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Abstract 

Microbial fuel cells (MFCs) hold great promise for the simultaneous treatment of 

wastewater and electricity production. However, the electricity recovery needs 

improvement if MFCs are to compete with already established technologies e.g. 

anaerobic digestion. The aim of this study was to investigate ways of enhancing 

electricity recovery from (synthetic) industrial wastewater. Initial studies investigated the 

use of defined cocultures as a way of improving turnover of substrate and hence 

electricity produced by exploiting mutualistic relationships such as syntrophy or ability of 

facultative microoganisms (Saccharomyces cerevisiae) to consume residual oxygen from 

the anode. A coculture of Shewanella oneidensis and Clostridium beijerinckii, 

investigated here for the first time, gave a power production of 87 mW m-2 compared to 

48 mW m-2 for S. oneidensis alone or 60 mW m-2 for C. beijerinckii alone. Substrate 

degradation was also improved significantly from 20% (S. oneidensis alone) to 67% 

using the coculture. Similar improvements were observed for novel cocultures of G. 

sulfurreducens, S. cerevisiae and C. beijerinckii as well as cocultures of C. beijerinckii, S. 

oneidensis and S. cerevisiae. To improve electricity recovery from MFCs, mechanisms of 

electron transfer need to be understood. The contribution of direct electron transfer 

mechanisms to overall electron transfer was investigated for the first time by restricting S. 

oneidensis cells close to or away from an anode electrode. A maximum power output of 

114 mW m−2 was obtained when cells were retained close to the anode. This was 3.5 

times more than when the cells were separated away from the anode. This result was 

corroborated by another study where S. oneidensis cells were entrapped in alginate 

gels. To further investigate the contribution of the c-type cytochromes forming the Mtr 

pathway to extracellular electron transfer, Rapid DNA Prototyping Assembly was used 

for the first time to assemble Mtr-pathway coding genes individually or as operons. The 

different constructs were overexpressed in S. oneidensis and heterologously expressed 

in E. coli and power production compared with the wild type strains. The best power 

generated was from the mtrAB S. oneidensis strain (144 mW m-2) and from the mtrCAB 

E. coli strain (24 mW m-2). Since electricity production is linked to exoelectrons forming a 

biofilm on the anode, ways of enhancing biofilm formation were sought. The quorum 

sensing molecule N (-3-oxodecanoyl)-L-homoserine lactone of different concentrations 

was for the first time exogenously added to MFCs and its effect on biofilm formation and 

power production determined. The results were compared with control experiments 



iii 
 

without N (-3-oxodecanoyl)-L-homoserine lactone. The results indicated that power 

production of 184 mW m-2 
, the highest obtained of all approaches taken in this 

investigation, could be obtained when 10 uM of the chemical was added compared to 56 

mW m-2 for the control, with significant increases in biofilm density. Taken together, these 

results highlight the importance of using defined cocultures (e.g. for bioaugmentation of 

working MFCs), direct electron transfer mechanisms, overexpression of the Mtr-pathway 

and need to increase biofilm density on anode surfaces, for enhancing electricity 

recovery in microbial fuel cells. 
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Chapter 1  

General Introduction  

 

1.1 Energy use in wastewater treatment 

Modernization and development are characterised by economic expansion, rapid 

pace of global urbanisation, high rate of population growth and rapid rise in 

industrialization (Wu and Tan, 2012). Water that is used in industrial processes such 

as for cooking, washing, cooling, heating, and extraction is inevitably changed by the 

process (Ng and Tjan, 2006).  Industrial wastewaters are effluents produced from 

human activities associated with raw-materials processing and manufacturing. The 

wastewaters can come from chemical, pharmaceutical, electrochemical, electronics, 

petrochemical, breweries, and food processing industries. Industrial wastewaters 

have varied composition depending on the industry, type and materials processed 

(Karman et al., 2015; Ng and Tjan, 2006). Some of these wastewaters contain very 

high concentrations of organic compounds with chemical oxygen demand (COD) of 

40-60 g L-1 that are easily biodegradable e.g. carbohydrate in wastewaters from 

cheese-producing industries (Gavala et al., 1999), while some contain total ammonia 

nitrogen above 2.5 g L-1 which is inhibitory to both mesophilic and thermophilic 

stages of anaerobic digestion processing (Sutaryo et al., 2014). Some wastewaters 

are associated with pH values beyond the range of 6-9. The total suspended solids 

(TSS), biological oxygen demand (BOD) and chemical oxygen demand (COD) can 

be in tens of thousands mg L-1 (Ng and Tjan, 2006); requiring BOD reduction to 400 

mg L-1 before discharge (Goel et al., 2005). Hence, industrial wastewater treatment 

is very important and often requires treatment to remove the pollutants to protect 

public health and environment (Karman et al., 2015; Longo et al., 2016). The range 

of industrial wastewater volumes to be treated varies from factory to factory within an 

industry. This can range from as small as 3.6 m3 d-1 (41g L-1 COD) from starch 

extracted wastewater to as large as 27240 m3 d-1 (5 g L-1 COD) produced from paper 

mills (Ng and Tjan, 2006).   
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 A significant amount of money is spent treating large volumes of wastewater 

because traditional methods of wastewater treatment are energy intensive and 

hence costly (Table 1.1).  

Table 1.1: Energy needs of wastewater treatment (Logan 2008, cost of 1 kWh = 

ca.15 p): 

Treatment method Energy requirement (kWh m-3) Cost (millions of £) /year* 

Trickling filter 0.12  2.3 

Activated sludge 0.28 – 0.31  5.4-5.9 

Membrane bioreactor 2.4  46 

*For a wastewater treatment plant treating 350,000 m3 of wastewater/day 

corresponding to 800,000 persons equivalents. 

An example of data from Spain showed that approximately 12,800,974 m3 of 

wastewaters were reported to be treated daily with a corresponding energy demand 

accounting for about 1% of total energy consumption of the country (Escapa et al., 

2014). Similar patterns of energy consumption have been reported in Germany as 

well as in Italy (Longo et al., 2016). In the USA, the United States EPA estimated 3-

4% of electricity generated is spent on wastewater treatment which is approximately 

110 TWh year-1, or equivalent to 9.6 million households’ annual electricity use 

(Logan and Rabaey, 2012; Daw et al., 2012).  

As the number of wastewater treatment plants increases worldwide and quality 

requirements of wastewater treatment plants (WWTP) becomes more demanding, 

the issue of energy efficiency has become important. Wastewater is increasingly 

being considered as a sustainable resource from which energy (and other resources) 

can be extracted. Typical example of 1 kg of glucose contaminated wastewater 

corresponding to 1.06 kg of chemical oxygen demand (Harwani, 2013) can 

potentially generate 3.56 KWh energy (Horan et al., 2011).  By using conventional 

WWTPs processes, little energy can be derived by bioconversion of glucose, as this 

energy is difficult to be harvested and captured within the microbial metabolism. This 

is eventually released as water and carbon dioxide (CO2) that contain no useful 

energy (equation 1) 
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Equation 1:     C6H12O6 + 6O2 → 6CO2 + 6H2O    ∆G°=-2843 kJ mol-1 

Conventional methods such as activated sludge, membrane reactors, and anaerobic 

digestion to treat wastewater require high energy consumption (e.g. 0.3 KWh m-3 for 

aeration) and their adverse environmental impact have made these technologies 

unsuitable for sustainability as energy-efficient methods of wastewater treatment 

(Logan, 2008).  

1.2 Capturing energy from wastewater treatment plants. 

 

Wastewater could be used as a resource saving energy and money as wastewater 

contains organic matter containing stored energy in the bonds of atoms and 

molecules that hold the particles together. This can be oxidized by biochemical 

processes through bio-decomposition to generate electricity and energy-rich fuels 

(e.g. bio-ethanol), while at the same time cleaning up the wastewater (Guerrero-

Lemus and Shephard, 2017; Logan, 2008).  It is estimated that wastewater contains 

9 to 10 times more energy than the energy required for its treatment (Dannys et al., 

2016, Equation 2&3 - Harnisch et al., 2011). Why not recover all the energy? There 

is potential to make the treatment process at least self-sufficient from an energy 

perspective. 

Equation 2: Power consumption due to aeration 

P = 350,000 (
𝑚3

𝑑
) x 0.2 (

𝐾𝑔𝐵𝑂𝐷5

𝑚3 ) x 0.9 
𝐾𝑔𝐵𝑂𝐷5 𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝐾𝑔𝐵𝑂𝐷5
 x1.3 (

𝐾𝑔𝑂2

𝐾𝑔𝐵𝑂𝐷5𝑟𝑒𝑚𝑜𝑣𝑒𝑑
) x 

1 𝐾𝑊ℎ

1.5𝐾𝑔𝑂2
 x 

3600 
𝐾𝐽

𝐾𝑊ℎ
      x

 1 𝑑𝑎𝑦

96400𝑠
 = 2275 kW ≈ 2.3 MW 

  

Equation 3: Power that can be recovered at 100% recovery could be possible 

P = 350,000 (
𝑚3

𝑑
) x 0.4 (

𝐾𝑔𝐶𝑂𝐷

𝑚3 ) x 14.7 x 103 
𝐾𝐽

𝐾𝑔𝐶𝑂𝐷
  x 

 1 𝑑𝑎𝑦

86400𝑠
 = 23,819 kW ≈ 24 MW 

 

Anaerobic digestion has been used to treat and recover energy (as biogas) from 

industrial wastewater but the technology is unsuitable for dilute streams (COD < 1 

kg/m3) due to external energy required (usually the source from the bioenergy 
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harvested) to heat up the systems for the mesophilic to thermophilic temperature 

required to achieve sufficient turnover/treatment. In addition, it is unsuitable for 

wastewater with high nitrogen-rich feedstocks due to release of ammonia-nitrogen 

which causes inhibition of microbial degradation processes. Recently, 

bioelectrochemical systems were suggested as viable ways of treating wastewater 

sustainably while at the same time producing electricity (Harnisch et al., 2011; 

Moestedt et al., 2016 ; Demirel et al., 2005 ; Fernando et al., 2012).  

1.3 History of bio-electrochemical systems. 

The concept that bacteria have the capabilities to transport electrons beyond their 

cell wall, hence, electrically interacting with their environment has been widely 

popular since early 1960s. NASA (National Aeronautics and Space Administration, 

USA) was curious about using algae and bacteria to generate electricity from waste 

in the closed system of a space shuttle (Ieropoulos et al, 2005). In 1911, M.C Potter 

observed electrical current production from organic compounds with the aid of 

platinum electrode by a fermentative culture of Saccharomyces cerevisiae and 

Escherichia coli in a bioelectrochemical system (Potter 1911).  This work was 

regarded to be the first biochemical fuel cell studied where the concept of MFCs was 

experimentally demonstrated (Logan, 2008). In the early 1980s, the intense debate 

on looming energy crises and associated environmental damage occurring due to 

industrialization and excessive fossil fuel burning, motivated much interest to 

environmentally cleaner and more sustainable alternatives for energy generation and 

environmental remediation. Hence, research on BESs received great interest due to 

its promising way of environmental remediation and simultaneously electricity 

generation (Fernando et al., 2012). 

 

1.4. Overview of bio-electrochemical systems  

Bio-electrochemical systems, also called Microbial Electrochemical Technologies 

(METs) are rapidly developing technologies that utilize microbes capable of 

converting the chemical energy from biodegradable organic wastes (ranging from 

low strength to lignocellulosic) present in wastewater to electricity. Diverse ways of 

application of microorganisms in METs, either on anode or cathodes or on both 

anode and cathode have allowed inventions of different varieties of METs performing 
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distinct functions and purposes. Several types of METs (see Table 1.2) are usually 

identified by using variations on an MxC theme, where x denote specific application 

of this technology. For example, in MFCs technologies, x is replaced with F. 

Variations of MFCs are microbial electrolysis cells (MECs) which utilise a small 

external power source (typically 0.6 V) to bias the thermodynamics of the reactions 

occurring in the anode and cathode. MECs may be useful in terms of recovering 

alternative energy forms e.g. hydrogen or other chemicals (Kyazze et al., 2010). 

MECs in the form of Microbial Reverse-Electrodialysis can utilize methanogenic 

bacteria for methane production (Conrad, 1999) while in the form of Microbial 

Electrodialysis Cell can be used for desalination and hydrogen gas production 

(Mehanna et al., 2010). These innovative technologies are promising technologies 

that can be operated under mild conditions and can utilize inexpensive cathodes 

based on activated carbon catalyst (Logan et al., 2015).   
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Table 1.2: Examples of different variations of Microbial Electrochemical Technologies derivatives (adapted from Logan et al., (2015)

  

 

MxC Full name Comments 

MDC Microbial desalination cells It integrates microbial fuel cell processes and electrodialysis for wastewater treatment (Saeed et 

al., 2015) 

MEC Microbial Electrolysis Cell Typically designed for catalysing hydrogen gas production in the cathode chamber and also 

designed for metal reduction (Jeremiasse et al., 2010; Logan et al., 2015). 

MEDCC Microbial Electrolysis Desalination and Chemical Production Cell Novel technology used to desalinate salty water (Chen et al., 2012) 

MES Microbial Electrosynthesis System An MEC designed for production of soluble organics such as acetate (Logan et al., 2015) 

MFC Microbial Fuel Cell Typically designed for electrical power production (Logan et al., 2015) 

MxC-MBR MFC with cathode membrane The cathode serves a dual function of reduction and filtration of water using either MFCs or MECs 

(Logan et al., 2015) 

MMC Microbial methanogenesis cell Typically designed for methane production from the cathode by addition of voltage. Reverse 

electro dialysis is placed between anode with electrogenic microorganisms and a methanogenic 

biocathode (Luo et al., 2014). 

MREC Microbial Reverse Electrodialysis electrolysis Cell Typically used for hydrogen production (Song et al., 2016) 

MREEC Microbial Reverse Electrolysis and Chemical Production Cell An MEDCC having a Reverse Electro-dialysis stack used for production of acid and bases; can be 

used for carbon capture, hydrogen gas production and also used for desalination. 
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1.5. Mode of action of microbial fuel cells. 

MFCs are electrochemical devices that utilise micro-organisms such as Shewanella, 

Geobacter, Rhodoferax and yeasts predominantly found in subsurface habitats such 

as aquatic sediments and pristine deep aquifer and are considered candidates for 

bioremediation of subs-surface metal contaminated because of their ability to 

metabolically reduce metals (Abboud et al., 2005; Lai et al., 2007; Coates et al., 

1996 ). The fundamental principle of this technology is that it comprises of two 

electrodes, an anode, and a cathode, in the presence of electrolyte. The two 

electrodes are usually separated by a proton exchange membrane and catalyses an 

oxidation reaction on the anode by releasing electrons, and reduction reaction by 

using oxygen or other electron acceptors at cathode electrode. Active biocatalyst 

collectively called electroactive or electrogenic bacteria can oxidize organic substrate 

and produce protons and electrons. The electrons produced are conveyed through 

the wire, while the protons are conducted through the proton exchange membrane to 

the cathode along with parallel reduction of oxygen to water (Chouler and Di 

Lorenzo, 2015 ; Rahimnejad et al., 2015).  

This process can produce renewable bioenergy and water (or other reduced 

compounds) when connected to a load/resistor via an external circuit (Figure 1.1). 

Theoretically, MFCs has good operational stability with low cost operation compared 

to conventional method of treating wastewater. It can operate over a broad range of 

temperatures from ambient (15-35℃) to elevated temperature range (50-60℃ ). 

However, despite theoretical advances of this technology, the application of MFCs is 

still far from successful in real-world large-scale wastewater treatment (Liu and 

Cheng, 2014). The limitations of MFCs include cost (platinum often used to speed up 

the reactions at the cathode can be quite expensive), technical issues limiting the 

upscale, and factors limiting the performance of the anodic (e.g. biological limitation 

and processes that do not generate current such as biomass production) and 

cathodic electron transfer (Pham et al., 2006; Qu et al., 2012 ). The ideal 

performance of MFCs also depends on the electrochemical reactions differences 

occurring between the organic matter at a low potential and the final acceptor such 

as oxygen at a high potential. (Du et al., 2007). 
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Figure 1.1. Schematic of a microbial fuel cell. 

 

1.6. MFCs Configurations 

Configuration of MFCs have been considered as an approach toward MFCs scale 

up. Although MFCs current and power density are relatively limited compared to 

chemical fuel cell or batteries, it has been reported that configuration and substrates 

used in MFCs (either chemically synthesized or the real wastewater) are the key 

factors involved in power production. Conventional MFCs configurations are 

operated as single-chambered, dual-chambered, and stacked MFCs (Leech 2015). 

Single Chamber MFCs (an example depicted in Figure 1.2) are typical one-

compartment MFC without definite cathode compartment. They are economically 

simple to design and are considered as the easiest to scale-up for practical 

application. They are constructed by putting a cathode at the open end of a tube, 

with the anode inside the tube. The cathode electrode has one side in contact with 

the liquid, while the other side is directly exposed to air for oxygen diffusion into the 

single chamber. The single chambered MFCs provide advantages over two-

chambered MFCs because it is easy to scale-up and requires no liquid aeration, 

hence, saving energy and money (Leech, 2015; Logan 2008). The first application 
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employing a novel tubular-type single-chambered air cathode successful removed 

80% of the COD and generated 26 mW m-2 from wastewater (Logan 2008). 

Problems with single chambered systems are possibility of oxygen entering the 

anode side which can lead to substrate loss due aerobic degradation of substrate by 

the oxygen diffusing through the cathode electrode (Logan et al., 2006; Nimje et al., 

2012). 

 

Figure 1.2. Schematic of single chamber MFCs. 

Double chamber MFCs traditionally called H-type configuration (example depicted in 

Figure 1.3) consist of two compartments (the anode and cathode) and are widely 

used and inexpensive MFC design (Logan et al., 2006) .The anode chamber is kept 

oxygen free, in-order for anaerobic breakdown processes to occur. The two separate 

compartments are connected by putting a cation exchange membrane (made of Gel 

Polystyrene cross linked with divinylbenzene) in the separator (Logan et al., 2006; 

Karmakar et al., 2010). The cation membrane sometimes called proton exchange 

membrane has a structure which enables any cation to pass through. The important 
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properties of a proton exchange membrane (PEM) are high proton conductivity, low 

electronic conductivity, low fuel and oxidant permeability, and adequate 

electrochemical and chemical stability i.e. should have adequate good thermal and 

hydrolytic stability (Kraytsberg and Ein-Eli, 2014). Double chambered MFCs systems 

are considered acceptable for use in the laboratory for research to examine power 

production. (Leech 2015).  

 

 

Figure 1.3. A schematic of a double chamber MFC. 

Stacked MFCs consist of multiple small sized units MFCs connected together 

(Figure 1.4) in series or in parallel and could be used to obtain higher voltage and 

power output (Xinmin et al., 2016). Connection of 6 MFC units in series and in 

parallel have been reported to increase voltage (up to 2.02V) and current up to 255 

mA. Although stacked MFCs can potentially generate useful energy, voltage reversal 

occurs during stack connection as a result of cases such as fuel starvation and 

insufficient oxygen at the cathode in one or more cells leading to voltage in the cell 

or cells abruptly reversing polarity.  (Oh and Logan, 2007; Watanabe, 2008). 

Parameters for measuring MFCs performance are shown in Table 1.3.  
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Figure 1.4. Schematic diagram of MFCs stacked in series. 
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Table 1.3: Parameters for evaluating MFCs Performance (Watanabe, 2008). 

 

 

Parameter   Unit Description 

Effluent quality treatment efficiency (% 

COD removal) 

     % or kg 

m-3 

Concentration of organics (COD) in an effluent discharged from the anode chamber also known as COD removal efficiency estimated by 

dividing the COD concentration in the effluent by the influent. 

Power density (per unit area of 

electrode) 

W m-2 A power output (Pmax) is the time rate of energy transfer normalised per anode electrode surface area. It is calculated from the power curve 

(current versus power) and is the maximum power output that can be produced normalised by an electrode surface area. 

Current density (per unit area of 

electrode) 

A m-2 This is the amount of current flow normalised per anode electrode surface area. The higher the current density the greater the flux of protons in 

the system.   

Open-Circuit Voltage V A voltage measured between the anode and cathode measured in the absence of current. A difference between the total electromotive force 

(E.M.F; the OCV in the presence of current) and the OCV is regarded as the total potential loss. 

Coulombic efficiency (CE) % This is the percentage of electrons recovered (coulomb) as current versus the total coulomb contained in a substrate (estimated from the total 

COD value). These values diminish based on other electron acceptors in the anode chamber competing for electron transfer to the anode. 

Internal resistance Ω This is used to evaluate the total internal resistance of an MFCs and is obtained from the slope of a polarization curve (see Figure 3.2).  
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1.7. Fundamentals of voltage generation in MFCs 

In MFCs organic substrates or feedstocks such as glucose and acetate are oxidised 

by microorganisms in the anode compartment to generate electrons and protons. As 

shown, 24 molecules of electrons are liberated per mole of glucose and 8 molecules 

are liberated from acetate. These electrons released are transferred to the cathode 

chamber where they react with chemical species with high redox potential such as 

oxygen or ferricyanide. Reduction by atmospheric oxygen usually used in MFCs is 

shown in one of the following reactions below. 

 C6H12O6 + 6H2O → 24e- + 24H+ + 6CO2 (∆G0 = -1438 KJ mol-1) 

 C2H3O2
- + 2H2O → 8e- + 7H+ +2CO2 (∆G0 = -375 KJ mol-1) 

           O2 + 4e- + 4H+ → 2H2O 

To speed up the reaction in the cathode, various oxygen reduction catalysts among 

them platinum have been employed in MFCs. However, due to high cost of platinum, 

alternative cheaper catalysts have been recommended for MFCs application such as 

use of biomass-derived carbon material (Chouler et al., 2017 ). Those demonstrated 

to have low cost, high surface area, high electrical conductivity, high durability and 

high biocompatibility for enhanced bacteria attachment e.g. using activated carbon 

and activated carbon nanofibers; some others are inorganic catalysts of transition 

metals e.g., cobalt tetramethylphenylporphyrin (CoTMPP) and metal phthalocyanine 

(PC) derivatives (Schaetzle et al., 2009; Santoro et al., 2015).  

 

For electricity to be generated in MFCs, the overall chemical reaction must be 

thermodynamically favourable. The Gibbs free energy (dependent on the redox 

potential differences ∆𝐸 of all reactions between electron donor and acceptor) can 

be used to measure the feasibility of MFCs to produce its maximal energy (Kracke et 

al., 2015). This is calculated as shown in equation 4. 

 

                                  Equation 4: ∆𝐺𝑟  =  ∆𝐺0
𝑟  +  𝑅𝑇𝐼𝑛∏                                                         
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Where ∆Gr is the Gibbs free energy (J) of the reaction at specific conditions; ∆G0
r 

is the Gibbs free energy (J) at standard conditions (273.15 K, 1 bar pressure, 1M 

concentrations of all chemical species), R is the universal gas constant (8.31 J 

mol-1 K-1), T (Kelvins) is the absolute temperature and ∏ is the equilibrium 

constant. 

Gibbs free energy can also be related to the electromotive force (𝐸𝑒𝑚𝑓) of the 

system (equation 5) where 𝐸𝑒𝑚𝑓 is defined as the potential difference between 

the anode and cathode of an electrochemical cell (equation 5). 

 

                                            Equation 5:  𝐸𝑒𝑚𝑓 =  
−∆𝐺𝑟

𝑛𝐹
 

Where, n is the number of electrons transferred per reaction and F is the Faraday 

constant (9.65 X 104 Cmol-1).  

Under standard conditions, E0
emf (V) is the EMF at standard conditions; shown in 

equation 6. 

                                           Equation 6: 𝐸0
emf = 

−∆𝐺0𝑟

𝑛𝐹
 

Therefore, from equation 4 and 5 the overall reaction can be rewritten as equation 7 

Equation 7:  𝐸𝑒𝑚𝑓  =  𝐸°𝑒𝑚𝑓 – (
𝑅𝑇

𝑛𝐹
) 𝐼𝑛(∏) 

We get equation 8, when individual anode and cathode half cells of MFCs are 

considered: 

                                Equation 8: 𝐸𝑒𝑚𝑓 = 𝐸𝑐𝑎𝑡ℎ𝑜𝑑𝑒  – 𝐸𝑎𝑛𝑜𝑑𝑒 

It is widely accepted that if O2 is the TEA, the theoretical electromotive force or open 

circuit potential (OCV) can never exceed 1.1 V. This is illustrated by considering an 

MFC operating under standard conditions utilizing 5 mM acetate pH 7 as the sole 

electron donor in the anode and oxygen in the cathode as the sole electron acceptor 

at atmospheric pressure (pO2 = 0.2) at pH7 are represented in the following 

reactions below: 



15 
 

        2HC𝑂3
−

 + 9H+ + 8𝑒− → CH3CO𝑂− + 4H2O; 𝐸𝑎𝑛𝑜𝑑𝑒  = -0.296 V                                

 

       O2 + 4𝑒− + 4𝐻+ → 2H20; 𝐸𝑐𝑎𝑡ℎ𝑜𝑑𝑒  = 0.805 V                                                            

Therefore, the 𝐸𝑒𝑚𝑓of the MFC of the reactions is represented below: 

= 0.805 V – (-0.296) V = 1.106 V. 

In an ideal MFC the open circuit potential would be equal to the thermodynamic 

𝐸𝑒𝑚𝑓  value calculated using potentials of anode and cathode half cells. However, 

the real or actual cell potential is always lower than its ideal value due to various 

irreversible potential losses (Figure 1.5) known as overpotentials and categorised 

into four fundamental categories: Activation losses, ohmic losses, bacterial 

metabolic losses, and concentration losses. Therefore, possible measures to 

minimize them to achieve the ideal potential by selection of new microbes, 

substrates, mediators, modification of MFCs design, and a good knowledge of 

details of the internal losses are needed (Logan et al., 2006; Logan, 2008; 

Rabaey and Verstraete, 2005). 

 

Figure 1.5: Voltage-current density profiles depicting regions of overpotentials or 

energy losses used for assessing factors affecting MFCs performance: Zone-1- 

activation losses, zone-2- ohmic losses, zone-3- concentration losses (adapted from 

Rabaey et al., 2005). 

Ohmic losses also known as ohmic polarisation are due to ionic and electronic 

conduction. These are the resistances to the flow of electrons through the 

electrodes, external circuit, and inter-connections; it is also the resistance to the flow 
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of ions through the cation exchange membrane (CEM), anodic and cathodic 

electrolytes. Primarily, it has been shown that ohmic losses can be reduced by 

increasing the ionic conductivity of the electrolyte solution tolerable to bacteria and 

reducing electrode spacing; other ways involve using membranes with lower 

resistance, and thoroughly checking all contacts (Logan, 2008; Sekar and 

Ramasamy, 2013). 

Activation losses also called activation polarization are related to activation energy 

needed for an oxidation/reduction reaction to occur. These could be related to 

compounds undergoing oxidation at the anode where microbially catalysed electron 

transfer occurs, or at the cathode, where electrons are coupled with a final electron 

acceptor. Phenomena involving adsorption and desorption of reactant species, 

nature of the electrode and transfer of electrons all contribute to activation 

polarization. Increasing the electrode surface area, adding mediator to minimise the 

energy barrier especially where microbes do not readily release electrons to the 

anode, increasing operating temperature, and enriching established biofilm on the 

electrode(s) are general strategies used to circumvent the adverse effect of 

activation losses on MFCs performance (Ren et al., 2012). 

Bacterial metabolic losses are related to metabolic energy gain by bacteria during 

electron transport through a redox potential gradient. Bacteria transport electrons 

from a substrate at a low potential (e.g. acetate -0.296 V) through the electron 

transport chain to the final electron acceptor such as oxygen or nitrate in the 

cathode. In an MFC, the anode potential determines the energy gain for the bacteria. 

The higher the difference between the redox potential between the substrate and the 

anode potential, the higher the possible metabolic energy gain for the bacteria and 

but this however lowers maximum attainable MFC voltage. Therefore, to maximize 

the MFC voltage, the potential of the anode must be kept as low (negative) as 

possible. However, under very low anode potentials, bacteria may seek alternative 

terminal electron acceptors in the anolyte solution, hence, the electrons may be 

diverted to fermentative or methanogenic metabolic pathways (Logan et al., 2006; 

Ren et al., 2012). 
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Concentration losses also known as concentration polarization occur mainly due to 

inability to maintain the initial substrate concentration in the bulk fluid perpendicular 

to the plane of the electrode and thus, limiting current production. This occurs at high 

current densities due to limited mass transfer of chemicals species by simple 

diffusion. When sufficient mixing of the surrounding electrolyte is absent, the process 

of simple diffusion becomes inadequate for efficiently transporting reactants to the 

electrode and products away from the electrodes due to limited mass transfer of 

chemicals species by simple diffusion. Hence, this leads to the formation of 

concentration gradients of reactants and products and is a major contribution to 

concentration losses in MFCs. Therefore, adequate mixing of the bulk electrolyte is 

necessary for minimising concentration losses in MFCs. (Logan, 2008; Oliveira et al., 

2013).  

 

1.8. Background information on Shewanella oneidensis, Clostridium 

beijerinckii, Geobacter sulfurreducens, Saccharomyces cerevisiae and 

Escherichia coli. 

1.8.1. Shewanella oneidensis. 

S. oneidensis (MR-1) ability to reduce metals such as manganese (Wright et al., 

2016) and hexavalent chromium makes it an important bacterium considered for 

bioremediation purposes (Abboud et al., 2005). It was firstly isolated in New York 

State from sediments of Lake Oneida and belongs to the phyllum proteobacteria 

(Kouzuma et al., 2015a; Venkateswaran et al., 1999). It mediates transfer of 

electrons to electrode (Kouzuma et al., 2015b). It has ability to adapt between low 

temperatures to mesophilic condition (Abboud et al., 2005). It is a free living 

facultative anaerobic bacterium with diverse respiratory capabilities (Carpentier et 

al., 2005). During aerobic respiration, MR-1 utilizes oxygen as terminal electron 

acceptor (Abboud et al., 2005). However, in an anaerobic environment MR-1 has 

capabilities of respiring by utilizing metals such as iron (III) oxides, fumarate and 

nitrate as alternative terminal electron acceptors (Carpentier et al., 2005; Heidelberg 

et al., 2002). It is a mesophilic bacterium and has an optimal growth temperature of 

30℃. At room temperature (approximately 22℃) MR-1 has a growth doubling time of 

about 40 minutes. At 3℃ environmental temperature, it displayed a prolonged lag 

phase (100 h) with a doubling time of approximately 67 h. It develops pilus-like 
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structures when transited from 3℃  to 22℃ (Abboud et al., 2005).  Its genome is 

made of 4,969,803 base pairs (bp). The protein-encoding reading frame (CDSs) is 

made up of 4,758CDSs, among which 54.4% were classified as having biological 

function while 22.2% has no known function matching predicted coding sequences 

from other organisms (known as conserved hypothetical CDSs) while 23.4% were 

found unique to S. oneidensis (Heidelberg et al., 2002). 

Genome sequence analyses of S. oneidensis have been used to predict the carbon 

source metabolism by S. oneidensis (Heidelberg et al., 2002). S. oneidensis can 

utilize many carbon sources and prefers fermentative end products or low-molecular-

weight organic acids including acetate, pyruvate, and lactate as carbon sources 

(Tang et al., 2007). It possibly possesses multiple pathways for the utilization of 

three- carbon carbohydrates, and utilization of amino acids as carbon and energy 

source is also present (Serres and Riley, 2006). The presence of a complete 

pentose phosphate pathway and a glycolytic pathway indicates that glucose could 

potentially be utilized by this organism (Heidelberg et al., 2002). 

 

S. oneidensis generates ATP by substrate-level phosphorylation during anaerobic 

respiration. Examination of central metabolism and flux analyses by S. oneidensis 

indicated that acetate is the major product under anaerobic condition (Hunt et al., 

2010). The general anaerobic model of S. oneidensis (Figure 1.6, Entner-Doudoroff 

glycolysis pathway) yield 2 molecules of pyruvate. However, under aerobic condition 

pyruvate facilitates the reduction of NAD+ to NADH before being completely oxidized 

to carbon dioxide in the tricarboxylic cycle. Anaerobically, pyruvate oxidation to 

acetyl CoA yields formate before the pyruvate is converted to acetyl phosphate by 

the enzyme phosphate acetyltransferase (Pta) and to Acetate by acetate kinase 

(whose deletion results in the inability of S. oneidensis to use glucose or lactate as 

the electron donor. (AckA). Formate is subsequently oxidized to carbon dioxide 

(Hunt et al., 2010). 
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Figure 1.6: The glycolytic pathway of S. oneidensis (adapted from Hunt et al., 2010). 

 

1.8.2. Clostridium beijerinckii 

Clostridium beijerinckii is a primarily interesting bacterium because of its acetone-

butanol-ethanol (ABE) fermentations (Noar et al., 2014). It is Gram-positive, 

saccharolytic, mesophilic, motile, rod shaped with oval sub-terminal spores and an 

obligately anaerobic solventogenic organism. During the growth cycle, the ABE 

metabolic pathway generates acidic and butyric acids which are later converted into 

solvents.  Since the late 19th century, biobutanol (C4H9OH) and ethanol produced by 

C. beijerinckii have been predicted as a possible replacement for fossil fuels 

(Sandoval-Espinola et al., 2015; Visioli et al., 2015). The economic benefit of 

biobutanol production is however, dependent on the cost of fermentation substrate. 

Hence, using cheap renewable substrate could enhance ABE fermentation. C. 

beijerinckii was unable to utilize Cellulose abundantly present in agricultural and 

industrial effluent such as pulp/paper (Gomez-Flores et al., 2017). However, when 

co-cultured with Clostridium termitidis enhanced hydrogen production was achieved 

(Gomez-Flores et al., 2017). 
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1.8.3. Escherichia coli 

Escherichia coli is an enteric (found in the intestines) rod shaped Gram-negative 

bacterium having a genome of 4.6 Mb. It is considered as a model organism for 

molecular genetic studies because it has rapid growth rate, ease of transformability 

and genetic manipulation. It has ability to grow on chemically defined media. During 

exponential phase it doubles every 20-30 minutes with overnight culture yielding 1-2 

billion cells per millilitre of liquid media (Casali and Preston, 2003). 

1.8.4. Geobacter sulfurreducens 

G. sulfurreducens is a non-fermentative Gram-negative obligate anaerobic bacterium 

(Kracke et al., 2015; Caccavo et al., 1994) and require electron acceptors for 

respiration (Zacharoff et al., 2016). It has a rod shape and is commonly found 

associated with sediments of hydro-carbon contaminated environment (Caccavo et 

al., 1994). G. sulfurreducens is considered as a model organism for investigating 

electroactive bacteria (Kracke et al., 2015). It utilizes other organism such as 

fermentative organism such as Clostridium pasteurianum to produce metabolites for 

its growth. This potential to interact with fermentative organism or a facultative 

organism such as E. coli has been exploited in MFCs to enhance electricity from 

fermentation products (Moscoviz et al., 2017) or to maintain complete anaerobic 

condition in MFCs (Qu et al., 2012). Two commonly utilizable substrates by G. 

sulfurreducens is hydrogen and acetate (Coppi, 2005). 

1.8.5. Saccharomyces cerevisiae 

Saccharomyces cerevisiae is an old word terminology for beer, often called baker’s 

yeast or brewer’s yeast (Duina et al., 2014). It is a single-celled eukaryote, classified 

as a fungus or mould. It is non-pathogenic (Ostergaard et al., 2000) and one of the 

few yeast capable of growing either at aerobic or anaerobic conditions (Verduyn et 

al., 1990; Permana et al., 2015). It divides through a process called budding, ones 

every 90 minutes under optimal laboratory conditions. The optimum growth is at 

ambient temperature around 300C (Permana et al., 2015). They are recognized by 

the ability to ferment sugar to ethanol and carbon dioxide. It can ferment other 

sources of sugar such as grains, malts or other plant materials to produce alcoholic 

beverages (Duina et al., 2014). They are easy to grow in the laboratory and prefer 
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mono- and disaccharide to other carbon sources. Yeast can grow on acetate, 

ethanol, and D-glucose (Chu et al., 1981).  Glucose is the primary source of energy 

for yeast (Chu et al., 1981). When yeast is grown on a mixture of glucose and other 

carbon sources, it exhibits diauxic growth i.e. glucose is used up first before other 

source of carbon are utilized. In MFCs application it requires mediators such as 

thionine and neutral red to transfer electrons (Permana et al., 2015). Sugar does not 

freely permeate through the cellular membrane, hence, facilitated diffusion is used 

for cellular uptake (Lagunas, 1993). Media glucose yeast extract is the most 

optimum growth medium for yeast (Fan and Xue, 2016).  

1.9. Growth phases in batch cultures. 

Batch culture is a closed culture system characterised by limited concentration of 

nutrient (Stanbury et al., 2013). Microbial growth culture can be categorised into four 

phases after inoculation into a nutrient medium. The first stage called the lag phase 

considered as a time of adaptation associated with no bacteria growth (Figure 1.7). 

 

Figure 1.7: Bacteria growth phases (adapted from Stanbury et al., 2013). 

The second phase called exponential phase is associated with growth with constant 

maximum growth rate called specific growth rate (µ) described in equation 9.  At a 
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certain period, growth ceases and the cells enter the so called stationary phase. 

After a period of time the viable cells decline in a phase called the death phase. 

Similarly, the growth behaviour of microorganism has been associated with products 

formed at various stages of growth curve. During the log phase, metabolic products 

produced are amino acids, nucleotides, proteins, lipids, and carbohydrate which are 

essential for the growth of the microorganism. These products are referred to as 

primary products of metabolism and are of considerable economic importance. 

During the stationary phase, filamentous bacteria and fungi synthesized compounds 

with no obvious function in cell metabolism but have pharmacological properties 

such as antimicrobial properties and enzyme inhibitors (Stanbury et al., 2013). 

Equation 9: 
𝑑𝑥

𝑑𝑡
 = µx 

Where x is the concentration of microorganism, t is the time (in hours) and µ is the 

specific growth rate in hours-1.  

 

1.10. Organisation of Mtr-pathway genes in S. oneidensis. 

 

The discovery of bacteria ability to take up DNA dates far back in 1928 when Griffith 

observed transformation in Streptococcus pneumonia. The transforming factor 

unknown until Avery and Co-workers in 1944 demonstrated the transformation 

principle of DNA (Lorenz and Wackernagel, 1994). Since the discovery of phage and 

plasmids as mobile genetic elements, there have been an advancement in molecular 

biology which has directly contributed enormously in many fields such as biology and 

biotechnology.   

One common mechanism of controlling gene expression among bacteria is the 

organisation of genes into operons. Operons are strings or clustered genes in a 

common pathway or mediating a common biological function which are co-

transcribed together in a single polycistronic mRNA. An example of these found in E. 

coli is the lactose operon which controls the metabolism of lactose. Linkage of genes 

in operon results in the production of a single mRNA whose expression level 

depends on the structure of the operon (Wang et al., 2004).  In S. oneidensis there is 

evidence that showed that the four genes encoding the protein comprising OM-
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cytochrome in the Mtr-pathway (mtrC, mtrA, mtrB) are co-transcribed as an operon. 

The finding is consistent with the biochemical data that mtr gene products form a 

complex (the MtrCAB complex) with 1:1:1 stoichiometry. This could be regulated by 

changing the promoter strengths or ribosomal strengths of the gene cluster encoding 

the proteins of the pathway. The transcription start site has been located upstream of 

mtrC (Kouzuma et al., 2015a). 

 

1.11. Biocontainment of genetically modified organisms obtained via 

synthetic biology. 

Biosafety has become a code of practice in microbiological and biomedical 

laboratories (Burnett et al., 2009). This discipline involves the handling of hazardous 

biological materials and containment of infectious microorganism from unintended 

proliferation in the environment (Burnett et al., 2009). This has become so important 

because the concern of potential escape of synthetically modified organism or their 

genes away from the realms of intended laboratory habitat into the environment 

could potentially cause environmental disruption (Wright et al., 2013; Simon and 

Ellington, 2016). The mechanism of escape could be by horizontal gene transfer and 

mutagenesis (Mandell et al., 2015). Effective biocontainment must protect against 

mutagenic drift, enviromental supplementation and horizontal gene transfer (Mandell 

et al., 2015).  Biocontainment strategies reported involve strategies to make the 

organism inability to synthesize a vital synthetic molecule/compound (auxotroph) by 

altering the genetic code of synthetic organism to require specific synthetic 

compounds such as unnatural amino acids for growth and which can be acquired 

from the growth media or the environment (Torres et al., 2016). Another strategy 

involves engineering synthetic organisms with abilities to utilize exogenously 

supplied specific molecules/compounds or engineering particular genetic information 

that represses toxins expression. These are called kill switches (Simon and 

Ellington, 2016; Torres et al., 2016). Therefore, when the organism gets to the 

environment it expresses the toxin genes, thus killing itself (Simon and Ellington, 

2016). However, the standard method of biocontainment implemented for the 

industrial scale production of microorganism which is the biosafety used in this 

present study, is by design of physical barriers (Torres et al., 2016) for constraining 

genetic modified organisms within the laboratory (Wright et al., 2013). 
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1.12. Statement of the problem 

MFCs are a promising technology for electricity production (Chaturvedi and Verma, 

2016; Rahimnejad et al., 2015; Gajda et al., 2015). However, the problem with MFCs 

is that they are still technically very far from attaining acceptable levels of power 

output. Several studies have been done on treatment of various wastewater types 

including brewery wastewater, azo-dye-containing wastewater, potato starch 

processing wastewater, phenol-containing wastewater etc., but electrical energy 

recovery from these systems was very poor, generally less than 150 W/m3 of the 

anode volume (Logan, 2008; Oliviera et al., 2013). For example, previous attempts 

at treating phenol in microbial fuel cells (Luo et al., 2009; Song et al., 2014) 

produced a power density of only 9.1 W m-3. For cost-effectiveness, the energy 

recovery needs to reach 1000 W m-3, an energy output that would be competitive 

with anaerobic digesters. There is need to increase substrate turnover rate which 

may be dependent on biofilm thickness and/or nature of microorganisms in the 

anode biofilm, as well as need to increase our understanding of electron transfer 

processes within and from electrochemically active bacteria to anode electrodes.  

1.13. Hypothesis, aims and objectives  

Defined co-cultures, exogenous addition of quorum sensing molecules, and genetic 

engineering of E. coli and S. oneidensis with the Mtr-pathway can be used to improve 

electron transfer in microbial fuel cells thereby increasing the energy recovery from 

waste streams such as from industrial wastewater. Therefore, the overall aims were 

to enhance the energy (electricity) recovery from MFCs treating industrial wastewater. 

Hence, to achieve the overall aims, the following objectives were investigated: 

 (a) To enhance extracellular electron transfer in MFCs via use of co-cultures of exo-

electrogens with other fermentative microorganisms as a way of improving substrate 

turnover rate and hence rate of electrons generated.  

(b) To investigate the contribution of direct electron transfer mechanisms to electricity 

production in MFCs by physically retaining S. oneidensis cells close to or away from 

the anode electrode. 

(c) To employ synthetic biology to overexpress the genes: mtrA (periplasmic 

membrane cytochrome), mtrB (outer membrane β-barrel protein) and mtrC (outer 
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membrane decaheme cytochrome) in S. oneidensis and heterologous expression in 

E. coli for enhanced electron transfer capabilities and hence electricity production. 

(d) To enhance biofilm formation in S. oneidensis, thought to be directly linked to 

amount of electricity that can be recovered from MFCs, by exogenous addition of 

quorum sensing molecules. 
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Chapter 2 

Use of co-cultures as a way of increasing substrate turn-

over and hence electricity production in microbial fuel 

cells. 

 

2.1. Introduction. 

An alternative form of energy that can address the growing problem of fossil fuel 

depletion is bioenergy production. In this context, MFCs hold immense potential as 

green and carbon-neutral technology that directly converts organic compound into 

electricity. (Chouler et al., 2016). The electricity production in MFCs was shown to 

increase when glucose was replaced with its metabolic intermediates such as 

acetate and butyrate (Zhao et al., 2017). The electrical current recovery in MFCs 

might be enhanced by using co-cultures. Cleverly defined co-cultures might show 

synergistic properties that can be exploited in microbial fuel cells and for 

bioremediation (Bader et al., 2010). For example, by-products of one type of 

bacterium could be used as a substrate by another bacterium (Figure 2.1) hence, 

generating more electrons that can be harvested on electrodes. Ren et al., (2007) 

studied a co-culture MFC of G. sulfurreducens and Clostridium cellulolyticum with 

cellulose as a substrate and showed that while maintaining similar overall COD 

removal to a wastewater sludge inoculate MFC, the co-culture had significantly 

higher coulombic efficiency (39%) compared to 22% for the sludge inoculated MFC. 

Similar observations were made by Qu et al., (2012) who showed that a co-culture of 

G. sulfurreducens and E. coli improved electricity production relative to that of a pure 

culture of G. sulfurreducens in an MFC and attributed this to consumption of oxygen 

leaking into the anode chamber from the cathode chamber.   
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Figure 2.1. Interaction of Clostridium species and S. oneidensis during the 

mineralisation of organic carbon in the anode section of MFCs. 

On the other hand, Bourdakos et al., (2013) using the same combination of 

microorganisms as Qu et al., (2012) in a membrane-less MFC found the co-culture 

produced less power (63 mW m-2) than the pure culture of G. sulfurreducens (128 

mW m-2) attributing this to production of reduced end-products e.g. succinate thus 

reducing current production in the co-culture MFCs. Defined co-cultures have been 

used successfully in aerobic treatment of toxic water used by industry to cool 

machinery. Van der Gast et al., (2003) investigated the effectiveness of a defined 

consortium (composed of five non-pathogenic microbes) for treating metal working 

fluids (consisting of a range of oils which are rich in carbon, and water used to cool 

metal work pieces when they are being machined) and contrasted its performance 

(COD reduction) with that of undefined inocula from sludge. The defined consortium 

was 50% more effective than that of the undefined consortium from activated sludge. 

The performance of the defined consortium was more reproducible as well. 

However, the limitations of co-culture for real world applications is that it might be 

prone to virus attack, may not be applicable to widely changing substrate types or 

concentrations. The key questions about co-culture work in MFCs are: What informs 

the choice of microorganisms? How are the different nutritional requirements of the 

microorganisms catered for? How does the community dynamics evolve? What is 

the mechanism of any observed synergistic/inhibitory/additive effects? Since S. 

oneidensis prefers fermentative end products or low-molecular-weight organic acids 
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including acetate, pyruvate, and lactate as carbon sources. Hence, we hypothesised 

that by coculturing S. oneidensis with a fermentative organism such as C. beijerinckii 

or S. cerevisiae it will lead to more complete turnover of glucose in industrial 

wastewater initially to other metabolic intermediates such as ethanol, butyric acid, 

and acetic acid that can then be easily utilized by electrogenic microorganisms for 

electricity generation in MFCs. Previous study by Bourdakos et al., 2014; and Ren et 

al., 2007 have also recommended the use of defined co-culture to reduce the 

interaction of complex microbial communities so as to easily predict the biochemical 

pathways for bioelectricity production. Many MFCs have used undefined mixed 

cultures. Undefined mixed cultures have the following advantages: resistance to 

phage, robustness to changing substrates, no need for sterilisation, higher current 

densities than pure cultures. However, they have disadvantages such as batch to 

batch variability, difficult to probe roles of the different microorganisms involved with 

respect to electricity production as the microorganisms are unknown or simply too 

many and poor controllability. Defined cocultures could be used to bioaugment 

microbial fuel cells which are underperforming and are very useful in probing 

microbial interactions with a view of understanding the roles played by 

microorganisms in electricity production. Their limitations are susceptibility to phages 

and the wastewater stream may need sterilisation. 

Therefore, this study, for the first time, investigated the use defined co-cultures of 

fermentative organism with electrogenic organism for enhancing glucose conversion 

and phenol remediation to electricity production in MFCs. 

 

2.2. Materials and Methods 

2.2.1. Chemicals 

QIAquick PCR purification kit was purchased from Qiagen; Pierce TM BCA Protein 

Assay Kit, qPCR master mix, Corning Costa 6 well plates SYBRGreen, Ficodox 

PlusTM mixed COD reagent, ROX dye, and TAE Buffer 50X (Tris-acetate-EDTA) for 

running and separation buffer were purchased from Thermofisher Scientific. 

Bacterial Genomic DNA Extraction Kits and Riboflavin were purchased from Sigma 

Aldrich; PCR Master Mix was purchase from New England Biolab. Ethanol, butyric 

acid, acetic acid, sulphuric acid and glucose (purity ≥ 96%) were purchased from 
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Sigma Aldrich (UK). All chemicals were of analytical grade and were used without 

further purification. The water used for making up solutions was deionised water (DI).   

2.2.2. Bacterial strains, maintenance, and culture. 

S. oneidensis strain 700550 and G. sulfurreducens strain 51573 were purchased 

from ATCC, C. beijerinckii strain 6444 was purchased from the National Collection of 

Industrial and Marine Bacteria (NCIMB). S. cerevisiae was obtained from the culture 

collection at the University of Westminster, Department of Life Sciences. 

Cryopreserved stock cultures were maintained at -80℃. Strains were first sub-

cultured in Luria-Bertani broth medium (LB medium) containing (per litre) 10 g of 

tryptone, 5 g of yeast extract and 5 g of NaCl grown at 300C for 48 hours; later sub-

cultured in minimal salt medium supplemented with 500 mg L-1 glucose. MSM 

contains essential salts, nitrogen, trace elements, phosphorous, vitamins and 

carbohydrates and supports growth of a large number of microorganisms which is 

important when growing cells as cocultures. MSM is also useful in increasing the 

conductivity of the anolyte which is useful for improving MFC performance. This last 

sub-cultured was used to inoculate the MFCs. Before inoculation of the MFCs, the 

strains were grown in LB medium supplemented with 15 g L-1 agar and plated for 

enumeration (section 2.2.6.3).  

2.2.3. Investigation 1: Experimental design for using pure culture(s) and co-

culture(s) of S. oneidensis and C. beijerinckii for the maximization of glucose 

and phenol conversion to electricity production. 

The experiments involving use of pure cultures and co-cultures are schematically 

described in Figure 2.2 – 2.4. The first study (Figure 2.2) investigated influence of 

co-culture and pure cultures of S. oneidensis and C. beijerinckii on the maximization 

of conversion of 500 mg L-1 glucose-containing synthetic wastewater to power 

generation in MFCs.                         

 The experiment was run for 15 days due to time limitation and was studied under 

strictly anaerobic-anodic conditions in two-chambered MFCs as described in section 

2.2.4. The inoculum was either S. oneidensis or C. beijerinckii or both and made up 

of 10% (v v-1) of the anode working volume (S. oneidensis was 3.4 x 109 CFU mL-1, 

while C. beijerinckii was 6.8 x 109 CFU mL-1).  The power vs current density data 

were collected on the 3rd day when the voltage productions of the tests were in a 
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pseudo-steady state. The MFCs mixtures were conditioned at the start to pH7 for the 

co-culture and test cultures by using phosphate buffer without any adjustment 

throughout the experiment. The controls for the co-culture were MFCs with no 

microorganisms (C-closed). Another control involved the co-culture under open 

circuit conditions (C-open). The experiment was replicated three times and the 

results were expressed as means from the three runs. The temporal dynamics of the 

strains was also investigated to determine the interactions of the microorganisms 

(section 2.2.6.4).  

 

Figure 2.2. Scheme showing the anode chamber only of double-chambered MFCs 

used for studying co-cultures of S. oneidensis and C. beijerinckii for the maximization 

of conversion of 500 mg L-1 of glucose to electricity production. 

The second study (Figure 2.3) investigated the influence of co-cultures and pure 

cultures of C. beijerinckii, G. sulfurreducens and S. cerevisiae on the maximization of 

conversion of 500 mg L-1 Glucose-containing synthetic wastewater (MSM) 

supplemented with modified Luria Bertani broth (10 g L-1 Tryptone and 5 g L-1 Yeast 

Extract) to power production in MFCs. 
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Figure 2.3. Scheme showing the anode section of double-chambered MFCs used for 

studying co-cultures of S. cerevisiae, C. beijerinckii and G. sulfurreducens for the 

maximization of conversion of 500 mg L-1 of glucose to electricity production. 

The experiment was run for 10 days due to time limitation and studied under strictly 

anaerobic-anodic conditions in two-chambered MFCs as described in section 2.2.4. 

The inoculum was either C. beijerinckii or G. sulfurreducens or S. cerevisiae or each 

of their various possible combinations and made up of 10% (v v-1) of the anode 

working volume (C. beijerinckii was 18 x 108 CFU, while G. sulfurreducens was 10 

x108 CFU). The control for these studies were MFCs with no microorganism and the 

experiment was replicated three times and the results were expressed as means 

from their three runs. The temporal dynamics of the strains were also investigated in-

order to determine the interaction of the microorganisms (section 2.2.6.4).  

The third study (Figure 2.4) investigated influence of co-cultures and pure cultures of 

C. beijerinckii, S. oneidensis, and S. cerevisiae on the maximization of the 
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remediation of 500 mg L-1 phenol-containing synthetic wastewater (MSM) 

supplemented with modified Luria Bertani broth (10 g L-1 Tryptone and 5 g L-1 Yeast 

Extract) for power production.  

 

Figure 2.4.  Scheme showing the anode section of double-chambered MFCs used 

for studying co-cultures of S. cerevisiae, C. beijerinckii, and S. oneidensis for the 

maximization of remediation of 500 mg L-1 of phenol and for electricity production. 

The experiment was run for 35 days under strictly anaerobic-anodic conditions in 

two-chambered MFCs as described in section 2.2.4. The inoculum was either C. 

beijerinckii or S. oneidensis or S. cerevisiae or each of their various possible co-

culture combinations and made up of 10% (v v-1) of the anode working volume. The 

control was MFCs with no microorganisms. The experiment was replicated three 

times. 

The fourth study (Figure 2.5) investigated the influence of exogenous addition of 

Riboflavin of varying concentrations (20, 30 and 40 µM) on the remediation of 500mg 
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L-1 phenol-containing synthetic wastewater (MSM) supplemented with modified Luria 

Bertani broth (10 g L-1 Tryptone and 5g L-1 Yeast Extract) using S. oneidensis cells.  

 

Figure 2.5. Scheme showing the experimental design for double-chambered MFCs 

studied using pure culture of S. oneidensis for the maximization of remediation of 

500 mg L-1 of phenol-contaminated wastewater modified at different concentration of 

Riboflavin: 20, 30, and 40 µM concentrations for electricity production. 

The experiment was run for 9 days due to time limitation under strictly anaerobic-

anodic conditions in two-chambered MFCs as described in section 2.2.4. The control 

was MFCs with S. oneidensis with no exogenous Riboflavin addition. The 

experiment was replicated three times. 

2.2.4. MFC setup and operation 

H-type MFCs (see Figure 2.6) were constructed with two identical Duran bottles and 

were held together with an external metal clip. The anode and cathode 

compartments were separated with a cation-exchange membrane (CMI-7000, 
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membranes International USA). One rubber gaskets were used to ensure a seal at 

the anode chamber. The electrodes were constructed from carbon cloth.  

 

Figure 2.6. A Typical two-chambered MFC used for these investigations. 

The co-culture and pure cultures experiments as described in section 2.2.3 were 

studied using cathodes coated with Pt catalyst layer with a loading rate of 0.5 mg cm-

2. Briefly, Pt powder for the cathode was mixed with carbon black powder (Sigma 

Aldrich, UK) to a concentration of 10% w w-1. The mixture was suspended in 6.67 

µLmg-1 nafion ionomer solution (sigma Aldrich) for every 1mg of 10% Pt/C and the 

suspension was applied at a uniform coating on the cathode electrodes using a paint 

brush. The cathode and the anode electrodes made of carbon cloth had a projected 

geometric surface area of 25 cm2.  

For all the experiments, electrode connections with insulated copper wires were 

done using lead solder. An external load of 1000 Ω was utilised for all experiments 

and the potential difference (voltage) across the resistors were recorded using the 

Picolog ADC-24 (Pico Technology, U.K.) online data logging system. 

For all the experiments, anolyte Minimal Salts Medium (MSM) was used, and it was 

adapted from Fernando et al., 2012 and modified (see Table 2.1). 
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Table 2.1. Components of Modified Minimal Salts Medium used in this study. 

Component                                                                        Concentration (g L-1)    

NH4Cl                0.46 

KCl                                                                                                  0.225 

MgSO4.7H2O                                                                                   0.117 

NaH2PO4                                                                                            2.5 

Na2HPO4                                                                                           4.11 

(NH4)2SO4                                                                                          0.225 

                                                 

with addition of 1% trace elements stock solution (see table 2.2 for description of 

components). 
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Table 2.2. Components of the trace elements stock solution used in this study. 

Component                                                                                Concentration (mg L-1) 

Nitrilotriacetic acid (NTA)                                                                    1500 

MnCl2.4H2O                                                                                          100 

FeSO4.7H2O                                                                                         300 

CoCl2.6H2O                                                                                          170 

ZnCl2                                                                                                               170 

CuSO4.5H2O                                                                                          40 

AlK(SO4)2.12H2O                                                                                     5 

H2BO4                                                                                                                                                         5 

NaMoO4                                                                                                                                                   90 

NiCl2                                                                                                       120 

NaWO4.2H2O                                                                                         20 

NaSeO4                                                                                                                                                   100 

 

and 1% vitamins mix stock solution (see table 2.3 for description of components).  
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Table 2.3. Components of the vitamin mix stock solution used in this study. 

Component                                                                                Concentration (mg L-1) 

P-aminobenzoic acid (PABA)                                                                    50 

L-ascorbic acid                                                                                         100 

Folic acid                                                                                                   50 

Riboflavin                                                                                                  10 

Nicotinic acid                                                                                            100 

Pantothenic acid                                                                                       100 

Thiamine hydrochloride                                                                             10 

Biotin                                                                                                         100 

 

2.2.5. Modification of anolyte minimal salts medium used for the investigation 

of co-culture studies. 

The anolyte MSM was generally supplemented with 500 mg L-1 glucose for all the 

studies except for the phenol remediation studies.  

However, the anolyte MSM for the co-cultures studies (schematically demonstrated 

in Figure 2.3 and Figure 2.4) was further modified with Luria Bertani broth (10 g L-1 

Tryptone and 5 g L-1 Yeast Extract), trace element stock solution (x1) and vitamin 

stock solution (x1).   

The anolyte MSM for co-cultures experiments (schematically demonstrated in Figure 

2.4 and 2.5) was further modified with 500 mg L-1 phenol and supplemented with 

modified Luria Bertani broth (10 g L-1 Tryptone and 5 g L-1 Yeast Extract).  

For all the studies (schematically demonstrated in Figure 2.2 – 2.5) the catholyte was 

50 mM phosphate buffer solution pH 7 aerated at a rate of 100 mLminute-1 using an 

aquarium pump. During the start-up operation, the anodes were seeded with actively
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growing C. beijerinckii (6.8 x 109 CFU 20 mL-1) or with S. oneidensis (3.4 x 109 CFU 

20 mL-1) for the pure cultures while the co-culture had both pure strains in the 

inoculum in equal proportion by volume (Figure 2.2). Each anode of the set-ups of 

co-cultures studies (Figure 2.3) was seeded with the individual of the pure cultures 

and co-cultures of S. oneidensis, C. beijerinckii, S. cerevisae and G. sulfurreducens. 

Each anode of the set-ups of co-cultures studies (Figure 2.4) was seeded with the 

individual of the pure cultures and co-cultures of C. beijerinckii, S. oneidensis and S. 

cerevisae. The anode of pure culture studies (Figure 2.5) was seeded with S. 

oneidensis.  

For all set-ups the volume of inoculum used was 10% v v-1 of the total anolyte 

volume. The anode chambers with the contained mixtures were stripped of dissolved 

oxygen by sparging nitrogen gas for 5 minutes before setup.  

All experiments were replicated three times and studied at 300C using a temperature-

controlled Stuart 160 incubator (Fisher Scientific, U.K.). Results were expressed as 

mean of replicates ± standard deviation 

For all set-ups, the volume of inoculum used was 10% v v-1 of the total anolyte 

volume. The anode chambers with the contained mixtures were stripped of dissolved 

oxygen by sparging nitrogen gas for 5 minutes before setup.  

 

2.2.6. Analytical Procedures. 

 

2.2.6.1. COD removal 

Chemical oxygen demand removal was determined by using the closed reflux 

titrimetric method based on the chemical biochemical oxidation of tested samples by 

refluxing sulphuric acid and potassium dichromate as described in the Environment 

Agency (UK) standard method 5220D (Westwood, 2007). Briefly, appropriately 

diluted 1 mL sample (so resulting COD < 500 mgL-1) were used for each 

determination. The COD removal was calculated by the expression in Equation 10: 



39 
 

Equation 10:  𝐶𝑂𝐷 (
𝑚𝑔

𝐿
) = (𝑉𝑏 −  𝑉𝑠) × 𝐷𝐹 × 𝑀 × 4000 

where COD (mg L-1) is the amount of dichromate reduced and represents the 

amount of oxygen consumed per litre of sample. This can be determined by titration 

with standardized iron (II) ammonium sulphate solution. Vb and Vs are ferrous 

ammonium sulphate (FAS) titrant volumes for the blank and the sample respectively, 

DF is the sample dilution factor and M is the molarity of FAS titrant. 

 The percentage COD removal was calculated by Equation 11:     

Equation 11: Percentage removal =     
(𝐶𝑂𝐷𝑖−𝐶𝑂𝐷𝑡)×100 

𝐶𝑂𝐷𝑖
 

Where CODi and CODt are initial and final COD values of samples at the beginning 

and end of the investigation respectively. The COD is a measure of the total quantity 

of oxygen required to oxidize all organic materials in a few hours as against BOD 

that measures only biologically available organic matter, which usually takes place 

within five days. (Di Lorenzo et al., 2009).  

2.2.6.2. Detection of degradation products using Gas Chromatography. 

Anaerobic degradation products of glucose, namely: ethanol, acetic acid, and butyric 

acid were identified using gas chromatography (GC) with flame ionisation detection 

(Appendix 1). Briefly, experimental samples (1.5 mL) for analyses were centrifuged 

at 15,000 g for 30 minutes using a micro-centrifuge. Thereafter, supernatant from 

each sample was transferred into a 2 mL vial tube and run on a Varian 3900 GC 

system. The mobile phase consisted of a carrier gas (helium) with a flow rate of 2 mL 

min-1; injector temperature was 260℃. The oven was initially set at 35℃ for 5 

minutes and then ramped up to 170℃ for the subsequent 10 minutes. Detector 

temperature was 250℃. The presence of degradation metabolites ethanol, acetic 

acid, and butyric acid was confirmed using the retention time of the respective 

standard compounds. 

 

2.2.6.3. Quantification of C. beijerinckii, S. oneidensis and G. sulfurreducens 

cells in the sub-cultured medium. 

The concentration of cells in the volume of sub-cultured medium, used for inoculation 

of the experimental systems, at the start of the co-culture investigation was 

determined by serially diluting the unknown concentration 106 times. Cells for each 
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strain were aseptically plated in triplicate on LB agar medium and thereafter, 

incubated at 30℃  for S. oneidensis and G. sulfurreducens, 37℃  for C. beijerinckii 

for 24 hours to determine colony forming units (CFU) present in the undiluted 

samples used for inoculation of the plates. The number of CFUs in the undiluted 

samples was determined by the expression in Equation 12. 

Equation 12: 𝐶𝐹𝑈(𝑝𝑒𝑟 𝑚𝐿) =  
𝑁𝑐∗𝐷

𝑉
                                                                                                 

where Nc is the average number of colonies counted on triplicate plates, D is the 

dilution factor (106) and V is the volume (mL) of aliquot of diluted cells added to each 

plate.  

2.2.6.4. Relative abundance test by Real-Time PCR analysis. 

Real time PCR is used to monitor the amplification of targeted DNA molecule during 

amplification. Therefore, real time PCR was used to target the DNA of the 

microorganisms in the co-culture experiment for the analysis of their relative 

abundance. This method was used because of the morphology similarities between 

S. oneidensis, C. beijerinckii and G. sulfurreducens – shape, size, and appearance 

on cultured plates.  DNA was extracted from the known concentration sample of 

each of the bacteria (described in Figure 2.2 and G. sulfurreducens in Figure 2.3) 

using Bacterial Genomic DNA kits (Sigma Gen EluteTM). The DNA extracts purity 

were checked using the A260/A280 ratio (~1.8) to minimise PCR inhibition (by protein, 

RNA and reagent contaminations) and concentration determined using Nanodrop 

spectrophotometer. These were amplified using Primers that are specific for 

proteobacteria and firmicutes that specifically target the 16S rRNA genes (Fierer et 

al., 2005). The forward primer used for C. beijerinckii was Lgc353 with sequences: 

GCA GTA GGG AAT CTT CCG and its corresponding reverse primer was Eub518:  

ATT ACC GCG GCT GCT GG. The primer used for S. oneidensis or G. 

sulfurreducens was Eub 338, ACT CCT ACG GGA GGC AGC AG, and its 

corresponding reverse primer: Alf685, TCT ACG RAT TTC ACC YCT AC. The PCR 

reaction mixture (50 µL) contained the following assay mixture: 25 µL of X2 PCR 

master mix (New England Biolabs), 22 µL Nuclease free water, 1 µL each of 

Forward and Reverse primers, and 1µL of template whole genomic DNA. The PCR 

(Bio-Rad PCR system MJ-Mini (UK) was performed under the following conditions: 

initial denaturation at 950C for 4 minutes, followed by 30 cycles of 950C for 1 
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minutes, 0.5 minutes at the annealing temperature of 600C, and 720C for 1 minutes 

for the extension. Each of the samples was three replicates reaction and with 

appropriate set of standards. The amplified DNAs were checked on agarose gel 

electrophoresis. The DNA bands formed were recovered using a Genomic DNA 

Purification kit. The purified DNAs were diluted tenfold serially in triplicate alongside 

with the DNA of the tests samples. The real-time amplification of each of the 

standards was undertaken to determine the efficiency of the real time-PCR system 

(Figure 2.11). The DNA extracted from the tests samples (A260/A280 ratio ~1.8) were 

run alongside the known standard DNA on qPCR. The qPCR reaction assay was 

conducted in strip tubes of 100 µL volume capacity each. Each 25 µL reaction 

contained the following assay mixture: 12.5 µL of Absolute qPCR Master Mix 

(ABgene), 1.25 µL of each primer (10 µM; Invitrogen), 25µL bovine serum albumin 

(10 mg ml-1; Promega), 1.0 µL SYBRGreen dye (16000- fold dilution in H2O), ROX 

dye (80-fold dilution in H2O; ABgene) for normalization of fluorescence intensity of 

qPCR reporter dye, 0.5 µL nuclease free water and 5 µL of purified DNA from the 

samples. Real Time-PCR amplification was conducted using a Quiagen Rotor-Gene 

system under the following conditions: initial denaturation condition was 4 min at 

950C, followed by 40 cycles of 950C for 1 min, annealing temperature at 600C for 0.5 

min, and elongation temperature at 720C for 1 min according to the method of Fierer 

et al., 2005. Samples were run in triplicate, and results were quoted as cycle time vs 

log concentration of purified DNA. The fluorescence at a specific geometry phase 

was picked for all the runs and were normalised with the known starting DNA 

concentrations of each bacterium. The limitation about this method is that both dead 

and live cell’s DNA will be enumerated. 

 

2.2.6.5. Quantitation of phenolic compound using spectrophotometric method. 

Quantification of residual phenol is important in-order to determine the extent of 

degradation of the phenol. Phenolic materials react with 4-amino antipyrine in the 

presence of potassium ferricyanide at a pH of 10 to form a stable reddish-brown 

coloured antipyrine dye. The amount of colour produced is a function of the 

concentration of phenolic compound. Briefly, 2 mL of Amino-antipyrine (AAP) 

solution (containing 2 g of 4-AAP diluted to 100 mL) and 2 mL of Potassium 

ferricyanide (K3Fe(CN)6) solution (containing 8 g of K3Fe(CN)6 diluted to 100 mL) 

were added to each set of 100 mL phenol standards 0, 50, 100, 200, 500 µg L-1 and 
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test samples adjusted to pH10 ± 2 using 2 mL aliquot buffer (containing 16.9 NH4Cl 

in 143 mL concentrated NH4OH diluted to 250 mL with distilled water), vortexed and 

absorbance at 510 nm taken after 15 minutes. 

 

2.2.6.6. Quantification of S. oneidensis biofilm using confocal microscope. 

Confocal microscope is a valuable tool for studying biofilm matrix as it allows real-

time visualisation of fully hydrated specimens. It provides three-dimensional optical 

sectioning of fluorescently labelled sample (Schlafer and Meyer, 2017). Hence, 

SYPRO Ruby stain was used for the confocal microscope examination of C. 

beijerinckii, and S. oneidensis biofilm formation because it labels most classes of 

proteins including glycoproteins, phosphoproteins, lipoproteins, calcium binding 

protein and fibrillar protein and other proteins that are difficult to stain. This stain has 

been tested to stain matrix of Pseudomonas aeruginosa and some strain of E. coli. 

In-order to examine and quantify biofilm formation by S. oneidensis and C. 

beijerinckii, the cells were cultured separately on cover slips in “Corning Costa 6 Well 

Plates” for 2 days. The cover slips were carefully rinsed in 100 mM phosphate buffer 

pH 7 and thereafter placed in a fresh Corning Costa 6 well plates. SYPRO Ruby 

stain 200 µL was added to each of the biofilm samples on the slips without offsetting 

the biofilm. The samples were incubated for 30 minutes protected from light. After 

incubation, filter sterilized water was used to remove excess stain and the stained 

samples were placed into a fresh Corning Costa 6 well plates covered with 3 ml of 

filter sterilized water and observed under a confocal microscope. 

2.2.6.7. Electrochemical monitoring. 

Polarization curves for measuring power density vs current density plots were 

constructed using a range of external resistances from 10 Ω to 1 MΩ. The external 

circuit of the MFC system for each test was opened to connect various external 

resistances on the fourth day when the system exhibited a stable voltage across the 

initial 1000 Ω external resistor. The current flowing through each external load was 

calculated using Ohm’s law (equation 13). 

Equation 13:  I   =   
𝐸

𝑅
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Where E is the potential across the resistor (mV), I is the current flowing through the 

load (mA) and R is the external resistance (Ω). 

 

The power generated (Equation 14) was calculated with the following expression 

(Fernando et al., 2012). 

Equation 14: P = E*I 

                    

 Where P is the power produced (mW), E is the potential difference between anode 

and cathode (mV) and I is the current generated (A). 

 

The power density and current density values were calculated by normalising power 

and current values to the geometric surface area of the anodic electrode (25 cm2). 

 

Coulombic efficiency (CE) was calculated by integrating the measured current over 

time based on the observed COD removal (Equation 15) by using the criteria 

outlined in Zhao, et al. 2009. CE is a measure (%) of the amount of electrons 

generated via substrate oxidation that are reflected as current compared to the 

theoretical number of electrons expected calculated using Faraday’s second law of 

electrolysis. 

Equation 15:    𝐶𝐸 (%) =
(𝑀 ∫ 𝐼 𝑑𝑡

𝑡
0 )

∆𝐶𝑂𝐷∗𝐹𝑏𝑉 𝑎𝑛𝑜𝑑𝑒
   ×     100 

 

2.2.6.8. Statistical analysis 

All experimental data indicated on the graphs are the means of triplicate experiments 

unless otherwise stated and the error bars represent the standard deviation of the 

mean (SD). Statistical analysis of data was conducted by one-way analysis of 

variance (ANOVA) using Prism GraphPad 5.0. 

 

2.3. Results 

2.3.1. Summary of results 

The application of different co-cultures were investigated for improving MFCs 

performance on electricity production and wastewater remediation. The hypothesis 
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was that cleverly defined co-cultures could improve substrate turnover rate and 

hence improve electricity production. The first study involved studying a co-culture of 

C. beijerinckii and S. oneidensis (Table 2.4). The outcome was 87 mW m-2 of 

maximum power produced and improved substrate turnover rate to 67 ± 3% which 

was three-fold more than the substrate turnover rate of 20 ± 4% by S. oneidensis 

alone on 15 days of the study. 

Table 2.4. Summary of results by utilization of co-cultures and pure cultures of S. 

oneidensis and C. beijerinckii on the substrate removal and power generation from 

500 mg L-1 glucose. 

  

S. oneidensis 

 

 Co-culture:          

S. oneidensis         

with C. beijerinckii 

 

C. beijerinckii 

Power Production 

(mW m-2) 

48 ± 2  87 ± 4 60 ± 3  

% COD Reduction 20 ± 4 67 ± 3 70 ± 6 

 

The second study involved studying co-cultures of G. sulfurreducens, C. beijerinckii 

and S. cerevisiae (Table 2.5). The co-culture of all three strains produced the 

maximum power output of 80 ± 2 mW m-2 but with 41% substrate turnover at 15 

days. The study utilized synthetic wastewater containing 500 mg L-1 utilized modified 

with Luria Bertani medium containing (g/L) tryptone – 10.0 and yeast extract – 5.0. 

The co-culture of all three strains produced the maximum power output of 80 ± 2 mW 

m-2 but with 41% substrate turnover at 15 days. 
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Table 2.5. Summary of results by utilization of co-cultures and pure cultures of C. 

beijerinckii, S. cerevisiae and G. sulfurreducens on substrate removal and power 

generation from 500 mg L-1 glucose. 

  

C. beijerinckii 

 

     Co-culture: 

  C. beijerinckii,                

S. cerevisiae and         

G. sulfurreducens 

 

G. sulfurreducens 

 

S. cerevisiae 

Power Production 

(mWm-2) 

    74 ± 4         80 ± 2      23 ± 2     35 ± 3 

% COD 

Reduction 

    40 ± 3         41 ± 3      32 ± 4     35 ± 5 

 

The co-culture of all three strains produced the maximum power output of 80 ± 2 mW 

m-2 but with 41% substrate turnover at 15 days. The study utilized synthetic 

wastewater containing 500mgL-1 utilized modified with Luria Bertani medium 

containing (g/L) tryptone – 10.0 and yeast extract – 5.0. 

The third study (summarised in Table 2.6) involved using a co-culture of S. 

oneidensis, C. beijerinckii and S. cerevisiae for remediation of wastewater containing 

500 mg L-1 of phenol. The best outcome was from C. beijerinckii alone which 

reduced the phenol concentration to 5.2 mg ml-1 (99% reduction); S. oneidensis 

phenol concentration reduction was to 25 mg ml-1 (95% reduction) at 35 days of the 

study. With regards to power production, S. oneidensis produced 4.6 ± 0.02 mW m-2 

while C. beijerinckii produced 2.7 ± 0.03 mW m-2 on the third day of the study. 
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Table 2.6. Summary of results by utilization of co-cultures and pure cultures of S. 

oneidensis, S. cerevisiae and C. beijerinckii on substrate removal and power 

generation from 500 mg L-1 phenol. 

  

S. oneidensis 

 

 Co-culture:          

S. oneidensis,       

S. cerevisiae and    

C. beijerinckii 

 

C. beijerinckii 

 

S. cerevisiae 

Power Production (mW 

m-2) 

4.6 ± 0.02    2.13 ± 0.01 2.7 ± 0.03 1.85 

% Phenol Reduction 95          98 99 97 

 

Another study (summarised in Table 2.7) investigated the use of pure cultures of S. 

oneidensis with exogenous addition of varying concentrations of Riboflavin (20, 30, 

40 µM). The addition of 30 µM improved maximum power production from 7.3 mW 

m-2 (control) to 54 mW m-2 on day 2 of the experiment while phenol concentration 

was reduced by 90% (30 µM Riboflavin addition) compared to 80% (control) on day 

8 of the experiment.  

Table 2.7. Summary of results by investigating the effect of Riboflavin on pure 

cultures of S. oneidensis for substrate removal and power generation from 500 mg L-

1 phenol. 

  

S. oneidensis 

 

S. oneidensis (20 µM) 

 

  

S. oneidensis (30 µM) 

 

 

S. oneidensis (40 µM) 

Power Production 

(mW m-2) 

7.4 ± 0.04 29 ± 1 48 ± 2 54 ± 3 

% Phenol 

Reduction  

80 75.2 90 89.2 
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2.3.2. Results and discussion for study involving co-culture of C. beijerinckii 

and S. oneidensis. 

 

2.3.2.1. Voltage-time profiles and polarization curves of co-culture work 

involving C. beijerinckii and S. oneidensis. 

The test of using C. beijerinckii and S. oneidensis as pure cultures and as co-culture 

for the maximization of 500 mg L-1 on voltage-time profile, polarisation, and power 

density curves are shown in Figures 2.6 and 2.7. What is striking in Figure 2.7 is the 

similarities in the voltage time profile between the co-culture and the individual 

strains. The open circuit control gave the maximum potential difference as expected, 

as under open circuit conditions there is infinite resistance meaning no electron flow 

and hence no electrochemical losses. 

 

Figure 2.7. Voltage time profiles for the co-culture experiment investigated using 

1000Ω resistor for 14.5 days. Co-culture open result represents the ideal behaviour 

of the co-culture while the co-culture closed represents the real potential of the 

tested co-culture which behave similarly with other tested studies except the control 

with no microorganism. 
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Figure 2.8. (A) Polarization curves (showing how voltage can be maintained as a 

function of current production) for the co-culture experiment involving C. beijerinckii 

and S. oneidensis investigated with wastewater containing 500 mg L-1 glucose; (B) 

Comparison of MFC performance (power density vs current density) obtained by 

varying the external circuit resistance (10Ω-50,000Ω). Control curves are too small to 

be seen on the graphs. The error bars represent standard deviation of the mean 

(n=3). 

      

0

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

P
o

te
n

ti
al

 (
m

V
)

Current density (Am-2)

Control Coculture C. beijerinckii S. oneidensis

0

10

20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

P
o

w
e

r 
d

e
n

si
ty

  (
m

W
m

-2
)

Current density (Am-2)

Control Coculture C. beijerinckii S. oneidensis

A 

B 



49 
 

Power density measurements (Figure 2.8B), showed that the maximum power 

density that stands out was recorded by the co-culture and gave 87±4 mW m-2; the 

pure culture of C. beijerinckii gave 60±3 mW m-2 while S. oneidensis gave 48±2 mW 

m-2.  

 

  

Figure 2.9. Confocal microscope analysis of C. beijerinckii biofilm (A) showing more 

denser cells in the background than S. oneidensis biofilm (B) grown under non-

MFCs condition, on microscope slide in six well plates using MSM medium 

containing 500 mg L-1 glucose grown at 30℃ for 2 days under complete anaerobic 

conditions. 

2.3.2.2. COD degradation and coulombic efficiency (CE). 

 

Table 2.8 gives a comparison of substrate degradation (as glucose and as COD) and 

CE on day 15 of the investigation. What can be seen clearly is the high COD 

reduction (67%) by C-closed compared to 20% by S. oneidensis but was similar 

(p>0.05) to the COD reduction by C. beijerinckii. However, in comparison to C. 

beijerinckii the CE for C-closed was much higher (10%) compared to 0.7% for C. 

beijerinckii. The degradation of glucose was similar in all test runs. The highest CE 

(35%) was obtained from S. oneidensis although it gave a low substrate degradation 

of 20%. 

 

 

B A 
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Table 2.8: Comparison of substrate degradation and electron recovery at 360 h of 

the investigation. Values are means of triplicate experiments ± standard deviation. 

NA = not applicable. 

 

2.3.2.3. Relative abundance of S. oneidensis and C. beijerinckii in C-closed and 

C-open systems. 

The relative abundance (%) of microorganisms calculated as the ratio between the 

measured copy numbers for each group-specific quantitative PCR (q-PCR) assay to 

all the bacteria in the co-culture assay and is presented in Figure 2.10. The result of 

efficiency of the real-time PCR for specific amplification of target genes is presented 

in Figure 2.11. What is interesting in the Figure 2.10 is that there is no significant 

difference in the relative abundance at the end of investigation between the two 

strains co-cultured under closed circuit condition (S. oneidensis approximately 

recorded 50.1 ± 1% while C. beijerinckii approximately was 49.9 ± 2%). However, in 

comparison to the starting inoculum, the relative abundance of S. oneidensis was 

markedly increased by 23% while C. beijerinckii was reduced by 17.1%. In the open 

circuit MFC (MFC left disconnected from 1000Ω resistor), the relative abundance of 

S. oneidensis was 36±1% while C. beijerinckii was 64±3% at the end of the 

investigation. However, in comparison to the starting inoculum, there was little 

significant changes on the relative abundance of S. oneidensis and was increased 

by 3% while C. beijerinckii was decreased by 3%. 

 

 

 S. oneidensis

  

C. beijerinckii            C-closed          C-open 

COD degradation (%)         20 ± 4 70 ± 6 67 ± 3 20 ± 5 

Glucose degradation (%)    86 ± 6 79 ± 5 82 ± 4 86 ± 4 

Coulombic efficiency (%)     35 ± 1 0.7 ± 0.5 10 ± 2 NA 
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Figure 2.10. Relative abundance analyses at the start and end of the investigation 

for the two target organisms in the co-culture experiment. (A) Comparison of relative 

abundance tests at start and end for the C-closed MFCs. (B) Comparison of relative 

abundance tests at start and end for the C-open MFCs. The bars represent standard 

deviation of the mean (n=3). 

 

Figure 2.11: Standard calibration curves for determining the efficiency of the real 

time-PCR assay; graphs show Ct values (correlation of fluorescence to amplified 

product) for known DNA concentrations (x10 dilution fold series) of (A) C. beijerinckii 

and (B) S. oneidensis. 
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2.3.2.4. Metabolites of glucose utilization. 

Glucose was widely metabolised across all tests (Table 2.9). The products of 

metabolism upon analysis were ethanol, butyric acid, and acetic acid. What is 

striking in the table is higher concentrations of metabolites produced by C. 

beijerinckii compared to other tests. What can also be clearly seen is that metabolite 

concentrations in the C-open MFCs were generally higher than in C-closed MFCs. 

Ethanol was not detected from all the tests at the end of the study. 

Table 2.9. Comparison of glucose degradation, maximum power generation and 

fermentation products at the 72 h and 360 h of the investigation.  ND = not detected; 

G = Glucose.   Values are means of triplicate experiments ± standard deviation. 

                                                            Fermentation Products (mg/ml)                                                                                              

                                                                        Acetic Acid            Butyric Acid           Ethanol    

 

Test                      G   (%)     Pmax  (mW m-2)      72h     360h        72h     360h                72h   360h 

S. oneidensis            86 ± 6          48                  50      187         0.818   0.996               ND     ND 

C. beijerinckii            79 ± 5          60                 422    307            95       233                153     ND 

Co-culture (Closed)   82 ± 4          87                 178    237          0.880      82                 ND     ND 

Co-culture (Open)       86 ± 4        ND                 231    226          0.923    105                 ND    ND 

 

2.3.3. Results and Discussion for study involving co-culture of C. beijerinckii, 

G. sulfurreducens and S. cerevisiae. 

 

2.3.3.1. Voltage-time profiles and polarization curves of co-culture work 

involving C. beijerinckii, G. sulfurreducens and S. cerevisiae. 

The test of using pure cultures and co-cultures of C. beijerinckii, G. sulfurreducens 

and S. cerevisiae on maximization of 500 mg L-1 glucose on voltage-time profile for 

this study is shown in Figure 2.12. It reveals, that the peak voltage produced was 

404 mV produced by the pure culture of C. beijerinckii. What is interesting in the 

chart is that the co-cultures: (1) C. beijerinckii, S. cerevisiae and G. sulfurreducens 
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(2) G. sulfurreducens and C. beijerinckii which produced 371mV and 362 mV 

respectively. 

The least maximum voltage was 89 mV produced by the co-culture of S. cerevisiae 

and C. beijerinckii. 

 

 

Figure 2.12. Voltage-time profile for pure cultures and co-cultures of G. 

sulfurreducens, C. beijerinckii and Saccharomyces cerevisiae investigated using 

synthesized wastewater containing 500 mg L-1 glucose. 

As shown in Figure 2.13B reveals that the maximum power produced was 80±2mW 

m-2 produced by the co-culture of C. beijerinckii, S. cerevisiae and G. sulfurreducens 

slightly higher than 74±4 mW m-2 produced by C. beijerinckii. What is interesting in 

the chart is the power produced by the co-culture of C. beijerinckii and S. cerevisiae 

(less than 1 mW m-2). 
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Figure 2.13. (A) Comparison of MFC performance (power density vs current density) 

obtained by varying the external circuit resistance (10Ω – 50,000Ω); (B) Polarization 

curves for the co-culture experiment. Control curves are too small to be seen clearly 

on the graph. 

2.3.3.2. COD degradation and coulombic efficiency. 

Comparison of total substrate reduction expressed as COD (%) and coulombic 

efficiency as CE (%) is shown in Table 2.10. What can be seen clearly is the peak 

COD reduction of 55% recorded by the co-cultures throughout the studies, except for 

the co-culture involving the three strains. What is interesting is that pure cultures of 

G. sulfurreducens produced the least COD reduction of 32%.  
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Table 2.10. Comparison of substrate degradation (COD%) and coulombic efficiency 

(CE%) between tests. 

 

2.3.3.3.  Relative abundance of co-culture of G. sulfurreducens and C. 

beijerinckii. 

The result on comparison of relative abundance test for coculture of C. beijerinckii 

and G. sulfurreducens is shown in Table 2.11. 

 

Table 2.11. Comparison of relative abundance of the two target organisms in the co-

culture tests at start and end of the investigation. 

 

                   Tests                                                          COD (%)                  CE (%) 

C. beijerinckii + S. cerevisae                                                      55 ± 2                             1  

S. cerevisae                                                                                35 ± 5                            7 ± 0.1 

G. sulfurreducens                                                                       32 ± 4                             8 ± 0.1 

G. sulfurreducens + S. cerevisae                                               55 ± 3                             4  

C. beijerinckii                                                                             40 ± 3                             13 ± 0.3 

G. sulfurreducens + C. beijerinckii                                             55 ± 4                              6 ± 0.1 

C. beijerinckii + S. cerevisae + G. sulfurreducens                     41 ± 3                              8 ± 0.2 

                                                                                  Co-culture                                                 

                                                     G. sulfurreducens                   C. beijerinckii                                    

   % composition at Start                  36                                             64                              

% composition at Day 10                  62                                             38                              
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The result indicated that co-culture of C. beijerinckii reduced from 64% and G. 

sulfurreducens increased from 36% at the start of the studies to 38% and 62% 

respectively at the end of the studies.  

 

2.3.3.4. Products of metabolism. 

As shown very high concentrations of ethanol, acetic acid and butyric acid were 

produced at the Day 2 of the studies. However, at Day 10 of the study what can be 

seen clearly is that they were insignificantly detected for the tests involving pure 

culture of C. beijerinckii, and similarly stands out where it was utilized as co-culture. 

From the metabolites detected only acetic acid was utilized for power production in 

the co-culture involving the three organisms. 

Table 2.12. Comparison of fermentation products produced at Day 2 and Day 10 of 

the investigation between pure cultures and co-cultures studied. 

 

 

 

                      Fermentation Products (mg/ml) 

                                        Ethanol                         Acetic Acid                      Butyric Acid                      

Tests                            48h     240h                    48h      240h                      48h        240h 

G. s                              593      489                     4105       5482                     4153        6634 

G. s + C. b + S. c         618      618                    3395          8                         6054        6054 

G. s + C. b                    773      ND                     3894        ND                       4555         ND 

C. b                              952     0.73                     5378        ND                       5662         ND 

C. b + S. c                    161       ND                    4468       2912                      4919        6371 

S. c                              2471      ND                    5523      1963                       3715        2979 

G. s + S. c                    112       227                   5080      4187                       4827       4827 
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2.3.3.5. Discussion. 

 

Specific application of microorganisms in biotechnology involves the use of pure 

culture to reduce contaminants and avoid the longer down-times during sterilization 

(Pandhal and Noirel, 2014). However, in most cases, co-culturing of microorganisms 

provide more advantages such as improving on efficiency of complex biochemical 

processes than using pure culture (Pandhal and Noirel, 2014) and often produce 

more electricity production than pure culture or undefined mixed culture in MFCs 

(Table 2.13). Co-cultures is also employed as bio-augmentations in real world 

practical applications for example for the bioremediation of highly contaminated 

oilfield soils (Qiao et al., 2014; Mrozik and Piotrowska-Seget, 2010).Bio-

augmentations is defined as a technique for improvement of degradative capacity of 

contaminated soil by introduction of specific competent strains or consortia of 

microorganisms (Mrozik and Piotrowska-Seget, 2010).  Microbes are ubiquitous and 

inevitably live in communities in the environment (Kouzuma et al., 2015a). They 

secrete varieties of metabolites for the growth of other organisms (Kouzuma et al., 

2015b). However, on the flipside, interactions between organisms in co-culture could 

enhance or inhibit the activities of other organisms (Bader et al., 2010). 

 

The aim of the first coculture experiment was to maximise the turnover rate of 

glucose as a substrate for electricity production in microbial fuel cells. Hence, the 

influence of the use of co-culture of S. oneidensis and C. beijerinckii on the 

maximization of substrate was investigated and compared to using their pure 

cultures. The resulting performances are compared in terms of the substrate 

utilization, power, and polarization curves (produced form polarization experiments). 

Figure 2.7 indicates similar potential differences in the MFC utilising pure and co-

culture under closed circuit conditions. However, there were differences in power 

production; these differences could be because of possible differences in 

electrochemical losses – activation and polarisation losses required for an 

oxidation/reduction reaction to occur during electron transfer (Mansoorian et al., 

2014)  
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Table 2.8 indicates that the co-culture enhanced COD reduction which was not 

statistically significantly different (p>0.05) from that of C. beijerinckii but differed 

significantly with the COD reduction from S. oneidensis. Clostridia are fermentative 

organisms and they have been shown under MFC conditions to convert fermentation 

end products into alcohols e.g. butanol (Finch et al., 2011). In the co-culture, S. 

oneidensis can utilise the end products of C. beijerinckii releasing carbon dioxide 

(Rosenbaum et al., 2011). This could explain the similar COD reduction for C. 

beijerinckii and the co-culture. The low COD reduction in the case of S. oneidensis 

could be explained in terms of high biomass production and/or accumulation of 

unknown intermediates (see Appendix 3) which are not broken down.  The COD 

utilization in the open circuit was lower than that was used in the closed circuit 

condition and consistent with previous report (Qu et al., 2012)  

 

Figure 2.8B suggests that more power production can be achieved by using the co-

culture rather than using pure cultures which some previous investigations also 

supported (Read et al., 2010; Ren et al., 2007 and Qu et al., 2012).  Although the 

power produced is higher than the pure culture, the result was less than the sum of 

the individual strains perhaps because C. beijerinckii’s performance could have been 

inhibited by redox active molecules secreted by S. oneidensis. A study using the 

same approach as this study by studying the co-culture of C. cellulolyticum and G. 

sulfurreducens recorded maximum power of 143 mW m-2  from carboxylmethyl 

cellulose (Ren et al., 2007) but it is difficult to make a strict comparison in terms of 

the maximum power generated with this study (87 mW m-2) because of differences in 

the nature of strains co-cultured and the substrate used for the study. One possible 

explanation why the MFC system operated with pure culture of S. oneidensis 

generated low power density when compared with C. beijerinckii is the low amounts 

of substrate utilized by S. oneidensis (20% of the total COD content of the substrate) 

which is almost 3 fold less compared to the total substrate consumed by C. 

beijerinckii and therefore indicated it is a poorly fermentative organism. This 

observation can be correlated with the study reported by Biffinger et al., 2008, that 

glucose is not utilised effectively by S. oneidensis under strictly anaerobic conditions 

or that conditioning with nutrients such as lactate is needed for timely utilization of 

glucose (Howard et al., 2012). Coulombic efficiency results (Table 2.8) suggest that 

S. oneidensis contributed most electrons transferred by the co-culture. The low CE 
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for the co-culture suggests the relationship between S. oneidensis and C. beijerinckii 

was an inhibitory one with C. beijerinckii inhibiting the electron transfer abilities of S. 

oneidensis perhaps through biofilm formation (Qureshi, et al. 2005) which could also 

explain the result of the power production (Zhang et al., 2013; Baranitharan et al., 

2015). Although S.oneidensis  and C. beijerinckii  have similar doubling time 40 and 

38 minutes respectively (Abboud et al., 2005; Liyanage et al., 2000) the relative 

abundance test result suggested S. oneidensis is more predominant (3% increase) 

at closed circuit condition; it is consistent with the observation made by Qu et al., 

2012 but inconsistent with open circuit condition. 

The aim of the second coculture experiment was to enhance the turnover rate of 

500mg L-1 glucose to electricity production by employing the use of more complex 

co-culture involving G. sulfurreducens, C. beijerinckii and S. cerevisiae. The result in 

Figure 2.12 and 2.13 demonstrated that cocultures are needed for the improvement 

of voltage and power production in MFCs from wastewater contaminated with level 

of 500mg L-1 glucose. However, it is difficult to make a strict comparison between 

this study that produced 80 mW m-2 from glucose with studies by Ren et al., 2007 

that produced 143 mW m-2 and 59.2 mW m-2 from carboxymethyl cellulose and 

MN301 cellulose respectively or with the study by Bourdakos et al., 2014  using 

acetate, because of differences in the nature of strains that were studied and the 

substrate used for the study. Table 2.12 suggests that C. beijerinckii improved 

conversion of fermentation products to electricity when co-cultured with the other 

microorganisms than when used as a pure culture. S. cerevisiae was associated with 

situations where high levels of fermentation products were produced. 
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Table 2.13. Comparison of power production produced by cocultures and mixed 

cultures 

Coculture Rationale Power density Reference 

C. beijerinckii and S. 

oneidensis 

Improvement of glucose 

turnover rate and hence 

rate of electron 

generation 

87 mW m-2 produced by 

the coculture compared 

with 48 mW m-2 produced 

by S. oneidensis 

This study 

C. beijerinckii, S. 

cerevisiae and G. 

sulfurreducens 

Improvement of glucose 

turnover rate and hence 

rate of electron 

generation 

80 mW m-2 produced by 

the coculture compared 

with 23 mW m-2 produced 

by G. sulfurreducens 

This study 

Geobacter 

sulfurreducens and 

Escherichia coli 

Using E. coli as a 

facultative organism for 

consumption oxygen 

leaking into a single 

chamber reactor  

 63 mW/m3 produced by 

the coculture, limited by 

succinate produced by E. 

coli compared to 128 mW 

m-2 produced by pure 

culture of G. 

sulfurreducens 

Bourdakos et al., 2014 

Klebsiella pneumonia 

and Lipomyces starkeyi 

In situ production of 

redox mediator by K. 

pneumonia 

12.87 W m-3 (3-6 fold 

increase over control) 

Islam et al 

Clostridium cellulolyticum 

and Geobacter 

sulfurreducens 

In situ electricity 

production directly from 

cellulose 

143 mW m-2 and 59.2 

mW m-2 produced 

comparable to none by 

the control from 1 g L-1 

carboxymethyl cellulose 

and MN301 cellulose 

respectively. 

Ren et al., 2007 

Mixed culture In situ electricity 

production directly from 

cellulose 

42.2 mW m-2 and 33.7 

mW m-2 produced from 2 

g L-1 carboxymethyl 

cellulose and from 

MN301 cellulose 

respectively 

Ren et al., 2007 



61 
 

2.3.4. Results and Discussion for study involving co-culture of S. oneidensis, 

C. beijerinckii and S. cerevisiae from wastewater contaminated with 500 mg L-1 

phenol. 

2.3.4.1. Power production and polarization curves of co-culture work involving 

S. oneidensis, C. beijerinckii and S. cerevisiae from 500 mg L-1 phenol contaminated 

water. 

The test of using pure cultures and co-cultures of S. oneidensis, C. beijerinckii and 

S. cerevisiae for improving simultaneous remediation of 500 mg L-1 phenol 

contaminated wastewater for power density and polarization curves is shown in 

Figure 2.14. The peak power recorded was 4.6 ± 0.02 mW m-2 produced by the pure 

culture of S. oneidensis closely similar to 4.25 mW m-2 produced by co-culture of C. 

beijerinckii and S. cerevisiae and also closely similar to the case of co-culture of C. 

beijerinckii and S. oneidensis produced 4.09 mW m-2.  Pure culture of C. beijerinckii 

produced 2.7 ± 0.03 mW m-2, co-culture of S. oneidensis, C. beijerinckii and S. 

cerevisiae produced 2.13 ± 0.01 mW m-2, co-culture of S. oneidensis and S. 

cerevisiae produced 1.9 mW m-2, pure culture of S. cerevisiae produced 1.85 mW m-

2.  
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Figure 2.14. (A) Comparison of MFC performance (power density vs current density) 

obtained by varying the external circuit resistance (10 Ω – 50,000 Ω); (B) 

Polarization curves for the co-culture experiment. Control curves are too small to be 

seen clearly on the graph. The bars represent standard deviation of the mean (n=3). 

2.3.4.2. Comparison of 500 mg L-1 phenol remediation used as substrate in 

tested systems in MFCs. 

The result on remediation of phenol studies (Figure 2.15) at 35 days showed that 

 

Figure 2.15. Phenol degradation by the pure culture and co-cultures of S. 

oneidensis, C. beijerinckii and S. cerevisiae studied for 35 days. 
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C. beijerinckii achieved 99% reduction compared to 97% by the pure culture of S. 

cerevisiae and 95% by the pure culture of S. oneidensis. The best result of co-culture 

was 99% by S. oneidensis and S. cerevisiae; 98% by co-culture of S. oneidensis, C. 

beijerinckii and S. cerevisiae.  

2.3.5. Results and Discussion for study involving exogenous addition of 

riboflavin. 

2.3.5.1. Effect of Riboflavin on voltage-time profile and Power production by S. 

oneidensis from remediation of 500 mg L-1 phenol contaminated wastewater. 

 

Riboflavin is a redox mediator widely used for enhancing energy production and 

bioremediation in MFCs. In order to the test the effect on the voltage output of S. 

oneidensis during the remediation of 500 mg L -1 of phenol; varying concentrations 

20, 30 and 40 µM were tested. The effect on voltage-time profile is shown in Figure 

2.16 showing varying degrees of stationary voltage between 341 to 352 mV 

occurring at 0 days to 4 days of the studies before gradual decline. The pure culture 

with exogenous addition of 40 µM concentration had a prolonged stationary phase 

before gradual decline after 4 days. Voltage was observed to increase after a 

gradual decline from exogenous addition of 20 µM and 30 µM Riboflavin 

concentrations. 

 

 

 

Figure 2.16. Voltage-time profiles of pure cultures of S. oneidensis utilizing phenol 

containing wastewater in the presence of 20, 30, 40 µM Riboflavin exogenously 

added. 
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Figure 2.17. (A) Comparison of MFC performance (power density vs current density) 

obtained by varying the external circuit resistance (10Ω – 50,000Ω); (B) Polarization 

curves for the pure culture experiment. Control curves are too small to be seen 

clearly on the graph. The error bars represent the standard deviation of the mean 

(n=3). 

As observed from the results on power generation presented in Figure 2.17, what is 

striking is that power recorded increases as the Riboflavin concentration increases. 

The peak power produced was 54 ± 3 mW m-2 by 40 µM Riboflavin, followed by 48 ± 

2 mW m-2 using 30 µM Riboflavin. At 20 µM concentration, the power was 29 ± 1 mW 

m-2 while the control with no Riboflavin was 7.4 ± 0.04 mW m-2. 
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2.3.5.2. Comparison of 500mgL-1 phenol remediation used as substrate for pure 

culture of S. oneidensis using Riboflavin of different concentration tested in MFCs 

system. 

 

 

Figure 2.18. Phenol degradation by the pure culture of S. oneidensis studied utilizing 

20, 30, and 40 µM exogenous addition of Riboflavin concentrations. 

The result on phenol remediation studied for 8 days is represented in Figure 2.18. 

What Figure 2.18 reveals is that exogenous addition of 30 µM riboflavin produced 

the best reduction effect (52 mg L-1). Other results 20, 40 and control on phenol 

reductions were 124, 68 and 100 mg L-1 respectively. 

 

2.3.5.3. Discussion. 

The aim of the experiment was to reduce 500 mg L-1 phenol-contaminated 

wastewater in MFCs using co-cultures and pure cultures of S. oneidensis, C. 

beijerinckii and S. cerevisiae to dischargeable level of 5 mgL-1 the maximum 

permissible limit for phenolic concentrations in industrial effluent before discharging 

into municipal sewers and surface waters (Pant et al., 2010; Singh and Srivastava, 

2002). Phenol is one of the most commonly found aromatic compounds in 

wastewater that concentration above 500mg L-1 produce inhibitory effects to aquatic 

life and give objectionable taste to drinking waters even at low concentrations (Tian 
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et al., 2017). Few studies: Al-Shehri, 2015, Friman et al., 2013; Haiping et al., 2008; 

Jiang et al., 2012; Luo et al., 2009;  Song et al., 2014  have studied phenol 

degradation in MFC; these works often require supplementation of glucose with 

phenol for these studies. The results of the preliminary study in Figure 2.18 suggests 

that pure culture of S. oneidensis could potentially be utilized for the bioremediation 

of phenol-contaminated wastewater at a level of 500 mg L-1 without the need for 

coculturing with either C. beijerinckii or S. cerevisiae in MFCs. Hence, motivated 

another study investigating use of Riboflavin molecules which has been used for 

improving power production from petroleum hydrocarbons (Adelaja et al., 2015; 

(Zhai et al., 2016)). The result suggested that, increasing the concentration of 

Riboflavin to 40 µM enhanced power generation to 54 mW m-2 (Figure 2.17) more 

than the preliminary work of this study of 1.85 mW m-2 (Figure 2.14). Hence, 

suggesting that increasing concentration of riboflavin to optimal level, results to 

increasing the power generation; this is consistent with previous work using 

Riboflavin such as Pandit et al., 2014 and Sun et al., 2013, and in the study when 

glucose was supplemented with phenol for electricity production (Jiang et al., 2012) . 

The pure culture of S. oneidensis using 30 µM concentrations of Riboflavin in this 

study (Figure 2.18)  gave the best phenol removal. Recent work comparing the effect 

of five redox mediators showed  that 30 µM of RiboRiboflavin enhanced power 

generation (Al-Shehri, 2015).  

2.4. Concluding remarks. 

The use of fermentative bacteria for the maximization of glucose or phenol 

conversion to simpler bioprocessing products that are easily utilizable for 

bioelectricity production by S. oneidensis was demonstrated. This approach 

represents the model way of recovering bioenergy from wastewater contaminated 

with glucose that is not preferred as a primary source of substrate for electricity 

production by S. oneidensis. The result of the first study involving S. oneidensis and 

C. beijerinckii corroborates the result of the second studies using C. beijerinckii, G. 

sulfurreducens and S. cerevisiae on the influence on power and COD utilization. By 

using C. beijerinckii with S. oneidensis %COD utilized was increased from 20% to 

67% while electricity was increased from 48 mW m-2 to 87 mW m-2. By coculturing C. 

beijerinckii and S. cerevisiae with G. sulfurreducens, COD utilization was increased 

from 32% to 41% while power was increased from 23 mWm-2 to 80 mWm-2. The 
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improved electricity production by the co-cultures was as a result of fermentation 

products made available for metabolism by the electroactive bacteria S. oneidensis 

or G. sulfurreducens i.e. syntrophy . This work further demonstrated that pure culture 

of S. oneidensis can potentially be used to recover energy from wastewater 

contaminated with phenol, while pure cultures of C. beijerinckii strain 6444 can be 

used to remediate phenol wastewater by using coculture modifications employed in 

this study. Exogenous supplementation of Riboflavin to phenol wastewater to a 

concentration level at 30 µM concentration can be used to improve the remediation 

of phenol wastewater, while Riboflavin concentration at a level of 40 µM can be used 

to improve the electricity recovery while at the same time remediating phenol 

wastewater in MFCs system.  
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Chapter 3 

Contribution of direct electron transfer mechanisms to 

overall electron transfer in MFCs utilising S. oneidensis as 

biocatalyst. 

 

3.1. Introduction 

Three possible mechanisms utilized by electrochemically active bacteria for electron 

transfer to anodes have been suggested (Figure 3.1): directly using a cascade of 

membrane proteins and/or conduction by nanowires, and mediated electron transfer.  

 

Figure 3.1. Hypothetical extracellular electron transfer (EET) pathways at an anode: 

A – direct electron transfer via membrane bound cytochromes in direct contact with 

the anode; B – direct electron transfer via conductive nanowires (pili); C – mediated 

electron transfer using redox shuttles  

Dissimilatory metal reducing bacteria like S. oneidensis and G. sulfurreducens are 

reported to conduct direct electron transfer by using membrane-bound c-type 

cytochromes for transferring respiratory electrons to solid electrodes. This 
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mechanism transfers electrons directly via contact with a solid electrode and does 

not use diffusional redox mediators (Wrighton et al., 2011).  

Mediated electron transfer is thought to be involved through the use of various 

natural, synthetic electron shuttle, or soluble endogenous redox-active molecules. 

These include using endogenous compounds such as quinones, Riboflavin 

mononucleotide (FMN), and phenazines produced and used by bacteria; or using 

other synthetic exogenous compounds such as neutral red and methylene blue to 

shuttle electrons from the electron transport chain to solid electrodes (Okamoto et 

al., 2012). In addition to the above mechanisms, electrons could also be transported 

to the electrode surfaces by using pilus-like appendages containing c-type 

cytochromes. These are termed bacterial nanowires and are utilized by both S. 

oneidensis and G. sulfurreducens for distant transfer of electrons directly to 

electrode surfaces (Wrighton et al., 2011). 

Low extracellular electron transfer efficiency between electroactive bacteria and 

anodes remains one of the major bottlenecks in the practical application of microbial 

fuel cells. Assuming more than one electron transfer mechanism is operating in a 

given microorganism, it would be useful if the relative contribution of these 

mechanisms to electron transfer could be quantified. Efforts could then be geared 

towards improving the efficiency of that mechanism if its contribution is found to be 

relatively large by comparison to other mechanisms.  

Electrochemically active bacteria such as Shewanella form biofilms during growth 

and it has been demonstrated that the power output of MFCs was directly dependent 

on biofilm growth and composition (Okamoto et al., 2012). However, it is not clear 

what contribution is made by the different electron transfer mechanisms to electricity 

production or whether aiding biofilm formation for example by adding quorum 

sensing molecules can improve electricity production. 

Microbial electron transport involves transferring electrons from a low potential 

energy donor to an acceptor (more positive redox potential) known as redox 

processes. Microorganisms use this process to adapt to different environmental 

conditions for metabolism and for energy gains. To achieve this process some 

microorganisms such as S. oneidensis have developed enormous varieties of 

electron transport chains for the establishment of motive force that drive ATP 
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synthesis. Some of these systems (that couple electron from donor such as NADH to 

an acceptor such as H+, Oxygen, nitrate and fumarate) include primary 

dehydrogenases, membrane-localised multiprotein complexes (cytochrome), 

quinones (lipophilic molecules), flavines, heme (catalytic cofactors), iron-sulfur or 

copper ions (Kracke et al., 2015).  This study therefore investigated the contribution 

of direct electron transfer mechanisms to electricity production, for the first time by 

physically retaining S. oneidensis cells close to or away from the anode electrode 

using a dialysis membrane as well as immobilising the cells in alginate beads. 

3.2. Materials and Methods 

3.2.1 Chemicals 

Dialysis membrane tubing (12000 Dalton MWCO), Sodium pyruvate and other 

chemicals listed in section 2.2.1 (purity ≥ 96%) were purchased from Sigma Aldrich 

(UK). All chemicals were of analytical grade and were used without further 

purification. 

 

3.2.2. Bacterial strains, maintenance, and culture.  

 

S. oneidensis strain used is as described in section 2.2.2. The strain was first sub-

cultured in Luria-Bertani broth medium (LB medium) containing (per litre) 10 g of 

tryptone, 5 g of yeast extract and 5 g of NaCl at 30oC for 48 hours; followed by sub-

culturing in minimal salt medium containing sodium pyruvate. 

3.2.3. Experimental design. 

The experiment design investigating the contribution of direct electron transfer 

mechanism to electricity production was studied due to time limitation for 11 days 

under strictly anaerobic-anodic conditions in a two-chambered MFC. The inoculum 

was made up of 10% (v v-1) of the anode working volume (3.4 x 109 CFU - target cell 

density).  S. oneidensis cells were retained close to or physically separated from the 

anode electrode using a dialysis membrane (MWCO 12,000 Da pore size, Figure 

3.2). This pore size is small enough to prevent cells from going through but large 

enough to allow movement of proteins, redox shuttles, or metabolites. The control 
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A B C 

was an MFC with an anode having a dialysis membrane but no enclosed 

microorganisms. All experiments were conducted in triplicate. 

 

Figure 3.2. Schematic of the setup (anode chambers only) for investigating the 

contribution of direct electron transfer mechanism to microbial electricity production: 

A – Direct electron transfer; B – Mediated electron transfer; C – Combination of both 

mechanisms, A and B (Not drawn to scale). 

Another experiment involved immobilising S. oneidensis cells in the anode chamber 

in alginate beads as a way of separating them from the anode. Beads were prepared 

by mixing equal volumes (20 ml) of S. oneidensis cells (density 3.4 x 109 CFU) with 

sodium alginate (4%) and releasing drops of the mixture using a Pasteur pipette into 

calcium chloride solution (20 g L-1) to entrap the cells. Controls involved cells 

inoculated into the anolyte without restriction (meaning electrons could be 

transferred by direct and mediated electron transfer mechanisms) as well as anodes 

without microorganisms. The experiment was conducted in triplicate.  

3.2.4. MFCs Setup and Operation. 

The MFCs setup and operation is as described in section 2.2.4, except with some 

modifications. The cathodes contained no Pt catalyst layer (as the catholyte was 

ferricyanide - details below) and the electrodes had a geometric surface area of 25 

cm2. Potassium ferricyanide was used as catholyte. 

The performance of the MFCs was investigated with respect to electrochemical 

performance (i.e. voltage outputs, maximum power generation and coulombic 

efficiency, section 3.2.3) and degradation performance (substrate’s degradation rate 
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and COD removal efficiency, section 3.2.3). The inoculum used was 10% v/v of the 

total anolyte volume. The anode chambers with the contained mixtures were stripped 

of dissolved oxygen by sparging nitrogen gas for 5 minutes before setup.  

All experiments were replicated three times and studied at 30℃ using a temperature-

controlled Stuart 160 incubator (Fisher Scientific, U.K.). Results were expressed as 

mean of replicates ± standard deviation. 

3.2.5. Modification of anolyte minimal salts medium used for the investigation 

of contribution of direct electron transfer mechanism. 

The anolyte MSM for the investigation of the contribution of direct electron transfer 

mechanism to electricity production was supplemented with 500 mg L-1 casein 

hydrolysate and 2.2 g L-1 sodium pyruvate as the primary carbon source was used in 

this study because it is a more reduced, and can easily be utilized by S. oneidensis 

without the need for coculturing with a fermentative bacterium. Also supplemented 

were trace element stock solution (x1) and vitamin stock solution (x1).   

The catholyte used was 50mM phosphate buffer pH 7 containing 0.1 M potassium 

ferricyanide, without aeration. During the start-up operation, actively growing S. 

oneidensis (3.4 x 109 CFU -10% v v-1 of the total anolyte volume) cells were retained 

close to the anode using a dialysis sack to enable direct electron exchange; S. 

oneidensis cells were also separated from the anode using a dialysis sack meaning 

electron exchange could occur via redox shuttles i.e. mediated electron transfer 

mechanism. The final set up did not have a dialysis sack meaning both mechanisms 

of electron transfer would operate (combined studies) – Figure 3.2C.  

For all set ups the volume of inoculum used was 10% v v-1 of the total anolyte 

volume. The anode chambers with the contained mixtures were stripped of dissolved 

oxygen by sparging nitrogen gas for 5 minutes before setup.  

All experiments were replicated three times and studied at 30℃ using a temperature 

controlled Stuart 160 incubator (Fisher Scientific, U.K.). Results were expressed as 

mean of replicates ± standard deviation. 
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3.3. Results  

3.3.1. Summary of Results 

Investigation of the contribution of direct electron transfer mechanism on electricity 

production was studied by physically retaining S. oneidensis cells close to or away 

from the anode electrode using a dialysis membrane. The summary of the outcome 

of this study (Table 3.1) indicated a maximum power output of 114±6 mW m-2 when 

cells were retained close to the anode, 3.5 times more than when the cells were 

separated from the anode. Without the membrane (utilization of mediated and direct 

mechanisms) the maximum power output was 129±6 mW m-2, a result that has been 

corroborated by another experiment where S. oneidensis cells were immobilised by 

entrapment in alginate gels. This work has been published in Biotechnology Letter 

(Appendix 4). 

Table 3.1. Summarization of results involving the contribution of direct electron 

transfer to overall electricity production. 

 Direct Mechanism Combined 

Mechanism 

Mediated 

mechanism 

Power Production 

(mW m-2) 

114 ± 6 129 ± 6 32 ± 8 

% COD Reduction 21 ± 2 57±3 46 ± 3 

 

3.3.2. Voltage-time profiles and polarization curves. 

 

The voltage-time profile, polarisation, and power density curves for the contribution 

of direct electron transfer mechanism to electricity production are shown in Figure 

3.3 and Figure 3.4. MFCs utilising the direct mechanism of electron transfer (DM) 

generated the highest voltage throughout the study. The maximum voltage 

generated under 1000 Ω was by DM. MFCs utilising DM, mediated electron transfer 

mechanism (MM) and those utilising both mechanisms (CM) were 586 ± 5 mV, 400 ± 

6 mV and 470 ± 6 mV respectively. At day 8 there was exponential increase in 

voltage production by CM after a gradual reduction of voltage to 157± 3 mV. 



74 
 

Similarly, DM produced the highest average voltage of 485 ± 7 mV, followed by CM 

of 323 ± 5 mV and the least was generated by MM of 317 ± 6 mV.  

 

 

Figure 3.3. Voltage time profiles for the contribution of direct mechanism to electricity 

production by S. oneidensis. The direct mechanism gave the highest potential 

difference while at day 8 there was an increase in voltage production by combined 

mechanism after voltage decreased to a minimum value of 157mV. 

Power density tests were conducted on the second day when all the MFCs were in 

their pseudo-steady-state conditions. As shown in Figure 3.3B, the CM system 

generated the highest maximum power density of 129 ± 6 mW m-2; DM study 

generated 114 ± 6 mW m-2 while MM produced the least maximum power density of 

32± 8 mW m-2.  
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Figure 3.4. (A) Polarization curves and (B) power density curves for the experiment 

involving the contribution of DET mechanism to electricity generation. Error bars 

indicated standard deviation where n=3. 

The voltage-time profile, polarisation, and power density curves for the contribution 

of mediated electron transfer mechanism to electricity production are shown in 

Figures 3.5 and 3.6 respectively. MFCs utilising the mediated mechanism of electron 

transfer (MET) generated the highest voltage throughout the study. The maximum 

voltage generated under 1000 Ω by MET and other mechanisms CM were 445 ± 6 

mV and 395±5 mV respectively. At day 10.4 there was exponential increase in 

voltage production by CM after a gradual reduction of voltage to 239 ± 4 mV. 

Similarly, MET produced the highest average voltage of 347 ± 4 mV and for CM was 

267± 6 mV.  
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Figure 3.5. Voltage time profile for the contribution of mediated electron transfer 

mechanism to electricity production by immobilised S. oneidensis cells. 

As shown in Figure 3.5B, the CM system generated maximum power density of 105 

± 4 mW m-2 while MET produced a maximum power density of 36 ± 6 mW m-2.  

 

 

Figure 3.6. (A) Polarization curves and (B) power density curves for the experiment 

involving the contribution of mediated electron transfer to electricity generation by 

immobilised S. oneidensis cells. 
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3.3.3. COD degradation and coulombic efficiency. 

Table 3.2 shows the comparison of substrate degradation as COD and amount of 

electron recovery on day 11 of the investigation. The CM gave the highest substrate 

utilization of 57 ± 3% which was more than 2-fold higher than DM which gave 21 ± 

2%. However, with regards to coulombic efficiency, DM gave 36 ± 1% and was 4-fold 

higher than CM of 9 ± 1%.  MM gave 46 ± 3%COD reduction with a CE of 11 ± 2%.  

Table 3.2. Comparison of substrate degradation and electron recovery at 11 days of 

investigation for contribution of mechanisms of electron transfer processes by S. 

oneidensis. Values are means of triplicate experiments ± standard deviation. 

                       Combined     Direct                Mediated 

COD degradation (%)                     57 ± 3            21 ± 2                  46 ± 3             

Coulombic efficiency (%)                9 ± 1             36 ± 1                  11 ± 2          

Values are means of triplicate experiments ± standard deviation. 

 

3.3.4. Metabolites of substrate degradation. 

Acetic acid and butyric acid were the main degradation products with acetic acid 

produced in larger amounts than butyric acid across the systems (Table 3.3).  
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Table 3.3. Fermentation end products from the degradation of sodium pyruvate in 

the experiment investigating the contribution of DET to electricity production. Values 

are means of triplicate experiments ± standard deviation. 

 

 

3.3.5. COD degradation and coulombic efficiency. 

Table 3.4 shows the comparison of substrate degradation as COD and amount of 

electron recovery on day 11 of the investigation. The CM system gave the highest 

substrate utilization of 43 ± 2% with a coulombic efficiency (CE) of 13 ± 2% whereas 

MET gave 36 ± 3% COD reduction with a CE of 20 ± 4%.  

Table 3.4. Comparison of substrate degradation and electron recovery at 11 days of 

investigation for contribution of mediated mechanisms of electron transfer processes 

by S. oneidensis.        

                                               Acetic acid (mg ml -1)             Butyric acid (mg ml-1)                     

Test                                                

Combined                                       236 ± 4                                    41 ± 2   

Mediated                                         311 ± 5                                   171 ± 4 

Direct                                              301 ± 4                                   199 ± 3 

 Combined Mediated 

COD degradation (%)                             43 ± 2                            36 ± 3             

Coulombic efficiency (%)                       13 ± 2                            20 ± 4          
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3.4. Discussion. 

 

Microbial fuel cell is a promising technology for sustainable wastewater treatment. 

The concept is possible due to extracellular electron transfer passed on from 

electrogenic organism via different mechanisms to catalyse anodic reactions for 

current production (Choi and Sang, 2016). There are three known mechanisms 

through which extracellular electron transfer in Shewanella might occur; these are 

direct electron transfer and transfer using redox shuttles (Oram and Jeuken, 2016). 

However, the contribution of electron transfer mechanisms utilized by S. oneidensis 

for electricity production in MFCs remain controversial (Jiang et al., 2010). The 

experiment aimed to investigate the contribution of direct electron transfer 

mechanism to electricity production in microbial fuel cells utilising Shewanella as 

biocatalyst. This mechanism is thought to involve four key proteins – CymA, MtrA, 

MtrB and MtrC (Figure 3.6) – which form a conduit for electron transfer from the 

quinone pool to the outside of the cell. Other direct electron transfer pathways e.g. 

the MtrFDE pathway has also been suggested (Kracke et al., 2015). Conductive 

appendages (pili) might also be involved.  
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Figure 3.7. Proposed extracellular electron transfer (EET) pathways in S. oneidensis 

MR-1 involved in direct EET pathway – A, and mediated EET – B. MQH2 is the 

reduced form of menaquinone; MQ, oxidized form of menaquinone. 

 

The experiment aimed to investigate the contribution of direct electron transfer 

mechanism respond for charge transport at the microbe/electrode interface for 

electricity production in microbial fuel cells. This work employed the use of dialysis 

which has MWCO 12,000 Da pore size that can entrap S. oneidensis cells close to 

the electrode for microbe-electrode direct electron transfer, and synthesis of sodium 

alginate beads to control S. oneidensis cells from having physical contact with the 

electrode surfaces whereby the only possible means of electron transfer to electrode 

is by mediated electron transfer process. Transport. The results indicated that in the 

case where a dialysis membrane was used (Figure 3.4) DET makes a significant 

contribution, 
[

(114+129)

2
]−32

[
(114+129)

2
]

 = 74%, to overall electricity production. When cells are 
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retained close to the anode, direct electron transfer was assumed to be the main 

mechanism but this does not stop mediated electron transfer from operating hence 

the averaging of the two maximum power density values 114 and 129 mW m-2. 

When cells were immobilised in alginate beads (Figure 3.6) the corresponding 

contribution was 
(105−36)

105
= 66%. This contribution is antithetical to previous work that 

electron transfer occurs predominantly by mediated electron transfer (Jiang et al., 

2010). The results are however, in direct contrast to the work of Kotloski and 

Gralnick (2013) who showed that direct electron transfer accounted for ca. 25% of 

Shewanella’s ability to reduce insoluble substrates. They showed this by generating 

mutants of Shewanella that could no longer secrete redox shuttles (flavins) and 

characterising the mutants for reduction of Fe3+ in comparison with wild type strains. 

The reduced electron transfer in the riboflavin-deficient mutant in this case could also 

have been due to reduced cell growth rate reducing substrate turnover rate as 

riboflavin is necessary for growth. 

Table 3.4 indicates that DET gives more CE than other mechanisms possibly 

because retaining the cells close to the anode helps to overcome resistances to 

electron transport from bacteria to the anode by the formation of cells on the anode 

as a biofilm and by direct contact of cells to the anode via cytochromes (Mohan et 

al., 2008). In the case of CM and MM, the observed diminished CE can possibly be 

due to diversion of electrons for biomass growth (Zhuang et al., 2012).   

Table 3.4 indicated a strikingly low concentration of butyric acid production by CM 

which could be explained by Figure 3.3 at day 8, when the voltage increased after a 

gradual decline suggesting a metabolic shift. Butyrate could have been reused as 

substrate as was also observed by Finch et al., 2011 

The less COD reduction observed by DET as shown in Table 3.4 can be due to the 

diffusion limitation of substrate across the dialysis membrane limiting the availability 

of substrate that can be readily consumed. 

3.5. Concluding remarks 

 

The outcome of this investigation revealed the importance of direct electron transfer 

mechanism utilized by S. oneidensis for electricity production in MFCs. The 
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investigation found that 66-74% of the electrons transferred could be attributed to the 

cells being in close proximity with the anode electrode suggesting that avenues for 

improving direct electron transfer in Shewanella spp (or heterologous expression in 

other hosts) should be given more priority in investigations to improve electricity 

production from microbial fuel cells. This has been attempted in Chapter 4 involving 

synthetic biology. 
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Chapter 4 

Enhancing electricity production in MFCs by 

overexpression of mtrAB in S. oneidensis and 

heterologous expression of mtrCAB in E. coli  

 

4.1. Introduction 

S. oneidensis has been extensively studied in MFCs. Its potential in MFCs 

application is based on its anaerobic respiratory pathway (Mtr-pathway) which the 

proteins form a complex and has been associated with great environmental impact in 

reduction of iron and manganese oxide (Belchik et al., 2011; Cheng et al., 2013). 

The Mtr-pathway of S. oneidensis is the best understood among the Disimilatory 

Metal Reducing Bacteria (DMRB) and comprises of c-type cytochrome that shuttle 

electrons from the cytoplasmic (an inner membrane oxidizing enzyme) towards the 

outside of the cell during anaerobic growth. When S. oneidensis is grown under 

metal or electrode respiring conditions, reduction equivalents (Figure 4.1) from the 

oxidation of organic compounds are transferred from the entry point of the 

menaquinol pool to the cytoplasmic membrane-bound tetraheme cytochrome c 

cymA, to the periplasmic decaheme cytochrome c mtrA and finally to the outer 

membrane beta-barrel protein encoded by the gene mtrB, which plays an additional 

role for proper localisation and insertion of the outer membrane deacheme oxides 

cytochrome c (the mtrC) involved in direct electron transfer extracellularly to metal 

and electrodes. These proteins complexes are known as mtrCAB pathway (Jensen 

et al., 2016; Tai et al., 2010).  While heterologous expression of the Mtr-pathway in 

E. coli has been studied with regard to metal oxide reduction (Jensen et al., 2010), 

the role of the genes in direct electron transfer in an MFC environment has not been 

reported. Further, the overexpression of the Mtr-pathway in S. oneidensis itself has 

not been reported. 
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Figure 4.1. Hypothetical extracellular electron transfer (EET) pathways at an anode: 

I. via conductive nanowires; II. Direct electron transfer via outer membrane 

cytochromes (OMCs); III. Complex electron transfer via OMCs and redox mediators, 

e.g. Riboflavins; IV. Connection to motive force formation and ATP generation.  

Next generation sequencing has provided genomic sequence data for S. oneidensis 

Mtr-pathway genes (see appendix 5-7 for nucleotide sequences coding for mtrCAB 

pathway). Bacterial genes that function or interact together are often clustered 

together in bacterial genome and have minimal effect on gene expression.  

The molecular weight of mtrCAB protein, elucidated using biochemical and 

molecular biology techniques and using homologue crystal structure, showed that 

MtrC is made up of 69-KDa while mtrA is made of 32-KDa, while mtrB is made up of 

72-KDa. These proteins when co-purified from S. oneidensis are predicted to form 

1:1:1 complex. Several studies have been conducted to understand the roles played 

by the expression of genes involved in the mtrCAB pathway e.g. in metal reduction. 

Deletion of the mtrC gene was shown to improve chromium reduction in S. 

oneidensis (Belchik et al., 2011). Heterologous expression of the mtrCAB pathway in 

E. coli strain BL21(DE3) using plasmids under the regulation of a strong promoter 

displayed limited control of mtrCAB expression, impaired cell growth compared to 

the wild type and this was attributed to problems in mis-regulation of the post 
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translational modification of mtrCAB conduit (Figure 4.2) due to excessive production 

of signal sequence-containing polypeptides secretions that could overload the Sec 

translocon system, hence, resulting in the aggregation of polypeptide in the 

cytoplasm (Goldbeck et al., 2013).  

 

Figure 4.2. Schematic diagram of mis-regulation of post-translational modification of 

mtrCAB gene adapted from Goldbeck et al., 2013. 

 

iGEM teams from Bielefeld University, Germany 

<http://2013.igem.org/Team:Bielefeld-Germany/Project/MFC> and York University, 

UK < http://2013.igem.org/Team:York_UK> have made genetic constructs and 

attempted to express the mtrABC operon in E. coli but they failed to show that the 

genes were expressed citing possible problems with regard to expression regulation, 

heme loading, correct folding and localisation of the cytochromes. It could also be 

that the proteins expressed were toxic to E. coli cells.  

 

MtrCAB studies using promoters with strong activity by Goldbeck et al., 2013 

reported reduced cell growth when E. coli was transformed with the mtrCAB operon 

but extracellular electron transfer (EET) was improved. However, over expression of 

mtrC and mtrA studied in three electrode microbial electrochemical system by 

increasing promoter strength did not significantly improve current production in E. 

coli compared to cells with fewer morphological changes (having mtrCAB conduit) 

which generated highest current  (Goldbeck et al., 2013) and engineering of mtrCAB 

http://2013.igem.org/Team:Bielefeld-Germany/Project/MFC
http://2013.igem.org/Team:York_UK
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pathway in E. coli, improved the reduction of metal ions and solid metal oxides 

approximately 8 fold and 4 fold faster than its parental strain (Jensen et al., 2010). 

Hence, there could therefore be the potential of using synthetic biology approach to 

engineer S. oneidensis for increasing electron transfer pathways and hence, improve 

electricity production in MFCs. 

The whole structure and function of an organism is controlled or determined by its 

DNA (Barabasi and Oltvai, 2004). Before the advent of gene cloning, classical 

random mutagenesis approach has been used to identify genes functions. This 

involves studying mutant that either lack genes or express an altered version of the 

genes, hence, determining the cellular processes that have been disrupted or 

compromised (Hughes et al., 2000). Today numerous genome projects have added 

nucleotide sequences to the public data bases such as in National Centre for 

Biotechnology Information. Several techniques have been used for cloning such as 

Gateway Recombination Cloning, TOPO Cloning and Gibson Assembly. However, 

the challenge with these methods are limited numbers of fragments that can be 

cloned or often requiring the creation of site directed mutagenesis (this is an invitro 

method of creating specific mutation in a known sequence) in-order to by-pass illegal 

restriction sites (such as EcoR1, Xba1) existing within the gene to be cloned. This 

may affect gene function or create mutant genes (Wong et al., 2007). However, one 

recent method that can be used for cloning multiple fragments involves the use of 

Rapid DNA Prototyping (RDP) Assembly method. This method overcomes the 

problem, by bypassing the need for conducting site directed mutagenesis within the 

gene of interest and can be used to synthesize nucleotide sequence of genes 

between 125 to 3000 bp of known specific functions into functional parts called 

gBlocks (double-stranded sequence-verified genomic blocks) which are further 

standardized into formats that can be assembled for rapid prototyping of circuits from 

DNA regulatory elements. This can be used to build biological systems of pre-

existing functions or new functions (http://synbiota-tinker-

studio.wikidot.com/compliance-manual). RDP assembly method starts with an 

anchor and ends with a cap (Figure 4.5). 

For the first time, this study employed the use of synthetic biology (an application 

driven-field with engineering approach to the redesign of existing or new complex 

biological systems from well characterised and usable DNA parts and circuits) by 

http://synbiota-tinker-studio.wikidot.com/compliance-manual
http://synbiota-tinker-studio.wikidot.com/compliance-manual
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using a new cloning strategy - Rapid DNA Prototyping (RDP) technology.  This 

method bypasses traditional methods of molecular cloning which rely on the 

presence of restriction sites. Methods such as Golden gate assembly in both vector 

and insert methods are constrained to cloning of one or two inserts at a time (Roth et 

al., 2014). However, this new method is mostly similar to Gibson assembly method 

for modular assembly of bio brick libraries. One foundation principle of RDP 

technology is that a standard DNA part can be used to predict the combinations of 

DNA parts when assembled into larger genetic circuits (Figure 4.5). Each RDP part 

is defined by a promoter, RBS, coding region and terminator. A magnetic anchor is 

used to assemble series of RDP parts to form an expression plasmid system 

(http://synbiota-tinker-studio.wikidot.com/dna-assembly).  

 

4.2. Materials and Methods 

4.2.1. Chemicals 

QIAquick PCR purification kit was purchased from Qiagen; gBlocks Gene Fragment 

of sequence verified mtrA, mtrB and mtrC were chemically synthesized from 

Integrated DNA Technology (IDT); the RDP kit was provided by Synbiota; Nebuilder 

Hifi DNA Assembly Master Mix was provided by New England Biolabs. Pierce TM 

BCA Protein Assay Kit was purchased from Thermofisher Scientific; TAE Buffer 50X 

(Tris-acetate-EDTA) for running and separation buffer was purchased from 

Thermofisher Scientific. Chloramphenicol antibiotics, ethanol, butyric acid, acetic 

acid, sulphuric acid and glucose (purity ≥ 96%) were purchased from Sigma Aldrich 

(UK). All chemicals were of analytical grade and were used without further 

purification. Ficodox PlusTM mixed COD reagent was purchased from Fisher 

Scientific (UK), Riboflavin (Sigma Aldrich). The water used for making up solutions 

was deionised water (DI).   

4.2.2. Bacterial strains, maintenance, and culture 

S. oneidensis strain 700550 was purchased from ATCC. Top10 chemically 

competent E. coli cells that allow stable replication of high-copy number plasmids at 

a transformation efficiency of 1 x 109 CFU µg-1 plasmid DNA were generously 

provided by Dr. Mark Odell at the University of Westminster. Cryopreserved stock 

cultures section 4.2.11, were maintained at -80℃. Strains were first sub-cultured in 

http://synbiota-tinker-studio.wikidot.com/dna-assembly
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Luria-Bertani broth medium (LB medium/Chloramphenicol (25 µg mL-1)) containing 

(per litre) 10 g of tryptone, 5 g of yeast extract and 5 g of NaCl grown at 30oC for 48 

hours; later sub-cultured in minimal salt medium (MSM, required for increased 

solution conductivity for proton transfer during MFC operation) supplemented with 

500 mg L-1 glucose and adjusted to 25 µg ml-1 chloramphenicol concentration. This 

last subculture was used to inoculate the MFCs. Before inoculation of the MFCs, the 

strains were grown in LB medium supplemented with 15 g L-1 agar containing 25 µg 

ml-1 chloramphenicol concentration and plated for enumeration.  

 

4.2.3. Investigation 3: Experimental design. 

The experimental design for heterologous expression of Mtr-pathway in E. coli due to 

time limitation was studied for 10.4 days and for overexpression in S. oneidensis 

studied for 15.5 days in two chambered MFCs, schematically described in (Figure 

4.3). The inoculum studied were E. coli (Top 10) for the first experiment and S. 

oneidensis cells for the second experiment. Both were modified with individual 

construct of gene: mtrA or mtrB or mtrC or mtrAB or mtrBC or mtrCAB of the Mtr-

pathway by following promega instruction protocol on transformation. The genes 

were expressed individually and as operons. The anode MFCs consisted of 10% 

(v/v) anode working volume of each inoculum. The inoculum used for control 

experiments for both studies were wild type E. coli and wild S. oneidensis 

respectively. The experiments were replicated in triplicate and tested for influence on 

power generation, COD removal and growth rate. 
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E. coli (parental strain control) 

S. oneidensis (parental strain control) 

Modified 

strain 

Modified 

strain 

 

 

                 

                   

 

 

 

 

 

 

Figure 4.3. Schematic diagram of experimental design for tests (A) modified E. coli 

and its parental strain, (B) modified S. oneidensis and its parental strain for the 

understanding of the genes involved in Mtr-pathway for electricity production in 

MFCs. 

 

4.2.4. MFCs Setup and Operation. 

The MFCs setup and operation is as described in section 2.2.4. The cathodes 

contained no Pt catalyst layer (as the catholyte was ferricyanide - details below) and 

the electrodes had a geometric surface area of 50 cm2. 

For all set ups the volume of inoculum used was 10% v/v of the total anolyte volume. 

The anode chambers with the contained mixtures were stripped of dissolved oxygen 

by sparging nitrogen gas for 5 minutes before setup.  

All experiments were replicated three times and studied at 300C using a temperature-

controlled Stuart 160 incubator (Fisher Scientific, U.K.). Results were expressed as 

mean of replicates ± standard deviation 

Anode section of MFCs operated 

individually with modified 

strain(s) and their parental strain 

(s): E. coil and S. oneidensis 

Cation 

exchange 

membran

Control test 

Independent 

variable tests 

 mtrA 

mtrB 

mtrC 
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mtrBC 

mtrCAB 

B 

A 

A 
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For all set ups, the volume of inoculum used was 10% v/v of the total anolyte 

volume. The anode chambers with the contained mixtures were stripped of dissolved 

oxygen by sparging nitrogen gas for 5 minutes before setup.  

4.2.5. Modification of anolyte minimal salts medium used for the investigation 

of heterologous expression and overexpression of Mtr-pathway in E. coli and 

S. oneidensis respectively for bioelectricity production. 

The anolyte MSM for the investigation of heterologous expression in E. coli and 

overexpression of Mtr-pathway S. oneidensis for bioelectricity production was 

supplemented with 500 mg L-1 glucose and 500 mg L-1 casein hydrolysate, trace 

element stock solution (1%) and vitamin stock solution (1%).   

 The catholyte used was 50 mM (pH 7) phosphate buffer containing 0.1M potassium 

ferricyanide, without aeration. 

4.2.6. Gblocks RDP Primer design. 

Primers used for amplification of the gBlocks were designed using Gentle-beta 

Synbiota software. It amplified the gBlocks into Rapid DNA Prototyping (RDP see 

Table 4.1) format. The primers used in this study and their relevant features are 

represented in Table 4.1: 
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Table 4.1. Primer used for amplification of cytochromes protein coding genes: mtrA, 

mtrB and mtrC (the prefix tcagtcagtcagtcag sequence represents X’ format overhang 

attached to the primer sequence, while the prefix tcagtcagtcagtcag sequence 

represents z' formant overhang attached to the primer sequence). 

 

Primer                                                               Sequence  5’ – 3’   (RDP X-Z’ format) 

mtrA tcagtcagtcagtcagGGTCTCAGATGAAGAACTGCCTAAAAATGAAAAAC

CT (Forward). 

ctgactgactgactgaGGTCTCTGCCGCGCTGTAATAGCTTGCCAGATGG 

(Reverse) 

MtrB tcagtcagtcagtcagGGTCTCAGATGAAATTTAAACTCAATTTGATCACTC

T (Forward). 

ctgactgactgactgaGGTCTCTGCCGAGTTTGTAACTCATGCTCAGCATC

AGC (Reverse) 

mtrC tcagtcagtcagtcagGGTCTCAGATGATGAACGCACAAAAATCAAAAATC

GCA (Forward). 

ctgactgactgactgaGGTCTCTGCCGAGTTTCACTTTAGTGTGATCTGCA

ACTGT (Reverse) 

 

 

4.2.7. Resuspension and Isothermal assembly of gBlock gene fragments (IDT). 

gBlock tubes of mtrA (synthesized as one fragment from IDT (integrated DNA 

technology)), mtrB and mtrC (synthesized as two fragments from IDT) were 

centrifuged for 3-5 seconds at 3000 g to ensure the gene fragments were pelleted to 

the bottom of the tube. Thereafter, TE buffer was added to the gBlocks and vortexed 

to make a final concentration of 10 ng µL-1. The gBlocks of mtrB and mtrC were 
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made into a single fragment using NEBuilder Hifi DNA assembly reaction protocol. 

Briefly, reactions consisting of 10 µl of NEBuilder Hifi DNA Assembly master mix, 6 

µl of deionised water and 2 µl each of the two fragments of mtrB1 and mtrB2 gBlocks 

(0.12 pmols each) and mtrC1 and mtrC2 gBlocks (0.06 pmols each) were incubated 

at 55℃ for 15 minutes to make a single fragment of mtrB gene and mtrC gene.  

4.2.8. PCR amplification of gBlocks fragments. 

Gentle generated primers were synthesized from IDT and used to amplify the gBlock 

fragments. This step creates the RDP ends to a standardized DNA parts. For this 

study, RDP X’ – Z’ orientation was selected because of complementarity to the 

genetic element parts in the Synbiota RDPTM plate kit (e.g. anchor, promoter, 

ribosome and cap) required for creating expression plasmid. The laboratory 

procedure involved, firstly, making the genetic blocks into single fragments of mtrA, 

mtrB and mtrC by using NEBuilder hifi DNA assembly reaction protocol 

(https://www.neb.com/protocols/2014/11/26/nebuilder-hifi-dna-assembly-reaction-

protocol).  The PCR amplification reactions included 4 µl of template DNA, 2 µl 

forward and reverse primer each and 92 µl of High fidelity master mix (X1). The PCR 

conditions included initial denaturation at 95℃  for 3 mins followed by 30 cycles of 

denaturation step at 95℃  at 30 secs, annealing step at 55℃  for 40 secs, extension 

step at 72℃  for 1 minute and final extensions at 72℃ for 10 mins. Amplified PCR 

products were firstly examined by nanodropping technique and checked on 0.6% 

agarose gel electrophoresis. 

 

4.2.9. Analysis of amplified PCR products on agarose. 

 

Agarose gel electrophoresis was used to separate amplified DNA samples. Agarose 

0.5% (used for fragments of 200bp to about 20 Kb) was melted by heating in a 

microwave in 50 mL XTAE buffer (40 mM Tris-acetate, 1 mM EDTA and 

agarose/buffer mixture). Before the polymerization (non-covalently association and 

formation of network of polymeric molecules and pore size determines gel’s 

molecular sieving properties) 1 µL Sybrgreen (binds double stranded DNA molecules 

by intercalating between the DNA bases in electrophoretic gel and fluorescent under 

https://www.neb.com/protocols/2014/11/26/nebuilder-hifi-dna-assembly-reaction-protocol
https://www.neb.com/protocols/2014/11/26/nebuilder-hifi-dna-assembly-reaction-protocol
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UV illumination) per 50 mL gel was used to pre-impregnate the gel. Gel loading 

buffer 6X (containing Ficoll which creates brighter and tighter bands, SDS for 

sharper bands, EDTA to chelate magnesium (up to 10 mM) for deactivating metal-

dependent enzyme, a combination of two dyes: Dye 1 (red) and Dye 2 (blue). The 

two dyes separate upon gel electrophoresis. The red band is similar to bromophenol 

blue is the major indicator as a tracking dye on agarose) was added to the PCR 

products before applied to the gel. For identification of the fragments sizes, a 1kb 

ladder (BioLabs) with known fragment sizes and concentrations were used. The 50 

mL gels were run at 100 V for 45 minutes. After electrophoresis has completed the 

gel were viewed under Ultraviolet visualizer (see Figure 4.4 to view the gel).  

 

Figure 4.4. Gel image of agarose separation of mtrA, mtrB, mtrC … amplified genes 

viewed under UV visualization. 

 

4.2.10. Digestion of amplified PCR products with BsaI Enzyme and 

assembly of RDP parts. 

 

This procedure cleans up the PCR products by using QIAquick PCR purification kit 

before digestion with BsaI enzyme to create RDP sticky ends corresponding to the 

5’- 3’ direction of the amplicons. Briefly, 10 µl of NEB cutsmart buffer and 2 ul of 

BsaI-HF endonuclease (40 units) were added to the cleaned-up DNA (75 µl), then 

mixed and centrifuged briefly to pull down any splashes and bubbles. The mixtures 

were incubated at 37℃  for 1h. After incubation, the BsaI enzyme was inactivated by 

DNA clean up. Concentration of parts created was measured using Nano Drop in ng 

ul-1 and converted to pm ul-1 by using the close approximation: 1 pm ul-1 = 670 ng ul-1 
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divided by the length of the part (kb). For the RDP assembly (Figure 4.5), the PCR 

parts were adjusted to a concentration of 0.04 pm ul-1 per reaction for a total of 0.2 

pm in 5 ul RDP part.  

 

        

Figure 4.5. Schematic flow diagram of the RDP assembly procedure including   

transformation into E. coli and S. oneidensis); B - an example of RDP plasmid of 

mtrCAB construct designed using snap gene software. 

A 

S. oneidensis and in 

C 
D 

B 
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RDP parts needed (Figure 4.6) for constructions of the assembly were firstly 

identified and organised from the RDP kit. The standardized genetic elements 

engineered into different constructs included the following (http://synbiota-tinker-

studio.wikidot.com/dna-assembly):  

➢ Fixed-level strong Promoter with short name x-Pr.3-z’ (produces mRNA at a 

fixed rate. 

➢ Strong Ribosomal Binding Site with the short name z-Rbs.3-x’ (region when 

translated to mRNA acts as a binding site for ribosome to initiate translation. 

➢ Anchor, chloramphenicol resistance with the short name dA18-ChlrR-x’ (the 

chloramphenicol resistance marker composing of native fixed promoter, native 

ribosomal binding site, an engineered coding sequence (chloramphenicol 

acetyltransferase) and the TO forward terminator. 

➢ Cap, high copy origin with short name z-Ori.3-dT18 (plasmid containing high 

copy Ori pMB1 exists at ~200-300 copies per cell. 

➢ A periplasmic decaheme cytochrome DNA (created) with short name x-mtrA-

z’ 

➢ An outer membrane decaheme cytochrome DNA (created) with short name x-

mtrC-z’ 

➢ An outer membrane β-barrel DNA (created) with short name x-mtrB-z’ (code 

for outer membrane β-barrel protein). 

 

 

Figure 4.6. Synbiota RDP assembly of the cytochromes protein coding genes: mtrA, 

mtrB and mtrC parts and other genetic elements into constructs. 

 

 

http://synbiota-tinker-studio.wikidot.com/dna-assembly
http://synbiota-tinker-studio.wikidot.com/dna-assembly
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4.2.11. Making competent S. oneidensis cells and their transformation. 

 

S. oneidensis cells were made competent by following the method used by 

Hanahan, 1985. Briefly, S. oneidensis cells were inoculated into 5 ml SOC medium 

and grown overnight in a shaker at 30℃. Thereafter, the cells were subcultured in 

Luria-Bertani medium (20 g L-1) and grown at 30℃ until optical density (600 nm) 

reached ~0.5. The cells were pelleted by centrifuging at 5000 g at 4℃ using Thermo 

Fisher Centrifuge. Pelleted cells were suspended in transformation buffer1 (8 ml TB1 

pH 6.4). The TB1 solution contained KCl 7.4 g L-1, KCH3COO 30 ml of 1M (pH7.5), 

CaCl2.2H2O 1.5 g L-1 and C3H8O3 150 g L-1. The solution was adjusted to pH 6.4 with 

0.2 M acetic acid. The suspended cells were placed on ice for 15 minutes and then 

spun down as above. Thoroughly the pelleted cells were suspended in 

transformation buffer 2 solution (4 ml, TB2) containing KCl 0.74 g L-1, CaCl2.2H2O 11 

g L-1 and Glycerol 150 g L-1 and 0.5 M MOPS (20 ml) for 2 hours on ice. Aliquot 

competent S. oneidensis cells were stored immediately at -70oC.   

The transformation of S. oneidensis with plasmid constructs was done using 

Promega instruction protocol on transformation. Briefly, frozen chemically competent 

S. oneidensis cells (from -70℃) were placed on ice until thawed. Pipette tips 

maintained at 4℃ were used to transfer cells by distributing the thawed cells into 

chilled sterile 17 x 100mm polypropylene culture tubes (100ul each). 10 ng of the 

plasmid constructs were added to 100ul of competent cells and placed on ice for 10 

minutes. The tubes with mixtures were heat-shocked for 50 seconds at 40oC in a 

water bath. The tube was transferred to ice without shaking and after 2 minutes 

900ul of cold (4 o C) SOC medium was added to the transformation reactions and 

incubated at 30oC for 60 minutes with shaking (225 rpm). The cells (10 ul each) were 

confirmed for transformation by plating on LB/Chloramphenicol plates (25 µg mL-1) 

grown overnight at 30℃. Efficiency of transformation of S. oneidensis (in CFU 

formed per microgram DNA) was calculated using the following equation 16:  

                         Equation 16:    
𝒄𝒇𝒖 𝒐𝒏 𝒑𝒍𝒂𝒕𝒆

𝒏𝒈 𝒐𝒇 𝒄𝒐𝒎𝒑𝒆𝒕𝒆𝒏𝒕 𝑪𝒆𝒍𝒍𝒔 𝑫𝑵𝑨 𝒑𝒍𝒂𝒕𝒆𝒅 
 x 

𝟏 𝑿 𝟏𝟎𝟑  𝒏𝒈

µ𝒈
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4.2.12. Determination of total protein content of anodic broth from MFCs 

utilizing overexpression of S. oneidensis mtr-pathway. 

 

The total protein content was estimated by using Thermos Scientific Pierce 

Bicinchoninic Acid Reagent (BCA) Protein Assay for the colorimetric detection and 

quantitation of the total protein. This method combines well- known reduction of Cu+2 

from the BCA reagent to Cu+1 (cuprous cation) by protein in an alkaline medium (the 

biuret reaction) and colorimetrically detected. Briefly the water-soluble complex 

exhibits a strong absorbance at 562 nm. Briefly, a series of dilutions of known 

concentrations of Bovine Serum Albumin (2 mg mL-1, BSA) were prepared to 

prepare a set of protein standards (appendix 2). The concentration of the standards 

were µg mL-1 (250; 125; 50; 25; 5; 0) and assayed alongside with the unknown(s) 

samples extracted by using physical disruption using protein extraction kit. 

Thereafter 0.1mL of each standard and unknown samples triplicate were added to 2 

ml of BCA (20 – 2,000 ug mL-1). The mixture was allowed to incubate at 37℃ for 30 

minutes. The absorbances of all the samples were measured using a 

spectrophotometer at 562 nm after 10 minutes. 

 

4.3. Results  

 

4.3.1. Summary 

 

Synthetic biology was employed in this study to overexpress the genes: mtrA 

(periplasmic membrane cytochrome), mtrB (outer membrane β-barrel protein) and 

mtrC (outer membrane decaheme cytochrome C) involved in the Mtr-pathway for 

understanding and enhancing extracellular electron transfer in S. oneidensis and 

heterologous expression in E. coli. The genes were expressed individually or as 

operons and the effect on electricity production and substrate utilisation determined. 

The best outcome regarding power generation was from the mtrAB S. oneidensis 

strain which produced 144 ± 4 mW m-2; this was 3 fold higher than the wild type (48 
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± 2 mW m-2). Regarding E. coli, the best power was obtained from the mtrCAB strain 

which produced 25 ± 0.7 mW m-2 compared to 1 ± 0.01 mW m-2 by the wild type. The 

mtrAB S. oneidensis strain utilised 36% of the substrate compared to 30% utilized by 

the wild type. The mtrCAB E. coli strain utilised 27% of the substrate compared to 

73% utilized by the wild type E. coli. 

Table 4.2. Summary of results (A) modified E. coli and its parental strain, (B) 

modified S. oneidensis and its parental strain for the understanding of the genes 

involved in Mtr-pathway for enhancing electricity production in MFCs. 

 

 

 

4.3.2. Voltage-time profiles and polarization curves. 

 

The overexpression and heterologous expression of Mtr-pathway on voltage-time 

profile, polarisation, and power density curves are shown in Figures 4.7 & 4.8 

respectively. What is striking from the figure is that S. oneidensis mtrAB strain gave 

the highest maximum voltage of 530 mV. This was followed by mtrBC strain (491 

mV), mtrA strain (489 mV), mtrCAB strain (454 mV), mtrC strain (434 mV), the wild 

A E. coli mtrA mtrB mtrC mtrCAB mtrAB 

Power 

Production 

(mW m-2) 

1 ± 0.01 8.15 ± 0.02 4.7 ± 0.01 2.5 ± 0.02 25 ± 0.7 7.1 

%COD 

Reduction 

73 ± 2    3 ± 1 45 ± 3 24 ± 1 27 ± 2 21 ± 2 

B S. oneidensis mtrA mtrB mtrC mtrCAB mtrAB 

Power 

Production 

(mW m-2) 

48 ± 2 77 ± 2 nil 65 ± 3 78 ±3 144 ± 4 

% COD 

Reduction 

30 ± 1 76 ± 3 39 ± 2 88 ± 2 94 ± 2 36 ± 1 
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type (376 mV) and finally mtrB (16 mV). The voltage produced by E. coli was 

observed to decline after a stable voltage from the first to the second day of the 

studies (Figure 4.7B). 

Regarding power production, what stands out in Figure 4.8A is that mtrAB S. 

oneidensis strain gave the best maximum power production while mtrB strain gave 

the least power. The power generated by mtrAB strain was 144 ± 4 mW m-2 (3-fold 

more than what was produced by wild type). There were similar power densities for 

S. oneidensis mtrCAB, mtrA, mtrBC strain produced 78 ± 3 mW m-2, 77 ± 2 mW m-2, 

74 ± 5 mW m-2 respectively.  

What is interesting by the studies involving heterologous of Mtr-pathway in E. coli 

(Figure 4.8B) was that the maximum power produced was by mtrCAB E. coli strain 

which produced 25±0.7 mW m-2 while it stands out that mtrAB strain produced 7.1 

mW m-2. The highest power of 25 ± 0.07 mW m-2 produced by mtrCAB E. coli strain 

was 25-fold of that produced by the wild type (1 ± 0.01 mW m-2) 
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Figure 4.7. Voltage generation by S. oneidensis strains (A) and E. coli strains (B). 

Maximum voltage production by recombinant strains were:  S. oneidensis mtrAB 

strain 530±6 mV compared with 376 ± 8 mV by the wild type (A); E. coli mtrCAB 

strain produced 257±5 mV compared with 39 ± 2 mV by the wild type (B). 
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Figure 4.8: Polarization curves (C & D) and power density curves (A&B) for the 

experiment involving expression and overexpression of the Mtr pathway in E. coli 

(B&D) and in S. oneidensis (A&C) respectively. Maximum power produced by 

recombinant and wild types of S. oneidensis (A) and of E. coli (B) respectively are S. 

oneidensis mtrAB 144±4 mW m-2 and 48±2 mW m-2 for the wild type (A); E. coli 

25±0.7 mW m-2 and 1±0.01mW m-2 for the wild type. 

4.3.3. Analysis of COD utilization in relation to specific growth rate of wild type 

and recombinant S. oneidensis and E. coli constructs. 

 

As shown in Figure 4.9, increase in specific growth rate can be correlated with COD 

utilization. The mtrCAB S. oneidensis strain and mtrCAB E. coli strain, both had the 

highest specific growth rate with corresponding COD utilization of 94% and 27% 

respectively. What is striking in the figure is that the MFCs utilising wild type S. 

oneidensis and wild type E. coli recorded COD utilization of 30% and 73% (highest 

recorded from E. coli studies) respectively. 
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Figure 4.9. Comparison of substrate utilization (%COD) and specific growth rate (µ) 

for different S. oneidensis and E. coli constructs. 

 

 

Figure 4.10. Correlation between total protein concentration in the broth sample and 

specific growth rate of S. oneidensis constructs at the end of investigation (day 16). 

 

Figure 4.10 indicates a correlation between amount of protein secreted and increase 

in the specific growth rate of S. oneidensis.   
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Figure 4.11. Growth curve plot measured as absorbance against time (non MFCs 

condition) for the recombinant and wild type strain of E. coli and S. oneidensis. 

Growth analysis and specific growth studies are shown in Figure 4.11 and Table 4.3 

respectively. As shown in Table 4.3 the mtrCAB S. oneidensis strain showed a 

marked increase in growth rate while other strains showed a dramatic decline in 

growth rate when compared with the control strain.  

Table 4.3: Growth studies measured in absorbance of wild type and transformed S. 

oneidensis cells. 

Time 

(minutes) 

S.o 

mtrB 

(OD) 

S.o 

mtrCAB 

(OD) 

S.o 

mtrAB 

(OD) 

S.o 

mtrBC 

(OD) 

S.o 

mtrA 

(OD) 

S.o 

(OD) 

S.o 

mtrC 

(OD) 

160 0.540 0.233 0.128 0.209 0.058 0.048 0.247 

200 1.15 0.603 0.305 0.555 0.151 0.209 0.620 
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The mtrCAB strain was 1.6X faster in growth rate whereas the mtrC construct was 

1.6X slower than the wild type. The mtrB strain grew slowest, 1.9X slower than the 

wild type (Table 4.4). 

Table 4.4. Specific growth rate determination for parental and recombinant strain of 

S. oneidensis studied: 

 

4.3.4. Analysis of expression profiles 

 

Results on differentially expressed genes by quantitation of total protein content in 

the experimental tests are shown in Table 4.5. The mtrBC strain had the highest 

protein expression which was 3.6X more than that by the wild type S. oneidensis, 

while mtrB strain alone recorded the lowest protein expression, 2X lower than the 

wild type. 

Specific growth rate (µ) = (lnxt – lnxt) / t0 to ti) 

   E.g.  for S. oneidensis mtrB (µ) = ln (1.15) -ln (0.54) / (200-160) 

    S. oneidensis mtr B (µ) = 0.0189 min-1    = 1.95 X slower compare to S. 

oneidensis 

    S. oneidensis mtr CAB (µ) = 0.06 min-1   = 1.63X faster compare to S. 

oneidensis 

    S. oneidensis mtrAB (µ) = 0.0217 min-1   = 1.7X slower compare to S. 

oneidensis 

    S. oneidensis mtrBC (µ) = 0.0244 min-1   = 1.51X Slower compare to S. 

oneidensis 

    S. oneidensis A (µ) = 0.0239 min-1 = 1.54X slower compare to S. oneidensis 

    S. oneidensis (µ) = 0.0368 min-1     

    S. oneidensis C (µ) = 0.023 min-1    =   1.6X slower compare to S. oneidensis 
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Table 4.5. Bradford assay estimation of total protein content of the experimental 

samples. 

 

Test (protein) Total Protein Concentration (ug 

ml-1) 

Fold increase/decrease in 

comparison to S. oneidensis 

Test 

S. oneidensis       75 1 

S. oneidensis MtrAB      137 1.8x increase 

S. oneidensis MtrB       37 2x decrease 

S. oneidensis MtrA      221 3X increase 

S. oneidensis MtrC      166 2.2x increase 

S. oneidensis MtrBC      275 3.6x increase 

S. oneidensis MtrCAB     123 1.6X increase 

 

Other experimental systems: mtrA, mtrC, mtrAB and mtrCAB strains had more protein 

content that the wild type. 

4.3.5. Analysis of COD reduction and coulombic efficiency. 

 

As shown in Table 4.6 comparison of %COD removal with %coulombic efficiency 

indicated that mtrAB S. oneidensis strain was very effective in COD conversion to 

electricity generation (28% was converted) whereas in E. coli the COD conversion 

showed a poor result. mtrA E. coli strain was most effective in COD conversion, 

converting 0.7% of the COD utilized to electricity production.  
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Table 4.6: Comparison of COD removal & Coulombic efficiency of work involving 

over-expression and expression of Mtr-pathway in S. oneidensis (test A) and E. coli 

(test B) respectively in MFCs. 

Test A COD removal Coulombic efficiency 

(%) 

S. oneidensis mtrCAB      94%            9 

S. oneidensis mtrBC      76%           12 

S. oneidensis mtrC      88%            9 

S. oneidensis mtrB      39%          0.4 

S. oneidensis mtrA      76%          12 

S. oneidensis mtrAB     36%          28 

S. oneidensis     30%          24 

 

Test B COD removal Coulombic efficiency 

(%) 

E. coli mtrCAB       27%             0.07 

E. coli mtrBC       39%             0.03 

E. coli mtrC        24%              0.04 

E. coli mtrB       45%             0.04 

E. coli mtrA        3%             0.70 

E. coli mtrAB       21%             0.05 

E. coli       73%             0.01 
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4.4. Discussion 

 

S. oneidensis has gained considerable attention due to versatilities in its respiratory 

pathways and has been widely exploited in biotechnology and bioremediation 

applications. The development of efficient MFCs requires the ability to exploit 

interfacial electron transfer reactions to external electron acceptors (Xiong et al., 

2011). S. oneidensis is a model organism capable of coupling oxidation of carbon 

sources to reduction of numerous terminal electron acceptors using the Mtr-pathway 

(Coursolle and Gralnick, 2010). Central to the utility of this pathway is the 

understanding of the cellular mechanisms that maintain efficient optimal function, 

localization, renewal and resynthesis of the MtrC (Xiong et al., 2011). Expression of 

mtrC in conjuction with mtrB and mtrA in E. coli mediated extracellular electron 

transfer in E. coli (Xiong et al., 2011). Previously, poor electricity production and iron 

(III) oxide reduction was reported when mtrA, mtrC and mtrB genes were mutated in 

S. oneidensis (Bretschger et al., 2007), consistent with observations that MtrC 

represents a terminal electron acceptor and directly bind and transfer electrons to 

mineral oxides (Xiong et al., 2011). Another study, reported limited chromium 

reduction by deletion of mtrC in S. oneidensis (Belchik et al., 2011). However, this 

study focused on over expression of genes observed to be involved in extracellular 

electron transfer pathway in S. oneidensis.  

The experiment aimed to overexpress the protein involved in EET pathway in S. 

oneidensis individually or as operons and investigate their application and influence 

on MFCs performance including power production, substrate degradation rate and to 

study impact on growth rate and its correlation with MFCs performance, similar to 

previous work when the pathway were heterologous expressed E. coli (Jensen et al., 

2016). 

The results in Figure 4.7 and 4.8 suggested that when the mtrB gene were co- 

transformed with either mtrA and mtrC as operons in MR-1, both voltage and power 

production respectively were significantly improved as against expressing each gene 

mtrB, mtrC and mtrA alone. This might be as a result of proper localisation and 

insertion of these expressed cytochromes (MtrB) (Myers and Myers, 2002). However, 

this is in contrast with the result observed for E. coli.  
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The best MR-1 performance regarding power production 144±4 mW m-2 was when 

MR-1 was transformed with operon of mtrA and MtrB genes and the construct 

produced more power than the operon containing the three genes studied i.e. mtrA, 

mtrB and mtrC. This is in contrast with the result observed for E. coli. This suggests 

that both mtrB and mtrA are the possible limiting genes in the bioprocessing 

processing route in MR-1 and affecting power production. The power production was 

3X more than that was produced by the wild type strain. Comparing the power 

production by mtrCAB S. oneidensisstrain and mtrCAB E. coli strain, the mtrCAB S. 

oneidensis strain produced 3X more power than mtrCAB E. coli strain. Regarding the 

power production by the recombinant E. coli to its wild strain, the mtrCAB strain 

produced 25X more power than its wild type strain. Report of (Jensen et al., 2010) 

demonstrates 6 X and 4 X reduction of soluble and insoluble Fe (III) respectively faster 

by mtrCAB E. coli strain than parental strain of E. coli. However, comparing results of 

individual genes (mtrA and mtrB) suggests that mtrA gene may be the significant gene 

limiting power production in S. oneidensis. 

The result on growth rate as shown in Table 4.4 suggested that overexpression of 

mtrB or mtrA or mtrAB in MR-1 negatively affects growth rate possibly due to toxicity 

of the protein expressed and has been observed that overexpression of membrane 

proteins decreased cell viability and damaged cell membranes (Goldbeck et al., 2013). 

The result on coulombic efficiency in Table 4.6, indicated that mtrAB operon 

transformed MR-1 and mtrA E. coli gave the best coulombic efficiency possibly 

because of efficiency of substrate utilization despite reduced growth rate.  

The result on improved substrate reduction indicated that complete overexpression of 

MtrCAB in S. oneidensis significantly improve the substrate reduction as against in E. 

coli possibly due to high degree of post translation modification of MtrCAB protein in 

S. oneidensis (Goldbeck et al., 2013). 

 

4.5. Concluding Remarks 

The finding of the work suggests that creation of novel biologics for environmental 

control and electricity generation is possible by using synthetic biology and it is a 

promising tool that might offer solution to MFCs. By heterologous expression of 
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mtrCAB in a E. coli Top10 (a non-electroactive bacterium) power production was 

enhanced from 1 mW m-2 to 25 mW m-2. By overexpressing mtrCAB operon in S. 

oneidensis in this present work, significantly enhanced the bioremediation of the 

wastewater, while overexpressing mtrAB operon suggests is promising steps towards 

enhancement of MFCs on power (144 mW m-2 was produced). The performance of 

MtrA as individual or in operon in S. oneidensis suggests the regulation of its 

expression should be explored for MFCs improvement. 
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Chapter 5 

Supplementation of MFCs with quorum sensing molecule 

N(-3-oxodecanoyl)-L-homoserine lactone improves power 

production. 

 

5.1. Quorum Sensing and its application in microbial fuel cells. 

Over the past several decades, there has been an increasing appreciation among 

microbiologist that bacteria can perceive and respond to other bacteria (Li and Tian, 

2012). The first evidence of quorum sensing was reported in Vibrio fischeri, a marine 

luminescent bacterium. V. fischeri can exist as free-living or in symbiotic association 

with fish or squids (Euprymna scolopes). As free-living bacteria, V. fischeri do not 

express the luciferase light-encoding genes which regulate light emission (Soto et 

al., 2012). Diverse groups of bacteria have different mechanisms for monitoring 

abundance in the local environment. These abilities to communicate and behave as 

a group for social interactions like a multi-cellular organism have presented 

significant benefits to bacteria in host colonisation, defence against competitors, 

adaptations to environment, and formation of biofilms (Li and Tian, 2012). The 

mechanism of communications among bacteria cells is known as quorum sensing. 

Quorum sensing is a type of regulatory process that ensures that there is sufficient 

cell density, before some specific gene products are made (e.g. an extracellular 

enzyme or virulence protein). The language of communication is based on self-

generated signal molecules called autoinducers or quorum sensing molecules. 

Quorum sensing molecules exist in two main forms: Acylated Homoserine Lactones 

(AHL) and Oligopepetides (Dunny and Leonard, 1997; Miller and Bassler, 2001). 

AHL is employed by over 25 Gram-negative bacteria species such as V. fischeri and 

Pseudomonas aeruginosa. AHL has been proposed to mediate intraspecies 

communication solely between members of the same species of Gram-negative 

bacterium (Coughlan et al., 2016). Although different forms of AHLs are produced by 

different species (Churchill and Chen, 2010), they all have a common homoserine 

lactone ring moiety with varying lengths, degree of saturation, and specific 

substitutions within the attached acyl side-chain (Churchill and Chen, 2010).  The 
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concentrations of AHLs in soil range from nano-molar to milli-molar and with possible 

diffusion zone of 4-80 mm allowing nearby members of the same population to 

sense the signal and modulate gene expression accordingly (Mukherji and 

Prabhune, 2015). Bacteria ability to sense quorum sensing molecules has been 

demonstrated with a biosensor mutant Chromobacterium violaceum incapable of 

synthesizing AHL but responds to exogenously supplied of AHL by synthesising 

purple colour pigment violacein (Mukherji and Prabhune, 2015). When the acyl 

homoserine reaches a threshold concentration it binds to and activate a regulatory 

protein which then binds to a specific site on the DNA. The auto inducer responsible 

for bioluminescence in V. fischeri was shown to be 3-Oxo-C6-homoserine lactone, a 

member of the family of N-acyl-homoserine lactones (Callahan and Dunlap, 2000). In 

wild type Pseudomonas, N-(3-oxododecanoyl)-L-homoserine lactone (Figure 5.1) is 

responsible for biofilm formation (Han et al., 2010). The lasI and lasR gene in P. 

aeruginosa direct the synthesis of the signal N-(3-oxododecanoyl) homoserine 

lactone (De Kievit et al., 2001) .This has been reported to induce lasI mutant of P. 

aeruginosa (producing 20% of the wild type biofilm) to form structured biofilm 

(Thormann et al., 2004). In addition, microbial biofilm is known to be an adaptation 

mechanism in response to environmental stresses, such as high shear forces, low 

nutrient availability, unfavourably pH value, and toxic chemical (Zhang et al., 2011). 

Quorum sensing molecules in Gram negative organisms are of the N-acyl 

homoserine lactone type and so it may be expected that a molecule such as N-(3-

oxododecanoyl)-L-homoserine lactone naturally produced by Pseudomonas 

aeruginosa may induce activities such as biofilm formation in the Gram-negative S. 

oneidensis. 

 

Figure 5.1. Chemical structure of N-(3-oxododecanoyl)-L-homoserine lactone 

(Tateda et al., 2003). 
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5.2. Overview of Biofilms. 

Biofilms are described as highly structured entities of bacteria cells embedded in a 

self-produced extracellular polymeric matrix matter. Biofilm acts as a ‘biological glue’ 

accounting for about 50-90% of the biofilm composition (Karimi et al., 2015). Biofim 

attach to submerged surfaces via appendages such as flagella and fimbriae (Wood 

et al., 2011). Because of the composition of biofilms, it has also been described as 

microcolonies of bacterial cells enclosed in extracellular polymeric substances 

separated from each other by interstitial voids (Oliveira and Cunha, 2008). 

Microcolonies of biofilm are formed by the production of microbial products including 

proteins, lipid, DNA, and polysaccharides (Wood et al., 2011).  The chemical 

composition of the extracellular polymeric structure (EPS) varies depending on the 

type of bacteria present in the biofilm, but primarily made up of polysaccharides. 

These polysaccharides e.g. in the case of Gram-negative bacteria are neutral or 

polyanionic and confers anionic properties to the EPS (Donlan, 2002). Some of the 

anionic polysaccharides include D-glucuronic and D-galacturonic. Several types of 

polysaccharide with other components such as proteins and extracellular DNA 

together provide structural support for the biofilm (Flemming and Wingender, 2010). 

The thickness of biofilms vary between species and are dependent on other 

environmental conditions such as pH, temperature, availability of nutrient, and 

oxygen concentration. The short supply of nutrients often limits bacteria growth in the 

natural habitat. Factors that determine initial attachments of biofilms to surfaces 

(Figure 5.2) include type of surface, aqueous properties of the medium and its 

hydrodynamics shear force exerted, and properties of the cell surface e.g. its 

hydrophobicity (Gyamfi-Brobbey, 2016). Cell-to-cell signalling (between bacteria 

cells or bacteria and host cells) plays a possible role in early attachments and 

detachments of bacteria to surfaces during biofilm formation.  
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Figure 5.2. A schematic diagram illustrating the four characteristics of biofilm life 

cycle: the irreversible adherence of planktonic cells to surface involving action of pili 

and flagella (stage 1); cell division and formation of EPS leading to cell to cell 

adhesion thus microcolonies (stage 2); microcolonies proliferation and separation 

(stage 3); mature biofilm formed and dispersion of planktonic cells to initiate another 

life cycle (stage 4). 

The suitable environment for attachment and subsequent growth of bacteria is a 

solid-liquid interface (Gyamfi-Brobbey, 2016). Physio-chemical properties of material 

surfaces such as hydrophobicity in the 96-well plates increased the rate of bacteria 

attachment (Cerca et al., 2005). Other physical forces associated with bacterial 

adhesion include Van da Waals forces, steric interactions, and electrostatic 

interaction. Hydrophobicity between bacteria cells and surfaces has been shown to 

enable bacteria to withstand irreversible repulsive forces that are present. However, 

during the stage of reversible attachments, the repulsive forces are greater than the 

attractive forces (Franks et al., 2010; Li and Tian, 2012; Garrett et al., 2008).  

Fundamental to improving MFCs performance is to improve on its productivity and 

reduce its operating costs (Karmakar et al. 2010). One area that might fundamentally 

improve MFCs performance and long-time operation will be to enhance the formation 

of highly specialized bacterial biofilms on the electrode surface (Leech, 2015). 

However, as the thickness of biofilm progresses it results in the accumulation of 
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dead cells (Webb et al., 2003) and long-time operation caused biofouling of the 

proton exchange membrane which limit conductivity, capacity of ion transfer, and 

diffusion coefficient (Rahimnejad et al., 2015). Bacteria such as G. sulfurreducens 

and S. oneidensis formed electrical conductive pili capable of transferring electron 

transfer across considerable distance greater than 50 µm and have been shown to 

be involved in biofilm formation and attachment to surfaces. The thickness of biofilm 

growth has been observed to have a direct correlation with the current production 

(Choi and Chae, 2013, gya et al., 2010, Karra et al., 2013, Khan et al., 2016). Power 

output in MFCs was directly dependent on biofilm growth and composition (Okamoto 

et al., 2012). Biofilm attachment to the electrode surface were mainly responsible for 

electricity production as opposed to the planktonic cells (Liu et al., 2007). Using 

Quartz crystal microbalance that monitors changes in mass on electrode to observe 

development of biofilm, indicated correlation of increased power production with 

increase in the viscoelasticity properties of the biofilm (Leech, 2015). Therefore, 

since AHL has been reported to mediate intraspecies communications (Coughlan et 

al., 2016) and they have a common homoserine lactone ring moiety (Churchill and 

Chen, 2010), it was hypothesized that exogenous supplementation of the N-(3-

Oxododecanoyl)-L-Homoserine lactone would enhance biofilm formation by S. 

oneidensis leading to improved electricity production in MFCs. Therefore, this study 

investigated for the first time the influence of -(3-Oxododecanoyl)-L-Homoserine 

lactone on biofilm formation by S. oneidensis and influence on electricity production 

in MFCs. 

 

5.3. Materials and Methods 

5.3.1. Chemicals 

N-(3-oxodecanoyl)-L-homoserine lactone quorum sensing molecule and some of the 

chemicals described in section 2.2.1 were purchased from Sigma Aldrich (UK). All 

chemicals used were of analytical grade and were not purified further before used. 

5.3.2. Bacterial strains, maintenance, and culture 

S. oneidensis strain 700550 was purchased from ATCC and was maintained, 

cultured and subcultured as described in section 2.2.1. 
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5.3.3. Experimental design 

The experimental design for the use of quorum sensing molecule to enhance biofilm 

formation by S. oneidensis for electricity generation from synthetic wastewater 

(MSM) containing 500 mg L-1 glucose was investigated for 13.4 days due to time 

limitation under strictly anaerobic-anodic conditions in a two-chambered MFC (Figure 

5.3). The inoculum was made up of 10% (v v-1) of the anode working volume. The 

concentrations of exogenous addition of N(-3-oxodecanoyl)-L-homoserine lactone 

tested were 5; 10, and 20 µM. The control was MFCs with S. oneidensis in the 

anode with no quorum sensing molecule added to the anolyte medium. The 

experiments were done in triplicate. Performance measured include power 

generation, COD removal, biofilm growth, and total biofilm protein. 

For all set ups the volume of inoculum used was 10% v v-1 of the total anolyte 

volume. The anode chambers with the contained mixtures were stripped of dissolved 

oxygen by sparging nitrogen gas for 5 minutes before setup.  

All experiments were replicated three times and studied at 300C using a temperature 

controlled Stuart 160 incubator (Fisher Scientific, U.K.). Results were expressed as 

mean of replicates ± standard deviation. 

For all set ups, the volume of inoculum used was 10% v v-1 of the total anolyte 

volume. The anode chambers with the contained mixtures were stripped of dissolved 

oxygen by sparging nitrogen gas for 5 minutes before setup.  
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Figure 5.3. Scheme for experimental design investigating the use of N-(-3-

oxodecanoyl)-L-homoserine lactone for enhancing biofilm formation and influence on 

electricity production in MFCs. 

 

5.3.3.1. Modification of anolyte minimal salts medium used for the investigation 

of exogenous addition of quorum sensing molecule for enhancing biofilm production 

to power production. 

The anolyte MSM for the investigation of exogenous addition of quorum sensing 

molecule for enhancing biofilm production and hence power production was 

supplemented with 500 mg L-1 glucose and 500 mg L-1 casein hydrolysate, trace 

element stock solution (x1) and vitamin stock solution (x1).   

 The catholyte used was 50 mM (pH 7) phosphate buffer containing 0.1M potassium 

ferricyanide, without aeration. 

S. oneidensis 

N(-3-oxodecanoyl)-L-homoserine lactone      

5, 10, and 20 µM concentrations. 

Anode section of MFCs operated with S. 

oneidensis N(-3-oxodecanoyl)-L-

homoserine lactone for biofilm 

formation to electricity production.  

Cation exchange 

membrane  
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For all set ups, the volume of inoculum used was 10% v/v of the total anolyte 

volume. The anode chambers with the contained mixtures were stripped of dissolved 

oxygen by sparging nitrogen gas for 5 minutes before setup.  

The MFC components used and all media solutions for all the experiments were 

sterilised by autoclaving at 121℃ for 15 minutes. The experiments were conducted in 

batch mode with a working volume of 200 mL in each MFC compartment. The 

anolyte was purged with nitrogen gas for 10 minutes through a 0.22 µm pore size 

diameter filter prior to inoculation.  

All experiments were replicated three times and studied at 30℃ using a temperature 

controlled Stuart 160 incubator (Fisher Scientific, U.K.). Results were expressed as 

mean of replicates ± standard deviation. 

The studies on S. oneidensis biofilm development were further investigated under 

non-MFCs anaerobic conditions. Firstly, using 96 sterile sterlin plates (Figure 5.4). 

Each well of the 96-microtiter plate has 200 µL composed of representative medium 

used for the investigation under MFCs condition for investigation of quorum sensing 

concentrations (5, 10, and 20 µM)  composed of S. oneidensis, glucose, Minimal salt 

medium, vitamin mix and trace elements as described for the modification of anolyte 

medium.  The setup is as described below and covered with the lid. The setup was 

further wrapped with plastic paraffin film and incubated at 300C. 

The unattached S. oneidensis cells grown on microtiter plates for two days as 

described under experimental design for investigation of quorum sensing molecules 

were submerged in a small tube of water and shaked out to remove the unattached 

cells from the attached cells bound to the well of the microtiter plate. Solution of 

0.1% Crystal Violet (125 µL) were added to each well of the microtiter plate and 

incubated at room temperature for 15 minutes. 
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Figure 5.4. Schematic demonstration of experimental setup of biofilm studies under 

non-MFCs condition using 96 well Sterlin plates. 

5.3.3.2. Quantification of S. oneidensis biofilm using crystal violet method. 

 

The plate was rinsed 3 times after incubation by submerging in a tub of water and 

blotting out vigorously to remove all excess cells and dye. The plates were left to dry 

for 1 hour. Acetic acid 125 µL 30% (v/v) was added to each well plate to solubilize 

the crystal violet before quantifying using at 550 nM. Empty well with no culture were 

used as the blank having 125 µL 30% (v v-1) acetic acid.  

5.3.3.3. Quantification of S. oneidensis biofilm using confocal microscope. 

Analysis of biofilms by using fluorescent staining and subsequent imaging is 

described to be challenging, because of heterogenous thickness associated with 

biofilm surfaces, composing of undefined regions (e.g. extracellular polymeric 

matrix). Hence, we used SYPRO Ruby stain for the confocal microscope 

examination of C. beijerinckii, and S. oneidensis biofilm formation, because it labels 

most classes of proteins including glycoproteins, phosphoproteins, lipoproteins, 

calcium binding protein and fibrillar protein and other proteins that are difficult to 

stain. This stain has been tested to stain matrix of Pseudomonas aeruginosa and 

some strain of E. coli. In-order to examine and quantify biofilm formation by S. 
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oneidensis and C. beijerinckii and investigation of influence of quorum sensing 

molecules on S. oneidensis to enhance biofilm formation. The cells were cultured 

separately on cover slips in “Corning Costa 6 Well Plates” for 2 days. The cover slips 

were carefully rinsed in 100mM phosphate buffer and thereafter were placed in a 

fresh Corning Costa 6 well plates. SYPRO Ruby stain 200 µL was added to each of 

the biofilm samples on the slips without offsetting the biofilm. The samples were 

incubated for 30 minutes protected from light. After incubation, filter sterilized water 

was used to remove excess stain and the stained samples were placed into a fresh 

Corning Costa 6 well plates (Figure 2.7, purchased from Thermofisher) covered with 

3 ml of filter sterilized water and observed under a confocal microscope at 450 nm. 

 

5.3.3.5. Extraction of Biofilm and Determination of total biofilm protein content. 

Examination of biofilm formations on the anode fuel cells were done by dissembling 

the MFCs compartments and carbon cloth were carefully removed without touching 

the surface. Anode electrodes with the build-up of biofilm from the various tested 

systems were dipped in sterile deionised water to remove any loose cells or debris 

that were not part of the attached biofilm. Thereafter they were placed in the 

“Stomacher Bags” and equal volume of sterile distilled water were added before the 

biofilms were discharged using Stomacher Paddle homogeniser. The broth 

containing the total biofilm were further disrupted using the sonication method for 

total protein extraction. The total protein estimations were conducted using Thermos 

Scientific Pierce Bicinchoninic Acid Reagent (BCA) Protein Assay for the colorimetric 

detection and quantitation of the total protein. This method combines well- known 

reduction of Cu+2 from the BCA reagent to Cu+1 (cuprous cation) by protein in an 

alkaline medium (the biuret reaction) and colorimetrically detected. The water-

soluble complex exhibits a strong absorbance at 562 nm. A series of dilutions of 

known concentrations of Bovine Serum Albumin (2 mg mL-1, BSA) were prepared to 

prepare a set of protein standards. The concentrations of standards were ug mL-1 

(250; 125; 50; 25; 5; 0) and assayed alongside with the unknown samples extracted 

by physical disruption using sonication method. Thereafter 0.1 mL of each standard 

and unknown samples triplicate were added to 2 ml of BCA (20 – 2,000 ug mL-1). 

The mixtures were allowed to incubate at 37℃ for 30 minutes. The absorbance of all 

the samples were measured using a spectrophotometer at 562 nm after 10 minutes. 
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5.4. Results  

5.4.1. Summary 

Quorum sensing molecule N(-3-oxodecanoyl)-L-homoserine lactone was 

exogenously added to the anodic medium at varying concentrations: 5, 10, and 20 

µM to assess effects on the regulation of the population density and hence biofilm 

formation by S. oneidensis with a view to enhance electricity production in MFCs. As 

summarised in Table 5.1.  Power was enhanced to 184 ± 2 mW m-2 by the 10 µM 

concentration of N(-3-oxodecanoyl)-L-homoserine lactone and COD removal of 62% 

compared to 56 ± 3 mW m-2 power production with 92% COD removal by the control. 

Table 5.1. Summarization of result of the influence of -(3-Oxododecanoyl)-L-

homoserine lactone on biofilm formation by S. oneidensis and influence on electricity 

production in MFCs 

 S. oneidensis 5 µM 10 µM 20 µM 

Power 

Production 

(mWm-2) 

56 ± 3 160 ± 5 184 ± 2 140 ± 4 

% COD 

Reduction 

92 ± 3 72 ± 1 62 ± 3 42 ± 2 

 

 

5.4.2. Voltage-time profiles and polarization curves. 

The influence of of N(-3-oxodecanoyl)-L-homoserine lactone on voltage-time profile 

is shown in Figure 5.5. What can be seen clearly is that the voltage pattern were 

closely similar. The peak voltage produced was by 10 uM (538 mV), followed by 

20uM (526 mV) and lastly by 5 uM (484 mV). The control had lowest voltage of 261 

mV. 
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Figure 5.5. Voltage production using N(-3-oxodecanoyl)-L-homoserine lactone. 

The influence on polarisation and power density curves are shown in Figure 5.6A 

and 5.6B respectively. What stands out is that the power produced across the HSL 

stimulated tested studies are statistically significant (p < 0.05) higher than the 

control. The order of power produced are 10 uM (184 mWm-2) > 5 uM (160 mWm-2) > 

20 uM (140 mWm-2) > control (56 mWm-2). 
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Figure 5.6. Power production of S. oneidensis influenced using N(-3-oxodecanoyl)-L-

homoserine lactone: (10 µM, 184.02 mW m-2) (5 µM, 160.1 mW m-2)(20 µM, 140.5 

mW m-2) (control, 56 mW m-2) using N(-3-oxodecanoyl)-L-homoserine lactone. 

5.4.3. Quantitative and Qualitative analysis of biofilm formation by S. 

oneidensis influenced by N(-3-oxodecanoyl)-L-homoserine lactone. 

The influence of varying concentrations of N(-3-oxodecanoyl)-L-homoserine lactone 

studied on biofilm growth under anaerobic non-MFCs condition is shown in Figure 

5.7. What is interesting is that 20 uM produced the highest growth of 1.09 OD 

compared to the control which recorded the lowest (0.7 OD). 
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Figure 5.7. Quantification of biofilm formation influenced by HSL under non-MFCs 

condition. Error bars mean standard deviation from the mean (n = 3) 
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What is also interesting is that 5 uM produced growth of 0.83 OD similar to the 

growth of 0.84 OD produced by 10 uM concentrations. Images from confocal 

microscope (Figure 5.8) showed marked increase of biofilm developed by the 10 µM 

concentration which was densest compared to all the tested conditions. 

 

 
 

  

 

Figure 5.8. Images from confocal microscope analysis of (A). S. oneidensis biofilm 

(B) with 5 uM N(-3-oxodecanoyl)-L-homoserine lactone (C) with 10 uM N(-3-

oxodecanoyl)-L-homoserine lactone (D) with 20 uM N(-3-oxodecanoyl)-L-

homoserine lactone grown under non-MFCs condition on microscope slide in six well 

plates grown at 30℃ for 2 days under complete anaerobic condition. 

5.4.4. Analysis of Biofilm formation discharged from the tested anode 

conditions. 

The total concentration of protein extracted from the biofilm discharged from the 

various anode tested conditions are shown in Table 5.2. What can be clearly seen is 

A B 

C D 
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that as the concentration of HSL increases, the protein concentration increases 

except in the case of 20 µM. 

The highest protein of 2.94 mg mL-1 was produced by 10 µM while the control 

produced the least of 0.2 mg mL-1. The 20 µM concentration produced 1.71 mg mL-1. 

 

Table 5.2. Protein quantitation from biofilm discharged from electrode in MFCs 

condition influenced by varying concentration of N(-3-oxodecanoyl)-L-homoserine 

lactone. 

 

The result of percentage of COD reduction and amount of percentage of coulombic 

efficiency recovered are shown in Table 5.3. What can be clearly seen is that as 

COD decreases, the concentration of HSL increases. The control achieved the best 

COD reduction of 92%.  

Table 5.3: Comparison of COD with the CE from MFCs investigated by stimulation of 

S. oneidensis with varying concentrations of N(-3-oxodecanoyl)-L-homoserine 

lactone. 

Test COD (%) CE (%) 

S. oneidensis 92 ± 3 4.7± 1 

5 µM 72 ± 1 13 ± 1 

10 µM 62 ± 3 15 ± 2 

20 µM 42 ± 2 23 ± 2 

 

The result of coloumbic efficiency demonstrated that the higher the substrate 

consumed the lower the amount of CE recovered. The 20 µM had the best 

coulombic efficiency of 23% transfer. The coulombic efficiency increases as the 

concentration of HSL increases. 

Test Protein concentration (mg mL-1) 

S. oneidensis                         0.222 

5µM               1.60 ± 0.01 

10µM               2.94 ± 0.01 

20µM               1.71 ± 0.01 
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5.5.6. Analysis of DNA composition of the biofilm discharged from the 

investigation of exogenous addition of N(-3-oxodecanoyl)-L-homoserine 

lactone. 

The analysis of DNA contents of the biofilm is shown in Figure 5.9. The result 

demonstrated that as the concentration of HSL increases the DNA synthesized 

increases. HSL of 20 µM produced 47 ng µL-1, 10 µM produced 36 ng µL-1, 5 µM 

produced 16 ng µL-1 and control produced 3 ng µL-1. 
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Figure 5.9. Quantitation of DNA extracted from anodic biofilm discharged, growth 

influenced by varying concentration of N(-3-oxodecanoyl)-L-homoserine lactone. 

5.6. Discussion. 

The aim of this study was to enhance electricity production in MFCs by using quorum 

sensing molecules (N(-3-oxodecanoyl)-L-homoserine lactone) to enhance biofilm 

formation by S. oneidensis. Although, different operating parameters such as pH, 

substrate concentration, temperature, external resistance, anaerobic and aerobic 

processes have been shown to directly affect biofilm formation, however, optimal 

biofilm formation and minimal oxygen invasion in the anode chamber has been 

shown to improve power generation (Saratale et al., 2017). S. oneidensis form 

biofilms by secreting extracellular polysaccharide and plays a significant role in 
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extracellular electron transfer (Uno et al., 2017) which could form a large tower 

biofilm 40 µM in height (Read et al., 2010). Increase in biofilm has been shown to be 

accompanied with increase in cell number (Murphy et al., 2016).This investigation 

focussed on using N(-3-oxodecanoyl)-L-homoserine lactone a quorum sensing 

molecule to enhance biofilm formation by S. oneidensis in-order to enhance biofilm 

formation for electricity recovery in microbial fuel cells as previous studies have 

reported direct correlation between levels of biofilm formation and power production 

(Song et al., 2016), coulombic efficiency (Zhang et al., 2017) azo dye  degradation 

(Cao et al., 2017) and nitrogen removal. The production of current in microbial fuel 

cell has been shown to be related to the development of electronic conductive biofilm 

by electrode interaction (Malvankar et al., 2012). Bacteria develop biofilms on the 

electrode which allow opportunity for extracellular electron transfer (Read et al., 

2010).  

MFCs performance are conventionally evaluated through coulombic efficiency and 

power output. Hence, parameters considered for improving MFCs performance 

includes:  power generation, percentage of COD removal and coulombic efficiency. 

Understanding ways bacteria drive metabolic flux through processes such as biofilm 

formation, cytochrome transport protein, or through improve cell density could 

potentially be exploited to drive COD degradation route to electricity production 

(Rabaey and Verstraete, 2005). A combination of high power density, high COD 

reduction of substrate and high coulombic efficiency are important for MFCs towards 

real world practical application (Rahimnejad et al. 2015) 

 

Figure 5.5 and Figure 5.6 demonstrated that quorum sensing molecules can be 

utilized to improve voltage and power production in MFCs respectively. Although, the 

voltage patterns of the tests with varied N(-3-oxodecanoyl)-L-homoserine lactone 

concentrations studied were closely similar, but were significantly higher than the 

control by more than 37%. Previous report have demonstrated that mutant strain of 

P. aeruginosa deficient in synthesising pyocyanin and phenazine-1-carboxyamide 

achieved 5% of power produced by the wild type and was restored to 50% by 

addition of pyocyanin (Rabaey et al., 2005). The power result in this study suggested 

that N(-3-oxodecanoyl)-L-homoserine lactone between 5 µM and 10 µM 
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concentration can be used to enhance power production in MFCs. The power 

produced increased more than X3 when 10 µM of (-3-oxodecanoyl)-L-homoserine 

lactone was used. It has also been shown that the amount of AHL determine the 

biofilm formation (Taghadosi et al., 2015) and over 1µM concentration of (-3-

oxodecanoyl)-L-homoserine lactone was observed to increase biofilm in 

Pseudomonas aeruginosa (Xia et al., 2012). 

Figure 5.7 and Figure 5.8 indicated that the S. oneidensis under MFCs and non-

MFCs altered with N(-3-oxodecanoyl)-L-homoserine lactone produced biofilm 

formation in correlation with the concentration of quorum sensing molecule. The 

result indicated that the rate of biofilm formation increases proportionally to the 

concentration of the ASL. The increase is associated with power production (Figure 

6.2).  

Table 5.2 of this study indicated that 10 µM concentration N(-3-oxodecanoyl)-L-

homoserine lactone produced the highest biofilm protein. There are direct 

correlations between the concentration of N(-3-oxodecanoyl)-L-homoserine lactone, 

the biofilm proteins produced, the power production produced, and voltage 

produced. Suggesting that approach might be the goal to enhancing electricity 

production in MFCs. 

Table 5.3 suggested that N(-3-oxodecanoyl)-L-homoserine lactone inhibit COD 

reduction by the S. oneidensis, although the result of coulombic efficiency indicated 

coulombs recovered was increased as the concentration increases.  Therefore, this 

suggests that COD was utilized effectively for electricity generation. In the case of 10 

µM concentration, 24% of coulombs was transferred, while 55% was transferred  in 

the case of 20 µM concentration for power production (Figure 5.6A). 

 

The result of total DNA of the biofilm composition (Figure 5.9) which could represent 

the population density of the biofilm corroborates the result of biofilm formation under 

non-MFCs condition, suggesting that the mode of respiration of S. oneidensis has 

little role to play on its biofilm formation. The increase in the concentration of N(-3-

oxodecanoyl)-L-homoserine lactone associated with the concentration of DNA result 

was also consistent with the levels of coulombic efficiency result (Table 5.3). This is 

supported by the claim that efficiency of MFCs can be correlated with the biomass of 
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biofilm formed on the electrode and coulombic efficiency was increased from 89% to 

99% (Eaktasang et al., 2013) and biofilms attached anode enabled increase of CE 

from supernatanat consortium of 29.6% to 50% (Liu et al., 2008). 

5.7. Concluding remarks. 

The present work demonstrated that MFCs could be successfully improved 

regarding power production by using quorum sensing molecules. This work 

demonstrates that HSL can be used for interspecies communication.  It further 

demonstrates that modification of industrial wastewater with (-3-oxodecanoyl)-L-

homoserine lactone to a concentration of 10 µM concentration can potentially make 

MFCs a sustainably wastewater treatment process. This work also suggests that 

concentration of (-3-oxodecanoyl)-L-homoserine lactone from 5 µM to 19 µM 

concentrations need to be further studied in order to judge the best concentration for 

MFCs application. 
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Chapter 6 

Conclusions 

The first study (Chapter 2) investigating the use of co-cultures to enhance electricity 

production in MFCs demonstrated that cleverly defined co-cultures can be used to 

improve substrate degradation leading to improved electricity production. By using 

co-cultures of S. oneidensis and C. beijerinckii  , electricity production from synthetic 

wastewater containing glucose as model carbon source was improved from either 

60±3 mWm-2 (C. beijerinckii) or 48±2 mW m-2 (S. oneidensis) to 87±4 mW m-2 for the 

co-culture at day 15. Substrate (glucose) consumption was improved from 20% (S. 

oneidensis) to 67% by the co-culture. This could be due to the advantages of the 

fermentative organism employed that enhanced the degradation of glucose to 67% 

alone. In the second co-culture studies, electricity production was improved from 

either 1 mWm-2 (S. cerevisiae) or 74 mW m-2 (C. beijerinckii) to 80 mw m-2 by the co-

culture of G. sulfurreducens, S. cerevisiae and C. beijerinckii. In the second study at 

11 day of the studies, glucose utilization was improved from 40% (C. beijerinckii) or 

35% (G. sulfurreducens) to 55% by the co-culture of C. beijerinckii and G. 

sulfurreducens.  

The relative abundance of the electrochemically active bacteria in the co-cultures 

changed during the course of the experiments with S. oneidensis showing more 

abundancy in the first study of co-culture work and G. sulfurreducens in the second 

study of the co-culture work relative to C. beijerinckii in both studies. This work 

further suggests that the electroactive organisms (S.oneidensis and Geobacter 

sulphurreducens) irrespective of their specific growth rate were the abundant 

organism when co-cultured with other non-electrogenic bacteria in MFCs. The pure 

culture of S. oneidensis can potentially generate 4.6 mWm-2 which is higher than 

4.25 mW m-2 when co-cultured with C. beijerinckii for electricity production from 500 

mg L-1 phenol contaminated wastewater. Pure cultures of C. beijerinckii could be 

used to achieve 99% remediation of phenol at levels of 500 mg L-1 within 35 days in 

a contaminated wastewater system if applied. The efficiency of S. oneidensis for 

energy generation and remediation at a level of 500 mg L-1 phenol contaminated 

wastewater was improved by exogenous supplementation of Riboflavin 
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(concentration level of 40 µM) with power generation increasing from 4.6 mW m-2 to 

54 mW m-2. Also at a concentration level of 30 µM Riboflavin, phenol concentration 

was reduced from 500 mg L-1 to 52 mg L-1 (ca. 90% removal) within 8 days of 

operation. 

In the second study (Chapter 3), the understanding of the relative contribution of 

direct electron transfer and mediated electron transfer utilized by S. oneidensis and 

which could generally be used by most other electrogenic bacteria was investigated 

in MFCs. The outcome of the investigation revealed that direct electron transfer 

made a 74% contribution to overall electron transfer when a dialysis membrane was 

used to localise S. oneidensis cells on the electrode and generated 114±6 mW m-2 

power which was more than the contribution made by the mediated electron transfer 

process by S. oneidensis (32± 8 mW m-2). The results were corroborated by another 

study where S. oneidensis cells were entrapped in alginate beads for studying 

mediated electron transfer process utilized by S. oneidensis (in which case power 

generation was 36± 6 mWm-2). 

  

In the third study (Chapter 4), the possibility of using Synbiota Rapid DNA prototyping 

assembly method to engineer E. coli and S. oneidensis for the understanding of the 

expression of the proteins involved in the transfer of electrons from the periplasmic 

membrane of S. oneidensis to the outer membrane was investigated. The genes were 

studied individually and also by combination of the genes as operons. The outcome of 

the investigation suggested that the complete operon MtrCAB coding for the Mtr 

pathway is required for a non-electrogenic bacterium to generate electricity. By the 

heterologous expression of the proteins in E. coli, power was increased from 1±0.01 

mW m-2 to 25±0.7 mW m-2 by the MtrCAB mutant strain. Overexpression of the mtrAB 

in S. oneidensis enhanced extracellular electron for power generation from 48±2 mW 

m-2 to 144±4 mW m-2. The overexpression of MtrB in S. oneidensis inhibited the growth 

rate and power production. Overexpression of mtrCAB operon in S. oneidensis 

enhanced glucose utilization from 30% to 94%. The expression of mtrC or mtrA 

individually in S. oneidensis can be used to improve glucose utilization from 30% to 

88% or 76% respectively. These results suggest the importance of these two genes in 
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mtrCAB operon with respect to substrate conversion by S. oneidensis in MFCs applied 

for bioremediation processes.  

The fourth study (Chapter 5), investigated the possibility of using quorum sensing 

molecules for stimulation of S. oneidensis for the enhancement of biofilm formation 

with the possibility for increasing power generation in MFCs. The quorum sensing 

molecule used for this study was (-3-oxodecanoyl)-L-homoserine lactone which is 

naturally used by Pseudomonas aeruginosa for biofilm formation.  The work 

demonstrated that supplementation of industrial wastewater with (-3-oxodecanoyl)-L-

homoserine lactone to a concentration of 10 µM concentration can potentially make 

MFCs a sustainably process of wastewater treatment. The study generated the best 

power output of all the approaches presented in this thesis  i.e. 184 ± 2 mW m-2 

equivalent to 2.3 W m-3 of anode chamber assuming for an electrode area of 25 cm2 

and an anode chamber volume of 200 mL. Confocal electron microscope analysis of 

the microorganisms studied under non MFCs conditions revealed the stimulation of 

S. oneidensis by (-3-oxodecanoyl)-L-homoserine lactone for dense biofilm formation 

compared with the sparsely- formed biofilm without (-3-oxodecanoyl)-L-homoserine 

lactone. This demonstrates the possibility that the enhanced power generation in 

Chapter 4, 5 and 6 might be as a result of development of biofilm on the electrode.   

 

This work has significantly contributed to previous knowledge in that by using 

cleverly defined co-cultures, substrate conversion to electricity production can be 

improved. It has also contributed to knowledge on the understanding of the relative 

contributions of extracellular electron transfer processes utilized by S. oneidensis to 

electrodes. This work also expanded the knowledge of application of synthetic 

biology for introducing different combinations of extracellular electron transfer 

pathways in a non-electrochemically active bacterium (E. coli) and also by 

overexpressing different combinations of the pathway in S. oneidensis. This work 

further contributed to previous knowledge that S. oneidensis can recognise and 

communicate with 3-oxodecanoyl)-L-homoserine lactone for increasing biofilm 

formation and power generation in MFCs.  
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Chapter 7 

7.0 Future work 

The results from this study underscore several areas of future work so as to enhance 

electricity production from industrial wastewater using microbial fuel cell technology. 

7.1. Further design of synthetic microbial consortia 

The work presented in this thesis utilised cocultures of fermentative organisms (e.g. 

C. beijerinckii) with exo-electrons with a view of increasing substrate conversion and 

ultimately electricity production. Facultative organisms e.g. S. cerevisiae were all 

used to consume oxygen from the anode. Further work should explore cocultures 

with other ecological relationships e.g. mutualism, amensalism etc. (Figure 7.1).  

Algae-bacterial interactions for example have been less studied yet algae could 

remove organic compounds and nutrients e.g. nitrogen from wastewater. 

 

 

Figure 7.1. Microbial relationships that could further be explored in designing defined 

co-cultures for improving electricity production from MFCs. 

 

Fungal bacterial interactions should also be explored. A very large number of organic 

molecules in wastewater are susceptible to the actions of various strains of white rot 

fungi, and even recalcitrant compounds e.g. polycyclic aromatic compounds can be 

degraded.  Studies by Fernandez de Bios et al., 2013 used a defined culture of the 

fungus Trametes versicolor and the electroactive bacteria S. oneidensis in the anode 

chamber of an H-type microbial fuel cell so that the bacterium would use the 

networks of the fungus to transport the electrons to the anode. Their system, which 

was linked to azo dye degradation in the cathode chamber, generated stable 

electricity (stable voltage of approximately 1000 mV across 1000 Ohms resistance) 

that was enhanced when electro-Fenton reactions occurred in the cathode chamber. 
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Strains could be genetically engineered and cultivated in co-culture with electrogenic 

microorganisms to confer certain characteristics e.g. utilise a wide range of 

substrates e.g. C6 and C5 sugars, produce vitamins, amino acids needed for growth, 

produce redox mediators e.g. riboflavin etc. (Figure 7.2) 

 

 

Figure 7.2.  Defined consortium of two microorganisms which compete for carbons 

sources while interacting with electrogens. The three microorganism combination 

could in theory produce more electricity than individual microbes. Adapted from Ding 

et al., (2016). 

7.2. Strategies to improve electron transfer 

In this present work, direct electron transfer mechanism contributed significantly to 

power production. Hence, it is recommended for future investigation to investigate 

ways of coupling bacteria to electrodes e.g. by encapsulating S. oneidensis cells in 

conductive polymer and coating the cells with nanoparticles for generating artificial 

nanowires (Alfonta, 2010).   

This work indicated that mediated electron transfer also contributes to electricity 

production although not to the same extent as direct electron transfer. Future work 

should target improving the permeability of S. oneidensis cell membrane to redox 

mediators. This could be achieved by heterologously expressing the porin protein 

OprF e.g. from Pseudomonas aeruginosa PAO1 into S. oneidensis. Some studies 

have suggested that in addition to increased membrane permeability of redox 
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mediators between bacteria and anodes, such expression can increase substrate 

uptake and metabolite excretion (Yong et al., 2013).  

 

7.3. Modulating expression of genes involved in extracellular electron 

transfer 

The investigation for better understanding of the Mtr-pathway for bioelectricity 

production suggested that the mtrA gene strongly influenced power production in S. 

oneidensis although the recombinant cells grew slower compared to the wild type 

strain.  Hence, it is recommended for future work to investigate the regulation of the 

expression of the mtrA gene using strong, weak and inducible promoters. Another 

area of synthetic biology application suggested for possibility of MFCs improvement 

is by engineering S. oneidensis with the curli operon genes (Csg BAC) for curli 

overproduction. Curli are highly aggravative amyloid fibers (2-5 mm diameter) that 

protrude on the surface of E. coli and salmonella which are devoted to increasing 

adherence abilities of bacteria and formation of biofilm on abiotic surfaces.  It is 

known to bind to metal ions and have affinity for metals such as Cu2+ and Fe3+ 

(Drogue et al., 2012).  

 

7.4. Improving biofilm formation. 

This work demonstrated that supplementation of microbial fuel cells with 10 µM 

concentrations of (N-3-oxodecanoyl)-L-homoserine lactone significantly enhanced 

power production and this was correlated with increased biofilm formation. Hence, it 

is recommended for future investigation to investigate concentrations beyond 20 uM 

not considered in this study. It would also be useful if quorum sensing molecules (if 

any) produced by S. oneidensis could be extracted and identified. The 

supplementation of MFCs with compounds that enhance production of quorum 

sensing molecules e.g. phenolic plant compounds such as Vanillin, 4-

hydroxybenzoic and Gallic acids at concentration within 40 to 400 µg mL-1 should 

also be investigated (Plyuta et al., 2013). Although biofilm formation was correlated 

to increased power production, no information on the viability of the cells in the 

biofilm was generated. Further studies should probe the viability of cells in MFC 

biofilms using a BaclightTM live/dead stain. 
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7.5. Development of photosynthetic biocathodes 

To make MFC technology competitive, the cost of materials for operational needs to 

be low. Another area that should be considered for future investigation is the use of 

photosynthetic biocathodes e.g. algae as a possible replacement for expensive 

platinum catalyst used in MFC cathodes. Algae provides a useful way generating 

oxygen, used as a terminal electron acceptor, in situ in MFC cathodes, utilisation of 

CO2 produced in the anode and ultimately conversion of solar energy to electricity 

(Lee et al., 2015; Liu et al., 2015). Algae can utilize the carbon dioxide produced by 

the end product of metabolism (Velasquez‐Orta et al., 2009; Gajda et al., 2015).  

Hence, elementary CO2 produced in the anode can be diverted to the cathode for 

algae utilization.   
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Appendix 

Appendix 1: Ethanol, Butyric and Acetic Standards analysed using Gas 

Chromatography (FID). 

 

                      Ethanol 50mg/L 

  

 

 

No.  Peakname  Ret.Time Area 
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          Ethanol 200mg/L 

 

 

 

No.  Peakname  Ret.Time Area 

  min mV*min 

1 Ethanol 2.954   1.6158   
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                                                 Butyric acid peak at 200mg/L 

      

 

 

No.  Peakname  Ret.Time Area 

  min mV*min 

9 n.a. 12.643   0.8805   

 

 

 

 

 

 

                                                                     Butyric acid peak at 400mg/L  

 

 

No.  Peakname  Ret.Time Area 
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                                                                  Butyric acid peak at 800mg/L  

 

 

No.  Peakname  Ret.Time Area 

  min mV*min 

1 n.a. 12.642   1.7451   
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                                                                                Acetic acid peak at 400mg/L 

 

 

No.  Peakname  Ret.Time Area 

  min mV*min 

1 n.a. 11.208   0.7931   

  

 

 

 

                                                                              Acetic acid peak at 800mg/L 
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Appendix 2: Standard Curve of Protein (Albumin) using Bradford Assay. 
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Appendix 3: Gas chromatography analysis of metabolic products of glucose 

utilization by S. oneidensis. 
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Appendix 4: Journal Publications & Conference proceedings. 

Journal Publications  

Fapetu, S., Keshavarz, T., Clements, M. & Kyazze, G. 2016. Contribution of direct 

electron transfer mechanisms to overall electron transfer in microbial fuel cells 

utilising Shewanella oneidensis as biocatalyst. Biotechnology letters.38(9): 1465-

1473. 

Gomaa, O. M., Fapetu, S., Kyazze, G. & Keshavarz, T. 2017. The role of riboflavin in 

decolourisation of Congo red and bioelectricity production using Shewanella 

oneidensis MR1 under MFC and non-MFC conditions. World Journal of Microbiology 

and Biotechnology. 33(3): 56 – 62. 

               

Conference proceedings 

• Fapetu, S.A., Keshavarz, T., Clements, M.O. and Kyazze, G. 2017. 

Overexpression of the Mtr pathway in Shewanella oneidensis for bioelectricity 

production. (Society for Applied Microbiology) 6th ECS Research Symposium. 

University of Westminster 19 Apr 2017 Society for Applied Microbiology. 

• Gomaa, O., Fapetu, S., Kyazze, G. and Keshavarz, T. 2016. Applying synthetic 

biology as a tool to understand simultaneous bioenergy production and 

biodegradation process. Aulenta, F. and Majone, M. (ed.) EU-ISMET 2016: The 

3rd European Meeting of the International Society for Microbial Electrochemistry 

and Technology. Department of Chemistry (NEC) Sapienza, University of Rome, 

Rome, Italy 26 to end of 28 Sep 2016 ISMET. 

• Fapetu, S., Keshavarz, T., Clements, M.O. and Kyazze, G. 2016. Enhancing 

electricity production from wastewater using microbial fuel cells. Aulenta, F. and 

Majone, M. (ed.) EU-ISMET 2016: The 3rd European Meeting of the International 

Society for Microbial Electrochemistry and Technology. Department of Chemistry 

(NEC) Sapienza, University of Rome, Rome, Italy 26 to end of 28 Sep 2016 

ISMET. 
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Appendix 5. Shewanella oneidensis MR-1 chromosome, complete genome 

NCBI Reference Sequence: NC_004347.2 

GenBank Graphics  

>NC_004347.2:c1859279-1858278 Shewanella oneidensis MR-1 mtrA (1002 bp) 

gene sequence,  

ATGAAGAACTGCCTAAAAATGAAAAACCTACTGCCGGCACTTACCATCACAATGGCAATGTC

TGCAGTTA 

TGGCATTAGTCGTCACACCAAACGCTTATGCGTCGAAGTGGGATGAGAAAATGACGCCAGA

GCAAGTCGA 

AGCCACCTTAGATAAGAAGTTTGCCGAAGGCAACTACTCCCCTAAAGGCGCCGATTCTTGCT

TGATGTGC 

CATAAGAAATCCGAAAAAGTCATGGACCTTTTCAAAGGTGTCCACGGTGCGATTGACTCCTC

TAAGAGTC 

CAATGGCTGGCCTGCAATGTGAGGCATGCCACGGCCCACTGGGTCAGCACAACAAAGGCG

GCAACGAGCC 

GATGATCACTTTTGGTAAGCAATCAACCTTAAGTGCCGACAAGCAAAACAGCGTATGTATGA

GCTGTCAC 

CAAGACGATAAGCGTATGTCTTGGAATGGCGGTCACCATGACAATGCCGATGTTGCTTGTGC

TTCTTGTC 

ACCAAGTACACGTCGCAAAAGATCCTGTGTTATCTAAAAACACGGAAATGGAAGTCTGTACT

AGCTGCCA 

TACAAAGCAAAAAGCGGATATGAATAAACGCTCAAGTCACCCACTCAAATGGGCACAAATG

ACCTGTAGC 

GACTGTCACAATCCCCATGGGAGCATGACAGATTCCGATCTTAACAAGCCTAGCGTGAATG

ATACCTGTT 

ATTCCTGTCACGCCGAAAAACGCGGCCCAAAACTTTGGGAGCATGCACCCGTCACTGAGAA

TTGTGTCAC 

TTGCCACAATCCTCACGGTAGTGTGAATGACGGTATGCTGAAAACCCGTGCGCCACAGCTA

TGTCAGCAA 

TGTCACGCCAGCGATGGCCACGCCAGCAACGCCTACTTAGGTAACACTGGATTAGGTTCAA

ATGTCGGTG 

ACAATGCCTTTACTGGTGGAAGAAGCTGCTTAAATTGCCATAGTCAGGTTCATGGTTCTAAC

CATCCATC 

TGGCAAGCTATTACAGCGCTAA 

 

https://www.ncbi.nlm.nih.gov/nuccore/414561716?report=genbank
https://www.ncbi.nlm.nih.gov/nuccore/414561716?report=graph
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Appendix 6. Shewanella oneidensis MR-1 chromosome, complete genome 

NCBI Reference Sequence: NC_004347.2 

GenBank Graphics  

>NC_004347.2:c1861363-1859348 Shewanella oneidensis MR-1 mtrC (2016bp) 

chromosome, complete genome. 

ATGATGAACGCACAAAAATCAAAAATCGCACTGCTGCTCGCAGCAAGTGCCGTCACAATGG

CCTTAACCG 

GCTGTGGTGGAAGCGATGGTAATAACGGCAATGATGGTAGTGATGGTGGTGAGCCAGCAG

GTAGCATCCA 

GACGTTAAACCTAGATATCACTAAAGTAAGCTATGAAAATGGTGCACCTATGGTCACTGTTT

TCGCCACT 

AACGAAGCCGACATGCCAGTGATTGGTCTCGCAAATTTAGAAATCAAAAAAGCACTGCAATT

AATACCGG 

AAGGGGCGACAGGCCCAGGTAATAGCGCTAACTGGCAAGGCTTAGGCTCATCAAAGAGCT

ATGTCGATAA 

TAAAAACGGTAGCTATACCTTTAAATTCGACGCCTTCGATAGTAATAAGGTCTTTAATGCTCA

ATTAACG 

CAACGCTTTAACGTTGTTTCTGCTGCGGGTAAATTAGCAGACGGAACGACCGTTCCCGTTGC

CGAAATGG 

TTGAAGATTTCGACGGCCAAGGTAATGCGCCGCAATATACAAAAAATATCGTTAGCCACGA

AGTATGTGC 

TTCTTGCCACGTAGAAGGTGAAAAGATTTATCACCAAGCTACTGAAGTCGAAACTTGTATTT

CTTGCCAC 

ACTCAAGAGTTTGCGGATGGTCGCGGCAAACCCCATGTCGCCTTTAGTCACTTAATTCACAA

TGTGCATA 

ATGCCAACAAAGCTTGGGGCAAAGACAATAAAATCCCTACAGTTGCACAAAATATTGTCCAA

GATAATTG 

CCAAGTTTGTCACGTTGAATCCGACATGCTCACCGAGGCAAAAAACTGGTCACGTATTCCAA

CAATGGAA 

GTCTGTTCTAGCTGTCACGTAGACATCGATTTTGCTGCGGGTAAAGGCCACTCTCAACAACT

CGATAACT 

CCAACTGTATCGCCTGCCATAACAGCGACTGGACTGCTGAGTTACACACAGCCAAAACCAC

CGCAACTAA 

GAACTTGATTAATCAATACGGTATCGAGACTACCTCGACAATTAATACCGAAACTAAAGCAG

CCACAATT 
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AGTGTTCAAGTTGTAGATGCGAACGGTACTGCTGTTGATCTCAAGACCATCCTGCCTAAAGT

GCAACGCT 

TAGAGATCATCACCAACGTTGGTCCTAATAATGCAACCTTAGGTTATAGTGGCAAAGATTCA

ATATTTGC 

AATCAAAAATGGAGCTCTTGATCCAAAAGCTACTATCAATGATGCTGGCAAACTGGTTTATA

CCACTACT 

AAAGACCTCAAACTTGGCCAAAACGGCGCAGACAGCGACACAGCATTTAGCTTTGTAGGTT

GGTCAATGT 

GTTCTAGCGAAGGTAAGTTTGTAGACTGTGCAGACCCTGCATTTGATGGTGTTGATGTAACT

AAGTATAC 

CGGCATGAAAGCGGATTTAGCCTTTGCTACTTTGTCAGGTAAAGCACCAAGTACTCGCCACG

TTGATTCT 

GTTAACATGACAGCCTGTGCCAATTGCCACACTGCTGAGTTCGAAATTCACAAAGGCAAACA

ACATGCAG 

GCTTTGTGATGACAGAGCAACTATCACACACCCAAGATGCTAACGGTAAAGCGATTGTAGG

CCTTGACGC 

ATGTGTGACTTGTCATACTCCTGATGGCACCTATAGCTTTGCCAACCGTGGTGCGCTAGAGC

TAAAACTA 

CACAAAAAACACGTTGAAGATGCCTACGGCCTCATTGGTGGCAATTGTGCCTCTTGTCACTC

AGACTTCA 

ACCTTGAGTCTTTCAAGAAGAAAGGCGCATTGAATACTGCCGCTGCAGCAGATAAAACAGG

TCTATATTC 

TACGCCGATCACTGCAACTTGTACTACCTGTCACACAGTTGGCAGCCAGTACATGGTCCATA

CGAAAGAA 

ACCCTGGAGTCTTTCGGTGCAGTTGTTGATGGCACAAAAGATGATGCTACCAGTGCGGCAC

AGTCAGAAA 

CCTGTTTCTACTGCCATACCCCAACAGTTGCAGATCACACTAAAGTGAAAATGTAA. 
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Appendix 7: Shewanella oneidensis MR-1 chromosome, complete genome 

NCBI Reference Sequence: NC_004347.2 

 

GenBank Graphics  

>NC_004347.2:c1858265-1856172 Shewanella oneidensis MR-1 mtrB (2094bp) 

chromosome, complete genome 

ATGAAATTTAAACTCAATTTGATCACTCTAGCGTTATTAGCCAACACAGGCTTGGCCGTCGCT

GCTGATG 

GTTATGGTCTAGCGAATGCCAATACTGAAAAAGTGAAATTATCCGCATGGAGCTGTAAAGGC

TGCGTCGT 

TGAAACGGGCACATCAGGCACTGTGGGTGTCGGTGTCGGTTATAACAGCGAAGAGGATATT

CGCTCTGCC 

AATGCCTTTGGTACATCCAATGAAGTGGCGGGTAAATTTGATGCCGATTTAAACTTTAAAGG

TGAAAAGG 

GTTATCGTGCCAGTGTTGATGCTTATCAACTCGGTATGGATGGCGGTCGCTTAGATGTCAAT

GCGGGCAA 

ACAAGGCCAGTACAACGTCAATGTGAACTATCGCCAAATTGCTACCTACGACAGCAATAGC

GCCCTATCG 

CCCTACGCGGGTATTGGTGGCAATAACCTCACGTTACCGGATAACTGGATAACAGCAGGTT

CAAGCAACC 

AAATGCCACTCTTGATGGACAGCCTCAATGCCCTCGAACTCTCACTTAAACGTGAGCGCACG

GGGTTGGG 

ATTTGAATATCAAGGTGAATCCCTGTGGAGCACCTATGTTAACTACATGCGTGAAGAGAAAA

CCGGCTTA 

AAACAAGCCTCTGGTAGCTTCTTCAACCAATCGATGATGTTAGCAGAGCCGGTGGATTACAC

CACTGACA 

CCATTGAAGCGGGTGTCAAACTCAAGGGTGATCGTTGGTTTACCGCACTCAGTTACAATGGG

TCAATATT 

CAAAAACGAATACAACCAATTGGACTTTGAAAATGCTTTTAACCCCACCTTTGGTGCTCAAA

CCCAAGGT 

ACGATGGCACTCGATCCGGATAACCAGTCACACACCGTGTCGCTGATGGGACAGTACAACG

ATGGCAGCA 

ACGCACTGTCGGGTCGTATTCTGACCGGACAAATGAGCCAAGATCAGGCGTTAGTGACGGA

TAACTACCG 
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TTATGCTAATCAGCTCAATACCGATGCCGTCGATGCCAAAGTCGATCTACTGGGTATGAACC

TGAAAGTC 

GTTAGCAAAGTGAGCAATGATCTTCGCTTAACAGGTAGTTACGATTATTACGACCGTGACAA

TAATACCC 

AAGTAGAAGAATGGACTCAGATCAGCATCAACAATGTCAACGGTAAGGTGGCTTATAACAC

CCCTTACGA 

TAATCGTACGCAACGCTTTAAAGTTGCCGCAGATTATCGCATTACCCGCGATATCAAACTCG

ATGGTGGT 

TATGACTTCAAACGTGACCAACGTGATTATCAAGACCGTGAAACCACGGATGAAAATACCGT

TTGGGCCC 

GTTTACGTGTAAACAGCTTCGATACTTGGGACATGTGGGTAAAAGGCAGTTACGGTAACCGT

GACGGCTC 

ACAATACCAAGCGTCTGAATGGACCTCTTCTGAAACCAACAGCCTGTTACGTAAGTACAATC

TGGCTGAC 

CGTGACAGAACTCAAGTCGAAGCACGGATCACCCATTCGCCATTAGAAAGCCTGACTATCG

ATGTTGGTG 

CCCGTTACGCGTTAGATGATTATACCGATACTGTGATTGGATTAACTGAGTCAAAAGACACC

AGTTATGA 

TGCCAACATCAGTTATATGATCACCGCTGACTTACTGGCAACCGCCTTCTACAATTACCAAA

CCATTGAG 

TCTGAACAGGCGGGTAGCAGCAATTACAGCACCCCAACGTGGACAGGCTTTATAGAAGATC

AGGTAGATG 

TGGTCGGTGCAGGTATCAGCTACAACAATCTGCTGGAGAACAAGTTACGCCTAGGACTGGA

CTACACCTA 

TTCCAACTCCGACAGTAACACTCAAGTCAGACAAGGTATCACTGGCGACTATGGTGATTATT

TTGCCAAA 

GTGCATAACATTAACTTATACGCTCAATATCAAGCCACCGAGAAACTCGCGCTGCGCTTCGA

TTACAAAA 

TTGAGAACTATAAGGACAATGACGCCGCAAATGATATCGCCGTTGATGGCATTTGGAACGTC

GTAGGTTT 

TGGTAGTAACAGCCATGACTACACCGCACAAATGCTGATGCTGAGCATGAGTTACAAACTCT

AA 

 

 

 

 

 


