Supplementary information for:

Gd(III) Complexes Intercalated into Hydroxy Double Salts as Potential MRI Contrast Agents

Miao Jin,^a Dominic E. M. Spillane,^b Carlos F. G. C. Geraldes,^c Gareth R. Williams,^a* and S. W. Annie Bligh^d*

a. UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.

b. School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London, N7 8DB, UK.

c. Department of Life Sciences and Coimbra Chemistry Center - CQC, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal

d. Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK.

* Authors for correspondence. Tel: +44 (0) 207 753 5868 (GRW); +44 (0) 207 911 5038 (SWAB). Email: g.williams@ucl.ac.uk (GRW); a.bligh@westminster.ac.uk (SWAB).

Table S1: Synthesis conditions and chemical formulae for all intercalates of $Ni_2Zn_3-NO_3$. The interlayer spacings listed below are those of the Gd^{3+} complex intercalates; in all cases reflections can also be seen between 7.7 and 9.7 Å corresponding to nitrate and/or carbonate intercalated HDS.

ID	Molar ratio	Reaction	Interlayer	Chemical formula	
	[Ni ₂ Zn ₃ -NO ₃ :	time /	spacing / Å		
	Gd complex]	day (s)			
D1	5:1	7	/	[Ni ₂ Zn ₃ (OH) ₈](GdC ₁₄ H ₁₈ O ₁₀ N ₃) _{0.09} ·[(NO ₃)+0.5(CO ₃)] _{1.82} ·nH ₂ O	
D2	2:1	7	/	$[Ni_{2}Zn_{3}(OH)_{8}](GdC_{14}H_{18}O_{10}N_{3})_{0.13} \cdot [(NO_{3})+0.5(CO_{3})]_{1.74} \cdot nH_{2}O$	
D3	1:1	7	/	$[Ni_2Zn_{2.3}(OH)_8](GdC_{14}H_{18}O_{10}N_3)_{0.08} \cdot [(NO_3)+0.5(CO_3)]_{0.44} \cdot nH_2O$	
D4	1:5	7	14.6	$[Ni_2Zn_3(OH)_8](GdC_{14}H_{18}O_{10}N_3)_{0.21} \cdot [(NO_3)+0.5(CO_3)]_{1.58} \cdot nH_2O$	
D5	5:1	3	14.7	[Ni ₂ Zn ₃ (OH) ₈](GdC ₁₄ H ₁₈ O ₁₀ N ₃) _{0.05} ·[(NO ₃)+0.5(CO ₃)] _{1.90} ·nH ₂ O	
D6	2:1	3	14.8	$[Ni_2Zn_3(OH)_8](GdC_{14}H_{18}O_{10}N_3)_{0.06} \cdot [(NO_3)+0.5(CO_3)]_{1.88} \cdot nH_2O$	
D7	1:1	3	14.8	$[Ni_{2}Zn_{4}(OH)_{8}](GdC_{14}H_{18}O_{10}N_{3})_{0.07} \cdot [(NO_{3})+0.5(CO_{3})]_{3.86} \cdot nH_{2}O$	
D8	1:5	3	14.8	$[Ni_{2}Zn_{3}(OH)_{8}](GdC_{14}H_{18}O_{10}N_{3})_{0.50} \cdot [(NO_{3})+0.5(CO_{3})]_{1.00} \cdot nH_{2}O$	
D9	5:1	1	14.8	[Ni ₂ Zn ₃ (OH) ₈](GdC ₁₄ H ₁₈ O ₁₀ N ₃) _{0.04} ·[(NO ₃)+0.5(CO ₃)] _{1.92} ·nH ₂ O	
D10	2:1	1	14.8	$[Ni_2Zn_3(OH)_8](GdC_{14}H_{18}O_{10}N_3)_{0.07} \cdot [(NO_3)+0.5(CO_3)]_{1.86} \cdot nH_2O$	
D11	1:1	1	14.7	$[Ni_2Zn_{2.5}(OH)_8](GdC_{14}H_{18}O_{10}N_3)_{0.05} \cdot [(NO_3)+0.5(CO_3)]_{0.9} \cdot nH_2O$	
D12	1:5	1	14.6	$[Ni_{2}Zn_{3}(OH)_{8}](GdC_{14}H_{18}O_{10}N_{3})_{0.17} \cdot [(NO_{3})+0.5(CO_{3})]_{1.66} \cdot nH_{2}O$	
P1	5:1	3	14.6	$[Ni_2Zn_3(OH)_8](GdC_9H_{23}N_3O_{15}P_5)_{0.34} \cdot [(NO_3)+0.5(CO_3)]_{1.32} \cdot nH_2O$	
P2	2:1	3	/	$[{\sf Ni}_2{\sf Zn}_{4.1}({\sf OH})_8]({\sf GdC}_9{\sf H}_{23}{\sf N}_3{\sf O}_{15}{\sf P}_5)_{0.06}\cdot[({\sf NO}_3)+0.5({\sf CO}_3)]_{4.08}\cdot{\sf nH}_2{\sf O}$	
Р3	1:1	3	/	$[{\sf Ni}_2{\sf Zn}_3({\sf OH})_8]({\sf GdC}_9{\sf H}_{23}{\sf N}_3{\sf O}_{15}{\sf P}_5)_{0.10}\cdot[({\sf NO}_3)+0.5({\sf CO}_3)]_{1.80}\cdot{\sf nH}_2{\sf O}$	
P4	5:1	1	/	$[Ni_2Zn_{2.5}(OH)_8](GdC_9H_{23}N_3O_{15}P_5)_{0.36} \cdot [(NO_3)+0.5(CO_3)]_{0.28} \cdot nH_2O$	
P5	2:1	1	/	$[Ni_2Zn_3(OH)_8](GdC_9H_{23}N_3O_{15}P_5)_{0.05}\cdot[(NO_3)+0.5(CO_3)]_{1.90}\cdot nH_2O$	
P6	1:1	1	14.5	$[Ni_2Zn_3(OH)_8](GdC_9H_{23}N_3O_{15}P_5)_{0.10}\cdot[(NO_3)+0.5(CO_3)]_{1.80}\cdot nH_2O$	

Table S2: Experimental conditions, X-ray diffraction data and chemical formulae of the Zn₅-Gd(DTPA) intercalates. The reaction time is 7 days in all cases.

Sample	Molar ratio Zn ₅ -NO ₃ : [Gd(DTPA)] ²⁻	[Gd(DTPA)] ²⁻ interlayer spacing / Å	NO3 ⁻ interlayer spacing / Å	Chemical formula
ZD1	2:1	18.4	9.3	$[Zn_5(OH)_8](GdC_{14}H_{18}O_{10}N_3)_{0.02} \cdot [(NO_3)+0.5(CO_3)]_{1.96} \cdot nH_2O$
ZD2	1:1	18.6	9.6	$[Zn_5(OH)_8](GdC_{14}H_{18}O_{10}N_3)_{0.07} \cdot [(NO_3)+0.5(CO_3)]_{1.86} \cdot nH_2O$
ZD3	1:5	/	9.3	$[Zn_5(OH)_8](GdC_{14}H_{18}O_{10}N_3)_{0.14}\cdot[(NO_3)+0.5(CO_3)]_{1.72}\cdotnH_2O$

Sample	[Gd] mM	<i>T</i> ₁ [ms]	<i>T</i> ₂ [ms]	$r_1 [s^{-1} m M^{-1}]$	<i>r</i> ₂ [s ⁻¹ mM ⁻¹]
Zn ₅ -NO ₃	/	2806.00	81.27		
ZD1	0.21	355.67	70.73	13.63	68.52
ZD2	0.67	151.40	49.36	9.91	30.40
ZD3	1.36	247.67	84.77	2.97	8.67

Table S3: Proton relaxivities of the Zn₅-Gd(DTPA) materials.

Fig. S1: X-ray diffraction patterns for the reaction products of Zn_5-NO_3 and $[Gd(DTPA)(H_2O)]^{2-}$, with intercalate reflections marked with *.

Wavenumber / cm⁻¹

Fig. S2: IR spectra of Zn_5 -NO₃ and its $[Gd(DTPA)(H_2O)]^{2-}$ intercalates.

Fig. S3: ¹H NMR spectra (different expansions) of La(DTPAH₂)(H₂O), DTPAH₅, La(DTPANa₂), and Na₃DTPAH₂, and of $[La(DTPA)(H_2O)]^{2^{-}}$, and $[DTPAH_3]^{2^{-}}$ after de-intercalation from HDS hosts.

Fig. S4: Zn and Ni release profiles from selected HDSs.