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Abstract—Resampling data is an engineering technique that 
has an impact on instances where the underlying data distribution 
and proportions of instances and classes change as a result. 
Applying any resampling technique may influence the occurrence 
of certain phenomena such as concept drift, class imbalance, and 
anomalies. Such influence may produce, exaggerate or eliminate 
the presence of these phenomena, whether they are viewed as 
a problem or as a characteristic of the data. Resampling, such 
as over- or under-sampling, introduces new challenges as well as 
resolving others. One of the challenges of resampling is its impact 
on concept drift in a data stream. This paper looks at concept 
drift produced as a result of data resampling, its nature and how 
to use its complexity as an indicator of performance. Additionally 
it examines the nature of concept drifts as a result of applying 
over- and under-sampling techniques and the various different 
concept drifts produced as a result of these two techniques. Even 
though concept drift, class imbalance, and resampling techniques 
have been studied and researched extensively, sampling-induced 
concept drift itself as a separate phenomenon has been under- 
researched. This phenomenon has a certain complexity and can 
have an impact on the model, which can be measured using 
concept drift complexity especially when using the value of 
complexity as a baseline for the overall complexity of drift in 
a dataset. 

 
Index Terms—concept drift complexity, concept drift, 

sampling-induced concept drift, sampling techniques, data 
streams 

 

I. INTRODUCTION 

Class imbalance and concept drift are two problems that 

are not inherently dependent on, yet as this research shows, 

influence each other. When both are present simultaneously, 

one phenomenon impacts the treatment of the other [1]. 

Class imbalance refers to the unequal distribution between 

the minority and majority classes within a dataset [7], the 

degree of which varies until equality is achieved. On the 

other hand, concept drift is defined as the change in the 

underlying distribution of the target variable [2], the degree of 

drift varying until uniformity in the distribution is achieved. 

Class imbalance pertains to the disproportionate distribution of 

classes within the target variable, while concept drift involves 

shifts in the statistical properties of the target variable or the 

relationships between features and the target variable over 

time. In essence, both issues are concerned with changes 

in data characteristics, yet they manifest in distinct ways. 

Although both problems, class imbalance and concept drift, 

arise due to changes in the distribution of data or relationships 

within the data, they stem from different causes. 

Influencing or manipulating the distribution of a sample or 

dataset, be it to balance the ratio of classes or any other reason, 

will collaterally change the distribution of the entire sample 

or population. 

Applying resampling techniques on class-imbalanced 

datasets, either through over- or under-sampling, influences 

the distribution of features and target variables providing that 

learning methods are to be carried out on the resampled 

dataset. 

Online learning, where data is arriving anytime and from 

anywhere, presents new challenges such as concept drifts, 

imbalanced data, and anomalies. As opposed to static data, an 

instance of data often has a single chance to pass through the 

steps of data preparation and data understanding [9], giving the 

application less time to react to transient changes, including 

concept drift and class imbalance. 

Concept drift complexity is the degree of severity, longevity 

and frequency of concept drift in a data stream. In our previous 

research, we have proposed and demonstrated the benefits of 

a measuring method for concept drift complexity and its use 

in baselining and assessing the impact of concept drift overall 

[6]. 

Resampling involves two types of sample engineering, over- 

sampling and under-sampling, each of which may generate one 

or more different types of concept drift: 

• Over-sampling-induced concept drift: artificially gener- 

ated drift as a result of over-sampling, if measured on 

the resampled dataset, regardless of the dataset. 

• Under-sampling-induced concept drift on the hand con- 

sists of new concept drifts due to the elimination of 

data instances from the dataset changing the statistical 

properties of the dataset in its entirety. 
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In this paper, to complement the work and progress of the 

research community to address concept drift and class imbal- 

ance in data streams, we examine the impact of (re-)sampling- 

induced concept drift through measuring the complexity and 

impact of artificially generated concept drift, or lack thereof, 

its overall impact on the model and ways to assess it. Particular 

attention will be paid to instances, in which concept drift 

disappears from the sampled subset or shifts to another subset 

as a result of a change in data distribution. Prior knowledge of 

drifting data samples facilitates the development of strategies 

for addressing resulting issues. 

The remainder of the paper is structured as follows: Sec- 

tion II discusses the background, related work, and research 

pertaining to sampling-induced concept drift. Section III out- 

lines and discusses sampling-induced concept drift. Addition- 

ally, Section IV presents a detailed account of the experi- 

ments and results conducted in this study. Finally, Section V 

concludes the paper by offering recommendations for future 

research and directions in the realm of data distribution arising 

from sampling rather than actual drifts. 

 

II. BACKGROUND AND RELATED WORK 

This paper examines sampling-induced concept drift, the 

result of applying (re-)sampling techniques to an imbalanced 

dataset. Sampling-induced concept drift refers to a specific 

type of concept drift in machine learning where changes in the 

data distribution arise as a result of data engineering through 

resampling rather than actual changes in the underlying pro- 

cess generating the data. 

It can be argued that the nature of the drift in concept 

generated from resampling is artificial and/or results from 

engineering of the data as opposed to concept drifts resulting 

organically during data gathering. 

[5] argues that the use of concept drift detectors is vir- 

tually non-existent in imbalanced data streams. However, the 

reader may find many examples in machine learning where 

concept drift detectors have been used in data streams. In 

such a context, it is acceptable to some extent that most 

detectors use adaptability and agility to handle data streams in 

incremental learning settings. [7] suggests that datasets should 

be partitioned into smaller subsets that are ultimately used to 

form disjoint rules pertaining to class concepts, referring to the 

break down of datasets into smaller, more manageable subsets. 

A sampling shift (drift) is alternatively referred to as a 

“virtual” drift while a concept shift is defined as a “real” shift 

[8]. [2] argues that, from a practical standpoint, it is the ability 

to detect and adapt to concept drift, which is crucial, regardless 

of its type. The specific nature of the drift (real or virtual) is 

secondary to the necessity of maintaining the model’s accuracy 

and performance. 

Online learning methods pose greater challenges due to the 

availability of only one instance at each time step [12]. In 

response to this challenge, the concept drift complexity method 

has been employed in this research to monitor and evaluate the 

evolving impact of sampling-induced concept drift, utilizing 

one instance at each time step throughout the data stream’s 

lifespan. 

Adaptive synthetic sampling approaches for imbalanced 

learning, such as ADASYN [13] and Borderline-SMOTE [14], 

are designed to generate synthetic data samples near the 

decision boundaries of two or more classes. These methods can 

be particularly effective in evolving datasets of data streams, 

as they adapt the generation of synthetic samples based on 

newly observed attributes and features of the minority classes. 

The connection between generating synthetic samples near 

decision region borders and concept drift lies in the self- 

adaptability of the model to changes in the characteristics and 

distribution of samples in data streams, which is crucial for 

online machine learning. 

Detecting and addressing changes in the underlying hidden 

contexts of data using a single algorithm has proven to be 

challenging [2], [11] expands upon the argument, highlighting 

the ongoing research gaps in online imbalance learning, with 

a particular focus on addressing concept drift. 

To the best of our knowledge, no other published research 

on sampling-induced concept drift and its impact as a topic, or 

the use of concept drift complexity as an indicator for detection 

in incremental learning in general and online learning in 

particular, exists today. 

III. SAMPLING-INDUCED CONCEPT DRIFT 

The two problems of class imbalance and concept drift are 

distinctly different in their nature, and the present of either 

does not necessarily cause the other. However, both phenom- 

ena can and do occur simultaneously. As will be demonstrated 

in the experiments in this paper, the impact of applying class 

imbalance sampling, either over-sampling or under-sampling, 

can impact the nature of a running drift in many ways from 

exaggerating it, shifting it to a successive sample (sampling 

shift), masking it, to eliminating it altogether. 

Concept drift can be influenced when instances of the target 

variable are altered by resampling the class labels, either 

increasing or decreasing their occurrences. In such cases, there 

are three potential outcomes: a) the target variable may become 

excessively replicated generating or shifting concept drifts, 

b) it may be under-replicated leading to fewer concept drifts 

occurring, or c) the sampling process could eliminate drift by 

uniformly reducing differences within the distribution. 

In the view of Wang et al. “online [...] learning often 

combines the challenges of both class imbalance and concept 

drift” [1], a view that fundamentally supports the argument that 

concept drift is indeed an online-learning problem in imbal- 

anced data(sets). Such a view is, in principle, in agreement 

with this research’s question, and yet an inter-dependency 

between the two problems does not necessarily exist. 

The concept drifts that appear as a result of inappropriate 

sampling are of a temporal nature. In a data stream, applying 

sampling techniques on a batch of data or a subset of a 

dataset is by definition a transient process; its characteristics 

and distributions are local to the instances on which the 

sampling is applied, therefore it is safe to assume that applying 



sampling may or may not be applicable to the next batch 

of instances. For example, applying random resampling on 

historical temperature data in a weather forecasting model can 

introduce abrupt or gradual artificial changes in temperature 

predictions, causing the model to incorrectly forecast sudden 

and extreme weather fluctuations (concept drift). 

When over-sampling is applied, especially in a significant 

manner, the class distribution in the training dataset no longer 

reflects the true distribution of the classes in the real-world 

data. For example, if a minority class is over-sampled to 

match the number of instances of the majority class, the model 

learns from a dataset where rare events are as frequent as 

common ones, which leads to virtual drift. Virtual concept 

drift is a sampling shift that does not have an impact on the 

decision boundary [2], with no immediate impact on learning 

performance, relative to the model. 

IV. EXPERIMENTS 

Three experiments were conducted to explore and examine 

sampling-induced concept drift in an imbalanced data stream: 

(A) A self-generated dataset following a normal (Gaussian) 

distribution, providing evidence that class imbalance sam- 

pling can, indeed, create concept drift. 

(B) A self-generated dataset following a normal (Gaussian) 

distribution, showing the nature of concept drift as a 

result of over- and under-sampling on an imbalanced data 

stream. 

(C) The evaluation and measuring of concept drift complexity 

and the overall cumulative impact of concept drift in a 

data stream. 

The experimental reasoning behind using a self-generated 

dataset is that the nature of the dataset does not affect the data 

distribution, class labels, or the nature of class imbalance. Both 

self-generated and real-world datasets would exhibit similar 

characteristics and levels of imbalance, regardless of their 

source. Hence, we decided to create the data for the exper- 

iments synthetically instead of using a real-world example, as 

the experiments and results would remain comparable in either 

case. 

A. Concept Drift Through Sampling using SMOTE 

Experiments were conducted using a population of 30 000 

instances to predict loan defaults whose class imbalance ratio 

is 7 500 for the minority class and 22 500 for the majority 

class as shown in Table I, i.e. 25% of loan holders default. The 

binary value of the target class ”Default” signifies whether a 

loan default has occurred. For the purpose of this experiment, 

concept drift has been purposefully designed to happen in 

one feature, employment length, where shorter duration of 

employment can predict defaults on loans using the following 

concept drift and class imbalance analysis: 

• Concept drift: changing employment situations (i.e. av- 

erage employment duration) directly affect the feature 

distribution and could influence default rate predictions. 

• Class imbalance: with a shift towards shorter employment 

duration, default rates might rise. Class imbalance may 

arise if default rates increase disproportionately compared 

to non-default rates. 

TABLE I: Concept Drift Analysis 
 

 Amount Interest (%) Emp. Length in Years Default 

0 29967 3.68 10.5 0 

1 23617 5.77 9.9 0 

2 31477 5 1.8 1 

3 40230 3.46 11.5 0 

4 22658 5.49 9.8 0 

5 47438 4.13 2.1 1 

In this experiment, to balance the class distribution of 

the dataset, we employed SMOTE (Synthetic Minority Over- 

sampling Technique) [3], which increases the number of 

minority instances by generating synthetic samples rather than 

duplicating them. The results indicate that after applying over- 

sampling to the dataset, concept drift shifts. 

To evaluate the effect of sampling on a class-imbalanced 

dataset, we applied SMOTE for over-sampling and compared 

the results before and after. To identify any changes in rate 

of concept drift within the dataset, we utilised the ADWIN 

(ADaptive WINdowing) [4] algorithm for concept drift detec- 

tion. 
 

Fig. 1: Concept Drift Before Applying Sampling 

 

Fig. 2: Concept Drift After Applying Sampling 



In both experiments, concept drift presented an issue both 

before and after resampling, with the following observations: 

In the first experiment, before applying any sampling to the 

data, concept drift appeared five times as illustrated in Fig. 1. 

After over-sampling the dataset, a new concept drift appeared 

at point X = 143 as illustrated in Fig. 2, whereas the value of 

X represents the number of instances, indicating that the over- 

sampling caused the underlying data distribution to change, 

introducing a new concept drift. 

In Fig. 2, the results indicate the emergence of one real 

concept drift due to over-sampling, along with five virtual con- 

cept drifts. Interestingly, while the original dataset displayed 

five concept drifts prior to resampling, these still appeared to 

undergo shifts. 

For these existing concept drift(s), the underlying data 

distribution of the whole dataset has shifted, indicating that 

there is an impact on the entire population of the stream as 

a result of over-sampling. Any shift, however small, indicates 

that the drift may shift to the next subset of data, impacting 

it more significantly. 

 

B. Concept Drift Through RandomSampling 

In the second set of experiments, we applied RandomOver- 

Sampling and RandomUndersampling [10] to the same dataset 

used in the first experiment. While the focus of the second 

experiment is on under-sampling, we evaluated the results of 

RandomOverSampling against those of the first experiment. 

Before RandomUnderSampling: 

• The initial class distribution was as follows: Class 0 

(representing no loan default) had 22 500 samples, while 

Class 1 (representing loan default) had 7 500 samples, 

indicating a significant class imbalance. 

After RandomUnderSampling: 

• The adjusted class distribution post-undersampling shows 

an equalised representation of both classes, with 7 500 

instances each for class 0 and class 1 (representing default 

and non-default). 

 

TABLE II: Concept Drift Analysis 
 

Stage Concept Drift Emp. Length 

 5087 5.5 

 10079 2.0 

Before RandomUnderSampling 15103 3.5 

 20191 6.0 

 25119 5.1 

 4335 5.1 

 7631 6.3 

 8847 4.4 

After RandomUnderSampling 10095 3.9 

 11311 7.7 

 12687 5.8 

 13839 5.6 

As the results in Table II indicate, the impact of resampling 

has not only shifted concepts but created new instances of con- 

cept drift. These analyses indicate the presence of concept drift 

in the post-resampling dataset, highlighting the importance of 

ongoing monitoring and adaptation of the model to account 

for changes in the data distribution over time. These analyses 

do not indicate interdependency between class imbalance and 

concept drift, but rather that the impact of handling class 

imbalance on concept drift is significant. 

RandomOverSampling on the other hand did not result in as 

significant a change in concept drifts. As Table III shows, the 

initial concept drifts in the dataset, despite shifting slightly, 

remained present in the analysed post-resampling dataset, 

while new drifts appeared earlier than present in the dataset 

pre-resampling such as the concept drift at X = 143, agreeing 

with the result of the first experiment. 

Before RandomOverSampling: 

• The classes were highly imbalanced, with a ratio of 

75:25 between the majority (class 0 no loan default) and 

minority (class 1 default) classes. 

After RandomUnderSampling: 

• The classes are balanced, with both classes having equal 

representation. 

TABLE III: Concept Drift through RandomOverSampling 
 

Stage Index C. Drift Emp. Length 

 5087 Detected 5.5 

 10079 Detected 2.0 

Before RandomOverSampling 15103 Detected 3.5 

 20191 Detected 6.0 

 25119 Detected 5.1 

 143 Detected 7.2 

 5071 Detected 4.8 

 10095 Detected 4.6 

After RandomOverSampling 15119 Detected 7.1 

 20175 Detected 5.8 

 25103 Detected 6.1 

 34319 Detected 7.0 

Impact of resampling on concept drift: 

• Both over-sampling and under-sampling affect where and 

when concept drift is detected. 

• The altered detection points indicate changes in data 

patterns due to different resampling techniques. 

• Each method introduces different biases and sensitivities 

to the dataset, affecting model performance and drift 

detection. 

C. Measuring Concept Drift Complexity 

In this experiment, we applied over-sampling to a dataset 

with 30 000 instances to address class imbalance, where the 

ratio was 75% true and 25% false, corresponding to 22 500 

true instances and 7 500 false instances. After resampling, 



the dataset comprised 45 000 samples, resulting in balanced 

classes. We measured the concept drift complexity ( compN = 

max{compi, compi-1, ..., comp0} + compi ) [6] on the entire 

dataset to examine the impact of concept drift on predictive 

performance. As shown in the second experiment in Table III, 

there was a minor shift in concept drift as a result of the 

random over-sampling. However, this impact does not appear 

to affect the dataset significantly, as shown in Fig. 3. Concept 

drift complexity has been used as a metric for measuring 

performance degradation due to resampling techniques. 

not only new concept drifts not present in the dataset pre- 

resampling but also shifts in pre-existing drifts. Furthermore, 

our research shows that measuring complex drift complexity 

can show both the impact of concept drift on a dataset and 

the temporal shifts that occur as a result of resampling. 

Additional research will be required to identify effective 

mitigation measures for the phenomena described in this paper 

and/or into improved sampling and resampling techniques for 

data streams that should, ideally, avoid the issue of sampling- 

induced concept drift altogether or, at the very least, minimise 

it. 

 

 

 
 

 

Fig. 3: Overall Complexity and Impact of Concept Drift on 

Performance 

 

The value of concept drift complexity showed a slight 

increase as the data samples arrived, indicating that the impact 

of concept drifts on the dataset is negligible, despite their pres- 

ence after resampling. Furthermore, the value of concept drift 

complexity appears to remain close to the Mean Complexity 

Score x as more data instances arrive. This interpretation 

of the results suggests that the impact on the performance 

of the predictive models on the dataset remains intact, and 

no degradation in learning occurred. Had the concept drift 

complexity end value increased excessively or deviated signif- 

icantly from the mean concept drift x, it would have indicated 

that the impact of concept drifts in the resampled dataset had 

a much bigger effect on the model and its performance. These 

results provide the observer with a means to use concept drift 

complexity to evaluate a model’s performance in the presence 

of concept drift in data streams. 

 

V. CONCLUSION AND FUTURE WORKS 

In this paper, we examined the impact of two different 

techniques for treating class imbalance on concept drift and 

the nature of sampling-induced concept drift. 

We have been able to demonstrate that resampling, specif- 

ically over- and under-sampling are capable of introducing 
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