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Abstract— Volatility moves in financial markets are rare and 

sporadic i.e., periods of low volatility typically follow each other 

until the regime change due to technical and/or fundamental 

exogenous factors. Subsequently higher volatility tends to lead 

to even higher volatility and vice versa. Such dynamic systems 

require alternative ways of representation than a static multi-

layer perceptron (MLP). The prevalent models assume L-stable 

distributions with independent and stable increments. This 

contrasts with what is observed in real world. L-stable 

distributions miss one of the main features of financial markets 

– the alternation of periods of large price changes with periods 

of small price changes. To correct for this deficiency another, 

self-affine process had been introduced – Fractional Brownian 

Motion (FBM). FBM does not capture fat tails or fluctuations in 

volatility that are unrelated to the predictability of future 

returns. In summary, both models have strong scale-invariance 

property, in which the distribution of returns over different 

sampling intervals are identical. This property is clearly at odds 

with empirical observations.   

The key idea in this paper is that Generative Adversarial 

Networks (GAN) combined with fractality of data is better 

suited to manage volatility time series between different shock 

events because it is structured to maintain a memory of older 

points in the time series and continuously learn from them. 

Episodic memory that is used in GANs maintains explicit record 

of past events. In order to make decision, the action is chosen 

that has the highest value based on the outcomes of past similar 

situations. There are other, older models such as time-delayed 

window input vector (TDNN nets) and recurrent structures such 

as ‘Jordan’ and ‘Elman’ but in this study we focus on a more 

modern way of looking at dynamic time series through semi-

supervised framework. 

Keywords: K-Means, FCM, IFCM, Intuitionistic fuzzy sets, 

Volatility, Neural Basis Expansion, NBEATS, Generative 

Adversarial Network, GAN. 

I. INTRODUCTION 

In order to understand the financial markets, it is critical to 
study the volatility of the market. This research report will 
help the reader in understanding the stock volatility and 
possible ways of predicting it. Volatility is a metric of the 
dispersion of returns for a given security or market index. In 
most cases, the higher the volatility, the riskier the security. 
Volatility is measured as either the standard deviation or 
variance between returns from that same security or market 
index. 

In the securities markets, volatility is often associated with 
big swings in either direction. An asset's volatility is a key 
factor when pricing options contracts. ‘Vega’ or the sensitivity 
of the options’ prices with respect to volatility is normally the 
largest component (or partial derivative in math parlance) of 
the options’ price.  

Volatility often refers to the amount of uncertainty or risk 
related to the size of changes in a security's value. This means 
that the price of the security can change dramatically over a 
short time period in either direction. A lower volatility means 
that a security's value does not fluctuate dramatically and 
tends to be steadier. 

Market volatility can also be seen through the VIX or 
Volatility Index. The VIX was created by the Chicago Board 
Options Exchange as a metric to capture the 30-day expected 
volatility of the U.S. stock market derived from real-time 
quote prices of S&P 500 call and put options. It is effectively 
an instrument of future stakes investors and traders are making 
on the direction of the markets or individual securities. A high 
reading on the VIX implies a riskier market. 

Also referred to as statistical volatility, historical volatility 
(HV) measures the fluctuations of underlying securities by 
measuring price changes over certain periods of time. It is the 
less widespread metric compared to implied volatility because 
it isn't forward-looking. 

When there is a rise in historical volatility, a stock’s price 
will also move more than normal. At this time, there is an 
expectation that something has changed. If the historical 
volatility is dropping, on the other hand, it means any 
uncertainty has been reduced significantly, so things return to 
the way they were. 

CBOE Volatility Index (VIX) is a real-time measure of the 
market’s expectations of the near-term changes in the S&P 
500 index. The index is derived from the prices of at the 
money and out of the money SPX index options with near-
term expiration dates. The calculation derives a 30-day 
forward projection of volatility. In financial markets, volatility 
is a measure of how fast prices change and measures the 
degree of fear or greed amongst the market participants. The 
formula for the VIX calculation [5] is: 
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where: 



• VIX =   * 100,  

• T = Time to expiration,  

• F = Forward index level derived from index option 
prices,  

• K0 = First strike below the forward index level, F 

• Ki = Strike price of ith out of the money option; a 
call if Ki > K0 and a put if Ki < K0; both put and call if Ki = 
K0. 

δ𝐾𝑖 =
𝐾𝑖+1 − 𝐾𝑖−1

2
 

 

• R = Risk-free interest rate to expiration 

• Q(Ki) = The midpoint of the bid-ask spread for each 
option with strike Ki.  

In 2012, CBOE introduced a new index called VVIX. The 
VVIX index is a volatility of volatility measure as it represents 
the expected volatility of the 30-day forward price of the 
CBOE Volatility Index (the VIX). It is this expected volatility 
that drives the price of the VIX options. VVIX is calculated 
from the price of a portfolio of liquid at and out of the money 
VIX options.  

As one of the parameters that influences the movement in 
stock prices, volatility is a crucial input to numerous financial 
market operations and it becomes an important tool to assess 
the risk of ruin for portfolio managers, investors and other 
interested parties [4, 6–9]. The modelling of volatility is a 
complex task, because it cannot be observed directly. Indeed, 
it can only be measured by looking at the extent of the 
movement of the option prices and deriving it mathematically 
from that. 

The mathematical estimators are complicated also by 
volatility clusters, fat tails, non-normality of the distribution 
and structural breaks in the distribution of the returns. These 
features cannot be captured by simple classical models such 
as the autoregressive moving average (ARMA) process. 

A. CLUSTERING VOLATILITY WITH FS AND IFS  

A major challenge posed by big data clustering 
applications is dealing with uncertainty in the formation of the 
feature vectors. Considering that feature values may be subject 
to uncertainty owing to imprecise measurements and noise, 
the distances that determine the membership of a feature 
vector to a cluster will also be subject to uncertainty. 
Therefore, the possibility of erroneous membership 
assignments in the clustering process is evident.  

Current fuzzy clustering approaches do not utilise any 
information about uncertainty at the feature level. This paper 
accepts the challenge to deal with such kind of information 
and introduces some thoughts about a modification to the 
FCM. Features are represented by intuitionistic fuzzy values, 
i.e., elements of an intuitionistic fuzzy set. Intuitionistic fuzzy 
sets [6-8] that can be useful in coping with the hesitancy 
originating from imperfect or imprecise information.  

B. RESULTS AND DISCUSSION  

The computation is coded in Google Colab, Python. We 
study daily dataset for VIX from January 1990 to April 2022. 
Our primary data source is Bloomberg Data services. In our 
view daily data for this study is preferable to other time frames 

as more short-term data such as minute or hourly data is far 
too noisy with little predictive value whereas data from longer 
timeframes is less useful.   

There are many measures of volatility. One such measure 
is called the CBOE Volatility Index or VIX. This index was 
created by Menachem Brenner and Dan Galai in a series of 
papers starting in 1989. VIX measures 30-day expectation of 
volatility given by a weighted portfolio of at and out-the-
money European options on the S&P 500 Index. In other 
words, it is a weighted average of implied volatilities as 
measured from the call and put prices.  

Volatility moves in financial markets are rare and sporadic 
i.e., periods of low volatility typically follow each other until 
the regime change due to technical and/or fundamental 
exogenous factors. Subsequently higher volatility tends to 
lead to even higher volatility and vice versa. 

We are going to use K-means and Fuzzy C-Means 
clustering techniques on the VIX. VIX is a real time index 
representing expected volatility over the coming 30 days in 
percentage terms based on S&P 500 index.  

II. K-MEANS 

K-means clustering partitions data into K-clusters that 
minimise squared errors inside clusters using ‘Euclidean’ 
distances i.e., it minimises distances from centroids to data 
points inside clusters.  

To find the number of centroids we use the ‘Elbow’ 
method and ‘Silhouetter’ analysis.  

 

Figure 1. Plot of VIX from 1990 to 2022. 

In order to normalise the data, we use ‘StandardScaler’ 
technique. We create a normalised data set with mean 0 and 
standard deviation equal to 1.  

As we do not know how many clusters there are, we use 
‘for’ loop with K in range from 1 to 10. This gives us a visual 
representation using ‘Elbow’ method.  

 



Figure 2. Elbow Method for optimal k 

As the number of clusters increase, the error is minimised 
more and more. Visually, we are looking for an elbow of this 
curve. It appears in the region of 2–4 clusters.  

The ‘Silhouette’ method is another method of finding the 
optimal number of clusters by computing the silhouette 
coefficients of each point that measures how much a point is 
similar to its own cluster compared to other clusters. Similar 
to ‘Elbow’ method, we train K-means clustering for each of 
the values of k. Plot of the graph shows the silhouette score on 
y-axis and the number of clusters on the x-axis.   

 

Figure 3. Silhouette analysis for optimal k 

Prior to plotting the clusters, we find the centroids of the 
clusters: [26.81939959], [19.69309811], [13.48929072], 
[62.16890411], [38.19894207]. 

Next, we plot the graph with 2 and 5 clusters (Figure 4). 
The top graph shows two clusters identified by horizontal lines 
and the bottom graph with 5 clusters identified also by the 
horizontal lines. The top graph simply splits the data into 
periods of low and high volatility. The graph shows when the 
volatility is low it tends to stay low and when it is high it tends 
to remain high.  

The bottom graph has 5 centroids which are represented as 
horizontal lines. The graph splits the data into periods of very 
low volatility, low volatility, medium volatility, high 
volatility, and extremely high volatility.  

 

Figure 4. The graph with two clusters (top) and five 
clusters (bottom) 

We find the silhouette score to check how well we fit the 
data into clusters. The silhouette score falls within the range 
[–1, 1]. The silhouette score of 1 means that the clusters are 
very dense and nicely separated. The score of 0 means that 
clusters are overlapping.  

Our silhouette score is 0.554. 

Lastly, we provide the transition matrix for the clusters. 
Table 1 shows how many times the VIX moved from one 
cluster to another. It is done in absolute terms where rows are 
starting cluster and columns are final cluster. For example, 
VIX was 3326 in Cluster 0 and stayed there. It moved 219 
times in Cluster 3 from lower cluster to upper cluster. If there 
were no jumps, the matrix would be symmetric, but it is not. 

 

Table 1. Transition matrix for the clusters 

III. FUZZY C-MEANS (FCM) 

We are now going to repeat the same exercise using Fuzzy 
C-Means (FCM) clustering. This algorithm is considered to be 
better than K-means because unlike K-means where the data 
points exclusively belong to one cluster, in FCM algorithm, 
the data point can belong to more than one cluster which is 
where Fuzzy methods come in. FCM assigns membership 
grades which indicate the degree to which data points belong 
to each cluster. Plotting the Fuzzy C-Means Clusters 0–4 gives 
us the following results (Figure 5).  

 

Figure 5. Plotting the Fuzzy C-Means. The red dots are 
centroids with clusters around them. 

Plotting the best Cluster 5 gives 5 centroids which are 
represented as horizontal lines (Figure 6). The graph splits the 
data into periods of very low volatility, low volatility, medium 
volatility, high volatility, and extremely high volatility 
according to FCM algorithm.  

The Silhouette Score is 0.555 which in this case is not very 
different to K-Means and is probably due to random state 
initialisation.  
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Figure 6. Volatility of Volatility based on Fuzzy C Means 

IV. INTUITIONISTIC FUZZY SETS AND IFCM UNITS 

A fuzzy set non-membership value is calculated as a 
complement of the membership value to 1. However, in reality 
because of uncertainty, the non-membership is not always 
equal to one minus the membership value. To deal with this 
uncertainty, Atanassov proposed another higher order fuzzy 
set called IFS [1–3]. An IFS Ã in X is given by: 

𝐴
𝐴

≅ {<𝑥, 𝜇𝐴(𝑥), 𝑉𝐴(𝑥)|𝑥€𝑋>},   (2) 

where X is a universe of discourse and μÃ(x) : X → [0, 1], 

vÃ(x) : X → [0, 1] with the condition 

0 ≤ μÃ(x) + νÃ(x) ≤ 1; ∀x ∈ X and μÃ(x), νÃ(x) denote 

membership and non membership degree, respectively. 

For each IFS Ã in X, the hesitation degree should be 

considered. The hesitation degree of an element x ∈ X is 

defined as:  

πÃ(x) = 1 – μÃ(x) – νÃ(x),   (3) 

where πÃ(x) is hesitation degree and should satisfy the 
elementary condition of intuitionism, i.e., 

0 ≤ πÃ(x) = 1 − μÃ(x) − νÃ(x) ≤ 1. In the literature, two 

fuzzy complements or IFS generators are used to construct 
intuitionistic fuzzy set: Sugeno’s and Yager’s [15]. The fuzzy 
complement function is defined as: 

𝑁(𝜇(𝑥)) = 𝑔−1(𝑔(|) − 𝑔(𝜇(𝑥)),   (4) 

where g(.) is an increasing function and g : [0, 1] → [0, 1]. 

Yager’s class can be generated by using the following 
function: 

g(x) = x,   (5) 

Non-membership values are calculated from Yager’s 
intuitionistic fuzzy complement N(x). The IFSs using Yager’s 
intuitionistic fuzzy complement become 

𝐴λ
𝐼𝐹𝑆 = {𝑥, 𝜇𝐴(𝑥), 1 − 𝜇𝐴(𝑥))

1

𝜆| 𝑥€𝑋},    (6) 

Sugeno’s negation can be generated using the following 
function:  

𝑔(𝑥)  =
 1 − 𝑥 

1 + 𝜆𝑥 
,       (7) 

Non-membership values are calculated from Sugeno’s 
intuitionistic fuzzy complement N(x). IFS constructed using 
Sugeno’s fuzzy complement is as follows: 

𝐴λ
𝐼𝐹𝑆 = {𝑥, 𝜇𝐴(𝑥),

1−𝜇𝐴(𝑥)

1+𝜆𝜇𝐴(𝑥)
| 𝑥€𝑋},   (8) 

In soft clustering methods, the membership value is computed 
based on a distance function [14–20]. So distance metric plays 
an important role. In the literature, many distance metrics are 
proposed developed similarity measures of IFSs based on 
Hausdorff distance. Provisional results show that Hausdorff 
distance is simple and works better than other distance 
metrics. Hence, there is a need to take advantage of IFS and 
Hausdorff distance to increase the cluster’s density and thus 
separability. 

The authors are currently engaged in creating a Python code 
that can implement IFS in Python and apply it to volatility 
clustering. The next step will be to replace Yager and Sugeno 
functions with a different power law function and fuzzify the 
Hurst Exponent in the power law function. The remaining part 
to be completed is to merge the fBm with IFS to create a new 
process which we called Intuitionistic Fuzzy Fractal Brownian 
motion. 

  

V. NEURAL BASIS EXPANSION (NBEATS)  

Oreshkin et al., [10] proposed a novel architecture for 
univariate time series forecasting. They applied it to a variety 
of TS forecasting problems using non-overlapping 
competition datasets: M4, M3 and Tourism. The results 
significantly outperformed traditional econometric 
forecasting techniques.  

NBEATS is analysis for interpretable time series forecasting. 
The focus is on solving the univariate times series point 
forecasting problem using deep learning architecture based on 
backward and forward residual links and a very deep stack of 
fully connected layers. The architecture has several desirable 
properties, being interpretable, applicable without 
modification to a wide array of target domains, and fast to 
train.  

The model consists of a sequence of stacks, each of which 
combines multiple blocks. The blocks connect feedforward 
networks via forecast and backcast links. A block “removes 
the portion of the signal … it can approximate well” [9]. Then 
the block sets its focus on the residual error, which the 
preceding blocks could not disentangle. Each block generates 
a partial forecast, with its focus set on the local characteristics 
of the time series. The stack aggregates partial predictions on 
the blocks it consists of, and then passes the results on to the 
next stack. The purpose of the stack is to identify non-local 
patterns along the complete time axis by “looking back.” 
Finally, the partial forecasts are aggregated into an overall 
forecast at the model level. N-BEATS takes as its 
hyperparameters: 

i. The size of the input and output layers (constants INLEN 
and N_FC) must be sufficient to assign a node for each feature 
in the source data. The length of the input segment should not 
be less than the order of seasonality, otherwise the learning 
process will have more difficulty combining the segments. For 
efficient memory usage, set them to a power of 2. 

ii. The number of blocks in a stack (BLOCKS). 

iii. The width of each fully connected layer in each block of a 
stack: its node count (LWIDTH). 



The batch size determines the number of cases the model will 
process before updating its matrix weights. To effectively 
align it with the memory structure of your system, set it to a 
power of 2. Very large batch sizes can skew gradients down 
only in one direction, and the model can get stuck at a sub-
optimal minimum. Smaller batch sizes will cause the gradient 
descent to bounce around in different directions and can result 
in lower accuracy, but they also tend to prevent the model 
from overfitting. The most frequent recommendation is to 
choose an initial batch size of 32. Since our dataset has a 
frequency of 24 hours per day, we set the batch size to the 
following binary limit that can handle 24 time steps: 32. The 
epochs tell the model the number of cycles the exercise it has 
to perform In each epoch, the model processes the entire 
training set, performing one forward pass and one back pass. 
Allowing for some oversimplification, the product of these 
hyperparameters defines the tensor size of the model. Large 
parameter values can cause it to reach the system's memory 
limit and cause exponentially longer processing times. While 
small parameter values may not be sufficient to reflect 
complex patterns in the source data. We obtain a probabilistic 
forecast using quantile regression. This is an option we can 
exercise in all deep forecasting models. The loss function of a 
neural network can be constructed using quantile loss 
function. Then quantile regression will not only compute a 
central forecast value at each time step, a point estimate, but 
will draw uncertainty bands about it. Pairs of quantiles like 
1%/99% or 10%/90% express the range over which the 
forecast value can vary, above or below the central value.  In 
future work, we are planning to use transformers which is a 
relatively new concept in neural networks. Unlike univariate 
time series, transformer will learn to integrate various factors 
that influence VIX as regressors and use multivariate time 
series with multiple time frames. For example, we could split 
the time intervals into minutes, hours and days. This would 
provide a complex time series for a neural network to learn 
from. 

 

Source: https://medium.com/@jonathanbechtel/kerasbeats-
an-easy-way-to-use-n-beats-in-keras-395b24c5cc28 

 

(Boris N. Oreshkin, 24 May 2019 ) 

Next, we will detrend data and remove seasonality. We will 
compare NBEATS against naïve model and some other Deep 
learning models.  

A. RESULTS 

As was already mentioned, we ran data from January 1990 to 
April 2022. Graph below shows scaled log returns of VIX data 
series.    

 

Train and test split 

 

Naïve forecast 

 

NBEATS model seems to do quite well compared to naïve 
model, but it is not a lot better than other deep learning 
models such as Conv1d and LSTM.  

 



 

 

 

 

 

VI. A GENERATIVE ADVERSARIAL NETWORK (GAN)  

A generative adversarial network (GAN) [9] is a class of 
machine learning frameworks designed by Ian Goodfellow 
and his colleagues in June 2014. Two neural networks 
compete in a zero-sum game, where one agent's gain is 
another agent's loss. 

With a training set, this technique learns to generate new 
data with the same statistics as the training set. For example, 
an image-trained GAN can produce new images that appear 
realistic at least to a human observer, with many realistic 
features. Though originally proposed as a form of generative 
model for unsupervised learning, GANs have also proved 
useful for semi-supervised learning, fully supervised learning, 
and reinforcement learning.  

The core idea of a GAN is based on the "indirect" training 
through the discriminator, another neural network that can tell 
how much an input is "realistic", which itself is also being 
updated dynamically [4]. This basically means that the 
generator is not trained to minimize the distance to a particular 
frame, but rather to fool the discriminator. This enables the 
model to learn in an unsupervised manner. 

GANs are like mimicry in evolutionary biology, with an 
evolutionary arms race between both networks. To learn the 
generator’s distribution p(g) over data x, we define a prior on 
input noise variables p(z) then represent a mapping to data 
space as G(z; ϴg), where G is a differentiable function 
represented by a multiplayer perceptron with parameters ϴg. 
We also define a second multilayer perceptron D (x; ϴd) that 
outputs a single scalar. D(x) represents probability that x came 
from the data rather than p(g). We train Discriminator (D) to 
maximise the probability of assigning the correct label to both 
training examples and samples from G. Simultaneously we 
train G to minimise log(1 – D(G(z))): 

So in other words, D and G play the following two-player 
minimax game with value function V(G, D): 

  
(9) 

(Ian J. Goodfellow, 2014) 

 

Kang Zhang et al. [22] proposed a novel architecture of 
GAN with Multi-Layer Perceptron (MLP) as the discriminator 
and LSTM as the generator for forecasting the closing stock 
prices. The generator is built by LSTM to mine the data 
distribution of stocks from given data and generate data in the 
same distributions, whereas the discriminator designed MLP 
to discriminate between real and fake data. Their results 
showed that the novel GAN structure gave promising results 
compared with other models in machine learning and deep 
learning. HungChun Lin et al., [11] proposed stock price 
prediction model using GAN with Gated Recurrent Units 
(GRU) used as a generator that inputs historical stock price 
and generates future stock price and Convolutional Neural 
Network (CNN) as a discriminator to discriminate between 
real and fake distributions. Different to one step ahead 
forecasts only, the authors used deep learning to make multi-
step ahead predictions more accurately. The authors also 
found that Wasserstein GAN performed better during 
unexpected events like COVID whereas conventional GAN 
performed better during normal times. They also showed that 
including RNN into a GAN makes it unstable because it is 
challenging to tune hyperparameters and without suitable 
parameters the results are poor. The key is tune parameters in 
each layer to make the whole model more accurate. Other 
researchers use Rainbow method based on Q-learning for 
hyperparameter optimisation. Martin Erdman et al., [7] used 
adversarial network with the Wasserstein distance to generate 
simulated detector data. The authors investigated two variants 
of GANs for detector simulations. In both cases, the transfer 
of probability distributions from one data set to another using 
GAN training worked well using the Wasserstein distance in 
the loss function. Instead of training a deep network with 
simulations that differ in detail from data, simulations can be 
adapted to match data prior to network training. With this 
method, authors showed that results are better compared to 
training with the originally simulated traces.  

In this paper, we will use normalised log scale return VIX 
as our train data and normalised log scale return VVIX as our 
validation data.  

 
We will then build ARIMA on scaled data and predict the 

  mae  mse  rmse  mape  mase 

naive_model  0.086481 0.015316 0.086481 421354.18 0.999 

model_2_LSTM 0.041248 0.003253 0.057037 59694.81 0.672 

model_3_N_BEATs 0.041183 0.003258 0.057076 56545.72 0.671 

model_5_ensemble 0.041321 0.003274 0.057219 46762.38 0.673 

model_6_turkey 0.041824 0.003423 0.042492 33452.46 0.681 

 



fitted values on validation data. We also calculate the future 
trend growth with ARIMA. We will then make a dataframe of 
the fitted values and split it into train and test sets for our GAN 
model. We will add CNN conv1 layer as our discriminator and 
choose accuracy as our metrics. Then in generator we use two 
layers of CNN and LSTM together and again we choose 
accuracy as our metrics. For training the model, we compile 
discriminator and generator together and use the learning rate 
of 0.001 and beta of 0.5. A plot of the model is also created, 
and we can see that the model expects a 100-element point in 
laten space as input and will predict a single output.  

 

A. RESULTS: 

We ran the model for a total of 1200 epochs and it gave us 

the accuracy rate of 93.3%. We then use the fitted (predicted) 

values of GAN as features/inputs in SVM and RF. We define 

the RF model and use train features for training and fitting 

and test features for predicting. The results for MAPE and 

MAE are quite encouraging. For SVM, we use grid search 

and fit the model to get a score of 98.5% on fitting.  
 

RF 

MAPE: 0.0074763204010184145 

MAE: 0.005130449308450033 

 

SVM 

MAPE: 0.005861350065975159 

MAE: 0.004021246354831941 

VII. CONCLUSIONS  

Central Banks in particular pay very close attention to 
volatility and volatility of volatility. In fact, we know that most 
Central bank models include volatility of volatility as a factor 

of how loose or tight the financial conditions are. Hence, it has 
direct impact on things that most people care about such as 
their mortgage rates, inflation and unemployment. With a very 
few exceptions, unlike pure sciences and math, systems in 
economics exhibit inter-dependencies, hesitation and 
reflexivity i.e., participation in experiments influences its 
outcomes and vice versa. To this extent IFS based 
unsupervised techniques for data analysis seem to have an 
advantage.  
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