI prototype. The former, was 
aimed to be developed separately from the software development cycle and therefore integration 
between the two was deemed as out of the scope of the Pilot3 project. 

In this section, a results report will be presented against each requirement, showing the evidences that 
have been used to deem correct verification of the requirements in a separate form, one dedicated 
section for the software and another one for the HMI. Additionally, a results and rationale section is 
presented to embody the numerical results into verbal conclusion of the activity. 

3.1 System Verification 

As defined in D5.1 (Pilot3 Consortium, 2020c), the system verification consisted on the testing of 
requirements. Therefore, for each requirement a Verification test-case has been developed as 
evidence of the fulfilment of the functionality. There exist three types of requirements: Domain, 
Functional and non-functional. As it can be expected, the Domain requirements will be tested by 
means of a developed rationale. 

3.1.1 Experiments executed for the verification campaign 

As already foreseen in D5.1 the experiments developed to verify Pilot3 software prototype have been 
created ad-hoc alongside the Test-Case definition. Differently from the validation activities 
experiments, the experiments designed for the verification activities do not have a five-level hierarchy 
definition associated in order to ease the process and focus on the pure verification of the 
requirement. As explained in D5.1, verification aims at ensuring that the system does the "right things", 
not the "things right". Same default parameters will be used as defined in section 2: Definition of 
scenarios. 

Table 9 summarises the experiments designed and execute for the verification of the Pilot3 prototype. 
Note, the sub-scenario ID will identify in an unequivocal way the experiment number for a set of 
experiments using the same Scenario (i.e., route). Additionally, the case-study ID will be set to 1, 
meaning that no behavioural Pilot3 triggering is being analysed, but rather the execution of the 
prototype modules. 

3.1.2 Functional verification test report 

This section aims at purely reporting the results of the verification test-cases. For this purpose, Table 
10 presents the relevant data traced to the requirement has been generated with the following fields: 
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• Requirements ID: ID of the requirements 
• Mandatory: With Y/N indicating whether it is a hard of soft requirements 
• SW rel.: SW version used when the test-case was executed 
• Date: date when the test-case was executed 
• Description: description of the requirement 
• Verification test-case: set of steps followed to test the requirement 
• Experiments: experiments involved on the test-case 
• Test Result: color-coded result of the test-case: 

 

 

NOT TESTED 

 NOK 

 OK 

 PARTIAL 
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Table 9: The description of experiments executed for the verification campaign 
Experim

ent 
ID 

Scenario 
ID 

Sub Scenario Case Study Sub case Study 
Purpose 

Weather other ID Triggering 
point Other PIE/OAE configuration Other 

901 100 Nominal 

 1 

TOC Taxi-out: 10' 
Dep. Delay: -20' 

- PIE: default, manual holding of 20' 
- AOE: default 

 Test of requirements: P3-
DR-SYS-010, P3-DR-SYS-020, 
P3-FR-SYS-010, P3-FR-SYS-
020, P3-FR-SYS-121. 

902 100 Nominal Reg261: 
"N" 

1 TOC Taxi-out: 10' 
Dep. Delay: 10' 

- PIE: default, manual holding of 20' 
- AOE: default 

 Test of requirements: P3-
DR-SYS-010 . 

903 100 Nominal 
 1 

TOC Taxi-out: 10' 
Dep. Delay: 10' 

- PIE: default 
- AOE: ground_time_estimator and 
g2g_time_estimator: machine_learning 

 Test of requirements: P3-FR-
SYS-010. 

904 100 Nominal  1 FL100 Taxi-out: 30' 
Dep. Delay: 145' 

- PIE: default 
- AOE: default 

 Test of requirements: P3-FR-
SYS-030. 

905 100 Nominal  1 TOD Taxi-out: 30' 
Dep. Delay: 20' 

- PIE: default 
- AOE: default 

 Test of requirements: P3-FR-
SYS-030. 

906 201 Nominal 
Restricted 
airspace  

1 
TOC Taxi-out: 10' 

Dep. Delay: 10' 
- PIE: default 
- AOE: default 

Sub-objectives 
ranking: IROPS > 
Other > Fuel 

Test of requirements: P3-FR-
SYS-040, P3-FR-SYS-050. 

907 201 Nominal 
Restricted 
airspace  

1 
TOC Taxi-out: 10' 

Dep. Delay: 10' 
- PIE: default 
- AOE: default 

Sub-objectives 
ranking: Fuel > 
IROPs > Other  

Test of requirements: P3-FR-
SYS-050. 

908 201 Nominal 

 1 

TOC 

Taxi-out: 10' 
Dep. Delay: 10' 
Weather: 
Heavy_head 
wind 

- PIE: default 
-AOE: default 

 

Test of requirements: P3-FR-
SYS-110. 

909 600 Nominal  1 TOC Taxi-out: 30' 
Dep. Delay: 145' 

- PIE: default 
- AOE: default 

 Test of requirements: P3-FR-
SYS-182. 

910 600 Nominal  1 TOC Taxi-out: 30' 
Dep. Delay: 145' 

- PIE: default 
- AOE: default 

 Test of requirements: P3-FR-
SYS-182. 
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Table 10: Verification test results report 
Requirement 

ID 
Mandatory 

requirement 
SW 

release Date Description Verification test-case Experiments Test result 

P3-DR-SYS-
010 Y V1.3 19/01/22 

Pilot3 prototype shall model 
EC reg. 261/2004 in the 
estimation of the appropriate 
indicators. 

- Inputs/Pre-conditions: 
 - 901 experiment reg_261 parameter set to 'Y' 

  - 902 experiment reg_261 parameter set to 'N' 
- Expected results: 

  - Cost function of experiment 901 should have greater Irops_costs 
than experiment 902 
- Obtained results 
. Experiment 901 has greater Irops_costs than experiment 902 

901, 902 
 

P3-DR-SYS-
020 Y V1.3 19/01/22 

Pilot3 prototype shall take into 
consideration the SESAR 2020 
Transition ConOps. 

- Inputs/Pre-conditions: None, domain requirement 
Rationale: Given an RBT, Pilot3 optimises the downstream 4D 
trajectory by means of several estimators, resulting of an updated 
RBT. 

901 
 

P3-FR-SYS-
010 Y V1.3 19/01/22 

The Pilot3 prototype shall be 
manually configured by a 
human user (airline operator). 

Inputs/Pre-conditions: 
  - Configuring heuristics and machine learning for the OAE/PIE 

estimators 
  - 901: Default 
  - 903: block_time_estimator and g2g_time_estimator of OAE 

module configured as machine learning. holding_time_estimator 
configured as manual of 40'. 
- Expected results: 

 Estimation outputs for each single estimator differs between 901 
and 903 experiments. 
- Obtained results 
Estimation differs between 901 and 903 experiments. 

901, 903 
 

P3-FR-SYS-
020 Y V1.3 19/01/22 

The Pilot3 prototype shall be 
manually triggered by a human 
user (pilot). 

Inputs/Pre-conditions: None, domain requirement 
Rationale: The prototype can be triggered at any point of the 
trajectory. 

901 
 

P3-FR-SYS-
030 Y V1.3 19/01/22 

The Pilot3 prototype shall be 
triggered at any moment of 
flight from FL100 in climb 
down to TOD. 

Inputs/Pre-conditions: 
  - 904: Trigger Pilot3 at FL100 on the climb phase 
  - 905: Trigger Pilot3 at TOD 

Expected results: 
  - Pilot3 should provide an output for both cases 

Obtained results 

904, 905 
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Requirement 
ID 

Mandatory 
requirement 

SW 
release Date Description Verification test-case Experiments Test result 

 - Pilot3 provides an output for both cases 

P3-FR-SYS-
040 Y V1.3 19/01/22 

Pilot3 prototype shall 
automatically provide a set of 
alternative 4D trajectories 
down to the runway threshold. 

Inputs/Pre-conditions: 
 Not applicable 

Expected results: 
 hp[ft] value for the last point of the Pilot3 trajectory should 

correspond to a distance of 52ft in altitude. 
Obtained results 
hp[ft] value for the last point of the Pilot3 trajectory corresponds a 
distance of 52ft in altitude. 

906 
 

P3-FR-SYS-
050 Y  19/01/22 

The Pilot3 prototype shall rank 
the set of trajectory 
alternatives according to the 
airline policies. 

Inputs/Pre-conditions: 
 Execute Vikor with two alternatives of the same total cost but 

different in sub-cost ranking. 
 Execute Vikor configuring 

{'sub_obj_rank':{'fuel':3,'irops':1,'other':2},'otp':{'threshold':0.8}} 
 Execute Vikor configuring 

{'sub_obj_rank':{'fuel':3,'irops':1,'other':2},'otp':{'threshold':0.8}} 
Expected results: 
Ranking for 901 and 907 is different 

906, 907 
 

P3-FR-SYS-
060 Y  19/01/22 

The Pilot3 prototype shall 
interact with the pilot to select 
among the alternatives 
generated. 

Rationale: 
The VIKOR module has been verified and validated within IVA3 
scope. 

N/A 
 

P3-FR-SYS-
070 Y  19/01/22 

For each 4D trajectory, the 
prototype shall quantify its 
impact on airline performance 
by means of several PIs. 

Inputs/Pre-conditions: 
 N/A 

Expected results: 
 Pilot3 should be able to provide information with regards to  
 OTP 
 Cost of fuel 
 IROPs cost 
 Total Cost 

Obtained results: 

901 
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Requirement 
ID 

Mandatory 
requirement 

SW 
release Date Description Verification test-case Experiments Test result 

Pilot3 provides the pertinent information.  

P3-FR-SYS-
080 Y V1.3 19/01/22 

The Pilot3 prototype shall be 
able to produce up to two 
different estimators for the 
same PI when applicable. 

Inputs/Pre-conditions: 
 Configuring heuristics and machine learning for the OAE/PIE 

estimators 
 901: Default 
 903: block_time_estimator and g2g_time_estimator of OAE 

module configured as machine learning. holding_time_estimator 
configured as manual of 40'. 
Expected results: 

 Estimation outputs for each single estimator differs between 901 
and 903 experiments. 
Obtained results 
Estimation differs between 901 and 903 experiments. 

901, 903 
 

P3-FR-SYS-
090 Y V1.3 19/01/22 

The Pilot3 prototype shall allow 
the user (airline operator) to 
specify which estimator(s) 
should be used.  

Inputs/Pre-conditions: 
 Configuring heuristics and machine learning for the OAE/PIE 

estimators 
 901: Default 
 903: block_time_estimator and g2g_time_estimator of OAE 

module configured as machine learning. holding_time_estimator 
configured as manual of 40'. 
Expected results: 

 Estimation outputs for each single estimator differs between 901 
and 903 experiments. 
Obtained results 
Estimation differs between 901 and 903 experiments. 

901, 903 
 

P3-FR-SYS-
100 N V1.3 19/01/22 

The Pilot3 prototype may 
produce an estimated 
accuracy/confidence level for 
each PI estimator. 

Rationale: 
Software development not deployed to satisfy this requirement. N/A 

 

P3-FR-SYS-
110 Y V1.3 20/01/22 

The Pilot3 prototype shall take 
into account the influence of 
the wind when computing the 
alternative trajectories. 

Inputs/Pre-conditions: 
 Having heavy wind Pilot3 weather input. 
 Run experiment 909 and compare the optimised trajectory and 

weather with 901. 
Expected results: 

908 
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Requirement 
ID 

Mandatory 
requirement 

SW 
release Date Description Verification test-case Experiments Test result 

 Resulting 908 Pilot3 trajectory should get greater delay than 901 
due to the effect of the head wind. 
Obtained results: 
Resulting 909 trajectory gets greater delay than 901. 

P3-FR-SYS-
121 N V1.3 20/01/22 

The Pilot3 prototype may take 
into account real forecast air 
temperature conditions when 
computing trajectories. 

Inputs/Pre-conditions: 
 Real grib weather used: 
 2016-07-28 
 Mean, Nominal conditions 

Expected results: 
 Pilot3 optimiser should provide the temperature along the 4D 

trajectory  
Obtained results: 
Temp[ºC] output parameter is provided along the 4D trajectory  

901 
 

P3-FR-SYS-
122 N V1.3 20/01/22 

The Pilot3 prototype may take 
into account real forecast air 
pressure conditions when 
computing trajectories. 

Inputs/Pre-conditions: 
 Real grib weather used: 
 2016-07-28 
 Mean, Nominal conditions 

Expected results: 
 Pilot3 optimiser should provide the pressure along the 4D 

trajectory  
Obtained results: 
 Press[hPa] output parameter is provided along the 4D trajectory  

901 
 

P3-FR-SYS-
130 N V1.3 20/01/22 

The Pilot3 prototype may take 
into account uncertainties 
related to weather forecasts. 

Rationale: 
Weather uncertainties have not been implemented in Pilot3 
prototype framework. Nevertheless, mean ensembles have been 
considered as weather input data.  

N/A 
 

P3-FR-SYS-
140 Y V1.3 20/01/22 

The Pilot3 prototype shall 
implement solutions for an 
Airbus A320. 

Inputs/Pre-conditions: 
 A/C modelled for the experiment should be A320 

Expected results: 
 Pilot3 optimiser should provide a 4D trajectory 

Obtained results: 

901 
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Requirement 
ID 

Mandatory 
requirement 

SW 
release Date Description Verification test-case Experiments Test result 

Pilot3 optimiser provides a 4D trajectory 

P3-FR-SYS-
150 Y V1.3 20/01/22 

The Pilot3 prototype shall 
implement solutions for an 
Boeing B747. 

Inputs/Pre-conditions: 
 A/C modelled for the experiment should be A747 

Expected results: 
 Pilot3 optimiser should provide a 4D trajectory 

Obtained results: 
Pilot3 optimiser provides a 4D trajectory 

909 
 

P3-FR-SYS-
160 N V1.3 20/01/22 

The Pilot3 prototype may be 
able to implement other 
turbojet aircraft (different from 
an A320 and a B777). 

Rationale: 
Software development not deployed to satisfy this requirement. N/A 

 

P3-FR-SYS-
170 N V1.3 20/01/22 

The Pilot3 prototype may be 
able to implement turboprop 
aircraft. 

Rationale: 
Software development not deployed to satisfy this requirement. N/A 

 

P3-FR-SYS-
181 Y V1.3 20/01/22 

When computing trajectories, 
the Pilot3 prototype shall 
consider aircraft operation 
(flight envelope) constraints. 

Inputs/Pre-conditions: 
Expected results: 
Obtained results: 

-- 
 

P3-FR-SYS-
182 Y V1.4 20/01/22 

When computing trajectories, 
the Pilot3 prototype shall 
consider constraints set by the 
pilot. 

Inputs/Pre-conditions: 
 Pilot3 version set to 1.4 or 2.0 
 Turbulence field active, with a path to a volume restricted csv. 
 Restricted airspace overlapping with Pilot3 trajectory, experiment 

909. 
Expected results: 

 Pilot3 optimised trajectory should avoid the defined restricted 
airspace. 
Obtained results: 

 Pilot3 optimised trajectory avoids the defined restricted airspace. 
Rationale: 
Speed constraints have not been implemented. 

909, 910 
 

P3-FR-SYS-
183 Y V1.3 20/01/22 When computing trajectories, 

the Pilot3 prototype shall 

Inputs/Pre-conditions: 
Pilot3 version set to 1.4 or 2.0 
Airlines policies captured as indication of ranking for sub-objectives 
(Fuel, IROPSs and Other costs). 

905; 906; 907; 
and dedicated 
analysis of 
Performance  
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Requirement 
ID 

Mandatory 
requirement 

SW 
release Date Description Verification test-case Experiments Test result 

consider constraints driven by 
airline specific policies. 

Obtained results: 
The filtering and ranking phase of Pilot3 (Performance Assessment 
Module) produces different ranking for alternatives as a function of 
the configuration of the airlines’ priorities. 

Assessment 
Module 

P3-FR-SYS-
184 Y V1.3 20/01/22 

When computing trajectories, 
the Pilot3 prototype shall 
consider static ATM related 
constraints.  

Inputs/Pre-conditions: 
 Pilot3 airport chart configuration set for the arrival airport of the 

experiment. 
Expected results: 

 Pilot3 optimised trajectory should follow LHR STAR and approach 
procedures. 
Obtained results: 
Pilot3 optimised trajectory follows LHR STAR and approach. 
procedures 

901 
 

P3-FR-SYS-
191 N V1.3 20/01/22 

The Pilot3 prototype may 
estimate the following ATC 
tactical intervention: extra 
flown distance in en-route.  

Rationale: 
Software development not deployed to satisfy this requirement. N/A 

 

P3-FR-SYS-
192 N V1.3 20/01/22 

The Pilot3 prototype may 
estimate the following ATC 
tactical intervention: extra 
flown distance TMA. 

Inputs/Pre-conditions: 
 Run an experiment with tromboning procedures at destination 

airport. 
 ofg_config set to 'sequencing':'dynamo'. 

Expected results: 
 Pilot3 should output an estimation for the sequencing and merging 

distance 
Obtained results: 

 Pilot3 provides an estimation for the sequencing and merging 
distance. 
Rationale: 
Results obtained only for TMA and below FL100 

906 
 

P3-FR-SYS-
193 N V1.3 20/01/22 The Pilot3 prototype may 

estimate the following ATC 

Inputs/Pre-conditions: 
 Run an experiment with holding procedures at destination airport 
 ofg_config set to 'holding':'dynamo'. 

901 
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Requirement 
ID 

Mandatory 
requirement 

SW 
release Date Description Verification test-case Experiments Test result 

tactical intervention: air 
holding in published patterns. 

Expected results: 
 Pilot3 should output an estimation for the holding time. 

Obtained results: 
Pilot3 provides an estimation for the holding time. 

P3-FR-SYS-
194 N V1.3 20/01/22 

The Pilot3 prototype may 
estimate the following ATC 
tactical intervention: taxi-in 
time 

Inputs/Pre-conditions: 
 ofg_config set to 'taxi':'dynamo'. 

Expected results: 
 Pilot3 should output an estimation for the taxi_in time. 

Obtained results: 
Pilot3 provides an estimation for the taxi_in time. 

901 
 

P3-FR-SYS-
200 Y V1.4 28/01/22 

All alternatives, metadata and 
the interaction with the pilot 
shall be stored in DataBeacon. 

Inputs/Pre-conditions: 
 Run an experiment with no data for the particular folder on 

Databeacon's platform. 
Expected results: 

 Dedicated folder containing all the results should be created in 
Databeacon. 
Obtained results: 
Dedicated folder containing all the results should be created in 
Databeacon. 

901 
 

P3-NFR-SYS-
010 Y V1.4 28/01/22 Pilot3 prototype shall be a 

standalone software. 

Rationale: 
Running Pilot3 script pilot3_main.py and obtaining a Pilot3 
optimised trajectory output, indicates a correct function of the 
inner data exchange between modules. 

901 
 

P3-NFR-SYS-
020 Y V1.4 28/01/22 

Pilot3 prototype shall run in a 
conventional PC platform 
under Linux. 

Inputs/Pre-conditions: 
 Run Pilot3 in a conventional PC platform with Linux iOS. 

Expected results: 
 Results should be obtained with no fatal error reported. 

Obtained results: 
Results are obtained with no fatal error reported. 

901 
 

P3-NFR-SYS-
030 N V1.4 28/01/22 Pilot3 prototype may run in 

DataBeacon. 

Inputs/Pre-conditions: 
 Hold access to DataBeacon platform. 
 Run Pilot3 in DataBeacon platform. 

Expected results: 
 Results should be obtained with no fatal error reported. 

901 
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Requirement 
ID 

Mandatory 
requirement 

SW 
release Date Description Verification test-case Experiments Test result 

Obtained results: 
Results are obtained with no fatal error reported. 

P3-NFR-SYS-
040 Y V1.4 28/01/22 

Pilot3 prototype shall store all 
input and output files in the 
DataBeacon platform. 

Inputs/Pre-conditions: 
 Run an experiment with no data for the particular folder on 

Databeacon's platform. 
Expected results: 

 Dedicated folder containing all the results should be created in 
Databeacon. 
Obtained results: 
Dedicated folder containing all the results should be created in 
Databeacon. 

901 
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3.1.3 Update and revision of requirements  

The aim of the Requirements Verification not only lies on the Software verification itself but the 
requirements definition. The first release of requirements was defined in deliverable D1.1 (Pilot3 
Consortium, 2020a), where the final prototype of Pilot3 was envisioned for the first time. Throughout 
the development of WP4 and WP5, the prototype, and therefore the requirements, have suffered 
some adaptations with respect to the initial plan. Therefore, and following the Agile methodology, the 
requirements have been reviews and corrected according to the new definition needs. 

In this section, the updated requirements have been listed and the reason for modification have been 
presented. 

Table 11: Requirements update 
Req. ID version Old description version New description Rationale 

P3-FR-SYS-
030 

1.0 The Pilot3 prototype shall 
be triggered at any 
moment of flight from 
FL100 in climb down to 
FL100 in descent. 

2.0 The Pilot3 prototype shall be 
triggered at any moment of 
flight from FL100 in climb to 
TOD. 

The Pilot3 prototype has 
been designed to be 
triggered from FL100 in 
climb to Top of Descend.  

P3-FR-SYS-
150 

1.0 The Pilot3 prototype shall 
implement solutions for a 
Boeing B777. 

2.0 The Pilot3 prototype shall 
implement solutions for a 
Boeing B747. 

Due to data availability with 
regards to the aircraft 
performance model, 
aircraft type B747-400 have 
been implemented- 

P3-FR-SYS-
121 

1.0 The Pilot3 prototype may 
take into account real 
temperature and/or 
pressure atmospheric 
conditions when 
computing the alternative 
trajectories. 

2.0 The Pilot3 prototype may 
take into account real 
temperature and/or 
pressure atmospheric 
conditions forecast when 
computing the alternative 
trajectories. 

Correction performed in 
order to clearly specify that 
realistic forecast data will 
be used rather than real 
data. 

P3-FR-SYS-
122 

1.0 The Pilot3 prototype may 
take into account real air 
pressure conditions when 
computing trajectories. 

2.0 The Pilot3 prototype may 
take into account real air 
pressure conditions forecast 
when computing 
trajectories. 

Correction performed in 
order to clearly specify that 
realistic forecast data will 
be used rather than real 
data. 

P3-FR-SYS-
080 

1.0 The Pilot3 prototype shall 
be able to produce up to 
four different estimators 
for the same PI when 
applicable. 

2.0 The Pilot3 prototype shall be 
able to produce up to two 
different estimators for the 
same PI when applicable. 

Considering the re-scope of 
Pilot3 project ambition, two 
estimators will be aimed for 
each PI, one for Heuristics 
and one for Machine 
learning. 

3.1.4 Summary of software verification results  

Table 12 summarises the results obtained through the last cycle of verification. 

Table 12 Summary of software verification results 
Result Total  Comments 

 

5 

All these 5 requirements are non-mandatory: P3-FR-SYS-100, P3-FR-SYS-130, P3-FR-SYS-
160, P3-FR-SYS-170 and P3-FR-SYS-191. 
These requirements are related to either: 

• Uncertainty: en-route distance, weather forecast uncertainty, provide 
confidence level for each performance indicator estimator.  

• New aircraft models to be considered: other turbojets and turboprop aircraft. 
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26 Includes all requirements defined as mandatory and all non-functional requirements 
specified for the prototype. 

 

2 

Two requirements are partially verified, and further work is required to completely 
implement the capabilities needed:  

• P3-FR-SYS-192, considers the use of uncertainty due to ATC in the TMA. This is 
considered for some type of operations (tromboning, radar vectoring and 
holdings) and dedicated uncertainty estimator is developed in heuristic form but 
not integrated in Pilot3 architecture. 

• P3-FR-SYS-182 requires that the pilot can set constraints for the optimisation. 
Some of these capabilities are incorporated in Pilot3 optimisation engine V2.0, 
e.g. flight level restrictions. However, further experiments and the integration of 
these constraints in the data manager are still pending. 

3.2 Verification of the human-machine interface 

Differently from the software requirements, the HMI prototype ones have been tested in a qualitative 
manner, since the prototype consists of a set of mock-ups presented in a linear form (i.e., the features 
are not interactive)1. 

3.2.1 HMI verification test report  

The set of requirements that have been presented in this section, were developed in earlier stages of 
the project and have been finally presented in this deliverable D5.2.Table 13Table 13 presents the 
results of the verification of the HMI requirements. 

Table 13: HMI Verification requirements report 
Activity Module 

description 
ID Requirement short description Fulfilled 

Alternatives 
interaction 

The pilot shall 
interact through 
the HMI with the 
alternatives 
provided by the 
system 

P3-FR-
HMI-010 

The HMI shall display (output) a list of alternatives 
(4D trajectories) 

 

P3-FR-
HMI-020 

The HMI shall allow the pilot to rank (input) the 
presented alternatives according to the airline 
policies criteria.  

P3-FR-
HMI-030 

The HMI shall allow the pilot to inspect (input) the 
alternative details in depth.  

 

P3-FR-
HMI-040 

The HMI shall allow the pilot to re-compute (input) 
the alternatives considering the activated constraints 

 

Alternative 
details 

The pilot shall be 
able to inspect all 

P3-FR-
HMI-050 

The HMI shall display (output) the inspected 
alternative, plotting the horizontal and vertical 
profiles in a graph  

 

 

1 A set of mock-ups have been made available in the following link (Accessed March 2022):  
https://xd.adobe.com/view/8e3baa9d-e838-4e26-b2ca-a27822b10a12-db68/?fullscreen. 

https://xd.adobe.com/view/8e3baa9d-e838-4e26-b2ca-a27822b10a12-db68/?fullscreen
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the alternatives in 
depth. 

P3-FR-
HMI-060 

The HMI shall display (output) the Performance 
Indicators Estimators assessment for the given 
alternative.  

P3-FR-
HMI-070 

The HMI shall display (output) a confidence level for 
each estimator. 

 

Alternative 
comparison 

The pilot shall be 
able to compare 
the alternatives 
each other 

P3-FR-
HMI-080 

The HMI shall allow the pilot to compare (in/out) the 
4D trajectories of alternatives each other 

 

P3-FR-
HMI-090 

The HMI shall allow the pilot to compare (in/out) 
alternatives from previous computations, to analyse 
the impact of the enabled constraints  

P3-FR-
HMI-100 

The HMI shall allow the pilot to compare (in/out) 
alternatives with the planned one. 

 

Constraints 
configuration 

The HMI shall 
provide a module 
for the pilot to set 
up the 
constraints. 

P3-FR-
HMI-110 

The HMI shall provide an editor (input) to modify the 
constraints.  

 

P3-FR-
HMI-120 

The HMI shall allow the pilot to enable/disable 
(input) one or multiple constraints. 

 

P3-FR-
HMI-130 

The HMI shall display (output) a list of constraints 
activated by the pilot 

 

Operational 
ATC 
Estimators 

The HMI shall 
provide a set of 
operational ATC 
estimators 
generated by 
Pilot3 system 

P3-FR-
HMI-140 

The HMI shall display (output) a set of airborne and 
ground estimators used to compute the alternatives. 

 

P3-FR-
HMI-150 

The HMI shall display (output) an estimated extra 
flown distance in en-route phase. 

 

P3-FR-
HMI-160 

The HMI shall display (output) an estimated extra 
flown distance inside Terminal Airspace.  

 

P3-FR-
HMI-170 

The HMI shall display (output) an estimated number 
of holdings plus the holding time 

 

P3-FR-
HMI-180 

The HMI shall display (output) an estimated taxi-in 
time. 

 

3.2.2 Summary of HMI verification results 

Table 14 summarises the results obtained through the last cycle of verification on the HMI. 

Table 14: Summary of HMI verification results 
Result Total  Comments 

 

0 All requirements have been considered and incorporated in the design of the HMI. 

 

14 Most requirements have been fully incorporated in the HMI and feedback gathered 
from the Advisory Board for their validation. 

 

4 
Four requirements have been only partially incorporated into the HMI. This is due to 
the limitation of some of the prototype capabilities which impact the capabilities of 
what can be presented and requested to/from the crew. 
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4 Validation 

The internal validation has two objectives: to validate the functionalities of the components of Pilot3, 
and to evaluate the operational benefits of the prototype against the set of research questions and 
corresponding hypotheses defined for this purpose. 

The internal validation campaign is based on the interaction within the members of the consortium, 
and with the Topic Manager. The results for a set of scenarios and case studies will be presented to 
the internal experts in order to understand if the objectives and goals specified in the hypotheses have 
been successfully achieved. In addition, the internal validation provides a set of quantifiable metrics 
to facilitate the assessment of the tool. 

The internal validation is carried out through seven different internal validation actions (IVA), which 
can be grouped between: 

• Actions aiming at validating the different components of the model 

o IVA1 - Validation of Pilot3 optimised trajectory plans: the aim of this action is to 
compare the result of Pilot3 with state-of-the-art FPO tool, ensuring that the 
trajectories generated by Pilot3 are realistic and with similar (or better) expected 
performance. These actions focus on evaluating the Trajectory Generator of Pilot3. 

o IVA2 - Validation of indicators and estimators’ prediction: the aim of these actions is 
to validate the capabilities of the performance indicators (from the Performance 
Indicators Estimator module of Pilot3), and of the ATM uncertainties estimations (from 
the Operational ATM Estimators module). 

o IVA3 - Assessment of the optimisation framework: the objective of these actions is 
to assess how Pilot3 is able to generate different alternative trajectories and trade-
offs. 

• Actions aiming at assessment the benefit of Pilot3 

o IVA4 - Pilot3 performance at generation of optimised trajectories plans: the objective 
of this step is to assess the benefits of Pilot3 optimised trajectories plans against 
several baseline plans at the moment of considering the decision by the pilot. I.e., 
comparison of Pilot3 alternatives suggested to pilot with respect to baselines (original 
flight plan, or basic pilot trajectory behaviour). 

o IVA5 - Pilot3 performance at trajectory realisation: the aim of this action is to 
consider the impact of uncertainty in the execution of the optimised trajectory plans, 
and to assess the real benefits of Pilot3 against several baseline plans by simulating 
the trajectory to its arrival at the destination gate. 

o IVA6 - Pilot3 performance full day of operations: the aim of this action is to assess the 
benefit of Pilot3 at network-wide level in a full day of operations 
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•  Actions aiming at the validation of the HMI 

o IVA7 – HMI: these action aims to ensure that HMI prototype is well designed with 
respect to the information and mechanism available to the pilot. 

The external validation will be conducted using fully functional versions of the prototype and based on 
the results of experiments studies performed in the internal validation will be used as an input for the 
external validation. Dedicated activities (e.g. workshop) will be organised, but also a continuous 
interaction with the Advisory Board will be seek in order to provide input into the project, therefore, 
some overlap between internal and external validation might occur. For example, once results for 
relevant scenarios are produced, these can be used to do a targeted interaction with some members 
of the Advisory Board. The external validation will be performed through three main types of actions: 

• EVA1 - Live or pseudo-live demonstration of the HMI prototype and overall capabilities - the 
objective of this external validation action is to validate the interface, how the information is 
presented to and gathered from the crew, and to show the overall capabilities of Pilot3. 

• EVA2 - Presentation of results obtained with stand-alone simulations at trajectory level - in 
this case, the results from the experiments executed in the internal validation IVA4 and IVA5 
will be used. The objective is to validate the relevance of the findings. 

• EVA3 - Presentation of results obtained with network-wide simulations - if EVA6 is 
implemented and results are obtained at network level for a full day of operations, providing 
insight on the potential benefit of Pilot3 for airlines, these will be validated as part of this 
external validation action. 

This section presents the different internal validation actions with detail on the methodology and 
metrics that will be generated for the assessment of the research questions presented in Section 6. 

4.1 IVA1 – Validation of Pilot3 optimised trajectory plans  

As described in D5.1 (Pilot3 Consortium, 2020c), the scope of this validation activity was to 
demonstrate that Pilot3 is able to provide meaningful trajectories by comparing them with the 
trajectories generated by Pacelab Flight Profile Optimiser (FPO). Therefore, the FPO was placed as a 
benchmark tool. 

When D5.1 was defined, the initial objective was to compare the executed PACE FPO planned 
trajectory to the Pilot3 optimised planned trajectory. During the execution of Verification and 
Validation plan, it was realised that for the sake of this activity, the Pilot3 OFP module (DYNAMO) 
would largely fulfil the aim of this activity since it considers a DCO (Direct Cost Operations) trajectory 
optimisation and it is exactly the same trajectory optimisation engine that is embedded within the 
Pilot3 software. 

4.1.1 Approach 

In order to properly perform this validation activity, the consortium partners, namely UPC and PACE, 
conducted a set of bilateral meetings during October and November, 2021. The process was performed 
in an iterative way in which they exchanged a batch of emails. In general, the iterative approach 
allowed the partners to easily identify the potential bottlenecks and corresponding corrective actions 
during the execution of the validation activities. In order to ensure the seamless flow and accomplish 
this validation activity, the following steps were initially traced, namely: 
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1. Validation of the trajectory input file required for the FPO  

1.1. Agree/understand the file format and content : The task consisted on understanding the 
interface requirements of the FPO module in order to set and define the required interface 
updates for the Pilot3 OFP. For this, specification documents for the ARINC files were provided 
to the UPC and bilateral meetings and emails were exchanged. Two main files were aimed to 
be provided: 

 flight plan: initial optimised trajectory in ARINC 633 format. 

 weather: UAD weather file in ARINC 633 format. 

1.2.  Generate the AIRNC input files required by FPO: The task consisted on the implementation 
of required changes on the Pilot3 OFP interface to produce readable output files for the FPO 
module, automating export from DYNAMO and import in FPO Cloud in ARINC 633 format. 

1.3. Validate the input files: PACE reviewed and validated the aforementioned input files 
provided by the UPC in order to execute the FPO module. 

2. Execution of Trajectories for several relevant experiments 

2.1. Agree on relevant experiments to be executed: Two meaningful experiments were selected 
in order to perform the trajectories comparison. Section 4.1.2.defines the specific 
particularities of each experiment. 

2.2. Validate Pilot3 outputs against FPO outputs: For each experiment, the defined parameters 
were being used to compare the outputted trajectories. It is important to remark that while 
executing the experiments, both modules separately (FPO and DYNAMO) used: 

•  the same weather information 

• the same objective function C defined as C = Fuel + CI· TIme 

• the same operational constraints in the trajectory optimisation process (except for the 
initial climb and approach phases). 

This allowed the comparison to be the most reliable (and fair) possible. 

4.1.2 Experiments 

As aforementioned two experiments were used to perform the Pilot3 trajectories, Table 15 describes 
the main particularities of the experiments used:  

Table 15: IVA1 experiments  
ID Origin Destinatio

n 
Weather Aircraft 

type 
Cost Index Payload Trip fuel 

101 LGAV EGLL Nominal 
Date:  
2016-07-28.  

A320-232 20 kg/min 11837 kg  
(121 pax, 97 kg/pax, 100 kg 
cargo) 

8052 kg 

102 LEMD EDDF Nominal 
Date:  
2016-07-28.  

A320-232 20 kg/min 17490 kg  
(170 pax, 97 kg/pax, 1000 kg 
cargo) 

5498 kg 



EDITION 01.00 

54 
 

© – 2020 – University of Westminster,  Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved.  

 

As already foreseen in D5.1, Pilot3 and FPO differ in terms of the aircraft performance model used in 
their respective trajectory generation engines (i.e., Pilot3 uses EUROCONTROL BADA4 while FPO uses 
Original Equipment Manufacturer - OEM - data). 

4.1.3 Results 

Following the D5.1 plan, a set of metrics were used to validate the Pilot3 optimiser module trajectories, 
namely: 

• Fuel consumption: The difference in total fuel consumption computed from the executed PACE 
FPO trajectory plan and executed Pilot3 trajectory plan. 

• Flight Level: Difference in the number of speed level between the executed PACE FPO 
trajectory plan and executed Pilot3 trajectory plan. 

• Number of steps: Difference in the number of flight level changes (as the optimiser will not 
consider lateral deviations) between the executed PACE FPO trajectory plan and executed 
Pilot3 trajectory plan. 

• Time: The difference in total flight time computed from the executed PACE FPO trajectory plan 
and executed Pilot3 trajectory plan. 

Figure 13 shows the vertical profile for both trajectories, corresponding to experiment 101 (LGAV-
EGLL) and the comparison made by the Pacelab FPO tool. Table 16 contains the values for the 
validation metrics of this experiment.  

As observed in the Figure, the vertical profiles are very similar. Dynamo proposes an initial cruise flight 
level at FL340 followed by a step climb to FL360 after 1h of flight, approximately. The FPO trajectory, 
conversely propose FL360 as initial (and unique) cruise altitude. These differences in the vertical profile 
results in a difference of 5 kg and 5 minutes: the FPO solution uses 5 kg less of fuel (0.06% of the trip 
fuel difference) and is 4’17’’ faster than the Dynamo solution (2.0% faster than the trip time).  

 
PACElab Dynamo 

Figure 13 FPO vs Dynamo trajectories for Experiment 101 (LGAV-EGLL) 
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Table 16: IVA1 results. Comparison of PACElab vs. DYNAMO (Pilot3 trajectory optimisation engine) 
Indicator Experiment 101: PACElab vs DYNAMO  Experiment 102: PACElab vs DYNAMO 

Fuel consumption - 5kg (-0.06% of. trip fuel) + 94 kg (+0.54% of. trip fuel) 

Flight Level 360 vs 340/360 340/360 vs 340 

Number of steps 0 vs 1 1 vs 0 

Time - 4’ 17’’ (-2.0% of. trip time) + 1’ 41’’ (+1.2% w.r.t trip time) 

 

Figure 14 shows the vertical profile for both trajectories, corresponding to experiment 101 (LGAV-
EGLL) and the comparison made by the Pacelab FPO tool. Table 16 contains the values for the 
validation metrics of this experiment. 

As observed in the Figure, the vertical profiles are very similar. Both solutions propose an initial cruise 
at FL340. Dynamo keeps this cruising altitude for the whole flight, while the FPO trajectory proposes a 
step climb to FL360 at approximately 1h after take-off. These differences in the vertical profile results 
in a difference of 94 kg and 2 minutes: the FPO solution uses 94 kg more of fuel (0.54% of the trip fuel) 
and is 1’41’’ slower than the Dynamo solution (1.2% of the trip time). 

 
PACElab Dynamo 

Figure 14. FPO vs Dynamo trajectories for Experiment 102 (LEMD-EDDF) 
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4.1.4 Summary of Research Questions and Hypothesis 

The validation of the trajectories of Pilot3 was deemed as successful given the great similarities 
between the trajectories in terms of metrics and graphical comparison. For the tested scenario there 
is less than 1% discrepancy for fuel with respect to the trip fuel of the operational flight plan and 2% 
discrepancy for the trip time. 

Table 17: Summary of research questions (RQ) and hypotheses addressed in IVA1 

RQ ID Rationale Research 
question Hypothesis Success criteria Status 

P3-RQ-
IV-010 

Validate that 
Pilot3 is able 
to create 
trajectories 
which are 
realistic and 
representative. 

Are 
trajectories 
computed by 
the trajectory 
generator of 
Pilot3 realistic 
enough? 

It is expected to obtain 
similar trajectories than 
those obtained with state-
of-the-art trajectory 
planning applications 
running in EFBs under 
similar execution 
conditions. Yet, 
discrepancies might be 
found due to mismatches 
in aircraft performance 
models. 

• Pilot3 vs. FPO fuel and 
time discrepancies will 
not differ more than 4% 
and 6% respectively. 

• Discrepancies in number 
of speed/altitude changes 
along the trajectory can 
be explained by 
discrepancies in aircraft 
performance models.  

Validated 

4.2 IVA2 – Validation of indicators and estimators’ prediction 

Performance Indicators Estimator (PIE) and Operational ATM Estimator (OAE) are the two modules of 
Pilot3: performance indicators are used to compute the cost function, while the operational estimators 
aim at predicting operational uncertainties. As presented in Section 1.1.2 and Section 1.1.3, the 
Objective Function Estimator integrates the estimated costs at gate computed using the estimators of 
the PIE with the uncertainty provided by the OAE. 

The validation activities can be broadly divided into two categories: 

• Validation activities as a part of model development - A set of machine learning models have 
been developed for some of these estimators. In standard machine learning model 
development, some validation activities on the models are performed as part of their 
development: for each machine learning model a reference level of accuracy or a benchmark 
model is established. A set of standard metrics commonly used in machine learning will be 
used for each specific machine learning model to evaluate the model results. 

• Validation with experts within the consortium - The models (heuristics and machine learning) 
are presented and reviewed with experts within the consortium to ensure that they produce 
adequate results. This was done with support of metrics and visualisations. For this purpose, 
four internal meetings were organised during July 2021 in which the teams involved in the 
estimator development presented the main results to other partners and experts within 
consortium. Table 18 summarises the main details on the technical meetings conducted as a 
part of IVA2. 
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Table 18 The internal meetings held as a part of IVA2 

Date Institution Topic 
12JUL21 - 11h-14h Innaxis Arrival procedure and sequencing and merging distance estimation (heuristics 

and ML) 
19JUL21 - 11h-14h UoW Uncertainty modelling with machine learning: block time and turnaround 

models 
20JUL21 - 11h-14h UoW Reactionary delay and costs with machine learning 

 

Different models for the same indicator (e.g. heuristic and machine learning) should produce 
compatible but not fully equivalent predictions. For example, a model is to predict the rotation time 
of subsequent flights is used as part of the estimation of the reactionary delay. The heuristic version 
of this rotation time model does not consider the impact of features which might be related with the 
possibility of ATFM delay. This means that the machine learning version will provide predictions which 
have more operational factors into consideration which, even if considering relevant operational 
aspects, might render the predictions more uncertain. These alternatives to estimate the same 
indicator will be translated into different expected costs functions as a function of the configuration of 
Pilot3; and therefore, they could impact the result of the optimisation. For this reason, for each 
estimator the comparison between heuristic and machine learning alternative is provided in Sections 
4.2.2 and 4.2.3 and the impact of these different alternatives on the cost function presented in 4.2.4. 

4.2.1 Estimation approach 

4.2.1.1 Estimation approach in Pilot3 
As mentioned in the previous section, Pilot3 allows the user to select different implementations for 
the same estimator. Pilot3 software architecture allows the user to define, during the configuration of 
the tool, for each indicator a chain of estimators. In some cases, advance estimators might require data 
which might not be available during the flight or they might be valid only for specific operational 
conditions (e.g. a block time estimator might require the METAR at arrival which might not be loaded 
in the system or a machine learning model might have been trained (and be valid) only for a specific 
arrival airport). In these cases, Pilot3 will automatically revert to a lower estimator. This lower 
estimator, on its turn, might have defined other lower estimators creating this chain of alternatives. 
The main principle is that the system can try to use the most specific and advance estimator as possible. 
For example, a chain of estimators of the holding at arrival could be compose of five different 
estimators: 

1. First, try to use a specific advance machine learning estimator which has been trained for 
arrivals at EGLL only; 

2. if the previous estimator is not usable (e.g. the flight is going to an airport different than EGLL), 
then try to use a machine learning model trained with data for hub airports in Europe; 

3. if that is not possible then use a model which requires the METAR weather at arrival; 

4. if METAR is not available then a model with only static features (which don't change over time) 
might be used; 

5. and finally, if this is not possible it will revert to an heuristic model which considers historical 
holdings per airport type. 

For this reason, several approaches and models (heuristic and machine learning) have been 
implemented for some estimators. 
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4.2.1.2 Prediction horizons 
Estimations are performed using different data (and features) as input into the models. These inputs 
can be static, i.e., which do not change over time such as if the airport at arrival is or not a hub airport, 
or dynamic, i.e., which might evolve over time, such as the weather at the arrival airport as reported 
in the METAR. Therefore, when using estimators (and machine learning models in particular), it is 
paramount to ensure that the data used for the prediction is consistent with the data used for the 
training of the models. This data characteristics (and in particular their temporal availability) is what is 
considered as the prediction horizon of the machine learning model. For example, the rotation time 
(ground time) of a flight can use dynamic data (e.g. METAR) which are available right before that flight 
departure, 3 hours, 6h, 15h prior departure, etc. Each of these horizons might require an individual 
model to be trained. 

Pilot3 architecture allows the user to provide several estimators (trained at different prediction 
horizons) for the same indicator. Pilot3 will automatically use the estimators which are more relevant 
as a function of the data availability and, if necessary, interpolate the results across estimators. This 
capability is however not used in the results presented in this deliverable although preliminary 
analyses to highlight the importance of using different prediction horizons are presented in this 
section. 

The need for having different models trained at different prediction horizons will vary as a function of 
the importance of the dynamic features on the performance of such models. In this section an analysis 
is presented to provide an initial understanding of the impact that input data have on the model 
estimations for the different time horizons; specifically, for the estimation of minimum turnaround 
time. 

An initial subdivision between static and dynamic features (as described in Table 22) for the four-time 
horizons. The relevance of the feature is computed as the (normalized) total reduction of the criterion 
(that is used to measure the quality of a split) brought by that feature. In Figure 15 it is possible to 
observe that the relevance of static and dynamic features remains constant over the 4-time horizons. 
Specifically, static features contribute mainly to the explainability of the model with 80% of computed 
relevance. 

 
Figure 15 Features importance of static and dynamic features over the four time horizons of the model estimating the 

minimum turnaround time. 
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In a more detailed analysis we considered the contribution of the grouped features to the model for 
minimum turnaround time. As a result (see Figure 16), we can observe that the main features are the 
wake turbulence category of the aircraft and the four features for congestion at departure and arrival 
computed as shown in Table 22. 

 
Figure 16 Features importance of grouped static and dynamic features over the four time horizons for the model estimating 

the minimum turnaround time. 

This analysis confirms that overall the dynamic features play quite an important role in the minimum 
turnaround model (20% of model explainability), however, their contribution remains almost constant 
over the four time horizons. Further analysis will be required to quantify how much each of these 
dynamic features changes over time for a given instance (flight). 

4.2.1.3 Modelling of uncertainty  
Machine Learning (ML) models can be used to predict air traffic operational parameters, which, for 
example, are required to estimate how delays and costs will be generated and propagated in the air 
transport network. These costs typically grow non-linearly as the delay increases and can present sharp 
increments after certain thresholds (Cook and Tanner, 2015), e.g. breaching a curfew at the end of the 
day (Boeing, 2019; Gurtner et al., 2021) or having to compensate passengers due to delay as indicated 
in Regulation 261 (European Commission, 2004). Therefore, the expected cost associated with small 
probabilities of high delay can be very relevant and sometime dominate the expected cost generated, 
instead, by high probabilities of delay. Being able to capture not only the possible delay that will be 
propagated through the day, but the distribution of that delay is therefore paramount to estimate the 
expected cost of these operations. This is particularly relevant for Pilot3 where the estimators are used 
to compute the expected cost of delay as a function of the uncertain arrival time. 

These ML models, which aim to describe an uncertain environment are necessarily complex and 
present some level of inaccuracy. This inaccuracy is generally measured with metrics that are 
representative of the overall quality of the models but do not provide information about the level of 
inaccuracy and uncertainty of each single prediction. Once a model has been trained, some error is 
expected between predicted and actual realisation of the target variable. This error accounts for both 
aleatory uncertainty in the phenomena being modelled and epistemic uncertainty in the capability of 
the model to represent the relationship between features and target variables. In most cases, while 
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the quantification of the uncertainty would be crucial to the comprehension of the problem, the 
differentiation between its two possible sources is highly challenging or even not possible. The 
homoscedasticity of the error on the predictions by the model cannot be assumed for several reasons: 
the training set could be more or less disperse on different regions of the feature space; the underlying 
processes and relationships being modelled could present aleatory uncertainty; and the machine 
learning model might have limitations which could produce more accurate predictions on different 
regions of the feature space. For this reason, averaged statistics and the distribution of the error on 
the predictions for the entire validation set cannot generally be used as an estimation of the 
uncertainty of a single prediction. The local uncertainty of the model could be different than the 
average dispersion of the error and even present some skewness. 

Different approaches have been suggested in the literature to overcome these limitations and to 
estimate the uncertainty and reliability of the individual predictions (please see Appendix C). Most of 
these methods provide either an estimation of the variance of the error or an interval of reliability but 
are not able to describe the distribution of possible values. In Pilot3, we propose the use of a 
probabilistic classifier to characterise the distribution of the error of a prediction relying on the 
estimation of this error on the training set, obtaining the discrete distribution of the possible expected 
values of the prediction. 

 

 
Figure 17 Steps to compute a ML outcome as a probabilistic distribution using regression and classification models 

The approach can be summarised by Figure 17. Specifically, a regression model is designed to predict 
a desired continuous target variable (step 1). Secondly, the error of the model for each prediction is 
computed and discretised (step 2). Then, a classifier predicts the discretised error (step 3). This 
classifier will use the categorical cross-entropy as loss function and it will therefore predict a 
distribution of the error as a probability distribution for each individual prediction. The outcomes of 
the regression and classification models are finally combined producing a discrete probability 
distribution of the initial target variable (step 4). More in detail, the error distribution predicted by the 
classifier is centred on and added to the value predicted by the regression model leading to the 
probability distribution of the target variable. Note that the first and second steps could be avoided 
and a classifier directly used to predict the target variable. However, the use of the regression model 
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reduces the range of possible values to be modelled by the classifier which only focuses on the error 
of this first regression model. 

It is certainly desirable to quantify the level of uncertainty associated with these discrete distributions. 
Some concepts can be borrowed from information theory in an attempt to describe the uncertainty 
embedded by probabilistic distributions (Brownlee, 2019). As an example, entropy could be used as a 
metric to quantify the level of uncertainty of discrete probability distributions and cross-entropy can 
be a measure of the quality of predictions. Entropy provides a measure of the average amount of 
information needed to represent an event as probabilistic distribution. The lowest entropy for a 
random variable is 0 and occurs when there is a single event with a probability of 1, i.e., a certainty. 
The largest possible entropy represents a random variable for which all events are equally likely. Cross-
entropy is a measure of the difference between two probability distributions. Cross-entropy is the 
calculation of the total entropy of the distributions. More accurately, when a target probability 
distribution P and an approximation of it, Q, are considered, the cross-entropy of Q from P is the 
number of bits to represent an event using Q instead of P. 

Although, these metrics follow a formal and precise definition, their interpretation might be not 
intuitive and might require further knowledge of the topic. Therefore, in Pilot3 we introduced more 
intuitive metrics translating the uncertainty to more operational parameters. For this, the range of 
values (time in our models) that is captured by a given percentile (95%) is used. A larger time range 
will correspond to higher uncertainty and vice-versa. To assess the accuracy of the models, instead, 
the expected value of the individual predicted distributions is computed (after combining the output 
of the regression and classifier models - step 4 in Figure 17) and these values are used to calculate the 
mean absolute error with respect to the target values of the regression model. 

An interesting metric that could support the assessment of the quality of the models could be the 
'reliability' interpreted as the model capability to provide predictions with low uncertainty when the 
accuracy is high and with a higher uncertainty when the accuracy is low. However, this metric has been 
neither defined nor used in Pilot3 and could be included as part of possible future developments. 
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4.2.2 Performance Indicator Estimator 

4.2.2.1 Architecture and main validation results 
 

 
Figure 18 Performance Indicator Estimator components  

Figure 18 presents the different estimators that are provided by the Performance Indicator Estimators 
module. These are used to estimate the cost of delay related to IROPS (due to passenger) and other 
costs (considering crew, maintenance and reactionary costs). 

These costs are computed as follow: 

• IROP Costs consisting on: 

o Non-connecting passenger costs, which require modelling of compensation costs (due 
to Regulation 261) and soft costs, and 

o Connecting passengers, which will experience costs if they miss their connection and 
as a function of when the following alternatives are available to reach their 
destination. Therefore to estimate these costs Pilot3 requires: 

 Estimation of the different alternatives to reach their final destination and 
their associated costs: compensation, soft costs, duty of care and transfer 
costs. 
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 Estimation of the possibility of missing a connection and of making a given 
alternative as a function of the arrival time at the gate of the flight. This needs 
two estimators: 

 Estimation of the minimum connecting time, and 

 Estimation of the departing time of subsequent flights. 

• Other costs consisting on: 

o Non-passenger costs for the current flight modelling crew and maintenance related 
cost, and 

o Reactionary delay costs which will depend on the estimated amount of reactionary 
delay propagated to subsequent flights and on the possibility (and cost) of performing 
a pre-tactical (strategic) action such as cancelling or swapping a flight downstream. 
This means that the reactionary cost will depend on: 

 Reactionary costs computed as a function of the estimated reactionary delay, 
which is estimated modelling the rotation of subsequent flights with (see 
Section 4.2.2.2.2)): 

 Ground time (rotation) time estimation and 

 Block time estimation. 

 Reactionary action estimator to capture the possibility and cost of an action 
being performed by the AOCC to limit the propagation of delay (see Section 
4.2.2.2.2.4) 

Therefore, besides the models used to estimate the costs, which are based on the European cost of 
delay report (Cook and Tanner, 2015) the following estimators are required, for which in this section 
information on the validation and results of the heuristics and machine learning models are provided: 

• Passenger connections estimation (Section 4.2.2.2.1.3), which requires: 

o minimum connecting time estimator, and 

o departure time estimator. 

• Reactionary cost estimation (Section 4.2.2.2.2), which requires for subsequent flights:  

o block time estimation (Section 4.2.2.2.2.1) 

o ground time (rotation time) estimation (Section 4.2.2.2.2.2), and 

o reactionary strategic action being performed (Section 4.2.2.2.2.4) 

Table 19 presents a summary of the different estimators and how they have been validated. 



EDITION 01.00 

64 
 

© – 2020 – University of Westminster, Universitat Politècnica de Catalunya, Innaxis, PACE Aerospace Engineering and Information 
Technology. All rights reserved.  

 

Table 19: Summary of Performance Indicator Estimators and their validation 

Component Estimator Estimator approach Validation approach Result Mode details 
in Section 

Minimum connecting time Heuristic 
Based on reported historical data (considering 
airport and type of connection). 
Uncertainty can be added to the prediction. 

Provide values from historical 
dataset (Cook et al., 2012). 

Values used in previous research 
projects (Gurtner et al., 2021) 4.2.2.2.1.1 

Departure time estimation Heuristic 

Provide SOBT as estimation of departure time for 
other flights in the network. Data could be 
updated in Pilot3 during the flight. 
Uncertainty can be added to the prediction. 

- - 4.2.2.2.1.2 

Block time estimation Heuristic Block time planned by airline (SIBT - SOBT) Schedules from historical dataset 
(Gurtner et al, 2021) 

Values used in previous research 
projects (Gurtner et al, 2021) 4.2.2.2.2.1 

Block time estimation Machine 
learning 

Two model approach (prediction + classifier) to 
provide prediction with uncertainty. 
ANN for prediction, ANN for classification 

Label dataset based on DDR 
historical block times. 

 

Accuracy ~5.6 minutes 
Average uncertainty ~27 minutes 4.2.2.2.2.1 

Ground time  
(Rotation time) 

Heuristic Only minimum turnaround time is estimated - - 4.2.2.2.2.2 

Ground time  
(Rotation time) 

Machine 
learning 

Combination of three models: probability of 
ATFM delay, minimum turnaround time if no 
ATFM delay is assigned, and ground time if ATFM 
is assigned. 

- - 

4.2.2.2.2.2 

ATFM delay probability 
estimation 

Machine 
learning 

Binary classifier with ANN. Label dataset based on DDR 
historical information of flights 
being regulated due to ATFM. 

Confusion matrix (predicted/actual): 
• delayed/delayed: 47% 
• non-delayed/delayed: 53% 
• delayed/non-delayed: 28% 
non-delayed/non-delayed: 72% 

4.2.2.2.2.2 

Minimum turnaround 
time 

Heuristic Provide minimum turnaround time based on 
analysis of rotation times from historical dataset 
(DDR) considering 2 percentile grouping the data 
based on WTC, airport size and airline type. 

- Values used in previous research 
projects (Gurtner et al, 2021). 4.2.2.2.2.2 
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Component Estimator Estimator approach Validation approach Result Mode details 
in Section 

Minimum turnaround 
time 

Machine 
learning 

Two model approach (prediction + classifier) is 
used to estimate the minimum turnaround time. 

Labelling performed with a 
regression tree. This is used to 
group similar rotation times per 
WTC category aircraft. The 2 
percentile of each leave node is 
used as the estimated minimum 
turnaround time of those flights. 

Accuracy ~ 2.6 minutes 
Average uncertainty ~ 4.8 minutes 

4.2.2.2.2.2 

Rotation time if flight 
regulated 

Machine 
learning 

Two model approach (prediction + classifier) is 
used to estimate the rotation time if flights have 
ATFM delay assigned. 

Label dataset based on DDR 
historical information considering 
only flights which have ATFM 
delay issued. 

Accuracy ~ 18 minutes 
Average uncertainty ~ 72.6 minutes 4.2.2.2.2.2 

Reactionary delay 
strategic action 

Heuristic Strategic action considered that will be 
performed as an outcome of two models: 
possibility of doing an action (dependent on how 
many legs downstream the flight to which the 
action will be performed is), and the expected 
cost of delay if no action is done. 

Parameters manually tuned as 
proof of concept and expected 
reactionary delay cost compared 
with estimates obtained from 
analysis of European cost of delay 
report (Cook and Tanner, 2015) 

Values significantly lower than do-
nothing approach and aligned with 
European cost of delay report. 4.2.2.2.2.4 
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4.2.2.2 Components 

4.2.2.2.1 Passenger connections estimation 

4.2.2.2.1.1 Minimum connecting time 
The minimum connecting time is computed by using heuristics which consider the airport where the 
connection is performed and the type of connection: domestic, international or standard. These values 
are obtained from the analysis of minimum connecting times at ECAC airports originally performed in 
POEM project (Cook et al., 2012) and used in previous research projects such as Domino (Gurtner et 
al., 2021). 

Pilot3 gives the possibility to provide some uncertainty. This uncertainty will be used to create a normal 
distribution centered at the minimum connecting time with a sigma as the provided by the user. 

4.2.2.2.1.2 Departure time 
For the departure time of flights which are not the current flight, Pilot3 relies on using the SOBT as 
loaded in the flight prior departure. The system allows for this information to be updated during the 
flight. As with the minimum connecting time a parameter of uncertainty could be provided. 

4.2.2.2.1.3 Passenger connections estimations 

 
(a) Probability connecting flight will still be at the hub 

 
(b) Minimum connecting time of passenger 

 
(c) Probability of making the connection 

Figure 19 Modelling of probability of missing connections  

As presented in Figure 19, Pilot3 estimates for each alternative available to a passenger to arrive to 
their destination the possibility that the passenger could make the connection as a function of the 
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arrival time of the inbound flight by combining the probability that the connecting flight is there and 
the minimum connecting time required by the passenger. 

4.2.2.2.2 Reactionary estimation 

4.2.2.2.2.1 Block time estimation 
Heuristics 

The heuristic version of the block time of a flight is estimated as the time between SOBT and SIBT (i.e., 
SIBT-SOBT). There is the possibility to add as a parameter some uncertainty (sigma). Then, instead of 
estimating a certainty of SIBT-SOBT, the heuristics estimates a normal distribution with parameters mu 
= SIBT-SBOT and sigma = sigma. 

 

Machine Learning 

In this section a description of both the regression and classification ML models that have been used 
in Pilot3 to predict the duration of flights (runway-to-runway) is provided. The datasets used for these 
models are listed below: 

• Traffic data from EUROCONTROL’s Demand data repository 2 (DDR2)(EUROCONTROL, 2015a). 
This includes information on the flight plan and the actual realization of flight operations for 
flights in September 2018. For each flight, among others, there is information on their off-
block and landing times. These data and an estimation of the taxi-in times provide the required 
parameters to compute the labels of the datasets: block time as time from off-block at 
departure to in-block at arrival. This dataset is also used to estimate some input features such 
as congestion at airports or arrival direction. 

• Airport weather reports. METeorological Aerodrome Reports (FAA, 2016) records describing 
the weather present at airports from which information such as wind, temperature from which 
the ATM Airport Performance (ATMAP) weather score can be estimated (Schultz et al., 2018). 

• En-route weather extracted from ECMWF Re-Analysis 5 (ERA5) which provides hourly 
estimates of a large number of atmospheric variables notably wind aloft. 

• Aircraft characteristics, such as Wake-turbulence category (WTC) extracted from 
EUROCONTROL’s Base of Aircraft Data (BADA) (EUROCONTROL, 2015b). 

• Airport and airlines characteristics, such as status of airport (e.g. hub/no-hub) or type of airline 
(i.e., full-service, low-cost, regional and charter). 

The input features that were extracted and/or computed from these datasets are described in Table 
20. 

Table 20 Input features for the block-time ML model 

Input features Data sources Description Static (S) vs Dynamic 

Time departure DDR2 Categorical (morning, afternoon, evening) S 
Airline type DDR2 Categorical (type of airline, e.g. regional) S 
Congestion at 
departure during the 
day of operations 

DDR2 
Numerical (number of flights departing 
from the airport during the hour of 
interest) 

S 
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Input features Data sources Description Static (S) vs Dynamic 

Congestion at arrival 
during the day of 
operations 

DDR2 Numerical (number of flights arriving at 
the airport during the hour of interest) S 

Landing direction DDR2 Categorical (e.g. North-West) D 

ATFM regulations DDR2 Categorical (presence of imposed ATFM 
regulations) S 

Great Circle Distance 
(GCD) DDR2 Numerical (distance between departing 

and arrival airports)  S 

Direction of flight DDR2 Categorical (e.g. North-West) S 
ATMAP weather score 
at departure airport METAR Numerical D 

ATMAP weather score 
at arrival airport METAR Numerical D 

Wind speed at 
departure airport METAR Numerical D 

Wind speed at arrival 
airport METAR Numerical D 

Temperature at 
departure airport METAR Numerical D 

Temperature at 
arrival airport METAR Numerical D 

Airport hub Airport data Categorical (yes/no) S 
Average wind along 
trajectory ERA5 Numerical D 

Size aircraft BADA Categorical (low, medium, high, jumbo) S 
Size airport departure Airport data Categorical (small, medium, big) S 

 

The selection of the input features for the model initially relies on the experience and expertise of the 
modeller. However, there are well established techniques that allow to assess the contribution to the 
model explainability of the features. One of these techniques is called SHAP (Shapley additive 
explanations) (Shapley, 1953) analysis which quantifies the relevance of the input features used by a 
ML model. We performed this analysis for the regression model to rate but also to verify our initial 
intuition about the more explanatory features. This analysis, indeed, confirmed our initial hypotheses 
that the phenomenon we are here modelling is mainly 'static' (in other words it is affected mainly by 
the static features that we included in the model) and its accuracy is mainly driven by the Great Circle 
Distance with approximately 33% of SHAP relevance (See Figure 20). 
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Figure 20 SHAP analysis to assess the impact of the features on the regression problem for the block time estimation 

An analysis of the possible models' hyper-parameters was implemented via Grid Search which allows 
to define a search space as a grid of hyper parameters values and evaluate the combinations of 
parameters. This analysis led to the hyper-parameters described in Table 21. 

Table 21 Hyper-parameters used for the regression and classification ML models. 
 

Regression model Classification model 
Learning rate 1e-4 1e-4 
Number of hidden layers 2 1 
Number of neurons in the hidden layers 20-8 30 
Optimizer Adam Adam 
Mini-batch size 64 32 
Activation functions Relu/Linear Relu/Softmax 
Weights initialization Glorot uniform Glorot uniform 
Number of epochs 25 25 
Loss function Mean absolute error Categorial Cross-entropy 
% of data for training/validating/ testing 60/20/20 60/20/20 

 

In order to assess the quality of the entire two-model approach we firstly characterised the accuracy 
of the single regression and classification models and later we introduced specific metrics to 
characterise the accuracy, uncertainty and reliability of the entire two-model approach. 

The mean absolute error and its standard deviation are used to characterise the accuracy of the 
regression model, which are respectively of 6.9 and 5.2 minutes. For the classification models, 
however, we are not interested on the accuracy as usually defined for these types of problems, i.e., 
class with highest probability being the one of the labelled sets. Instead, the quality of the distribution 
of uncertainty across classes should be captured. This is due to the fact that the different classes in this 
problem are ordered and their probability will be used to describe the uncertainty of the prediction. 
Therefore, specific metrics need to be considered. Cross-entropy (Brownlee, 2019) can be a measure 
of the level of accuracy of the predictions delivered by ML classifier models. However, the cross-
entropy function does not have a maximum limit making its normalization and comparison across 



EDITION 01.00 

70 
 

© – 2020 – University of Westminster,  Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved.  

 

different distributions challenging. As it is a normalised measure of diversity when comparing 
probability distributions, Jensen-Shannon divergence (Brownlee, 2019) is preferred a measure of the 
level of accuracy of the ML classifier models. Another metric that can be considered for quantifying 
the performance of a classifier is an average of the absolute error values. In this case, the error is 
computed as the difference between the expected value from the predicted probability distributions 
and the target probability distributions. The Jensen-Shannon value for the classifier we used is ≈0.83 
and the average of the absolute error values is ≈5.7 minutes. 

The accuracy of the full model is computed combining the output of the regression and classifier 
models (i.e., adding the error computed by the classifier to the value estimated by the regression 
model) and using the expected value of the individual predicted distributions. According to this, the 
accuracy of the model is overall of ≈5.6 minutes. For the assessment of the uncertainty embedded with 
the prediction, a normalized entropy function could be used. However, the temporal range within 
which 95% of the probability values for each distribution falls is used instead as it provides a more 
operational metric. As a result, the uncertainty of the model is estimated at ≈27 minutes (in average). 

In order to obtain the gate-to-gate block time of flights the duration of the taxi-in and taxi-out are 
added to the predictions of the runway-to-runway model via convolution. 

  

 
Figure 21 Comparison between the estimations of gate-to-gate block time obtained with a heuristic approach (from 

schedule times) and with our ML model 

Figure 21 presents the comparison of three example of estimations of block-times performed by the 
heuristic approach (i.e., planned time between SIBT and SOBT) and the machine learning approach. In 
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these three examples, one can observe how in some instances the ML model will in average estimate 
a block time smaller than the one planned by the airline, i.e., some padding is present, be aligned with 
it, or estimate that the block time will be larger than the planned time. 

 

Figure 22 Histogram showing the difference between the predictions of the ML and the heuristic models over a set of 
≈5000 testing samples 

In general, the ML gate-to-gate block time model produces shorter estimations than the heuristic ones 
(approximately 3.5 minutes less over a testing set of ≈5000 samples). This is consistent with the general 
practice of having padding on the schedules. Figure 22, shows the distribution of difference between 
the expected prediction of the ML model and the estimation by the heuristic using only the planned 
block time by the airline. 

4.2.2.2.2.2 Rotation time (ground time) 
In order to estimate the reactionary delay, Pilot3 uses an estimation on when the flight will be ready 
for the next rotation. It was not possible to directly estimate the time that the aircraft would be doing 
the rotation as this will require a dataset which includes planned schedules and realised rotations. The 
only dataset available is the EUROCONTROL DDR dataset from which it is possible to estimate when 
an aircraft arrives at an airport and when it leaves again (EUROCONTROL, 2015a). However, it is not 
possible to estimate from that if the aircraft was performing actions while on ground or if some buffer 
was being used. For this reason, ground time models tend to focus on the estimation of minimum 
turnaround time which is then combined with a sequence of schedules to estimate the propagation of 
delay, i.e., if the flight is ready after its schedule it is assumed it will depart then, if it's ready before it 
will wait until its planned SOBT. This will be the approach followed on the heuristic modelling of ground 
time. 

For the machine learning model, a combination of minimum turnaround time, which is estimated using 
dynamic features, and delay due to ATFM regulations is considered. The assumption is that if a flight 
has been assigned ATFM delay the observed time on the ground will not count with the above-
mentioned buffer, and therefore it can be assumed it's the minimum time the flight needs to be on 
the ground if ATFM delay is issued. Therefore, the machine learning approach will feature a 
combination of the outcome of three models: one to determine if a flight is being affected by ATFM 
delay, another one for the estimation of the minimum turnaround time if the flight does not have 
ATFM delay assigned, and a final model to estimate the total rotation time if the flight is affected by 
the regulation. 
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For these reasons the individual models (heuristic to estimate minimum turnaround time, probability 
ATFM delay, machine learning minimum turnaround time, and machine learning rotation time if ATFM 
issue) will be validated among their dataset, i.e., among their labelled data. But the integrated 
rotation/ground time, cannot be validated against an historic dataset of rotations. 

Heuristic 

The heuristic approach to estimate the minimum rotation time is based on the use of an historical 
analysis of ground times observed in data. Data on arriving and departing of subsequent flights has 
been collected from ALL_FT+ and analysed grouping the information considering aircraft wake 
turbulence, airport size and airline type. For each of these categories the 2 percentile of the rotation 
times is used as an approximation for the minimum rotation time required by a flight with those 
characteristics (wake turbulence, airport size and airline type). This is the same approach as followed 
in previous European SESAR research projects such as Domino (Gurtner et al., 2021). 

Machine Learning 

The ground time is estimated as a probabilistic distribution of the time that an aircraft will spend at 
the gate between each rotation. For the estimation of the ground time three ML models are 
implemented. Figure 23 shows the working principles of the full ground time model. 

 
Figure 23 Schematic of the working principles of the three models implemented to predict the ground time of flights 

First, a classifier which outputs two coefficients, one predicting the probability that ATFM delay will be 
assigned to the flight and another describing the possibility for the aircraft to operate on the ground 
as fast as possible without any imposed delay is used. Then, the two further models predict the time 
distribution for turnaround operations when ATFM delay is imposed ('Turnaround with delay model'), 
and another the time distribution for similar operations when no delay is assigned to the flight 
('Minimum turnaround model'). These two predicted distributions are then combined together 
considering the probability of their occurrence as estimated by the first model (weighted sum). 

The three models have been trained using the input features listed in Table 22. 
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Table 22 Input features for ground-time ML models 

Input features Data sources Description Static (S) vs Dynamic 

Time departure DDR2 Categorical (morning, afternoon, evening) S 
Airline type DDR2 Categorical (type of airline, e.g. regional) S 
Congestion at 
departure during the 
day of operations 

DDR2 
Numerical (number of flights departing 
from the airport during the hour of 
interest) 

S 

Size of arrival airport Airport data Categorical (small, medium, big) S 

ATFM regulations DDR2 Categorical (presence of imposed ATFM 
regulations) S 

Congestion at 
departure during the 
hour of operations 

DDR2 Categorical based on threshold value 
(yes/no) D 

Congestion at arrival 
during the hour of 
operations 

DDR2 Categorical based on threshold value 
(yes/no) D 

ATMAP weather score 
at departure airport METAR Numerical D 

Wind speed at 
departure airport METAR Numerical D 

Temperature at 
departure airport METAR Numerical D 

Airport hub Airport data Categorical (yes/no) S 
Size aircraft (except 
for the 'Minimum 
turnaround model') 

BADA Categorical (low, medium, high, jumbo) S 

Size airport departure Airport data Categorical (small, medium, big) S 
 

Probability ATFM delay 

This first model (an ANN (Artificial Neural Network) classifier) predicts the probability for a flight to be 
assigned ATFM delay. The target vector during the training process was obtained from for the ALLFT+ 
DDR data by labelling as delayed flights the ones having a non-empty COBT (computed off-block time) 
field. The input features are listed in the table above (Table 22) while the model parameters are listed 
in Table 23. 

Table 23 Hyper-parameters for probability ATFM delay 
 

Classification model 
Learning rate 1e-4 
Number of hidden layers 1 
Number of neurons in the hidden layers 15 
Optimizer Adam 
Mini-batch size 32 
Activation functions Relu/Sigmoid 
Weights initialization Glorot uniform 
Number of epochs 15 
Loss function Binary Cross-entropy 
% of data for training/validating/ testing 60/20/20 
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Figure 24 Confusion matrix describing the accuracy of the ATFM delay model 

Having an initial unbalanced distribution of target classes (≈66% non-delayed sample data vs ≈34% 
with-delay sample data), the input data has been balanced by up-sampling the input data of the less 
represented class. The accuracy of the model can be described by the confusion matrix reported in 
Figure 24. The confusion matrix is achieved by imposing a threshold value of 0.5 when considering the 
predictions. Therefore, we labelled the predictions (probability coefficients) that are higher than the 
threshold as 'delayed' and the predictions that are lower than the threshold as 'non delayed'. As shown 
by Figure 24, 72% of non-delayed and 47% of delayed flights are expected to be predicted as such. 

Turnaround estimation with delay 

This model predicts probabilistic distributions of ground time (turnaround) under the assumption that 
ATFM delay is assigned to a certain flight. The input features for this model are listed in Table 22. The 
target vector for the regression model was extracted using ALLFT+ DDR data by subtracting the actual 
landing time and the average Taxi-in time (provided by EUROCONTROL statistics) from the actual off-
block time (AOBT) of the next leg in the rotations. The approach of regression and classifier is used to 
estimate the distribution of possible turnaround times (see Section 4.2.1.3). 

The model parameters for the regression and classification models used to estimate the turnaround 
time with delay are shown in Table 24. 

Table 24 Hyper-parameters used for the regression and classification ML models used for the turnaround estimation of 
ATFM delayed flights. 

 
Regression model Classification model 

Learning rate 1e-5 1e-4 
Number of hidden layers 2 1 
Number of neurons in the hidden layers 16-8 21 
Optimizer Adam Adam 
Mini-batch size 64 32 
Activation functions Relu/Linear Relu/Softmax 
Weights initialization Glorot uniform Glorot uniform 
Number of epochs 25 10 
Loss function Mean squared error Categorial Cross-entropy 
% of data for training/validating/ testing 60/20/20 60/20/20 
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Figure 25 Probability distribution of the error estimation by the classifier model used for the estimation of the turnaround 

time when ATFM delay is applied 

A typical error estimation computed by the classification model is shown in the Figure 25. An initial 
visual assessment of the quality of the model is possible by comparing the expected value (dashed red 
line) with the peak area of the probability distribution. 

 
Figure 26 SHAP analysis showing the % mean absolute value of the relevance values 

In order to improve the transparency and understanding of this model a SHAP analysis was 
implemented, as shown in Figure 26. The most relevant features for this model are the time of 
departure and the airline type. 
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Table 25 Accuracy performance of turnaround with delay model 

Model Metric Sample testing size Result 

Regression model to 
predict the turnaround 
time 

Mean difference (absolute value) 
between predicted and target value ~40,000 flights ~22 minutes 

Classification model to 
estimate the error of the 
regression model 

Mean difference (absolute value) 
between expected value from 
probabilistic distribution and target 
value 

~40,000 flights ~15 minutes 

Turnaround with delay 
model (regression + 
classification) 

Mean difference (absolute value) 
between expected value from the 
probabilistic error distribution 
(predicted by classifier) centred 
around values predicted by 
regression model and target value 

~40,000 flights ~ 18 minutes 

 

Table 25 presents the performance of the model and the components of the turnaround with delay 
estimation model. The mean difference (absolute value) between the target and the predicted values 
is used as a metric for the regression model. This metric results in ≈22 minutes of mean error over a 
testing sample size of ≈40000 flights. 

The mean difference (absolute value) between the expected is used to quantify the performance of 
the probabilistic distributions and the target values. This metric results in ≈15 minutes of mean error 
over a testing sample size of ≈40000 flights. 

Finally, for the combined two-models the mean difference (absolute value) between the target values 
and the expected value from the probabilistic error distributions (predicted by the classifier) and 
centered around the values predicted by the regression model is computed. This metric results in ≈18 
minutes of mean error over a testing sample size of ≈40000 flights. The uncertainty of the model, 
defined as usual in Pilot3 (the range of values that is captured by a given 95% percentile), is ~ 72.6 
minutes. 

Minimum turnaround time 

This model predicts probabilistic distributions of ground time (minimum turnaround) under the 
assumption that ATFM delay is not assigned to a certain flight. The first problem when trying to 
estimate the minimum turnaround time is that a dataset with this information is not available. 
Therefore, a modelling approach is followed to estimate this minimum turnaround time and to build 
the dataset required to train a model able to predict this value considering dynamic features. 



D5.2 VERIFICATION AND VALIDATION REPORT 

 

 
 

 

© – 2022 – University of Westminster, Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved. 

 
77 

 

 

Figure 27 Minimum turnaround estimation approach 

Figure 27 presents the overall approach followed: 

1. Labelling of the dataset to estimate the minimum turnaround time of a given flight: 

a) The turnaround time for each flight is computed considering historical data from 
ALL_FT+ base on the landing time of the previous flight and the actual off block time 
of the subsequent flight subtracting the estimated taxi-in time, as performed in 
Turnaround estimation with delay presented above. 

b) The size of the aircraft has an important factor on this minimum turnaround time, 
therefore first the dataset is divided as a function of this parameter. 

c) For each cluster a regression tree is computed to predict the actual rotation time as a 
function of different features (see Table 20). Then following the approach of the 
heuristic modelling, the 2 percentile of the values of each final-leave from the tree are 
computed. This information will build the labelled dataset. This means that even for 
the same WTC different minimum turnaround times will be expected considering 
static and dynamic features. 

2. The two-model approach presented in Section 4.2.1.3 is used to predict the minimum 
turnaround time of a given flight while providing information on the distribution of possible 
values. This is done by training two models: 

a) A regression model to predict the minimum turnaround time of the flight (done using 
a regression tree). 

b) A discrete classifier ANN to predict the error of the previous regression model. As 
explained in Section 4.2.1.3. the prediction provided by the estimator will be the 
combination of these two models. 
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Table 26 Hyper-parameters for regression tree model for predicting turnaround time used for the labelling phase 
 

Regression tree model used for labelling of dataset 
Pruning (Yes/No) No 
Criterion Mean squared error 
Splitter Feature with the highest importance 
Max depth 6 
Minimum samples split 2 
Minimum sample leaf 1 
CCP alpha 0 

 

Table 26 presents the hyper-parameters of the regression tree used in the labelling phase of the 
dataset. 

Table 27 Hyper-parameters for regression models for minimum turnaround time. 
 

Regression tree model used to predict minimum turnaround 
time 

Pruning (Yes/No) Yes 
Criterion Mean squared error 
Splitter Feature with the highest importance 
Max depth 6 
Minimum samples split 2 
Minimum sample leaf 1 
CCP alpha 0.03 

 

 
Figure 28 Importance of the input features of the regression model  for minimum turnaround data 

Table 27 presents the hyper-parameters of the regression tree used to predict the minimum 
turnaround time (regression model of the two-model approach). 

The feature importance for the regression model was computed as the (normalized) total reduction of 
the criterion brought by that feature. As a result of this analysis (see Figure 28) we can observe that 
the wake turbulence category (WTC) is the most relevant feature (more than 60% of the feature 
importance over the entire set of input features) followed by a combination of static and dynamic 
features: airline type and congestion at arrival and departure. 
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Table 28 Hyper-parameters for prediction minimum turnaround time classification model. 
 

Classification model -predict 
minimum turnaround time 

Learning rate 1e-4 
Number of hidden layers 1 
Number of neurons in the hidden layers 21 
Optimizer Adam 
Mini-batch size 32 
Activation functions Relu/Softmax 
Weights initialization Glorot uniform 
Number of epochs 35 
Loss function Categorial cross-entropy 
% of data for training/validating/ testing 60/20/20 

 

 

Figure 29 Probability distribution of the error estimation by the classifier model used to estimate the turnaround time when 
no ATFM is applied 

Finally, Table 28 presents the hyper-parameters of the classifier used to estimate the error of the 
regression tree which predicts the minimum turnaround time. A typical error estimation computed by 
the classification model is shown in the Figure 29. An initial visual assessment of the quality of the 
model is possible by comparing the expected value (dashed red line) with the peak area of the 
probability distribution. 
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Table 29 The performance of the model and the components of the turnaround without delay estimation model 

Model Metric Sample testing size Result 

Regression model to 
estimate the minimum 
turnaround time 

Mean difference (absolute value) 
between predicted and target value ~78,000 flights ~2 minutes 

Classification model to 
estimate the error of the 
regression model 

Mean difference (absolute value) 
between expected value from 
probabilistic distribution and target 
value 

~78,000 flights ~1.5 minutes 

Turnaround with delay 
model (regression + 
classification) 

Mean difference (absolute value) 
between expected value from the 
probabilistic error distribution 
(predicted by classifier) centred 
around values predicted by 
regression model and target value 

~78,000 flights ~ 2.6 minutes 

 

The different performance observed by the models are provided in Table 29. The mean difference 
(absolute value) between the target and the predicted values is used as performance metric of the 
regression model. This metric results in ≈2 minutes of mean error over a testing sample size of ≈78000 
flights. 

The mean difference (absolute value) between the expected value from the probabilistic distributions 
and the target values is used as a metric for the classifier. This metric results in ≈1.5 minutes of mean 
error over a testing sample size of ≈78000 flights. 

The mean difference (absolute value) between the target values and the expected value from the 
probabilistic error distributions (predicted by the classifier) and centred around the values predicted 
by the regression model is used for the two-model approach for the final prediction. This metric results 
in ≈2.6 minutes of mean error over a testing sample size of ≈78000 flights. The uncertainty of the 
model, defined as usual in Pilot3 (the range of values that is captured by a given 95% percentile), is ~ 
4.8 minutes. 

Comparison heuristic and machine learning for rotation time estimation 

Figure 30 show sample examples where the estimations from the ML models for the ground time are 
compared with the heuristic predictions. 
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Figure 30 Probability distributions for the ground time predicted using ML models. The figures also allow a visual 

comparison between the heuristic and the ML estimators 

 

Figure 31 Histogram showing the difference between the predictions of the ML and the heuristic models over a set of 
≈5000 testing samples 

Although the ML model estimating the probability for a flight of being assigned with ATFM delay will 
tend to assign an overall higher probability to non-delayed ground time operations we can observe 
that our ML ground time estimator overall overestimates the predictions of the heuristic model (see 
Figure 31). Indeed, when comparing the predictions of two estimators, the ML approach overall 
overestimates the ground time of approximately 17.5 minutes. This is to be expected and shows how 
considering the possibility of ATFM delay on the turnaround time will lead to estimation of higher 
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probability of propagating delay. Note also how in Figure 30 the heuristic estimation of the turnaround 
time is aligned with the expected value of the estimation of the ML models if no ATFM delay is 
considered. 

4.2.2.2.2.3 Reactionary delay 
Integration of reactionary delay approach and example 

The delay that a certain (delayed) flight propagates, affecting the ground and flight operations of the 
subsequent flights in the rotations. As mentioned in Section 4.2.2.1 the reactionary delay of each 
subsequent planned rotation is computed by combining the outcome of rotation and block time 
estimation of the different flights (see Figure 32). 

 
Figure 32 Example of estimation of ground and block times and their convolution to estimate reactionary delay 

Each model (ground and block time) produces as an outcome a probability distribution of the duration 
of these processes. The convolution of these times produces allows Pilot3 to estimate the arrival and 
departure time distributions for each flight. The reactionary delay model will compute for each flight 
the time when the aircraft is ready to depart as the distribution of arrival time of previous rotation and 
the ground time estimated. If this time is earlier than the planned SOBT of the flight, the model 
assumes that the aircraft will wait at the departure airport and leave at the SOBT, otherwise it will 
leave immediately. This approach allows Pilot3 to implicitly estimate, and to consider, possible padding 
that the airline has planned on their schedules. 

  



D5.2 VERIFICATION AND VALIDATION REPORT 

 

 
 

 

© – 2022 – University of Westminster, Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved. 

 
83 

 

Table 30 Flight information for a set of rotations of a specific aircraft. In red is highlighted the flight provoking primary 
arrival delay 

Origin Destination SOBT SIBT 

Planned time 
for rotation 
from previous 
flight 

EHAM EGLL 05:15 06:40 - 
EGLL EHAM 07:40 09:00 1h00 
EHAM LGAV 10:05 13:20 1h05 
LGAV EHAM 14:15 17:45 0h55 
EHAM UUEE 18:50 22:05 1h05 

The rotations of a particular flight (an B737-900) for a given day in September 2014, planned as shown 
in Table 30, are reported as an example. Note that it's assumed that the first flight (EHAM-EGLL) is the 
current flight in Pilot3. Therefore, the propagation of delay will be estimated as a function of the 
different arrival times of this flight to EGLL. 

  

(a) Ground time distribution of the first leg (b) The convolution of the primary arrival delay with the 
ground time distribution of the second leg produces the 

departure delay distribution of the second leg 

  

(c) Gate-to-gate block time distribution (d) The convolution of the distributions in (b) with the 
distribution in (c) produces the arrival time distribution of 

the second leg as function of primary arrival delay 

Figure 33 Estimation of propagation of delay for EGLL to EHAM flight (first rotation) (includes heuristic predictions) 
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All the plots report also the corresponding values obtained with the heuristic model (please note that 
while the probability of the heuristic values is 1 a slight shift of their values was needed for visual 
convenience in case of overlaps). 

First, Figure 33 presents how once the flight EHAM-EGLL arrives to EGLL there is an estimated rotation 
(ground) time that will be required before the return flight to EHAM (Figure 33 (a)). As a function of 
the primary delay experience by the first flight the aircraft will be ready to depart at different moments 
as shown in Figure 33 (b). Note how if the aircraft is ready before the SOBT for the EGLL-EHAM flight 
then the flight will wait until that time increasing the probability of departing without delay. Figure 33 
(c) presents the estimation of the block time between EGLL and EHAM. Convolving this block time 
distribution with the different departing time Figure 33 (d) is produced which estimates the arrival 
time at EHAM of this rotation. It is then possible to compute the probability of the flight to arrive 
before or after its planned SIBT. All plots Figure 33 also report the corresponding values obtained with 
the heuristic models (please, note that probability of the heuristic values is 1 a slight shift of their 
values was needed for visual convenience in case of overlaps). 

  

(a) Ground time distribution of the second leg (b) The convolution of the primary arrival delay with the 
ground time distribution of the third leg produces the 

departure delay distribution of the third leg 

 
 

(c) Gate-to-gate block time distribution (d) The convolution of the distributions in (b) with the 
distribution in (c) produces the arrival time distribution of 

the third leg as function of primary arrival delay 

Figure 34 Estimation of propagation of delay for EHAM to LGAV flight (second rotation) (includes heuristic predictions) 
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The same process is performed for the following rotation: computation of distribution of ground time 
for the rotation between EHAM and LGAV at EHAM (Figure 34 (a)), computation of expected departure 
time from EHAM by convolving the rotation time with the arrival times (Figure 34 (b)). Note how if the 
primary delay is 40 minutes or less, the probability of departing on time is high (>0.4) as delay will be 
absorbed by the padding on the schedules. 

  

(a) Ground time distribution of the third leg (b) The convolution of the primary arrival delay with the 
ground time distribution of the fourth leg produces the 

departure delay distribution of the fourth leg 

  

(c) Gate-to-gate block time distribution (d) The convolution of the distributions in (b) with the 
distribution in (c) produces the arrival time distribution of 

the fourth leg as function of primary arrival delay) 

Figure 35 Estimation of propagation of delay for LGAV to EHAM flight (third rotation) (includes heuristic predictions) 
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(a) Ground time distribution of the fourth leg (b) The convolution of the primary arrival delay with the 
ground time distribution of the fifth leg produces the 

departure delay distribution of the fifth leg 

  

(c) Gate-to-gate block time distribution (d) The convolution of the distributions in (b) with the 
distribution in (c) produces the arrival time distribution of 

the fifth leg as function of primary arrival delay 

Figure 36 Estimation of propagation of delay for EHAM to UUEE flight (forth rotation) (includes heuristic predictions) 

The same process if followed by the remaining flights in the sequence as presented in Figure 35 and 
Figure 36. Note how in some cases even if the primary delay is high the departure delay for the last 
rotation (EHAM to UUEE flight) is low. This is due to the padding in the schedules and the abortion of 
some reactionary delay. On the other hand, even if the first flight is on-time, some delay might be 
experienced by subsequent flights as some ATFM delay or longer rotations might also occur as 
captured by the models. 
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Comparison heuristic and machine learning reactionary delay estimation 

 

 

(a) Second leg (b) Third leg 

 

 

(c) Fourth leg (d) Fifth leg 

Figure 37 Propagated reactionary delay as a function of primary delay. A comparison between heuristic and ML. 

As presented the reactionary delay is computed as the convolution of rotation and block time 
processes. These processes can be estimated with heuristics or with machine learning models. Pilot3 
even allows the combination of these, e.g. rotation time estimated with heuristics and block time with 
machine learning models. As presented on the different components, machine learning models tend 
to produce larger ground times and shorter block times estimations. This will have an impact on the 
expected average delay (and cost) to be propagated. This is particularly relevant as the machine 
learning models can capture small probabilities of large delays (which will have a significant impact on 
the average expected cost of delay due to the non-linearity of cost of delay). 

Figure 37 presents the comparison of the expected departing delay of the subsequent legs of the flight 
described in Table 30 as a function of the primary delay (i.e., as a function of the arrival time of the 
first flight) computing the reactionary delay with machine learning models and with heuristics. As 
observed the differences can be significant (e.g. 5th leg is expected to have an average departing delay 



EDITION 01.00 

88 
 

© – 2020 – University of Westminster,  Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved.  

 

of 50 minutes if the first flight has 120 minutes of delay according to the ML models, while that primary 
delay would be absorbed between the 4th and 5th leg according to the heuristic model). 

Finally, it is worth noticing that not all the subsequent delay (and cost) experienced by the remaining 
rotations of the flight should be attributed to the primary delay of the first flight. For example, 
according to the machine learning models all legs (and noticeably in the second and fifth) will 
experience some departure delay (greater than zero) even if the first flight does not have any primary 
delay (initial arrival delay set at zero). This is due to the estimation of potential rotations and block 
times which are longer than the allocated times by the airline in the schedules (for example due to 
ATFM delay). However, an earlier than schedule arrival for the first flight might help to alleviate this 
subsequent delay and cost. 

4.2.2.2.2.4 Reactionary delay strategic action 
The modelling approach followed to estimate the reactionary delay (convolution of expected ground 
and block times) has the inconvenience that all processes are assumed to be independent and 
therefore delay propagated without any further consideration. For example, if the primary delay is 2 
hours, these are just propagated on the subsequent flights leading to a unrealistically high total 
propagation of delay. The model lacks the consideration that some strategic actions (pre-tactically) 
might be performed by the AOCC to prevent this propagation such as cancelling or swapping flights 
downstream. These actions will generally be performed by the duty manager and their explicit 
modelling is difficult as it is difficult to obtain a dataset with historical information on this, and the 
actions might vary due to a high number of factors. 

For this reason, in Pilot3 a process 'strategic action' has been modelled. This model captures the 
probability that an action, with a pre-defined cost, will be performed by the AOCC if the total expected 
reactionary cost is considered to be too high. 

  

(a) possibility to perform strategic action as a function of 
rotation number 

(b) Probability of performing strategic action to avoid 
reactionary delay propagation as a function of expected 

total cost 

Figure 38 Modelling functions for strategic action 

The strategic action model computes the probability of performing such action as combination of two 
factors: 

• first a model which captures the possibility of performing this action. It is assumed that the 
further in number of leg with respect to the current flight more time will be allowed for the 
AOCC to have the possibility to perform an action. The current model follows a sigmoid with a 
probability of 0.3 if the flight is the first rotation and a probability of 0.99 if it is the third 
rotation from the current flight (as shown in Figure 38 (a)). This model could be replaced by 
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advanced trained ML models which can estimate what is the possibility for an airline to 
perform an action (such a swap of aircraft) as a function of operational parameters (e.g. if the 
flight is departing from the airline hub, time of the day). 

• the second model captures the willingness of the airline of doing this action. This probability 
is also modelled with a sigmoid. In this case, it is assumed a given cost for the strategic action 
(10.000 EUR) and the airline will start to consider to perform this action if the expected cost is 
higher than a given threshold (9.000 EUR) with a probability of 0.99 if the cost is higher than a 
given value (20.000 EUR). The use of the sigmoid captures the no-rational aspects associated 
with this decision-making process (as shown in Figure 38 (b)). 

Note that both models could be replaced by advanced heuristics or models provided by the AOCC. 

An example is provided to describe how these models are used in Pilot3 and the validation of the 
manually adjusted parameters of the possibility and probability models. For this Table 31 presents a 
flight with four legs. A curfew has been manually defined in the final arrival airport (LTBA) at 22h to 
present this impact on the reactionary delay cost model. In the same table, following the reactionary 
delay estimation presented in Section 4.2.2.2.2.3, the arrival reactionary delay of the subsequent legs 
is presented as a function of the primary delay of the first flight. 

Table 31 Rotations and arrival delay as a function of primary delay for reactionary strategic action example 

Leg SOBT SIBT Arrival delay 

LGAV-EGLL1 5h15 9h10  

EGLL-LIRF 9h50 12h20 

 
 

LIRF-EGLL 13h15 15h50 
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Leg SOBT SIBT Arrival delay 

EGLL-LTBA2 16h50 20h40 

 

 
1 Current inbound flight. Reactionary delay and cost computed with respect time of arrival of this flight to gate.  
2 Curfew set manually at LTBA at 22h00 

 

 

Figure 39 Total expected reactionary costs 

Appendix D presents how the costs are computed in a step-by-step manner. Here only the final results 
are presented. Figure 39 shows the expected cost for the different components of reactionary delay 
(departing delay cost, strategic action cost and curfew cost). 
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Figure 40 Comparison total expected reactionary costs with and without strategic action and with European cost of delay 
reference values 

A comparison with the expected strategic costs if no strategic action is modelled is presented Figure 
40. As shown, with the strategic action the expected total reactionary delay cost grows in a much lesser 
intensity. The total expected reactionary cost with a primary delay of 300 minute is higher than 
170.000 EUR as this delay is propagated in subsequent flights eventually breaching the curfew and 
with very high departing delay costs in subsequent legs. With the modelling of the strategic action the 
costs are kept under 60.000 EUR. Finally, the European cost of delay reference provides an estimation 
of the cost of delay per minute of primary delay considering the full cost (including reactionary costs) 
and just with the primary cost (without reactionary costs) (Cook and Tanner, 2015). Doing the 
difference between these estimations, it is possible to get an indication of the order of magnitude of 
the reactionary delay costs of this cost reference model. Note that these values are valid in average 
and therefore do not consider the particularities of this specific rotation. In any case, it is possible to 
observe how the values of the estimated cost of reactionary delay by the cost of delay report are 
aligned and closer to the values obtained by Pilot3 model with the strategic action. Future work should 
be done to better calibrate the parameters of the strategic action model. 

4.2.3 Operational ATM Estimator 

4.2.3.1 Architecture 

 

Figure 41 Operational ATM Estimator components 

Figure 41 presents the different estimators that are provided by the Operational ATM Estimator 
module. As indicated in Section 1.1.2 the uncertainty modelled in Pilot3 focuses on the arrival and is 
used by the Objective function estimator to provide the estimation of the expected cost as a function 
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of arrival time at FL100 in the descent. This is done by computing the expected costs of delay as a 
function of arrival time at gate (as provided by the Performance Indicator Estimator) and then 
integrating the different uncertainties between FL100 to the gate. Notably, holding, sequencing and 
merging and taxi-in times. For this reason it is particularly important that the Operational ATM 
Estimator does not provides only a value as prediction of the different components but a distribution 
which captures the uncertainty of the operations. 

The flight might experience some discrepancies between planned and realised lateral trajectory. These 
variations would affect the optimisation (as the distance remaining in the flight might vary) and have 
not been considered in the prototype yet. However, a first estimation of the actual distance within the 
Terminal Manoeuvring Area (TMA) (specifically, from entering TMA to reaching FL100) has been 
computed as a first step toward integrating these type of uncertainties in Pilot3. 

Finally, the Operational ATM Estimator provides an estimator to predict the time between two given 
waypoints in the flight plan. This is used by the Objective function estimator to estimate the expected 
cost function at any waypoint along the flight plan to be used as heuristic by the Trajectory optimiser 
with the full grid-search approach. 

Table 32 summarises the estimators developed in the Operational ATM Estimator. Note that most of 
the predictions are route dependent as the datasets specific to the destination airport were used to 
train the particular machine learning models or/and to perform heuristics models. 

Table 32: Types of predictors used for several ATM operational indicators 

Estimator Type Routes estimator 
computed/trained Data sources Technical specifications 

Distance 
sequencing 
and merging 

Heuristic • LEMD - EDDF 
• ENGM - LEBL 
• ELLX - EHAM 
• LGAV - EGLL 
• JKFK – EGLL 

Radar data from 
ADS-B 

Opensky 

Historical analysis of distance from FL100 to 
runway. 

 Machine 
learning 

xxx – EDDF DDR data and 
METAR data 

Two implementations: 

• Multi classifier 
• Two-model approach (regression and 

classification) 
Probability of 
holdings 

Heuristic • LEMD - EDDF 
• ENGM - LEBL 
• ELLX - EHAM 
• LGAV – EGLL 
• JKFK – EGLL 

Radar data from 
ADS-B 

Opensky 

Historical analysis of holdings.. 

 Machine 
learning 

xxx – EGLL Radar data from 
ADS-B 

Opensky 

DDR and METAR 
data 

Random Forest Classifier 

TMA distance 
to FL100 

Heuristic xxx – EDDF ADS-B 

Opensky 

Historical analysis of distance flown from a 
point defined as the intersection of the flown 
trajectory with a circle centred at the airport 
with radius the start point of the STAR the 
TMA STAR (EMPAX) and reaching FL100. 

Taxi time Heuristic All IATA airports CODA files Logarithmic-normal distribution. 
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Estimator Type Routes estimator 
computed/trained Data sources Technical specifications 

Between 
waypoint time 

Heuristic – Flight plan Directly estimating the time between points as 
indicated in the flight plan operated in Pilot3. 
Uncertainty is added to this value as 
configured in Pilot3. 

 

The internal validation of these models is driven by the experts from the consortium who are directly 
involved in the development of the machine learning and heuristics models. As previously mentioned, 
the results of the OAE were presented during the internal meeting which was organised as an on-line 
meeting in July, 2021. 

4.2.3.2 Components 

4.2.3.2.1 Taxi time 
The taxi time is the time an aircraft spends taxiing form the gate to the runway (taxi-out) and from the 
runway to the gate (taxi-in). For assessing this value we have used the CODA files. 
EUROCONTROL/CODA has published airport taxi times for many years, divided in seasonality with 
summer and winter times. These times are calculated from flight-by-flight data provided to CODA by 
airlines and airports. This includes airports for which CODA receives data on more than 100 flights, 
thus covering small and large airports, mainly in Europe, but also some non-European airports with 
direct flights to Europe. The values within CODA files times are calculated using the airline reported 
actual off-block time, actual take-off time, actual landing time and actual in-block time. The files 
provides a mean value for taxi in each airport, its standard deviation, the 10th percentile, median and 
90th percentile. For the purpose of assessing uncertainty on taxi time a normal logarithmic distribution 
is calculated with the mean and standard values for each airport, resulting into a probabilistic 
distribution as shown in Figure 42. The use of these files as data source and the probability distribution 
obtained from them was validated by the Advisory board. 

 
Figure 42 Taxi-in in Frankfurt Airport as estimated from CODA files 

As observed in Figure 42, the distribution of taxi time is skewed to the left, indicating that most taxi in 
time values will be around 6 minutes, with a probability of 12%. This outcome will be the same for all 
flights landing at Frankfurt airport. 

  



EDITION 01.00 

94 
 

© – 2020 – University of Westminster,  Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved.  

 

4.2.3.2.2 Sequencing and merging distance 

4.2.3.2.2.1 Heuristic 
The arrival at destination distance is defined as the distance left to fly by an aircraft when it hits FL100 
until it reaches the runway. To compute this distance we used the great circle distance point by point 
along the trajectory from FL100 to RWY and add it. In order to validate this calculus we performed the 
same analysis with two different datasets: ADS-B data from Opensky and R&D EUROCONTROL data, 
with data from September 2018. 

 

 
Figure 43 Histogram for sequence merging distance for LEMD-EDDF arrivals 

Having estimated the sequence and merging distance for all aircraft landing at a given airport during 
the selected period (September 2018) a histogram is produced as outcome of the estimator as shown 
in Figure 43. 

4.2.3.2.2.2 Machine learning – regressor 
To estimate the sequencing and merging distance with machine learning models different datasets are 
used to build the input features: EUROCONTROL R&D Archive and METAR data. Two feature analysis 
techniques are used to identify the importance of the different features modelled: PCA (Principal 
Component Analysis) and feature regression which rank features in the same order if all the features 
are positively correlated with the target. Table 33presents the features used for the models. 

Table 33: Features used for the sequencing and merging models 
Component Feature Detailed information 

Trajectory Altitude at FIR entry (geo and baro) Implicit route and date (time of the day) information.  

The coordinates at the FIR entry are estimated using the flight 
plan 

Time of the day and Hour of the day are obtained from the 
scheduled arrival time 

Latitude at FIR entry 

Longitude at FIR entry 

Day of the week 

Hour of the day 

Performance Velocity at FIR entry  

Vertical rate at FIR entry 

Weather at 
arrival airport 

Precipitation From METAR 

Wind speed 

Air temperature 
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Component Feature Detailed information 

Dew Point temperature 

Visibility 

Altimeter hpa 

Network 
status 

Occupancy at arrival time Network disruptions. The occupancy is defined as all flights 
landing in Heathrow airport during a 40 minutes window centred 
either on the scheduled arrival time or the scheduled  

departure time 

Occupancy at departure time 

 

PCA shows how with 10 features approximately 90% of the dataset is explained (Figure 44). Features 
regression (Figure 45) shows that the highest correlated feature with the sequence and merging 
distance is the latitude at which the aircraft is planned to enter the FIR, followed by the hour of the 
day at which it is expected to land and the occupancy of the airport at that time. 

 
Figure 44 PCA results for sequence-merging 

distance dataset  

 
Figure 45 Feature regression results for sequence-merging 

distance dataset 

Two different approaches are developed to predict not only the expected sequencing and merging 
distance but the uncertainty associated with these estimations: 

1. a classifier directly on the target variable (distance of sequencing and merging). A clustering 
(k-means) algorithm is used to define the different classes, i.e., possible sequencing and 
merging distances. This produced an accuracy of 0.5. 

2. the two-model approach of a regression and a classification of the error of the regression as 
presented in Section 4.2.1.3 and used by the Performance Indicator Estimator models (see 
Figure 17). In this case a random forest regressor is used to estimate the sequencing and 
merging distance followed by a classifier. 
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Figure 46 Prediction with classifier on the target variable (sequencing and merging distance) 

 

 
Figure 47 Prediction with two-model approach for sequencing and merging distance 

4.2.3.2.2.3 Comparison heuristic and machine learning 
Note that in this case, the heuristic approach provides the same distribution independent of the flight. 
The machine learning models adjust their prediction as a function of some flight characteristics. 

4.2.3.2.3 Holding time 

4.2.3.2.3.1 Heuristic 
For this case-study ADS-B data from Opensky data is used. ADS-B provides higher resolution than other 
datasets such as EUROCONTROL R&D Archive. However, ADS-B from Opensky is usually noisy and it 
requires a cleaning pre-process in order to validate trajectories and work with them. Table 34 presents 
the different cleaning processes that were applied to ADS-B data from Opensky are described and 
illustrated with an example of trajectories. 
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Table 34: Cleaning processes applied to ADS-B data for holding estimation 
Action Trajectories result 

Raw data 

 

Removing too high and too low altitudes. 

In this stage we remove non-realistic altitudes 

NaN removal 

 

Removal of flights presenting peaky outliers 

There are flights which trajectory is not smooth 
which means radar detection issues. 
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Action Trajectories result 

Removal of corrupted data at arrival. 

For some flights, once the aircraft touches ground 
the recorder keeps adding points to the trajectory 
that are corrupted. These need to be removed. 

 

Removal of flights flying at low altitude.  

For the case studies within Pilot3 we do not require 
to analyse this type of planes. 
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Action Trajectories result 

 

Removal of very short haul flights 

These flights are usually test flights or flights with 
missing data. 

In both cases they are not object of study in pilot3 

 

Resampling (10 seconds) Finally, to obtain smoother trajectories and remove noise a re-
sampling with a sampling period of 10 seconds was performed on 
all trajectories. 

This procedure will also reduce the size of data and thus the 
computational cost associated to dealing with these data 

 

The holdings are estimated for EGLL using data from September 2018. Figure 48 presents all the flights 
considered. 

 
Figure 48 All trajectories landing at Heathrow during September 2018 
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The goal was to label the holdings, that means being able to obtain from a trajectory if a holding has 
occurred. For that purpose the LineString method from Python was used. This method is able to 
determine whether a 2D array is complex or simple. A simple array is that in which no crossing occurs, 
on the other hand a complex array is a line that crosses itself. In aircraft trajectories, if a trajectory 
crosses itself on the plane, a holding has happened. Figure 49 presents several trajectories where 
holdings are present. 

 
Figure 49 Close-up of all flights presenting holdings during the first week of September 2018 

The probability of a holding occurring at a given airport is then estimated using data of one month. For 
instance, in September 2018, all flights flying the route LGAV-EGLL were analysed, turning out in 55% 
of them having a holding. Therefore, in Pilot3 every flight having this route will be associated with a 
probability of holding equal to 55%. 

4.2.3.2.3.2 Machine learning 
Table 35 presents the different features that are considered by the machine learning models. 

Table 35: Features used for the sequencing and merging models 
Component Feature Detailed information 

Trajectory Altitude at FIR entry (geo and baro) Time of the day and Hour of the day are obtained from the scheduled 
arrival time 

Entry FIR coordinates are extracted from R&D Archive 
Latitude at FIR entry 

Longitude at FIR entry 

Day of the week 

Hour of the day 

Performance Velocity at FIR entry  

Vertical rate at FIR entry 

Weather at 
arrival airport 

Precipitation Holdings may be weather sensitive as bad weather could imply network 
disruptions 

A 'complex' feature is proposed: Dew point temperature minus 
temperature at the airport. 

As the difference of these values is closely related to fog creation and 
thus, visibility. 

Wind speed 

Air temperature 

Dew Point temperature 

Visibility 

Altimeter hpa 

Network 
status 

Occupancy at arrival time Network disruptions 

 Occupancy at departure time 
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Figure 50 PCA Analysis for the holdings dataset 

 
Figure 51 Feature regression analysis for the holdings dataset 

 

 

.  

(a) Visibility 
 

(b) Flight level entry 

 

(c) Entry FIR latitude 
Figure 52 Significant features for holdings analysis 

The PCA analysis indicates that 9 features are enough to retain 0.96 of variance, hence letting us know 
that the selected input features are enough to explain holdings (see Figure 50). The feature analysis 
indicates that apparently, dew point and wind speed at the arrival airport are the most relevant 
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features, followed by the network features. Surprisingly visibility ap-pears as a features having medium 
impact on holdings, however, it is directly linked with the dew point (see Figure 51). The dew point is 
the point at which the water in the air condensates, forming fog, the closer this temperature is to the 
ambient temperature, the more likely fog will form, thus leading to a loss of visibility. If we take a 
deeper look into the features we can see how visibility (see Figure 52 (a)) is almost always the same 
value, which will explain its low im-pact on the feature analysis, as it adds no information. This low 
variance on the feature may be explained by poor data quality from the data source used, METAR. On 
the other hand the air temperature is already considered in the difference temperature feature, and 
taking a look into the probability histograms of flight level entry and latitude entry (Figure 52 (b) and 
Figure 52 (c)) we can see how the values are very similar for the flight level and the variation range 
very low for the fir latitude, so these features do not add a lot information to our model, they can even 
difficult the model comprehension. For that reason, 9 features from the total proposed features have 
been selected for the model uptake, their impact on holdings is displayed in Figure 53. 

 

 
Figure 53 Most important features for holdings 

Several machine learning algorithms were tested: logistic regression, classification tree, random forest 
classifier, k-nearest neighbours and AdaBoost. These were evaluated as a function of their accuracy 
(ratio of correctly predicted observation to the total observations), precision (ratio of correctly 
predicted positive observations to the total predicted positive observations) and recall (ratio of sum of 
true positive and true negatives out of all the predictions made). 

Table 36 presents the preliminary results on the performance of the different methods considered. 

Table 36: Algorithms tested for Machine Learning models on holdings and their performance 
Algorithm Accuracy Precision Recall 

Logistic Regression 0.69 0.78 0.72 
Classification Trees 0.79 0.85 0.81 
Random Forest classifier 0.86 0.89 0.88 
K-nearest Neighbour 0.80 0.84 0.83 
AdaBoost 0.79 0.85 0.80 

 



D5.2 VERIFICATION AND VALIDATION REPORT 

 

 
 

 

© – 2022 – University of Westminster, Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved. 

 
103 

 

 
Figure 54 Confusion matrix for random forest algorithm to detect holdings at EGLL 

The hyper-parameters of the random forest classifier are further tuned as this is the method which 
provides best performance obtaining a final accuracy of 0.87, precision of 0.9 and re-call of 0.88. Figure 
54 presents the confusion matrix for these predictions: 

• True Positive(TP): Flights which have a holding and are predicted to have a holding (bot-tom 
right square). 

• True Negative(TN): Flights which do not have a holding and are predicted to not have a holding 
(top left square). 

• False Positive(FP): Flights which do not have a holding and are predicted to not have a holding 
(top right square) 

• False Negative(FN): Flights which have a holding and are predicted to not have a holding 
(bottom left square). 

4.2.3.2.4 Comparison heuristic and machine learning 
In the case of holdings for a given flight the current heuristic version returns the probability of having 
a holding in that airport based on historical data without any further consideration. So this probability 
is the same for every flight. The machine learning model returns the probability of having a holding 
based on the accuracy of the model, which is 87%. 

4.2.3.2.5 TMA distance estimation 
In order to optimise the last segments of the route a distance estimator that computes the distance 
from the TMA entry point to FL100, which the point at which Pilot3 will optimise. 

To do so we select the EMPAX point, which indicates the entrance to the TMA for the flights entering 
the space using the southern route. Considering the Great Circle Distance between EMPAX ( N48 27 
43, E 008 58 53) and EDDF airport (N50 1.96 E 008 32 08), which is 97NM a circumference is drawn 
with that radius with the airport as centre. We define that the moment a flight crosses that imaginary 
line it has entered the TMA space. Thus, following the approach previously defined, the distance from 
the TMA entry point until the aircraft reaches FL100 is computed. This rationale is depicted in Figure 
55. As it can be appreciated in the picture, the segment of the trajectories within the circumference is 
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the one presenting larger dispersion, and thus the one with greater uncertainty and the most relevant 
to predict. 

 
Figure 55 TMA distance rationale, LEMD - EDDF southern trajectories, EMPAX point (blue triangle), EDDF airport (red cross), 

and circumference delimiting the entry at the TMA 

In the case of the TMA distance the results are also given in a shape of a probability distribution 
histogram, as depicted in Figure 56. This distribution will represent all incoming flights at Frankfurt 
airport. 

 
Figure 56 Histogram depicting the TMA distance for LEMD-EDDF southern routes 

4.2.4 Cost function and alternatives 

As shown in the previous sections, the different configuration of the Performance Indicator Estimator 
and the Operational ATM Estimator will have a direct impact on the computed expected cost of delay 
function used in Pilot3. However, from an optimisation perspective what is relevant is not necessarily 
the value of the amount of expected cost but how this cost varies as a function of arrival time in order 
to consider if a trade-off between fuel (and extra cost of fuel) and cost of delay is worth it. For this 
reason the derivative of the cost over time will be provided. 

In this section different configurations of the Performance Indicators Estimator and the Operational 
ATM Estimator are used in three flights from the scenarios defined in Section 2: 

• SCN 100 — LGAV – EGLL (see Section 2.1.1) 

• SCN 600 — KJFK – EDDF (see Section 2.1.3) 

• SCN 800 — KJFK – EGLL (see Section 2.1.4) 
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The shape and order of magnitude of the total expected costs for these flights when using the default 
configuration of Pilot3 have been validated with the Advisory Board. In this section, different 
configurations of Pilot3 will be used to analyse how this impact the shape and possible optimisation. 
All expected cost of delay functions are computed by the PIE as a function of arrival time at the gate 
and then integrated by the Objective Function Generator up to FL100 using the outcome of the OAE 
as presented in Section 1.1.2. Therefore, the results of the expected cost at FL100 are shown in this 
section, as these will be the values used by the optimiser (see Section 1.1.3). 

For each comparison four different representations are shown: 

• Expected cost when reaching FL100. 

• Difference on expected cost when reaching FL100 between two configurations being analysed. 

• Derivative of cost of delay over time for each alternative. Note that this is an indication of the 
variation of cost of delay (EUR) over time (min). As Cost Index is defined as kg fuel / minutes, 
there is a relationship between the derivative of cost over time and the cost of fuel, being able 
to estimate an operational cost index as the derivative of cost of delay over time divided by 
cost of fuel. This is something that should be explored further. 

• Difference between derivative of cost over time for each alternative configuration. 

4.2.4.1 SCN100 – LGAV – EGLL cost function alternatives analysis 

 

(a) Expected cost 

 

(b) Difference of cost 

 

(c)Derivative of cost over arrival time 

 

(d) Difference on derivative cost 

Figure 57 No entitlement to Regulation 261 consideration of connecting passengers 
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(a) Expected cost 

 

(b) Difference of cost 

 

(c)Derivative of cost over arrival time 

 

(d) Difference on derivative cost 

Figure 58 Regulation 261 vs non Regulation 261 cost with connecting passengers 

The first analysis performed is assess the impact of considering connecting passengers in the cost 
function. As shown in Figure 57, if passengers are not entitled to compensation due to Regulation 261 
the expected costs considering or not connecting passengers are very similar. Not including the 
connecting passengers has overall a lower cost as when passenger miss a connection some extra delay 
might be experienced which, even if not entitled to compensation (Regulation 261), will have an impact 
on the total IROP costs for example on the soft cost component. However, when analysing how the 
cost varies over time and the comparison between both alternatives, (Figure 57 (c) and Figure 57 (d)), 
it is clear that the impact is low. When passengers are entitled to Regulation 261, connecting 
passengers have a larger impact on the total experienced cost as shown in Figure 58. It is interesting 
to observe how when passengers miss their connections some non-linear increment on the cost 
function are produced (see Figure 58 (b)). These abrupt changes lead to variations of cost as a function 
of arrival time with sharp increments and descends. However, as shown in Figure 58 (d), for this 
particular flight, the variation of cost over time is always the same or higher that if passengers are not 
entitled to Regulation 261. So, passenger entitlement to Regulation 261 pro-duces an optimisation 
cost function with discontinuities and overall higher benefits from recovering delay for all possible 
arrival times analysed. 
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(a) Expected cost 

 

(b) Difference of cost 

 

(c)Derivative of cost over arrival time 

 

(d) Difference on derivative cost 

Figure 59 Strategic action for reactionary delay consideration no compensation (Reg. 261) entitlement 
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(a) Expected cost 

 

(b) Difference of cost 

 

(c)Derivative of cost over arrival time 

 

(d) Difference on derivative cost 

Figure 60 Strategic action for reactionary delay consideration with compensation (Reg. 261) entitlement 

Figure 59 and Figure 60 present the impact of including the strategic modelling action for reactionary 
delay cost with passengers are considered to be entitled to compensation or not. As observed, the 
impact of the strategic action is to reduce the overall cost, but not only that, the variation of cost over 
time also reduces. This means that when these pre-tactical actions are modelled the optimised 
solutions might in general produce lower recovery actions (or of lower intensity) that if this action is 
not modelled. This highlight the importance of modelling the reactionary expected costs in a realistic 
manner, not only for the absolute amount of expected cost modelled but for its impact on the variation 
of this cost over arrival time. 
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(a) Expected cost 

 

(b) Difference of cost 

 

(c)Derivative of cost over arrival time 

 

(d) Difference on derivative cost 

Figure 61 Impact of manually defining a curfew 
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(a) Expected cost 

 

(b) Difference of cost 

 

(c)Derivative of cost over arrival time 

 

(d) Difference on derivative cost 

Figure 62 Impact of manually defining a curfew and considering a potential strategic action 

The introduction of a curfew at the end of the day of operation and its modelling translate into a sharp 
increment on the cost function (see Figure 61). It is worth noticing how after this discontinuity, even if 
the total expected cost is higher (Figure 61 (a)), the variation of cost over time is actually lower that if 
curfew is not modelled (Figure 61 (d)). This means that if the trajectory is arriving at the airport right 
when the cost is potentially materialised, the variation of cost over time is very large and this will push 
the optimiser toward solutions which try to recover as much delay as possible to limit the expected 
cost of delay. However, once that cost has been materialised, or cannot be avoided by reducing the 
delay enough, the incentive to recover delay is lower that if the curfew is not modelled (Figure 61 (d)). 
Note however that the expected cost over time is still high (due to other type of costs of delay) and 
the optimiser might still try to recover some delay (see Figure 61 (c)). Finally, if a strategic action is 
modelled (Figure 62), it can be observed how the high increment due to breaching the curfew is 
smooth out with the strategic action. Therefore as shown in Figure 62 (c) and Figure 62 (d) the expected 
variation of cost over time remains similar but without the large step experienced around 11h30. Once 
again, the use of this strategic action might lead to more stable solutions. 
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(a) Expected cost 

 

(b) Difference of cost 

 

(c)Derivative of cost over arrival time 

 

(d) Difference on derivative cost 

Figure 63 Considering uncertainty on passenger connections (minimum connecting time and departure estimation) 

As shown in Figure 63 the consideration of uncertainty on when cost will materialised, e.g. due to 
uncertainties on the connecting time of passengers, lead to smoother cost functions. Therefore the 
total expected cost is similar for both alternatives (with uncertainty on passenger connection or 
without), but the uncertainty reduces the non-linear jumps. 
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(a) Expected cost 

 

(b) Difference of cost 

 

(c)Derivative of cost over arrival time 

 

(d) Difference on derivative cost 

Figure 64 Effect of machine learning model to estimate reactionary delay on cost function  

As presented in Section 4.2.3.2.2.3, the use of machine learning models to estimate the reactionary 
delay leads to overall higher estimation of delay. This is since the heuristic version focuses on the 
estimation of solely the minimum turnaround time while the machine learning model approach 
incorporates the estimation of delays due to ATFM congestion. As shown in Figure 64 (a) this leads to, 
in some instances, having a non-zero cost even if the flight arrives at its intended SIBT. This, however, 
does not necessarily mean that the optimisation will always be biased towards recovering delay. See 
for instance in Figure 64 (d), how the expected cost as a function of time variation is in some cases 
lower for the estimation of reactionary delay and cost with ML models with respect to the heuristic 
approach. As shown in Figure 64 (d), if flight arrives between 10h0 and 10h30 to FL100 the increase in 
cost is lower in the ML approach. In general, the use of ML models for reactionary delay will, how-ever, 
increase the slope of the cost of delay function close to SIBT which might lead, as shown in this case, 
to potentially some recovery of delay even if the planned arrival time is at SIBT. 
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(a) Expected cost 

 

(b) Difference of cost 

 

(c)Derivative of cost over arrival time 

 

(d) Difference on derivative cost 

Figure 65 Not modelling uncertainty on Operational ATM Estimators 
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(a) Expected cost 

 

(b) Difference of cost 

 

(c)Derivative of cost over arrival time 

 

(d) Difference on derivative cost 

Figure 66 Not modelling uncertainty on Operational ATM Estimator and no entitlement to Regulation 261 

As with the modelling of uncertainty for passenger connections, the modelling of uncertainty on the 
operational ATM estimators (holding, sequencing and merging and taxi-in times) leads to smoother 
cost of delay function. As shown in Figure 65 (a) and Figure 65 (b) the expected cost is similar, however, 
the not use of uncertainty leads to abrupt changes on the cost function variation. This will mean that 
without the uncertainty the optimiser will consider that costs are or not materialised in a binary 
approach leading to solutions close to the cost of delay jump. However, the approach with uncertainty 
will produce smoother optimisations. A similar behaviour is observed if passengers are not entitled to 
Regulation 261 (see Figure 66). However, in this case as the cost function is smoother (no abrupt 
changes on cost due to passenger missing connection and entitled to the compensation), the impact 
is also reduced with lower discrepancies between the two approaches. 
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(a) Expected cost 

 

(b) Difference of cost 

 

(c)Derivative of cost over arrival time 

 

(d) Difference on derivative cost 

Figure 67 Effect of high delay at arrival  

Finally, the effect of a high delay at arrival, e.g. due to a predicted long holding, is analysed an 
presented in Figure 67. The delay is translated into a shift on the cost function. Therefore, if for a given 
amount of initial delay the optimiser would or not decide to recover more or less delay would depend 
on the shape of the cost of delay as a function of time at different points in the curve. For example, 
the extra holding delay might mean that some costs are al-ready materialised (or not recoverable, or) 
and therefore a lower delay recovery suggested, or on the contrary higher costs variations expected 
and therefore higher delay recovered. Note that as in the machine learning modelling of reactionary 
delay (see Figure 64), in general this delay at arrival translated into the fact that even if arriving at the 
planned time at FL100 with respect to the schedule some costs might be present, and delay might be 
recovered prior the holding. 
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4.2.4.2 SCN 600 – KJFK – EDDF cost function alternatives analysis 

 

(a) Expected cost 

 

(b) Difference of cost 

 

(c)Derivative of cost over arrival time 

 

(d) Difference on derivative cost 

Figure 68 Modelling or not uncertainty with passengers entitled to Regulation 261 compensation KJFK – EDDF 
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(a) Expected cost 

 

(b) Difference of cost 

 

(c)Derivative of cost over arrival time 

 

(d) Difference on derivative cost 

Figure 69 Modelling or not uncertainty with passengers not entitled to Regulation 261 compensation KJFK – EDDF 

Figure 68 and Figure 69 analyse the impact of uncertainty on the OAE for the KJFK – EDDF flight when 
passengers are or not entitled to Regulation 261 compensation. As previously seen, the use of 
uncertainty leads to smoother cost functions which reduce the discontinuities. This is particularly 
relevant for the case when passengers are entitled to compensation. Overall, however, the difference 
in terms of variation of cost over time is not very high be-tween the different options (see Figure 68 
(d) and Figure 69(d)) except for the above-mentioned discontinuities. 
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4.2.4.3 S CN 800 – KJFK – EGLL cost function alternatives analysis 

(a) Expected cost (b) Difference of cost 

(c)Derivative of cost over arrival time (d) Difference on derivative cost 

Figure 70 . Modelling or not uncertainty with passengers entitled to Regulation 261 compensation KJFK – EGLL 
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(a) Expected cost 

 

(b) Difference of cost 

 

(c)Derivative of cost over arrival time 

 
(d) Difference on derivative cost 

Figure 71 Modelling or not uncertainty with passengers not entitled to Regulation 261 compensation KJFK – EGLL 

 

In this flight it is worth observing how if passengers are entitled to compensation due to Regulation 
261 different plateaus are generated in the cost function (see Figure 70 (a)). When cost is materialised, 
i.e., passengers miss their connection the flight might consider it is not worth it to recover delay (see 
Figure 70 (c) how the variation of cost over time can be practically zero), in some cases even incurring 
in cheap extra delay by slowing down could be beneficial if fuel is saved. This behaviour, and recovering 
up to just before a cost jump, will be particularly prevalent when uncertainty is not considered. As 
shown in Figure 70 (a) and Figure 70 (c) when uncertainty at arrival is modelled these sharp cost 
increments are smoothed and variations on cost of delay over time reduced. 

For this flight, the passengers’ compensation drives the cost function. Therefore if passengers are not 
entitled, as shown in Figure 71, the increment of cost of delay is rather gradual, leading to a constant 
derivative of cost of delay over time which would produce very consistent optimisation performance. 
Note that in this case, due to the shape of the cost function, the temporal shift experienced by the 
modelling of uncertainty at arrival is practically non-relevant. 

4.2.4.4 Conclusions on configuration of Pilot3 cost modelling components 
As presented in this section, the most important factor when optimising the trajectory is not 
necessarily the absolute expected cost of delay but how this cost varies over time. Therefore different 
flight with different drivers for the cost function (passenger, reactionary, compensation) might benefit 



EDITION 01.00 

120 
 

© – 2020 – University of Westminster,  Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved.  

 

in different degree from the modelling of uncertainties and cost factors with more or less detail. The 
same amount of expected arrival delay might produce very di-verse optimisation results as a function 
of which factors are considered in the modelling of the cost function. Further research should try to 
identify the characteristics of flights which might benefit from different levels of quality (and 
complexity) on the estimation of cost and uncertainty components. 

 

4.3 IVA3 – Assessment of the optimisation framework 

IVA3 aims at validating the Performance Assessment Module. To that end, a theoretical example of 
flight (but using realistic values) is used. 

4.3.1 Approach 

In this validation activity, we first show how different choices of priorities for the airlines would lead 
to different results (rankings) from the Performance Assessment Module. Then we study the sensibility 
of the AHP-VIKOR algorithm. See deliverables D2.1 -- Trade-off report on multi-criteria decision making 
techniques (Pilot3 Consortium, 2020b) for more details. This focuses on the validation of P3-RQ-IV-
060.  

Note that the current framework of Pilot3 can handle multiple alternatives but does not provide a set 
of equivalent optimised alternatives automatically. These limitations are described in D6.1 – System 
evolution and uptake (Pilot3 Consortium, 2022b). 

4.3.2 Flight characteristics  

The flight considered goes between Madrid (LEMD) and Frankfurt (EDDF), with an Airbus A320. It is an 
early flight scheduled to arrive to Frankfurt at 9h10 UTC with 38% of passengers with further on-going 
connections. Note that, in Frankfurt the domestic minimum connecting time is 45 minutes, and 60 
minutes for international passengers. This means that passengers need at least that time to ensure 
their connection. 

For this flight, the variation in fuel and time that can be achieved optimising the trajectory by selecting 
a different CI with respect to the planned one (i.e., CI of 10 kg/min) is obtained. These fuel and delay 
trade-offs are computed using the trajectory optimiser DYNAMO. In this particular case, the flight can 
recover up to 6.4 minutes by selecting a higher CI (100 kg/min), using in this case 154 EUR extra cost 
of fuel (308 kg of fuel at a fuel cost of 0.5 EUR per kg of fuel). The flight could also consider slowing 
down, increasing its delay by up to 2.2 minutes with a saving of 20 EUR of fuel. This means that if the 
flight is expected to arrive later than 6.4 minutes after OTP it will not be possible to meet OTP, and if 
the flight is expected to arrive earlier than 2.2 minutes before OTP then it will always meet OTP. 

Four different case studies are defined to represent different operational situations of interest: 

• Case 1 (OTP): Flight arriving at scheduled in-block time (SIBT). In this case, OTP would always 
be reached but the trajectory could still be optimised considering trade-offs between fuel and 
cost of delay. 

• Case 2 (OTP and no-OTP): Small expected arrival delay of 17 minutes, which would present the 
opportunity to recover enough delay to meet OTP; here OTP and no-OTP cases are available 
and ranked independently. 
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• Case 3 (no-OTP): High expected arrival delay of 55 minutes, with low variability of delay cost 
around expected arrival time. 

4.3.3 Combination of possible configurations 

For these four cases, we study here three combinations of airline priorities:  

• IROPs priority: IROPs is the most important cost, followed by fuel, followed by other costs 
• Fuel priority: fuel is the most important cost, followed by IROPs, followed by other costs 
• Other costs priority: other costs is the most important cost, followed by IROPs, followed by 

fuel 

to validate how different choices of proprieties lead to different optimization results. These 
combinations lead to different weights used in the AHP-VIKOR algorithm. 

The expected total cost of a given trajectory is obtained by adding the expected costs of delay and 
fuel of this trajectory. Therefore, given an expected arrival time at the gate, the possible available 
alternatives that the system will consider are obtained based on the variations of time and fuel. If 
only total cost is minimised, due to the characteristics of the cost of delay curve, only one alternative 
is generally found. Therefore, to be able to consider more than one alternative, some buffer (extra 
cost) should be used. 
With small buffers, 10 EUR, several alternatives can already be obtained, as a function of the 
expected arrival time to the gate. For example, if the flight is expected to arrive at its SIBT (Case 
study 1), with 10 EUR buffer, a range of 5 minutes can be considered, for which all solutions lie within 
a maximum of 10 EUR of extra total cost with respect to the minimum total cost alternative. In this 
example, to increase the number of potential equivalent trajectories, a buffer of 50e is used in all 
cases. 

Table 37: Ranked solutions (Extra delay [min]) for different cases as a function of the order of priorities  
IROPs priority Fuel priority Other costs priority 

Case 1 (OTP) -3, -2, -4 -2, -1, -3 -3, -4, -5, -2 
Case 2 (OTP) -5, -6 -4, -3, -5 -6, -5 
Case 2 (no-OTP) -1, -2 1, 0, 2 -2, -1 
Case 3 (no-OTP) -4, -5, -3 -3, -2, -1 -6, -5 

Table 37 shows the results obtained for each case study when applying the ranking AHP-VIKOR 
algorithm. It presents the available solutions, indicating the difference on arrival time with respect to 
the expected arrival time of the flight. 

In case 1, all options reach OTP, as the flight was expected to arrive at its SIBT. Therefore, it should 
be expected that fuel cost is the only cost and thus that slowing down to save fuel should be the only 
possible option. However, the cost function considers uncertainties linked to operations, such as 
holdings, missed connections. This means that IROPs costs, even if low, are not null. It can be seen 
that if IROPs costs are considered as the most relevant cost, the ranked solutions consist in 
recovering 3, 2 and 4 minutes, while if fuel is the most important cost, the solution would be 
recovering 2, 1 and 3 minutes. One more minute is considered when fuel is considered more 
important, in order to lower fuel costs. In case 2 (no-OTP), when giving priority to fuel instead of 
IROPs, solutions by two minutes. Case 3, which has a delay of 55 minutes, sees IROPs costs increase 
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more rapidly than in the previous cases. As a consequence, the solutions tend to recover as much 
delay as possible (4-5 minutes) if IROPs cost is the most important one and less if fuel is more 
important. 

As expected, we observe in all cases that different configurations of priorities lead to different 
results, in particular, we can see that giving more priority to fuel leads to results tending to recover 
less delay (in order to save more on fuel). 

4.3.4 AHP-VIKOR algorithm sensibility analysis 

One tuning parameter of the VIKOR method (see D4.3 (Pilot3 Consortium, 2022a)), corresponds of the 
weight of the strategy of maximum group utility versus of the individual regret, was set to a "neutral" 
value of 0.5. We have proven that changing this value does not affect the results, unless extreme values 
(<0.1 or >0.9) are chosen. It is thus considered that maintaining the commonly used value of 0.5 is 
adequate. The effect of the choice of this tuning parameter is thus rather limited, proving the 
robustness of the optimisation framework proposed. 

4.3.5 Summary of Research Questions and Hypothesis 

After revision of the initially defined RQs and HPs aimed for validation of IVA3, with the previously 
discussed results, we were able to successfully validate the RQ-IV-040, RQ-IV-050 and RQ-IV-060 (see 
Table 38). 

Table 38: Summary of research questions (RQ) and hypotheses addressed in IVA3 
RQ ID Rationale Research question Hypothesis Success criteria Status 

P3-RQ-
IV-040 

Validate that 
the Pareto 
can be 
computed by 
Pilot3 (e.g. if 
trade-offs 
between 
OTP and cost 
exist they 
can be 
computed 
with Pilot3). 

For a given triggering 
event, will Pilot3 
generate a 
meaningful set of 
alternative 4D 
trajectories when 
trade-off between 
objectives are 
present? 

It is expected to obtain 
trade-off 4D trajectories 
between Total Cost and 
OTP (i.e., Pareto 
efficient solutions). 
Moreover, it is expected 
to obtain different 4D 
trajectories with same 
cost objective but 
different sub-cost 
components (KPIs). 

• When the trade-off 
between Total Cost and 
OTP exists, the two 
Pareto optimal 
trajectories are 
generated.  

• When the trade-off 
between cost KPIs 
exists (fuel, IROPS and 
other), different 
trajectories are 
generated. 

Partially 
Validated 

P3-RQ-
IV-050 

Validate that 
if more than 
one 
alternative 
produce 
equivalent 
results Pilot3 
can compute 
them. 

For a given triggering 
event, will Pilot3 
generate a 
meaningful set of 
alternative 
equivalent 4D 
trajectories? 

It is expected to obtain 
different 4D trajectories 
that lead to the same 
(and/or statistically 
equivalent) objective 
functions (i.e., Total 
Cost or OTP). 

• At least two 
trajectories that lead to 
the same (and/or 
statistically equivalent) 
objective function (i.e., 
at least two trajectories 
for Total Cost and at 
least two trajectories 
for OTP) when trade-off 
between cost KPI are 
possible 

Not 
validated 
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P3-RQ-
IV-060 

Validate that 
the airlines' 
policies 
captured as 
preferences 
in the 
configuration 
are 
considered 
adequately 
by the 
trajectory 
optimisation. 

For a given triggering 
event, will Pilot3 
show different 4D 
trajectories for 
different airline 
policies configured in 
the tool? 

Pilot3 will provide its full 
potential to the airline 
industry as it will 
capture different airline 
policies (as reflected in 
the Pilot3 configuration) 
that will lead to 
different solutions (i.e., 
trajectories) to the same 
problem (i.e., triggering 
event). 

• KPIs and PIs have 
different values for 
different Pilot3 
configurations 

• Different ranking of 
alternative trajectories 
for different Pilot3 
configurations 

Validated 

4.4 IVA4 – Pilot3 performance at optimised trajectories plan 

As defined in D5.1, the purpose of the internal validation activity 4 (IVA4) was to capture the benefits 
of Pilot3 optimised trajectory plans when compared it against several baseline trajectory plans. 

4.4.1 Approach 

The comparison of planned trajectories (e.g. the baseline trajectory plan and the optimised trajectory 
plan) is useful to evaluate expected benefits, but should be done with caution as misinterpretations 
could arise (e.g. if stronger headwind than originally planned is forecasted with a weather update, the 
optimised trajectory will likely use more fuel and/or have a longer duration than the original baseline 
which was estimated prior the weather update). For this reason, an integration of the remaining 
trajectory by the different baseline trajectories is required to provide more meaningful comparisons. 
In the D5.1, two groups of baseline trajectory were proposed, namely: 

• the OFP being executed regardless of the different Pilot3 triggering events that might arise in 
flight; and 

• some new plan(s) assuming some typical pilot's reactions based on their experience and in the 
absence of Pilot3. 

During the project validation, the results of the Pilot3 optimised trajectory plan have been analysed 
and compared against OFP by using several metrics. Following the OFP could be seen as "do nothing", 
as basic pilot reaction. No other pilot reaction was finally modelled and simulated in the execution of 
the project. More details can be found in the subsection below. 

4.4.2 Summary of the Experimental Scenario 

The benefits of the Pilot3 optimised trajectory plan have been validated on four different scenarios 
among the nine initially identified in D5.1. As already introduced in Section 2, for each experiment 
considered, the characteristics of the different components of the experiment (scenario, sub-scenario, 
case studies, sub-case study and parametrisation) were defined. These experiments are reported in 
Table 39 below. 

The benefit of Pilot3 optimised trajectory with respect to baseline (i.e., keep flying OFP) will be 
discussed using the following metrics: 
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• difference in total fuel consumption; 
• difference in total trip time; 
• difference in IROPs cost; 
• difference in other cost; 
• difference in total cost. 
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Table 39: IVA4 experiments 

EXP Scenario  Sub 
Scenario Case Study (CS) Sub case Study Purpose 

ID ID OFP 
weather ID Triggering 

point CS main feature Other features PIE/OAE configuration  

401 100 Nominal 40 TOC Expected holding at 
arrival TMA: +40' 

Departure delay: 
-20' (i.e., early 
departure) 

- PIE: default, manual 
holding of 40’ 
- AOE: default 

- Tight buffer at arrival (SIBT-ETA: 9'). 
- Although we arrive 20 earlier at the TOC, we speed-
up because some significative holding is expected at 
destination TMA and a significative reactionary delay 
is predicted by the PIE. . 

414 100 Nominal 40 TOC 
Expected holding 
at arrival TMA: 
+40' 

Departure delay: 
-20' (i.e., early 
departure) 

- PIE: default except for 
reactionary delay with 
heuristics, manual holding 
of 40' 
- AOE: default 

- Reactionary delay is estimated with heuristics and 
arriving before the SIBT implies (almost) no cost.  
- Similar purpose as experiment 401. Still speeding-
up, but less than in experiment 401.  

403 201 Nominal 60 15 NM 
after TOC 

Heavy head wind 
weather 
Date: 2018-04-17 

Departure delay: 
-20' (i.e., early 
departure) 

- PIE: default 
- AOE: default 

- Although we arrive 20 earlier at the TOC, we speed-
up because the weather update indicates more 
headwind than expected. 

404 201 Nominal 60 15 NM 
after TOC 

Heavy head wind 
weather 
Date: 2018-04-17 

Departure delay: 
0' (i.e., on-time 
departure) 

- PIE: default 
- AOE: default 

- Similar purpose as experiment 403, but we expect 
to speed up even more.  

412 201 Nominal 60 TOC 
Heavy tail wind 
weather 
Date: 2018-04-17 

Departure delay: 
+20' 

- PIE: default 
- AOE: default 

Although the unexpected tailwind component is 
beneficial, we still speed up due to the reactionary 
delay estimated with the ML model of the PIE  

413 201 Nominal 60 TOC 
Heavy tail wind 
weather 
Date: 2018-04-17 

Departure delay: 
0' (i.e., on-time 
departure) 

- PIE: default 
- AOE: default 

Same purpose as in experiment 412 with different 
departure delay. 

415 201 Nominal 60 TOC 
Heavy tail wind 
weather 
Date: 2018-04-17 

Departure 
delay: 0' (i.e., 
on-time 
departure) 

PIE: default except for 
reactionary delay with 
heuristics. 
AOE: default 

- Reactionary delay is estimated with heuristics and 
arriving before the SIBT implies (almost) no cost.  
- Due to beneficial tailwind conditions we slow-down 
to maximum range cruise (zero cost index) to save 
fuel (and still arrive on time). 
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EXP Scenario  Sub 
Scenario Case Study (CS) Sub case Study Purpose 

ID ID OFP 
weather ID Triggering 

point CS main feature Other features PIE/OAE configuration  

405 600 Nominal 10 TOC Departure delay: 
+30' - - PIE: default 

- AOE: default 

- Normal buffer at arrival (SIBT-ETA: 22') 
- Nominal arrival time is within OTP, but because the 
first group of connecting PAX there is a high 
probability to miss these connections. We speed-up 
to lower the expected total cost. 

406 600 Nominal 80 

600 NM 
before the 
turbulence 
area 

Turbulence2 
Departure delay: 
0' (i.e., on-time 
departure) 

- PIE: default 
- AOE: default 

- Demonstrate the effect of triggering Pilot3 in case 
of turbulence ahead. The new trajectory avoids the 
turbulence volume. 
- Demonstrate the pilot can put constraints. 

407 600 Nominal 80 

600 NM 
before the 
turbulence 
area 

Turbulence Departure delay: 
+30' 

- PIE: default 
- AOE: default 

- Demonstrate the effect of triggering Pilot3 in case 
of turbulence ahead. The new trajectory avoids the 
turbulence volume. 
- Demonstrate the pilot can put constraints. 
- Demonstrate that Pilot3 takes into account the 
departure delay and the avoidance trajectory is 
different than previous one.  

408 600 Nominal 80 

600 NM 
before the 
turbulence 
area 

Turbulence Departure delay: 
+60' 

- PIE: default 
- AOE: default 

- Demonstrate the effect of triggering Pilot3 in case 
of turbulence ahead. The new trajectory avoids the 
turbulence volume. 
- Demonstrate the pilot can put constraints. 
- Demonstrate that Pilot3 takes into account the 
departure delay and the avoidance trajectory is 
different than previous one. 

409 600 Nominal 80 

600 NM 
before the 
turbulence 
area 

Turbulence Departure delay: 
+90' 

- PIE: default 
- AOE: default 

- Demonstrate the effect of triggering Pilot3 in case 
of turbulence ahead. The new trajectory avoids the 
turbulence volume. 
- Demonstrate the pilot can put constraints. 
- Demonstrate that Pilot3 takes into account the 
departure delay and the avoidance trajectory is 
different than previous one. 

 

 

2 See Figure 21 for further details. 
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EXP Scenario  Sub 
Scenario Case Study (CS) Sub case Study Purpose 

ID ID OFP 
weather ID Triggering 

point CS main feature Other features PIE/OAE configuration  

410 800 Nominal 10 250 NM 
after TOC  

Departure delay: 
+153' - 

- PIE: no uncertainty 
modelled 
- AOE: default 

- Tight buffer at arrival (SIBT-ETA: 15') 
- Demonstrate that Pilot3 can optimise with a 
deterministic cost function.  
- Demonstrate the sensitivity of the solution to cost 
function modelling.  

411 800 Nominal 10 250 NM 
after TOC  

Departure delay: 
+153' - - PIE: default 

- AOE: default 

- Tight buffer at arrival (SIBT-ETA: 15') 
- Demonstrate that Pilot3 can optimise with a 
probabilistic cost function. 
- If uncertainty is considered, there is a high 
probability to miss these connections. The optimised 
arrival time will be earlier than in case of not 
considering uncertainty.  
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4.4.3 Results 

4.4.3.1 Scenario 100: Athens (LGAV) to London Heathrow (EGLL) 
The description of the experiments carried out for the scenario 100 is given in Table 39 above. As seen 
from Table 39, two very similar experiments are run with only difference in the estimation of 
reactionary delay – while experiment ID 401 was run by applying machine learning for the estimation 
of the reactionary delay, the experiment ID 414 aims to demonstrate the benefit of Pilot3 when the 
reactionary delay is estimated by applying heuristics. In this way, one can observe the flexibility of 
Pilot3 to configure the PIE in different ways. 

4.4.3.1.1 Cost function 
Figure 72 below depicts the outlook of the cost function for the Athens - London route. Figure 72 (a) 
shows the expected costs as a function of arrival time at the gate. As observed, it consists of different 
components involving the IROPs costs (e.g. passenger compensation costs (it is assumed that 
passengers are entitled to compensation due to Regulation 261 if delay thresholds are passed)) and 
other costs (i.e., reactionary delay, crew costs, maintenance cost). After considering the uncertainties 
at arrival (i.e., holding, sequencing and merging procedure, taxi-in), the expected costs at arrival is 
translated into expected costs at FL100 (orange line in Figure 72 (b)). 

  

a) Total expected costs as a function of arrival time at the 
gate 

b) Total expected costs at FL100 

Figure 72 Cost function for Athens – London Heathrow route 

As shown in Figure 72 a) for this particular flight, costs are dominated by other costs. Reactionary costs 
(propagated in subsequent rotations) are the main driver of the total costs expected. As seen in Table 
40, the time allowed for rotations is relatively tight. The aircraft has 40 minutes for the rotation at EGLL 
before departing to LIRF. Therefore, if the arrival to EGLL is delayed, the probability of delay being 
propagated to LIRF (and to subsequent flights) is high. In this particular example, the distribution of 
reactionary delay is computed using machine learning models. This means that not only the minimum 
turnaround time is considered but the probability of longer rotations and ATFM delay are also 
modelled. Even if the flight arrives to the gate at schedule, it can be observed how, some reactionary 
cost (and delay) is expected. This might mean that even if departing on-time from LGAV, Pilot3 might 
consider that recovering time is beneficial to reduce the total expected cost as it might be able to 
reduce the delay expected to be propagated to LIRF.  

See the difference with Figure 73 where the same cost function is computed only using heuristics for 
the reactionary delay estimation for comparison. In this case, reactionary delay and cost do not occur 
after 30 minutes after SIBT. Hence, machine learning models (if accurate (properly trained)) would 
provide information on the impact of external factors which might affect the cost function leading to 
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more optimal solutions (e.g. it is worth it to recover delay because subsequent flights have a high 
probability of propagating delay. This won't have been noticed without these advanced models). 

 

Figure 73 Cost function for Athens - London Heathrow route if reactionary delay modelled with heuristics 

Table 40: Rotation planned for Athens – London Heathrow flight 
Origin Destination SOBT SIBT Rotation time available from previous flight 

LGAV EGLL 05h15 09h10 - 
EGLL LIRF 9h50 12h20 0h40 
LIRF EGLL 13h15 15h50 0h50 
EGLL LTBA 16h50 20h40 1h 

 

It is worth noticing how when the flight arrives after 10h there is a possibility that the airline might do 
an action to reduce the propagation of delay (pre-tactical (strategic action) cost such as cancelling or 
swapping a flight originally planned as a follow up rotation), this probability (and associated cost) 
increases over time (see cost at 10h30). This has the overall impact that the expected reactionary delay 
cost is reduced even if still dominating the total expected cost of the flight. 

For the passenger related costs, Figure 74 shows how the passengers connecting in EGLL form this 
flight have a relatively large connecting time at the hub. The first passenger group with a connection 
has an ongoing flight scheduled close to 11h (note that the SIBT of the LGAV-EGLL flight is 9h10). This 
means that passengers will not miss connections until an arrival delay greater of one hour. As observed 
in the cost function, the first significant increment of passenger cost is produced when the expected 
arrival time at the gate is 10h15 which would correspond to this group of passengers missing their 
connection and being entitled to Regulation 261. 

 
Figure 74 Passenger groups connecting at EGLL into follow up flights on the LGAV — EGLL flight 
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The experiment assumed no changes in weather condition with respect to the OFP and the triggering 
point is at TOC (top of climb). The reason for triggering Pilot3 is that the aircraft reaches the cruise 
altitude (at TOC) earlier than planned. The aircraft crew queries Pilot3. Although the aircraft arrives 20 
minutes earlier at the TOC with respect to the OFP, Pilot3 will speed-up due to the holding is expected 
at destination. 

4.4.3.1.2 Results for CS40 – Departure delay with holding at arrival 
The resulting trajectory of the Pilot3 optimised trajectory plan is presented in Figure 75 (b) in addition 
to the total expected costs as a function of arrival time at FL100 (Figure 75 (a)). As observed from Figure 
75 (a), the line denoted as "1" indicates the arrival time of the Pilot3 optimised trajectory plan, whereas 
the line "0" corresponds to the time of arrival of the OFP. 

  
a) Total expected costs as a function of arrival time at 

FL100  
b) vertical profile with speed profile of Pilot3 optimised 

trajectory 

Figure 75 Results of Pilot3 optimisation for Experiment 401 (20' earlier at TOC and expected arrival holding of 40’) 

 
Table 41: Different KPIs for Pilot3 optimised trajectory plan and OFP (from triggering point to FL100)  

Total fuel  Total trip 
time 

Fuel costs IROPs cost Other costs 

Pilot3 optimised trajectory 7,398 kg 159 min 3,699 EUR 0.01 EUR 2,566 EUR 
Keep flying OFP 5,986 kg 177 min 2,993 EUR 0.49 EUR 4,201 EUR 
Difference between Pilot3 and OFP + 1.412 kg -18 min + 706 EUR - 0.48 EUR - 1,634 EUR 

 

As observed from Figure 75 (a), Pilot3 optimised trajectory plan outperforms the baseline trajectory 
plan (i.e., keep flying OFP) in terms of total cost (indicated by the red cross) mainly stemming from the 
savings obtained through "other costs". Total trip time of Pilot3 optimised trajectory plan accounts for 
2h and 39 minutes which is around 18 minutes shorter in comparison to the OFP trajectory. This allows 
the flight to arrive at its destination before SIBT. As commented before the machine learning model of 
the PIE still estimates some non-negligible expected cost even if the flight arrives before the SIBT. For 
this reason, the speed recovery of the Pilot3 solution is significant. This shorter travel time 
undoubtedly comes at the expense of higher fuel consumption of around 1,4 tonnes which 
corresponds to extra fuel cost of approximately EUR 700. However, the total savings expected, 
considering the whole objective function are 928.5 Eur (see Table 41).  

As seen in Figure 75 (b) this important delay recovery (18 minutes) can only be achieved by increasing 
the speed to the maximum Mach in operations (MMO) -minus a safety/operational buffer- and 
performing a significant descent to FL300 to increase the true airspeed (and therefore ground speed) 
for that Mach. 
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As discussed above, the experiment ID 414 reproduces the same conditions as in the case of ID 401, 
but estimating, in the PIE, the reactionary delay costs with heuristics instead of machine learning (see 
Figure 73). As observed from Figure 76, arriving before the SIBT makes no difference in the cost 
function and for this reason the Pilot3 trajectory is speeding up just to arrive slightly before the SIBT. 
In this case, the speeding-up is of lower magnitude than in the case of experiment ID 401.  

Concerning the trajectory profile of Pilot3 (see Figure 76 b)), one can observe a slight speed increase 
in the Mach number with respect to the OFP, while the cruise altitudes are not changed (although the 
position of the step climb is delayed by around 100NM). This new trajectory profile enables to recover 
the 1 minutes needed to arrive on-time at the destination gate, by accruing negligibly fuel costs in 
comparison to the OFP (see Table 42).  

 
 

a) Total expected costs as a function of arrival time at 
FL100  

b) vertical profile with speed profile of Pilot3 optimised 
trajectory 

Figure 76 Results of Pilot3 optimisation for Experiment 414 (PIE: heuristics for reactionary delay) 

Table 42: Different KPIs for Pilot3 optimised trajectory plan and OFP (from triggering point to FL100)  
Total fuel  Total trip 

time 
Fuel costs IROPs cost Other costs 

Pilot3 optimised trajectory 6,016 kg 176 min 3,008 EUR 0.44 EUR 34.5 EUR 
Keep flying OFP 5,986 kg  177 min 2,993 EUR 0.49 EUR 37.3 EUR 
Difference between Pilot3 and OFP +30 kg  1 min +15 EUR -0.05 EUR -2.8 EUR 

 

4.4.3.2 Scenario 201: Madrid (LEMD) to Frankfurt (EDDF) 
Five experiments were eventually run for the LEMD - EDDF scenario to show the benefit of Pilot3 
optimised trajectory plan in different operational context encountering different weather conditions. 
Namely, the rationale behind the first two experiments (ID 403 and 404) is to explore the capabilities 
of Pilot3 prototype in the case of an updated weather forecast indicating more headwind and 
crosswind received shortly after the aircraft reaches TOC. The experiment ID 404 addresses the context 
in which the departure is performed on time. This was also one of the case studies emphasised as 
relevant by the experts from the Advisory Board. The experiment ID 403 aimed to show the benefit of 
Pilot3 in the case of similar operational context (i.e., weather update at TOC), but the aircraft reaches 
TOC 20 minutes earlier than OFP ETA (Estimated Time of Arrival). The third and four experiments (ID 
413 and 412) aimed to explore the benefit of Pilot3 when facing a weather forecast update with 
heaving tail-wind shortly after reaching TOC under similar conditions as in the two previous 
experiments – when the flight is on-time and with 20 minutes delay at TOC (with respect to OFP ETA) 
respectively. It is worth mentioning that all these four experiments were run by using the reactionary 
delay estimated by machine learning model. Finally, in order to observe the behaviour of Pilot3 in the 
case when the reactionary delay is modelled by heuristics, the experiment ID 415 was run.  
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4.4.3.2.1 Cost function 
Following the same rational as in the case of Athens - London Heathrow route, Figure 77 provides the 
expected costs at gate (Figure a) and expected cost at FL100 (figure b) for Madrid-Frankfurt route. 

  

a) Total expected costs as a function of arrival time at the 
gate 

b) Total expected costs at FL100 considering uncertainty 

Figure 77 Cost function for Madrid – Frankfurt route 

As shown in the cost function (Figure 77) costs are generally dominated by reactionary related costs. 
Similar to the LGAV to EGLL flight, the use of machine learning models for the estimation of reactionary 
delay produces an estimation on some cost even if flight arriving at its SIBT (see Figure 78 for a 
comparison between using machine learning models or not for this estimation). Rotation times 
allocated for subsequent flights (as shown in Table 43) are generally 50 minutes. Being one of the first 
flights in the morning, the propagation of delay can be significant along the subsequent 5 flights. That 
is one of the reasons of the early costs associated with pre-tactical actions to limit the propagation of 
reactionary delay and cost (see expected costs due to these strategic actions increasing after 10h30 
(1h20 minutes of arrival delay). 

For passengers’ costs, Figure 79 presents the number of passengers which are connecting into forward 
flights as a function of the departing time of their first desired connection. It can be observed that a 
significant number of passengers (greater than 40) have a flight departing earlier than 12h. We can 
observe this first increment on passenger related costs around 10h20 which would correspond to the 
group of 20 passengers missing their connection (considering the minimum connecting time, if the 
flight arrives after 10h20 they won't be able to reach their connecting flight). Finally, the largest 
increment on passenger related costs appears when the flight arrives after 12h10 (as shown in Figure 
77 (a)) which correspond to the threshold of 180 minutes of delay and therefore the entitlement of 
non-connecting passengers to compensation due to Regulation 261 for this flight distance. 

  
a) Reactionary delay with machine learning models  b) Reactionary delay with heuristics 

Figure 78 Detail cost at gate around SIBT for Madrid-Frankfurt route comparison reactionary delay with and without 
machine learning models 
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Table 43: Rotation planned for Madrid – Frankfurt flight 

Origin Destination SOBT SIBT Rotation time available from previous flight 
LEMD EDDF 06h35 09h10 - 
EDDF EGLL 10h00 11h40 0h50 
EGLL EDDF 12h30 14h10 0h50 
EDDF EGBB 15h00 16h35 0h50 
EGBB EDDF 17h25 19h00 0h50 
EDDF EGCC 19h55 21h40 0h55 

 
Figure 79 Passenger groups connecting at EDDF into follow up flights on the LEMD — EDDF flight 

4.4.3.2.2 Results for CS60 - Heavy head wind weather forecast update 
Figure 80 and Figure 81 show, respectively, the results for experiments 403 and 404. Subfigures (a) 
show the comparison between the OFP and the Pilot3 total expected costs as function of the arrival 
time at FL100, while the comparisons of the vertical and speed profiles of these two trajectories are 
given in sub figures (b). 

In the case of the first experiment (ID 403), Pilot3 provides a trajectory similar to the OFP (although 
the cruise Mach is slightly higher and we have a step-climb to FL390 in Pilot3 trajectory) as the strong 
headwind will exert some adverse effect on flight on-time performance causing a potential delay of 
the flight, which will be eventually balanced by the earlier arrival at the TOC.  

 
 

a) Total expected costs as a function of arrival time at FL100  b) vertical profile with speed profile of Pilot3 
optimised trajectory 

Figure 80 Results of Pilot3 optimisation for Experiment 403 (heavy head wind update and early departure of 20’) 
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a) Total expected costs as a function of arrival time at FL100  b) vertical profile with speed profile of Pilot3 

optimised trajectory 

Figure 81 Results of Pilot3 optimisation for Experiment 404 (heavy head wind update and on-time departure) 

In the case of the second experiment (ID 404), in order to compensate the potential delay occurred as 
a result of unexpected strong headwind, Pilot3 will suggest the pilot to gain additional time by speeding 
up at a lower altitude (descending from FL360 to FL240). It is worth observing that the resulting 
trajectory shows a ground speed profile similar to the profile found in the OFP. Hence, the extra 
headwind has been compensated by a higher true airspeed (and of course at the expense of burning 
more fuel). 

As observed from Figure 80 (a) and Figure 81 (a), for both experiments, Pilot3 is able to provide the 
trajectories that meet OTP. 

4.4.3.2.3 Results for CS60 - Heavy tail wind weather forecast update 
In the case of experiments ID 412 and 413, due to the uncertainty (i.e., reactionary delay modelled by 
machine learning), there is still some cost greater than zero if the flight arrives at the SIBT. For this 
reason, even if tailwind benefits the flight and even if the arrival time is well before the SIBT (as 
observed from Figure 82 (a) and Figure 83 (a)) the Pilot3 solution still suggest to reduce trip time. This 
is achieved by descending to FL340 and slightly increasing the cruise Mach number. Yet, this speed 
increase is of lower magnitude than for the headwind experiments. However, as observed from Figure 
82 and Figure 83, the trajectory profile of both experiments (i.e., ID 412 and 413) follow the same 
pattern as they speed up to the MMO -minus a safety/operational buffer. 

 

  
a) Total expected costs as a function of arrival time at FL100  b) vertical profile with speed profile of Pilot3 optimised 

trajectory 

Figure 82 Results of Pilot3 optimisation for Experiment 412 (heavy tail wind update and late departure of 20’) 
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a) Total expected costs as a function of arrival time at FL100  b) vertical profile with speed profile of Pilot3 optimised 

trajectory 

Figure 83 Results of Pilot3 optimisation for Experiment 413 (heavy tail wind update and on-time departure) 

However, the experiment ID 415 allows to observe the behaviour of Pilot3 when the reactionary delay 
is modelled by heuristics. The experiment ID 415 essentially reproduces the same conditions as in the 
case of ID 413, but estimating, in the PIE, the reactionary delay costs with heuristics instead of machine 
learning (see Figure 78 (b)). Due to the flat cost function, Pilot3 will slow down as maximum as possible 
in order to save fuel (corresponding to CI-0) (see Figure 84), still being able to arrive before the SIBT. 
Note that OFP was generated by using the CI equal to 10kg/min and this is the reason why there is not 
so much differences in the vertical profiles of Pilot3 and OFP trajectories.  

  
a) Total expected costs as a function of arrival time at 

FL100  
b) vertical profile with speed profile of Pilot3 optimised 

trajectory 

Figure 84 Results of Pilot3 optimisation for Experiment 415 (tail winds, on-time departure and PIE with heuristics for 
reactionary delay) 

4.4.3.3 Scenario 600: New York (KJFK) to Frankfurt (EDDF) 
Scenario 600 will be used to assess the benefits of Pilot3 in three particular operational contexts, 
deemed as very important by the experts from the Advisory Board: 

• departure delay of 30 minutes; 

• turbulence ahead and no departure delay; 

• turbulence ahead and departure delay of 30, 60 and 90 minutes 

As a representative of long-haul flights, this scenario is particularly interested not only from the 
perspective of the length which enables more manoeuvrability along the trajectory, but also from the 
perspective of the high total cost that may accrue as a result of a great number of passengers that may 
potentially miss their connections due to delay. 
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4.4.3.3.1 Cost function 
Figure 85 provides the cost function estimated for New York - London route. As observed in subfigure 
(a), the expected costs at gate is characterised by several jumps mainly stemming from a fact that there 
are different thresholds when the costs due to Regulation 261 have been materialised as well as due 
to several groups of passengers that may miss their connections at different time intervals. The costs 
at FL100 obtained by considering the uncertainty at arrival is presented on subfigure (b). 

  
a) Total expected costs as a function of arrival time at the 

gate  
b) Total expected costs at FL100 considering uncertainty 

Figure 85 Cost function modelled without and with uncertainty for New York - Frankfurt route 

Table 44: Rotation planned for Madrid – Frankfurt flight 
Origin Destination SOBT SIBT Rotation time available from previous flight 

KFJK EDDF 01h45 09h20 - 
EDDF VIDP 11h45 19h10 2h25 

 

Being an intercontinental flight, there is only one further rotation for the flight on the day (as shown 
in Table 44) with a planned rotation time of 2h25. This means that the propagation of reactionary delay 
is relatively low even if the rotation is also relatively short (see 4.4.3.4.1 for the description of the KJFK–
EGLL flight where higher turnaround times are allocated). However, as the aircraft is a large aircraft 
with many passengers, this potential reactionary delay can be very costly. Therefore, as observed in 
Figure 85 even only after two hours of inbound delay some probability of performing a pre-tactical 
action to reduce that propagation of delay might be considered by the airline. 

 
Figure 86 Passenger groups connecting at EDDF into follow up flights on the KJFK — EDDF flight 

In any case, as it is considered that passengers are entitled to compensation due to Regulation 261 if 
the regulation delay thresholds are passed, these passengers’ costs are the main driver of the expected 
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cost of delay. Note that it is not necessary to wait until 180 minutes of delay threshold of inbound 
delay for the flight to see already significant potential passenger related costs. 

As presented in Figure 86, the first groups of passengers with further connecting flights have an 
outbound SOBT for their connecting flights around 10h20 (as a reminder the SIBT of the KJFK–EDDF 
flight is 9h20). This means that after considering the minimum connecting time required, if the flight 
is delayed even by a few minutes, there is a probability that some passengers might miss their 
connection, and depending on how late their subsequent alternative flight is, they will be entitled to 
some compensation due to Regulation 261. For this reason, we can observe in the cost function (Figure 
85) how even arriving to the inbound gate before the on-time performance threshold some passenger 
related costs are expected. 

4.4.3.3.2 Results for CS10 - Departure delay, no turbulence 
The description of the experiment ID405 for the scenario 600 is given in Table 39 above. As seen, the 
experiment assumes no changes in weather condition with respect to the OFP. The reason for 
triggering Pilot3 is that the aircraft has a departure delay of 30 minutes. The aircraft crew queries 
Pilot3. 

Figure 87 shows the results for this experiment. Subfigure (a) shows the comparison between the OFP 
and the Pilot3 total expected costs as function of the arrival time at FL100, while the comparison of 
the vertical and speed profiles of these two trajectories is given in sub figure (b). Table 45, in turn, 
summarises the different KPIs obtained with both trajectories. 

 
 

a) Total expected costs as a function of arrival time at 
FL100  

b) vertical profile with speed profile of Pilot3 optimised 
trajectory 

Figure 87 Results of Pilot3 optimisation for Experiment 405 (departure delay of 30', no turbulence) 

Table 45: Different KPIs for Pilot3 optimised trajectory plan and OFP (from triggering point to FL100)  
Total fuel  Total trip time Fuel costs IROPs cost Other costs 

Pilot3 optimised trajectory 53,979 kg 315.85 m 27,729 EUR 1,514 EUR 1444 EUR 
Keep flying OFP 49,765 kg 333.5 m 25,622 EUR 14,122 EUR 3,023 EUR 
Difference between Pilot3 and 
OFP 

+ 4,214 kg -18 minutes + 2,107 EUR  - 12,608 EUR - 1,579 EUR 

 

Despite the initial delay of 30 minutes, the Pilot3 optimised trajectory plan is able to meet the OTP and 
thus, allowing a considerable savings of around EUR 12,600 in comparison to keep flying the OFP 
trajectory. This amount of savings was mainly generated by savings in IROPs cost as non-meeting the 
OPT will cause a large number of passengers to miss their connections. As in the case of Athens - 
London Heathrow route, in order to compensate a large amount of total cost that may accrue as a 
result of delay, Pilot3 optimised trajectory plan will burn around 4.2 tons of fuel more than the OFP. 
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As observed in Figure 87 (b), this is achieved by an increase of the cruise Mach number (and therefore 
the ground speed). This optimisation leads to slight changes in the vertical profile: after Pilot3 is 
triggered, it is suggested to descent to FL300; then, the step-climb that was planned to FL360 is delayed 
by approximately 300 NM; and finally, a step-descent to FL340 is performed at the end of the cruise. 
Recalling Figure 11 in Section 2, higher tailwind is experienced at this lower altitude when the aircraft 
is at approximately 1000 NM before the destination. 

4.4.3.3.3 Results for CS80 - Turbulence ahead 
Turbulence along the route is a very common phenomenon that may occur during the execution of 
long-haul flight and thus, requires a special consideration by the pilot. The turbulence area typically 
needs to be avoided by the pilot in order to mitigate the discomfort of the passengers. However, it 
may have an impact on the total costs, as actions such as changing the flight level affect duration of 
the flight and fuel consumption.  

In order to reproduce the behaviour of Pilot3 in case of a turbulence ahead, a csv has been used as an 
input file restricting an airspace volume. The airspace affected by turbulence has been defined from 
FL300 to FL400 and with the geographical span as depicted in Figure 88. 

 
Figure 88 Restricted airspace affected by turbulence (i.e., airspace to be avoided by the Pilot3 trajectory) 

Figure 89 (b) depicts the speed and vertical profile of Pilot3 optimised trajectory plan in the case of 
unexpected turbulence ahead and total expected costs as a function of arrival time at FL100. As 
observed from Figure 89 (a), with only negligible increase in total costs with respect to the "keep flying 
OFP" strategy (mainly induced by the increase in total fuel cost as a result of flying lower altitudes), 
the Pilot3 optimised trajectory plan was able to successfully avoid the turbulence area and arrive at 
destination before the SIBT.  
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a) Total expected costs as a function of arrival time at 

FL100  
b) vertical profile with speed profile of Pilot3 optimised 

trajectory 

Figure 89 Results of Pilot3 optimisation for Experiment 406 (turbulence ahead, on-time departure). 

The obtained results inspired us to additionally explore the benefits of Pilot3 in the case of turbulence, 
but imposing a significantly higher amount of delay. The objective of the set of experiments is to 
explore the behaviour of Pilot3 optimised trajectory plans with respect to OFP when the pilot faces a 
severe turbulence ahead in addition to certain amount of departure delay. 

Table 46 summarises the benefits of Pilot3 trajectory plan with respect to "keep flying OFP" across 
different metrics. 

  
a) Total expected costs as a function of arrival time at 

FL100  
b) vertical profile with speed profile of Pilot3 optimised 

trajectory 

Figure 90 Results of Pilot3 optimization for Experiment 407 (turbulence ahead and 30’ of departure delay) 

 
 

a) Total expected costs as a function of arrival time at 
FL100  

b) vertical profile with speed profile of Pilot3 optimised 
trajectory 

Figure 91 Results of Pilot3 optimization for Experiment 408 (turbulence ahead and 60’ of departure delay) 
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a) Total expected costs as a function of arrival time at 

FL100  
b) vertical profile with speed profile of Pilot3 optimised 

trajectory 

Figure 92 Results of Pilot3 optimization for Experiment 409 (turbulence ahead and 90’ of departure delay) 

Table 46: Difference between Pilot3 optimised trajectory plan and OFP ((from triggering point to FL100)) across different 
metrics   

Departure delay of 
0 minutes 

Departure delay of 
30 minutes 

Departure delay of 
60 minutes 

Departure delay of 
90 minutes 

Difference in fuel 
consumption 

+ 799 kg + 6,280 kg + 2,162 kg  6,289 kg 

Difference in trip time -3 minutes -13 minutes  -8 minutes - 13 minutes 

Expected savings -273 EUR 8,418 EUR 714 EUR 9,193 EUR 

 

In the case when the departure is performed on-time and the turbulence is expected along the flight, 
the Pilot3 will not suggest to speed up well in advance (by flying at lower speed) the turbulence area, 
but rather right before it. This is the reason why Pilot3 will generate slightly higher costs than the OFP. 

As seen, the benefit of Pilot3 would be particularly pronounced in the case of departure delay of 30 
minutes, by offering the trajectory characterised by substantial savings obtained by reduction in IROPs 
and Other costs. In order to avoid the turbulence area at cruise phase, the Pilot3 trajectory will fly at 
lower altitudes for longer time than in the case of delay of 60 minutes (see Figure 91 and Figure 91). 
This action will allow to speed up and absorb some portion of initially assigned delay. With respect to 
the OFP, the Pilot3 optimised trajectory will arrive on-time at destination enabling the connecting 
passengers to be transferred to their subsequent flights. Note that absorbing some delay will require 
additional fuel burn of around 6 tonnes. 

However, the cost benefit of Pilot3 will be considerably reduced in the case of delay of 60 minutes. 
Despite the fact that both OFP and Pilot3 trajectories will not be able to meet the OTP, the Pilot3 
optimised trajectory plan will be still able to provide some savings in terms of total cost and arrive at 
destination 8 minutes before OFP. Moreover, despite the delay is bigger (60 minutes now with respect 
to 30 minutes before), the Pilot3 does not speed up "that much" because the extra fuel cost does not 
compensate the savings in delay cost (the cost function if flatter as observed in Figure 91(a)). 

In the case of very large delay of 90 minutes, the output of Pilot3 in terms of speed and vertical profile 
will be very similar as in the case of delay of 30 minutes (see Figure 92). This implies that once the 
turbulence area is avoided, the Pilot3 will continue flying at lower altitude in order to gain additional 
time. By doing this, the Pilot3 will be able to avoid the next jump in the cost function which would 
significantly increase the IROPs cost. 
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4.4.3.4 Scenario 800: New York (KJFK) to London Heathrow (EGLL) 
Scenario 800 aimed to demonstrate the effect of uncertainty modelled in the cost function on the final 
results of Pilot3 and their potential benefit with respect to OFP. For this purpose, two experiments 
were run - the first experiment encountering the uncertainty modelled in the cost function, whereas 
the second experiment does not model the uncertainty in the cost function. As already explained, the 
uncertainty modelled in the cost function mainly stem from the uncertainties inbuilt in OAE and PIE 
estimators. 

4.4.3.4.1 Cost function 
The cost function for Scenario 800 (KJFK - EGLL) shown in Figure 93 follows a similar pattern as in case 
of KJFK to EGLL: as it is assumed that passengers are entitled to compensation due to Regulation 261 
these cost dominate the total cost of delay experienced by the airline (see Figure 93). For this particular 
flight, the following rotation is planned 5h40 minutes after the SIBT (see Table 47). This means that 
reactionary delay costs do not represent a significant value unless significant amount of delay is 
experienced (i.e., arrival with 3 hours or more of delay). 

  

a) Total expected costs as a function of arrival time at the 
gate  

b) Total expected costs at FL100 considering uncertainty 

Figure 93 Cost function modelled for New York – London Heathrow route 

Table 47 Rotations planned for KJFK-EGLL flight 
Origin Destination SOBT SIBT Rotation time available 

from previous flight 

KFJK EGLL 00h40 07h35 - 

EDDF KSFO 13h15 00h10 5h40 
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Figure 94 Cost function modelled for New York - London Heathrow route with Regulation 261 thresholds 

Figure 94 represents the expected cost of delay at the gate but only focussing on the aggregated total, 
IROPs and other. As observed, there are three big discontinuities (around 9h41, 10h35 and 11h35). 
The 10h35 and 11h35 cost increments correspond to Regulation 261 thresholds of 180 minutes and 
240 minutes of arrival delay, which as indicated in the Figure represent an increment on the 
compensation paid per passenger (300 EUR for delays > 180 minutes and 600 EUR for delays > 240 
minutes). An analysis of the passenger groups with their connections will be required to understand 
the cost increment at 9h41. 

 

 
Figure 95 Passenger groups connecting at EGLL into follow up flights on the KJFK — EGLL flight. 

Table 48 Rotations planned for KJFK – EGLL  
Alternative SOBT SIBT Delay with respect to 

planned trip 
Latest arrival to EGLL to make 

connection 
Expected IROP cost 

generated 
1 9h05 10h40 0 7h41 0 
2 11h05 12h35 115 9h41 0 
3 13h30 15h00 260 12h01 15000 EUR (600x25) 

 

As shown in Figure 95 there is a group of 25 passenger with a follow up connection with a subsequent 
flight with an SOBT at 9h05. These passengers are connecting to a flight to EGPD (Aberdeen). 
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Considering that the minimum connecting time for international connections at EGLL is estimated to 
be 84 minutes, this means that if the flight arrives after 7h41 the passengers will miss their connection. 
This threshold of delay to miss the connection is earlier than 9h41. However, Table 48 presents the 
different possible subsequent alternative flights for these passengers. As observed, after 7h41 
passengers will have to be reallocated to their second alternative which arrives to EGPD with a total 
delay with respect to plan of 115 minutes. However, after 9h41 this option will also be missed, and the 
subsequent available flight won't arrive to Aberdeen up to 15h00 producing an arrival delay of 260 
minutes with entitle each passenger to 600 EUR of compensation. This is an example on how the delay 
experience by the flight can be different that the delay experienced by passengers and therefore have 
different implications for IROP costs, such as having to compensate for Regulation 261 even if the flight 
arrives earlier than the regulation delay threshold to the hub: 126 minutes of delay at arrival if arriving 
at 9h41 can represent 260 minutes for the passengers; on the contrary, if connections are not missed 
(e.g. passenger groups with connections at 17h) even a late arrival might not have a significant 
passenger related cost. 

4.4.3.4.2 Results for CS10-Departure delay 
Similar as in the case of SCN 600, we imposed a large amount of delay to enable the exploration of the 
challenging area of the cost function for New York - London route (Figure 96 and Figure 97). 

As observed in Table 49, when uncertainty is not considered nominal arrival time of the flight is right 
is right after the passenger connections are lost. Thus, the Pilot3 is suggesting to save 6 minutes in 
order to be right on the left side of the jump in the cost function (i.e., no connections lost). In other 
words, Pilot3 is doing the "minimum” to deterministically save the connections resulting in a large 
amount of savings. In similar vein, when uncertainty is considered in the modelling of cost function, 
there is a high probability that a group of passengers will miss their connections. Consequently, Pilot3 
will suggest to speed-up to lower the total expected cost (at the expense of higher fuel consumption). 
Regarding the vertical trajectory profile (see Figure 97 (b)), it can be observed that Mach is significantly 
increased with respect to the OFP Mach. Additionally, the altitude profile is similar, like before the 
step-descent at the end of the cruise is not done. 

  
a) Total expected costs as a function of arrival time at 

FL100 
b) Vertical profile with speed profile of Pilot3 optimised 

trajectory 

Figure 96 Results of Pilot3 optimisation for Experiment 410 (153’ of deaparture delay, cost function with no uncertainty) 
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a) Total expected costs as a function of arrival time at 
FL100 

b) Vertical profile with speed profile of Pilot3 optimised 
trajectory 

Figure 97 Results of Pilot3 optimisation for Experiment 411 (153’ of deaparture delay, cost function with uncertainty) 

Table 49: Difference between Pilot3 optimised trajectory plan and OFP ((from triggering point to FL100)) across different 
metrics   

Uncertainty not modelled in the cost 
function 

Uncertainty modelled in the cost 
function 

Difference in fuel consumption + 452 kg + 2, 314 kg 

Difference in trip time -6 minutes -17 minutes 

Expected savings 19,396 EUR 16,047 EUR 

 

4.4.4 Summary of Research Questions and Hypothesis 

After revision of the initially defined RQs and HPs aimed for validation of IVA4, with the previously 
discussed results for different scenarios, we are able to successfully validate the RQ-IV-070 (see Table 
50). 

Table 50: : Summary of research questions (RQ) and hypotheses addressed in IVA4 
RQ ID Rationale Research question Hypothesis Success criteria Status 

P3-RQ-
IV-070 

Validate 
that the 
optimised 
planned 
trajectory 
performs 
equivalent 
or better 
than 
baselines. 

For a given triggering 
event, will the 
optimised planned 4D 
trajectory(ies) 
generated by Pilot3 
perform better than 
the integrated 
trajectories of the 
baselines (i.e., 
operational flight plan, 
basic pilot behaviour) 
with the updated 
information? 

For triggering events which could 
not be foreseen at dispatch level, 
the pilot will be able to select the 
most appropriate trajectory from 
the set of 4D trajectories 
generated by Pilot3 which 
execution will provide either 
some savings in total costs 
and/or meeting OTP, than the 
different considered baselines 
(i.e., following the operational 
flight plan or basic pilot 
reaction). 

The optimised 
trajectory plan 
generated by Pilot3 
will contribute to 
same or lower total 
cost compared to 
the baselines with 
equivalent reach of 
OTP (both 
prioritising and not 
prioritising reaching 
OTP). 

Validated 

 

4.5 IVA7 – Validation of the HMI prototype 

The scope of this validation activity was to assess overall accessibility and appropriateness of the HMI 
tool. The validation activity was conducted among the experts within consortium in order to gather 
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their feedback. In this validation action, however, we collected additional feedback from individuals of 
the Pilot3 consortium institutions that have not been directly involved in the development and 
verification of the HMI prototype (besides individuals from the Topic Manager). The HMI prototype 
was developed by the consortium member, Innaxis. The internal validation of the HMI was performed 
iteratively during the course of the project with the active participation of all consortium members. 

During the internal validation phase, the feedback received from the industrial partner PACE was of 
particular importance as this company already had a large experience in designing PACElab Flight 
Profile Optimiser (FPO), a tool of similar functionalities as Pilot3. The discussion between the two 
partners was conducted in a continues manner during October and November, 2021 by the means of 
online meetings. Once a first round of HMI design modification took place based on the comments 
provided by PACE, all other partners actively participated until the final consensus on the design of the 
HMI was achieved. 

4.5.1 Approach 

In order to embody the HMI design following the Agile approach, and given the fact that the tool had 
been continuously refined and modified with the active participation of all consortium members, the 
initial approach in which we supposed to distribute the questionnaires among the consortium 
members was abandoned for bilateral meetings and continuous feedback through the shared 
platform, inGrid. 

4.5.2 Results 

Table 51 compiles the workshop's outcome lead between PACE and Innaxis, providing the consortium 
members' feedback on specific aspects of HMI. The second round of feedback, with the final HMI 
designs resulting to the internal validation, is presented in Appendix B. 

Table 51: Internal Validation Workshop’s outcome 
Slide Questions Discussion 
1 1. What is the main goal?  

1.a. Presenting multiple alternatives? 
2.b. Presenting statistical operational 
values? 
1.c. Should the app be continuously 
open? Should only the best 
alternative be presented? 
2. Selection of flight needed 
3. What are the actions for the pilot? 
3.a. List FL/speed changes to follow 
proposed trajectory 
4. What should be the main view for 
pilots? 

1.a. The main goal is to optimise the trajectory and present the 
alternatives to the Pilot. As indicated in D1.1 (Pilot3 Consortium, 
2020a) and D5.1 (Pilot3 Consortium, 2020c). The pilot will trigger 
Pilot3 (it could be done automatically if new relevant information is 
done but the idea is not to have it working in the background 
continuously). Then, alternatives will be computed based on the 
optimisation. These alternatives optimise the total cost but consider 
the sub-cost components (fuel, pax related costs (IROPs) and other 
(including reactionary and curfew). The alternatives are shown to the 
pilot who can disregard them (reject them), explore them (for 
example get more information on the sub-cost components, pax 
missing connections, OTP, parameters of the trajectory (e.g. flight 
level changes, speed profile, etc.)), add constraints and re-run if 
needed. The new trajectories would then be added to the previous 
and compared again, etc. 
1.b. The minimum results to present are OTP and total cost. Then for 
total cost the disaggregation by three sub-components. It could be 
possible go to 'deeper' on the disaggregation (e.g. differentiating 
between reactionary and curfew cost, cost per type of pax 
(connecting and not-connecting), fuel divided in flying (up to FL100, 
sequencing and merging, holding fuel, taxi-in fuel), etc.), also to 
explore operational parameters probability of curfew, holding, taxi-in 
time, etc. 
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1.c. Not only the best alternative is presented as this is a multi-
objective problem. A set of trajectories are considered and the 
VIKOR algorithm rank them automatically. Therefore, the pilot will 
see the alternatives (including 'do-nothing') already 'ranked'. 
2. Given the maturity level aimed for the HMI, a real trajectory is not 
needed but rather a clear mock-up of the tool. 
3. Explore the solutions, reject trajectories, add/modify constraints, 
request re-optimisation. 
3.a. This would be part of exploring the solution (exploring the 
trajectory) 
4. Current trajectory with indication on OTP and total cost. This 
should be discussed with them on the External Validation. 

2 1. Are the constraints linked to a 
certain alternative or are the valid 
for all alternatives? 
2. Costs vs planned costs: a 
reference is missing 

1. They could be alternative related. Different alternatives could 
have different constraints. 
2. Planned costs are 'alternative 0', i.e., do-nothing. Keep flying 'as 
planned' is one alternative for which the expected costs are also 
estimated. 

3 1. What is the constraint? Is the 
selected FL the only available or not 
available? 

1. Not clear in the current version of the HMI if the constraint is to 
use that FL or to avoid it, agreed. The constraints should be of the 
type 'do not use these FLs in this region'. 

4 1. What is the intention of the 
estimators? Who should do what 
with this information? 
2. Should the estimation to be 
considered be selected? For 
calculation an alternative? 
3. Type not needed 
4. Are the estimators and confidence 
intervals valid for all alternatives? 

1. This should be part of exploring the alternatives. In this case we 
are providing information on what to expect in terms of operational 
uncertainty (holdings, sequencing and merging, taxi-in time, etc.). So 
that the pilot can understand better what to expect and why the 
optimiser is deciding (or not) to recover delay, for example. 
2. In this case, the uncertainties should be the same for all 
alternatives as they are linked with operational parameters (e.g. 
holdings at arrival) and these do not depend on the alternative. We 
can translate the times into fuel and cost for example, but again 
these should be the same for all solutions in theory. 
3. Agreed. 
4. We don't have confident interval but the distribution of possible 
values. So, we can provide expected (average) but also percentiles or 
even the whole distribution. 
Also, note that for now we have: 

• Holding time (and fuel) 
• Taxi-in time (and fuel) 
• Sequencing and merging time (and distance and fuel) 
• Distance in TMA 

5 1. Which alternative considers which 
IROP?  
2. What is the link between 
IROP/estimation and alternative? 
3. Why four alternatives? Why not 
one only? 
4. Which alternative brings which 
benefit. 
5. Enable selection of Alternatives in 
the "Alternatives" view 

1. Not sure what this means, each alternative might have a different 
expected arrival time and costs (including IROP costs). 
2. Each alternative has an expected cost, i.e., an expected IROPs cost 
(including expected cost per connecting/non-connecting pax, etc.). 
3. The alternatives will be already ranked by the system. At least 
we'll have two alternatives: 'optimised' and 'do-nothing', we can also 
have more than one (depending on the optimiser) and if the pilot, for 
example, adds constraints and re-optimise, that new optimised with 
constraint trajectory will be added. 
Note that VIKOR ranking algorithm might consider that only one (or 
x) alternative(s) are better overall and only present those. 
5. Per alternative we should present (easily visible) at least OTP and 
total cost. 

6 1. Selection of flight needed 1. Pilot3 is for the 'current' flight on-board, so there are no more 
than one flight to select as it should be the current. Not sure what 
it's presented in this screen (or even if we need this), the current 
time? the SIBT? 
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4.5.3 Summary of Research Questions and Hypothesis 

After revision of the initially defined RQs and HPs aimed for validation of IVA7, with the previously 
discussed feedback obtained by the experts within the consortium, we successfully validated the RQ-
IV-120, 130 and 140 (see Table 52). As already discussed, the validation of the HMI was performed 
iteratively along the project, hereby abandoning the initial methodology based on the questionnaires. 
Consequently, the initial success criteria aimed for the validation of specific RQs was adjusted to 
encounter a new approach based on the informal consensus achieved among the partners.  

Table 52: Summary of research questions (RQ) and hypotheses addressed in IVA7 

RQ ID Rationale Research question Hypothesis Success 
criteria Status 

P3-RQ-
IV-120 

Validate the 
simplicity but 
completeness 
of the 
information 
presented to 
crew. 

Is the information 
displayed to the 
pilot clear and easy 
to understand? 

The information presented by the 
HMI will be simple and, as much as 
possible, predictable in its 
presentation, which means that 
appropriate balance will be found in 
terms of the amount of information 
so that the pilot can easily conceive 
(process) it. 

• The partners 
reach an 
agreement 
that Pilot3 
provides 
clear 
information 
to the pilot 

Validated 

P3-RQ-
IV-130 

Validate the 
facility of the 
HMI to 
convey the 
information 
computed by 
Pilot3. 

Is the information 
given to the pilot 
informative enough 
and helps to take a 
more informed 
decision for a given 
triggering event? 

Human-Machine Interface (HMI) will 
ensure that the pilot can easily 
understand the information on high 
level objectives (e.g. OTP and total 
costs), but also the information on 
different PIs and their trade-offs as 
well as the information on the 
confidence level provided for each 
trajectory displayed. 

• The partners 
reach an 
agreement 
that Pilot3 
aids the pilot 
to take a 
more 
informed 
decision 

Validated 

P3-RQ-
IV-140 

Validate the 
interface to 
receive input 
from the 
crew. 

Is the mechanism 
which allows 
interaction with the 
tool acceptable 
(appropriate) 
enough from 
operational point of 
view? 

Human-Machine Interface (HMI) will 
ensure that the pilot can easily 
interact with the tool in taking the 
actions such as rejecting/selecting 
solutions or based on the information 
provided, adding new constraints and 
requesting a re-evaluation of the 
alternatives in a concise and 
straightforward manner.  

• The partners 
reach an 
agreement 
that the 
mechanism 
for the 
interaction is 
acceptable 
enough 

Validated 

 

4.6 EVA1 – Demonstrations of the HMI prototype and overall 
capabilities 

The main objective of this action is to validate the prototype of the Human Machine Interface (HMI), 
interacting with the external experts, and to obtain an initial feedback regarding the overall capabilities 
of the Pilot3 prototype. As discussed in Section 4.5 (IVA7) the design of the HMI prototype and their 
main functionalities gradually evolved, with a great number of iterations between different partners 
within consortium. The aim of these iterations was to improve the design of the HMI prototype in 
order to better reflect the outputs generated by Pilot3 bringing the prototype closer to the operational 
environment. 
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4.6.1 Approach 

The external validation campaign on the HMI prototype has been initiated during the Final Advisory 
Board meeting held on 13th January. As a starting action, the main goal is to put all the external experts 
in the context by introducing them with several important aspects of the tool, such as: 

• the general concept of the Pilot3 tool (i.e., "How is the tool working?"), 

• its specific features (i.e., "What kind of information does the tool show to the pilot?"), and 

• mechanism implemented to interact with the pilot (i.e., "How does it interact with the pilot?"). 

It is worth mentioning that HMI prototype was presented in the form of mock-ups rather than an 
interactive dashboard including a number of screenshots for different HMI functionalities. The general 
feedback obtained during the meeting was that HMI prototype contains all important aspects relevant 
for the operations and may ease the decision-making process of the pilot. However, the detailed 
feedback was obtained by the survey sent to the Advisory Board members after the meeting held on 
13th January 2022. By the time of closing this deliverable, the consortium received the feedback from 
two members of the Advisory Board, namely: 

• the representative of the large full-service carrier operated at ECAC area 

• the representative of an interdependent aviation consultancy company 

The results of the survey will be summarised and analysed in the Section below. 

4.6.2 Survey results 

The respondents were asked to provide their feedback on two specific sets of questions within the 
survey. The first one referred to the evolution of the Pilot3 HMI prototype in terms of potential outputs 
that may be displayed to the pilot, while the second part of the survey aimed to obtain the feedback 
regarding the overall capabilities of the HMI mock-up presented during the Advisory Board meeting.  

4.6.2.1 Potential information to be presented to the pilot 
As already discussed, Pilot3 can generate a large set of outputs and our goal was to identify the most 
relevant indicators for the pilot. Some of these indicators might be available ‘directly’ to the pilot, 
while others might be provided ‘upon request’, or not provided as deemed unnecessary. The 
respondents were asked to rate the relevance of each of the output to be presented in HMI prototype. 
The outputs are divided into seven different categories. The results of the survey are provided in 
Appendix B. Table 53 summarises the main finding of the survey across seven different categories of 
indicators that may be presented to the pilot. 

Table 53: The feedback obtained from the experts by the survey 
Categories of 

indicators 
Feedback obtained 

Cost related 
indicators 

Both respondents shared an opinion that the pilot should be presented with the information on 
total fuel cost and IROPs costs as they are deemed important in the decision-making process. 
Moreover, the respondents claimed that the pilot should not be overwhelmed with the 
information indicating sub-components and other cost and reactionary cost. Finally, the large 
discrepancy can be observed for "total cost" indicator, which appeared to be extremely important 
from the representative of the FSC, and slightly relevant from the point of view of representative 
from the consultancy firm. It is important to emphasise that the representative of FSC underlined 
the importance of integration of Pilot3 with the OPS system with clear responsibilities of decision. 
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In this vein, the sub-components of reactionary cost and other cost would be more relevant for 
the staff in the airline's operations control centre (AOCC), rather than for the pilot.  

Time related 
indicators 

The respondents agreed on the importance of displaying the information on OTP performance of 
the flight, as one of the upmost relevance for the pilot. In similar vein, the respondents also agreed 
on the importance of presenting "time at gate" which essentially complements the information 
on OTP. The large discrepancy among the respondents is observed for "time from FL100 to gate" 
indicator, which is considered as relevant to be shown by the independent expert and not relevant 
from FSC's representative point of view. Concerning the time related indicators, the 
representative from the FSC claimed that "what is relevant for the pilot is the latest time at which 
the aircraft must dock in the gate, to avoid any reactionary delay through crew, passengers, 
aircraft rotation, …etc.", while all others presented in the table above are "nice to know but only 
upon the request of the pilots". The overload of information presented to the pilot may cases a 
safety issue on the long run. 

Passenger missed 
connections 
indicators 

The respondents provided their scores following similar logic as in the case of time-related 
indicators category. Whereas this indicator is seen as relevant from the perspective of 
independent aviation expert, the representative of FSC argued that this indicator should not be a 
first level information, and only available to the pilot upon request (potentially displayed at the 
pop-up window). 

Operational ATM 
Uncertainties 

Both respondents found that three different operational ATM indicators reflecting the 
uncertainties are, in general, relevant to be displayed to the pilot. however, the representative of 
FSC considered that this kind of information should be integrated in the OFP, rather than being 
presented in the HMI. 

Other operational 
parameters 

As observed, there is a large gap in the feedback concerning the indicators which indicate the 
arrival STAR, runway or gate. The representative of FCS found all these three indicator completely 
irrelevant to be presented to the pilot as they are already included in the OFP and updated if any 
changes occur. On contrary, the representative of the consultancy firm considered them as 
extremely relevant. 

Other parameters The experts generally agreed that the information on the "probability of breaching curfew by any 
subsequent rotation" would be relevant to be presented to the pilot. However, it is worth 
emphasizing that coordination with OCC must take place as both parties must have a clear 
definition of their roles and responsibilities. AOCC is typically responsible for the management of 
the entire fleet and planned flights, whereas pilots are responsible for ensuring a safe flight, if 
possible, economically and environmentally friendly and taking into account the airline strategic 
needs. 

The full 
distribution for 
some indicators  

While the representative of the aviation consultancy company found all the indicators listed in the 
table above as relevant to be presented to the pilot, the representative of the FSC argued that the 
pilot should not be overloaded with this kind of information. In addition, the AOCCs typically do 
not have sufficient time resources to train the pilots to understand such graphics nor to check it 
in a very tight schedule. 

Based on the comprehensive feedback obtained from the experts, one would need to be very 
cautioned about the type of information and its level of details to be presented to the pilot at HMI. As 
a general remark, the pilot needs to be aware of the consequences which his/her action may have on 
the network, but ensuring the safe flight needs to remain of his/her utmost concern. It entails that a 
large burden of possible information may distract him/her from conducting the prime job which is the 
flying a flight. In this light, the analysis of the survey converges to the conclusion that among all possible 
indicators that could be generated by Pilot3, the information on the total cost (including fuel cost, 
IROPs costs and other costs) and OTP should have a significant relevance in decision-making and they 
are plausible to be displayed. This finding reinforces the feedback received from the experts during the 
First Advisory Board meeting on relevance of potential trade-offs between OTP and the total cost in 
the case of unexpected event/disruptions. In addition, some indicators initially intended for pilots may 
be of a high importance to AOCC as they have an insight into entire fleet and flights and may better 
understand the consequences of specific actions. In this regard, airlines need to establish the adequate 
level of coordination between the pilot and AOCC with strictly defined responsibilities and roles 
between the two parties. 
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4.6.2.2 Overall capabilities of the HMI mock-up 

The respondents were asked to provide their feedback on two main functionalities of HMI mock-up: 
Easiness of understanding of the information and Interaction with the system. The survey also 
contains two final sections specifically designed for pilots: General acceptability and Pilot's overall 
acceptance of the tool. Each questionnaire contains several statements which were assessed on a 6-
point Likert scale (mark with an X) from "Strongly disagree " to "Strongly agree". A summary on the 
main HMI capabilities with corresponding screenshots can be found in Appendix B. 

Table 54: The feedback obtained from the experts by the survey 
Questionnaire Feedback obtained 

1-Easiness of understanding the 
information 

The representative of FSC strongly agreed that HMI will ensure that the pilot can 
easily understand the information on high level objectives (e.g. OTP and total costs), 
but also the information on different PIs and their trade-offs. Although slightly 
moderate in assessment in comparison to the FSC representative, the expert from 
the consultancy company generally agree that the HMI is capable to provide the 
information which can be easily understood. 

2-Interaction with the system  Both experts share the same view that HMI will ensure that the pilot can easily 
interact with the tool in taking the actions such as rejecting/selecting solutions or 
based on the information provided, adding new constraints and requesting a re-
evaluation of the alternatives in a concise and direct manner. 

3- General acceptability – 
quantity of information provided 
to pilot (pilot only) 

Although the representative of FSC provided a very positive feedback on the general 
acceptability of HMI prototype, the expert from the aviation consultancy company 
raised some concerns about the selection of the colours and the size of the font 
indicating that it needs to be a subject of further refinement. 

4- Pilot's overall acceptance of 
the tool – quantity of 
information provided to pilot 
(pilot only) 

The respondents generally agreed that the tool will substantially support the pilot 
to make the final decision on trajectory flown but still keeping him/her actively in 
the loop. 

In addition to the scores given for each of the statements, we also received two additional comments 
from the representative of aviation consultancy company who is also a pilot: 

• "Size of font has to be revised, captains as myself tender to have ‘problems’ with small letters 
and numbers" 

• Airlines focus basically on 2 factors: money and safety. I think that incorporating safety issues 
would help us. That is: weather in real time downloaded to the program, we would have a 
better picture that the weather radar (limited distance), and also others factors: topography. 

In addition, the representative of FSC provided us with the following comment: 

• "Knowing some airlines, size and colour fonts are always discussed extensively with the 
unions, so you should not target a common font satisfying all users" 

4.6.3 Summary of Research Questions and Hypothesis 

The results of the survey together with the feedback obtained during the Final Advisory Board meeting 
clearly demonstrate that HMI prototype was very-well accepted and in accordance to the operational 
needs. 

Having all these results, we are able to validate some of the RQs and HPs defined in D5.1. 



D5.2 VERIFICATION AND VALIDATION REPORT 

 

 
 

 

© – 2022 – University of Westminster, Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved. 

 
151 

 

 
Table 55: : Summary of research questions (RQ) and hypotheses addressed in EVA1 

RQ ID Research Question Hypothesis Success criteria Status 
P3-RQ-
EV-040 

Is the information given 
to the pilot informative 
enough and helps to 
take a more informed 
decision for a given 
triggering event? 

Human-Machine Interface (HMI) 
will ensure that the pilot can 
easily understand the information 
on high level objectives (e.g. OTP 
and total costs), but also the 
information on different PIs and 
their trade-offs as well as the 
information on the confidence 
level provided for each trajectory 
displayed. 

• The majority of the 
respondents should 
"agree" that Pilot3 is 
highly desirable decision 
support tool 

• None of the respondents 
should indicate "strongly 
disagree" and "disagree" 
option 

Validated 

P3-RQ-
EV-050 

Is the mechanism 
which allows the pilot 
to interact with the 
tool acceptable from 
the operational point 
of view? 

Human-Machine Interface (HMI) 
will ensure that the pilot can 
easily interact with the tool in 
taking the actions such as 
rejecting/selecting solutions or 
based on the information 
provided, adding new constraints 
and requesting a re-evaluation of 
the alternatives in a concise and 
direct manner. 

• The majority of the 
respondents should 
"agree" that Pilot3 is 
highly desirable decision 
support tool 

• None of the respondents 
should indicate "strongly 
disagree" and "disagree" 
option 

Validated 

P3-RQ-
EV-030 

Is the information 
given to the pilot 
simple (or concise) 
enough to allow their 
prompt reaction? 

The information presented by the 
HMI will be simple and, as much 
as possible, predictable in its 
presentation, which means that 
appropriate balance will be found 
in terms of the amount of 
information so that the pilot can 
easily conceive (process) it. 

• The majority of the 
respondents should 
"agree" that Pilot3 is 
highly desirable decision 
support tool 

• None of the respondents 
should indicate "strongly 
disagree" and "disagree" 
option 

Validated 

P3-RQ-
EV-020 

Given the overall 
concept of HMI 
presented, would the 
pilot be satisfied to 
have such decision 
support tool on-
board? 

With its user-friendly HMI 
interface which displays the large 
amount of information on the 
trajectories generated and with its 
interactive capabilities which still 
keep the pilot actively in the loop, 
the tool will substantially support 
the pilot to make the final 
decision on trajectory flown. Thus, 
pilots will highly regard having 
Pilot3 on-board 

• The majority of the 
respondents should 
"agree" that Pilot3 is 
highly desirable decision 
support tool 

• None of the respondents 
should indicate "strongly 
disagree" and "disagree" 
option 

Partially 

Validated 

(*one of the 
respondents 
disagreed) 

4.7 EVA2 – Results obtained with stand-alone simulations at 
trajectory level 

The purpose of this validation action was to show to the external experts some results obtained in IVA-
4 -Pilot3 performance at generation of optimised trajectories plans of the internal validation plan in 
order to obtain feedback from stakeholders. However, during the development of Pilot3 software, 
additional Workshop with experts was organised in order to priorities the development of some Pilot3 
functionalities that may be more relevant from operational point of view. 
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4.7.1 External Workshop 

The External workshop was organised on 7th July, 2021 gathering experts from different airlines, 
aviation consultancy companies and EUROCONTROL. 

4.7.1.1 Objectives of the meeting 

The objective of the meeting was to present the experts the architecture of the Pilot3 given at that 
time and validate some of the assumptions imposed in the software development. In other words, at 
this stage, the purpose of the meeting was not to show the results of full Pilot3 scenario, but rather to 
explain the flow and processes within Pilot3 pipeline. 

1. Present Pilot3 with architecture implemented. 
2. Present current functionalities: cost function generation, uncertainty at arrival consideration, 

optimisation with CI. 
1. Cost function considering different cost components 
2. Uncertainties in TMA 
3. Optimisation divided in Trajectory Prediction (TP) and CI optimisation 

3. Hypothesis on some modelling activities (e.g. how TP of arrival is performed). 
4. Identify/Prioritise future evolution: what to improve. 
5. Present the information to the pilot from the results of running Pilot3 
6. Explore the HMI on different case studies 
7. Gather feedback on what input should the pilot provide to the system. Note that this will link 

with future development of the optimiser too, e.g. how to add constraints to the 
optimisation, consideration of multi-criteria, etc. 

The meeting was structured in seven main blocks, namely: 

A- Introduction to Pilot3 
B- The Architecture 

1. Construction of cost function as a function of arrival time at gate. 
2. Optimisation phases: optimisation up to where pilot 'cannot do anything', i.e., FL100 and TP 

for arrival. 
3. Addition of uncertainties to cost function 

C- Cost function 
Discuss the components of the cost function. Some specific things to consider: 

• Can airlines provide estimators of costs for each of the elementary costs elements we have 
identified? Should they be grouped? 

• For each of the costs some questions, e.g. 
o Transfer costs, how to consider this? 
o Reactionary cost, is it worth it to model it explicitly? What about pax connections 

downstream, i.e., in subsequent flights? Importance of curfew. 
o Soft costs, should they be disaggregated? 
o Hard cost duty of care when connection takes too long? 
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D- Uncertainties 
How uncertainties and procedures which are not optimised are considered (taxi-in, holding, path 
stretching). Things to consider: 

• What next? Focus on en-route uncertainty? focus on TMA uncertainty? focus on more info 
for the pilot but not currently needed in the model, e.g. runway at arrival, procedure in 
TMA? 

E- Optimisation and Trajectory Prediction 
Present current optimisation (based on CI), and TP approach. Things to consider: 

• Focusing on the TP 
o Hypothesis, impact of too short distances, etc. 

• Focusing on the optimiser 
o Use of CI only as control variable, limitations... 
o Shape of the optimisation, e.g. trade-offs on FL changes, should this be considered? 
o Fuel to be used by optimiser? 
o What next in terms of multi-objective optimisation? Focus on OTP, focus on sub-

components of cost function? 
F- Machine learning vs heuristic 
Some things to consider: 

• What is the added value of ML? 
• Is it worth it? 
• Try to get insight on which features to generate, e.g. which factors might affect each of the 

processes considered? 
G- HMI 
What to present to the pilot? 

4.7.1.2 Results of the external workshop 

The feedback form the External workshop is listed below. As observed from the comments, the experts 
generally emphasised that modelling the cost function is still one of the most complex tasks in airline 
operations. Different airlines have different strategies in managing their cost of delay which impose a 
particular challenge from a modelling perspective. 

• The consideration of costs due to Reg. 261 differs from company to company. However, the 
costs due to Reg. 261 are increasing over the last years. The general remark is that modelling 
the cost function is very complex task and even dispatchers are not aware of its specification. 
Although Reg. 261 has not been explicitly modelled in the cost function, some airlines may 
compute the value of flight for each route taking into account the number of business 
passengers, connecting passenger, etc. Therefore, the characteristics of the given route will 
have impact on the application of different actions which may mitigate the effect of delay 
(ensuring the minimum connecting time for business-oriented routes). In addition, if the flight 
can save some additional minutes by speeding up in order to avoid the compensation due to 
Reg. 261, airlines would always opt for this strategy. However, it needs to be underlined that 
savings in time by speeding up the flight within Europe are limited up to 4 minutes, so very 
often, the shortcuts given by ATCo could benefit more in the reduction of delay. 
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• In addition, the experts acknowledged that impact of Reg.261 on cost function would differ 
not only on a day-by-day basis, but also by flight-to-flight basis. The development of machine 
learning models to predict the transfer time deemed as promising method to reduce the IROPs 
cost. In this regard, the machine learning models currently being developed in Dispatche3 
project, may ensure to resolve some of these issues at pre-tactical phase of the flight. The 
particular challenge would be the selection of the adequate features to estimate the transfer 
time with a high accuracy. In addition, the airlines that operate under large airline group may 
allocate the passengers with critical connections to the flights of their alliance partners. In the 
case the airline is a member of airline alliances of joint-venture undertaking, the costs of the 
re-booking will highly depend on the type of arrangements between the partners. 

• The airlines representative claimed that their costs are mainly time-based implying that some 
parts are credited by flight hours while some are included directly in the cost index. It further 
implies, that even in the case the aircraft is earlier than planned in OFP, it will not slow down 
as maintenance and crew costs may still arise. Moreover, it worth emphasising that some of 
the maintenance costs are cycle-driven (such as landing gear) and clearly depends on the 
number of take-offs.  

• The consideration of curfew in Pilot3 can bring added value only if the pilot is informed about 
the particular action at the moment in which a proper decision may resolve the issue. 
However, only awareness of the possibility of hitting a curfew is not the real added value and 
may put additional pressure on the crew. There is a general consensus among the experts that 
problem of breaching the curfew should be addressed at dispatch level as they are responsible 
to make a decision on inserting another plane, or similar.  

• The experts generally agreed that there is a great uncertainty associated with taxi-in time at 
large number of airports in Europe. There are a number of situations which may induce 
addition taxi-in time: blocked gate at arrival, long de-icing procedure, etc. However, the 
reduction in taxi-in time may be realised through proactive sequencing with Arrival 
Management tool (AMAN) or by changing the runway configurations. 

4.7.2 Final Advisory Board meeting 

The Final Advisory Board meeting was held on 13th January, 2022. Among ten external experts invited 
to attend this event, six of them eventually participated and provided their feedback on the results of 
Pilot3, namely: 

• three representatives from three different FSCs 
• a representative of aviation consultancy company 

4.7.2.1 Objectives of the meeting 

During the Advisory Board meeting, the experts were introduced with several important aspects of 
PIlot3: 

• New capabilities that were developed in meantime from the Advisory Board meeting held in 
July, 2021; 

• The results of Pilot3 optimised trajectory plan for several relevant scenarios; 
• The capabilities of HMI prototype. 
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Regarding the new capabilities developed for Pilot3, the experts had opportunity to have a deep in-
sight into several main aspects of Pilot3, as follows; 

• Modelling of cost function considering cost components at gate  
o Passenger related costs (connecting and non-connecting) 
o Other costs (including reactionary, curfew, etc.) 

• Consideration of operational uncertainties 
o Uncertainties in TMA 
o Taxi-in procedures 

• Estimators based on heuristics and machine learning 
o Possible en-route update of information 

• Automatic ranking of alternatives 

In order to keep this report as concise as possible, we will not show the results on different OAE and 
PIE estimators and their impact on modelling of cost function, as they are already discussed in details 
in Section 4.2 (IVA2). 

It is worth mentioning that a new approach proposed by Pilot3 leveraging the flight optimisation on 
the complex cost function instead on the classical "cost index" approach received a very well feedback 
from the experts. However, the experts emphasised that the building the cost function is a complex 
task which requires comprehensive approach involving the synchronisation between different 
departments within an airline. 

4.7.2.2 Feedback obtained 

During the Advisory Board meeting, four different experiments were presented to the experts together 
with the corresponding metrics in order to conveniently assess the benefits of Pilot3. Although the 
number of experiments is small in size, they still very well reflect the potential capabilities of Pilot3 in 
different operational contexts. The objective of the first experiment (ID 401 from Table 39 in Section 
4.4.2) is to demonstrate the benefit of Pilot3 when the aircraft reaches the cruise altitude (top of climb 
- TOC) earlier than planned. This case study was already identified as a relevant one during the 
consultation with the experts from the Advisory Board. The three remaining experiments (ID 404, 409 
and 410) aimed to show the benefit of Pilot3 in the context of long-haul routes assuming different 
operational environment (i.e., passengers likely to miss their connections due to large departure delay, 
uncertainty modelled/not modelled in the cost function). For more details on each of four experiments 
indicated here, refer to Section 4.4 Validation (IVA4). 

After presenting the results to the Advisory Board, they acknowledged that results are, in general, 
meaningful and in line with current operational strategies/practice. In this vein, Pilot3 has a 
considerable potential to support the pilot in making a proper decision during the flight execution. The 
experts pointed out the importance of reducing the CO2 emission as a part "zero net carbon emission" 
paradigm shift in aviation leveraging on the "green" trajectories with lower fuel consumption. With its 
capability to be configured in different ways, Pilot3 is able to generate "environmentally friendly" 
trajectories and in this way, successfully embracing this ambitious goal. 

Moreover, the experts emphasised the importance of the Trajectory Based Operations (TBO), as one 
of the main pillars of SESAR programme which aim to provide "high predictability and accuracy of the 
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trajectory, which allows a seamless process from planning to execution and a seamless process from 
gate-to-gate". In this regard, TBO will require synchronization (and negotiation) of trajectories which 
may have direct implications to the uncertainty associated with TMA procedures. For instance, in the 
case of SCN 100 (Athens-London), if Requested Time of Arrival (RTA) was agreed in London TMA 
between the aircraft and the ATC, some amount of TMA holding delay could be effectively transfer 
to linear holdings (which is less costly and more fuel efficient). Note that the term "linear holding" is 
used to define the delay that can be absorbed during the cruise by flying at lower speeds.  

Finally, the experts stressed that some of the results indicating the savings in fuel appear to be 
negligible in the case of long-haul flights. However, with a new version of Pilot3 software which 
development has been finalised after the Advisory Board meeting, the results for fuel savings have 
been substantially improved. 

4.7.3 Summary of Research Questions and Hypothesis 

After revision of the initially defined RQs and HPs aimed for validation of EVA2, with the previously 
discussed results for a set of four experiments, we were able to successfully validate the RQ-EV-070 
and RQ-EV-080 (see Table 56). However, it is worth acknowledging that P3-RQ-EV-070 has been slightly 
modified with respect to the initial formulation, as Pilot3 was eventually able to generate a single 
trajectory as an optimisation output, rather than a set of alternatives. However, this complies to the 
Agile principle adopted in the project. 

Table 56: : Summary of research questions (RQ) and hypotheses addressed in EVA2 
RQ ID Rationale Research question Hypothesis Success criteria Status 

P3-RQ-
EV-070 

Validate that 
solutions 
provided are 
relevant for 
different 
experiments. 

Is the solution provided 
by Pilot3 meaningful 
enough in the case of 
the given experiment 
presented? 

Pilot3 will efficiently 
deal with a variety 
of issues imposed by 
different operational 
context that define 
the particular 
experiment by 
providing a 
meaningful solution. 

• The majority of the 
respondents should 
"agree" that Pilot3 
provides meaningful 
solution in the given 
operational context 

• None of the 
respondents should 
indicate "disagree" 
option 

Validated 

P3-RQ-
EV-080 

Validate overall 
acceptance of 
Pilot3 
considering 
performance 
results for 
individual 
trajectories. 
Identify if 
improvements 
required. 

Do experts find that 
Pilot3 worth it for an 
airline? 

Given the benefit 
provided with 
respect to different 
experiments 
presented, Pilot3 
will be worth 
acquiring by the 
airlines with 
different business 
models. 

• The majority of the 
respondents should 
"agree" that Pilot3 
is worth to be 
acquired by their 
companies. 

Validated 
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5 Conclusions and look ahead 

This verification and validation report was conducted following the comprehensive plan specified in 
D5.1 (Pilot3 Consortium, 2020c). In order to efficiently manage different verification and validation 
activities emerged as a part of software development, the Agile principle adopted at the begging of 
the project proved to be an extremely useful approach. As already explained, during the course of the 
project, the trajectory optimiser, as a core of PIlot3, were gradually upgraded until we developed V1.3 
of the Pilot3 release, which uses the Cost Index (CI) as a proxy for the optimisation, and then later V2.0, 
which implements a grid search of speed and altitude and embeds the expected total cost function 
within the optimiser. For each software releases (V1.3 and V2.0), a batch of the classical verification 
activities including software design technical reviews, code walk-through reviews, unit and interfaces 
testing, integration testing and functional testing were performed. In addition, system testing was 
conducted prior to both software releases in order to ensure that the requirement defined for Pilot3 
were satisfied. The outcome of these activities demonstrate that the key of a successful verification 
and validation is to trace a good plan that foresees the resources and capacities of the project and 
traces all the preliminary work in an unambiguous approach. A good effort was well invested in the 
beginning of the project, and has been the baseline for both activities execution and reporting. 

As defined in D5.1, internal validation activities aimed at addressing three objectives: to validate the 
functionalities of the components (IVA1, IVA2 and IVA3) of Pilot3, to evaluate the operational 
benefits (IVA4, IVA5 and IVA6) of the prototype and to assess overall accessibility and 
appropriateness of the HMI tool (IVA7). All validation activities aimed to validate the functionalities of 
the components were successfully accomplished during the validation campaign. The outcome of 
these activities is briefly summarised below: 

• IVA1, which aimed to compare the results of the Pilot3 trajectory optimisation engine (i.e., 
Dynamo) and PACE FPO solution was carried out for two A320-231 flights in two different 
routes and employing the V1.3 release of Pilot3 software. The results provide a clear evidence 
that the optimisation engine, DYNAMO, as one of the main modules of Pilot3, was capable of 
providing trustworthy results. Moreover, the vertical and speed profile of the two trajectories 
did not differ substantially indicating the trajectories provided by Pilot3 are also meaningful 
from a real operational perspective. 

• IVA2 was performed independently of the Pilot3 optimisation framework focussing on 
improving the estimation of performance indicators which will be used to compute the 
objective functions, and the estimation of Operational ATM Estimator, which aimed at 
predicting operational uncertainties in the trajectory (e.g. arrival holdings). The evaluation of 
the model results is based on a set of standard metrics employed for different class of machine 
learning and heuristics models deployed for different indicators. In addition, the output of the 
predictive models was also assessed by the researcher experts from the consortium to ensure 
that the development is moving in the "right direction". 
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• The outcome of IVA3 revealed that the airline flight policy has an impact on the trajectories 
and their filtered and ranking. The performance assessment module incorporates the VIKOR 
algorithm and has been successfully validated by using a realistic example.  

The second set of internal validation activities (IVA4, IVA5 and IVA6) aimed to quantify the operational 
benefits of Pilot3 in order to understand if it met the project's objectives involving the members of the 
consortium and the Topic Manager. The results of the associated activities are given below: 

• The outcome of IVA4 showed the added value of using the Pilot3 prototype in comparison to 
a baseline trajectory plan: executing the OFP regardless of the event that triggers Pilot3 (i.e., 
do nothing)). Following the Agile principle which allowed for the flexibility in the specification 
of different experiments along the project, the benefits of the Pilot3 optimised trajectory plan 
have been eventually validated on four different scenarios among the nine initially identified 
in D5.1. The results for some of the experiments provided an ample evidence of operation 
benefits of Pilot3 tool with respect to different time- and fuel-based metrics. In addition, Pilot3 
tool demonstrated a great capability to cope with the change in meteorological conditions as 
one of the main causes of large disruption in the European network. In this way, the research 
questions addressing the benefit of Pilot3 with respect to the baseline could be successfully 
validated by adopting corresponding hypothesis.  

Finally, the validation activities which aimed to assess the benefit of HMI prototype (IVA7) were 
performed in a continuous manner across the lifespan of the project involving all consortium partners. 
The results of the validation activities are given as follows: 

• The results of IVA7 indicated that the consortium members converged to the final consensus 
on the HMI design claiming that the current design cover most of the initially defined 
requirements. Note that the consortium partner PACE provided valuable feedback on the 
specification of different HMI functionalities as this company already owned a large experience 
in designing the tool of similar characteristics already exploited by European airlines. 

As observed, among the seven initially identified internal validation actions, IVA5 and IVA6 failed to be 
executed by the end of the project. The main reason for the exemption of IVA5 stems from the fact 
that it requires further development of a stand-alone trajectory simulator that can "execute" the 
different trajectory plans (the Pilot3 solution and the baselines) and take into account realised 
uncertainty. Similarly, the execution of IVA6 would seek for the development of a fast-time simulator 
able to capture the impact of Pilot3 with system-wide metrics and integration of the Pilot3 prototype 
into this tool. Consequently, these two validation activities blocked the performance of some external 
activities, namely a part of EVA2 and EVA3 as, given by the definition, they were tightly related to the 
outcomes of IVA4 and IVA5, respectively. 

However, throughout the whole duration of the project, the consortium members maintained a close 
interaction with the experts from the Advisory Board and the Topic Manager which facilitated the 
performance of two external validation actions (EVA1 and EVA3). The main outcome of these two 
activities is provided below: 

• EVA1 aimed to demonstrate the HMI prototype and the overall capabilities of Pilot3. In 
addition, the experts were asked to provide their feedback on the relevance of potential sets 
of the output generated by Pilot3. The HMI was well accepted by the experts from the Advisory 
Board confirming that HMI meets their expectations in terms of the interaction mechanism as 
well as its specific features. The experts emphasise the fact that the pilot should be presented 
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with the essential information (e.g. OTP and total costs), but not to be overwhelmed with the 
information indicating sub-components and other cost and reactionary cost. 

• The main objective of EVA2 was to present the results obtained in IVA4 -Pilot3 performance 
at generation of optimised trajectories plans during the Final Advisory Board meeting. The 
feedback obtained from the experts during the Final Advisory Board meeting indicates that 
results are, in general, meaningful and in line with current operational strategies. Due to its 
capability to be configured in different way, the external experts acknowledged that Pilot3 tool 
can be of particular importance in the context of "net zero carbon emission" commitment 
which aims to dramatically reduce environmental impact of aviation. In addition, as a part of 
EVA2, the External workshop were organised with the aim to present the experts the 
architecture of the Pilot3 given at the given stage of the project and validate some of the 
assumptions imposed in the software development. 

As seen from Table 57, with all activities that were performed during the validation campaign, we 
succeeded to successfully validate 8 research questions aimed for the internal validation and 6 
research questions defined for external validation, out of 14 and 10 initially designed in each of the 
two groups respectively. It is worth emphasising that the remaining RQs that have not been validated 
mainly stem from IVA5 and IVA6 validation actions which require additional development of the tool. 
Nevertheless, the successfully validated RQs proves that the results obtained by the Pilot3 tool met 
the expectations defined at the beginning of the project and highlight future lines of research with the 
exploration of the Pareto front (P3-RQ-IV-40), automatically providing a set of equivalent alternatives 
(P3-RQ-IV-50), validation and further development of consideration of uncertainty (IVA5) and the 
analysis of cost-benefit of a tool such as Pilot3 which could be derived from the activities defined in 
IVA6 and EVA3. 

Table 57: Validation results 
Activity ID Research question (RQ) Status 

IVA1 P3-RQ-IV-10 Are trajectories computed by the trajectory generator of Pilot3 realistic 
enough? 

Validated 

IVA2 P3-RQ-IV-20 Will Pilot3 enhance the estimation of the (K)PIs relevant to the airline? Validated 
P3-RQ-IV-30 Will Pilot3 enhance the estimation of operational uncertainty parameters? Validated 

IVA3 P3-RQ-IV-40 For a given triggering event, will Pilot3 generate a meaningful set of 
alternative 4D trajectories when trade-off between objectives is present? 

Partially 
validated 

P3-RQ-IV-50 For a given triggering event, will Pilot3 generate a meaningful set of 
alternative equivalent 4D trajectories? 

Not validated 

P3-RQ-IV-60 For a given triggering event, will Pilot3 show different 4D trajectories for 
different airline policies configured in the tool? 

Validated 

IVA4 P3-RQ-IV-70 For a given triggering event, will the optimised planned 4D trajectory(ies) 
generated by Pilot3 perform better than the integrated trajectories of the 
baselines (i.e., operational flight plan, basic pilot behaviour) with the 
updated information? 

Validated 

IVA5 P3-RQ-IV-80 For a given triggering event, will the realised (executed) 4D trajectory(ies) 
generated by Pilot3 perform better than the realised trajectory of the 
baselines (i.e., operational flight plan, basic pilot behaviour) followed 
regardless of the different triggering events that might arise in flight 
considering the instantiation of uncertainty in the simulation? 

Not validated 

P3-RQ-IV-90 For a given triggering event, will the advanced estimation of PI and 
operational ATM estimators provide more reliable outcomes? 

Not validated 

IVA6 P3-RQ-IV-
100 

Will Pilot3 show a benefit at network-wide level at the end of a day of 
operations with respect to airlines operational KPIs (cost, % of flights 
reaching OTP)? 

Not validated 
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P3-RQ-IV-
110 

Will Pilot3 show a benefit at network-wide level at the end of a day of 
operations with respect passengers’ indicators (passenger delay and 
missed connections)? 

Not validated 

IVA7 P3-RQ-IV-
120 

Is the information displayed to the pilot clear and easy to understand? Validated 

P3-RQ-IV-
130 

Is the information given to the pilot informative enough and helps to take 
a more informed decision for a given triggering event? 

Validated 

P3-RQ-IV-
140 

Is the mechanism which allows interaction with the tool acceptable 
(appropriate) enough from operational point of view? 

Validated 

EVA1 P3-RQ-EV-
010 

From a very general point of view and based on the visual representation 
and information displayed by HMI, do experts find Pilot3 as a tool which is 
worth (or useful) having onboard? 

Not validated 

P3-RQ-EV-
020 

Given the overall concept of HMI presented, would the pilot be satisfied 
to have such decision support tool on-board? 

Partially 
validated (*) 

P3-RQ-EV-
030 

Is the information given to the pilot simple (or concise) enough to allow 
their prompt reaction? 

Validated 

P3-RQ-EV-
040 

Is the information given to the pilot informative enough and helps to take 
a more informed decision for a given triggering event? 

Validated 

P3-RQ-EV-
050 

Is the mechanism which allows the pilot to interact with the tool 
acceptable from the operational point of view? 

Validated 

P3-RQ-EV-
060 

Is the information presented to capture the uncertainty on the planned 
trajectory considered adequate by the crew? 

Not validated 

EVA2 P3-RQ-EV-
070  

Are the solutions provided by Pilot3 meaningful enough in the case of the 
given experiment presented? 

Validated 

P3-RQ-EV-
080 

Do experts find that Pilot3 worth it for an airline? Validated 

EVA3 P3-RQ-EV-
090 

Are benefit obtained by Pilot3 at network level relevant to airlines and 
passengers? 

Not validated 

P3-RQ-EV-
100 

Do experts find that Pilot3 will provide benefits to airlines and passengers? Not validated 

(*) one of the respondents disagreed 
 

Some of the validation activities were based on the very advanced functionalities of Pilot3 (e.g. a stand-
alone trajectory simulator able to consider realised uncertainty, fast-time simulator, etc.), which 
development would have exceeded the timeframe of the project. Therefore, it is evident that some of 
the initially planned activities defined in D5.1 were too ambitious to be realised during the project 
timeline. However, they will be reported in D6.1 Model evolution and uptake serving as guidelines for 
some future work with more exhaustive verification and validation activities (Pilot3 Consortium, 
2022b). Finally, it is worth noting that the interactions with the experts was critical for the final success 
of the project. These interactions were ensured by organising a workshop and dedicated validation 
activities (e.g. online site visits) which supported the refining and selection of experiments, and the 
prioritisation of the development of functionalities, while gaining further information on the airlines 
policies, operational approach and possibly datasets. 
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7 Acronyms 

AG: Alternatives Generator 

AHP: Analytic Hierarchy Process 

AIP: Aeronautical Information Publication 

AMAN: Arrival Manger (instead of current Extended Arrival Manager) 

AMAN: Extended Arrival Manager 

AOBT: Actual Off-Block Time 

AOCC: Airline Operating Control Centre 

ATC: Air Traffic Control 

ATCo: Air Traffic Control Officer 

ATFM: Air Traffic Flow Management 

ATH: Athens Airport 

ATM: Air Traffic Management 

ATOT: Actual Take-Off Time 

BADA 4: Base of Aircraft Data version 4 

CAS: Calibrated Airspeed 

CI: Cost Index 

CS2: Clean Sky 2 

CS-x: Case Study x 

DCO: Direct Cost Operations 

DDR2: EUROCONTROL’s Demand Data Repository 2 

DLH: Lufthansa 

DR: Domain Requirement 

Dx.x: Deliverable x.x 

ECAC: European Civil Aviation Conference 

EDDF: Frankfurt Airport 

EFB: Electronic Flight Bag 

EGBB: Birmingham Airport 
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EGCC: Manchester Airport 

EGLL: London Heathrow 

ELDT: Expected Landing Time 

ETA: Estimated Time of Arrival 

EV: External Validation 

EVA: External Validation Action 

FL: Flight Level 

FPO: Flight Profile Optimiser from Pacelab 

FR: Functional Requirement 

FRA: Frankfurt Airport 

FSC: Full-Service Carrier 

GS: Ground Speed 

HMI: Human Machine Interface 

HP: Hypothesis  

IAF: Initial Approach Fix  

ILS: Instrument Landing System 

INX: Short name of Pilot3 partner: Fundación Instituto de Investigación Innaxis 

IROPs: Irregular Operations costs 

IV: Internal Validation 

IVA: Internal Validation Action 

JFK: John F. Kennedy (New York) Airport 

JTI: Joint Technology Initiative 

JU: Joint Undertaking 

KJFK: John F. Kennedy (New York) Airport 

KPI: Key Performance Indicator 

KSFO: San Francisco International Airport 

LAM: Lambourne fix 

LCC: Low-Cost Carrier 

LEMD: Madrid Airport 

LGAV: Athens Airport 

LHR: London Heathrow Airport 

LIRF: Rome-Fiumicino International Airport 

M: Mach 
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MAD: Madrid Airport 

ML: Machine Learning 

MMO: Maximum Mach in Operation 

NFR: Non-Functional Requirement 

NM: Nautical Mile 

OAE: Operational ATM Estimator 

OCK: Ockham fix 

OD: Origin Destination 

OEM: Original Equipment Manufacturer 

OFP: Operational Flight Plan 

OPS: Operations 

OTP: On-time Performance 

PACE: Short name of Pilot3 partner: PACE Aerospace Engineering and Information Technology GmbH 

PAX: Passenger 

PI: Performance Indicator 

PIE: Performance Indicators Estimator 

RBT: Requested Business Trajectory 

RQ: Research Question 

RTA: Requested Time of Arrival 

RWY: Runway 

SCN-x: Scenario x 

SESAR: Single European Sky ATM Research 

SIBT: Schedule In-Block Time 

SOBT: Schedule Off-Block Time 

STAR: Standard Terminal Arrival Route 

SW: Software 

SYS: Systems 

TBO: trajectory Based Operations 

TMA: Terminal Manoeuvring Area 

TOC: Top of Climb 

TOD: Top of Descend 

TP: Trajectory Prediction 

TTA: Target Time of Arrival 
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UAD: Upper Air Data 

UoW: Short name of Pilot3 coordinator: University of Westminster 

UPC: Short name of Pilot3 partner: Universitat Politècnica de Catalunya 

VIDP: Indira Gandhi International Airport (Delhi Airport) 

VIKOR: Visekriterijumsko KOmpromisno Rangiranje, a Serbian term for “multi-criteria optimization and 
compromise solution” 

VMO: Maximum CAS in Operation 

Vx: Version X 

WPx: Workpackage x 
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Appendix A Weather analysis for SCN 201 (LEMD - EDDF)  
 

 

This appendix presents the results of statistical analysis performed on the weather data for scenario 
201 (LEMD-EDDF). 

There are two computed ways for performing the weather analysis along the route: 

1. Using coordinated of the GCD (Great Circle Distance) between LEMD – EDDF 

2. Using the coordinates of the waypoints of the route described in P3-SCN-201: Madrid (LEMD) 
- Frankfurt (EDDF) 

The results here presented are obtained by using the waypoints coordinates. 

The analysis was performed separately for the year 2019 and 2018.  

A.1.1 2019 Analysis 
For the sake of computational effort, the ERA5 files used for the weather analysis are selected for a 
given time and a given altitude. The hour was selected according to the time of the first flight of the 
day performing the route. However, the impact of the hour of the day along the day on the weather 
forecast was analysed and estimated to be negligible. The additional information on two product types 
used for the analysis is provided in Figure 98 and Figure 99.  

 

 
Figure 98 Description of Reanalysis product type (2019 dataset) 

 
Figure 99 Description of Ensemble means product type (2019 dataset) 

Having all the dataset in place, the analysis was performed in order to:  

1. Extract the days with the extreme weather conditions, 
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2. The relation between temperature gradient and projected wind, 

3. Extract uncertain conditions, 

4. Extracting mild-extreme weather conditions. 

The results for each of the four items are provided below. 

 

Extreme weather conditions 

By using the reanalysis dataset, it is identified that 21st October 2019 corresponds to the day with the 
strongest tail wind (see Figure 100), while 10th December 2019 represents the day with the strongest 
headwind (see Figure 101). The colours represent different days in the different graphics. 

 
Figure 100 Strongest tail wind using reanalysis (21st October, 2019) 

 
Figure 101 Strongest head wind using reanalysis (10th December, 2019) 
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The relation between temperature gradient and projected wind 

The analysis aimed to determine whether the wind is related to the difference of temperature at the 
sea level and the temperature at the standard cruise level. The larger the difference between the two 
temperatures, the greater the head wind generated. The positive projected wind would be an 
indication for the tail wind, while negative projected wind would correspond to the head wind. The 
results of the analysis are shown in Figure 102and Figure 103. 

 

 

Figure 102 Relation between mean projected wind and mean flight altitude for LEMD to EDDF flights 

 

Figure 103 Temperature, wind components and projected wind as a function of distance for LEMD to EDDF flights 
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Extracting uncertain conditions 

The results of the analysis (see Figure 104) indicated the days with greater uncertainties for the 
weather predictions based on the difference between the forecast at ensemble mean and the 
reanalysis data. 

 
Figure 104 Days with uncertain conditions in 2019 

Extracting mild-extreme weather conditions 

Mild-extreme weather conditions were obtained by analysing the data from the second column of the 
histogram (see Figure 105). Figure 106 presents the days having a projected wind belonging to the 
second column of the histogram. 

 
Figure 105 Wind histogram 
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(b) 

Figure 106 Days with the projected wind belonging to the second column of the histogram 

A.1.2 2018 Analysis 
Similar as in the case of 2019, the analysis performed for 2018 is based on the ERA5 files. The brief 
description of the dataset used is presented in Figure 107 and Figure 108.  

 

 
Figure 107 Description of Reanalysis product type (2018 dataset) 

 
Figure 108 Description of Ensemble means product type (2018 dataset) 

The objective of this analysis was to identify the days with the following characteristics: 

1. High projected wind, low uncertainty and low deviation from the ISA temperature, 

2. Low projected wind, low uncertainty and low deviation from the ISA temperature, 

3. Average projected wind, average low uncertainty and deviation from the ISA temperature, 
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4. Average wind and average temperature difference, large uncertainty on head, 

5. Average wind and ISA temperature and large error tail (suggested day as maximum wind 
values). 

The results for each of the five items are provided below.  

 

Day with high projected wind, low uncertainty and low deviation from the ISA temperature 

The results of the analysis indicated five different days (indicated by different colours in Figure 109) in 
2019 characterised by high projected wind for an average temperature difference and weather 
forecast between 1 and -1. Due to its low fluctuation in the values, it was eventually suggested to select 
the day 12th November, 2018 as a representative day. Based on the historical meteorological 
information provided at Weather Underground, it can be concluded that fair conditions were 
prevailing that day at EDDF. The link is as follows: 

• https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-11-12 

 
Figure 109 Days with high projected wind, low uncertainty and low deviation from the ISA temperature 

 

Day with low projected wind, low uncertainty and low deviation from the ISA temperature 

The results indicated three candidate days with the characteristics of low projected wind, low 
uncertainty and low deviation from the ISA temperature (see Figure 110). Those are:  

• 15th January, 2018 which appeared to be mostly cloudy. The information on the historical 
weather for that day can be retrieved from the following link: 

https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-1-15 

• 2nd October, 2018 with fair weather conditions and light rain. The information on the historical 
weather for that day can be retrieved from the following link: 

https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-10-2 

• 17th April, 2018 which was the day with fair conditions. Eventually, this day was selected as 
the most representative one. The information on the historical weather for that day can be 
retrieved from the following link: 

https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-11-12
https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-1-15
https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-10-2
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https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-4-17 

 
Figure 110 Days with low projected wind, low uncertainty and low deviation from the ISA temperature 

 

Day with average projected wind, average low uncertainty and deviation from the ISA temperature 

By analysing the data, 7th February 2018 was selected as a representative day (see Figure 111). The 
information on the historical weather for that day indicated fair weather conditions and can be 
retrieved from the following link:  

• https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-2-7 

 
Figure 111 Days with average projected wind, average low uncertainty and deviation from the ISA temperature 

 

Day with average wind and average temperature difference, large uncertainty on head 

The results of analysis indicated three candidate days characterised by average wind and average 
temperature difference as well as large uncertainty on head (see Figure 112). Those are:  

• 7th September, 2018 which appeared to be mostly cloudy. The information on the historical 
weather for that day can be retrieved from the following link: 

https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-4-17
https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-2-7
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https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-9-7  

• 8th June, 2018. The information on the historical weather for that day can be retrieved from 
the following link: 

https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-6-8 

• 12th April, 2018 which appeared to be mostly fair. Eventually, this day was selected as the 
most representative one: 

https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-4-12  

 
Figure 112 Days with average wind and average temperature difference, large uncertainty on head 

 

Day with average wind and ISA temperature and large uncertainty on tail 

By analysing a set of potential day candidates, it can be determined that 10th October, 2018 is most 
suitable candidate for the day with average wind and ISA temperature and large uncertainty on 
tail (see Figure 113). The information on the historical weather for that day can be retrieved from 
the following link:  https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-
10-10 (Accessed March 2022). 

 
Figure 113 Days with average wind and ISA temperature and large uncertainty on tail 

https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-9-7
https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-6-8
https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-4-12
https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-10-10
https://www.wunderground.com/history/daily/de/frankfurt/EDDF/date/2018-10-10
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Finally, Table AI.1 below summarises the main results discussed above indicating the most 
representative day for each examined category.  

Table AI.1 Summary and proposed days 
Type Requirements Proposed 

Day 
Conditions that day at 
EDDF 

Bucket Nomeclature 

tail_error Avg wind and ISA temp and 
large error tail 

10-10-2018 Fair tail_high_error_forecast 

tail Tail wind and ISA temp and 
forecast error small 

11-12-2018 Fair heavy_tail 

nominal Avg wind and ISA temp and 
forecast error small 

02-07-2018 Fair nominal 

head_error Avg wind and ISA temp and 
large error head 

04-12-2018 Mostly fair head_high_error_forecast 

head Head wind and ISA temp and 
forecast error small 

04-17-2018 Fair heavy_head 
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Appendix B HMI validation and Advisory Board survey  
 

This appendix presents the final version of the HMI designed in Pilot3 and the survey presented to the 
Advisory Board to gather feedback as part of IVA7 – Validation of the HMI prototype and EVA1 – Live 
or pseudo-live demonstration of the HMI prototype and overall capabilities.. 

B.1 Human machine interface design 
 

This section presents the final design of a possible human machine interface for Pilot3 prototype as 
presented to the Advisory Board. 

B.1.1 Main screen – Pilot and current flight information 
 

 
Figure 114 Pilot profile selector view 

Figure 114 shows the first screen of Pilot3 where the crew can select their own personalised profile. 
Figure 115 contains a depiction of the flight information and current trajectory view presented to crew 
informing of the main trajectory parameters of keep operating the current trajectory (OFP). 
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Figure 115 Flight information and trajectory view 

B.1.2 Edit constraints functionalities 
The crew can add constraints to Pilot3 to be considered during the optimisation. These constraints are 
divided into flight level, time (not implemented in current version of Pilot3), fuel and cost. Figure 116 
shows how the crew can select which of these constraints to edit. 

 
Figure 116 Edit constraints selector 
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a) Original FL350 

 

b) Selected FL390 

Figure 117 Maximum flight level constraint view 

 
Figure 118 Confirm and compute constraint optimisation 

Figure 117 shows an example of adding a flight level constraint (from FL350 to FL390). Figure 118 
presents how the constraint is accepted and the optimisation triggered. Finally, Figure 119 presents 
the optimised trajectory. 
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Figure 119 Modified flight plan with constraint 

 
Figure 120 Edit time constraint 

Figure 120 shows an example of a time constraint (not implemented in current version of Pilot3).  

  



EDITION 01.00 

180 
 

© – 2020 – University of Westminster,  Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved.  

 

B.1.3 Alternatives and compare viewer functionalities 
 

 
Figure 121 Comparison of alternatives selection tab 

 

 
Figure 122 Hide or show previous constraint  
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Figure 123 Comparison of three alternatives (original, OTP, constraint) view  

 
Figure 124 Two trajectories comparison (hidden constraint)  
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Figure 125 Multiple trajectory comparison view  

 

Figure 121, Figure 122, Figure 123, Figure 124 and Figure 125 present how different alternative can be 
compared and explored by the crew. 

B.1.4 Estimators view functionality 
 

 
Figure 126 Alternatives results and uncertainties comparison 
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Figure 127 Exploration of indicators for a given alternative 

As shown in Figure 126 and Figure 127 the crew can explore the information related to the expected 
performance for each alternative considering the key objectives identified: On-Time Performance and 
total cost divided in fuel, passenger related costs (IROP) and others. The crew can also see the 
uncertainties modelled in Pilot3 and their impact on the trajectories. 

B.1.5 Generic application functionalities 

 
Figure 128 Explore current trajectory information  
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Figure 129 Detailed view of current trajectory waypoints  

 
Figure 130 Information on a given point along the route  
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Finally, Pilot3 provides a set of basic common functionalities such as exploring the current trajectory, 
e.g. waypoints to be passed (see Figure 128 and Figure 129) and information for a given point (see 
Figure 130). 

B.2 Advisory Board survey 
This section contains the results of the survey performed with the Advisory Board members in the 
context of EVA1. In particular, the survey is a follow up from the Advisory Board meeting held on the 
13th of January 2022. The main goal of this survey is to gather feedback on which information could 
be presented to the pilot (to be used as potential future evolution of the prototype) and on the current 
prototype proposal. 

As a reminder, Pilot3 aims at supporting tactically the crew providing information on which trajectory 
alternatives are possible. These alternatives are computing optimising the vertical profile considering 
the total expected cost for the flight. The system automatically ranks the alternatives considering their 
potential to meet on-time performance and the expected costs (differentiating in fuel, IROPs 
(passenger related) and other (including reactionary) costs). 

This section contains the surveys with an indication of the responses obtained from the Advisory Board 
(number of x). 

B.2.1 I PART – Potential information to be presented to the pilot 
Pilot3 can generate a large set of outputs, we are interested in identifying the most relevant indicators 
for the pilot. Some of these indicators might be available ‘directly’ to the pilot, while others might be 
provided ‘upon request’, or not provided if deemed by you as unnecessary. 

Could you please rate on a 5-point scale (mark with an X) the relevance of each of the output to be 
presented in HMI prototype indicated in Table below - from "Not relevant to be displayed at HMI" to 
"Extremely relevant to be displayed at HMI"? 

 

1.Cost related indicators 

  Not 
relevant at 
all 

Slightly 
relevant 

Relevant Very 
relevant 

Extremely 
relevant 

Total costs (EUR) 
 

X 
  

X 
Total fuel cost (EUR) 

   
X X 

IROPs costs (EUR) 
   

X X 
Other costs (EUR) 

  
X 

 
X 

Sub-components of fuel (Up to FL100, 
holding, sequencing and merging fuel, 
taxi-in fuel) 

  
X 

  

Sub-components of IROPs cost (non-
connecting, connecting pax) 

 
X X 

  

Sub-components of other costs 
(reactionary, crew and maintenance) 

 
X X 

   

Sub-components of Reactionary cost (due 
to propagation of delay, curfew, strategic 
action) 

 
X X 

   

Cost of delay as a function of arrival time 
at gate (not for a particular 
trajectory/alternative but for the flight) 

X X 
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Cost of delay as a function of arrival time 
at FL100 (not for a particular 
trajectory/alternative but for the flight) 

X 
  

X 
 

Other comments (FSC representative): "Integration of Pilot3 must be with the OPS system and aligned 
with clear responsibilities of decision. This is still a main point, which is for me not so clear in the 
project." 

2. Time related indicators 

  Not relevant 
at all 

Slightly 
relevant 

Relevant Very 
relevant 

Extremely 
relevant 

Time at gate 
   

X X 
Taxi in time 

 
X 

 
X 

 

OTP 
    

X X 
The time at FL100 (when the 
optimisation finished) 

X 
 

X 
  

Time from FL100 to gate X 
   

X 
Other comments (FSC representative): "What is relevant for the pilot is the latest time at which the 
aircraft must dock in the gate, to avoid any reactionary delay through crew, pax, AC rotation, …etc 
other ones are kind of “nice to know if requested by the pilots” but not mandatory (otherwise, overload 
of information to the pilot, which causes a safety issue on the long run)". 

3. Passenger missed connections indicators 

  Not 
relevant at 
all 

Slightly 
relevant 

Relevant Very 
relevant 

Extremely 
relevant 

Probability that the passengers with 
connections will make their connections per 
passenger group 

  
X 

 
X 

Other comments (FSC representative): "Relevant only if the pilot wants to know (so in a pop-up window 
maybe, but not on the standard screen. As said before, important is to not overload the pilot with 
information. He needs to know what is the clear plan which is the best for the global operations of its 
company. But knowing all the details is not helping him and could cause a safety problem". 

 

4. Operational ATM Uncertainties 

  Not relevant 
at all 

Slightly 
relevant 

Relevant Very 
relevant 

Extremely 
relevant 

Expected holding (min) 
  

X 
 

X 
Expected taxi-in (min) 

  
X X 

  

Expected distance of sequencing and 
merging (i.e., from FL100 to runway) (NM) 

  
X 

 
X 

Other comments (FSC representative): "Interesting but should be integrated in the OFP actually, not in 
an additional interface". 

 

5. Other operational parameters 

  Not relevant at all Slightly relevant Relevant Very relevant Extremely relevant 
Arrival STAR X 

   
X 

Arrival runway X 
   

X 
Arrival gate X 

   
X 

Other comments (FSC representative): "All these information are already incl. in the OFP and updated 
if any changes occurs". 
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6. Other parameters 

  Not relevant 
at all 

Slightly 
relevant 

Relevant Very 
relevant 

Extremely 
relevant 

En-route wind 
 

X 
  

X 
Probability of breaching curfew by any 
subsequent rotation 

   
X X 

Probability the AOCC will conduct a strategic 
action to cut the propagation of delay (e.g. a 
cancellation of a/c tail number swap) in any 
subsequent rotation 

  
X 

 
X 

Expected reactionary delay in next rotation 
 

X 
  

X 
Other comments (FSC representative): "As said, coordination with OCC must take place and both 
parties must have a clear definition of roles and responsibilities. OCC is responsible for the management 
of the entire fleet and planned flights, pilots are responsible for ensuring a safe flight, if possible 
economically and environmentally friendly and taking into account the airline strategic needs (Last 
Time on Position for example).". 

 

7. For some indicators (e.g. taxi-in, arrival time at gate, meeting OTP) Pilot3 can generate not only 
the expected outcome but the full distribution (i.e., probability of obtaining different values) as 
uncertainties are modelled. Will the pilot be interested on these details? For example: 

  Not relevant 
at all 

Slightly 
relevant 

Relevant Very 
relevant 

Extremely 
relevant 

Full distribution of probability of meeting 
OTP 

X 
   

X 

Expected probability of OTP (e.g. 70%) X 
   

X 
Qualitative OTP (e.g. Yes/No) X 

   
X 

Full distribution of arrival time at gate X 
  

X 
 

Expected arrival time at gate 
 

X 
 

X 
 

Other comments (FSC representative): "As said, no overload of information, and no time for the pilot 
to be trained for understanding such graphics nor to check it in tight schedule (in which Pilot3 prototype 
would have an added-value". 

 

B.2.2 II PART – Feedback on HMI mock-up 
This second part of the survey aims to obtain your feedback regarding the overall capabilities of the 
HMI mock-up presented to you during the Advisory Board meeting. You were introduced with several 
aspects of the tool, such as: 

• the general concept of the Pilot3 (i.e., "How is the tool working?"), 

• its specific features (i.e., "What kind of information does the tool show to the pilot?"), and 

• mechanism implemented to interact with the pilot (i.e., "How does it interact with the pilot?"). 

This survey is divided in two parts: Easiness of understanding of the information and Interaction with 
the system. 

There are two final sections only for pilots: General acceptability and Pilot's overall acceptance of the 
tool. 
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Each questionnaire contains several statements which will be assessed on a 6-point Likert scale (mark 
with an X) from "Strongly disagree " to "Strongly agree". 

A summary on the main HMI capabilities with corresponding screenshots can be found in the 
Appendix. 

 

1- Easiness of understanding of the information for the following aspects [1] 

  Strongly 
Disagree 

Disagree Slightly 
Disagree 

Slightly 
Agree 

Agree Strongly 
Agree 

1. Information on a waypoint (box with 
performance conditions: waypoint 
name, time, Mach and flight level) 

   
X 

 
X 

2. Information on the trajectories and 
their impact on the optimisation 
objectives (total cost and OTP) 

   
X 

 
X 

3. Information on the trajectories and 
their impact on the different key 
performance indicators (cost of fuel, 
cost of IROPs, other cost) 

    
X X 

4. Information on the trajectories and 
their impact on the different PIs (e.g. 
minutes of delay at arrival) 

   
X 

 
X 

5. The trade-offs between OTP and total 
cost (i.e., the extra cost needed to 
achieve OTP) 

    
X X 

 

[1] You can refer to the screenshots from “Function: Alternatives and compare viewer” and “Function: 
Main screen” in the Appendix. 

 

2 - Interaction with the system (appropriate and easy to use) [2] 
 

Strongly 
Disagree 

Disagree Slightly 
Disagree 

Slightly 
Agree 

Agree Strongly 
Agree 

1. The mechanism which allows the 
pilot to set new trajectory constraints 

    
X X 

 

2. The mechanism which allows to 
request a re-evaluation of the 
alternative trajectories 

    
X X 

3. The comparison between 
alternatives 

    
X X 

[2] You can refer to the screenshots from "Edit constraints" and "Function: Alternatives and compare 
viewer" in the Appendix. 

 

Pilots only 

3 - General acceptability – quantity of information provided to pilot [3] 
 

Strongly 
Disagree 

Disagree Slightly 
Disagree 

Slightly 
Agree 

Agree Strongly 
Agree 

1. The information provided to the 
pilot is simple and concise enough 

    
X X 

 

2. The amount of information 
presented to the pilot is well balanced 

   
X X 
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3. The information provided to the 
pilot is predictable in its presentation 

   
X X 

 

4. The visual representation of the 
alternative trajectories presented is 
clear and well organised 

    
X X 

 

5. The selection of the colours and the 
size of the font is appropriate and 
friendly 

 
X 

  
X 

 

[3] You can refer to the screenshots from "Edit constraints", "Function: Alternatives and compare 
viewer" and "View estimators" in the Appendix. 

Other comments: "Size of font has to be revised, captains as myself tender to have ‘problems’ with 
small letters and numbers" 

 

4- Pilot's overall acceptance of the tool – quantity of information provided to pilot [4] 
 

Strongly 
Disagree 

Disagree Slightly 
Disagree 

Slightly 
Agree 

Agree Strongly 
Agree 

1. The alternatives provided by Pilot3 
will facilitate the pilot in their action to 
take the appropriate decisions 

   
X X 

 

2. With the alternatives provided, the 
pilot will have better awareness of 
their actions 

    
X X 

 

3. The information on the probability 
of meeting OTP will aid the pilot to 
better assess the benefits of 
trajectories presented against each 
other. 

  
X 

  
X 

[4] You can refer to the screenshots from "Edit constraints", "Function: Alternatives and compare 
viewer" and "View estimators" in the Appendix. 

Other comments: "Airlines focus basically on two factors: money and safety. I think that incorporating 
safety issues would help us. That is: weather in real time downloaded to the program, we would have 
a better picture that the weather radar (limited distance), and also others factors: topography" 
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Appendix C Modelling uncertainty with machine learning 
 

C.1 Literature review 
This The characterisation of this individual uncertainty (or error) on each prediction is paramount in 
many fields. For example, when applying the outcome of these prediction model in dynamic and 
unstable systems, or when their outcome are combined with other models, as uncertainty can rapidly 
grow. This is the case for many applications in the field of Air Traffic Management (ATM) when 
integrating the prediction models into airlines and air traffic control support decision tools. There are 
different types of uncertainty and therefore different approaches to manage it. A common approach 
is the division between aleatory uncertainty, derived from the natural variability of the physical world, 
and epistemic uncertainty, originating from lack of knowledge or ability of modelling the physical 
world. 

Different approaches can be found in the literature to estimate the uncertainty and reliability of the 
individual predictions, such as: 

• Sensitivity analysis on the model to estimate the reliability of individual predictions observing 
the output response with respect to small change in the input data set (Bosnic and Kononenko, 
2008). 

• Delta method based on nonlinear regression but which is computationally highly demanding 
and assumes homogeneity on the error (Khosravi et al., 2011). 

• Bayesian method allows to construct prediction intervals by considering the uncertainty due 
to both, the aleatory uncertainty of the data and the misspecification of the Neural Network 
(NN) parameters (related to epistemic uncertainty). However, this method, as the delta 
method, is computationally demanding and cumbersome for large NNs and datasets (Khosravi 
et al., 2011). 

• Bootstrap methods which develops several NN models with subsets of the training set and 
combines them to obtain an indication of the range of possible values. However, frequently 
some of these models are biased, leading to inaccurate estimations and the total variance will 
be underestimated resulting in narrow performance indicators (Heskes, 1996). 

• Local neighbourhood prediction interval using clustering of predictions based on error. There 
a prediction interval is computed per cluster using empirical distribution of errors associated 
with instances in the cluster which are combined with a regression model. This allows for non 
symmetrical upper and lower limit on the intervals. Fuzzy clustering techniques can also be 
used (Shrestha and Solomatine, 2006). 

• Mean-variance estimation (MVE) method provides a NN with an indication of uncertainty and 
additional output to the expected value. The two outputs are computed using the same input 
features but are connected to two different hidden layers. This method assumes that the 
errors are normally distributed around the mean of the target allowing to construct the 
prediction interval easily from the parameters of the mean and variance of these distributions. 
However, the considered variance is only due to errors, not due to misspecification of model 
parameters. This can result in misleadingly narrow intervals (Nix and Weigend, 1994). 

• Neural network to estimate interval described as multi-objective problem (intervals cover-age 
(maximisation) and width of these intervals (minimisation)) (Ak et al., 2013). 
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• Gaussian processes (GPs) are widely applied within probability, statistics and machine learning 
(Rasmussen and Williams, 2006). Their nonlinear and nonparametric abilities make the GPs a 
powerful modelling tool in a wide range of regression and classification problems. Its Bayesian 
properties enable the quantification of the uncertainty present in its own predictions and in 
the data itself (Riis et al., 2021). This methodology has been used in ATM for example in the 
estimation of trajectory predictions (Graas et al., 2021) or as an approach to drive active 
learning for meta modelling on large simulations (Ri-is et al., 2021, 2022). One of its drawbacks 
is that an a priori distribution of error should be considered. 

• Quantile regression estimates multiple quantiles simultaneously providing an indication of the 
distribution of the target variable for a given input. The number of studies on quantile function 
estimation has been increasing in recent years (Moon et al., 2021). Different techniques can 
be used such as: linear quantile regression, polynomial regression, Support vector regression 
(SVR), Quantile regression forest, or Quantile regression neural network (QRNN), which can be 
used to model data with heteroscedasticity as it is a non-linear approach (Meinshausen, 2006; 
Koenker and Hallock, 2001; Koenker, 2004; Taylor, 2000; Feng et al., 2010; Amalia et al., 2018; 
Muthusamy et al., 2016; Moon et al., 2021). Quantile regression forest is a generalisation of 
random forest not pruning trees and using outcome to estimate distribution with a weighted 
addition of results per tree based on number of elements in leaves (Meinshausen, 2006). 
Regression tree performances can be improved by using the bootstrap aggregation technique 
Vaysse and Lagacherie, 2017). This quantile regression forest provides information on full 
distribution and not only mean ena-bling the estimation of quantile distribution (Pevec and 
Kononenko, 2015). The cumu-lative distribution function estimated should be non-decreasing 
(e.g. 95% quantile should be greater than the 90% quantile). However, when multiple quantiles 
are estimated simultaneously this might not be respected leading to the crossing problem. This 
issue arises on non-linear models such as SVR or QRNN (Moon et al., 2021). 

Most of these methods provide either an estimation of the variance of the error or an interval of 
reliability but are not able to describe the distribution of possible values. In Pilot3 is used the following 
methodology: a probabilistic classifier characterises the distribution of the error of a prediction relying 
on the estimation of this error on the training set, obtaining the discrete distribution of the possible 
expected values of the prediction (see Section 4.2.1.3). 
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Appendix D Reactionary delay and cost estimation with 
strategic action 

 

Section 4.2.2.2.2.4 Reactionary delay strategic action presented how the reactionary delay strategic 
action is computed and compared the impact of including this model on the reactionary cost. This 
Annex presents a step-by-step description on how the strategic action cost is computed. 

As described in Section 4.2.2.2.2.4 the strategic action model computes the probability of performing 
such action as combination of two factors: 

• first a model which captures the possibility of performing this action which depends on the 
leg of the flight that the AOCC would like to apply the strategic action. 

• the second model captures the willingness of the airline of doing this action: probability of 
doing strategic action as a function of cost. 

Combining both models the probability of the strategic action is computed. The same example as in 
Section 4.2.2.2.2.4 is used in this Annex as described in Table 30. 

 

(a) departing delay cost 

 

(b) curfew costs 

 

(c)Departing and curfew costs 

Figure 131 Raw expected cost per flight as a function of delay of current flight  



EDITION 01.00 

194 
 

© – 2020 – University of Westminster,  Universitat Politècnica de Catalunya, Innaxis, 
PACE Aerospace Engineering and Information Technology. All rights reserved.  

 

Figure 131 presents the different expected raw cost of delay components for each subsequent leg as 
a function of the arrival delay of the first flight. These costs are composed of: departing delay cost 
(Figure 131 (a)) and curfew costs (Figure 131 (b)). 

 

(a) Reactionary costs expected from that flight downstream 
(b) Probability of strategic action based on cost 

 

Figure 132 Probability of strategic action due to cost  

Figure 132 (a) shows the expected cost from a given flight downstream (e.g. the first row represents 
the addition of costs for the second, third and fourth rotation) by adding the costs of Figure 131 (c). It 
therefore the figure indicates, if nothing is done at that point how much the propagation of delay will 
represent in total. This information will be used to compute the probability that the AOCC will do an 
action purely based on the expected cost (Figure 132 (b)). 

 

Figure 133 Possibility to do a strategic action as a function of rotation  

Figure 133 describes the possibility to do a strategic action by the AOCC as a function of the rotation 
number (as indicated in Section 4.2.2.2.2.4). 
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(a) Probability of strategic action considering cost and 
possibility 

 

(b) Probability of breaching a curfew  

 

(c) Probability of strategic action or curfew 

Figure 134 Probability of performing an action which will stop the propagation of delay  

Now the probability of doing a strategic action is computed combining the probability of doing the 
action based on its costs (Figure 132 (b)) and the possibility of doing it (Figure 133) as shown in Figure 
134 (a). Combining this probability with the probability of breaching the curfew (Figure 134 (b)), the 
probability of having an action which would stop the propagation of delay is computed (either strategic 
action or curfew) (Figure 134 (c)). 
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(a) Probability of doing departing (no strategic action done 
nor curfew) 

 

(b) Probability of experiencing leg cost (no previous 
strategic action or curfew) 

 

(c) Probability of strategic action and not curfew 

 

(d) Probability of curfew and no strategic action 

Figure 135 Probability of experiencing leg cost, strategic action and curfew considering previous actions  

The complementary of Figure 134 (c) is the probability of experiencing the departing cost (as shown in 
Figure 135 (c)). Then considering that if a strategic action or a curfew is experienced upstream (Figure 
135 (a) ), the downstream leg won't be executed (Figure 135 (b)). Thus, the probability of experiencing 
the departing cost is computed (Figure 135 (d)). 
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(a) Probability strategic action 

 

(b) Probability of curfew 

Figure 136 Probability strategic action and curfew by any downstream leg  

Considering the probabilities that some actions might be performed in previous legs, the probabilities 
of strategic action and curfew can be computed as presented in Figure 135; and from these, 
considering the maximum probability as a function of arrival delay of the inbound flight, the probability 
that downstream a strategic action or a curfew materialises can be computed as presented in Figure 
136. Note how, even if the primary delay increases the probability of breaching the curfew does not 
increase, as the probability of preforming a strategic action in a previous leg would prevent the curfew 
from materialising. 

 

(a) Expected departing delay cost 

 

(b) Expected strategic action cost 
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(c) Expected curfew cost 

 

(d) Expected total reactionary cost 

Figure 137 Expected reactionary cost components  

Figure 137 presents the expected costs due to the different possibilities: departing delay, strategic 
action or curfew. 

 

Figure 138 Total expected reactionary costs  

Finally adding all the expected cost of all legs the total expected reactionary delay cost and 
components can be computed as presented in Figure 138. 
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