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Abstract 
 

 

 

This thesis presents a collection of new novel techniques using the bulk-driven approach, 

which can lead to performance enhancement in the field of CMOS analogue amplifier 

design under the very low-supply voltage constraints. In this thesis, three application 

areas of the bulk-driven approach are focused – at the input-stage of differential pairs, at 

the source followers, and at the cascode devices. 

 

For the input stage of differential pairs, this thesis proposes two new novel circuit design 

techniques. One of them utilises the concept of the replica-biased scheme in order to 

solve the non-linearity and latch-up issues, which are the potential problems that come 

along with the bulk-driven approach. The other proposed circuit design technique 

utilises the flipped voltage scheme and the Quasi-Floating Gate technique in order to 

achieve low-power high-speed performances, and furthermore the reversed-biased diode 

concept to overcome the issue of degraded input impedance characteristics that come 

along with the bulk-driven approach. 

 

Applying the bulk-driven approach in source followers is a new type of circuit blocks in 

CMOS analogue field, in which to the author’s best knowledge has not been proposed at 

any literatures in the past. This thesis presents the bulk-driven version of the flipped 

voltage followers and super source followers, which can lead to eliminating the DC level 

shift. Furthermore, a technique for programming the DC level shift less than the 
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threshold voltage of a MOSFET, which cannot be achieved by conventional types of 

source followers, is presented. 

 

The effectiveness of the cascode device using the bulk-driven approach is validated by 

implementing it in a complete schematics design of a fully differential bulk-driven 

operational transcoductance amplifier (OTA).  This proposal leads to solving the low-

tranconductance problem of a bulk-driven differential pair, and in effect the open loop 

gain of the OTA exceeds 60dB using a 0.35µm CMOS technology. 

 

The final part of this thesis provides the study result of the input capacitance of a bulk-

driven buffer. To verify the use of the BSIM3 MOSFET model in the simulation for 

predicting the input capacitance, the measurement data of the fabricated device are 

compared with the post-layout simulation results. 
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Symbol Convention 

 

Unless otherwise stated, the following symbol convention is used to represent signals in 

this thesis: 

 

Represented Symbol Meaning 

Uppercase symbols with 

uppercase subscripts 

(e.g. ID) 

Bias or DC quantities 

(e.g. the DC portion of transistor drain current) 

Lowercase symbols with 

lowercase subscripts 

(e.g. id) 

Small-signal quantities 

(e.g. the incremental change in transistor drain 

current) 

 Lowercase symbols with 

uppercase subscripts 

(e.g. iD) 

Sum of bias and small-signal quantities 

(e.g. the total transistor drain current,  

i.e.  iD =  ID + id) 
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Chapter 1  Introduction 

 
 

 

1.1 Moore’s Law and More 

 

Complementary Metal-Oxide Semiconductor (CMOS) technology is continuously 

downscaling to increase the number of Metal-Oxide-Semiconductor Field Effect 

Transistors (MOSFET) to be integrated in a single chip. Intel co-founder Gordon E. 

Moore postulated the trend in 1965, which is known as Moore’s Law, that the 

number of transistors per chip doubles roughly every 2 years [MOR65]. Along with 

this integration level trend, the cost-per-function is decreased and thus economic 

productivity and in effect overall quality of life are significantly improved through 

proliferation of computers, communication, and other industrial and consumer 

electronics [ITR10]. This miniaturisation trend, however, cannot be continued 

forever. Semiconductors are getting harder to downscale, and eventually the level of 

integration would not scale with Moore’s Law anymore. Figure 1-1 shows how the 

International Technology Roadmap for Semiconductor (ITRS) draws the CMOS 

technology roadmap for the next decades. 
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Figure 1-1 CMOS Technology Roadmap [ITR10] 

 

In order to keep up responding to the requirements in the economy growth and 

improving the quality of life despite the scaling limits according to Moore’s Law 

which would come in the next decade, the ITRS has addressed a new concept of 

research target called “Moore’s Law and More”. This concept is constructed by three 

sub-sets of focus area – scaling, functional diversification, and beyond CMOS. 

Scaling (which is also known as more Moore) refers to not only the continued 

shrinking of transistors but also includes non-geometrical process techniques such as 

study of new materials that affect the electrical performance of the chip, as well as 

design technologies that enable high performance, low power, high reliability, low 

cost, and high design productivity. Functional diversification (which is also known 

as more than Moore) aims to provide additional value, in particular non-digital 

functionalities (e.g. RF communication), to be migrated from the system board level 

into package-level (system-in-package, SiP) or chip-level (System-on-Chip, SoC). 

Beyond CMOS focuses on a “new switch” that can provide substantial functional 

scaling beyond that attainable by ultimately scaled CMOS. In the field of Beyond 

CMOS, the ITRS lists some examples like carbon-based nano-electronics, spin-based 
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devices, ferromagnetic logic, atomic switches, and nano-electro-mechanical-system 

(NEMS) switches. 

 

This CMOS technology trend introduces a new issue and consequently a motivation 

of new development in the area of CMOS analogue circuit design, which is described 

in the next section. 

 

1.2 Supply Voltage Trend 

 

Along with the scaling trend of CMOS technology, the ITRS set the target of 

research effort towards lowering of supply voltages, since small transistors suffer 

from reduced voltage breakdowns (which is known as hot carrier effect) [ITR10]. 

Figure 1-2 shows how the ITRS draws the roadmap of supply voltage reduction for 

analogue and digital systems. 

 

 

Figure 1-2 Supply Voltage Reduction Roadmap [ITR10] 
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With Figure 1-2, the ITRS describes that the supply voltage reduction for analogue 

systems will continue to lag that of digital systems by two or more generations, due 

to the fact that the threshold voltage for CMOS technology is not expected to be 

decreased drastically. In digital systems, a threshold voltage too close to zero would 

cause appreciable leakage current to flow into logic devices even when they are off, 

which would result to increased power dissipation as the leakage current gets 

multiplied by the number of logic devices integrated in the digital system [ALL02]. 

Thus, from this reason the threshold voltage cannot be significantly reduced, which 

causes an issue from analogue circuit designers’ viewpoint since conventional design 

techniques cannot fit into the ITRS roadmap. There is a need for new development of 

analogue circuit design techniques to overcome this dilemma. 

 

1.3 Rail-to-Rail Analogue Voltage Buffer and the Bulk-Driven 

Approach 

 

One particular example where new circuit design techniques are needed for low-

voltage systems is analogue voltage buffers. Voltage buffers, which are usually 

constructed with an operational amplifier (op-amp) in unity-gain voltage 

configuration as illustrated in Figure 1-3(a), are essential building blocks for 

applications where the weak signal needs to be delivered to a large capacitive or a 

small resistive load without being distorted. In order to maximise the dynamic range 

under the low supply voltage constraint, rail-to-rail input and output stages are 

required for those op-amps.  
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Figure 1-3 (a) Op-amp in unity-gain configuration, (b) complementary differential pair, and (c) 

illustration describing dead-band region under low-supply voltage condition 

 

For the input stage, the conventional circuit design approach for achieving rail-to-rail 

operation has been to utilise both p-type (pMOS) and n-type (nMOS) of the 

differential pairs as shown in Figure 1-3(b). However, as illustrated in Figure 1-3(c), 

the supply voltage being too low would cause a dead-band of the operational area 

where neither pMOS nor nMOS pairs can detect the input. In order to operate with 

this conventional circuit design approach, its supply voltage needs to be much greater 

than 2VT +2VDSmin, where VT is the threshold voltage of the MOSFET and VDSmin, is 

the minimum required voltage of drain-to-source voltage of the MOSFET. 

Considering that VT varies by the bulk (or body) biasing voltage, the chip (or 

junction) temperature, and the process variation for the CMOS technology, a new 

circuit design approach such that the rail-to-rail operation can be achieved with a 

supply voltage near VT is rather in favour for the ITRS roadmap. 

 

A candidate of circuit design techniques that can achieve rail-to-rail input operation 

with low supply voltages is the bulk-driven approach, which utilises the bulk of the 

MOSFET instead of the gate for applying the signal. Figure 1-4 illustrates this 

approach. With this technique the amount of supply voltage can be reduced to near 

VT, however many drawbacks have been reported in [BLA98]. The author’s research 

work solely focuses on the bulk-driven approach in order to develop new circuit 

design techniques that can overcome those drawbacks. 
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Figure 1-4 (a) pMOS bulk-driven device, and (b) nMOS bulk-driven device 

 

 

1.4 Research Objective and Thesis Outline 

 

The research theme reported in this thesis is the bulk-driven approach. The research 

objective is to develop new circuit design techniques using the bulk-driven approach 

that can overcome many of those drawbacks which have been reported by literatures, 

and furthermore invent new ways application areas of the bulk-driven approach that 

can lead to performance enhancement in the field of CMOS analogue amplifier 

design. This thesis is structured as follows: 

 

Chapter 2 provides a general overview of the bulk-driven approach. The device 

physics, operation principle and mathematical modelling, and drawbacks of this 

circuit design approach are discussed. 

 

Chapter 3 focuses on the circuit design techniques of rail-to-rail input stage for 

analogue amplifiers using the bulk-driven approach. This chapter reviews previous 

works and proposes a novel new circuit design technique that solves the issues of 

nonlinearity and latch up. Furthermore, another new circuit design technique that can 

achieve low-power high-speed performances whilst minimise the issue of low-input 

resistance large input capacitance of the bulk-driven approach is also proposed. 

 

Chapter 4 presents a new invention of designing source followers using the bulk-

driven approach, which in author’s best knowledge has not been proposed in 
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literatures before. A new design technique of source followers such that the DC level 

shift can be freely programmed is proposed in this chapter. 

 

Chapter 5 proposes a new way of utilising the bulk of the cascode devices at the 

output stage of Operational Transconductance Amplifiers (OTA), which leads to 

enhanced output resistance without having any additional hardware in the core part 

of the OTA. 

 

Chapter 6 focuses on the study of the input capacitance of a bulk-driven buffer. To 

verify the use of the BSIM3 MOSFET model in the simulating for predicting the 

input capacitance, the measurement data of the fabricated device compared with the 

simulated results using the extracted netlist of the postlayout design.  

 

Chapter 7 is the concluding session of this research work. The summary of this work 

and the author’s recommendations for further work are provided.  

 

Lastly, Appendix A provides the copies of the author’s publications, Appendix B 

provides the supplementary information to Chapter 6 (including the SPICE code used 

for the simulation, the IC layout of the whole die and the bonding diagram, more 

snapshots of the microphotograph, and the used test board for the measurement), and 

Appendix C lists the logs of the measurement results of the input capacitance of the 

fabricated bulk-driven buffer presented in Chapter 6. 

 

1.5 List of the Author’s Publications 

 

The author’s research works documented in this thesis are based on the following 

publications: 
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[HAG05] Y. Haga, H. Zare-Hoseini, L. Berkovi, and I. Kale, “Design of a 0.8 

Volt Fully Differential CMOS OTA Using the Bulk-Driven 

Technique”, IEEE Proc. International Symposium in Circuits and 

Systems, 2005, pp. 220 – 223 

[HAG06] Y. Haga, R. C. S. Morling, and I. Kale, “A New Bulk-Driven Input 

Stage Design for sub 1-volt CMOS Op-Amps”, IEEE Proc. 

International Symposium in Circuits and Systems, 2006, pp.1547 – 

1550 

[HAG09A] Y. Haga and I. Kale, “Bulk-Driven Flipped Voltage Follower”, IEEE 

Proc. International Symposium in Circuits and Systems, 2009, pp.2717 

– 2720 
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International Symposium in Circuits and Systems, 2011, pp.2039-2042 

 

The knowledge contributions of the above publications are summarised in the next 

section. 
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1.6 Knowledge Contributions 

 

The work presented in this thesis, which includes several novel proposals of circuit 

design techniques that utilise the bulk-driven approach, is solely developed by the 

author. The novelties of these developed techniques, which greatly help enhancing 

performances in the CMOS analogue amplifier design field, are described below: 

 

 

Applying the proposal at the input stage of CMOS analogue amplifiers not only leads 

to providing rail-to-rail operation at extremely low supply voltage condition, but also 

improves the linearity and furthermore enhances the latch up immunity [HAG06]. In 

fact there are several previously proposed works that improve the linearity of the 

bulk-driven approach, however in the author’s best knowledge there is no publication 

of the technique that can enhance the latch up immunity. 

 

This thesis also presents another input stage design technique utilising the bulk-

driven approach, which achieves low-power high-speed performances and helps 

reducing the input capacitance [HAG10]. A new concept of utilising a reversed-

biased diode with the bulk-driven MOSFET is introduced. 

 

Applying the bulk-driven approach in source follower design is a complete new way 

of circuit design techniques. The bulk-driven approach allows the DC level shift to 

be freely programmed, which has not been possible to do with conventional source 

followers [HAG09A], [HAG09B], [HAG09C], [HAG11]. 

 

Utilising the bulk-driven approach in the cascode devices of the OTA is also a 

complete new design method, which leads to increasing the output resistance and 
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hence enhancing the open-loop gain of the OTA without the need of any extra 

hardware in the core part of the OTA [HAG05]. 

 

With the above contributions to knowledge, the author aims to make for the readers 

of this thesis to realise that the bulk-driven approach has many new possible ways to 

be applied in CMOS analogue amplifier design for further performance improvement, 

and to encourage for new researchers to continue with developing modified 

techniques of the bulk-driven approach. 

 

1.7 Impact of this Work 

 

 

This last section of the Chapter aims to demonstrate the impact of this research work.  

 

During the research activities, the author noticed that the work reported in this thesis 

has been cited by several institutions’ works. Section 1.7.1 shows the list of citations 

to the author’s publications which the author is aware of. 

 

The BDFVDP reported in Chapter 3 of this thesis, which is the work the author 

published in [HAG10], received the Gold Leaf Certificate from PhD Research In 

Microelectronics and Electronics (PRIME). In Section 1.7.2, the scanned copy of the 

received award is shown. 

 

1.7.1 The List of “Referred” Publications 

 

The List of Citations to [HAG05] 
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Chapter 2  Characterising the Bulk-Driven 
Approach 

 
 

 

This chapter provides an overview of the bulk-driven approach, which is essential to 

be understood in prior to assessing the bulk-driven circuit design. The benefit of the 

bulk-driven approach, the device realisation in CMOS technology, and the 

drawbacks are thoroughly discussed. 

 

2.1 The Benefit of Utilising the Bulk-Driven Approach 

 

The benefit of the bulk-driven approach can be easily realised by simulating its 

transconductance characteristics and comparing with the gate-driven approach. 

Figure 2-1 shows the simulated plot of the gate-driven and the bulk-driven nMOS 

transistors using a 0.35µm CMOS technology. 

 

Figure 2-1 Simulating transconductance characteristics of gate-driven and bulk-driven nMOS 

transistors using a 0.35µm CMOS technology 
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As can be seen in Figure 2-1, to operate the gate-driven MOS transistor in the active 

region, the gate-to-source voltage needs to be greater than the threshold voltage 

(which is approximately 0.6 volts in this case). On the other hand, the bulk-driven 

MOS transistor behaves in a similar fashion to a depletion MOS transistor or a 

Junction Field Effect Transistor (JFET). Therefore, with the zero-bias voltage at the 

input node, the transistor is still in the active region. 

 

This characteristic is the key benefit we use in designing low-supply voltage op-

amps and other analogue circuits, as the bulk-driven device allows an extension in its 

input range on the negative side and hence leads to improving the Input Common-

Mode Range (ICMR). 

 

2.2 Realising the Bulk-Driven Device in CMOS Technology 

 

This section describes how a bulk-driven device is realised in CMOS technology, 

which is an important topic to be covered before discussing the drawbacks of the 

bulk-driven approach. Case studies of the realisation in n-well type and in twin-well 

type of CMOS technologies are discussed. 

 

2.1.1 Bulk-Driven Device Realised in N-Well CMOS Technology 

 

In semiconductor market today n-well CMOS technologies are more popular than p-

well types, since n-types ones allows the substrate to be connected to the ground 

instead of the supply voltage, which is in more favour by circuit designers [SAN06], 

[YTT03]. Thus, it is essential to discuss the realisation of a bulk-driven device in n-

well CMOS technology. 
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In n-well CMOS technology, pMOS can be bulk-driven. Figure 2-2 illustrates the 

cross sectional view of how the pMOS bulk-driven device can be realised in an n-

well CMOS technology. 

 

Figure 2-2 Cross sectional view of a bulk-driven pMOS device in an n-well CMOS technology 

 

The operation principle of a bulk-driven device is simple to follow. The voltage at 

the bulk affects the depletion region depicted in Figure 2-2, which in effect controls 

the channel and hence the drain current. Let’s suppose that the pMOS device formed 

in the n-well in Figure 2-2 is in linear region, and thus the depth of the p-type 

channel is narrower at the drain than the source, as shown in the sketch. As the 

voltage potential at the bulk of the pMOS device is increased above the source, the 

depletion region becomes widened and hence the p-type channel reduces its overall 

depth, and eventually the channel is pinched off at the drain end so that the pMOS 

device becomes saturated [ALL02]. 

 

The behaviour of the reduced channel depth can be alternatively described that the 

overvoltage of the pMOS device is decreased when the bulk voltage increases above 

the source voltage VSB [SED11]. However, since the gate voltage of the pMOS 
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device VSG remained unchanged, the threshold voltage VT increased instead. This VT 

behaviour can be mathematically modelled by: 

)22(0 FSBFTT VVV Φ−+Φ+= γ     (2-1) 

where VT0 is the threshold voltage at zero-bias (i.e. VSB=0), γ is the body-effect 

coefficient, and 2|ΦF| is the Fermi potential, which are all dependent of the CMOS 

technology. Hence in summary, with the bulk-driven approach the drain current is 

controlled by varying VT instead of VSG. 

 

From Figure 2-2 it is important to realise the parasitic bipolar effect, which are 

denoted as QP and QV in the sketch, since this parasitic effect contributes to one of 

the severe drawbacks of the bulk-driven approach. More detail discussions of this 

drawback is covered in Section 2.3. 

 

Finally, it is worth adding a comment that a bulk-driven transistor is often said to be 

in depleted-mode [BLA96] since the voltage potential at the bulk affects the shape of 

the depletion region. However, in terms of device physics the actual MOS transistor 

that is dealt with is enhancement type, thus this discussion may cause confusion by 

first-time learners of the bulk-driven approach. 

 

2.1.2 Bulk-Driven Device Realised in Twin-Well CMOS Technology 

 

Since twin-well CMOS technology is also available today, it is also worth discussing 

how a bulk-driven device can be realised in this technology. The cross section view 

is sketched in Figure 2-3.  
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Figure 2-3 Cross sectional view of twin-well CMOS technology 

 

In the previous section it was discussed that only pMOS can be bulk-driven in n-well 

technology. In twin-well technology, on the other hand, nMOS device can also be 

bulk-driven since the device has an isolated body (bulk) in p-well instead of the 

common p-substrate. 

 

As can be observed from Figure 2-3, the parasitic bipolar effect for the pMOS 

formed in twin-well technology remains in identical manner as the pMOS device 

formed in n-well technology. This is because, in either case, the n-well is formed in 

p-substrate. In contrast, with the nMOS there is only one type of bipolar effect 

denoted by QN. This is because p-well and p-substrate are not related by pn-junction 

effect since they both have the p-type of polarity. 

 

It is worth noting that this technology allows separate optimization of the nMOS and 

pMOS transistors [SED11], and therefore many submicron processes are based on 

this technology. As mentioned before, with this technology both pMOS and nMOS 

devices can be bulk-driven. However for fabless semiconductor companies where the 

fabrication needs to be outsourced, there might be a case that the foundry allows 

layout designers to draw only n-well layers but not p-well layers [MOS11], which 

consequentially means that layout designers cannot assign nMOS devices to be 
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individually bulk-driven. This matter has to be identified before starting the circuit 

design. 

 

2.3 Drawbacks Introduced with the Bulk-Driven Approach 

 

In Section 2.1 the benefit of the bulk-driven approach has been described that the 

transistor can be utilised in depleted-mode similar like JFET. However, many 

associated drawbacks have been reported in [BLA98]. This section thoroughly 

discusses these drawbacks, as they are essential to be understood in prior to assessing 

the bulk-driven circuit design. 

 

2.3.1 Transconductance Reduction 

 

One significant disadvantage of the bulk-driven approach is that the 

transconductance of a bulk-driven MOSFET gmb is substantially less than a gate-

driven MOSFET gm. As can be realised from Figure 2-1, the slope of the bulk-driven 

MOSFET (= gmb) is much gentle than the slope of the gate-driven MOSFET (= gm). 

The gmb/gm ratio, η, can be expressed by 

BSF

mmb

V
gg

−Φ
==

22
/

γ
η          (2-2) 

where 2|ΦF| is the Fermi potential, γ is the body-effect coefficient, and VBS is the 

bulk-to-source voltage of the MOSFET. This ratio η is thus dependent to VBS, but it is 

typically around 0.1 to 0.3 [SED11]. 
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2.3.2 Transconductance Variation 

 

It can be also noted from Equation (2-2) that gmb (= η gm) is dependent to VBS, which 

causes a substantial transconductance variation when a bulk-driven MOSFET is 

applied in a differential pair design. 

 

2.3.3 Process Related 

 

As discussed in Section 2.2, the polarity of the bulk-driven MOS transistor is process 

related because wells are required to isolate bulk-terminals. In case of n-well CMOS 

technology, only pMOS devices can be bulk-driven. For applications where both 

pMOS and nMOS devices are required, a twin-well technology is needed. 

 

2.3.4 Degraded Latch up Immunity 

 

As can be observed from Figure 2-2 and 2-3, CMOS technologies consist of parasitic 

bipolars. If for instance any of those bipolars, in particular vertical bipolars QV, are 

turned on, then there would be a short-circuit path between positive and negative 

supply rails. In digital systems this is known as a latch up effect, which may cause 

destructive breakdown of the chip. 

 

To minimise this unwanted effect to happen, the forward-bias voltage of the bulk of 

the MOSFET must be kept as small as possible in order not to strongly turn on the 

parasitic bipolars [BLA98]. 
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2.3.5 Degraded Input Impedance Characteristics 

 

With the bulk-driven approach, the input impedance characteristics become worse 

due to the parasitic bipolars. The resistive and input capacitive characteristics of the 

bulk-driven input are thoroughly discussed below: 

 

Input Resistance 

As illustrated in Figure 2-2, the bulk of the MOSFET is the base terminal of the 

parasitic bipolar. Therefore some appreciable input current iB may flow. iB can be 

expressed by 

]1)[exp( −=
kT

qv
Ii BS

SB      (2-3) 

where Is is the pn-junction current, which is also known as the scale current when the 

voltage across the pn-junction vBS is zero, k is the Boltzmann constant (=1.38 x 10
-

23
JK

-1
), T is the temperature in Kelvin, and q is the charge of an electron (=1.602 x 

10
-19

C). Is can be expressed by 
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where AS is the active area of the source of the MOSFET, NA and ND are the doping 

concentrations of the acceptors and donors respectively, Ln and Lp are the diffusion 

length of holes and electrons respectively, Dp and Dn are the diffusion constant of 

holes and electron respectively, and ni is the number of free electrons and holes in a 

unit volume of intrinsic temperature at a given temperature (≈1.5 x 10
10

 carriers/cm
3
 

at room temperature).  

 

Input Capacitance 

The capacitance of the bulk-driven device can also be understood from the study of 

bipolar devices. As illustrated in Figure 2-2, the bulk-driven input consists of two 
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types of bipolars, QP and QV, which are classified as a lateral bipolar and a vertical 

bipolar, respectively. 

 

From the bipolar characteristics modelling for QP, the source-to-bulk depletion 

capacitance Csb-depletion can be expressed by 

PS

V

V

CJSW
AS

V

V

CJ
C

pnwellpnwell MJSWSB

pnwell

MJSB

pnwell

depletionsb
+−+− −

+
−

= +−+−
−

)1()1(
00

        (2-5) 

where CJnwell-p+ is the zero-bias (i.e. VSB=0) body-junction capacitance per unit area 

over the drain/source region,  CJSWnwell-p+ is the zero-bias body-junction capacitance 

per unit length along the sidewall of the drain/source region, MJ nwell-p+ and MJSW 

nwell-p+ are the grading coefficient for area and sidewall components respectively, V0 

is the body-junction built-in potential, and AS and PS are the area and the perimeters 

of the source region of the MOSFET respectively. As can be realised from this 

equation, forward-bias (i.e. VSB>0) operation of a bulk-driven MOSFET causes an 

increase in Csb-depletion. 

 

Furthermore, from the study of bipolar characteristics, the diffusion capacitance Csb-

diffusion is introduced when the bulk is in forward-biased. Csb-diffusion can be expressed 

by 

B

t

T
diffusionsb i

V
C

τ
=−      (2-6) 

where τT is the mean transit time of the junction and Vt is the thermal voltage 

(≈26mV at room temperature). 

 

On the other hand, the pn-junction formed between n-well and p-substrate is never 

forward-biased since the most negative voltage is connected at the p-substrate. Hence 
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only depletion capacitance is introduced across this pn-junction. This junction 

capacitance, namely well-to-substrate capacitance Cssub, can be expressed by 

nwell
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       (2-7) 

where CJnwell-psub is the zero-bias (i.e. Vnwell-psub=0) body-junction capacitance per unit 

area over the n-well and p-substrate region,  CJSWnwell-psub is the zero-bias body-

junction capacitance per unit length along the sidewall of the n-well and p-substrate 

region, MJ nwell-psub and MJSW nwell-psub are the grading coefficient for area and 

sidewall components respectively, V0 is the body-junction built-in potential, and 

Anwell and Pnwell are the area and the perimeters of the n-well respectively. 

 

In summary, the total capacitance of the bulk Cb is given by 

Cb = Cbs-depletion + Cbs-diffusion + Cssub    (2-8) 

The Cb is significantly greater than the gate-to-source capacitance Cgs, given by 

GSOOXgs WCWLCC +≈
3

2
             (2-9) 

where W and L are the width and the length of the MOSFET respectively, COX is the 

oxide capacitance, and CGSO is the gate-to-source overlap capacitance per unit 

channel width. 

 

2.3.6 Reduced Bandwidth 

 

Utilising bulk-driven devices also causes in speed reduction. For a gate-driven 

MOSFET in saturated region, its transitional frequency, fT, gate-driven, is given by 

fT, gate-driven

gs

m

C

g

π2
≈      (2-10) 
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At the frequency beyond fT, gate-driven, the device no longer provides signal gain. In a 

case of a bulk-driven MOSFET in saturated region, its transitional frequency fT, bulk-

driven can be approximated by 

fT, bulk-driven

)(2)(2 ssubbs
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g
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π
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By dividing Equation 2-11 by Equation 2-10, the following relationship can be 

obtained: 

drivengateT

ssubbs
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η
           (2-12) 

As discussed in Section 2.3.1 and 2.3.3, η is typically around 0.1 to 0.3 and 

(Cbs+Cssub) > Cgs. Thus in summary, the speed performance becomes significantly 

slow with the bulk-driven approach. 

 

2.3.7 Noise 

 

The noise performance also becomes severe with the bulk-driven approach. The 

channel noise current of a MOSFET di
2

DS  is given by 

dfgkTdi mDS )
3

2
(42 =        (2-13) 

where k is the Bolzmann’s constant (1.381 x 10
-23

 J/K), T is the temperature in 

Kelvin, and 2/3 is the coefficient factor for long-channel MOSFET. The equivalent 

input noise voltage of a gate-driven MOSFET dv
2

ieq_gate-driven   can be worked out by 

dividing Equation (2-13) with gm
2
, which turns out to 

df
g

kTdv
m

drivengateieq

1
)

3

2
(42

_ =−             (2-14) 



 

 27

and the equivalent input noise voltage of a bulk-driven MOSFET dv
2

ieq_bulk-driven  can 

be worked out by dividing Equation (2-13) with gmb
2
, 

2

,222
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Thus in summary, dv
2

ieq_bulk-driven  is 1/η2
 times larger than dv

2
ieq_gate-driven  . 

 

2.3.8 New Layout Design Techniques 

 

From the layout design viewpoint, bulk-driving a MOSFET brings a new challenge 

especially when a matched pair of the devices is needed (e.g. for differential pair 

applications) because the n-well needs to be separated per every device. 

Consequently, the conventional common-centroid layout technique is not possible 

for matching. To the author’s best knowledge, the layout techniques of a bulk-driven 

pair have not been reported in publications yet. Hence, the layout designers must 

develop their own layout techniques with no (or very little) references to achieve 

precise matching as possible. 

 

2.4 Chapter Conclusion 

 

In this chapter an overview of the bulk-driven approach has been presented. A bulk-

driven MOSFET acts like a JFET-like transistor and therefore allows the ICMR to 

achieve rail-to-rail operation and thus the dynamic range can be expanded under the 

low supply voltage constraint. However, due to the device physics of CMOS 

technology, this approach also introduces many drawbacks. Each drawback is 

thoroughly examined in this chapter. 
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In order to utilise the bulk-driven approach in CMOS analogue circuit design, novel 

design techniques need to be developed to overcome those drawbacks.  
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Chapter 3  Bulk-Driven Differential Pairs 

 
 

 

Differential pairs are perhaps mostly widely used two-transistor subcircuits in 

analogue circuit design [GRA01]. In CMOS analogue circuit design, a differential 

pair consists of two MOSFETs that are coupled at their sources. Hence a differential 

pair is also referred as a source-coupled pair [BAK08]. In many literatures, the 

concept of differential pairs is taught after studying single-ended amplifiers in order 

to emphasise the high immunity of the signal to noise and interferences [RAZ01], 

[SAN06], [SED11], [BAK08], [GRA01], [ALL02], [JOH97]. 

 

This chapter reports on the author’s achievements relating to the development of new 

circuit design techniques of a bulk-driven differential pair, in order to overcome the 

drawbacks described in Chapter 2 as much as possible. Two types of a bulk-driven 

differential pair are proposed in this chapter, which the author has named them as 

Bulk-Driven Double Replica-Biased (BDDRB) input stage [HAG06] and Bulk-

Driven Flipped Voltage Differential Pair (BDFVDP) [HAG10]. 

 

A Comment Concerning the Naming Convention – “bulk-driven” or “body-driven”? 

It is worth reviewing the publications concerning the invention of a bulk-driven 

differential pair. According to [YAN00], A. Guzinski et al invented a “body-driven” 

differential pair in 1987 for the Operational Transconductance Amplifier (OTA) 

design [GUZ87]. In 1991, the invented pair was used in an OTA-C filter of a CMOS 

telephone circuit in [DIE91]. The original purpose of the invented pair was to yield 

the small transconductance and to improve linearity. (Interestingly, there are few 
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circuit blocks where the small transconductance characteristic is appreciated.)  Later 

on, B. Blalock et al studied the depletion characteristics of the “bulk-driven” 

MOSFET and proposed a “bulk-driven” differential pair in an operational amplifier 

design to achieve rail-to-rail input common-mode range (ICMR) under the supply 

voltage as low as 1-volt [BLA98]. 

 

From this historical background, two different names appeared to describe the same 

circuit block – “body-driven” and “bulk-driven” differential pair, named by Guzinski 

et al and Blalock et al, respectively [BIA99]. In this thesis, the author shall use the 

same name used by Blalock et al throughout, i.e. “bulk-driven”, since the research 

objective was to develop new circuit design techniques that utilise the depletion 

characteristics of the MOSFET and overcome the drawbacks identified by Blalock et 

al in [BLA98]. In another words, this research work is the further improvement of 

[BLA98]. 

 

A Comment Concerning MOSFET symbol 

From this Chapter and on, many transistor-level circuit diagrams are presented. 

Therefore it is worth taking a moment to comment concerning MOSFET symbols 

beforehand. In many literatures [RAZ01], [SAN06], [SED11], [BAK08], [GRA01], 

[ALL02], [JOH97], a MOSFET symbol is simplified to a three-terminal device, since 

in most circuits the bulk of pMOS and nMOS devices are tied to the positive supply 

rail (VDD) and the negative supply rail (VSS, or GND if it is the least voltage 

potential), respectively. The simplified symbols for pMOS and nMOS transistors are 

depicted in Figure 3-1(a) and (b), respectively. For MOSFET where the bulk 

connection needs to be explicitly identified, the symbols shown in Figure 3-1(c) and 

(d) are often used for the pMOS and nMOS transistors, respectively. 
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Figure 3-1 MOSFET symbols for (a) pMOS (its bulk tied to VDD and not shown), (b) nMOS (its 

bulk tied to VSS and not shown), (c) pMOS (its bulk shown explicitly), and (d) nMOS (its bulk 

shown explicitly) 

 

In this thesis, the symbols shown in Figure 3-1(a) and (b) are used to represent 

pMOS and nMOS transistors, respectively, and for bulk-driven devices Figure 3-1(c) 

and (d) are used to represent pMOS and nMOS transistors, respectively. In addition, 

all transistors are identified as MP and MN in the circuit diagrams to represent the 

pMOS and nMOS transistors, respectively, so that the readers can easily realise the 

polarity of the transistors. 

 

3.1 Bulk-Driven Double Replica-Biased Input Stage 

 

3.1.1 Introduction 

 

The primary concern of utilising a bulk-driven device in a differential pair is that its 

transconductance gmb is dependent to the bulk-to-source voltage VBS. gmb can be 

expressed by 

BSF

m
mb

V

g
g

−Φ
=

22

γ
     (3-1) 

where gm is the transconductance of the gate-driven MOSFET, γ is the body-effect 

coefficient, and 2|ΦF| is the Fermi potential. In differential pair applications, it is 

essential that its effective transconductance gm(eff) is nearly constant over the rail-to-
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rail ICMR, as the large variation introduces signal distortion and creates difficulty in 

the frequency compensation of the multi-stage op-amps [HOG92], [WU94]. 

 

So far three proposals are available for improving the gm(eff) variation of the Bulk-

Driven Differential Pair (BDDP) – the complementary BDDP [BLA00], the Replica-

Biased Scheme (RBS) [BLA00], and the feedback techniques [BAH00]. The 

complementary BDDP technique utilizes the complementary behaviour of the pairs 

to reduce the gm(eff) variation. However, a special CMOS technology (e.g. a twin-

well process) is required for the implementation. The proposed RBS by [BLA00], as 

illustrated in Figure 3-2, biases the gates of the pair to keep VBS1,2 = 0 so that the gmb 

becomes constant. The problem that the authors of [BLA00] identify is, however, it 

is impossible for the coupled-source voltage VS to follow over the rail-to-rail input 

VB1,2. Thus the gm is constant over only a portion of the rail-to-rail ICMR. The 

feedback technique senses the input common-mode voltage (VICM) and adjusts the 

tail current to reduce the gm variation; however, this causes the Slew Rate (SR) to 

become VICM dependent. Typically, a constant-SR of a constant-gm input stage is 

desired for consistent large-signal behaviours over the rail-to-rail VICM [SON08], 

[CAR03]. 

 

Figure 3-2 The bulk-driven RBS proposed in [BLA00] 

 

This section presents a new bulk-driven rail-to-rail input stage using a standard 

single-well (n-well in this case) CMOS process. This input stage achieves almost 

constant-gm(eff) and constant-SR, working with a wide supply voltage ranging from 
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sub 1-volt (VT0+3VDSsat) to the maximum allowed by the CMOS process, and also 

eliminates the latch-up problem. 

 

3.1.2 Proposal  

 

The idea of our bulk-driven input stage comes from utilizing two pairs of the RBS to 

cover all portions of the rail-to-rail ICMR. Figure 3-3 illustrates the topology of our 

approach, which we call the Bulk-Driven Double Replica-Biased (BDDRB) input 

stage [HAG06]. 

 

Figure 3-3 Topology of the BDDRB input stage 

 

The BDDRB input stage consists of pair-1 (MP01∼MP03) and pair-2 (MP04∼MP06), 

which are assigned for the low and high portions of the ICMR, respectively, and a 

current switch. 

 

The device sizes of pair-1 are all the same, and the same dc current runs through each 

device when the pair is selected. This leads MP03 to be the replica of the input pair, 

and VBS1,2 to be equal to VGS3 (= constant). The same argument goes to pair-2 except 

that VBS5,6 would be zero instead. The pair-1 would be operational for the ICMR 

between VDD-VSDsat-VSG3 and VSS+VDSsat, and for pair-2 the operational range would 
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be between VDD-VSDsat and VSS+VDSsat+VSG4. To maximize the ICMR a current 

switch is implemented so that the effective ICMR would be between VDD-VSDsat and 

VSS+VDSsat. 

 

Operation Principle 

Figure 3-4(a) illustrates how the BDDRB input stage can be realized as a transistor 

circuit. Again, MP01~MP03 (pair-1) and MP04~MP06 (pair-2) are the replica-biased 

input pairs for the low and high portions of the ICMR, respectively. MP09~MN12 

form a current switch and work as a function of VICM. This input stage is configured 

such that it normally operates with pair-1. When VICM becomes high and causes VSG9 

to be greater than the threshold voltage (|VT0|), the switch deactivates pair-1 and 

activates pair-2 instead. Conversely, when VICM becomes low and causes VSG9 < |VT0|, 

pair-1 turn on and pair-2 turns off. The bias-voltage, VSWITCH, controls the crossover 

voltage between the two points. 

 

Figure 3-4 An application example of the BDDRB input stage in a folded-cascode two-stage op-

amps (a) the BDDRB input stage, and (b) a folded-cascode two-stage op-amps 

 

To verify the operation of the BDDRB input stage, it was necessary to implement it 

in an op-amp. For this we chose a folded-cascode two-stage op-amp, as illustrated in 

Figure 3-4(b), to present as an application example. 
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3.1.3 Simulation Results 

 

Using the BSIM3 MOSFET models of a 0.18µm CMOS process, the op-amp of 

Figure 3-4 has been simulated in the typical mode with a supply voltage of 0.8-volt 

and a load resistance and capacitance of 1MΩ and 5pF, respectively. Table 3-1 

shows the summary of the simulation results. 

 

Table 3-1 Simulation Results of the Overall Performance of the Proposed Op-amp in Figure 3-3 

 

Characteristics Simulated Results 

Open-loop DC gain 60dB 

Unity-gain frequency 0.6MHz 

Phase margin 58° 

ICMR 0.6V 

Total current consumption 61~74µA (VICM dependent) 

SR SR+ = 1.0V/µs, SR- = -0.5V/µs 

Output voltage swing 0.6V 

Common-mode rejection ratio 63dB 

Power Supply Rejection Ratio (PSRR) PSRR+ = 58dB, PSRR- = 79dB 

Input referred noise voltage 160nV/√Hz (white noise only) 

Total harmonic distortion, 

AVCL=+1V/V 

0.014% (-77.1dB) 

    for 0.6Vp-p, 1kHz sine wave 

0.093% (-60.6dB) 

    for 0.6Vp-p, 10kHz sine wave 

Setup: VDD = 0.8V, VSS = 0V, Vswitch = VDD - 0.5V, CL = 5pF, RL=1MΩ 

 

The simulation confirmed the rail-to-rail ICMR operation (VDD-VSDsat14 to 

VSS+VDssat07 precisely). Figure 3-5 and Figure 3-6(a) show the simulation results of 

the open-loop gain frequency response and the effective tail current of the op-amp in 

Figure 3-4, which indicate that both characteristics are nearly VICM independent. 

Figure 3-6(b) gives the simulation results of gm(eff) of the op-amp versus VICM. 
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Figure 3-5  Simulated frequency response of the op-amps for VICM varying from 0.1 to 0.7V with 

a 0.1V step 

 

           (a)                 (b) 

Figure 3-6 Simulated plots for (a) tail current versus VICM and (b) gm(eff) versus VICM 

 

Figure 3-6(b) indicates that the gm variation is approximately 10% over the rail-to-

rail ICMR operation. This variation peaks at the transition point between the two 

pairs, i.e. when the pairs are partially on and off. It is worth noting that the source-to-

bulk voltage of the input pairs (VSB1 and VSB5) changes at the transition stage, which 

should also have created a major impact in the gm variation according to [HOG92]. 

Figure 3-7 shows the simulation results of VSB1 and VSB5 versus VICM. 
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Figure 3-7 Simulated VSB1 and VSB5 versus VICM 

 

Advantages and Disadvantages 

An important practical advantage of the BDDRP input stage is that it requires no 

special CMOS process. Other advantages are gm(eff) and SR of the op-amp remain 

relatively constant with respect to VICM, and the circuit is immune from latch-up. 

Conventional BDDP techniques require very low supply voltage [BLA98], otherwise 

the rail-to-rail ICMR operation would cause the bulk terminals to be strongly 

forward-biased. With the BDDRB input stage, the bulk-to-source voltages remain as 

the same condition as the replica device regardless of the supply voltage condition. 

For confirmation, we simulated the circuit of Figure 3-4 with a 3-volt power supply 

and observed that the rail-to-rail ICMR operations did not result an increase in the 

supply current consumption. 

 

However, the rest of the disadvantages of a bulk-driven MOSFET remain unchanged. 

The gmbs is low (resulting relatively low gain-bandwidth products and poor noise 

performance), and also the conventional layout matching techniques cannot be 

applied because of the circuit structure. 
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The input impedance is also known to be another disadvantage of a bulk-driven 

MOSFET. However, this is controllable by circuit designers as it is directly related to 

its source-to-bulk voltage. Reducing the forward-bias of the bulk-terminal results in 

increased input resistance and decreased source-to-bulk and source-to-drain 

capacitances (Csb and Csd). With the BDDRB input stage, this can be easily achieved 

by decreasing the source-to-bulk voltage of the replica device (VSB3 of Figure 3-4(a), 

which is equivalent to VSG3). Figure 3-8 illustrates the simulation results of the input 

impedance measurements for the op-amp in Figure 3-4. 

 

Figure 3-8 Simulation results of the circuit-level input impedance characteristic 

 

3.1.4 Section Conclusion 

 

In this section a new approach for the bulk-driven input stage called BDDRP to 

achieve rail-to-rail ICMR operation has been presented. This approach leads the 

operational supply voltage to be from under 1-volt to the maximum allowed by the 

CMOS process used, as well as completely removing the latch-up problem.  SPICE 

simulations indicate that gm(eff) is nearly constant (within 10%) over the entire 

ICMR whilst the effective tail current remains almost unchanged. The additional 

hardware implemented to achieve this performance is only a replica circuit for each 

pairs and a current switch. 
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3.2 Bulk-Driven Flipped Voltage Differential Pair 

 

3.2.1 Introduction 

 

The BDDRP proposed in the previous section consists of a novel circuit design 

technique that can efficiently overcome the non-linearity and the latch up problems, 

however it still does not solve the issue of the degraded input impedance 

characteristics of a bulk-driven MOSFET, in particular the increased input 

capacitance caused by the diffusion capacitance and the well-to-substrate capacitance 

as described in Chapter 2. 

 

This section reports the author’s achieved work on development of a new circuit 

design technique that can particularly solve the issue of the degraded input 

impedance of a BDDP. 

 

3.2.2 Design Approach 

 

Low-Power Differential Pair 

In prior to developing a new BDDP, at first the author reviewed previous works of a 

differential pair that achieves low-power high-performance, and drew an attention to 

a novel circuit block called Flipped Voltage Follower Pseudo Differential Pair 

(FVFDP) which was proposed by Carvajal et al in [CAR05]. Figure 3-9(a) and (b) 

illustrates the transistor realization of the FVFDP, and the simulated plot with IB set 

to 1µA using a 0.35µm CMOS process. 
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Figure 3-9 (a) (pMOS) FVFDP proposed in [CAR05], and (b) simulating the DC transfer 

characteristics using a 0.35µµµµm CMOS process 

 

In Figure 3-9(a), V1 and V2 are the differential input, and V3 is the common-mode 

voltage of V1 and V2, i.e. (V1+V2)/2. As can be observed from Figure 3-9(b), when no 

differential signal is applied (i.e. V1=V2=V3, steady condition) the drain current of 

MP01 and MP02 (ID1 and ID2) become equal to IB, and when the differential signals 

are applied then ID1 and ID2 can become much larger than the twice of IB. This low-

static high-dynamic power performance is not possible to achieve with a 

conventional differential pair. 

 

For the development of the new BDDP design, the author selected the FVFDP as the 

base. This section reports a new circuit design technique that bulk-drives the FVFDP 

so that rail-to-rail low-power high-driving performances can be all achieved, but 

without facing the issue of the degraded input impedance characteristics caused by 

the bulk-driven MOSFET. 

 

A Bulk-Driven MOSFET with the Reverse-Biased Diode 

In order to avoid the issue of the degraded input impedance characteristics of a bulk-

driven MOSFET, the author came up with an idea of utilising a reverse-biased diode. 

Figure 3-10(a) and (b) illustrate the circuit diagram of a bulk-driven pMOS device 
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connected with the reverse-biased diode, and a sketch of a diode realized in CMOS 

technology, respectively. 

 

Figure 3-10 (a) a bulk-driven pMOS device with the reversed-biased diode, and (b) a diode 

realised in CMOS technology 

 

Figure 3-11 shows the simulated plot of the DC sweep analysis of Figure 3-10(a) 

using a 0.35 µm CMOS process, where the transistor width and length are 2µm and 

1.4µm, and source, drain, and gate voltages of the pMOS device are fixed at 0V, -

0.2V, and -0.8V, respectively. For the diode the minimum size is used. As can be 

observed from the plot, only a few pico-ampere of the DC input current IIN flows at 

any operation point of the input voltage VIN, since the body-diode of the pMOS and 

the added diode are in reversely connected to each other and thus only the leakage 

current passes through. Consequently, the source-to-bulk voltage VSB of the PMOS 

does not become strongly forward-biased since the forward current of the diode is 

extremely small. It is worth noting that the added diode does not become strongly 

forward-biased either, so that the parasitic vertical bipolar illustrated in Figure 2(b) 

remains off. 
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Figure 3-11 Simulated IIN and VSB of Figure 2(a) 

 

Interestingly, with Figure 3-10(a) the input at VIN is fed into p+ implant, whereas it 

would have been n+ implant for a conventional bulk-driven MOSFET. This means 

that VIN indirectly sees the pn-junction (from n-well to p-substrate), and thus the 

effective input capacitance can be significantly reduced. 

 

In results the input resistance and capacitance can both be drastically improved with 

this approach, the author further worked on with this approach to come up with a 

new proposal of BDDP design, which is described in the next subsection.  

 

3.2.3 Proposal 

 

Based on the analysis shown in the previous section, the author proposes a rail-to-rail 

low-power operational amplifier (op-amp) using a new design technique which we 

named as Bulk-Driven Flipped Voltage Differential Pair (BDFVDP). Figure 3-12 

illustrates the circuit diagram of the proposal. 
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Figure 3-12 Proposed CMOS buffer using Bulk-Driven Flipped Voltage Differential Pair 

 

The operation principle of the circuit in Figure 3-12 is simple to follow. From MP1 

to MN5 form a circuit block called Bulk-Driven Flipped Voltage Follower (BDFVF) 

[HAG09]. MP1 and MP2 are equally sized and biased with identical drain current 

with MN4 and MN5. Since the bulk-terminal of MP2 is physically shorted to the 

coupled source node (i.e. VSB2=0), MP1 becomes the replica of MP2, and hence the 

source-to-bulk voltage of MP1 becomes virtually shorted (i.e. VSB1≈0). In another 

words, the coupled source voltage follows the bulk input voltage of MP1. If MP3 is 

sized wide enough such that it is in linear region, then the coupled source node 

becomes low impedance and hence it becomes the buffered signal of the bulk input 

of MP1. In the design of the proposed op-amp, BDFVF is utilized to buffer the 

common-mode signal of the differential input VICM. 

 

From MP7 to MN10 forms the first stage of the operational amplifier. The input 

devices of this stage are bulk-driven, and when the differential signals VIN+ and VIN- 

are identical then the drain current of the input devices, ID7 and ID8, settle to the bias 

current IREF. When large differential signals are applied, then iD7 and iD8 can become 

much greater than twice the current of IREF, since the coupled source node has very 

low impedance and MP3 can supply a source current that is bigger than 2 x IREF. 
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From MP11 to MN13 forms the second stage of the operational amplifier, which has 

been converted to class-AB operation using the Quasi-Floating Gate (QFG) 

technique [LOP09]. As can be observed, the gate of MP12 is connected to the gate of 

MP11 with a large resistor RLARGE, and also to the gate of MN9 with a capacitor 

CBAT. In terms of DC characteristics, there exists no current flow through RLARGE and 

therefore the gate voltage of MP12 and MP11 are the same, and thus the static drain 

current ID12 is IREF. In terms of AC characteristics, a high pass filter is formed at the 

gate of MP12 with a cutoff frequency of 1/(2πRLARGECBAT), and therefore MP12 

achieves not only static but also dynamic operation, which in turn leads to class-AB 

operation. It is remarkable to realize that a unity-size diode-connected MOSFET but 

in the cutoff region can form a substantially large resistance of RLARGE, thus a low 

cutoff frequency can be achieved with a moderately small capacitance of CBAT. 

 

From D1 to D4 are the reverse-biased diodes to the bulk-driven devices. D3 and D4 

are used to detect for VICM. In Figure 3, those diodes have been sized to 20 times of 

the minimum size of the diode for D1 and D2, and 10 times for D3 and D4, to 

prevent from further reduction of the transconductance as possible. The 

transconductance of a bulk-driven MOSFET with the reverse-biased diode gmb_VR can 

be expressed as: 

gmb_VR = α gmb               (3-2) 

where α is the attenuation factor of the signal and gmb is the transconductance of the 

bulk-driven MOSFET. α can be expressed as: 

α = Cdiode / (Cdiode+Cdb)            (3-3) 

where Cdiode is the junction capacitance of the reverse-biased diode, and CSB is the 

source-to-bulk capacitance of the MOSFET. Cdiode given by 

Cdiode = Cj0_diode / (1+VR/V0)
0.5

                    (3-4) 
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where Cj0_diode is the zero-biased junction capacitance of the reverse-biased diode, VR 

is the reversed-biased DC voltage, and V0 is the built-in bulk junction potential. 

Similarly, 

Csb = Cjo_mosfet / (1+VSB/V0)
0.5

                 (3-5) 

where Cjo_mosfet is the zero-biased junction capacitance of the MOSFET, and VSB is 

the source-to-bulk DC voltage. 

 

3.2.4 Simulated Results 

 

To verify the proposed solution of Figure 3-12, we designed it using a 0.35um 

CMOS process to operate with a 1.8V supply voltage. This section provides 

simulated results using the BSIM3 MOSFET models. 

 

DC-Sweep Analysis 

This subsection provides the simulation results of the DC-sweep analysis. Figure 3-

12 has been setup in a unity-gain configuration with a 1.8V supply voltage, and the 

input voltage VIN is swept from rail to rail. Figure 3-13 shows the simulated 

behaviour of the source-to-bulk voltage of the bulk-driven device MP7 VSB7 and the 

potential difference between the output VOUT and VIN. 

 

Figure 3-13 Simulated VOUT-VIN and VSB7 of Figure 3-12 in unity-gain configuration 
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As can be noticed from Figure 3-13, VSB7 does not become strongly forward biased 

which indicates that latch up does not occur, and VOUT – VIN remains small which 

confirms that the proposed buffer is operational in rail-to-rail. 

 

Figure 3-14 is the simulated plot of the input DC current IIN of the same setup. It 

indicates that only ±30pA of DC current flows from rail to rail, suggesting that the 

input resistance would be as large as 30GΩ. This superior result is expected since the 

diodes are connected in reverse-bias to the body-diode of the MOSFET. 

 

 

Figure 3-14 Simulated IIN of Figure 3-12 in unity-gain configuration 

 

Transient Analysis 

This subsection provides the simulation results of the transient analysis. Figure 3-12 

has been setup in a unity-gain configuration with a 1.8V supply voltage and a 

capacitive load of 5pF, and a step input from 0.2V to 1.6V and vise versa is applied. 

Figure 3-15 is the simulated plot of the input voltage vIN, the output slew rate vOUT, 

and the transient behavior of the source-to-bulk voltage of the bulk-driven device 

MP7, vSB7. The key observation of Figure 3-15 is the vSB7 behavior when a large step-

down input is applied. Appreciating to the protection capability of the diodes from D5 
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to D7, vSB7 does not even instantaneously become forward biased by more than 0.3V 

and therefore the latch up problem has been prevented. 
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Figure 3-15 Simulated vSB7 and slew rate of vout of Figure 3-12 in unity-gain configuration with 

CL=5pF (vIN stepping between 0.2V and 1.6V) 

 

Figure 3-16 is the simulated transient analysis plot of the input and output 

instantaneous current, iIN and iOUT, indicating that iIN never achieves more than 1µA 

and iOUT current reaches over 20µA. This suggests that the iIN would always be in the 

nano-ampere range for an AC input slower than the Gain-Bandwidth (GBW), which 

proves the effectiveness of the Figure 3-12. This low iIN has been achieved because 

the well-to-substrate capacitance is indirectly seen by the input and also the effective 

input capacitance has been lowered by the attenuation factor α. 
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Figure 3-16 Simulated iIN and iOUT of Figure 4 in unity-gain configuration with CL=5pF (vIN 

stepping between 0.2V and 1.6V) 

 



 

 48

Observation 

To further observe our proposal of Figure 3-12, we designed another CMOS buffer as 

shown in Figure 3-17 for comparison purposes. This circuit block is the gate-driven 

type of Figure 3-12, and all transistors are sized identically. Table 3-2 shows the 

summary of the overall performance of the two circuit blocks. 

 

 

Figure 3-17 Gate-driven Flipped Voltage Differential Pair 

 

Table 3-2 Simulated Results of the Overall Performance 

 

Parameter 
Simulated results 

Figure 3-17 Figure 3-12 

Open-loop gain AOL 60dB 50dB 

Gain bandwidth (GBW) at CL=5pF 9MHz 3MHz 

Total static current consumption ICC 7µA 9µA 

Slew Rate (SR) at CL=5pF SR+=5.2V/µs 

SR-=7V/µs 

SR+=5.2V/µs 

SR-=2.3V/µs 

Input referred noise 

 

VIN=VDD      1/f @1kHz 

 

Wideband 

 

 

MP1& MP2 

in cut off 

70µV/√Hz 

 

 

11µV/√Hz 

 

600nV/√Hz 

VIN=0.9V      1/f @1kHz 

Wideband 

9µV/√Hz 

600nV/√Hz 

15µV/√Hz 

600nV/√Hz 

VIN=VSS        1/f @1kHz 

Wideband 

1.5µV/√Hz 

100nV/√Hz 

22µV/√Hz 

600nV/√Hz 

Total Harmonic Distortion 

(ACL=1, 1.4Vpp sinewave) 

CL=5pF @100kHz 

CL=10pF @100kHz 

CL=5pF @200kHz 

CL=5pF @300kHz 

 

1.4Vpp 

Operation not 

achievable 

 

 

-40dB 

-33dB 

-33dB 

-27dB 

Unless stated, the set up condition is: 

VDD=1.8V, VSS=0V, VIN=0.9V, CL=5pF 

 



 

 49

As expected, the open-loop gain AOL and the GBW of the bulk-driven one is smaller 

and slower in comparison to the gate-driven one due to reduced transconductance of 

the input device, however AOL=50dB GBW (at CL=5pF) = 3MHz is relatively 

efficient for the total static current consumption of only 9µA. It is important to realize 

that the input referred noise of Figure 3-12 is moderately independent to the input 

condition since no transistors change the operation region. This property suggests that 

the single-pair approach is worthy of further improving than the double-pair approach 

which changes the operation region. 

 

On the other hand, there is a significant drawback with the proposal that the AOL is not 

constant to VICM, where the dominant root cause is that α in Equation (3-2) varies 

significantly with the reverse voltage of the diode.  

 

3.2.5 Section Conclusion 

 

In this section a new low power consumption high-speed op-amp has been proposed. 

The new circuit block consists of a FVFDP and a QFG type of class-AB second stage, 

which delivers high-speed at 3MHz GBW operation for a 5pF load whilst 

maintaining the static current consumption as small as 9µA. This paper also 

addresses the latch up problem by having reverse-bias connected diodes to the body 

diode of the bulk-driven MOSFET, so that only the diode’s leakage current flows 

and forward biasing of the diodes can be prevented. 

 



 

 50

3.3 Chapter Conclusion 

 

In this chapter two types of new BDDP, called BDDRB and BDFVDP, have been 

proposed. The BDDRB input stage uses the RBS so that the effective 

transconductance becomes almost constant over the entire ICMR and hence solves 

the non-linearity and latch up issues. On the other hand, with the BDFVDP low-

power high-speed operation can be achieved with the use of FVFDP and QFG 

techniques, and also solves the issue of degraded input impedance characteristics by 

utilising the reverse-bias connected diodes. For both BDDRB and BDFVDP, the 

hardware implementation is simple. 

 

From this work, it is evident that circuit designers can contribute to solving many of 

the device physics limitations of a bulk-driven MOSFET described in Chapter 2. At 

least, the non-linearity and latch up issues can be solved by controlling the DC 

voltage across the bulk and the source of the MOSFET, and the degraded input 

capacitance concern can become less affected by indirectly applying the signal to the 

bulk (e.g. with a diode). With the use of novel circuit design techniques that were 

previously proposed by other authors, for instance FVFDP and QFG techniques, low-

power high-speed performances can be achieved too. 
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Chapter 4  Bulk-Driven Source Followers 

 
 

 

Source followers are one of the fundamental circuit blocks that are introduced by 

many literatures of analogue IC design [RAZ01], [SAN06], [SED11], [BAK08], 

[GRA01], [ALL02], [JOH97]. In most cases they are discussed in the section of 

single stage amplifier design, and sometimes they are referred with different names, 

such as common drain amplifiers, voltage buffers, or voltage followers. These circuit 

blocks are particularly applied for DC level shifting purposes, for instance, at the 

input stage of operational amplifiers to achieve rail-to-rail operation [CAR03], 

[SHE09], [HAG08], and in current mirrors to reduce the voltage headroom 

consumption of the input device [RAM94]. Other types of applications include 

sensing the common-mode signal of fully differential amplifiers [BAN88], and 

cutting off the unwanted feed-forward path of the compensation circuits in multi-

stage amplifiers [TSI76]. There is even a recent study which provides the high-

frequency harmonic distortion analysis of source followers using a large-signal 

model, in order to derive an optimisation design technique for wide-bandwidth low-

distortion operation [FAN05]. As its applications are very wide, there are many 

journals and conference papers published today relating to this field. 

 

This chapter reports the achievement of the author’s research work relating to source 

followers. In many conventional design techniques, cascaded complementary source 

followers (i.e. shift-up and -down level shifters being cascaded) are often utilised in 

order to eliminate the DC level shift [FAN05]. This chapter demonstrates that the 

bulk-driven approach leads to constructing the source followers with much simpler 
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hardware, and allows the DC level shift not only to be eliminated but even 

programmable. 

 

From the next section, new circuit blocks which the author has given the names as 

bulk-driven flipped voltage follower, bulk-driven super source follower, and bulk-

driven DC level shifter are proposed and thoroughly discussed. 

 

4.1 Bulk-Driven Flipped Voltage Follower 

 

4.1.1 Introduction 

 

Source followers are often used as voltage buffers, which play an essential role in 

driving large capacitive loads at high speeds. The ideal performance of a voltage 

buffer is not only to drive the large load as fast as possible but also with minimal 

power consumption, which means that the buffer needs to have high slew rate and 

low static power consumption. Furthermore the input capacitance of the buffer would 

also need to be as small as possible so that the weak signal input is not affected under 

any circumstances. Today, it is evident that the Flipped Voltage Follower (FVF) 

proposed by Carvajal et al in [CAR05] is one of the closest to the ideal voltage 

buffer, as many recent proposals are utilizations and/or modifications of the FVF 

[PAD06], [PAD07], [MAN08], [RAM06]. 

 

Recently, the new version of the class-AB FVF that is free from the DC level-shift 

has been proposed by Ramirez-Angulo et al [RAM06]. This section proposes a much 

simpler technique which can eliminate the DC level shift and convert into class AB 
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operation, whilst preserving the advantages of the FVF approach – low-power 

consumption with high-power drive. 

 

4.1.2 Previous Essential Works 

 

This section covers a brief review of voltage followers and the bulk-driven 

MOSFETs used in a differential pair, which have been utilized to form the essential 

part of the proposal. 

 

Voltage Followers 

Figure 4-1 illustrates two types of voltage followers. Figure 4-1(a) is the 

conventional type of a voltage follower. The input device MP01 is biased with the 

drain current of IREF, therefore the gate-to-source voltage VGS MP01 becomes constant 

if the body-effect is neglected, and therefore the output voltage VOUT is equal to VIN + 

VGS MP01. Figure 4-1(b) illustrates the FVF, in which VOUT is also shifted up by VGS 

MP01 from VIN, however, in contrast to Figure 4-1(a), the beauty of the FVF is that it 

has current sourcing and sinking capabilities at the output, which can lead to 

delivering both high-power driving as well as low-power consumption 

simultaneously. 

 

Figure 4-1 Voltage followers (a) common-drain amplifier (voltage follower) and (b) FVF 

proposed in [CAR05] 
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Bulk-driven MOSFETs used in differential pairs 

In low-voltage rail-to-rail operational amplifier designs, there exists a design 

technique called the bulk-driven approach. The traditional design technique for rail-

to-rail operational amplifiers is the deployment of complementary differential pairs 

with the tail current being controlled with current switches to keep the 

transconductance gm constant [HOG92]. However, due to the fact that the mobility 

ratio of the complementary pairs (µn/µp) is process and temperature dependent, 

causing the gm variation to deviate by approximately 12% [CAR03], there exist 

circuit topologies which use only a single type of the differential pair, where one of 

them is the bulk-driven one. Figure 4-2(a) illustrates a bulk-driven differential pair 

that uses p-type devices only. 

 

Figure 4-2 Bulk-driven differential pair (a) pMOS input pair and (b) the replica-biased scheme 

proposed in [BLA00] 

 

The primary problem of Figure 4-2(a), however, is that the transconductance of a 

bulk-driven MOSFET gmb is dependent on the bulk-to-source voltage VBS. The level-

1 model of the gmb is given by: 

       gmb = γ (2βIDS )
0.5

 / 2 (2|ΦF| - VBS)
0.5

   (4-1) 

where γ is the bulk-threshold parameter, β is the small-signal transconductance 

parameter, IDS is the drain current, and 2|ΦF| is the surface potential. 

 



 

 55

To overcome the concern of gmb dependency over the VBS, Blalock et al [BLA00] 

proposed the Replica-Biased Scheme (RBS) as illustrated in Figure 4-2(b). The 

pMOS device identified as MP03 is the replica device biasing the gates of the pair. 

Since the bulk of MP03 is shorted with its source, the VBS of the pair is kept at zero. 

 

The author has noted the advantage from Blalock’s approach namely that the 

condition of VBS = 0 is kept constant, meaning VB = VS, and chose to apply this to the 

FVF illustrated in Figure 4-1(b) to remove the DC level shift. 

 

4.1.3 Proposal 

 

Figure 4-3 illustrates the proposal of the modified FVF, which the author has named 

as “Bulk-Driven Flipped Voltage Follower (BDFVF)”. As mentioned previously this 

is the FVF for which the input device has been modified to a bulk-driven MOSFET 

biased by the replica circuit to eliminate DC level shift. 

 

 

Figure 4-3 Bulk-driven flipped voltage follower (class-A) 

 

The operation principle of the BDFVF of Figure 4-3 is very simple to follow. MP1, 

MP3, and MN4 form the FVF. MP1 is the input device, which its bulk is utilized to 

feed the input. MP2 and MN5 are the replica devices for MP1 and MN4 respectively. 
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Note that the bulk of MP2 is physically shorted to its source, which is the output 

node. Since the gate of MP1 is biased with the diode-connected MP2, as well as the 

drain current of MP1 and MP2 are equally set to IREF, VB and VS of MP1 becomes 

virtually shorted (i.e. VBSMP1 = 0), and in effect the output voltage VOUT becomes 

equal to VIN. 

 

The proposal of Figure 4-3 works well, however since it is class-A type, there is a 

limitation in its sink capability to 2IREF, which leads to poor pull capability in 

driving large loads at high speed. To overcome this problem, the circuit of Figure 4-3 

can be modified to class-AB type as shown in Figure 4-4. 

 

 

Figure 4-4 Proposed class-AB bulk-driven flipped voltage follower 

 

The difference of Figure 4-4 from Figure 4-3 is that only MN4 has been modified to 

diode-connected instead of the constant bias to IREF. In this way, MP1 and MP2 can 

also have the same drain current and hence the replica-biased scheme remains valid. 

This simple change has led to significant improvement in the sink capability of the 

output without the need of widening MN4 or MN5 or increasing IREF. In the next 

section, simulation results are provided. 
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4.1.4 Simulated Results 

 

A. Overall Performance 

Using the BSIM3 MOSFET models of a 0.35µm CMOS process, the BDFVF of 

Figure 4-4 is verified by simulation. Table 4-1 shows the simulation results 

summarising the overall performance. 

 

Table 4-1 Simulation Results of the Overall Performance of the Class AB DBFVF Circuit of 

Figure 4-4 

 

Parameter Simulated results 

3dB frequency 2.8MHz 

Total current consumption (when IL=0) 2.5µA 

Slew rate (VDD=2V, VSS=0V, CL=10pF, 

VIN=1V↔2V) 

1.9V/µs 

PSRR+ / PSRR- 41.7dB / 42.0dB 

(dc to 100kHz) 

1/f noise at 1kHz 880nV/√Hz 

THD (Vpp=0.8V VDD=1.5V, VSS=0V, 

CL=10pF) 

0.0747% when f=1kHz 

0.0794% when f=100kHz 

0.501% when f=500kHz 

Input voltage range (VDD=2V, VSS=0V) 1V to 2V for offset ≤ 10mV 

Load regulation ±15µA for offset ≤ 10mV 

Input current 1.5pA 

Input capacitance 9.3fF 

Unless stated, the set up condition is: 

VDD=1.2V, VSS=0V, VIN=1V, CL=10pF, IL=0µA 

 

Figure 4-5 illustrates the simulated plot of VOUT versus VIN with the setup of VDD = 

2V and VSS = 0V. The simulation results indicate that the offset between VOUT and 

VIN was 10mV for the input range from 1V to 2V. 

 



 

 58

 

Figure 4-5 VOUT vs VIN (VDD=2V, VSS=0V) 

 

Figure 4-6 illustrates the simulated plot of VOUT with a sinusoidal VIN input with 0.8V 

peak-to-peak magnitude and 500kHz frequency, and with the setup of VDD = 2V, 

VSS = 0V, and CL = 10pF. The simulation results indicate that the Total Harmonic 

Distortion (THD) was 0.5%. 

 

Figure 4-6 VOUT and VIN with 0.8Vpp 500kHz sinusoidal input (VDD=2V, VSS=0V, CL=10pF) 

 

Figure 4-7 illustrates the simulated plot of VOUT regulation capability against the load 

current IL. With the setup of VDD = 1.5V, VSS = 0V, and VIN =1V, the simulation 

results indicate that VOUT kept on regulated within 10mV until the load current 

reaches to ±15µA. 
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Figure 4-7 Load regulation (VDD=2V, VSS=0V, VIN=1V) 

 

B. Input impedance 

Using bulk-driven MOSFETs in a differential pair of the operational amplifier is 

known to be a disadvantage in input current and capacitance [BLA98]. This sub-

section describes that the theoretical overview as well as the simulated results to state 

that this disadvantage is not the case with the BDFVF. 

 

Input current 

With a bulk-driven MOSFET as an input device, the input signal is fed into the pn-

junction of the MOSFET. The current through the pn-junction IDpn is modelled by 

Equation 4-2: 

IDpn = IS exp(VD/Vt)         (4-2) 

where Is is the pn-junction current, which is also known as the scale current, when 

the voltage across the pn-junction VD is zero. Vt is the thermal voltage, which is 

modelled as 

Vt = kT/q     (4-3) 

where k is the Boltzmann constant (=1.38 x 10
-23

JK
-1

), T is the temperature in Kelvin, 

and q is the charge of an electron (=1.602 x 10
-19

C). At room temperature, Vt is 

approximately 26mV. 
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Is can be described as in Equation (4-4): 

)(
2

An

n

DP

P
iSS

NL

D

NL

D
qnAi +=     (4-4) 

where AS is the active area of the source of the MOSFET, NA and ND are the doping 

concentrations of the acceptors and donors respectively, Ln and Lp are the diffusion 

length of holes and electrons respectively, Dp and Dn are the diffusion constant of 

holes and electron respectively, and ni is the number of free electrons and holes in a 

unit volume of intrinsic temperature at a given temperature (≈1.5 x 10
10

 carriers/cm
3
 

at room temperature). 

 

In the case of a bulk-driven differential pair, the input current is expected to be large 

because of the bulk being forward-biased. On the other hand for BDFVF, a large 

input current is not expected since the aim is to achieve a virtual short between the 

input and output. The simulated results of the offset behaviour and the input current 

are shown in Figure 4-8 and 4-9 respectively. 

 

Figure 4-8 Offset voltage 
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Figure 4-9 Input current (VDD=2V, VSS=0V) 

 

The simulated result of Figure 4-9 shows that the input current remains at less than 

1.5pA. 

 

Input capacitance 

The depletion capacitance of the pn-junction Cj can be modelled by Equation 4-5: 

PS

V

V

CJSW
AS

V

V

CJ
C

pnwellpnwell MJSWSB

pnwell

MJSB

pnwell

depletionsb
+−+− −

+
−

= +−+−
−

)1()1(
00

       (4-5) 

where CJnwell-psub is the zero-bias (i.e. Vnwell-psub=0) body-junction capacitance per unit 

area over the n-well and p-substrate region,  CJSWnwell-psub is the zero-bias body-

junction capacitance per unit length along the sidewall of the n-well and p-substrate 

region, MJ nwell-psub and MJSW nwell-psub are the grading coefficient for area and 

sidewall components respectively, V0 is the body-junction built-in potential, and 

Anwell and Pnwell are the area and the perimeters of the n-well respectively. In the case 

of a bulk-driven differential pair, the input capacitance is expected to be large 

because of the bulk being forward-biased. On the other side for BDFVF, a large 

input capacitance is not expected since the aim is to achieve a virtual short between 

the input and output and hence only the depletion capacitance is introduced (i.e. the 
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diffusion capacitance can be avoided). To affirm this theoretical consideration further, 

the simulation condition as shown in Figure 4-10 was used. 

 

Figure 4-10 Simulation setup for the input capacitance 

 

The simulated plot of the setup in Figure 4-10 is given in Figure 4-11. 

 

Figure 4-11 Simulation results for the Figure 10 setup 

 

From Figure 4-11, the time constant τ was found to be 0.93ns. Hence, the input 

capacitance was determined as 9.3fF (τ=RC). 

 

4.1.5 Section Conclusion 

 

A new type of FVF called BDFVF has been presented. This proposal utilizes a bulk-

driven MOSFET with the replica-biased scheme as the input device to eliminate the 

DC level shift. The theoretical overview of the input current and capacitance has 

been provided, and the simulation results showed that the input current and 

capacitance are in the pico-amp and femto-Farad ranges. The attractive and 
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advantageous performances of the FVF, such as high-power driving and low-power 

consumption were retained. The BDFVF is a powerful block of the FVF family 

which is free of level shift. 

 

4.2 Bulk-Driven Super Source Follower 

 

4.2.1 Introduction 

 

The BDFVF proposed in the previous section leads to achieving small input 

capacitance so that the weak signal input can remain unaffected, and also a high 

slew-rate performance so that the output signal can remain driven with large 

capacitive loads, while the static power consumption can remain low. In overall, the 

BDFVF is a strong candidate in buffer applications. 

 

Based on this work the author has undertaken further studies and discovered that the 

same circuit design technique can be applied to Super Source Followers (SSF) as 

well. This section proposes a circuit modification technique of a SSF, and its 

application example that can achieve not only power-efficient (low-power high-

speed) performance with a low input capacitance but also an additional feature of 

rail-to-rail operation. 

 

4.2.2 Previous Essential Works 

 

This subsection briefly describes the previous works [GRA01] [LOP09] [RAM04] 

[HAG09A] using Figure 4-12, which the author has utilised to form the core part of 

our proposed CMOS buffer – a class-AB bulk-driven super source follower (BDSSF). 
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Figure 4-12 (a) class-A source follower, (b) class-A SSF, and (c) class-AB SSF proposed by 
Lopez-Martin et al [LOP09] 

 

Figure 4-12(a) illustrates a conventional pMOS source follower, widely used as a 

level-shifted voltage buffer. If the body-effect is neglected, then the output voltage 

VOUT follows the input voltage VIN with an upward DC shift, i.e. VOUT = VIN + VSGMP01, 

where VSGMP01 is the source-to-gate voltage of the transistor MP01. In case of an 

nMOS source follower, VOUT is instead shifted down from VIN. This conventional 

source follower is widely used, however the drawback is that it is sensitive to 

resistive loads. Since the drain current of MP01 is affected by the output current, the 

DC-level VSGMP01 cannot be kept constant. To overcome this concern, there exists a 

buffer which is often referred to as a Super Source Follower (SSF) [GRA01], as 

shown in Figure 4-12(b). The topology of Figure 4-12(b) is the same as Figure 4-

12(a), but since the drain current through MP01 is biased with a constant current IREF 

and is independent of the output current, VSGMP01 is also held constant against the 

output current. Today, many published proposals using this SSF can be found. 

 

Recently, A.J. Lopez-Martin et al emphasized in their work in [LOP09] that despite 

the output becoming much insensitive to resistive loads with the SSF, the Slew-Rate 

(SR) remains in class-A operation. In the case of a pMOS SSF as shown in Figure 4-

12(b), the positive SR is limited to IREF/CL, where CL is the load capacitance. Hence 
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increasing IREF leads to one possible approach for the SR improvement, but at a cost 

of larger static power consumption. To avoid this trade-off, A.J. Lopez-Martin et al 

proposed a class-AB SSF in [LOP09] by using a quasi-floating gate (QFG) technique 

presented in [RAM04]. Their proposed circuit diagram is depicted in Figure 4-12(c). 

 

In Figure 4-12(c), the gate of MP04 is weakly connected to the gate of MP03 with a 

large resistor RLARGE, and also to the gate of MN02 with a capacitor CBAT. In terms 

of DC characteristics, there exists no current flow across RLARGE and therefore the 

gate voltage of MP03 and MP04 are the same. Thus the static power dissipation 

between Figure 4-12(b) and Figure 4-12(c) remains the same. In terms of AC 

characteristics, a high pass filter is formed with a cutoff frequency of 

1/(2πRLARGECBAT), when observed from the gate of MN02 to the gate of MP04. Thus 

the ac element of the signal at the gate of MN02 can propagate to the gate of MP04, 

which in turn achieves class-AB operation without introducing any extra static 

current consumption.  Furthermore, it is remarkable to realize in [LOP09] and 

[RAM04] that a unity-size diode-connected MOSFET but in the cutoff region can 

form a substantially large resistance of RLARGE, which leads to achieving a low cutoff 

frequency 1/(2πRLARGECBAT) with a moderately small capacitance of CBAT. In 

[LOP09], A.J. Lopez-Martin et al discuss the CBAT value in terms of attenuation 

factor α (≈1/(1+CGS4/CBAT)). A CBAT greater than 5 times CGS4 leads α > 0.83, which 

is enough to propagate almost all frequencies except the DC component of the signal. 

 

4.2.3 Class-AB Bulk-Driven Super Source Follower 

 

Figure 4-13(a) illustrates the bulk-driven version of the SSF, which is the same type 

of circuit-design technique that was proposed in Section 4.1. As can be observed, the 
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input is connected to the bulk terminal of MP01 instead of its gate. MP02 is the 

replica of the input device MP01, i.e. MP02 and MP01 having equal transistor sizing 

and are biased with the identical drain current and the gate voltage. Since the bulk-

terminal of MP02 is directly shorted to its source-terminal, MP01 tends to replicate 

the conditions of MP02 and hence the source-terminal follows the input voltage with 

no DC voltage in between, thus VOUT = VIN. Remarkably, the input capacitance CIN of 

this type of buffer can be small because of the small junction capacitance of MP01. 

The expression of the junction capacitance of a MOSFET Cj can be simplified from 

Equation (4-5), which is given by 

Cj = Cj0 / (1+ (VSB / V0)
0.5

)    (4-6) 

where Cj0 is the zero-bias (VSB=0) junction capacitance, VSB is the bulk-to-source 

voltage, and V0 is the bulk junction potential. Since VSB of MP01 in Figure 4-13(a) is 

designed to be zero, the junction capacitance of MP01 is constant at Cj0. The 

simulated value of CIN is discussed in the next subsection. 

 

 

Figure 4-13 BDSSF (a) class-A operation, and (b) converting into class-AB operation using the 
QFG technique proposed by Ramìrez-Angulo et al [LOP09] [RAM04] 

 

Figure 4-13(b) shows a class-AB BDSSF, where the class-AB operation has been 

implemented to Figure 4-13(a) with the same technique proposed by A.J. Lopez-

Martin et al in [LOP09]. However, the author has chosen a modified approach for 

implementing the CBAT. Ramìrez-Angulo et al stated the significance of the QFG 
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technique in [RAM04] that the actual value of CBAT does not need to be highly 

accurate, as long as even a low frequency signal can be coupled.  Owing to and 

appreciating this fact, the author attempted to eliminate the need for a poly-poly 

capacitor, and chose to form the CBAT with a MOSFET as shown in Figure 4-13(b). 

 

Application Example - Rail-to-Rail Class-AB CMOS Buffer 

As an application example of the BDSSF, this block has been utilised in order to 

propose a rail-to-rail power-efficient CMOS voltage buffer. Figure 4-14 illustrates 

the circuit diagram of the proposal. 

 

 

Figure 4-14 Class-AB rail-to-rail CMOS analogue buffer using a complementary pair of BDSSF 

 

The operation principle of Figure 4-14 is as follow. From MN01 to MN08 and from 

MP09 to MP16 form a nMOS-type and pMOS-type of the BDSSF, respectively, and 

from MP17 to MP24 forms a current switch. The Vswitch at the gate of MP17 

determines the switching point between the two types of follower. When VIN (and 

thus VOUT) is close to VSS the pMOS follower is active while the nMOS follower is 

off, and when VIN moves towards VDD, VOUT and the drain voltage of MN02 also 

increase and eventually MP17 turns on to reduce the drain current of MN01, MN02 

and MN05 (i.e. to shut off the nMOS follower) and instead to increase the drain 
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current of MP09, MP10 and MP13 (i.e. to activate the pMOS follower) to continue 

the buffer operation. 

 

4.2.4 Simulated Results 

 

Using a 0.35µm CMOS process, the circuit of Figure 4-14 has been designed to 

operate at 1.8V supply voltage and simulated with the BSIM3 MOSFET models. 

Table 4-2 shows the simulation results summarizing the overall performance. 

 

Table 4-2 Simulated results of the overall performance of Figure 4-14 

 

Parameter Simulated Results 

-3dB frequency 6MHz 

Static current dissipation 5µA to 8µA for VIN sweeping 

between VDD and VSS 

Slew rate SR+ = 9.3V/µs, SR- = 13.7Vµs 

Input capacitance 17fF 

THD -52dB (1.6Vpp@100kHz, CL=10pF) 

-50dB (1.6Vpp@100kHz, CL=22pF) 

-47dB (1.6Vpp@100kHz, CL=47pF) 

-46dB (1.6Vpp@100kHz, CL=68pF) 

Simulated condition:  VDD=1.8V, VSS=0V, VSW=0.9V, CL= 10pF 

 

 

From Table 4-2 it is apparent that the proposed buffer of Figure 4-14 meets the 

demands which were discussed in Section 4.2.1. The input capacitance is as small as 

17fF, the SR is very high such that the buffer can deliver a 1.6Vpp 100kHz signal 

with a total harmonic distortion as low as -46dB when the capacitive load is as large 

as 68pF, whilst the static current consumption remains under 8µA. Figure 4-15 is the 

simulated results of DC-sweeping the VIN, which indicates that the offset remains 

small throughout the rail-to-rail operation. 
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Figure 4-15 Simulated results of the DC offset voltage versus VIN  (VDD=1.8V, VSS=0V, 

Vswitch=0.9V) 

 

Figure 4-16 indicates the simulated results of the static current dissipation with DC 

sweeping the VIN between VDD and VSS. 

 

Figure 4-16 Simulated results of the static current dissipation (VDD=1.8V, VSS=0V, 

Vswitch=0.9V) 

 

Figure 4-17 illustrates the simulated results of the VOUT and the IOUT with VIN having 

1.6V peak-to-peak 100kHz sine wave signal and a capacitive load CL of 68pF. 
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Figure 4-17 VOUT vs VIN and IOUT  with VIN = 1.6Vpp 100kHz sinewave and  CL =68pF 

(VDD=1.8V, VSS=0V, Vswitch=0.9V) 

 

Figure 4-16 and Figure 4-17 show clearly that the goal of excellent power efficiency 

is achieved – during the static mode the current dissipation of the proposed buffer 

remains under 8µA, whereas IOUT can be pushed and pulled to approximately ±40µA 

during the dynamic VIN so that the Total Harmonic Distortion (THD) of VOUT can be 

as small as -46dB even the CL is as large as 68pF. 

 

To verify the input capacitance of the proposed buffer shown in Figure 4-14, the 

simulation condition as shown in Figure 4-18 has been set up. 

 

Figure 4-18 Simulation setup for the input capacitance of Figure 4-13 
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The simulated plot of the setup in Figure 4-18 is given in Figure 4-19. 

 

Figure 4-19 Simulation results for the Figure 4-18 setup 

 

From Figure 4-19, the time constant τ was found to be 1.7ns. Hence, the input 

capacitance was determined as 17fF (τ=RC). 

 

4.2.5 Section Conclusion 

 

A new circuit block called BDSSF and a new type of CMOS buffer using the 

complementary pair of BDSSF have been presented. Utilizing the bulk-driven 

MOSFETs with the replica-biased scheme and the QFG techniques into the buffer 

enabled us to have a few femto-Farad range of the input capacitance so that the weak 

input signals are minimally affected, whilst delivering the signal without much 

distortion even if the capacitive load is very large. The static current consumption 

can remain small too. The proposed buffer can become a serious contender for 

portable electronics needing to deliver weak analogue signals into large capacitive 

loads with as little distortion as possible. 
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4.3 Bulk-Driven DC Level Shifter 

 

4.3.1 Introduction 

 

The BDFVF and the BDSSF proposed in Section 4.1 and 4.2, respectively, lead to 

achieving small input capacitance so that the weak signal input can remain 

unaffected, and also a high slew-rate performance so that the output signal can 

remain driven with large capacitive loads, while the static power consumption can 

remain low. In overall, both BDFVF and BDSSF are strong candidates in buffer 

applications. 

 

Based on these works the author has undertaken further studies and discovered that 

BDFVF and BDSSF can lead to not only eliminating the DC level shift, but in fact 

the amount of the constant DC level can be easily programmed. The detail 

description of this new finding is given in the next subsection. 

 

As to move on further, current mirrors, which are widely used for biasing and as 

active loads in analogue amplifiers, have been considered. Suppose that the current 

mirrors need to be operational in a low-voltage system. Under the limited supply 

voltage available, the designers must firstly confront the large voltage headroom 

consumed at the input device. One popular approach that can overcome this problem 

is by utilising a DC level shifter in-between the drain and the gate of the input device 

[RAM94], [RAJ02]. Figure 4-20 shows a couple of examples of CMOS circuit 

diagrams to describe this approach. 
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Figure 4-20(a) Simple current mirror with IIN=1µA, (b) with a DC level shifter, and (c) the VDS2 

DC-sweep simulated results 

 

Figure 4-20(a) and (b) depict a simple nMOS current mirror and utilisation of a DC 

level shifter, respectively, and Figure 4-20(c) shows the simulated results of the two 

blocks using the BSIM3 MOSFET models of a 0.35µm CMOS process. From Figure 

4-20(c), it is clear that a significant offset in the DC current is observed for Figure 4-

20(b). This is because the circuit block formed by MP3 and IB generates a DC level 

shift upward by more than the threshold voltage of MP3 and causes MN1 to leave the 

saturated region and enter into the linear region. To avoid this undesirable side effect, 

a DC level shifter that can be programmed to operate at a level less than the 

threshold voltage of a MOSFET is rather in favour of the novel technique, which to 

the best knowledge of the author has not been reported in any open literature of 

today’s circuit design techniques. 

 

This section provides the detail investigation report of utilising the BDSSF that can 

overcome the concern mentioned above. 
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4.3.2 Proposal 

 

The design objective in this section, which is to have a constant DC level shift less 

than the threshold voltage of a MOSFET, is simple to achieve by utilising the 

BDSSF of Figure 4-13(a) and (b). The source to bulk terminal of MP01, VSB1, 

becomes reverse-biased by having a wider transistor width for MP01 and/or reducing 

its drain current IDS1. The operation principle can be understood using the 

conventional square law model of a MOSFET. Whether the transistor size or the 

drain current of MP01 changes, this device maintains as the replica of MP02 and thus 

it operates in the saturated region. Let’s suppose that MP01 is sized to have a 

relatively long length to minimize the effect of the channel length modulation, so that 

its drain current IDS1 can be approximated by: 

IDS1 = (µpCOX/2) (W1/L1) (VSG1-VT1)
2
           (4-7) 

where µp is the surface mobility of the pMOS transistor, COX is the capacitance of the 

gate oxide, W1, L1, VSG1, VT1 are the width, the length, the source-to-gate voltage, 

and the threshold voltage of MP01, respectively. If for instance W1 is increased 

and/or IDS1 is decreased, then the overdrive voltage VSG1-VT1 needs to be decreased to 

satisfy the above equation. However, since VSG1, which is identical to the source-to-

gate voltage of MP02, remains unchanged, VT1 needs to be increased. VT1 can be 

expressed by: 

VT1 = VT0 + γ {(2|ΦF|+VSB1)
0.5

 - (2|ΦF|)
0.5

}     (4-8) 

where VT0 is the zero-bias threshold voltage, γ is the body effect parameter, 2|ΦF| is 

the Fermi potential, and VSB1 is the source-to-bulk voltage of MP01. As can be 

realized from this equation, to increase VT1, VSB1 needs to be increased. Thus in 

summary, increasing W1 and/or decreasing IDS1 makes MP01 propagate a constant 

shift down voltage from the input to the output. Figure 4-21 shows the simulated 
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parametric sweep analysis of the width of MP01 and the length of MN05, denoted by 

W1 and L5, respectively. 

Parametric sweep analysis of W1 

Parametric sweep analysis of L5 

 

Figure 4-21 Parametric sweep simulation of Figure 4-13(a) and (b) 

 

It is worth noting from Figure 4-21 that it is in theory feasible to level shift the input 

voltage upward as well as downward using the BDSSF of Figure 4-13(a) and (b), 

however from the view point of the effective input capacitance the authors 

recommend keeping the bulk-driven device MP01 in reverse biased operation. The 

description of the reverse biased junction capacitance, which is also known as the 

depletion capacitance Cj, is given by the following model: 

Cj = Cj0 / (1 + (VSB/V0)) 
0.5

    (4-9) 

where Cj0 is the zero-bias (VSB=0) junction capacitance, VSB is the bulk-to-source 

voltage, and V0 is the bulk junction potential. However, if the bulk of MP01 is in 

forward biased operation, then another capacitance model called the diffusion 

capacitance Cd would be introduced, which can be expressed by: 

Cd = τT (ID/Vt)         (4-10) 

where τT is the transit time of the junction diode, ID is the amount of current through 

the diode, and Vt is the thermal voltage (≈26mV at room temperature). Thus in the 

results for the forward biased operation of the bulk-driven device, the total input 

capacitance CT would then be expressed as: 
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CT = Cj + Cd       (4-11) 

Therefore, in order to avoid introducing the diffusion capacitance at the input, the 

author recommends using the proposed level shifter by configuring the bulk-driven 

device in reverse bias operation, i.e. using Figure 4-13(b) to shift down the voltage. 

For shifting up operation, the author recommends the use of an nMOS bulk-driven 

transistor for the input device. 

 

4.3.3 Simulated Results 

 

Table 4-3 shows the simulated results of Figure 4-13(b) using the BSIM3 MOSFET 

models of a 0.35µm CMOS process. To see how different level shift settings and 

design approaches affect the overall performances, several BDSSF blocks of Figure 

4-13(b) have been designed for comparison. The overall performance of the BDSSF 

blocks with 0-volt DC shift, 0.3-volt DC shift down achieved by increasing W1, 0.3-

volt DC shift down achieved by decreasing IDS1, 0.6-volt DC shift down effected by 

modifying both W1 and IDS1 are summarised in Table 4-3. 
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Table 4-3 Simulated results of the overall performance of Figure 4-13(b) with different level 

shift configurations 

 

Parameter 
Vshift 

=0V 

Vshift 

=0.3V* 

Vshift 

=0.3V** 

Vshift 

=0.6V 

-3dB frequency 6.5MHz 8MHz 4.5MHz 5.5MHz 

Total current consumption 5.2µA 5.2µA 5.2µA 5.2µA 

Slew Rate+ 

Slew Rate- 

2.0V/µs 

6.2V/µs 

2.1V/µs 

5.3V/µs 

2.1V/µs 

5.0V/µs 

2.2V/µs 

5.5V/µs 

PSRR 53dB 55dB 62dB 62dB 

1/f noise at 1kHz 3.7µV/√Hz 3.7µV/√Hz 3.8µV/√Hz 4.0µV/√Hz 

THD: 

0.8Vpp 100kHz 

CL=10pF 

CL=22pF 

CL=47pF 

0.8Vpp 500kHz 

CL=10pF 

0.8Vpp 1MHz 

CL=10pF 

 

 

-67.7dB 

-62.0dB 

-55.0dB 

 

-51.6dB 

 

-35.4dB 

 

 

-66.6dB 

-62.5dB 

-56.7dB 

 

-53.4dB 

 

-38.8dB 

 

 

-67.1dB 

-64.1dB 

-59.7dB 

 

-48.1dB 

 

-31.5dB 

 

 

-63.6dB 

-61.7dB 

-58.6dB 

 

-50.1dB 

 

-34.4dB 

* W1=3W2, L5=L6      ** W1=W2, L5=3.5L6 

Unless stated, the setup condition is as follows: 

VDD=3.3V, VSS=0V, VIN=2.5V, CL=10pF 

 

The simulated results for the circuit of Figure 4-13(b) where the DC level shift is 

adjusted to 0.3V downward by modifying W1, and the input signal of 0.8Vpp at 

100kHz is applied to the circuit with a load capacitance CL of 10pF is as shown in 

Figure 4-22. 
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Figure 4-22 Simulated results of Fig. 2(b) with W1=3W2 and IDS1= IDS2, where vIN = 0.8Vpp, 

100kHz sinusoidal wave and CL with 10pF 
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As can be observed from Figure 4-22, the input current of only ±70pA is necessary 

to apply a 0.8Vpp 100kHz sinusoidal input voltage. It is worth remembering that this 

low input current would not have been possible to achieve if the bulk-driven input 

device MP01 was in the forward biased operation due to the significant increase in 

its input capacitance. 

 

Application Example  

As described in Section 4.3.1, a DC level shifter applied in a current mirror can be 

useful in reducing the voltage headroom consumption of the input device. Figure 4-

23(a) illustrates the BDSSF of Figure 4-13(b) applied in a simple pMOS current 

mirror. RC and CC have been added between the input and the output of the BDSSF 

to minimize the output overshoot against the transient input signal. Given that VT0 of 

the pMOS transistor for the 0.35µm CMOS process is approximately 0.6V, the 

BDSSF of Figure 4-13(b) has been redesigned with a DC shift down of 0.2V, 0.5V 

and 0.6V and applied it to the current mirror as shown in Figure 4-23(a) to compare 

the overall performance. Figure 4-23(b) and Table 4-4 shows the simulated plots of 

the step response and the summary of the simulation results of Figure 4-23(a), 

respectively. 

 

Figure 4-23 (a) A pMOS current mirror with level shifted BDSSF and (b) simulated plot of 1µA 

step response 
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Table 4-4 Summary of the simulation results of Figure 4-23(a) 

 

Parameter Fig. 5(a) 

without 

Fig. 2(b) 

Fig. 5(a) 

with Vshift 

= 0.2V 

Fig. 5(a) 

with Vshift 

= 0.5V 

Fig. 5(a) 

with Vshift 

= 0.6V 

Static current 

consumption of Fig. 2(b) 
--- 5.1µA 5.0µA 5.1µA 

-3dB frequency 90MHz 70MHz 100MHz 100MHz 

THD 1µApp 

1MHz 

10MHz 

 

-53.3dB 

-41.3dB 

 

-53.6dB 

-37.0dB 

 

-53.2dB 

-37.2dB 

 

-57.1dB 

-38.1dB 

Setup condition:  VDD=1.8V, VSS=0V, IIN=1µA, VD2=VDD-0.5V 

 

As can be observed from Table 4-4, until 1MHz operation none of the BDSSF adds 

distortion noticeably. However, as can be realized from Figure 4-23(b) a caution is 

necessary to determine the amount of DC level shift. A DC level shift too close to 

VT0 would cause a noticeable offset in the DC current. In the case of the simulated 

plot of Figure 4-23(b), when the level shift is almost identical to VT0 (=0.6V) a DC 

offset current of approximately 60nA and 90nA is introduced when the input current 

is 1µA and 0µA, respectively. Even though the level shift was approximately 100mV 

below VT0 (i.e. when the level shift is set to approximately -0.5V), the offset current 

of 10nA and 4nA is drawn when the input current is 1µA and 0µA, respectively. 

Therefore it is advisable not to set the DC level shift too close to VT0. 

 

4.3.4 Section Conclusion 

 

A novel design approach for a DC level shifter that can be programmed to a level 

less than the threshold voltage of a MOSFET has been presented. This technique is 
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based on utilising the power efficient BDSSF, with the bulk-driven input device 

forced to be reverse-biased to generate the constant DC voltage. SPICE simulations 

of the proposed block set up in a current mirror demonstrated that until 1MHz 

operation the proposed block does not introduce additional distortion, whilst the 

extra static current consumption spent is as little as 5µA. This proposed block has 

been shown to be an excellent solution for reducing the voltage headroom 

consumption of a current mirror but without introducing DC offset current. 

 

4.4 Chapter Conclusion 

 

In this chapter, new circuit design techniques that can convert the FVF [CAR05] and 

the SSF [GRA01] into the bulk-driven approach, which the author has given the 

names as BDFVF and BDSSF, respectively, have been presented. These two newly 

developed blocks still possess the load regulation capability so that the output 

becomes insensitive to resistive loads, but the bulk-driven approach allows 

implementing an additional feature such that the DC level shift can be eliminated and 

even programmable. The QFG technique [RAM04], that can convert the output slew 

rate from class-A to class-AB operation [LOP09], has also been investigated with the 

BDSSF and demonstrated that low-power high-speed performances can be achieved. 

Furthermore, it was verified that the degraded input impedance, which comes along 

with the bulk-driven approach, was not the case with BDFVF or BDSSF. 

 

To further extend, two application examples of the BDSSF have been also 

demonstrated. One example was a design of a CMOS buffer using the 

complementary pair of BDSSF, which leads to achieving low-power (static current 

consumption of less than 8µA) high-drive (THD as low as -46dB with a 1.6Vpp 
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100kHz sine wave signal and a 68pF load) performances. The other application 

example was an implementation of the level-shifted BDSSF in a current mirror. 

Since the DC level shift of the BDSSF can be programmed at a level less than the 

threshold voltage of a MOSFET, the voltage headroom consumption of the input 

device of the current mirror can be reduced but without having the DC offset current 

at the output. The BDSSF in a current mirror does not introduce additional distortion 

until 1MHz operation, whilst the extra static current consumption spent is as little as 

5µA. 

 

In overall the newly developed BDFVF and BDSSF are powerful building blocks of 

source followers that can contribute achieving low-power high-speed performances 

of analogue circuit design.  
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Chapter 5  Bulk-Biased Cascodes 

 
 

 

Cascode devices play essential roles in analogue systems, and many literatures 

discuss the properties in details [RAZ01], [SAN06], [SED11], [BAK08], [GRA01], 

[ALL02], [JOH97]. Adopting cascode devices in analogue amplifiers leads to 

increasing the output resistance and hence the small-signal gain as well. When a 

differential amplifier is used in a negative feedback configuration, its overall 

precision improves with the large open-loop small-signal gain of the amplifier, and 

thus implementing cascode devices helps a lot in this sense. In current mirror 

applications, cascode devices allow to supress the effect the channel-length 

modulation of the MOSFET and hence the output current becomes insensitive to the 

voltage at the output node. It is interesting to note the way Razavi describes the 

operation behaviour of cascode devices in his literature book in [RAZ01]. Quoting 

from his literature in the single-stage cascode amplifier section, in a sense the 

cascode transistor “shields” the input device from voltage variation at the output. 

Allen and Holberg book in [ALL02] provides the detail performance analysis for 

different operational amplifier (op-amp) topologies, and states that the Power Supply 

Rejection Ratio (PSRR) of the folded-cascode op-amp has been greatly improved 

over the two-stage op-amp. In Razavi’s language, this statement can be alternatively 

described that the cascode device also “shields” the output node from the power 

supply noise. 

  

This chapter presents a circuit design technique such that the output resistance of a 

cascode device can be further increased using its bulk-terminal. This technique was 
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developed by the author while tackling the problem of the low transconductance of a 

bulk-driven MOSFET gmb which results to small open-loop gain of the op-amp when 

a bulk-driven differential pair (BDDP) is applied. 

 

To demonstrate the effect of the developed circuit design approach of a cascode 

device, a complete set of a 0.8-volt rail-to-rail fully differential folded-cascode 

Operational Transconductance Amplifier (OTA) is designed using a 0.35µm twin-

well CMOS technology having a threshold voltage of 0.6-volt. Taking this design as 

an opportunity, some other previous works of the bulk-driven approach are also 

adopted in the other part of the OTA for review. In this OTA, a complementary pair 

of BDDP [TER02] is implemented at the input stage to achieve a constant effective 

transconductance gm(eff). In the Common-Mode Feedback (CMFB) design, not only 

that the BDDP is applied at the input stage but also bulk-driven cascode current 

mirrors [TER02] have been adopted to reduce the voltage headroom consumption. 

The simulated results of the overall performance of the OTA are provided. 

 

5.1 A 0.8-Volt Fully-Differential CMOS OTA Design 

 

5.1.1 Introduction 

 

As discussed in Chapter 2 a BDDP leads to achieving rail-to-rail Input Common-

Mode Range (ICMR) operation under the low-supply voltage constraint, however 

many drawbacks are associated with this approach. One of the severe concerns is that 

the transconductance of a bulk-driven MOSFET is gmb is less than the 

transconductance of a gate-driven MOSFET is gm. This advantage and the 



 

 84

disadvantage can be visually realised by performing a simulation plot for gmb and gm, 

as shown in Figure 5-1. 

 

Figure 5-1 Simulating transconductance characteristics of gate-driven and bulk-driven nMOS 

transistors using a 0.35µm CMOS technology 

 

As can be seen in Figure 5-1, the bulk-driven MOSFET is still in the active region at 

the zero-bias voltage which results to wider operation range than the gate-driven 

MOSFET. On the other hand gmb is less than gm. (gm and gmb are the slopes of its 

drain current versus its input voltage at the bias point). Thus implementing a BDDP 

in the op-amp design causes the open-loop small-signal gain of the op-amp to be 

reduced. 

 

Another severe concern that needs to addressed is that gmb is dependent to the DC 

operating point of the bulk-driven MOSFET, namely its bulk-to-source voltage VBS. 

gmb can be expressed by 

BSF

m
mb

V

g
g

−Φ
=

22

γ
     (5-1) 

where 2|ΦF| is the Fermi potential and γ is the body-effect coefficient. Thus a BDDP 

causes a large variation in the effective transconductance of the op-amp gm(eff), 

which results to introducing signal distortion and creating difficulty in the frequency 

compensation of the multi-stage op-amps [HOG92], [WU94]. 
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There are some previous works that address the above issues. The work presented by 

Terry et al in [TER02] addresses the issue the gm(eff) variation of a BDDP, and the 

work presented by Rosenfeld et al in [ROS04] addresses the issue of low gmb of a 

BDDP adopted in folded-cascode OTA design by utilising the gain boosting 

technique. However, as studying further this gain boosting technique the author came 

up with an alternative design idea which leads to increasing the output resistance 

without introducing an additional hardware or extra power consumption in the core 

OTA block. 

 

In this section the design of a 0.8 volt fully differential rail-to-rail folded-cascode 

OTA using a 0.35µm twin-well CMOS technology having a threshold voltage of 0.6 

volt is presented. This OTA consists of not only a complementary pair BDDP for 

achieving rail-to-rail operation with constant gm(eff), but also the author’s original 

design idea for the cascode devices of the OTA so that the output resistance is 

increased and hence the open-loop gain is enhanced to over 60dB.  

 

5.1.2 Previous Essential Works 

 

As the design task for achieving high-performance OTA that can be operated with a 

0.8 volt supply voltage using a CMOS technology having a threshold voltage of 0.6 

volt was not easy, many previous essential works have been referred and utilised in 

the OTA design. This subsection provides the brief review of those previous essential 

works. 
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Gain-Boosting Technique 

According to the literature in [RAZ01], the topology of the gain-boosting technique 

was first invented in 1976 in [HOS79] and applied to boost the gain of the op-amps 

in 1989 in [BUL90] and [SAC90]. The concept of this topology is illustrated in 

Figure 5-2. 

 

Figure 5-2 Gain-boosting topology with different auxiliary amplifiers, (a) common-source stage 

[HOS79] (b) folded-cascode [RAZ01], (c) common-source stage with a level shifter [COB94], 

and (d) complementary common-source stage [ROS04] 

 

Figure 5-2(a) shows the circuit realisation of the gain-boosting topology using a 

common-source type of auxiliary amplifier placed in the feedback loop [HOS79], 

[BUL90], [SAC90]. This feedback amplifier regulates the voltage at node-X so that 

the output current remains more constant, which results to achieving a higher output 

resistance rout. This approach, however, causes a limitation in the output voltage 

swing since the regulated voltage at node-X VX becomes equal to the gate-to-source 

voltage of MN3 VGS3, which is too much voltage consumption for low-voltage 
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applications. To overcome this concern, there are some known alternative design 

approaches today. Razavi’s literature in [RAZ01] discusses utilising the folded-

cascode type of auxiliary amplifier, as shown in Figure 5-2(b), as this concept allows 

pMOS and nMOS combination in the small-signal path. John and Martin’s literature 

in [JOH97] on the other hand introduces Coban et al’s approach presented in 

[COB94], which is shown in Figure 5-2(c). This approach is identical to the one 

shown in Figure 5-2(a) except that a diode-connected MOSFET MN4 is additionally 

included for level-shifting purposes. In Rosenfeld et al‘s work in [ROS04] presented 

an approach as shown in Figure 5-2(d), which its auxiliary amplifier is in the pMOS 

version of a common-source amplifier as shown in Figure 5-2(a). However, Zabihian 

et al in [ZAB07] provides the large-signal analysis of Figure 5-2(d) and states that it 

is not simple to operate the transistor MP3 in saturation under the low-supply voltage 

environment unless the threshold voltage of MN2 is reduced by VBIAS. Also, VX may 

be sensitive to VDD noise since the auxiliary amplifier in Figure 5-2(d) is not a 

differential amplifier (as VX and VDD are directly related by VSG3). 

 

While studying further the approaches mentioned above, the author noticed an 

important property of a cascode device using its bulk-terminal. This chapter reports 

an OTA design without the use of auxiliary amplifiers but instead utilising only the 

bulk-terminal of the cascode devices for increasing the output resistance. 

 

Bulk-Driven Current Mirror 

The bulk-driven current mirror that was developed by Blalock et al in [BLA95], as 

shown in Figure 5-3(a), can eliminate the large voltage drop across the input device. 

This is because the voltage drop across the input device MN1 VDS1, which is equal to 

the bulk-to-source voltage of MN1 VBS1, does not need to be greater than the threshold 

voltage VT0 for proper operation. The cascode configuration [BLA96], as shown in 
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Figure 5-3(b), can be used to improve current matching and increase the finite output 

impedance of the current mirror. In this configuration, the voltage drop across the 

input devices MN1 and MN3, i.e. VDS1+VDS3 (=VBS1+VBS3), still remains below VT0. 

 

Figure 5-3 Bulk-driven current mirror (a) simple [BLA95] and (b) cascode [BLA96] 

 

Taking the advantage of this low drop voltage property of the bulk-driven current 

mirror, the OTA design reported in this chapter utilises the Bulk-Driven Cascode 

Current Mirror (BDCCM) as shown in Figure 5-3(b) in the Common-Mode 

Feedback (CMFB) block. 

 

Complementary BDDP 

As discussed in the Introduction in Section 5.1.1, a BDDP applied in an op-amp 

design leads to achieving rail-to-rail IMCR operation but suffers from large gm(eff) 

variation. To overcome this concern a design technique called the complementary 

BDDP, which has been proposed by Terry et al in [TER02], has been applied in the 

OTA design reported in this chapter. Detail analysis results are given in the next 

section. 

 

Supply-Independent Bias Circuit 

To design an OTA that can be operated with a 0.8 volt supply voltage using a CMOS 

technology having a threshold voltage of 0.6 volt, a bias circuit block that can be also 



 

 89

operated with the 0.8 volt supply voltage was also needed. To accomplish this need, 

a supply-independent bias circuit block that can operated at a minimum supply 

voltage of VT0+2VDSsat, which was proposed by Dong et al in [DON02], has been 

applied in the OTA design reported in this chapter. Detail analysis results are given 

in the next section. 

 

5.1.3 Proposal 

 

Core OTA 

Figure 5-4 illustrates the core part of the low-voltage fully-differential OTA, which 

utilises the folded-cascode topology and the bulk-driven approach at the input stage 

for achieving rail-to-rail ICMR operation. 

 

Figure 5-4 Proposed core OTA 
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Complementary BDDP 

As mentioned in Section 5.1.1, the depletion characteristics of an nMOS transistor 

allow the ICMR to extend below the negative power supply. The transconductance of 

an nMOS transistor, however, increases by increasing the ICMR [BLA98]. 

 

This effect can be illustrated by simulating the transconductance of an nMOS 

transistor with the set-up shown in Figure 5-5(a). The results of the simulation are 

shown in Figure 5-6. The variance of the input transconductance causes the op-amp 

open-loop gain and also the phase margin to vary with ICMR. For a pMOS transistor 

with the setup illustrated in Figure 5-5(b), the complementary characteristics can be 

observed as illustrated in Figure 5-6. 

 

 

Figure 5-5 Setup for simulating (a) gmb1 and (b) gmb3 
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Figure 5-6 Simulation plots of gmb1 and gmb3 

 

In order to reduce the variance of the input transconductance, complementary BDDP 

can be utilised [TER02], as the results demonstrate in Figure 5-6. The overall 

transconductance variation, which is the sum of the transconductance of the nMOS 

and pMOS transistors, is improved by approximately 50%. To achieve a 

transconductance with minimum variations, a proper W/L ratio for the nMOS and 

pMOS transistors should be carefully selected. 

 

Cascode Devices 

As can be realized from Figure 5-1, the transconductance of a bulk-driven 

differential pair is less than that of a gate-driven differential pair, causing a challenge 

in achieving high open-loop gain for the amplifier. One possible method to increase 

the open-loop gain is to increase the output resistance. The output resistance of the 

core OTA in Figure 5-4 can be approximated to: 

rout ≈ (gm7+gmb7)ro7(ro5//ro1) // (gm9+gmb9)ro9(ro11//ro3)         (5-2) 

From Equation (5-2) it can be realized that gmb7 and gmb9 can be increased as the 

bulks are slightly forward-biased. Therefore if a twin-well process is available, the 

bulks of cascode transistors could be slightly forward-biased. As an numerical 

example, for the term (gm+gmb), which equals to (1+η)gm, the η can be increased by 
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approximately 0.04 when VBS of the nMOS and pMOS cascode transistors are 

increased from -0.1V to 0.2V in a 0.35µm CMOS technology. 

 

Common-Mode Feedback 

To stabilise the CML of the two outputs to be midway between the power-supply 

voltages,a  CMFB block is required. Figure 5-7 illustrates typical circuit diagrams of 

continuous-time CMFB circuits [ALL02], [RAZ01]. 

 

 

Figure 5-7 Typical CMFB circuit (a) current output and (b) voltage output 

 

The problem of using the CMFB circuit shown in Figure 5-7 in a low-supply-voltage 

environment is that the reference input VCM_REF and the output CML of the OTA 

have to be greater than the threshold voltage for the circuit to operate in the active 

region. To overcome this problem, the bulk-driven approach can be utilised. The 

proposed CMFB circuit is illustrated in Figure 5-8. 

 

These proposed CMFB circuits are simply the same as Figure 5-7(b) with the bulk-

driven differential pairs and current mirrors included. MC05P and MC22N are added 

extra to improve the input range of operation, which is the output range of the core 

OTA. Simulation results of this proposal are shown in Figure 5-9. 
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Figure 5-8 Proposed (a) nMOS driven CMFB and (b) pMOS driven CMFB 

 

 

Figure 5-9 Verification of the proposed CMFB circuitry 
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The simulation results shown in Figure 5-9 imply that the bulk-driven technique can 

also be a candidate for low-voltage rail-to-rail CMFB design. 

 

Supply-Independent Bias Circuit 

The supply independent bias circuit presented in [DON02], as shown in Figure 5-

10(a), can be operated at a minimum supply voltage of VT0+2VDSsat. This is very 

suitable for low-voltage systems and therefore applied for generating VBIAS1 and 

VBIAS4. For generating VBIAS2 and VBIAS3, which have to be less than VT0, bulk-driven 

devices can be utilised as shown in Figure 5-10(b). 

 

Figure 5-10 (a) Using the supply-independent bias circuit presented in [6] for generating VBIAS1 

and VBIAS4 and (b) bias voltage generator for VBIAS2 and VBIAS3 

 

Simulation results of Figure 5-10 are illustrated in Figure 5-11. 

 

Figure 5-11 Effects of bias voltages with respect to (a) VDD and (b) VSS 
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As expected and seen in Figure 5-11, VBIAS1 and VBIAS2 are independent of VSS and 

therefore suitable for biasing pMOS devices. Similarly, VBIAS3 and VBIAS4 are 

independent of VDD and therefore suitable for biasing nMOS devices. 

 

5.1.4 Simulation Results 

 

A 0.35µm CMOS twin-well technology was used to verify the proposal. The Bode 

plot of the OTA with a load capacitance of 5pF is depicted in Figure 5-12. The 

overall OTA characteristics are shown in Table 5-1. 

 

Figure 5-12 Simulated plots of open-loop gain and phase margin 

 

Table 5-1 Summary of the proposed OTA Performance 

 

Characteristics Simulated Value 

Open-loop DC gain 66dB 

Unity gain-bandwidth 3.4MHz  

Total current consumption 243µA 

Phase margin >80° 

Differential output voltage swing 1V 

Slew rate SR+=4.7V/µs, SR-=5.1V/µs 

ICMR 0.8V 

VDD = 0.8V, VSS=0V, VICM = 0.4V, CL = 5pF 
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5.1.5 Section Conclusion 

 

This paper explored the approach of low-voltage OTA design using the bulk-driven 

technique. The observed advantages are: 

 

• As previously pointed out by [BLA98], BDDP can provide rail-to-rail ICMR 

operation, and bulk-driven current mirrors can be operated with less voltage 

headroom consumption. 

• With the use of bulk- and gate-biased cascodes, the output resistance of a 

folded-cascode fully differential OTA can be increased with no additional 

circuit or extra power consumption. 

• Bulk-driven CMFB can sense the input common-mode voltage smaller than 

the threshold voltage. 

 

5.2 Input Impedance of the Complementary BDDP 

 

Utilising the design work given in Section 5.1 as an opportunity, it is worth analysing 

the input impedance characteristics of the complementary BDDP stage utilised in the 

proposed OTA and compare with the differential pair design given in Chapter 3. 

Figure 5-13 shows the simulated ac characteristics of the input impedance.  
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Figure 5-13 Simulation results of the circuit-level input impedance characteristics of the 

proposed OTA utilising the complementary BDDP stage 

 

In comparison to Figure 3-8, it is apparent from Figure 5-13 that the input impedance 

of the BDDRB stage proposed in Section 3.1 is far better than the complementary 

BDDP. As can be observed from Figure 5-13, the input resistance maintains as high 

as 300MΩ for VICM around the mid-point of the supply voltage, but it considerably 

decreases to few-MΩ when VICM moves away by more than 200mV from the mid-

point of the supply voltage. Therefore, in this aspect, it is evident that the BDDRB 

stage far advances. 

 

5.3 Chapter Conclusion 

 

Throughout the complete design of the proposed OTA, it was verified that the bulk-

driven approach sees many advantages in low supply voltage analogue amplifier 

design. The BDDP and the BDCM can be applied not only at the core part of the 

amplifier but also at the CMFB block as well. Furthermore, it has been demonstrated 

that forward-biasing the bulk of cascode devices of the OTA helps enhancing the 

output resistance and hence the open-loop gain. Apparently, the bulk-driven 
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approach is a strong candidate that makes the low-voltage CMOS analogue amplifier 

design realisable.  
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Chapter 6  The BSIM3 Simulation and the 

Measurement of the Input Capacitance 

of a Bulk-Driven Buffer 

 

 

So far this thesis has proposed several analogue CMOS design techniques using the 

bulk-driven approach, and for the verification the Berkeley Short-Channel Insulated-

Gate Field Effect Transistor (IGFET) Model Version-3 (BSIM3), which is a widely 

used MOSFET model in the semiconductor industry [ALL02] [SED11], has been 

utilised in the SPICE simulations. However several works have been published 

recently that provide the comparison results of several popular MOSFET models 

with the measurement data of the fabricated bulk-driven devices, and report that Enz-

Krummenacher-Vittoz (EKV) [ENZ95] is the most suitable MOSFET model for the 

nanometre bulk-driven applications [HE08] [WAN09] [WAN10]. 

 

The author finds the need for further extending this study for two reasons. Firstly, it 

may not always be the case that the fabrication services support EKV model for the 

available CMOS processes, and circuit designers may rather prefer to use the 

MOSFET model which the parameters have been already extracted by the fabrication 

services. Another reason is that circuit designers may need to size the length of the 

bulk-driven devices larger than the minimum, in particular in differential pair 

applications where good matching and reduced 1 / f noise are important [TER03]. 

The work reported in [HE08] [WAN09] [WAN10] all focuses on a bulk-driven 

device that is sized in a sub-micron channel length. 
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To further extent the author was particularly keen to focus on the study of the input 

capacitance of a bulk-driven CMOS buffer, because throughout the author’s 

experiences in presenting the research works at conferences the author noticed the 

audiences’ high interests in the input capacitance of the proposals. 

 

Taking into an account of the viewpoint mentioned above, this chapter reports the 

research work on the use of the BSIM3 MOSFET model for determining the input 

capacitance of a CMOS bulk-driven buffer. To validate the accuracy of the BSIM3 

simulation, a bulk-driven CMOS buffer has been designed and fabricated with On-

Semiconductor’s 0.35µm CMOS process in order to obtain the measurement results 

for comparison. 

 

This chapter is structured as follows. In Section 6.1, a bulk-driven CMOS buffer that 

has been designed and fabricated using On-Semiconductor’s 0.35µm CMOS process 

is described. Section 6.2 demonstrates the postlayout simulation results using the 

BSIM3 MOSFET model. Section 6.3 describes the taken procedure for the input 

capacitance measurement, and examines the obtained results by comparing with the 

simulated results. Lastly, in Section 6.4, the concluding remarks are stated. 

 

The supplementary information to this chapter is also listed in Appendix B and C. 

Appendix B lists the other prepared materials, such as the SPICE code used for the 

simulation, the IC layout of the whole die and the bonding diagram, more snapshots 

of the microphotograph, and the used test board for the measurement. Appendix C 

provides all the logs of the measurement results presented in Section 6.3. 
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6.1 Designing a Bulk-Driven CMOS Buffer for Fabrication 

 

Figure 6-1 shows the circuit diagram of a bulk-driven CMOS buffer that has been 

designed for fabrication using On-Semiconductor’s 0.35µm CMOS process, and 

Table 6-1 shows the size information for each devices. 

 

 
 

Figure 6-1 Circuit Diagram of the Bulk-Driven CMOS Buffer for Fabrication 
 
 

Table 6-1 Device Dimensions for Figure 6-1 
  

Device Name Width Length 

MP1, MP2 60µm 1.4µm 

MP3 20µm 1.4µm 

MP4 10µm 1.4µm 

MN5, MN6, MNREF 10µm 1.4µm 

MNR1, MNR2 1.5µm 0.7µm 

R_REF 220K 

C1, C2 0.2pF 

C3, C4 0.8pF 

 

The operation principle of Figure 6-1, which is simply the bulk-driven version of the 

differential voltage amplifier that was proposed in [SAN98], is as follows. Since 

MP2 is biased with a constant DC current, the AC current generated by the 

differential voltage input flows from MP3 to MP1, which is mirrored by the current 

mirror MP3/MP4 to the output. The key feature of Figure 6-1 is that the AC current 

is not limited by any DC current, and furthermore only three transistors 

MP1/MP3/MP4 carry the AC current which is clearly an advantage for high-

frequency low-power design [SAN06]. In addition, the Quasi-Floating Gate (QFG) 
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technique [RAM04] has been applied at the gate of the input devices MP1 and MP2 

instead of DC-biasing them with the negative supply rail VSS. With the QFG 

technique, capacitive voltage dividers have also been implemented in order to avoid 

MNR1 and MNR2 to be reversely biased during the rail-to-rail operation. 

 

The layout of the buffer circuit of Figure 6-1 has been generated using a freeware 

tool called Electric which is available for download from [ELE11] (and free video 

tutorials are available for view from [BAK11]). Figure 6-2 shows the layout design, 

which the overall size turned out to be 199µm x 84µm. 

 

 
 

Figure 6-2 Layout Design of the Bulk-Driven CMOS Buffer of Figure 6-1 

 

For the packaging, a DIL16 package, which consists of 16 pins and is the cheapest 

one available from the fabrication site, has been chosen. Also, since the mask cost of 

the chip remains the same for the chip area until 2mm
2
, two of the same buffers have 

been integrated in the same chip. Figure 6-3 shows the pin assignment of the 

integrated two buffers. 
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Figure 6-3 Pin Assignment 

 

From Figure 6-3, please also remark that more pins have been assigned for the 

bottom buffer so that further measurements can be taken upon the need. Pin-5 is 

assigned at the coupled source of the differential pair so that VSB1,2 can be measured. 

Pin-9 is connected to the gate of MP2 so that the output waveform of the QFG block 

with the capacitive divider can be measured. Pin-6 and pin-7 are the input pins for 

the QFG block with the capacitive divider, which are intended to be shorted to pin-5 

and pin-8 respectively, but upon the need these pins can be left open instead to verify 

the effectiveness of the QFG block. Pin16 is connected to only the pad so that the 

characteristics of the pad itself, such as its parasitic capacitance, can be measured if 

necessary.   

 

The other prepared materials, such as the IC layout of the whole die and the bonding 

diagram, and the prepared test board, are listed in Appendix B. 
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6.2 Postlayout Simulation 

 

Using the extracted postlayout netlist of Figure 6-2, the bulk-driven buffer has been 

simulated with a supply voltage of 1-volt. With R_REF of 220K, the reference 

current that is flowing through MNREF becomes approximately 1µA and hence the 

overall DC current consumption of the buffer turns out to be approximately 4µA. 

Figure 6-4 and 6-5 show the BSIM3 simulation results of the open-loop frequency 

response with a load capacitance of 10pF, and the output waveform of the buffer in 

unity-gain configuration with a 1-volt peak-to-peak 10kHz sinusoidal input, 

respectively. 

 

 

 
 

Figure 6-4 Postlayout Simulation Results of the Frequency Response (VDD=1V, VSS=0V, 

CL=10pF) 
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Figure 6-5 Postlayout Simulation Result of the Output Waveform with a 1Vp-p 10kHz 
Sinusoidal Input 

 

Procedure for Simulating the Input Capacitance  

 

The setup illustrated in Figure 6-6 shows the applied procedure for simulating the 

equivalent input capacitance CIN,eq. 

 

 
 
 

Figure 6-6 The Setup for Simulating CIN,eq 

 

The 1MΩ resistor shown in Figure 6-6 leads to constructing a low-pass filter at the 

test point, with a cut-off frequency f-3dB as expressed in Equation (6-1): 

)(1MΩC2

1

eqIN,

3 π
=− dBf     (6-1) 

 

1V

+

-
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Thus once f-3dB is determined then CIN,eq can be worked out by using Equation (6-2): 

)(1MΩ2

1
C

3

eqIN,

dB-fπ
=     (6-2) 

 

From the theoretical observation expressed in Equation (6-2), the procedure for 

determining CIN,eq has been defined. A 100mV peak-to-peak sinusoidal input is 

applied at the input of the filter, and the frequency is adjusted to the cut-off 

frequency f-3dB, i.e. the magnitude of the waveform at the test point becomes at 

100mV x (½)
-0.5

 (≈70.7mV) so that CIN,eq can be calculated using Equation (6-2). 

Figure 6-7 shows the postlayout simulation results of the determined f-3dB point, 

where the DC operation point of the input is 0.5V.  

 

 
 

Figure 6-7 Postlayout Simulation of Figure 6-6 with the Input DC Operating Point at 0.5V 

 

As discussed in Chapter 2, since the capacitance of the bulk of a MOSFET is bias-

dependent of the DC operating point, the author decided to repeat Figure 6-7 with the 

DC operating point of the input VIN from 0.1V to 0.9V in a 0.1V step. The SPICE 

code for performing this simulation is provided in Appendix B. 

 

Figure 6-8 shows the determined CIN,eq per operation point VIN. 
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Figure 6-8 Postlayout Simulation Results of CIN,eq 

 

6.3 Measuring the Input Capacitance of the Fabricated Bulk-

Driven Buffer 

 

The buffer presented in Section 6.1 has been fabricated. Figure 6-9 shows the 

microphotograph of the fabricate buffer. 

 

Figure 6-9 The microphotograph of the bulk-driven buffer presented in Section 6-1 

 

In prior to assessing the input capacitance of the fabricated buffer shown in Figure 6-

9, firstly the author verified that it is operational by configuring it in the same setup 

as described in Figure 6-5. Figure 6-10 shows the measurement result, which has 

become identical to the simulation result shown in Figure 6-5. Hence the fabricated 

buffer is ready to be tested for determining the input capacitance. 
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Figure 6-10 The Measurement Result of the Output Waveform with a 1Vp-p 10kHz Sinusoidal 

Input 

 

Measurement Procedure 

 

This sub-section describes the applied procedure for measuring the input capacitance 

of the fabricated buffer, where the DC operating point of the input voltage VIN is 

from 0.1V to 0.9V in a 0.1V step, i.e. the same setup as shown in the simulation in 

Section 6.2. 

 

It was in fact originally planned to use a LCR meter Wayne Kerr 4300, which is 

capable to measure the capacitance in femto-Farad range. However when this 

measuring equipment was set up with the fabricated buffer, the measured value 

shown in the LCD display did not turn out to be stable. The tendency was that the 

measured value became less instable when the test applied signal has larger 

amplitude like 1Vp-p and faster frequency (the highest frequency Wayne Kerr 4300 

can produce is 200kHz), however the measured value shown in the LCD display was 

still unstable and thus unreliable to take the log. On the other hand with a discrete 

capacitor that was randomly selected, the Wayne Kerr 4300 indicated the expected 

capacitance value in the LCD display. Thus the measuring equipment itself was not 

faulty at all, but simply unsuitable for use with the fabricated buffer, and 

VDD=1V 

GND 

VIN 

VOUT 
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consequently it was necessary to come up with an alternative procedure for 

determining the input capacitance of the fabricated buffer. 

 

After searching through literatures the author came across with the work proposed in 

[NAT90], so called the phase measurement approach, which claims that only 

standard laboratory equipment is required for measuring small capacitances. To 

describe the proposed work of [NAT90] in brief, the phase lag between the output 

and the input sinusoidal signals of an RC low-pass filter can be expressed by: 

)fRC2(tan 1 πφ −=              (6-3) 

where φ is the phase difference between the output and the input sinusoidal signals of 

the RC low-pass filter, f is the frequency of the applied input sinusoidal signal, and R 

and C are the resistance and the capacitance of the RC low-pass filter. If R and f are 

known and φ can be measured, then C can be worked out. In the work of [NAT90], 

the authors propose to adjust R and f such that φ near 45° is achieved for accurate 

measurement. 

 

Using the concept described by the work in [NAT90], the fabricated buffer was set 

up as shown in Figure 6-11 and f is adjusted such that the phase shift between the 

output and the input of the sinusoidal signal φ became near 45°. Figure 6-12 shows 

the obtained measurement result. 

1V

+

-

200mVpp
CIN,eq

(46.97K by measurement)

Test Point

DC biasing point = 0.5V

47K

 

Figure 6-11 The Configured Setup for Determining the Input Capacitance of the Buffer 
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Figure 6-12 The Measurement Result of the Setup Shown in Figure 6-11 

 

It is important to note, however, that the measurement result of Figure 6-12 also 

contains the parasitic elements (e.g. the parasitic of the used probe itself). To verify 

the overall parasitic element Cstray, the pin that is bond-wired to the PADONLY, as 

shown in Figure 6-12, has been probed and the same procedure has been taken for 

the measurement, so that in the end the capacitance of the interest, i.e. the input 

capacitance of the fabricated buffer CIN,eq, can be extracted by calculation. 

VIN

R
VDD

GND

+

-

CIN,eq

1V

Parasitics

(spec says ~8�0.8pF)

probe

PADONLY

 

Figure 6-12 Measurement Procedure for Extracting CIN,eq 

 

 

For the R selection in Figure 6-12, various resistance values has been tried out to 

observe the effect in the overall result. Also, the amplitude of the input sinusoidal 

signal has been tried with 100mVpp and 200mVpp to see if it can additionally affect 

the measurement result. Table 6-2 shows the summary of the measurement results. 

←←←←DC biasing point of VIN 

←←←←f  of VIN 

←←←←Φ of test point from VIN 

←←←←ac voltage measurement at test point 

←←←←vin (in ac) 
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Table 6-2 Measurement Results of Figure 6-12 with Various Resistance Values and the 

Amplitudes of the Test Signal 

 

Tested condition Measurement Results 
Extracted CIN,eq 

(=Ctotal - Cstray) 

R=4k7 with 

200mVpp 

Ctotal = 11.71 ± 0.15 pF 

Cstray = 11.20 ± 0.11 pF 
CIN,eq = 0.52 ± 0.26 pF 

R=4k7 with 

100mVpp 

Ctotal = 11.75 ± 0.13 pF 

Cstray = 11.17 ± 0.13 pF 
CIN,eq = 0.58 ± 0.26 pF 

R=47k with 

200mVpp 

Ctotal = 12.53 ± 0.23 pF 

Cstray = 11.47 ± 0.12 pF 
CIN,eq = 1.06 ± 0.35 pF 

R=470k with 

200mVpp 

Ctotal = 11.68 ± 0.38 pF 

Cstray = 11.16 ± 0.24 pF 
CIN,eq = 0.52 ± 0.62 pF 

Other conditions: 

1. The DC bias of the input voltage was set to 0.5V 

2. The QFG block was unconnected in the buffer 

3. The fabricated buffer has been measured for 20 times to compute the 

average and the standard deviation values. 

 

As can be seen from Table 6-2 the extracted result of CIN,eq is dependent to the 

measurement condition, which the author initially could not understand the reason 

behind. However, by taking a closer look at the setup, as shown in Figure 6-13, few 

reasons can be explained. 
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Figure 6-13 A Closer Look of the Set Up Shown in Figure 6-12 

 

For R=4K7 f needed to be as fast as 3MHz in order to achieve φ near 45°, but faster 

frequency introduces some side effects that may ruin the measurement results. One 

side effect is that the inductive elements within the measurement setup (e.g. the bond 

wires within the package and the ground lead) would appear in the measurement 

result as f increases. One other side effect that would appear with faster frequency of 

the input signal is due to the performance limit of the measuring equipment. For 

instance, as f increases the input impedance of the probe dominates the loading effect, 

and the bandwidth limit of the probe and the oscilloscope may cause inaccuracy in 

the amplitude measurement of the signals [TEK_1], [TEK_2], [TEK_3]. Thus in 

order to reduce these possible side effects as minimal as possible, slower f (which 

consequently means the increased resistance of R) needs to be applied for accurate 

measurement. 

 

However in contradict to the observation mentioned above, when R=470K and the 

adjusted f that achieves φ near 45° reduces to around 30kHz, the signal strength 

becomes weak and the noise disturbs the measurement. The results deviate more with 
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slower f. To obtain reliable measurement results, f needs to be faster than 30kHz to 

overcome the noise disturbance. 

 

Concerning the amplitude of the input signal, 200mVpp was the maximum that can 

be set in this measurement as the objective was to measure the input capacitance of 

the fabricated buffer with the bias voltage of the input from 0.1V to 0.9V in a 100mV 

step. Under this measurement objective, a voltage amplitude of the input signal 

greater than 200mVpp would exceed the supply voltage rails of the buffer operating 

at 1V power supply. In order to justify that the amplitude of 200mVpp is large 

enough to extract CIN,eq, another measurement has been carried out with the 

amplitude of 100mVpp to observe the effect. The result turned out the difference of 

only 0.06pF was obtained in the extracted CIN,eq. Thus the amplitude of 200mVpp 

was judged as sufficiently large to carry on the experiment. 

 

Considering all aspects mentioned above and carrying out further experiments with 

different setup of R, it appeared that R=47K with the amplitude of the input signal of 

200mVpp gave a good compromise between the side effects of the fast signal input 

and the noise disturbance, and hence the author decided to continue the measurement 

under this setup. 

 

Measurement Results and Observations 

 

Base on the decision made for the measurement procedure as described above, the 

experiment was carried out to determine CIN,eq at different bias voltages VIN. Figure 

6-14 shows the measurement results of CIN,eq with VIN varying from 0.1V to 0.9V in a 

100mV step, and the comparison to the simulation results. 
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(b) the buffer with the QFG block 

Figure 6-14 The Measurement Results of CIN,eq (20 measurements were taken to compute the 
average and the standard deviation) with VIN varying from 0.1V to 0.9V in a 100mV step and 

the Comparison to the Simulation Results 

 

The measurement has been taken for 20 times per each VIN biasing point. In 

comparison to the simulation results, in average the measured CIN,eq differs by 16.9% 

(the maximum difference of 0.41pF at VIN = 0.8V) and 12.9% (the maximum 

difference of 0.32pF at VIN = 0.3V) for the buffer with and without the QFG block, 

respectively. The average deviation turned out to be 16.5 % (the maximum deviation 
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of ±0.30pF at VIN = 0.1V) and 23.8% (the maximum deviation of ±0.35pF at VIN = 

0.5V) for the buffer with and without the QFG block, respectively. Taking into an 

account that the measurement of target is only in a few pico-Farad range, these 

deviation values are considerably small. The phase measurement approach proposed 

by [NAT90] works well in extracting CIN,eq of the fabricated bulk-driven buffer. 

 

In overall, when VIN is varied the measured CIN,eq changes more rapidly whereas the 

simulated CIN,eq looks more flat. The measured and the simulated results may appear 

to be different to each other, however considering that the measurement 

imperfections are also introduced by the noise disturbances, it is hard to predict how 

accurately the BSIM3 model performs in the simulation. Instead what can be stated 

from this experiment is that the BSIM3 model in the postlayout simulation gives a 

reasonable prediction of the CIN,eq of a bulk-driven buffer, within  ±0.4pF of 

imprecision. 

 

6.4 Chapter Conclusion 

 

This chapter presented the study of the BSIM3 model used in the postlayout 

simulation of a bulk-driven buffer for determining CIN,eq. For the verification the 

fabricated device was prepared and the phase measurement approach [NAT90] was 

investigated in details for extracting CIN,eq. The obtained measurement and the 

simulation results of CIN,eq are relatively matched over various VIN operating point. 

The BSIM3 model used in the postlayout simulation is a useful verification 

technique in predicting CIN,eq of a bulk-driven buffer. 
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Chapter 7  Conclusions 

 
 

 

This Chapter summarises the achievements of this research work and provides the 

author’s recommendations for further work relating to the bulk-driven approach. 

 

7.1 Summary 

 

The author’s research objective as stated in Chapter 1 was to develop new circuit 

design techniques using the bulk-driven approach that can overcome many of the 

drawbacks which have been previously reported, and furthermore to invent new 

application areas of the bulk-driven approach where it can lead to performance 

enhancement in the field of CMOS analogue amplifier design. After reviewing the 

characteristics of a bulk-driven device in Chapter 2, where the key advantage is the 

depletion (JFET-like) characteristics whereas many of the associated drawbacks are 

related to small-signal behaviours and reliability, the following proposals have been 

made: 

 

BDDP 

In Chapter 3, two BDDP circuit blocks called the BDDRB and BDFVDP have been 

proposed. The BDDRB input stage uses the RBS to achieve constant small-signal 

behaviour hence to solve the non-linearity issue, and furthermore to diminish the 

latch-up issue by having the constant bias voltage. On the other hand, with the 

BDFVDP solves the issues of degraded input impedance characteristics and the 

latch-up by adding the reverse-bias connected diodes at the bulk-driven input. For 

both BDDRB and BDFVDP, the hardware implementation is simple. 
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Bulk-Driven Source Follower 

Chapter 4 proposed the new application area of the bulk-driven approach, which is 

the design of source follower blocks. Like FVF and SSF, the proposed BDFVF and 

BDSSF blocks achieve low-power high-speed performances but with an additional 

feature such that the DC level shift can be eliminated and even programmable to the 

level that is less than the threshold voltage of a MOSFET. An application example of 

the level-shifted BDSSF in a simple current mirror was also given, which 

demonstrated the behaviour with the reduced voltage headroom consumption at the 

input device of the current mirror but without introducing an additional DC offset 

current. 

 

Bulk-Driven Cascodes 

Chapter 5 proposed another new application area of the bulk-driven approach, which 

is seen at the cascode output stage of op-amps, for instance folded-cascode OTAs. 

For any op-amps having a cascode at the output stage to increase the output 

resistance, then forward-biasing the bulk of the cascode device can further enhance 

the output resistance and hence the open-loop gain, which helps to cover the 

disadvantage of low gmb of the BDDP but without introducing an additional hardware 

in the core part of the op-amps. Based on utilising BDDP and forward-biased 

cascode devices, a design methodology of a fully differential rail-to-rail OTA that 

can be operated with a power supply voltage of 0.8-volt using a 0.35µm twin-well 

CMOS technology having a threshold voltage of 0.6-volt is demonstrated, and the 

verification results indicated that the open-loop gain of over 60dB is achieved. 
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Verification of the BSIM3 model for Determining the Input Capacitance of a Bulk-

Driven Buffer 

Chapter 6 presented the study of the BSIM3 model used in the postlayout simulation 

of a bulk-driven buffer for determining the input capacitance. For the verification the 

phase measurement approach was applied for extracting the input capacitance of the 

fabricated buffer. The comparison between the measurement and the simulation 

results demonstrated that the BSIM3 model used in the postlayout simulation is a 

useful verification technique for predicting the input capacitance of a bulk-driven 

buffer. 

 

In summary the bulk-driven approach may have an unfavourable impression due to 

too many associated problems, however the work reported in this thesis proves that 

that is false. Circuit design techniques like demonstrated in this thesis can overcome 

many of those drawbacks, and moreover new application areas can be identified and 

proposed by utilising the bulk-driven approach. The author’s work has certainly 

made a progress in proving that this circuit design approach has a high potential in 

enhancing performances in the analogue amplifier design field, and it is encouraging 

to carry on the research to confront the difficulties of the low-voltage roadmap the 

ITRS is defining. 

 

7.2 Recommendations for Further Work 

 

After completing this work, the author would like to make the following 

recommendations:  
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Other New Application Areas 

The author’s work identified two new areas where the bulk-driven approach can be 

applied, in source followers and cascodes, however there have to be even more. In 

fact the author is currently aware of the following circuit blocks where the bulk-

driven approach has been applied:    

• Auxiliary amplifier for regulated cascode application [ZAB07], [MON09]  

• Current conveyer [KHA06], [KHA11B] 

• Mixer [HSI10], [SCH08] ,[VOR08] 

• Phase Lock Loop [LUN09] 

• Voltage Squarer [RAI10B] 

• Variable Gain Amplifier [RAI10A] 

Furthermore, the improved version of the bulk-driven current mirror, which was 

originally proposed in [BLA95], is recently proposed in [LAK11]. It is evident that 

the bulk-driven approach as a research topic is increasingly popular. The author 

recommends looking into other new application areas using the bulk-driven approach 

and/or developing the improved versions of the above circuit blocks. 

 

Looking into other unsolved problems 

The author’s work reported in this thesis leads to solving many of the associated 

drawbacks of the bulk-driven approach but few others still remain, in particular the 

low gmb issue. The cascode approach presented in Chapter 5 enhances the output 

resistance and so does the open-loop gain of the OTA, however the low gmb issue has 

not been addressed and hence the low-speed high-noise issues remain. From 

literature search, the research effort is seen by means of partial positive feedback 

technique. The work in [CAR05] is applying the partial positive feedback at the 

active load, whereas the work in [RAI10C] is applying the partial positive feedback 
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at the input differential pair devices. The author fully agrees that the partial positive 

feedback technique is an excellent solution to avoid the speed reduction, but not the 

ultimate from the viewpoint that the issues of non-constant gmb and the degraded 

input impedance characteristics remain unsolved. One last remark after completing 

this work and reviewing recent publications is that the author strongly believes the 

next research effort should be to develop a new circuit design technique that can 

combine the advantages of the gate and the bulk of a MOSFET.  
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Abstract— This paper explores and presents the possible 
approaches to the design of low-voltage Operational 
Transconductance Amplifier (OTA) using the bulk-driven 
technique. The design of a 0.8 volt fully differential folded-
cascode OTA using a 0.35µm CMOS technology having a 
threshold voltage of 0.6 volt is presented. This OTA utilizes 
bulk-driven differential-pairs to achieve rail-to-rail input 
operation, and gate- and bulk-biased cascode transistors to 
increase the output resistance. A continuous-time Common-
Mode FeedBack (CMFB) is used for this OTA, which 
implements the bulk-driven differential pairs to sense the 
common-mode voltage smaller than the transistor’s threshold 
voltage, as well as bulk-driven current mirrors to reduce 
voltage headroom consumption.  This OTA has been designed 
using Alcatel’s 0.35µm twin-well CMOS technology, and the 
simulation results indicate an open-loop gain > 60dB, unity 
gain-bandwidth = 3.4MHz with a 5pF load, and an Input 
Common Mode Range (ICMR) of 0.8V. 

I. INTRODUCTION 
The need of power supply voltage reduction in integrated 

circuits is driven by several factors: (1) the reduction in the 
minimum dimensions in CMOS technologies necessitating 
reduced power supply voltages, and (2) low supply voltages 
are in favor of reducing power consumption, weight and 
volume of the battery in portable electronics [1].  The main 
blocks of analog circuits such as the op-amps require a 
supply voltage of at least the sum of the magnitude of the 
nMOS and pMOS transistor’s threshold voltages [3]. 
However, the threshold voltages do not decrease much below 
what is available today because of the digital logic [2], 
causing difficulty in designing analog circuits with low 
supply voltages on a standard CMOS technology. 
Consequently, novel circuit techniques are required to 
overcome this conflict. 

The bulk-driven technique is a strong candidate for op-
amp design under the constraints introduced by low-voltage 
operation. This paper firstly provides a brief review of the 
bulk-driven technique. It then follows by presenting a fully-
differential Operational Transconductance Amplifier (OTA) 

design which operates at 0.8 volt power supply using a 
0.35µm CMOS technology where the threshold voltage of 
the MOS transistor is 0.6 volt. 

II. BRIEF REVIEW OF THE BULK-DRIVEN TECHNIQUE 
When using a single MOS transistor as an amplifier, the 

input signal is usually fed into the gate (or sometimes the 
source) terminal and the bulk-terminal is tied to a fixed bias 
voltage (usually the supply-rail), as shown in Fig 1(a). In this 
configuration, named gate-driven MOS transistor throughout 
this paper, the gate-to-source voltage controls the drain 
current of the transistor. For a bulk-driven MOS transistor, 
on the other hand, its gate is tied to a fixed bias voltage (e.g. 
the supply-rail) and the input signal is fed into the bulk, as 
shown in Fig. 1(b). In this configuration, the threshold 
voltage of the transistor, which is a function of the bulk-to-
source voltage, controls the drain current. The operational 
characteristics of the bulk-driven and gate-driven MOS 
transistors are illustrated in Fig. 2. 

 

 

 

 

Figure 1.  (a) Conventional gate-driven nMOS and (b) bulk-driven nMOS 

 

 

 

 

 

Figure 2.  Simulating transconductance characteristics of gate-driven and 
bulk-driven nMOS transistors [3] using a 0.35µm CMOS Process 

As shown in Fig. 2, to operate the gate-driven MOS 
transistor in the active region, the gate-to-source voltage 
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needs to be greater than the threshold voltage (which is 
approximately 0.6 volts in this case). On the other hand, the 
bulk-driven MOS transistor behaves in a similar fashion to a 
depletion MOS transistor or a Junction Field Effect 
Transistor (JFET). Therefore, with the zero-bias voltage at 
the input node, the transistor is still in the active region. This 
is the key characteristic of a bulk-driven MOS transistor we 
use in designing low-supply voltage op-amps and other 
analog circuits. The two fundamental advantages of using the 
bulk-driven devices are: 

• Bulk-driven differential pairs in op-amps 
significantly improve the Input Common-Mode 
Range (ICMR) since a bulk-driven device allows an 
extension in its input range on the negative side, as 
illustrated in Fig. 2. With proper design of the bulk-
driven differential pair, the devices can remain 
saturated over the entire rail-to-rail ICMR. 

• Bulk-driven current mirrors, as shown in Fig. 3(a), 
can eliminate the large voltage drop across the input 
device. This is because the voltage drop across the 
input device VDS, which is equal to the bulk-to-
source voltage VBS, does not need to be greater than 
the threshold voltage VT0 for proper operation. The 
cascode configuration, as shown in Fig. 3(b), can be 
used to improve current matching and increase the 
finite output impedance of the current mirror. In this 
configuration, the voltage drop across the input 
devices still remains below the threshold voltage. 

 

 

 

 

 

 

Figure 3.  Bulk-driven current mirror (a) simple (b) cascode 

However, there are several disadvantages of bulk-driven 
MOS transistors, which are all described in detail in [3]. The 
two fundamental ones are: 

• As shown in Fig. 2, the transconductance of the 
bulk-driven MOS transistor gmb is less than the 
transconductance of the conventional gate-driven 
MOS transistor gm. (gm and gmb are the slopes of its 
drain current versus its input voltage at the bias 
point). Therefore utilizing a bulk-driven differential 
pair for op-amp design introduces a challenge in 
achieving high open-loop gain. Equation (1) is the 
level-1 model expression for gmb/gm ratio, η, which is 
typically 0.2 to 0.4, dependent on the Common-
Mode Level (CML) of the input: 

η = gmb/gm = (γ/2)(2|ΦF|-VBS)-0.5 

• The polarity of the bulk-driven MOS transistor is 
process related as wells are required to isolate the 
bulk-terminals. For a standard digital CMOS 
technology (i.e. n-well process), only pMOS can be 
bulk-driven. If both polarities need to be bulk-
driven, then a twin-well technology is required. 

III. STATE-OF-THE-ART AND DESIGN OBJECTIVE 
The op-amp design presented in [3] is a single-ended 

amplifier, which operates at 1-volt power supply using a 
standard digital CMOS technology with a threshold voltage 
of 0.8 volts. Their achieved open-loop gain is 48.8dB with a 
unity-gain bandwidth of 1.3MHz at 22pF load. 

The op-amp design presented in [4] is a 0.8 volt fully 
differential OTA using a twin-well CMOS technology, and it 
utilizes a gain-boosting technique to increase the open-loop 
gain to 68dB with a unity-gain bandwidth of 93.3MHz with 
no load condition. 

This paper reports on and demonstrates an alternative 
approach of increasing the open-loop gain of a fully 
differential folded-cascode OTA without the use of 
additional circuit or extra power consumption. In the next 
section, the design of 0.8 volt 60dB fully differential OTA is 
presented using a 0.35µm CMOS twin-well technology 
having a threshold voltage of 0.6 volts. 

IV. PROPOSED SCHEMATICS 

A. OTA 
A one stage folded-cascode OTA using bulk-driven 

differential pairs at the input stage, which is illustrated in 
Fig. 4, was chosen for the low power-supply voltage 
amplifier.  

 

 

 

 

 

 

 

 

 

 

Figure 4.  Proposed core OTA 

• Complementary Bulk-Driven Differential Pair 

As mentioned in section II, the depletion characteristics 
of an nMOS transistor allow the ICMR to extend below the 
negative power supply. The transconductance of an nMOS 
transistor, however, increases by increasing the ICMR [3]. 

(1) 
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This effect can be illustrated by simulating the 
transconductance of an nMOS transistor with the set-up 
shown in Fig. 5(a). The results of the simulation are shown 
in Fig 6. The variance of the input transconductance causes 
the op-amp open-loop gain and also the phase margin to vary 
with ICMR. For a pMOS transistor with the setup illustrated 
in Fig. 5(b), the complementary characteristics can be 
observed as illustrated in Fig. 6. 

 

 

 

 

Figure 5.  Set up for simulating (a) gmb1 and (b) gmb3 

 

 

 

 

 

 

Figure 6.  Simulation plots of gmb1 and gmb3 

In order to reduce the variance of the input 
transconductance, complementary differential pairs can be 
utilized [5], as the results demonstrate in Fig. 6. The overall 
transconductance variation, which is the sum of the 
transconductance of the nMOS and pMOS transistors, is 
improved by approximately 50%. To achieve a 
transconductance with minimum variations, a proper W/L 
ratio for the nMOS and pMOS transistors should be carefully 
selected. 

• Cascode Devices 

As can be realized from (1), the transconductance of a 
bulk-driven differential pair is less than that of a gate-driven 
differential pair, causing a challenge in achieving high open-
loop gain for the amplifier. One possible method to increase 
the open-loop gain is to increase the output resistance. The 
output resistance of the core OTA in Fig. 4 can be 
approximated to: 

Rout≈(gm7+gmb7)ro7(ro5//ro1)//(gm9+gmb9)ro9(ro11//ro3) 

From (1) it can be realized that gmb7 and gmb9 can be 
increased as the bulks are slightly forward-biased. Therefore 
if a twin-well process is available, the bulks of cascode 
transistors could be slightly forward-biased. As an 
numerical example, for the term (gm+gmb), which equals to 
(1+η)gm, the η can be increased by approximately 0.04 when 
VBS of the nMOS and pMOS cascode transistors are 

increased from -0.1V to 0.2V in a 0.35µm CMOS 
technology.   

B. Common-Mode Feedback 
To stabilize the CML of the two outputs to be midway 

between the power-supply voltages the Common-Mode 
FeedBack (CMFB) is required. Fig. 7 illustrates typical 
circuit diagrams of continuous-time CMFB circuits [2], [7]. 

 

 

 

 

Figure 7.  Typical CMFB circuit (a) current output and (b) voltage output 

The problem of using the CMFB circuit shown in Fig. 7 in a 
low-supply-voltage environment is that the reference input 
VCM_REF and the output CML of the OTA have to be greater 
than the threshold voltage for the circuit to operate in the 
active region. To overcome this problem, bulk-driven 
devices can be utilized. The proposed CMFB circuit is 
illustrated in Fig.8. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Proposed (a) nMOS driven CMFB and (b) pMOS driven CMFB 

These proposed CMFB circuits are simply the same as 
Fig. 7(b) with the bulk-driven differential pairs and current 
mirrors included. MC05P and MC22N are added extra to 
improve the input range of operation, which is the output 
range of the core OTA. Simulation results of this proposal 
are shown in Fig. 9. 

 

 

 

 

Figure 9.  Verification of the proposed CMFB circuit 
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The simulation results shown in Fig. 9 imply that the bulk-
driven technique can also be a strong candidate for low-
voltage CMFB design. 

C. Supply-Independent Bias Circuit 
The supply independent bias circuit presented in [6], as 

shown in Fig. 10(a), can be operated at a minimum supply 
voltage of VT0+2VDSsat. This is very suitable for low-voltage 
systems and therefore applied for generating VBIAS1 and 
VBIAS4. For generating VBIAS2 and VBIAS3, which have to be less 
than VT0, bulk-driven devices can be utilized as shown in Fig. 
10(b). 

 

 

 

 

 

Figure 10.  (a) Using the supply-independent bias circuit presented in [6] 
for generating VBIAS1 and VBIAS4 and (b) bias voltage generator for VBIAS2 and 

VBIAS3 

Simulation results of Fig. 10 are illustrated in Fig. 11. 

 

 

 

 

 

Figure 11.  Effects of bias voltages with respect to (a) VDD and (b) VSS 

As expected and seen in Fig.11, VBIAS1 and VBIAS2 are 
independent of VSS and therefore suitable for biasing pMOS 
devices. Similarly, VBIAS3 and VBIAS4 are independent of VDD 
and therefore suitable for biasing nMOS devices. 

D. Simulation Results 
Alcatel’s 0.35µm CMOS twin-well technology was used 

to verify the proposal. The open-loop gain and the phase 
margin of the OTA with a load capacitance of 5pF is 
depicted in Fig. 12. The overall OTA characteristic is shown 
in Table I. 

CONCLUSION 
 This paper explored the approach of low-voltage OTA 

design using the bulk-driven technique. The observed 
advantages are: 

• As previously pointed out by [3], bulk-driven 
differential-pairs can provide rail-to-rail ICMR 
operation, and bulk-driven current mirrors can 

 

 

 

 

 

Figure 12.  Plots of open-loop gain and phase margin 

TABLE I.  SUMMARY OF OTA PERFORMANCE 

Characteristics Simulated Value 
Open-loop DC gain 66dB 
Unity gain-bandwidth 3.4MHz  
Total current consumption 243µA 
Phase margin >80° 
Differential output voltage swing 1V 
Slew rate SR+=4.7V/µs, SR-=5.1V/µs 
ICMR 0.8V 
VDD = 0.8V, VSS=0V, VICM = 0.4V, CL = 5pF 
 

be operated with less voltage headroom 
consumption. 

• With the use of bulk- and gate-biased cascodes, the 
output resistance of a folded-cascode fully 
differential OTA can be increased with no additional 
circuit or extra power consumption. 

• Bulk-driven CMFB can sense the input common-
mode voltage smaller than the threshold voltage. 

In summary, the bulk-driven technique has been shown 
to be a serious contender for low-supply voltage amplifier 
design. 
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Abstract— This paper presents a new design approach for a 
rail-to-rail bulk-driven input stage using a standard single-well 
(n-well in this paper) CMOS technology. This input stage can 
provide nearly constant transconductance and constant slew 
rate over the entire input common-mode voltage, operating 
with a wide supply voltage ranging from sub 1-volt 
(VT0+3VDSsat) to the maximum allowed for the CMOS process, 
as well as preventing latch-up. 

I. INTRODUCTION 
Lowering of the supply voltage in portable electronics 

has always been a priority for many years, as it allows 
reduction in the number of battery cells rendering the 
products more compact and light, and leading to decreased 
power consumption of the digital circuits. However, in 
analog circuits, particularly op-amps in unity-gain 
configuration, lowering the supply voltage degrades the 
signal-to-noise ratio. As a consequence, those op-amps 
require rail-to-rail input and output stages. 

For the input stage, it is essential that its effective 
transconductance (gm) is nearly constant over the rail-to-rail 
Input Common-Mode Range (ICMR), as the large variation 
introduces signal distortion and creates difficulty in the 
frequency compensation of the multi-stage op-amps [1], [7]. 
Traditionally, complementary differential pairs are used to 
achieve the rail-to-rail operation, and the tail current is 
controlled with current switches to keep the gm constant [1]. 
However, the mobility ratio of the complementary pairs 
(µn/µp) is process- and temperature-dependent, causing the gm 
variation to deviate by approximately 12% [2]. This 
motivates designers to come up with new circuit topologies 
using only a single type of the differential pair. Currently 
three candidates have been proposed – level-shifting [2], 
floating-gate [3], and the bulk-driven [4] techniques. 

At the present time, the bulk-driven technique is probably 
the least popular, since the transconductance of a bulk-driven 
MOSFET (gmbs) is dependent on the bulk-to-source voltage 
(VBS). The level-1 model of the gmbs is given by: 

          gmbs = γ (2βIDS )0.5 / 2 (2|ΦF| - VBS)0.5       (1) 

where γ is the bulk-threshold parameter, β is the small-signal 
transconductance parameter, IDS is the drain current, and 
2|ΦF| is the surface potential. The gmbs is typically only 20-
40% of the gate-driven transconductance [4]. However, the 
beauty of a bulk-driven MOSFET is that it removes the 
threshold voltage constraint. This property makes the bulk-
driven approach worthy of development to improve its 
performance. 

So far three proposals are available for improving the gm 
variation of the Bulk-Driven Differential Pair (BDDP) – the 
complementary BDDP [5], the Replica-Biased Scheme 
(RBS) [5], and the feedback techniques [6]. The 
complementary BDDP technique utilizes the complementary 
behavior of the pairs to reduce the gm variation. However, a 
special CMOS technology (e.g. a twin-well process) is 
required for the implementation. The RBS, as illustrated in 
Fig. 1, biases the gates of the pair to keep VBS = 0 so that the 
gmbs becomes constant. The problem is, however, VBS = 0 
means VB = VS, and it is impossible for the source-coupled 
voltage to swing rail-to-rail. Thus the gm is constant over 
only a portion of the rail-to-rail ICMR. The feedback 
technique senses the input common-mode voltage (VICM) and 
adjusts the tail current to reduce the gm variation; however, 
this causes the Slew Rate (SR) to become VICM dependent. 

 

Figure 1.  The bulk-driven RBS proposed in [5] 

This paper presents a new bulk-driven rail-to-rail input 
stage using a standard single-well (n-well in this paper) 
CMOS process. This input stage achieves almost constant-gm 
and constant-SR, working with a wide supply voltage 
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ranging from sub 1-volt (VT0+3VDSsat) to the maximum 
allowed by the CMOS process, and also diminishes the 
latch-up likelihood. 

II. THE NEW BULK-DRIVEN INPUT STAGE 

A.  Topology 
The idea of our bulk-driven input stage comes from 

utilizing two pairs of the RBS to cover all portions of the 
rail-to-rail ICMR. Fig. 2 illustrates the topology of our 
approach, which we call the Bulk-Driven Double Replica-
Biased (BDDRB) input stage. 

 

Figure 2.  Topology of the BDDRB input stage 

The BDDRB input stage consists of pair-1 
(MP01∼MP03) and pair-2 (MP04∼MP06), which are 
assigned for the low and high portions of the ICMR, 
respectively, and a current switch. 

The device sizes of pair-1 are all the same, and the same 
dc current runs through each device when the pair is 
selected. This leads MP03 to be the replica of the input pair, 
and VBS1,2 to be equal to VGS3 (= constant). The same 
argument goes to pair-2 except that VBS5,6 would be zero 
instead. The pair-1 would be operational for the ICMR 
between VDD-VSDsat-VSG3 and VSS+VDSsat, and for pair-2 the 
operational range would be between VDD-VSDsat and 
VSS+VDSsat+VSG4. To maximize the ICMR a current switch is 
implemented so that the effective ICMR would be between 
VDD-VSDsat and VSS+VDSsat. 

B. Principle of Operation 
Fig. 4(a) illustrates how the BDDRB input stage can be 

realized as a transistor circuit. Again, MP01~MP03 (pair-1) 
and MP04~MP06 (pair-2) are the replica-biased input pairs 
for the low and high portions of the ICMR, respectively. 
MP09~MN12 form a current switch and work as a function 
of VICM. This input stage is configured such that it normally 
operates with pair-1. When VICM becomes high and causes 
VSG9 to be greater than the threshold voltage (|VT0|), the 
switch deactivates pair-1 and activates pair-2 instead. 
Conversely, when VICM becomes low and causes VSG9 < |VT0|, 
pair-1 turn on and pair-2 turns off. The bias-voltage, VSWITCH, 
controls the crossover voltage between the two points. 

To verify the operation of the BDDRB input stage, it was 
necessary to implement it in an op-amp. For this we chose a 
folded-cascode two-stage op-amp, as illustrated in Fig. 4(b), 
to present as an application example. 

III. SIMULATION RESULTS 
Using the BSIM3 MOSFET models of a 0.18µm CMOS 

process, we simulated the op-amp of Fig. 4 with a supply 
voltage of 0.8-volt and a load resistance and capacitance of 
1MΩ and 5pF, respectively. Table I shows the summary of 
the simulation results. 

TABLE I.  SIMULATION RESULTS OF THE  OVERALL PERFORMANCE 
OF THE OP-AMPS IN FIGURE. 4 

Characteristics Simulated Results 
Open-loop DC gain 60dB 
Unity-gain frequency 0.6MHz 
Phase margin 58° 
ICMR 0.6V 
Total current consumption 61~74µA (VICM dependent) 
SR SR+ = 1.0V/µs, SR- = -0.5V/µs 
Output voltage swing 0.6V 
Common-mode rejection ratio 63dB (when VICM = 0.5(VDD+ 

VSS)) 
Power Supply Rejection Ratio 
(PSRR) 

PSRR+ = 58dB, PSRR- = 79dB 

Input referred noise voltage 146~169nV/√Hz (white noise 
only, VICM dependent) 

Total harmonic distortion, 
AVCL=+1V/V 

0.014% (-77.1dB) 
    for 0.6Vp-p, 1kHz sine wave 
0.093% (-60.6dB) 
    for 0.6Vp-p, 10kHz sine wave 

Measurement condition: VDD = 0.8V, VSS = 0V, CL = 5pF, RL=1MΩ 
 

The simulation confirmed the rail-to-rail ICMR operation 
(VDD-VSDsat14 to VSS+VDssat07 precisely). Fig.3 and Fig. 5 
show the simulation results of the open-loop gain frequency 
response and the effective tail current of the op-amp in Fig. 
4, which indicate that both characteristics are nearly VICM 
independent. Fig. 6 gives the simulation results of the 
effective transconductance [gm(eff)] of the op-amp versus 
VICM. 

 

Figure 3.  Simulated frequency response of the op-amps for VICM varying 
from 0.1 to 0.7V with a 0.1V step 
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Figure 4.  An application example of the BDDRB input stage in a folded-cascode two-stage op-amps                                                               
(a) the BDDRB input stage, and  (b) a folded-cascode two-stage op-amps

 

Figure 5.  Simulated tail current vs VICM 

 

Figure 6.  Simulated gm(eff) vs VICM 

Fig. 6 indicates that the gm variation is approximately 
10% over the rail-to-rail ICMR operation. This variation 
peaks at the transition point between the two pairs, i.e. when 
the pairs are partially on and off. It is worth noting that the 
source-to-bulk voltage of the input pairs (VSB1 and VSB5) 

change at the transition stage, which should also have created 
a major impact in the gm variation according to (1). Fig. 7 
shows the simulation results of VSB1 and VSB5 versus VICM. 

 

Figure 7.  Simulated VSB1 and VSB5 vs VICM 

IV. ADVANTAGES AND DISADVANTAGES 
An important practical advantage of the BDDRP input 

stage is that it requires no special CMOS process. Other 
advantages are gm(eff) and SR of the op-amp remain 
relatively constant with respect to VICM, and the circuit 
prevent latch-up. Conventional BDDP techniques require 
very low supply voltages, otherwise the rail-to-rail ICMR 
operation would cause the bulk terminals to be strongly 
forward-biased. With the BDDRB input stage, the bulk-to-
source voltages remain as the same condition as the replica 
device regardless of the supply voltage condition. For 
confirmation, we simulated the circuit of Fig. 4 with a 3-volt 
power supply and observed that the rail-to-rail ICMR 
operations did not result in any significant input current or 
substantial forward-biased pn junctions. 

However, in comparison to previously mentioned bulk-
driven techniques, our proposal increases input referred 
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noise. Previously mentioned bulk-driven techniques utilize 
the depletion-mode characteristics of a MOSFET so that the 
input pair can be always on for rail-to-rail. In contrast, our 
input stage has two pairs connected in parallel, and except in 
the transition stage one of the pair is off. The off-pair 
contributes additional thermal noise, as it is inversely 
proportional to gmbs [11]. 

Another drawback to previously mentioned bulk-driven 
techniques is the increase in input capacitance, since two 
input pairs are utilized in our proposal. The input capacitance 
of a bulk-driven MOSFET consists of Cbsub and Cbs, where 
Cbsub is the well-to-substrate capacitance and Cbs is the bulk-
to-source capacitance. Cbsub depends on layout design, and a 
detail description is given in [4]. Cbs, on the other hand, can 
be controlled by circuit designers to some extent as it is 
directly related to its source-to-bulk voltage. Reducing the 
forward-bias of the bulk-terminal results in decreased Cbs as 
well as increased input resistance. With the BDDRB input 
stage, this can be easily achieved by decreasing the source-
to-bulk voltage of the replica device (VSB3 of Fig 4(a), which 
is equivalent to VSG3). Fig. 8 illustrates the simulation results 
of the input impedance measurements for the op-amp shown 
in Fig. 4. 

 

Figure 8.  Simulation results of the circuit-level input impedance 
characteristic 

V. CONCLUSION 
A new approach for the bulk-driven input stage called 

BDDRP to achieve rail-to-rail ICMR operation has been 

presented. This approach leads the operational supply 
voltage to be from under 1-volt to the maximum allowed by 
the CMOS process used, as well as diminishing the latch-up 
problem.  SPICE simulations indicate that the gm is nearly 
constant (within 10%) over the entire ICMR whilst the 
effective tail current remains almost unchanged. The 
additional hardware implemented to achieve this 
performance is only a replica circuit for each pairs and a 
current switch. 
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Abstract— A voltage buffer so-called the bulk-driven flipped 
voltage follower is presented. This proposal is based on the 

Flipped Voltage Follower (FVF) technique, but a bulk-driven 
MOSFET with the replica-biased scheme is utilized for the 
input device to eliminate the DC level shift. The proposed 

buffer has been designed and simulated with a 0.35µµµµm CMOS 

technology. The input current and capacitance of our proposal 

are 1.5pA and 9.3fF respectively, and with 0.8V peak-to-peak 
500kHz input, the total harmonic distortion is 0.5% for a 10pF 
load. This circuit can operate from a single 1.2V power supply 

and consumes only 2.5µµµµA. 

I. INTRODUCTION 

Voltage buffers play an essential role in analog and 
mixed-signal circuits and processing systems, where they are 
widely used for driving large capacitive loads at high speeds. 
The ideal performance of a voltage buffer is not only to drive 
the large load as fast as possible but also with minimal power 
consumption, which means that the buffer needs to have high 
slew rate and low static power consumption. Today, it is 
evident that the Flipped Voltage Follower (FVF) proposed 
by R. G. Carvajal et al in [1] is one of the closest to the ideal 
voltage buffer, as many recent proposals are utilizations 
and/or modifications of the FVF [2]-[5]. 

Recently, the new version of the class-AB FVF that is 
free from the DC level-shift has been proposed by Ramirez-
Angulo et al [5]. In this paper, we present a much simpler 
technique which can eliminate the DC level shift and convert 
into class AB operation, whilst preserving the advantages of 
the FVF approach– low-power consumption with high-
power drive. 

II. PREVIOUS ESSENTIAL WORKS 

This section covers a brief review of voltage followers 
and the bulk-driven MOSFETs used in a differential pair, 
which we have utilized and forms the essential part of our 
proposal. 

A. Voltage followers 

Figure 1 illustrates two types of voltage followers. Figure 
1(a) is the conventional type of a voltage follower, which is 
also known as a source follower [6]-[7]. The input device 
MP01 is biased with the drain current of IREF, therefore the 
gate-to-source voltage VGS MP01 becomes constant if the body-

effect is neglected, and therefore the output voltage VOUT is 
equal to VIN + VGS MP01. Figure 1(b) illustrates the FVF, in 
which VOUT is also shifted up by VGS MP01 from VIN, however, 
in contrast to Figure 1(a), the beauty of the FVF is that it has 
current sourcing and sinking capabilities at the output, which 
can lead to delivering both high-power driving as well as 
low-power consumption simultaneously. 

 

Figure 1.  Voltage followers (a) common-drain amplifier (volotage 

follower) and  (b) FVF proposed in [1] 

B. Bulk-driven MOSFETs used  in differential pairs  

 
Figure 2.  Bulk-driven differential pair (a) pMOS input pair and              

(b) the replical-biased scheme proposed in [10] 

In low-voltage rail-to-rail operational amplifier designs, 
there exists a design technique called the bulk-driven 
approach. The traditional design technique for rail-to-rail 
operational amplifiers is the deployment of complementary 
differential pairs with the tail current being controlled with 
current switches to keep the gm constant [8]. However, due to 
the fact that the mobility ratio of the complementary pairs 
(µn/µp) is process- and temperature dependent, causing the gm 
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variation to deviate by approximately 12% [9], there exist 
circuit topologies which use only a single type of the 
differential pair, where one of them is the bulk-driven one. 
Figure 2(a) illustrates a bulk-driven differential pair that uses 
p-type devices only. 

The primary problem of Figure 2(a), however, is that the 
transconductance of a bulk-driven MOSFET (gmbs) is 
dependent on the bulk-to-source voltage (VBS). The level-1 
model of the gmbs is given by: 

       gmbs = γ (2βIDS )
0.5

 / 2 (2|ΦF| - VBS)
0.5

       (1) 

where γ is the bulk-threshold parameter, β is the small-signal 
transconductance parameter, IDS is the drain current, and 
2|ΦF| is the surface potential. 

To overcome the concern of gmbs dependency over the VBS, 
Blalock et al [10] proposed the Replica-Biased Scheme 
(RBS) as illustrated in Figure 2(b). The pMOS identified as 
MP03 is the replica device biasing the gates of the pair. 
Since the bulk of MP03 is shorted with its source, the VBS of 
the pair is kept at zero. 

We have noted the advantage from Blalock’s approach 
namely that the condition of VBS = 0 is kept constant, 
meaning VB = VS, and we chose to apply this to the FVF 
illustrated in Figure 1(b) to remove the DC level shift. 

III. PROPOSED BULK-DRIVEN FLIPPED VOLTAGE 

FOLLOWER 

Figure 3 illustrates our proposal of the modified FVF, 
which we have named as “Bulk-Driven Flipped Voltage 
Follower (BDFVF)”. As mentioned in the previous section, 
this is the FVF for which the input device has been modified 
to a bulk-driven MOSFET biased by the replica circuit to 
eliminate DC level shift. 

 

Figure 3.  Bulk-driven flipped voltage follower (class-A) 

The operation principle of the BDFVF of Figure 3 is very 
simple to follow. MP1, MP3, and MN4 form the FVF. MP1 
is the input device, which its bulk is utilized to feed the 
input. MP2 and MN5 are the replica devices for MP1 and 
MN4 respectively. Note that the bulk of MP2 is physically 
shorted to its source, which is the output node. Since the gate 
of MP1 is biased with the diode-connected MP2, as well as 
the drain current of MP1 and MP2 are equally set to IREF, 
VB and VS of MP1 becomes virtually shorted (i.e. VBSMP1 = 0), 
and in effect the output voltage VOUT becomes equal to VIN. 

Our proposal of Figure 3 works well, however since it is 
class-A type there is a limitation in its sink capability to 
2IREF, which leads to poor pull capability in driving large 
loads at high speed. To overcome this problem, we have 
modified the circuit of Figure 3 to class-AB type as shown in 
Figure 4. 

 

Figure 4.  Proposed class-AB bulk-driven flipped voltage follower 

The difference of Figure 4 from Figure 3 is that only 
MN4 has been modified to diode-connected instead of the 
constant bias to IREF. In this way, MP1 and MP2 can also 
have the same drain current and hence the replica-biased 
scheme remains valid. This simple change has lead to 
significant improvement in the sink capability of the output 
without the need of widening MN4 or MN5 or increasing 
IREF. In the next section, simulation results are provided. 

IV. SIMULATED RESULTS 

A. Overall Performance 

Using the BSIM3 MOSFET models of a 0.35µm CMOS 
process, we designed and simulated the BDFVF of Figure 4. 
Table I shows the simulation results summarizing the overall 
performance. 

TABLE I.  SIMULATION RESULTS OF THE OVERALL PERFORMANCE 

OF THE CLASS AB DBFVF CIRCUIT OF FIGURE. 4 

Parameter Simulated results 

3dB frequency 2.8MHz 

Total current consumption 

(when IL=0) 
2.5µA 

Slew rate (VDD=2V, VSS=0V, 

CL=10pF, VIN=1V↔2V) 

1.9V/µs 

PSRR+ / PSRR- 41.7dB / 42.0dB 

(dc to 100kHz) 

1/f noise at 1kHz 880nV/√Hz 

THD (Vpp=0.8V VDD=1.5V, 

VSS=0V, CL=10pF) 

0.0747% when f=1kHz 

0.0794% when f=100kHz 

0.501% when f=500kHz 

Input voltage range (VDD=2V, 

VSS=0V) 

1V to 2V 

For offset ≤ 10mV 

Load regulation ±15µA for offset ≤ 10mV 

Input current 1.5pA 

Input capacitance 9.3fF 

Unless stated, the set up condition is: 

VDD=1.2V, VSS=0V, VIN=1V, CL=10pF, IL=0µA 
 

Figure 5 illustrates the simulated plot of VOUT versus VIN 
with the setup of VDD = 2V and VSS = 0V. The simulation 
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results indicate that the offset between VOUT and VIN was 
10mV for the input range from 1V to 2V. 

 

Figure 5.  VOUT vs VIN (VDD=2V, VSS=0V) 

Figure 6 illustrates the simulated plot of VOUT with a 
sinusoidal VIN input with 0.8V peak-to-peak magnitude and 
500kHz frequency, and with the set up of VDD = 2V, VSS = 
0V, and CL = 10pF. The simulation results indicate that the 
Total Harmonic Distortion (THD) was 0.5%. 

 
Figure 6.  VOUT and VIN  with 0.8Vpp 500kHz sinusoidal input (VDD=2V, 

VSS=0V, CL=10pF) 

Figure 7 illustrates the simulated plot of VOUT regulation 
capability against the load current IL. With the setup of VDD 
= 1.5V, VSS = 0V, and VIN =1V, the simulation results 
indicate that VOUT kept on regulated within 10mV until the 

load current reaches to ±15µA. 

B. Input impedance 

Using bulk-driven MOSFETs in a differential pair of the 
operational amplifier is known to be a disadvantage in input 
current and capacitance [11]. In this sub-section, we present 
the theoretical overview as well as the simulated results to 
state that this disadvantage is not the case with the BDFVF. 

1) Input current 
With a bulk-driven MOSFET as an input device, the 

input signal is fed into the pn-junction of the MOSFET. The 
current through the pn-junction IDpn is modeled by Equation 
2 [12]-[13]: 

 

Figure 7.  Load regulation (VDD=2V, VSS=0V, VIN=1V) 

      IDpn = IS exp(VD/VT)                      (2) 

where Is is the pn-junction current, which is also known as 
the scale current, when the voltage across the pn-junction VD 
is zero. VT is the thermal voltage, which is modeled as 

VT = kT/q        (3) 

where k is the Boltzmann constant (=1.38 x 10
-23

JK
-1

), T is 
the temperature in Kelvin, and q is the charge of an electron 
(=1.602 x 10

-19
C). At room temperature, VT is approximately 

26mV. 

Is can be described as in Equation 4: 

Is ∝ AD [(1/NA) + (1/ND)]        (4) 

where AD is the area of the diode junction, and NA and ND 
are the doping concentrations of the acceptors and donors 
respectively. 

In the case of a bulk-driven differential pair, the input 
current is expected to be large because of the bulk being 
forward-biased. On the other hand for BDFVF, a large input 
current is not expected since the aim is to achieve a virtual 
short between the input and output. To affirm this theoretical 
consideration further, we have simulated deploying the setup 
used for arriving at Figure 5 to observe the offset behavior 
and the input current, as shown in Figure 8 and 9 
respectively. 

 

Figure 8.  Offset voltage of Figure 5 
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Figure 9.  Input current (VDD=2V, VSS=0V) 

The simulated result of Figure 9 shows that the input 
current remains at less than 1.5pA. 

2) Input capacitance 
The capacitance of the pn-junction Cj can be modeled by 

Equation 5 [11]-[13]: 

Cj = Cj0 / (1+(VSB/φ0))
0.5

          (5) 

In the case of a bulk-driven differential pair, the input 
capacitance is expected to be large because of the bulk being 
forward-biased. On the other side for BDFVF, a large input 
capacitance is not expected since the aim is to achieve a 
virtual short between the input and output. To affirm this 
theoretical consideration further, we have set up the 
simulation condition as shown in Figure 10. 

 

Figure 10.  Simulation setup for the input capacitance 

The simulated plot of the setup in Figure 10 is given in 
Figure 11. 

 

Figure 11.  Simulation results for the Figure 10 setup 

 

 

From Figure 11, the time constant τ was found to be 
0.93ns. Hence, the input capacitance was determined as 

9.3fF (τ=RC). 

V. CONCLUSION 

A new type of FVF called BDFVF has been presented. 
This proposal utilizes a bulk-driven MOSFET with the 
replica-biased scheme as the input device to eliminate the 
DC level shift. The theoretical overview of the input current 
and capacitance has been provided, and the simulation 
results showed that the input current and capacitance are in 
the pico-amp and femto-Farad ranges. The attractive and 
advantageous performances of the FVF, such as high-power 
driving and low-power consumption were retained. The 
BDFVF is a powerful block of the FVF family which is free 
of level shift. 
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CMOS buffer using complementary pair of
bulk-driven super source followers

Y. Haga and I. Kale

A power-efficient rail-to-rail CMOS analogue voltage buffer is pre-
sented. It consists of a complementary pair of super source followers,
but a bulk-driven input device with the replica-biased scheme is uti-
lised to eliminate the DC level shift, quasi-floating gate transistors to
achieve class-AB performance, and a current switch which shifts
between the complementary pair to allow rail-to-rail operation. The
proposed buffer has been designed for a 0.35 mm CMOS technology
to operate at a 1.8 V supply voltage. Simulated results are provided
to demonstrate the total harmonic distortion for a 1.6 Vpp 100 kHz
sine wave with a 68pF load is as low as 246 dB, while the static
current consumption remains under 8 mA.

Introduction: Voltage buffers play a fundamental role in analogue and
mixed-signal circuits and processing systems, especially for applications
where the weak signal needs to be delivered to a large capacitive load
without being distorted [1, 2]. To accomplish this demand, the input
capacitance of the buffer needs to be as small as possible so that the
weak signal is not affected under any circumstances, and the output
stage needs to have a high slew-rate performance so that the signal
can remain driven with large capacitive loads. Furthermore, for appli-
cations in portable electronics, where the battery lifetime needs to be
extended to the maximum possible, the static power consumption of
the buffer must be small while the slew-rate remains high. This suggests
the use of a class-AB output stage in the buffer.

We recently proposed a CMOS buffer using a new circuit-design
technique, the so-called ‘bulk-driven flipped voltage follower’ [3], and
we demonstrated that this proposed buffer meets most of the needs men-
tioned above. In this Letter, we present a novel CMOS buffer based on
our previous work reported in [3] which implements additional features
of rail-to-rail power-efficient operation.

Class-AB bulk-driven super source follower: This Section briefly
describes the previous works [1–4] using Fig. 1, which we have utilised
to form the core part of our proposed CMOS buffer – a class-AB bulk-
driven super source follower.
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Fig. 1 Class-A source follower (Fig. 1a), class-A super source follower
(Fig. 1b), class-AB super source follower proposed by Lopez-Martı́n et al.
[2] (Fig. 1c), class-A bulk-driven super source follower (Fig. 1d), class-
AB bulk-driven super source follower using proposed QFG technique [4]
(Fig. 1e)

Fig. 1a illustrates a conventional pMOS source follower, widely used
as a level-shifted voltage buffer [1, 2]. If the body-effect is neglected,
then the output voltage VOUT follows the input voltage VIN with an
upward DC shift, i.e. VOUT ¼ VINþ VSGMP01, where VSGMP01 is
the source-to-gate voltage of the transistor MP01. In the case of an
nMOS source follower, VOUT is instead shifted down from VIN. This
conventional source follower is widely used, however the drawback is
that it is sensitive to resistive loads. Since the drain current of MP01
is affected by the output current, the DC-level VSGMP01 cannot be
kept constant. To overcome this concern, there exists a buffer which is

often referred to as a super source follower [1], as shown in Fig. 1b.
The topology of Fig. 1b is the same as Fig. 1a, but since the drain
current through MP01 is biased with a constant current IREF and is inde-
pendent of the output current, VSGMP01 is also held constant against the
output current. Today, we can observe many published proposals using
this super source follower.

Recently, López-Martı́n et al. emphasised in [2] that despite the
output becoming much more insensitive to resistive loads with the
super source follower, the slew-rate (SR) remains in class-A operation.
In the case of a pMOS super source follower as shown in Fig. 1b, the
positive SR is limited to IREF/CL, where CL is the load capacitance.
Hence increasing IREF leads to one possible approach for SR improve-
ment, but at a cost of greater static power consumption. To avoid this
trade-off, López-Martı́n et al. proposed a class-AB super source follower
[2] by using a quasi-floating gate (QFG) technique presented in [4].
Their proposed circuit diagram is depicted in Fig. 1c.

In Fig. 1c, the gate of MP04 is weakly connected to the gate of MP03
with a large resistor RLARGE, and also to the gate of MN02 with a
capacitor CBAT. In terms of DC characteristics, there exists no current
flow across RLARGE and therefore the gate voltage of MP03 and
MP04 are the same. Thus the static power dissipation between
Figs. 1b and c remains the same. In terms of AC characteristics, a high-
pass filter is formed with a cutoff frequency of 1/(2pRLARGECBAT),
when observed from the gate of MN02 to the gate of MP04. Thus the
AC element of the signal at the gate of MN02 can propagate to the
gate of MP04, which in turn achieves class-AB operation without intro-
ducing any extra static current consumption. Furthermore, it is remark-
able to realise in [2, 4] that a unity-size diode-connected MOSFET
but in the cutoff region can form a substantially large resistance of
RLARGE, which leads to achieving a low cutoff frequency 1/
(2pRLARGECBAT) with a moderately small capacitance of CBAT. In
[2], López-Martı́n et al. discuss the CBAT value in terms of attenuation
factor a (’1/(1þ CGS4/CBAT)). A CBAT greater than five times CGS4
leads to a . 0.83, which is enough to propagate almost all frequencies
except the DC component of the signal.

Fig. 1d illustrates the bulk-driven version of the super source follower,
which is the same type of circuit-design technique we previously pre-
sented in [3]. As can be observed, the input is connected to the bulk
terminal of MP01 instead of its gate. MP02 is the replica of the input
device MP01, i.e. MP02 and MP01 have equal transistor sizing and
are biased with the identical drain current and the gate voltage. Since
the bulk-terminal of MP02 is directly shorted to its source-terminal,
MP01 tends to replicate the conditions of MP02 and hence the
source-terminal follows the input voltage with no DC voltage in
between, thus VOUT ¼ VIN. Remarkably, the input capacitance CIN
of this type of buffer can be small because of the small junction capaci-
tance of MP01. The junction capacitance of a MOSFET Cj is given by:

Cj ¼ Cj0=ð1þ ðVSB=F0Þ
0:5
Þ

where Cj0 is the zero-bias (VSB ¼ 0) junction capacitance, VSB is the
bulk-to-source voltage, and F0 is the bulk junction potential. Since
VSB of MP01 in Fig. 1d is designed to be zero, the junction capacitance
of MP01 is constant at Cj0. We discuss the simulated value of CIN later
on in this Letter.

Fig. 1e shows a class-AB bulk-driven super source follower, where
the class-AB operation has been implemented to Fig. 1d with the
same technique proposed by Lopez-Martı́n et al. in [2]. However, we
have chosen a modified approach for implementing the CBAT.
Ramı́rez-Angulo et al. [4] stated that, regarding the significance of the
QFG technique, the actual value of CBAT does not need to be highly
accurate, as long as even a low frequency signal can be coupled.
Owing to and appreciating this fact, we attempted to eliminate the
need for a poly-poly capacitor, and chose to form the CBAT with a
MOSFET as shown in Fig. 1e. We observe that the size of the
MOSFET five times larger than MP05 is more than enough to achieve
good attenuation.

Proposed rail-to-rail class-AB CMOS buffer: We applied the bulk-
driven super source follower as shown in Fig. 1e in our design to
propose a rail-to-rail power-efficient CMOS voltage buffer. Fig. 2 illus-
trates the circuit diagram of our proposal.
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Fig. 2 Proposed class-AB rail-to-rail CMOS analogue buffer using com-
plementary pair of bulk-driven super source followers

The operation principle of Fig. 2 is very simple to follow. From MN01
to MN08 and from MP09 to MP16 form an nMOS-type and pMOS-type
of the bulk-driven super source follower, respectively, and from MP17
to MP24 forms a current switch. The Vswitch at the gate of MP17 deter-
mines the switching point between the two types of follower. When VIN
(and thus VOUT ) is close to VSS the pMOS follower is active while the
nMOS follower is off, and when VIN moves towards VDD, VOUT and
the drain voltage of MN02 also increase and eventually MP17 turns on
to reduce the drain current of MN01, MN02 and MN05 (i.e. to shut off
the nMOS follower) and instead to increase the drain current of MP09,
MP10 and MP13 (i.e. to activate the pMOS follower) to continue the
buffer operation.

Simulated results: Using a 0.35 mm CMOS process, we chose to
operate the circuit of Fig. 2 at 1.8 V supply voltage and simulated
with the BSIM3 MOSFET models. Table 1 shows the simulation
results summarising the overall performance. From Table 1 we empha-
sise that the proposed buffer of Fig. 2 meets the demands we discussed
in the Introduction. The input capacitance is as small as 17fF, the SR is
very high such that the buffer can deliver a 1.6 Vpp 100 kHz signal with
a total harmonic distortion as low as 246 dB when the capacitive load is
as large as 68 pF, while the static current consumption remains under
8 mA. Also the offset voltage remains as small as 10 mV throughout
the rail-to-rail operation.

Table 1: Simulated results of overall performance of Fig. 2

Parameter Simulated results

23 dB frequency 6 MHz

Static current dissipation 5 mA to 8 mA for VIN sweeping between VDD and VSS

Slew-rate SRþ ¼ 9.3 V/ms, SR 2 ¼ 13.7 Vms

Input capacitance 17fF

Offset voltage
,10 mV for VIN sweeping between
(VDD 2 50 mV) and (VSSþ 50 mV)

THD

252 dB (1.6 Vpp at 100 kHz, CL ¼ 10 pF)
250 dB (1.6 Vpp at 100 kHz, CL ¼ 22 pF)
247 dB (1.6 Vpp at 100 kHz, CL ¼ 47 pF)
246 dB (1.6 Vpp at 100 kHz, CL ¼ 68 pF)

Simulated condition: VDD ¼ 1.8 V, VSS ¼ 0 V, VSW ¼ 0.9 V, CL¼ 10 pF

Conclusion: A new type of CMOS buffer using the complementary pair
of bulk-driven super followers is presented. Utilising the bulk-driven
MOSFETs with the replica-biased scheme and the QFG techniques
into the buffer enabled us to have a few femto-Farad range of the
input capacitance so that the weak input signals are minimally affected,
while delivering the signal without much distortion even if the capaci-
tive load is very large. The static current consumption can remain
small too. Our proposed buffer can become a serious contender for
portable electronics needing to deliver weak analogue signals into
large capacitive loads with as little distortion as possible.
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Abstract—This paper describes a rail-to-rail CMOS analog 
voltage buffer designed to have extremely low static current 
consumption as well as high current drive capability. The buffer 
employs a complementary pair of super source followers, but a 
bulk-driven input device with the replica-biased scheme is 
utilized to eliminate the DC level shift, quasi-floating gate 
transistors to achieve class-AB performance, and a current 
switch which shifts between the complementary pair to allow 
rail-to-rail operation. The proposed buffer has been designed for 
a 0.35μm CMOS technology to operate at a 1.8V supply voltage. 
The simulated results are provided to demonstrate that the total 
harmonic distortion for a 1.6Vpp 100kHz sine wave with a 68pF 
load is as low as -46dB, whilst the static current consumption 
remains under 8μA. 

I. INTRODUCTION 
Voltage buffers are essential building blocks in analog and 

mixed-signal circuits and processing systems, especially for 
applications where the weak signal needs to be delivered to a 
large capacitive load without being distorted [1-2]. To 
accomplish this demand, the input capacitance of the buffer 
needs to be as small as possible so that the weak signal is not 
affected under any circumstances, and the output stage needs 
to have a high slew-rate performance so that the signal can 
remain driven with large capacitive loads. Furthermore, for 
applications in portable electronics, where the battery lifetime 
needs to be extended to the maximum as possible, the static 
power consumption of the buffer must be small whilst the 
slew-rate remains high. This suggests the use of a class-AB 
output stage in the buffer. 

The authors recently proposed a CMOS buffer using a new 
circuit-design technique so-called “bulk-driven flipped voltage 
follower” in [4], which they demonstrated that the proposed 
buffer meets most of the needs mentioned above. In this paper, 
we present a novel CMOS buffer based on our previous work 
in [4] but with additional features of rail-to-rail power-
efficient operation to maximize the dynamic range as much as 
possible whilst attaining low-static high-drive current. 

II. CLASS-AB BULK-DRIVEN SUPER SOURCE FOLLOWER 
 This section briefly describes the previous works [1-4] 

using Figure 1 and Figure 2, which we have utilized to form 
the core part of our proposed CMOS buffer – a class-AB bulk-
driven super source follower. 

 

Figure 1.  (a) class-A source follower, (b) class-A super source follower, 
and (c) class-AB super source follower proposed by Lopez-Martin et al [2] 

Figure 1a illustrates a conventional pMOS source follower, 
widely used as a level-shifted voltage buffer [1-2]. If the body-
effect is neglected, then the output voltage VOUT follows the 
input voltage VIN with an upward DC shift, i.e. VOUT = VIN + 
VSGMP01, where VSGMP01 is the source-to-gate voltage of the 
transistor MP01. In case of an nMOS source follower, VOUT is 
instead shifted down from VIN. This conventional source 
follower is widely used, however the drawback is that it is 
sensitive to resistive loads. Since the drain current of MP01 is 
affected by the output current, the DC-level VSGMP01 cannot be 
kept constant. To overcome this concern, there exists a buffer 
which is often referred to as a super source follower [1], as 
shown in Figure 1b. The topology of Figure 1b is the same as 
Figure 1a, but since the drain current through MP01 is biased 
with a constant current IREF and is independent of the output 
current, VSGMP01 is also held constant against the output 
current. Today, we can observe many published proposals 
using this super source follower. 
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Figure 2.  Bulk-driven super source followers (a) class-A operation, and (b) converting into class-AB operation using the QFG technique proposed by 
Ramìrez-Angulo et al [2-3] 

Recently, A.J. Lopez-Martin et al emphasized in their 
work in [2] that despite the output becoming much insensitive 
to resistive loads with the super source follower, the Slew-
Rate (SR) remains in class-A operation. In the case of a pMOS 
super source follower as shown in Figure 1b, the positive SR 
is limited to IREF/CL, where CL is the load capacitance. Hence 
increasing IREF leads to one possible approach for the SR 
improvement, but at a cost of larger static power consumption. 
To avoid this trade-off, A.J. Lopez-Martin et al proposed a 
class-AB super source follower in [2] by using a quasi-
floating gate (QFG) technique presented in [3]. Their 
proposed circuit diagram is depicted in Figure 1c. 

In Figure 1c, the gate of MP04 is weakly connected to the 
gate of MP03 with a large resistor RLARGE, and also to the gate 
of MN02 with a capacitor CBAT. In terms of DC 
characteristics, there exists no current flow across RLARGE and 
therefore the gate voltage of MP03 and MP04 are the same. 
Thus the static power dissipation between Figure 1b and 
Figure 1c remains the same. In terms of AC characteristics, a 
high pass filter is formed with a cutoff frequency of 
1/(2πRLARGECBAT), when observed from the gate of MN02 to 
the gate of MP04. Thus the ac element of the signal at the gate 
of MN02 can propagate to the gate of MP04, which in turn 
achieves class-AB operation without introducing any extra 
static current consumption.  Furthermore, it is remarkable to 
realize in [2-3] that a unity-size diode-connected MOSFET but 
in the cutoff region can form a substantially large resistance of 
RLARGE, which leads to achieving a low cutoff frequency 
1/(2πRLARGECBAT) with a moderately small capacitance of 
CBAT. In [2], A.J. Lopez-Martin et al discuss the CBAT value in 
terms of attenuation factor α (≈1/(1+CGS4/CBAT)). A CBAT 
greater than 5 times CGS4 leads α > 0.83, which is enough to 
propagate almost all frequencies except the DC component of 
the signal. 

Figure 2a illustrates the bulk-driven version of the super 
source follower, which is the same type of circuit-design 
technique the authors previously presented in [4]. As can be 
observed, the input is connected to the bulk terminal of MP01 
instead of its gate. MP02 is the replica of the input device 

MP01, i.e. MP02 and MP01 having equal transistor sizing and 
are biased with the identical drain current and the gate voltage. 
Since the bulk-terminal of MP02 is directly shorted to its 
source-terminal, MP01 tends to replicate the conditions of 
MP02 and hence the source-terminal follows the input voltage 
with no DC voltage in between, thus VOUT = VIN. Remarkably, 
the input capacitance CIN of this type of buffer can be small 
because of the small junction capacitance of MP01. The 
junction capacitance of a MOSFET Cj is given by: 

Cj = Cj0 / (1+ (VSB / Φ0)) 0.5 

where Cj0 is the zero-bias (VSB=0) junction capacitance, VSB is 
the bulk-to-source voltage, and Φ0 is the bulk junction 
potential. Since VSB of MP01 in Figure 1d is designed to be 
zero, the junction capacitance of MP01 is constant at Cj0. We 
will discuss the simulated value of CIN later on in this paper. 

Figure 2b shows a class-AB bulk-driven super source 
follower, where the class-AB operation has been implemented 
to Figure 1d with the same technique proposed by A.J. Lopez-
Martin et al in [2]. However, we have chosen a modified 
approach for implementing the CBAT. Ramìrez-Angulo et al 
stated the significance of the QFG technique in [3] that the 
actual value of CBAT does not need to be highly accurate, as 
long as even a low frequency signal can be coupled.  Owing to 
and appreciating this fact, we attempted to eliminate the need 
for a poly-poly capacitor, and chose to form the CBAT with a 
MOSFET as shown in Figure 1e. The authors observe that the 
size of the MOSFET five times larger than MP05 is more than 
enough to achieve good attenuation. 

III. PROPOSED RAIL-TO-RAIL CLASS-AB CMOS BUFFER 
We applied the bulk-driven super source follower as 

shown in Figure 2b in our design to propose a rail-to-rail 
power-efficient CMOS voltage buffer. Figure 3 illustrates the 
circuit diagram of our proposal. 
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Figure 3.  Proposed class-AB rail-to-rail CMOS analog buffer using a complementary pair of bulk-driven super source followers 

The operation principle of Figure 3 is very simple to 
follow. From MN01 to MN08 and from MP09 to MP16 form 
a nMOS-type and pMOS-type of the bulk-driven super source 
follower, respectively, and from MP17 to MP24 forms a 
current switch. The Vswitch at the gate of MP17 determines 
the switching point between the two types of follower. When 
VIN (and thus VOUT) is close to VSS the pMOS follower is 
active while the nMOS follower is off, and when VIN moves 
towards VDD, VOUT and the drain voltage of MN02 also 
increase and eventually MP17 turns on to reduce the drain 
current of MN01, MN02 and MN05 (i.e. to shut off the nMOS 
follower) and instead to increase the drain current of MP09, 
MP10 and MP13 (i.e. to activate the pMOS follower) to 
continue the buffer operation. 

IV. SIMULATED RESULTS 
Using a 0.35μm CMOS process, we designed to operate 

the circuit of Figure 3 at 1.8V supply voltage and simulated 
with the BSIM3 MOSFET models. Table 1 shows the 
simulation results summarizing the overall performance. 

TABLE I.  SIMULATED RESULTS OF THE OVERALL PERFORMANCE OF 
FIGURE 3 

Parameter Simulated Results 
-3dB frequency 6MHz 
Static current dissipation 5μA to 8μA for VIN sweeping between 

VDD and VSS 
Slew rate SR+ = 9.3V/μs, SR- = 13.7Vμs 
Input capacitance 17fF 
THD -52dB (1.6Vpp@100kHz, CL=10pF) 

-50dB (1.6Vpp@100kHz, CL=22pF) 
-47dB (1.6Vpp@100kHz, CL=47pF) 
-46dB (1.6Vpp@100kHz, CL=68pF) 

Simulated condition:  VDD=1.8V, VSS=0V, VSW=0.9V, CL= 10pF 
 

From Table 1 we emphasize that the proposed buffer of 
Figure 2 meets the demands we discussed in the Introduction. 
The input capacitance is as small as 17fF, the SR is very high 
such that the buffer can deliver a 1.6Vpp 100kHz signal with a 

total harmonic distortion as low as -46dB when the capacitive 
load is as large as 68pF, whilst the static current consumption 
remains under 8μA. Figure 4 is the simulated results of DC-
sweeping the VIN, which indicates that the offset remains small 
throughout the rail-to-rail operation. 

 

Figure 4.  Simulated results of the DC offset voltage versus VIN  
(VDD=1.8V, VSS=0V, Vswitch=0.9V) 

Fig 5 indicates the simulated results of the static current 
dissipation with DC sweeping the VIN between VDD and VSS. 

 

Figure 5.  Simulated results of the static current dissipation        
(VDD=1.8V, VSS=0V, Vswitch=0.9V) 
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Figure 6 illustrates the simulated results of the VOUT and 
the IOUT with VIN having 1.6V peak-to-peak 100kHz sine wave 
signal and a capacitive load CL of 68pF. 

 

Figure 6.  VOUT vs VIN and IOUT  with VIN = 1.6Vpp 100kHz sinewave and  
CL =68pF (VDD=1.8V, VSS=0V, Vswitch=0.9V) 

Figure 5 and Figure 6 show clearly that the goal of excellent 
power efficiency is achieved – during the static mode the 
current dissipation of the proposed buffer remains under 8μA, 
whereas IOUT can be pushed and pulled to approximately 
±40μA during the dynamic VIN so that the Total Harmonic 
Distortion (THD) of VOUT can be as small as -46dB even the 
CL is as large as 68pF.    

To verify the input capacitance of the proposed buffer 
shown in Figure 3, we have set up the simulation condition as 
shown in Figure 7. 

 

Figure 7.  Simulation setup for the input capacitance 

The simulated plot of the setup in Figure 7 is given in 
Figure 8. 

 

Figure 8.  Simulation results for the Figure 7 setup 

From Figure 8, the time constant τ was found to be 1.7ns. 
Hence, the input capacitance was determined as 17fF (τ=RC). 
 

V. CONCLUSION 
A new design technique for a CMOS buffer using the 

complementary pair of bulk-driven super followers has been 
presented. Applying the bulk-driven MOSFETs with the 
replica-biased scheme and the QFG techniques into the buffer 
enabled us to have a few femto-Farad range of the input 
capacitance so that the weak input signals are minimally 
affected, whilst delivering the signal without much distortion 
even if the capacitive load is very large. The static current 
consumption can remain small too. Our proposed buffer can 
become a serious contender for portable electronics needing to 
deliver weak analogue signals into large capacitive loads with 
as little distortion as possible. 
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Abstract— This paper explores a new design approach of a 
low-power high slew rate CMOS voltage buffer. The buffer is 
based on the Flipped Voltage Follower Pseudo Differential 
Pair, but the bulk-driven technique is utilized at the input 
stage to achieve rail-to-rail operation.  This buffer has been 
designed for a 0.35μm CMOS technology to operate at a 1.8V 
supply voltage. The BSIM3 simulated results are provided 
which demonstrate the open-loop gain of 50dB, gain 
bandwidth of 3MHz with a 5pF load, whereas the total static 
current consumption remains below 9μA. This paper also 
addresses the issue of latch-up problem that occurs with a 
large step input. 

I. INTRODUCTION 
Lowering of the supply voltage and the current 

consumption in portable electronics has been a top priority 
for many years, as it helps reducing the number of battery 
cells so that the product can be produced more compact and 
light. In digital circuits, lower supply voltage also leads to 
reduction of dynamic power consumption. 

In analog circuits, particularly voltage buffers which play 
an essential role in analog and mixed-signal circuits, 
lowering the supply voltage brings a challenge in achieving 
acceptable dynamic range. To overcome this issue, rail-to-
rail input stage would have to be adopted in the voltage 
buffer designs. Furthermore, lowering the static current 
consumption of voltage buffers causes less capability in 
driving large capacitive load at high speed. 

There is a published proposal of a differential pair so-
called Flipped Voltage Follower Pseudo Differential Pair 
(FVFDP) [1], which achieves high drive capability low static 
current consumption. Figure 1(a) and 1(b) illustrates the 
transistor realization of the FVFDP, and the simulated plot 
with IB set to 1μA using a 0.35μm CMOS process. 

 
Figure 1.  (a) (pMOS) FVFDP [1] and (b) simulating the DC transfer 

characteristics using a 0.35μm CMOS process 

In Figure 1(a), V1 and V2 are the differential input, and V3 
is the common-mode voltage of V1 and V2, i.e. (V1+V2)/2. As 
can be observed from Figure 1(b), when no differential 
signal is applied (i.e. V1=V2=V3, steady condition) the drain 
current of MP01 and MP02 (ID1 and ID2) become equal to IB, 
and when the differential signals are applied then ID1 and ID2 
can become much larger than the twice of IB. This low-static 
high-dynamic performance is not possible to achieve with 
the conventional differential pair. 

In this paper, we present a design of a CMOS voltage 
buffer using the FVFDP but with the bulk-driven technique 
[2] applied at the input stage, so that rail-to-rail low-power 
high-driving performances can be all achieved. 

II. BULK-DRIVEN MOSFET WITH DIODE 
This section discusses utilization of a reverse-biased 

diode with the bulk-driven MOSFET, as the CMOS voltage 
buffer proposed in this paper is based on this technique. 
Figure 2(a) and 2(b) illustrate the circuit diagram of a bulk-
driven pMOS connected with the reverse-biased diode, and 
a sketch of a diode realized in CMOS technology. 

 

Figure 2.  (a) bulk-driven pMOS with reversed-biased diode, and            
(b) diode in CMOS technology 

Figure 4 shows the simulated plot of the DC sweep 
analysis of Figure 2(a) using a 0.35 μm CMOS process, 
where the transistor width and length are 2μm and 1.4μm, 
and source, drain, and gate voltages of the pMOS are fixed 
at 0V, -0.2V, and -0.8V respectively. For the diode the 
minimum size is used. As can be observed from the plot, 
only a few pico-ampere of the DC input current IIN flows at 
any operation point of the input voltage VIN, since the body-
diode of the pMOS and the added diode are in reversely 
connected to each other and thus only the leakage current 
passes through. Consequently, the source-to-bulk voltage
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Figure 3.  Proposed CMOS buffer using Bulk-Driven Flipped Voltage Differential Pair 
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Figure 4.  Simulated IIN and VSB of Figure 2(a) 

VSB of the PMOS does not become strongly forward-
biased since the forward current of the diode is extremely 
small. It is worth noting that the added diode does not 
become strongly forward-biased either, so that the parasitic 
vertical bipolar illustrated in Figure 2(b) remains off. 

Interestingly, with Figure 2(a) the input is fed into p+ 
implant, whereas it would have been n+ implant for a 
conventional bulk-driven MOSFET. This means that the 
input indirectly sees the pn-junction (from n-well to p-
substrate), and thus the effective input capacitance can be 
significantly reduced. 

III. OPERATION PRINCIPLE OF THE PROPOSED BUFFER 
Based on the analysis shown in the previous section, we 

propose a CMOS voltage buffer using a new design 
technique which we named as Bulk-Driven Flipped Voltage 
Differential Pair (BDFVDP). Figure 3 illustrates the circuit 
diagram of the proposal. 

The operation principle of the circuit in Figure 3 is 
simple to follow. From MP1 to MN5 form a circuit block 
called Bulk-Driven Flipped Voltage Follower (BDFVF) [3]. 
MP1 and MP2 are equally sized and biased with identical 
drain current with MN4 and MN5. Since the bulk-terminal 
of MP2 is physically shorted to the coupled source node (i.e. 
VSB2=0), MP1 becomes the replica of MP2, and hence the 
source-to-bulk voltage of MP1 becomes virtually shorted 
(i.e. VSB1≈0). In another words, the coupled source voltage 
follows the bulk input voltage of MP1. If MP3 is sized wide 

enough such that it is in linear region, then the coupled 
source node becomes low impedance and hence it becomes 
the buffered signal of the bulk input of MP1. In the design 
of the proposed buffer, BDFVF is utilized to buffer the 
common-mode signal of the differential input VICM. 

From MP7 to MN10 forms the first stage of the 
operational amplifier. The input devices of this stage are 
bulk-driven, and when the differential signals VIN+ and VIN- 
are in identical then the drain current of the input devices, 
ID7 and ID8, settle to the bias current IREF. When large 
differential signals are applied, then iD7 and iD8 can become 
much greater than twice the current of IREF, since the 
coupled source node has very low impedance and MP3 can 
supply a source current that is bigger than 2 x IREF. 

From MP11 to MN13 forms the second stage of the 
operational amplifier, which has been converted to class-AB 
operation using the Quasi-Floating Gate (QFG) technique 
[4]. As can be observed, the gate of MP12 is connected to 
the gate of MP11 with a large resistor RLARGE, and also to 
the gate of MN9 with a capacitor CBAT. In terms of DC 
characteristics, there exists no current flow across RLARGE 
and therefore the gate voltage of MP12 and MP11 are the 
same, and thus the static drain current ID12 is IREF. In terms of 
AC characteristics, a high pass filter is formed at the gate of 
MP12 with a cutoff frequency of 1/(2πRLARGECBAT), and 
therefore MP12 achieves not only static but also dynamic 
operation, which in turn leads to class-AB operation. It is 
remarkable to realize that a unity-size diode-connected 
MOSFET but in the cutoff region can form a substantially 
large resistance of RLARGE, thus a low cutoff frequency can 
be achieved with a moderately small capacitance of CBAT. 

From D1 to D4 are the reverse-biased diodes to the bulk-
driven devices. D3 and D4 are used to detect for VICM. In 
Figure 3, those diodes have been sized to 20 times of the 
minimum size of the diode for D1 and D2, and 10 times for 
D3 and D4, to prevent from further reduction of the 
transconductance as possible. The transconductance of a 
bulk-driven MOSFET with the reverse-biased diode gmb_VR 
can be expressed as: 
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gmb_VR = α gmb 

where α is the attenuation factor of the signal and gmb is the 
transconductance of the bulk-driven MOSFET. α can be 
expressed as: 

α = CDIODE / (CDIODE+CSB) 

where CDIODE is the junction capacitance of the reverse-
biased diode, and CSB is the source-to-bulk capacitance of the 
MOSFET. CDIODE given by 

CDIODE = CJ0_DIODE / (1+VR/φ0)0.5 

where CJ0_DIODE is the zero-biased junction capacitance of the 
reverse-biased diode, VR is the reversed-biased DC voltage, 
and φ0 is the built-in bulk junction potential. Similarly, 

CSB = CJ0_MOSFET / (1+VSB/φ0)0.5 

where CJ0_MOSFET is the zero-biased junction capacitance of 
the MOSFET, and VSB is the source-to-bulk DC voltage.  

From D5 to D7 are the protection diodes to prevent latch 
up when a large step input is applied. The effectiveness of 
these diodes will be described in the next section. 

IV. SIMULATED RESULTS 
To verify the proposed solution of Figure 3, we designed 

it using a 0.35um CMOS process to operate with a 1.8V 
supply voltage. This section provides simulated results 
using the BSIM3 MOSFET models. 

A. DC-Sweep Analysis 
This subsection provides the simulation results of the 

DC-sweep analysis. Figure 3 has been setup in a unity-gain 
configuration with a 1.8V supply voltage, and the input 
voltage VIN is swept from rail to rail. Figure 5 shows the 
simulated behavior of the source-to-bulk voltage of the 
bulk-driven device MP7 VSB7 and the potential difference 
between the output VOUT and VIN.  

 

Figure 5.  Simulated VOUT-VIN and VSB7 of Figure 3 in unity-gain 
configuration 

As can be noticed from Figure 5, VSB7 does not become 
strongly forward biased which indicates that latch up does 

not occur, and VOUT – VIN remains small which confirms that 
the proposed buffer is operational in rail-to-rail. 

Figure 6 is the simulated plot of the input DC current IIN 
of the same setup. It indicates that only ±30pA of DC 
current flows from rail to rail, suggesting that the input 
resistance would be as large as 30GΩ. This superior result is 
expected since the diodes are connected in reverse-bias to 
the body-diode of the MOSFET. 

 

Figure 6.  Simulated IIN of Figure 3 in unity-gain configuration 

B. Transient Analysis 
This subsection provides the simulation results of the 

DC-sweep analysis. Figure 3 has been setup in a unity-gain 
configuration with a 1.8V supply voltage and a capacitive 
load of 5pF, and a step input from 0.2V to 1.6V and vise 
versa is applied. Figure 7 is the simulated plot of the input 
voltage vIN, the output slew rate vOUT, and the transient 
behavior of the source-to-bulk voltage of the bulk-driven 
device MP7, vSB7. The key observation of Figure 7 is the vSB7 
behavior when a large step-down input is applied. 
Appreciating to the protection capability of the diodes from 
D5 to D7, vSB7 does not even instantaneously become 
forward biased by more than 0.3V and therefore the latch up 
problem has been prevented. 
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Figure 7.  Simulated vSB7 and slew rate of vout of Figure 3 in unity-gain 
configuration with CL=5pF (vIN stepping between 0.2V and 1.6V) 

Figure 8 is the simulated transient analysis plot of the 
input and output instantaneous current, iIN and iOUT, 
indicating that iIN never achieves more than 1μA and iOUT 
current reaches over 20μA. This suggests that the iIN would 
always be in the nano-ampere range for an AC input slower 
than the Gain-Bandwidth (GBW), which proves the 
effectiveness of the proposed buffer. This low iIN has been 

(1) 

(2) 

(3)

(4) 
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achieved because the well-to-substrate capacitance is 
indirectly seen by the input and also the effective input 
capacitance has been lowered by the attenuation factor α. 
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Figure 8.  Simulated iIN and iOUT of Figure 4 in unity-gain configuration 
with CL=5pF (vIN stepping between 0.2V and 1.6V) 

C. Observation 
To further observe our proposal of Figure 3, we designed 

another CMOS buffer as shown in Figure 9 for comparison 
purposes. This circuit block is the gate-driven type of Figure 
4, and all transistors are sized identical to Figure 3. Table I 
shows the summary of the overall performance of the two 
circuit blocks. 

 

Figure 9.  Gate-driven Flipped Voltage Differential Pair 

As expected, the open-loop gain AOL and the GBW of the 
bulk-driven one is smaller and slower in comparison to the 
gate-driven one due to reduced transconductance of the input 
device, however AOL=50dB GBW (at CL=5pF) = 3MHz is 
relatively efficient for the total static current consumption of 
only 9μA. It is important to realize that the input referred 
noise of Figure 4 is moderately independent to the input 
condition since no transistors change the operation region. 
This property suggests that the single-pair approach is 
worthy of further improving than the double-pair approach 
which changes the operation region.  

 On the other hand, there are two significant drawbacks 
with our proposal. One is that the AOL is not constant to VICM, 
where the dominant root cause is that α in Equation (1) 
varies significantly with the reverse voltage of the diode. The 
other drawback is that the Power Supply Rejection Ratio 
(PSRR) is substantially deteriorated, possibly due to the fact 
that the protection diodes D5 – D7 are directly propagating 
the supply noise towards the differential signal. Currently we 
are investigating these drawbacks to improve performances. 

 

TABLE I.  SIMULATED RESULTS OF THE OVERALL PERFORMANCE  

Parameter 
Simulated results 

Figure 9 Figure 4 
Open-loop gain AOL 60dB 50dB 
Gain bandwidth (GBW) at 
CL=5pF 

9MHz 3MHz 

Total static current 
consumption ICC 

7μA 9μA 

Power Supply Rejection 
Ratio (PSRR) 

PSRR+=75dB 
PSRR-=56dB 

PSRR+=26dB 
PSRR-=37dB 

Slew Rate (SR) at CL=5pF SR+=5.2V/μs 
SR-=7V/μs 

SR+=5.2V/μs 
SR-=2.3V/μs 

Input referred noise 
VIN=VDD      1/f @1kHz 

Wideband 

 
230mV/√Hz 
70μV/√Hz 

 
11μV/√Hz 
600nV/√Hz 

VIN=0.9V      1/f @1kHz 
Wideband 

9μV/√Hz 
600nV/√Hz 

15μV/√Hz 
600nV/√Hz 

VIN=VSS        1/f @1kHz 
Wideband 

1.5μV/√Hz 
100nV/√Hz 

22μV/√Hz 
600nV/√Hz 

Total Harmonic Distortion 
(ACL=1, 1.4Vpp sinewave) 

CL=5pF @100kHz 
CL=10pF @100kHz 
CL=5pF @200kHz 
CL=5pF @300kHz 

Not possible 

 
 
-40dB  
-33dB 
-33dB 
-27dB 

Unless stated, the set up condition is: 
VDD=1.8V, VSS=0V, VIN=0.9V, CL=5pF 

V. CONCLUSION 
A new low power consumption high-speed CMOS 

buffer has been proposed. The new circuit block consists of 
a FVFDP and a QFG type of class-AB second stage, which 
delivers high-speed at 3MHz GBW operation for a 5pF load 
whilst maintaining the static current consumption as small as 
9μA. This paper also addresses the latch up problem by 
having reverse-bias connected diodes to the body diode of 
the bulk-driven MOSFET, so that only the diode’s leakage 
current flows and forward biasing of the diodes can be 
prevented. Our proposed buffer has proven to be very power-
efficient, and is motivating to work on for further 
improvement. 
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Abstract—A new CMOS DC level shifter that can be 
programmed at a level less than the threshold voltage of a 
MOSFET is proposed. This design technique utilizes a bulk-
driven MOSFET, which is biased with a constant reverse 
voltage, to shift the input. Furthermore since the proposed 
block is in a class-AB super source follower form, it is power-
efficient. This paper presents the design and the simulation of 
the proposed block and also its application in a simple current 
mirror using a 0.35μm CMOS process, which indicates leading 
to the reduction of the voltage headroom consumption of the 
input device but without introducing DC offset current, while 
the additional distortion remain negligible until 1MHz 
operation. The additional static current consumption is as 
small as 5μA. 

I. INTRODUCTION 
Designing analog circuits that can operate from a low 

battery voltage is a challenge especially when one tries to 
avoid introducing performance drawbacks. Common 
building blocks such as current mirrors, which are widely 
used for biasing and as active loads in amplifiers, are no 
exception. To utilize current mirrors under the limited supply 
voltage available, designers must firstly confront the large 
voltage headroom consumed at the input device. One popular 
approach that can overcome this problem is by utilizing a 
DC level shifter in-between the drain and the gate of the 
input device [1-3]. Fig. 1 shows a couple of examples of 
CMOS circuit diagrams to describe this approach. 

Fig. 1(a) and (b) depict a simple nMOS current mirror 
and utilization of a DC level shifter, respectively, and Fig. 
1(c) shows the simulated results of the two blocks using the 
BSIM3 MOSFET models of a 0.35μm CMOS process. From 
Fig. 1(c), it is clear that a significant offset in the DC current 
is observed for Fig. 1(b). This is because the circuit block 
formed by MP3 and IB generates a DC level shift upward by 
more than the threshold voltage of MP3 and causes MN1 to 
leave the saturated region and enter into the linear region. To 
avoid this undesirable side effect, a DC level shifter that can 
be programmed to operate at a level less than the threshold 
voltage of a MOSFET is rather in favor of the novel 
technique, which to the best knowledge of the authors has 
not been reported in any open literature of today’s circuit 
design techniques. 
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Figure 1.  (a) Simple current mirror with IIN=1μA, (b) with a DC level 
shifter, and (c) the VDS2 DC-sweep simulated results 

In this paper we present a novel CMOS DC level shifter 
for which the constant DC voltage can be easily programmed 
to a level less than the threshold voltage of a MOSFET. 

II. PREVIOUS ESSENTIAL WORKS 
This section covers a brief review of the two essential 

design techniques, known as the Bulk-Driven Super Source 
Follower (BDSSF) [4] and the Quasi Floating Gate (QFG) 
technique [5-6], which we have utilized to come up with our 
novel proposal. 

A. Bulk-Driven Super Source Follower (BDSSF) 
Fig. 2(a) illustrates the circuit diagram of the BDSSF, 

which we have proposed this circuit design technique in [4] 
that can eliminate the DC level shift of a super source 
follower lectured in the literature of [7]. 

The operation principle of the BDSSF of Fig. 2(a) is 
simple to follow. MP01 is the input device, which its bulk is 
utilized to feed the input. MP02 and MN05 are the replica 
devices for MP01 and MN04 respectively. Note that the bulk 
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Figure 2.  (a) class-A and (b) class-AB of BDSSF 

of MP02 is physically shorted to its source, which is the 
output node. Since the gate of MP01 is biased with the 
diode-connected MP02, as well as the drain current of MP01 
and MP02 are equally set to IREF, VB and VS of MP01 
becomes virtually shorted (i.e. VBSMP01 = 0), and in effect the 
output voltage VOUT becomes equal to VIN. 

B. Quasi Floating Gate (QFG) Technique  
The BDSSF of Fig. 2(a) works well, however, since it is 

class-A type there is a limitation in its source capability to 
IREF, which leads to poor push capability in driving large 
loads at high speed. To overcome this problem, a circuit 
design technique proposed by [5] and [6], which is known as 
QFG, can be utilized to convert the BDSSF of Fig. 2(a) into 
class-AB operation. Fig. 2(b) illustrates the circuit diagram 
of a class-AB BDSSF. 

The QFG technique utilizes RLARGE and CBAT to form a 
high pass filter, so that the AC element of the gate signal of 
the sink device MN03 can be propagated to drive the source 
device MP08 and therefore push capability can be expanded. 

The significance of this technique is that a unity-size (i.e. 
the smallest size for the process) diode-connected MOSFET 
in the cut-off region can form a substantially large resistance 
RLARGE, and hence a moderately small capacitance CBAT 
will suffice to achieve a low cut-off frequency 
1/(2π RLARGECBAT),\. In [6], the authors discuss the 
capacitance of CBAT in terms of attenuation factor α 
(≈1/(1+CSG8/CBAT)), where CSG8 is the source-to-gate 
capacitance of MP08. The capacitance of CBAT greater than 5 
times CSG8 leads α > 0.83, which is enough to propagate 
almost all frequencies except the DC component of the 
signal. It is remarkable to realize that the DC performance of 
the circuits in Fig. 2(a) and (b) are exactly identical, i.e. to 
emphasize further, the QFG technique can convert from 
class-A to class-AB operation without introducing any extra 
static current consumption. 

III. PROPOSAL 
The design objective for this paper, which is to have a 

constant DC level shift less than the threshold voltage of a 

MOSFET, is simple to achieve by utilizing the BDSSF of 
Fig. 2(a) and (b). The source to bulk terminal of MP01, VSB1, 
becomes reverse-biased by having a wider transistor width 
for MP01 and/or reducing its drain current IDS1. The 
operation principle can be understood using the conventional 
square law model of a MOSFET. Whether the transistor size 
or the drain current of MP01 changes, this device maintains 
as the replica of MP02 and thus it operates in the saturated 
region. Let’s suppose that MP01 is sized to have a relatively 
long length to minimize the effect of the channel length 
modulation, so that its drain current IDS1 can be approximated 
by: 

                   IDS1 = (μpCOX/2) (W1/L1) (VSG1-VT1)2              (1) 

where μp is the surface mobility of the pMOS transistor, COX 
is the capacitance of the gate oxide, W1, L1, VSG1, VT1 are the 
width, the length, the source-to-gate voltage, and the 
threshold voltage of MP01, respectively. If for instance W1 is 
increased and/or IDS1 is decreased, then the overdrive voltage 
VSG1-VT1 needs to be decreased to satisfy the above equation. 
However, since VSG1, which is identical to the source-to-gate 
voltage of MP02, remains unchanged, VT1 needs to be 
increased. VT1 can be expressed by: 

VT1 = VT0 + γ {(2|ΦF|+VSB1)0.5 - (2|ΦF|)0.5} 

where VT0 is the zero-bias threshold voltage, γ is the body 
effect parameter, |ΦF| is the Fermi potential, and VSB1 is the 
source-to-bulk voltage of MP01. As can be realized from this 
equation, to increase VT1, VSB1 needs to be increased. Thus in 
summary, increasing W1 and/or decreasing IDS1 makes MP01 
propagate a constant shift down voltage from the input to the 
output. Fig. 3 shows the simulated parametric sweep analysis 
of the width of MP01 and the length of MN05, denoted by 
W1 and L5, respectively (please note for clarification that the 
x-axis units are in μm and the y-axis ones in mV). 

(2) 
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Parametric sweep analysis of W1 

Parametric sweep analysis of L5 

 

Figure 3.  Parametric sweep simulation of Fig. 2(a) and (b) 

It is worth noting from Fig. 3 that it is in theory feasible 
to level shift the input voltage upward as well as downward 
using the BDSSF of Fig. 2(a) and (b), however from the 
view point of the effective input capacitance the authors 
recommend keeping the bulk-driven device MP01 in reverse 
biased operation. The description of the reverse biased 
junction capacitance, which is also known as the depletion 
capacitance Cj, as given in [8] utilizes the following model: 

                               Cj = Cj0 / (1+(VSB/φ0))0.5                       (3) 

where Cj0 is the zero-bias (VSB=0) junction capacitance, VSB 
is the bulk-to-source voltage, and φ0 is the bulk junction 
potential. However, if the bulk of MP01 is in forward biased 
operation, then another capacitance model called the 
diffusion capacitance Cd would be introduced, which can be 
expressed by: 

Cd = τT (ID/VT) 

where τT is the transit time of the junction diode, ID is the 
amount of current through the diode, and VT is the thermal 
voltage (≈26mV at room temperature). Thus in the results for 
the forward biased operation of the bulk-driven device, the 
total input capacitance CT would then be expressed as: 

CT = Cj + Cd 

Therefore, in order to avoid introducing the diffusion 
capacitance at the input, the authors recommend using the 
proposed level shifter by configuring the bulk-driven device 
in reverse bias operation, i.e. using Fig. 2(b) to shift down 
the voltage. For shifting up operation, the authors 
recommend the use of an nMOS bulk-driven transistor for 
the input device.  

IV. SIMULATED RESULTS 
Table I shows the simulated results of Fig. 2(b) using the 

BSIM3 MOSFET models of a 0.35μm CMOS process. To 
see how different level shift settings and design approaches 

affect the overall performances, we designed several BDSSF 
blocks of Fig. 2(b) for comparison. The overall performance 
of the BDSSF blocks with 0-volt DC shift, 0.3-volt DC shift 
down achieved by increasing W1, 0.3-volt DC shift down 
achieved by decreasing IDS1, 0.6-volt DC shift down effected 
by modifying both W1 and IDS1 are summarized in Table I. 

Parameter Vshift 
=0V 

Vshift 
=0.3V* 

Vshift 
=0.3V** 

Vshift 
=0.6V 

-3dB frequency 6.5MHz 8MHz 4.5MHz 5.5MHz 
Total current 
consumption 5.2μA 5.2μA 5.2μA 5.2μA 

Slew Rate+ 
Slew Rate- 

2.0V/μs 
6.2V/μs 

2.1V/μs 
5.3V/μs 

2.1V/μs 
5.0V/μs 

2.2V/μs 
5.5V/μs 

Power Supply 
Rejection Ratio 53dB 55dB 62dB 62dB 

1/f noise at 
1kHz 3.7μV/√Hz 3.7μV/√Hz 3.8μV/√Hz 4.0μV/√Hz 

Total Harmonic 
Distortion: 
0.8Vpp 100kHz 

 CL=10pF 
CL=22pF 
CL=47pF 

0.8Vpp 500kHz 
CL=10pF 

0.8Vpp 1MHz 
CL=10pF 

 
 
 

-67.7dB 
-62.0dB 
-55.0dB 

 
-51.6dB 

 
-35.4dB 

 
 
 

-66.6dB 
-62.5dB 
-56.7dB 

 
-53.4dB 

 
-38.8dB 

 
 
 

-67.1dB 
-64.1dB 
-59.7dB 

 
-48.1dB 

 
-31.5dB 

 
 
 

-63.6dB 
-61.7dB 
-58.6dB 

 
-50.1dB 

 
-34.4dB 

* W1=3W2, L5=L6      ** W1=W2, L5=3.5L6 
Unless stated, the setup condition is as follows: 

VDD=3.3V, VSS=0V, VIN=2.5V, CL=10pF 

TABLE I.  SIMULATED RESULTS OF THE OVERALL PERFORMANCE OF 
FIG. 2(B) WITH DIFFERENT LEVEL SHIFT CONFIGURATIONS 

The simulated results for the circuit of Fig. 2(b) where 
the DC level shift is adjusted to 0.3V downward by 
modifying W1, and the input signal of 0.8Vpp at 100kHz is 
applied to the circuit with a load capacitance CL of 10pF is as 
shown in Fig. 4. 
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Figure 4.  Simulated results of Fig. 2(b) with W1=3W2 and IDS1= IDS2, 
where vIN = 0.8Vpp, 100kHz sinusoidal wave and CL with 10pF 

As can be observed from Fig. 4, the input current of only 
±70pA is necessary to apply a 0.8Vpp 100kHz sinusoidal 
input voltage. It is worth remembering that this low input 
current would not have been possible to achieve if the bulk-
driven input device MP01 was in the forward biased 
operation due to the significant increase in its input 
capacitance.  

(4) 

(5) 
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V. APPLICATION EXAMPLE 
As described in the Introduction of this paper, a DC level 

shifter applied in a current mirror can be useful in reducing 
the voltage headroom consumption of the input device. Fig. 
5(a) illustrates the BDSSF of Fig. 2(b) applied in a simple 
pMOS current mirror. RC and CC have been added between 
the input and the output of the BDSSF to minimize the 
output overshoot against the transient input signal. Given 
that VT0 of the pMOS transistor for the 0.35μm CMOS 
process we have chosen is approximately 0.6V, we 
redesigned the BDSSF of Fig. 2(b) with a DC shift down of 
0.2V, 0.5V and 0.6V and applied it to the current mirror as 
shown in Fig. 5(a) to compare the overall performance. Fig. 
5(b) and Table II shows the simulated plots of the step 
response and the summary of the simulation results of Fig. 
5(a), respectively. 

 

Figure 5.  (a) A pMOS current mirror with level shifted BDSSF and       
(b) simulated plot of 1μA step response 

Parameter Fig. 5(a) 
without 
Fig. 2(b) 

Fig. 5(a) 
with Vshift 

= 0.2V 

Fig. 5(a) 
with Vshift 

= 0.5V 

Fig. 5(a) 
with Vshift 

= 0.6V 
Static current 
consumption 
of Fig. 2(b) 

--- 5.1μA 5.0μA 5.1μA 

-3dB 
frequency 90MHz 70MHz 100MHz 100MHz 

THD 1μApp 
1MHz 

10MHz 

 
-53.3dB 
-41.3dB 

 
-53.6dB 
-37.0dB 

 
-53.2dB 
-37.2dB 

 
-57.1dB 
-38.1dB 

Setup condition:  VDD=1.8V, VSS=0V, IIN=1μA, VD2=VDD-0.5V 

TABLE II.  SUMMARY OF THE SIMULATION RESULTS OF FIG. 5(A) 

As can be observed from Table II, until 1MHz operation 
none of the BDSSF adds distortion noticeably. However, as 
can be realized from Fig. 5(b) a caution is necessary to 
determine the amount of DC level shift. A DC level shift too 
close to VT0 would cause a noticeable offset in the DC 
current. In the case of the simulated plot of Fig. 5(b), when 
the level shift is almost identical to VT0 (=0.6V) a DC offset 
current of approximately 60nA and 90nA is introduced when 

the input current is 1μA and 0μA, respectively. Even though 
the level shift was approximately 100mV below VT0 (i.e. 
when the level shift is set to approximately -0.5V), the offset 
current of 10nA and 4nA is drawn when the input current is 
1μA and 0μA, respectively. Therefore it is advisable not to 
set the DC level shift too close to VT0 . 

VI. CONCLUSION 
A novel design approach for a DC level shifter that can 

be programmed to a level less than the threshold voltage of a 
MOSFET has been presented. This technique is based on 
utilizing the power efficient BDSSF, with the bulk-driven 
input device forced to be reverse-biased to generate the 
constant DC voltage. SPICE simulations of the proposed 
block set up in a current mirror demonstrated that until 
1MHz operation the proposed block does not introduce 
additional distortion, whilst the extra static current 
consumption spent is as little as 5μA. This proposed block 
has been shown to be an excellent solution for reducing the 
voltage headroom consumption of a current mirror but 
without introducing DC offset current. 
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Appendix B  Supplementary Information to Chapter 6 

 
 

This appendix lists the supplementary information of the work presented in Chapter 

6. The followings are included in this appendix: 

• SPICE code for simulating the input capacitance 

• IC layout of the whole die 

• Bonding diagram 

• More snapshots of the microphotograph of the fabricated device 

• Test board  

B.1 SPICE Code for Simulating the Input Capacitance 

 
* Spice Script for simulating -3dB point with RIN=1meg to determine the input 

capacitance 

* 

* ntyp.txt and ptyp.txt are the files containing BSIM3 parameters for p-type and 

*n-type of MOSFET of On-Semiconductor’s 0.35um CMOS process, respectively. 

* buffer_monitor.spi is the file containing the extracted postlayout netlist of 

*the bulk-driven buffer. 

* 

.lib ntyp.txt 

.lib ptyp.txt 

.lib buffer_monitor.spi 

* 

* Pin assignment 

* Xbuffer_monitor INNB INNC INPB INPC INPG OUT REF VS gnd vdd buffer_monitor 

******************** 

.control 

run 

let mag1s=vecmax(IN1S)-vecmin(IN1S) 

let mag1o=vecmax(IN1O)-vecmin(IN1O) 

let mag2s=vecmax(IN2S)-vecmin(IN2S) 

let mag2o=vecmax(IN2O)-vecmin(IN2O) 

let mag3s=vecmax(IN3S)-vecmin(IN3S) 

let mag3o=vecmax(IN3O)-vecmin(IN3O) 

let mag4s=vecmax(IN4S)-vecmin(IN4S) 

let mag4o=vecmax(IN4O)-vecmin(IN4O) 

let mag5s=vecmax(IN5S)-vecmin(IN5S) 

let mag5o=vecmax(IN5O)-vecmin(IN5O) 

let mag6s=vecmax(IN6S)-vecmin(IN6S) 

let mag6o=vecmax(IN6O)-vecmin(IN6O) 

let mag7s=vecmax(IN7S)-vecmin(IN7S) 

let mag7o=vecmax(IN7O)-vecmin(IN7O) 

let mag8s=vecmax(IN8S)-vecmin(IN8S) 

let mag8o=vecmax(IN8O)-vecmin(IN8O) 

let mag9s=vecmax(IN9S)-vecmin(IN9S) 

let mag9o=vecmax(IN9O)-vecmin(IN9O) 

print mag1s mag1o mag2s mag2o mag3s mag3o mag4s mag4o 

+ mag5s mag5o mag6s mag6o mag7s mag7o mag8s mag8o 

+ mag9s mag9o 

plot IN1SS IN1S xunits s 

plot IN1OO IN1O xunits s 

plot IN2SS IN2S xunits s 

plot IN2OO IN2O xunits s 

plot IN3SS IN3S xunits s 

plot IN3OO IN3O xunits s 
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plot IN4SS IN4S xunits s 

plot IN4OO IN4O xunits s 

plot IN5SS IN5S xunits s 

plot IN5OO IN5O xunits s 

plot IN6SS IN6S xunits s 

plot IN6OO IN6O xunits s 

plot IN7SS IN7S xunits s 

plot IN7OO IN7O xunits s 

plot IN8SS IN8S xunits s 

plot IN8OO IN8O xunits s 

plot IN9SS IN9S xunits s 

plot IN9OO IN9O xunits s 

.endc 

******************** 

.tran 10n 10u 

******************** 

VDD vdd 0 DC 1 

******************** 

******************** 

VIN1S IN1SS 0 DC sin(0.1 0.05 105k 10ns 0) 

RIN1S IN1SS IN1S 1meg 

RREF1S vdd REF1S 220k 

X1S OUT1S OUT1S IN1S IN1S INPG1S OUT1S REF1S VS1S 0 vdd buffer_monitor 

******************** 

VIN1O IN1OO 0 DC sin(0.1 0.05 114k 10ns 0) 

RIN1O IN1OO IN1O 1meg 

RREF1O vdd REF1O 220k 

X1O OUT1O 0 IN1O 0 INPG1O OUT1O REF1O VS1O 0 vdd buffer_monitor 

******************** 

VIN2S IN2SS 0 DC sin(0.2 0.05 113k 10ns 0) 

RIN2S IN2SS IN2S 1meg 

RREF2S vdd REF2S 220k 

X2S OUT2S OUT2S IN2S IN2S INPG2S OUT2S REF2S VS2S 0 vdd buffer_monitor 

******************** 

VIN2O IN2OO 0 DC sin(0.2 0.05 124k 10ns 0) 

RIN2O IN2OO IN2O 1meg 

RREF2O vdd REF2O 220k 

X2O OUT2O 0 IN2O 0 INPG2O OUT2O REF2O VS2O 0 vdd buffer_monitor 

******************** 

VIN3S IN3SS 0 DC sin(0.3 0.05 117k 10ns 0) 

RIN3S IN3SS IN3S 1meg 

RREF3S vdd REF3S 220k 

X3S OUT3S OUT3S IN3S IN3S INPG3S OUT3S REF3S VS3S 0 vdd buffer_monitor 

******************** 

VIN3O IN3OO 0 DC sin(0.3 0.05 128k 10ns 0) 

RIN3O IN3OO IN3O 1meg 

RREF3O vdd REF3O 220k 

X3O OUT3O 0 IN3O 0 INPG3O OUT3O REF3O VS3O 0 vdd buffer_monitor 

******************** 

VIN4S IN4SS 0 DC sin(0.4 0.05 120k 10ns 0) 

RIN4S IN4SS IN4S 1meg 

RREF4S vdd REF4S 220k 

X4S OUT4S OUT4S IN4S IN4S INPG4S OUT4S REF4S VS4S 0 vdd buffer_monitor 

******************** 

VIN4O IN4OO 0 DC sin(0.4 0.05 132k 10ns 0) 

RIN4O IN4OO IN4O 1meg 

RREF4O vdd REF4O 220k 

X4O OUT4O 0 IN4O 0 INPG4O OUT4O REF4O VS4O 0 vdd buffer_monitor 

******************** 

VIN5S IN5SS 0 DC sin(0.5 0.05 123k 10ns 0) 

RIN5S IN5SS IN5S 1meg 

RREF5S vdd REF5S 220k 

X5S OUT5S OUT5S IN5S IN5S INPG5S OUT5S REF5S VS5S 0 vdd buffer_monitor 

******************** 

VIN5O IN5OO 0 DC sin(0.5 0.05 136k 10ns 0) 

RIN5O IN5OO IN5O 1meg 

RREF5O vdd REF5O 220k 

X5O OUT5O 0 IN5O 0 INPG5O OUT5O REF5O VS5O 0 vdd buffer_monitor 

******************** 

VIN6S IN6SS 0 DC sin(0.6 0.05 126k 10ns 0) 

RIN6S IN6SS IN6S 1meg 

RREF6S vdd REF6S 220k 

X6S OUT6S OUT6S IN6S IN6S INPG6S OUT6S REF6S VS6S 0 vdd buffer_monitor 

******************** 

VIN6O IN6OO 0 DC sin(0.6 0.05 139k 10ns 0) 

RIN6O IN6OO IN6O 1meg 

RREF6O vdd REF6O 220k 

X6O OUT6O 0 IN6O 0 INPG6O OUT6O REF6O VS6O 0 vdd buffer_monitor 

******************** 

VIN7S IN7SS 0 DC sin(0.7 0.05 128k 10ns 0) 

RIN7S IN7SS IN7S 1meg 
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RREF7S vdd REF7S 220k 

X7S OUT7S OUT7S IN7S IN7S INPG7S OUT7S REF7S VS7S 0 vdd buffer_monitor 

******************** 

VIN7O IN7OO 0 DC sin(0.7 0.05 142k 10ns 0) 

RIN7O IN7OO IN7O 1meg 

RREF7O vdd REF7O 220k 

X7O OUT7O 0 IN7O 0 INPG7O OUT7O REF7O VS7O 0 vdd buffer_monitor 

******************** 

VIN8S IN8SS 0 DC sin(0.8 0.05 126k 10ns 0) 

RIN8S IN8SS IN8S 1meg 

RREF8S vdd REF8S 220k 

X8S OUT8S OUT8S IN8S IN8S INPG8S OUT8S REF8S VS8S 0 vdd buffer_monitor 

******************** 

VIN8O IN8OO 0 DC sin(0.8 0.05 140k 10ns 0) 

RIN8O IN8OO IN8O 1meg 

RREF8O vdd REF8O 220k 

X8O OUT8O 0 IN8O 0 INPG8O OUT8O REF8O VS8O 0 vdd buffer_monitor 

******************** 

VIN9S IN9SS 0 DC sin(0.9 0.05 116k 10ns 0) 

RIN9S IN9SS IN9S 1meg 

RREF9S vdd REF9S 220k 

X9S OUT9S OUT9S IN9S IN9S INPG9S OUT9S REF9S VS9S 0 vdd buffer_monitor 

******************** 

VIN9O IN9OO 0 DC sin(0.9 0.05 130k 10ns 0) 

RIN9O IN9OO IN9O 1meg 

RREF9O vdd REF9O 220k 

X9O OUT9O 0 IN9O 0 INPG9O OUT9O REF9O VS9O 0 vdd buffer_monitor 

******************** 

.END 

 

B.2 IC Layout of the Whole Die 
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B.3 Bonding Diagram 
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B.4 More Snapshots of the Microphotograph of the Fabricated 

Device 
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B.5 Test Board 
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Appendix C Logs of Measurement Data 

 
 

This appendix lists all the logs of the measurement data which have been used to 

determine the overall input capacitance of the fabricated device described in Chapter 

6. Table C-1 shown below gives the summary of the comparison between the 

measured and simulated results.  

 

Table C-1 Comparison of the Summary of the Measurement Results to the Simulation Results 

 

C_Total= 1.258E-11 ± 1.7E-13 C_Total= 1.297E-11 ± 1.3E-13

C_Stray= 1.128E-11 ± 1.7E-13 Cin= 1.40E-12 C_Stray= Cin= 1.52E-12

Cin= 1.30E-12 ±±±± 3.4E-13 Cin= 1.69E-12 ±±±± 3.0E-13

C_Total= 1.267E-11 ± 1.3E-13 C_Total= 1.294E-11 ± 1.5E-13

C_Stray= 1.124E-11 ± 1.3E-13 Cin= 1.28E-12 C_Stray= Cin= 1.41E-12

Cin= 1.43E-12 ±±±± 2.7E-13 Cin= 1.70E-12 ±±±± 2.8E-13

C_Total= 1.282E-11 ± 1.1E-13 C_Total= 1.293E-11 ± 1.1E-13

C_Stray= 1.126E-11 ± 1.3E-13 Cin= 1.24E-12 C_Stray= Cin= 1.36E-12

Cin= 1.56E-12 ±±±± 2.3E-13 Cin= 1.67E-12 ±±±± 2.3E-13

C_Total= 1.255E-11 ± 1.3E-13 C_Total= 1.277E-11 ± 1.3E-13

C_Stray= 1.125E-11 ± 1.3E-13 Cin= 1.21E-12 C_Stray= Cin= 1.33E-12

Cin= 1.30E-12 ±±±± 2.6E-13 Cin= 1.52E-12 ±±±± 2.6E-13

C_Total= 1.253E-11 ± 2.3E-13 C_Total= 1.277E-11 ± 1.4E-13

C_Stray= 1.147E-11 ± 1.2E-13 Cin= 1.17E-12 C_Stray= Cin= 1.29E-12

Cin= 1.06E-12 ±±±± 3.5E-13 Cin= 1.30E-12 ±±±± 2.6E-13

C_Total= 1.213E-11 ± 1.1E-13 C_Total= 1.266E-11 ± 9.5E-14

C_Stray= 1.121E-11 ± 1.3E-13 Cin= 1.15E-12 C_Stray= Cin= 1.26E-12

Cin= 9.2E-13 ±±±± 2.4E-13 Cin= 1.45E-12 ±±±± 2.2E-13

C_Total= 1.222E-11 ± 1.3E-13 C_Total= 1.274E-11 ± 1.1E-13

C_Stray= 1.132E-11 ± 1.3E-13 Cin= 1.12E-12 C_Stray= Cin= 1.24E-12

Cin= 9.0E-13 ±±±± 2.6E-13 Cin= 1.41E-12 ±±±± 2.4E-13

C_Total= 1.232E-11 ± 1.2E-13 C_Total= 1.292E-11 ± 1.1E-13

C_Stray= 1.125E-11 ± 1.3E-13 Cin= 1.14E-12 C_Stray= Cin= 1.26E-12

Cin= 1.07E-12 ±±±± 2.5E-13 Cin= 1.67E-12 ±±±± 2.4E-13

C_Total= 1.238E-11 ± 1.2E-13 C_Total= 1.295E-11 ± 1.2E-13

C_Stray= 1.128E-11 ± 1.4E-13 Cin= 1.22E-12 C_Stray= Cin= 1.37E-12

Cin= 1.10E-12 ±±±± 2.5E-13 Cin= 1.67E-12 ±±±± 2.6E-13

VBIAS

use left

use left

use left

use left

use left

use left

use left

use left

use left

0.9

0.4

0.1

0.3

0.2

0.5

0.6

0.7

0.8

@ noQFG node

Measured Results Simulated Results Measured Results Simulated Results

@ QFG node
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RIN= 4.697E+04

Sample No. phase f c

1 44.51 2.598E+05 1.28E-11

2 44.78 2.619E+05 1.28E-11

3 44.99 2.665E+05 1.27E-11

4 45.05 2.662E+05 1.28E-11

5 44.79 2.672E+05 1.26E-11

6 44.64 2.678E+05 1.25E-11

7 45.23 2.669E+05 1.28E-11

8 44.97 2.683E+05 1.26E-11

9 44.75 2.671E+05 1.26E-11

10 45.15 2.688E+05 1.27E-11

11 44.75 2.689E+05 1.25E-11

12 45.43 2.689E+05 1.28E-11

13 44.88 2.721E+05 1.24E-11

14 45.39 2.714E+05 1.27E-11

15 44.76 2.726E+05 1.23E-11

16 44.68 2.720E+05 1.23E-11

17 44.92 2.713E+05 1.25E-11

18 44.91 2.714E+05 1.24E-11

19 44.98 2.716E+05 1.25E-11

20 44.86 2.725E+05 1.24E-11

Average 44.92 2.687E+05 1.258E-11

STD 0.24 3.460E+03 1.698E-13

Measurements at NoQFGpoint with VBIAS=0.1V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 45.29 2.633E+05 1.30E-11

2 44.72 2.639E+05 1.27E-11

3 45.18 2.628E+05 1.30E-11

4 45.04 2.639E+05 1.29E-11

5 45.17 2.628E+05 1.30E-11

6 45.33 2.629E+05 1.30E-11

7 45.11 2.628E+05 1.29E-11

8 45.00 2.626E+05 1.29E-11

9 45.50 2.625E+05 1.31E-11

10 45.45 2.631E+05 1.31E-11

11 45.21 2.639E+05 1.29E-11

12 45.34 2.629E+05 1.30E-11

13 45.03 2.626E+05 1.29E-11

14 44.90 2.629E+05 1.28E-11

15 45.53 2.626E+05 1.31E-11

16 45.29 2.632E+05 1.30E-11

17 45.06 2.635E+05 1.29E-11

18 45.75 2.625E+05 1.33E-11

19 44.58 2.627E+05 1.27E-11

20 45.31 2.627E+05 1.30E-11

Average 45.19 2.630E+05 1.297E-11

STD 0.28 4.662E+02 1.344E-13

Measurements at QFG point with VBIAS=0.1V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div



 

 158

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 45.24 2.994E+05 1.14E-11

2 45.00 2.990E+05 1.13E-11

3 45.19 2.988E+05 1.14E-11

4 44.98 3.002E+05 1.13E-11

5 45.23 3.009E+05 1.14E-11

6 44.66 3.006E+05 1.11E-11

7 45.23 3.009E+05 1.14E-11

8 44.65 2.996E+05 1.12E-11

9 44.52 3.004E+05 1.11E-11

10 44.87 3.008E+05 1.12E-11

11 44.84 3.020E+05 1.12E-11

12 44.99 3.003E+05 1.13E-11

13 44.50 3.011E+05 1.11E-11

14 44.63 3.014E+05 1.11E-11

15 45.17 3.013E+05 1.13E-11

16 45.12 3.008E+05 1.13E-11

17 45.08 3.014E+05 1.13E-11

18 45.48 3.001E+05 1.15E-11

19 45.61 2.996E+05 1.16E-11

20 45.24 3.001E+05 1.14E-11

Average 45.01 3.004E+05 1.128E-11

STD 0.31 8.499E+02 1.349E-13

Measurements at PADONLYpoint with VBIAS=0.1V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 44.58 2.648E+05 1.26E-11

2 44.63 2.662E+05 1.26E-11

3 44.96 2.656E+05 1.27E-11

4 45.21 2.651E+05 1.29E-11

5 45.11 2.659E+05 1.28E-11

6 44.51 2.652E+05 1.26E-11

7 44.82 2.666E+05 1.26E-11

8 45.26 2.658E+05 1.29E-11

9 44.85 2.669E+05 1.26E-11

10 44.56 2.668E+05 1.25E-11

11 45.16 2.674E+05 1.27E-11

12 44.55 2.671E+05 1.25E-11

13 45.32 2.654E+05 1.29E-11

14 44.69 2.660E+05 1.26E-11

15 44.90 2.674E+05 1.26E-11

16 45.13 2.667E+05 1.28E-11

17 44.68 2.672E+05 1.25E-11

18 44.58 2.677E+05 1.25E-11

19 45.01 2.667E+05 1.27E-11

20 45.18 2.671E+05 1.28E-11

Average 44.88 2.664E+05 1.267E-11

STD 0.27 8.606E+02 1.326E-13

Measurements at NoQFG point with VBIAS=0.2V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 45.39 2.631E+05 1.31E-11

2 45.07 2.630E+05 1.29E-11

3 45.91 2.621E+05 1.33E-11

4 45.56 2.618E+05 1.32E-11

5 44.87 2.623E+05 1.29E-11

6 45.09 2.625E+05 1.29E-11

7 45.03 2.611E+05 1.30E-11

8 44.82 2.613E+05 1.29E-11

9 44.84 2.605E+05 1.29E-11

10 45.13 2.619E+05 1.30E-11

11 44.85 2.608E+05 1.29E-11

12 44.85 2.612E+05 1.29E-11

13 44.83 2.627E+05 1.28E-11

14 45.28 2.623E+05 1.30E-11

15 44.56 2.619E+05 1.27E-11

16 44.82 2.628E+05 1.28E-11

17 44.52 2.620E+05 1.27E-11

18 45.00 2.626E+05 1.29E-11

19 45.30 2.619E+05 1.31E-11

20 44.62 2.618E+05 1.28E-11

Average 45.02 2.620E+05 1.294E-11

STD 0.34 7.208E+02 1.520E-13

Measurements at QFG point with VBIAS=0.2V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 45.40 2.999E+05 1.15E-11

2 45.37 3.008E+05 1.14E-11

3 44.55 3.006E+05 1.11E-11

4 45.32 2.994E+05 1.14E-11

5 44.74 3.001E+05 1.12E-11

6 44.73 3.000E+05 1.12E-11

7 45.08 3.021E+05 1.12E-11

8 44.68 3.018E+05 1.11E-11

9 45.17 2.998E+05 1.14E-11

10 44.65 2.996E+05 1.12E-11

11 45.03 3.014E+05 1.13E-11

12 45.44 2.992E+05 1.15E-11

13 44.60 3.014E+05 1.11E-11

14 45.46 3.017E+05 1.14E-11

15 45.50 3.010E+05 1.15E-11

16 44.16 2.998E+05 1.10E-11

17 44.81 3.017E+05 1.12E-11

18 44.57 3.020E+05 1.11E-11

19 44.67 3.006E+05 1.11E-11

20 44.73 3.018E+05 1.11E-11

Average 44.93 3.007E+05 1.124E-11

STD 0.39 9.571E+02 1.602E-13

Measurements at PADONLYpoint with VBIAS=0.2V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div



 

 166

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 44.77 2.613E+05 1.29E-11

2 45.08 2.611E+05 1.30E-11

3 44.95 2.629E+05 1.29E-11

4 44.69 2.621E+05 1.28E-11

5 44.68 2.629E+05 1.27E-11

6 45.25 2.622E+05 1.30E-11

7 44.62 2.620E+05 1.28E-11

8 44.63 2.624E+05 1.27E-11

9 44.98 2.616E+05 1.29E-11

10 44.63 2.623E+05 1.28E-11

11 44.88 2.628E+05 1.28E-11

12 44.81 2.624E+05 1.28E-11

13 44.61 2.606E+05 1.28E-11

14 44.46 2.627E+05 1.27E-11

15 45.13 2.642E+05 1.29E-11

16 45.04 2.641E+05 1.28E-11

17 45.37 2.652E+05 1.29E-11

18 44.78 2.647E+05 1.27E-11

19 44.67 2.654E+05 1.26E-11

20 45.02 2.655E+05 1.28E-11

Average 44.85 2.629E+05 1.282E-11

STD 0.24 1.456E+03 1.090E-13

Measurements at NoQFG point with VBIAS=0.3V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 45.18 2.621E+05 1.30E-11

2 44.98 2.612E+05 1.30E-11

3 44.89 2.609E+05 1.29E-11

4 44.78 2.601E+05 1.29E-11

5 45.18 2.601E+05 1.31E-11

6 44.68 2.607E+05 1.29E-11

7 44.81 2.616E+05 1.29E-11

8 45.03 2.611E+05 1.30E-11

9 45.11 2.611E+05 1.30E-11

10 45.34 2.620E+05 1.31E-11

11 45.06 2.616E+05 1.30E-11

12 44.55 2.603E+05 1.28E-11

13 44.55 2.603E+05 1.28E-11

14 44.54 2.627E+05 1.27E-11

15 44.59 2.590E+05 1.29E-11

16 45.22 2.602E+05 1.31E-11

17 44.89 2.608E+05 1.29E-11

18 44.75 2.615E+05 1.28E-11

19 44.78 2.609E+05 1.29E-11

20 44.73 2.608E+05 1.29E-11

Average 44.88 2.610E+05 1.293E-11

STD 0.25 8.432E+02 1.085E-13

Measurements at QFG point with VBIAS=0.3V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 45.23 3.002E+05 1.14E-11

2 45.16 2.997E+05 1.14E-11

3 44.68 3.002E+05 1.12E-11

4 45.57 3.002E+05 1.15E-11

5 44.65 3.017E+05 1.11E-11

6 45.32 3.004E+05 1.14E-11

7 44.80 2.990E+05 1.13E-11

8 44.56 2.995E+05 1.11E-11

9 44.92 2.996E+05 1.13E-11

10 44.98 3.003E+05 1.13E-11

11 45.50 3.010E+05 1.15E-11

12 45.04 3.003E+05 1.13E-11

13 44.79 3.015E+05 1.12E-11

14 44.95 3.018E+05 1.12E-11

15 44.66 3.016E+05 1.11E-11

16 44.56 3.012E+05 1.11E-11

17 44.81 3.002E+05 1.12E-11

18 45.00 3.012E+05 1.12E-11

19 45.30 3.014E+05 1.14E-11

20 44.83 3.020E+05 1.12E-11

Average 44.97 3.007E+05 1.126E-11

STD 0.30 8.685E+02 1.253E-13

Measurements at PADONLYpoint with VBIAS=0.3V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/divch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div



 

 173

RIN= 4.697E+04

Sample No. phase f c

1 44.85 2.699E+05 1.25E-11

2 45.22 2.709E+05 1.26E-11

3 44.68 2.688E+05 1.25E-11

4 45.16 2.708E+05 1.26E-11

5 44.68 2.690E+05 1.25E-11

6 45.48 2.688E+05 1.28E-11

7 44.98 2.705E+05 1.25E-11

8 45.08 2.713E+05 1.25E-11

9 45.23 2.700E+05 1.27E-11

10 45.25 2.687E+05 1.27E-11

11 44.81 2.703E+05 1.25E-11

12 45.02 2.710E+05 1.25E-11

13 44.94 2.702E+05 1.25E-11

14 45.11 2.699E+05 1.26E-11

15 45.48 2.715E+05 1.27E-11

16 44.94 2.709E+05 1.25E-11

17 45.42 2.706E+05 1.27E-11

18 44.56 2.714E+05 1.23E-11

19 44.63 2.718E+05 1.23E-11

20 45.23 2.710E+05 1.26E-11

Average 45.04 2.704E+05 1.255E-11

STD 0.28 9.477E+02 1.315E-13

Measurements at NoQFG point with VBIAS=0.4V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div



 

 175

RIN= 4.697E+04

Sample No. phase f c

1 45.23 2.646E+05 1.29E-11

2 45.03 2.639E+05 1.29E-11

3 45.17 2.647E+05 1.29E-11

4 45.19 2.653E+05 1.29E-11

5 44.75 2.643E+05 1.27E-11

6 44.73 2.651E+05 1.27E-11

7 45.02 2.644E+05 1.28E-11

8 44.54 2.646E+05 1.26E-11

9 45.07 2.642E+05 1.29E-11

10 45.38 2.648E+05 1.30E-11

11 44.72 2.649E+05 1.27E-11

12 44.84 2.641E+05 1.28E-11

13 44.62 2.649E+05 1.26E-11

14 44.84 2.651E+05 1.27E-11

15 45.43 2.654E+05 1.30E-11

16 44.60 2.655E+05 1.26E-11

17 45.43 2.649E+05 1.30E-11

18 44.88 2.645E+05 1.28E-11

19 44.59 2.658E+05 1.26E-11

20 44.84 2.643E+05 1.27E-11

Average 44.95 2.648E+05 1.277E-11

STD 0.29 5.019E+02 1.322E-13

Measurements at QFG point with VBIAS=0.4V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 44.93 2.993E+05 1.13E-11

2 44.74 3.000E+05 1.12E-11

3 44.64 2.994E+05 1.12E-11

4 44.64 3.007E+05 1.11E-11

5 44.64 3.007E+05 1.11E-11

6 44.75 2.997E+05 1.12E-11

7 44.75 3.010E+05 1.12E-11

8 45.49 2.984E+05 1.16E-11

9 44.81 2.987E+05 1.13E-11

10 44.67 2.990E+05 1.12E-11

11 44.84 2.993E+05 1.13E-11

12 44.60 2.999E+05 1.11E-11

13 45.23 3.005E+05 1.14E-11

14 44.50 3.005E+05 1.11E-11

15 45.34 3.009E+05 1.14E-11

16 45.10 3.005E+05 1.13E-11

17 44.64 3.017E+05 1.11E-11

18 45.39 2.991E+05 1.15E-11

19 45.11 3.001E+05 1.13E-11

20 44.93 3.004E+05 1.13E-11

Average 44.89 3.000E+05 1.125E-11

STD 0.29 8.614E+02 1.278E-13

Measurements at PADONLYpoint with VBIAS=0.4V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 44.55 2.706E+05 1.23E-11

2 44.62 2.754E+05 1.21E-11

3 44.77 2.752E+05 1.22E-11

4 45.80 2.678E+05 1.30E-11

5 45.47 2.677E+05 1.29E-11

6 45.02 2.695E+05 1.26E-11

7 44.53 2.701E+05 1.23E-11

8 45.22 2.678E+05 1.28E-11

9 45.42 2.693E+05 1.28E-11

10 45.25 2.695E+05 1.27E-11

11 44.52 2.699E+05 1.23E-11

12 44.87 2.697E+05 1.25E-11

13 44.63 2.703E+05 1.24E-11

14 44.83 2.709E+05 1.24E-11

15 44.60 2.705E+05 1.24E-11

16 45.33 2.708E+05 1.27E-11

17 45.38 2.699E+05 1.27E-11

18 45.24 2.722E+05 1.26E-11

19 45.44 2.707E+05 1.27E-11

20 44.63 2.713E+05 1.23E-11

Average 45.01 2.705E+05 1.253E-11

STD 0.40 2.017E+03 2.328E-13

Measurements at NoQFG point with VBIAS=0.5V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 45.08 2.676E+05 1.27E-11

2 45.22 2.694E+05 1.27E-11

3 45.23 2.677E+05 1.28E-11

4 45.37 2.667E+05 1.29E-11

5 45.36 2.651E+05 1.29E-11

6 44.71 2.639E+05 1.27E-11

7 45.29 2.650E+05 1.29E-11

8 44.81 2.643E+05 1.27E-11

9 45.41 2.648E+05 1.30E-11

10 45.09 2.659E+05 1.28E-11

11 44.54 2.667E+05 1.25E-11

12 44.91 2.652E+05 1.27E-11

13 44.73 2.656E+05 1.26E-11

14 44.84 2.646E+05 1.27E-11

15 45.52 2.643E+05 1.31E-11

16 45.12 2.639E+05 1.29E-11

17 44.50 2.653E+05 1.26E-11

18 44.74 2.650E+05 1.27E-11

19 45.15 2.646E+05 1.29E-11

20 44.96 2.654E+05 1.27E-11

Average 45.03 2.656E+05 1.277E-11

STD 0.30 1.421E+03 1.417E-13

Measurements at QFG point with VBIAS=0.5V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 44.89 2.966E+05 1.14E-11

2 45.01 2.955E+05 1.15E-11

3 44.91 2.972E+05 1.14E-11

4 45.08 2.964E+05 1.15E-11

5 45.45 2.950E+05 1.17E-11

6 45.07 2.953E+05 1.15E-11

7 45.42 2.952E+05 1.16E-11

8 44.75 2.979E+05 1.13E-11

9 45.16 2.956E+05 1.15E-11

10 45.40 2.971E+05 1.16E-11

11 45.12 2.958E+05 1.15E-11

12 44.99 2.967E+05 1.14E-11

13 44.56 2.955E+05 1.13E-11

14 45.04 2.975E+05 1.14E-11

15 45.51 2.966E+05 1.16E-11

16 45.08 2.963E+05 1.15E-11

17 45.45 2.960E+05 1.16E-11

18 44.95 2.960E+05 1.14E-11

19 44.79 2.968E+05 1.13E-11

20 45.20 2.964E+05 1.15E-11

Average 45.09 2.963E+05 1.147E-11

STD 0.26 7.994E+02 1.155E-13

Measurements at PADONLYpoint with VBIAS=0.5V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 45.30 2.788E+05 1.23E-11

2 44.85 2.795E+05 1.21E-11

3 44.68 2.803E+05 1.20E-11

4 45.04 2.814E+05 1.21E-11

5 45.17 2.776E+05 1.23E-11

6 45.00 2.778E+05 1.22E-11

7 45.04 2.793E+05 1.21E-11

8 45.07 2.771E+05 1.23E-11

9 45.37 2.788E+05 1.23E-11

10 44.62 2.772E+05 1.21E-11

11 45.06 2.779E+05 1.22E-11

12 44.58 2.786E+05 1.20E-11

13 44.55 2.784E+05 1.20E-11

14 44.99 2.783E+05 1.22E-11

15 44.74 2.782E+05 1.21E-11

16 44.93 2.767E+05 1.22E-11

17 45.07 2.780E+05 1.22E-11

18 44.98 2.792E+05 1.21E-11

19 44.63 2.779E+05 1.20E-11

20 44.79 2.790E+05 1.21E-11

Average 44.92 2.785E+05 1.213E-11

STD 0.24 1.113E+03 1.100E-13

Measurements at NoQFG point with VBIAS=0.6V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 44.97 2.665E+05 1.27E-11

2 44.95 2.679E+05 1.26E-11

3 45.11 2.670E+05 1.27E-11

4 44.71 2.662E+05 1.26E-11

5 44.78 2.670E+05 1.26E-11

6 45.15 2.665E+05 1.28E-11

7 44.92 2.669E+05 1.27E-11

8 44.71 2.668E+05 1.26E-11

9 44.60 2.671E+05 1.25E-11

10 45.03 2.665E+05 1.27E-11

11 45.15 2.665E+05 1.28E-11

12 45.00 2.680E+05 1.26E-11

13 45.26 2.675E+05 1.28E-11

14 45.09 2.673E+05 1.27E-11

15 45.02 2.666E+05 1.27E-11

16 44.68 2.661E+05 1.26E-11

17 45.04 2.684E+05 1.26E-11

18 45.22 2.671E+05 1.28E-11

19 44.55 2.678E+05 1.25E-11

20 44.70 2.665E+05 1.26E-11

Average 44.93 2.670E+05 1.266E-11

STD 0.21 6.357E+02 9.494E-14

Measurements at QFG point with VBIAS=0.6V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 45.43 2.997E+05 1.15E-11

2 45.41 3.025E+05 1.14E-11

3 45.06 3.040E+05 1.12E-11

4 44.86 3.032E+05 1.11E-11

5 45.13 3.012E+05 1.13E-11

6 45.56 3.017E+05 1.15E-11

7 45.45 3.022E+05 1.14E-11

8 44.88 3.025E+05 1.12E-11

9 44.92 3.013E+05 1.12E-11

10 44.98 3.030E+05 1.12E-11

11 44.85 3.020E+05 1.12E-11

12 44.94 3.034E+05 1.11E-11

13 44.77 3.033E+05 1.11E-11

14 45.32 3.027E+05 1.13E-11

15 44.75 3.032E+05 1.11E-11

16 44.69 3.013E+05 1.11E-11

17 44.50 3.000E+05 1.11E-11

18 44.68 3.020E+05 1.11E-11

19 44.74 3.024E+05 1.11E-11

20 44.98 3.018E+05 1.12E-11

Average 45.00 3.022E+05 1.121E-11

STD 0.30 1.105E+03 1.265E-13

Measurements at PADONLYpoint with VBIAS=0.6V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 45.29 2.774E+05 1.23E-11

2 44.90 2.786E+05 1.21E-11

3 45.35 2.770E+05 1.24E-11

4 44.63 2.782E+05 1.20E-11

5 45.23 2.769E+05 1.23E-11

6 44.86 2.781E+05 1.21E-11

7 45.49 2.786E+05 1.24E-11

8 44.85 2.784E+05 1.21E-11

9 44.88 2.769E+05 1.22E-11

10 44.97 2.764E+05 1.22E-11

11 45.16 2.783E+05 1.22E-11

12 44.74 2.793E+05 1.20E-11

13 45.08 2.775E+05 1.22E-11

14 44.64 2.767E+05 1.21E-11

15 44.52 2.760E+05 1.21E-11

16 44.59 2.765E+05 1.21E-11

17 45.43 2.770E+05 1.24E-11

18 45.20 2.769E+05 1.23E-11

19 45.20 2.778E+05 1.23E-11

20 45.44 2.771E+05 1.24E-11

Average 45.02 2.775E+05 1.222E-11

STD 0.31 8.853E+02 1.337E-13

Measurements at NoQFG point with VBIAS=0.7V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 44.98 2.650E+05 1.28E-11

2 44.76 2.638E+05 1.27E-11

3 44.71 2.651E+05 1.27E-11

4 45.16 2.659E+05 1.28E-11

5 44.70 2.634E+05 1.27E-11

6 44.58 2.639E+05 1.27E-11

7 44.57 2.662E+05 1.25E-11

8 44.62 2.648E+05 1.26E-11

9 45.10 2.660E+05 1.28E-11

10 44.96 2.651E+05 1.28E-11

11 44.68 2.651E+05 1.26E-11

12 44.89 2.655E+05 1.27E-11

13 44.98 2.652E+05 1.28E-11

14 45.26 2.641E+05 1.29E-11

15 45.03 2.647E+05 1.28E-11

16 45.31 2.655E+05 1.29E-11

17 45.05 2.648E+05 1.28E-11

18 44.58 2.645E+05 1.26E-11

19 45.26 2.648E+05 1.29E-11

20 44.62 2.660E+05 1.26E-11

Average 44.89 2.650E+05 1.274E-11

STD 0.25 7.706E+02 1.128E-13

Measurements at QFG point with VBIAS=0.7V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 44.67 2.999E+05 1.12E-11

2 44.61 2.991E+05 1.12E-11

3 45.11 3.014E+05 1.13E-11

4 45.28 2.998E+05 1.14E-11

5 45.26 2.993E+05 1.14E-11

6 44.68 3.010E+05 1.11E-11

7 45.43 3.003E+05 1.15E-11

8 45.49 3.005E+05 1.15E-11

9 45.39 2.999E+05 1.15E-11

10 45.17 2.998E+05 1.14E-11

11 44.50 2.988E+05 1.11E-11

12 45.05 2.998E+05 1.13E-11

13 45.49 3.009E+05 1.15E-11

14 44.94 3.001E+05 1.13E-11

15 44.55 3.006E+05 1.11E-11

16 44.91 3.001E+05 1.13E-11

17 45.13 2.999E+05 1.13E-11

18 45.38 2.999E+05 1.14E-11

19 45.02 2.997E+05 1.13E-11

20 45.49 2.998E+05 1.15E-11

Average 45.08 3.000E+05 1.132E-11

STD 0.33 6.284E+02 1.288E-13

Measurements at PADONLYpoint with VBIAS=0.7V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 44.57 2.739E+05 1.22E-11

2 45.04 2.740E+05 1.24E-11

3 44.70 2.732E+05 1.23E-11

4 44.68 2.749E+05 1.22E-11

5 44.78 2.725E+05 1.23E-11

6 45.42 2.734E+05 1.26E-11

7 44.64 2.737E+05 1.22E-11

8 44.77 2.747E+05 1.22E-11

9 44.98 2.735E+05 1.24E-11

10 45.08 2.735E+05 1.24E-11

11 44.92 2.742E+05 1.23E-11

12 44.51 2.729E+05 1.22E-11

13 45.12 2.738E+05 1.24E-11

14 44.55 2.747E+05 1.21E-11

15 44.86 2.726E+05 1.24E-11

16 45.46 2.739E+05 1.26E-11

17 44.77 2.732E+05 1.23E-11

18 44.94 2.750E+05 1.23E-11

19 44.57 2.739E+05 1.22E-11

20 44.90 2.732E+05 1.24E-11

Average 44.86 2.737E+05 1.232E-11

STD 0.27 7.177E+02 1.213E-13

Measurements at NoQFG point with VBIAS=0.8V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 44.87 2.613E+05 1.29E-11

2 44.92 2.613E+05 1.29E-11

3 45.00 2.613E+05 1.30E-11

4 44.60 2.614E+05 1.28E-11

5 45.41 2.621E+05 1.31E-11

6 44.97 2.605E+05 1.30E-11

7 44.61 2.607E+05 1.28E-11

8 44.59 2.601E+05 1.28E-11

9 44.79 2.617E+05 1.29E-11

10 44.77 2.597E+05 1.29E-11

11 44.86 2.602E+05 1.30E-11

12 44.72 2.604E+05 1.29E-11

13 44.62 2.611E+05 1.28E-11

14 45.18 2.602E+05 1.31E-11

15 44.56 2.609E+05 1.28E-11

16 44.98 2.609E+05 1.30E-11

17 45.10 2.610E+05 1.30E-11

18 45.21 2.600E+05 1.31E-11

19 44.62 2.610E+05 1.28E-11

20 44.62 2.622E+05 1.28E-11

Average 44.85 2.609E+05 1.292E-11

STD 0.24 6.836E+02 1.147E-13

Measurements at QFG point with VBIAS=0.8V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 45.15 2.998E+05 1.14E-11

2 44.89 3.001E+05 1.12E-11

3 45.55 2.995E+05 1.15E-11

4 44.74 2.990E+05 1.12E-11

5 45.01 3.002E+05 1.13E-11

6 44.69 3.008E+05 1.11E-11

7 44.81 3.004E+05 1.12E-11

8 45.10 2.993E+05 1.14E-11

9 44.92 2.999E+05 1.13E-11

10 44.99 3.000E+05 1.13E-11

11 44.78 3.015E+05 1.12E-11

12 45.48 2.994E+05 1.15E-11

13 44.63 2.997E+05 1.12E-11

14 45.11 2.996E+05 1.14E-11

15 44.66 3.018E+05 1.11E-11

16 44.69 3.013E+05 1.11E-11

17 44.71 3.018E+05 1.11E-11

18 44.84 3.040E+05 1.11E-11

19 44.74 3.021E+05 1.11E-11

20 45.15 3.022E+05 1.13E-11

Average 44.93 3.006E+05 1.125E-11

STD 0.26 1.282E+03 1.300E-13

Measurements at PADONLYpoint with VBIAS=0.8V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 44.94 2.712E+05 1.25E-11

2 45.16 2.728E+05 1.25E-11

3 45.29 2.735E+05 1.25E-11

4 44.96 2.730E+05 1.24E-11

5 44.62 2.739E+05 1.22E-11

6 44.61 2.717E+05 1.23E-11

7 45.01 2.720E+05 1.25E-11

8 45.12 2.724E+05 1.25E-11

9 45.00 2.729E+05 1.24E-11

10 45.21 2.736E+05 1.25E-11

11 44.58 2.740E+05 1.22E-11

12 45.08 2.730E+05 1.24E-11

13 44.78 2.736E+05 1.23E-11

14 44.67 2.743E+05 1.22E-11

15 44.93 2.756E+05 1.23E-11

16 45.17 2.737E+05 1.25E-11

17 45.18 2.733E+05 1.25E-11

18 44.65 2.744E+05 1.22E-11

19 45.17 2.738E+05 1.24E-11

20 45.10 2.728E+05 1.25E-11

Average 44.96 2.733E+05 1.238E-11

STD 0.23 1.007E+03 1.158E-13

Measurements at NoQFG point with VBIAS=0.9V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 44.62 2.600E+05 1.29E-11

2 45.27 2.616E+05 1.31E-11

3 45.41 2.614E+05 1.31E-11

4 44.70 2.606E+05 1.29E-11

5 44.84 2.614E+05 1.29E-11

6 44.53 2.601E+05 1.28E-11

7 45.22 2.600E+05 1.31E-11

8 45.10 2.608E+05 1.30E-11

9 44.74 2.607E+05 1.29E-11

10 45.20 2.606E+05 1.31E-11

11 44.88 2.612E+05 1.29E-11

12 45.08 2.610E+05 1.30E-11

13 44.86 2.609E+05 1.29E-11

14 44.58 2.609E+05 1.28E-11

15 44.53 2.603E+05 1.28E-11

16 44.55 2.615E+05 1.28E-11

17 45.07 2.608E+05 1.30E-11

18 44.82 2.617E+05 1.29E-11

19 45.16 2.602E+05 1.31E-11

20 44.82 2.606E+05 1.29E-11

Average 44.90 2.608E+05 1.295E-11

STD 0.27 5.324E+02 1.216E-13

Measurements at QFG point with VBIAS=0.9V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.697E+04

Sample No. phase f c

1 45.24 3.001E+05 1.14E-11

2 44.89 3.017E+05 1.12E-11

3 45.44 3.005E+05 1.15E-11

4 44.82 3.008E+05 1.12E-11

5 45.45 3.007E+05 1.14E-11

6 44.72 3.018E+05 1.11E-11

7 44.56 3.009E+05 1.11E-11

8 44.76 3.001E+05 1.12E-11

9 44.64 2.984E+05 1.12E-11

10 44.70 2.990E+05 1.12E-11

11 44.99 3.004E+05 1.13E-11

12 44.68 3.009E+05 1.11E-11

13 44.98 3.016E+05 1.12E-11

14 45.12 2.982E+05 1.14E-11

15 45.25 3.012E+05 1.13E-11

16 44.98 2.996E+05 1.13E-11

17 44.55 2.990E+05 1.12E-11

18 45.84 2.996E+05 1.16E-11

19 44.96 3.001E+05 1.13E-11

20 45.10 2.997E+05 1.13E-11

Average 44.98 3.002E+05 1.128E-11

STD 0.34 1.041E+03 1.380E-13

Measurements at PADONLYpoint with VBIAS=0.9V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.692E+03

Sample No. phase f c

1 45.41 2.885E+06 1.19E-11

2 44.88 2.897E+06 1.17E-11

3 45.35 2.901E+06 1.18E-11

4 45.25 2.890E+06 1.18E-11

5 45.21 2.897E+06 1.18E-11

6 44.73 2.900E+06 1.16E-11

7 44.60 2.905E+06 1.15E-11

8 45.44 2.906E+06 1.19E-11

9 44.68 2.900E+06 1.16E-11

10 45.37 2.971E+06 1.16E-11

11 45.35 2.903E+06 1.18E-11

12 45.43 2.897E+06 1.19E-11

13 45.11 2.896E+06 1.18E-11

14 45.07 2.892E+06 1.18E-11

15 45.18 2.894E+06 1.18E-11

16 44.64 2.904E+06 1.15E-11

17 45.56 2.901E+06 1.19E-11

18 44.82 2.896E+06 1.16E-11

19 44.50 2.909E+06 1.15E-11

20 44.64 2.900E+06 1.16E-11

Average 45.06 2.902E+06 1.171E-11

STD 0.34 1.716E+04 1.506E-13

testsignal noQFGwith 200mV 4k7 @0.5V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.692E+03

Sample No. phase f c

1 44.82 3.029E+06 1.11E-11

2 44.87 3.027E+06 1.12E-11

3 45.07 3.036E+06 1.12E-11

4 44.66 3.024E+06 1.11E-11

5 44.94 3.041E+06 1.11E-11

6 44.70 3.026E+06 1.11E-11

7 45.02 3.023E+06 1.12E-11

8 44.91 3.030E+06 1.12E-11

9 44.87 3.029E+06 1.11E-11

10 45.50 3.039E+06 1.14E-11

11 44.96 3.039E+06 1.11E-11

12 45.47 3.027E+06 1.14E-11

13 45.32 3.029E+06 1.13E-11

14 45.24 3.032E+06 1.13E-11

15 44.52 3.028E+06 1.10E-11

16 44.65 3.043E+06 1.10E-11

17 45.00 3.041E+06 1.12E-11

18 45.31 3.019E+06 1.14E-11

19 45.10 3.024E+06 1.13E-11

20 45.24 3.022E+06 1.13E-11

Average 45.01 3.030E+06 1.120E-11

STD 0.27 7.096E+03 1.128E-13

testsignal PADONLY with 200mV 4k7 @0.5V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.692E+03

Sample No. phase f c

1 45.07 2.906E+06 1.17E-11

2 45.38 2.893E+06 1.19E-11

3 44.81 2.905E+06 1.16E-11

4 44.66 2.905E+06 1.15E-11

5 44.72 2.887E+06 1.16E-11

6 45.31 2.906E+06 1.18E-11

7 44.69 2.877E+06 1.17E-11

8 45.00 2.867E+06 1.18E-11

9 45.35 2.889E+06 1.19E-11

10 45.50 2.895E+06 1.19E-11

11 45.30 2.904E+06 1.18E-11

12 44.50 2.879E+06 1.16E-11

13 45.39 2.885E+06 1.19E-11

14 45.50 2.875E+06 1.20E-11

15 45.23 2.919E+06 1.17E-11

16 45.49 2.972E+06 1.16E-11

17 45.09 2.879E+06 1.18E-11

18 45.28 2.937E+06 1.17E-11

19 45.22 2.940E+06 1.16E-11

20 45.07 2.886E+06 1.18E-11

Average 45.13 2.900E+06 1.175E-11

STD 0.31 2.571E+04 1.340E-13

testsignal noQFGwith 100mV 4k7 @0.5V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.692E+03

Sample No. phase f c

1 44.90 3.031E+06 1.12E-11

2 44.97 3.015E+06 1.12E-11

3 45.06 3.015E+06 1.13E-11

4 45.14 3.046E+06 1.12E-11

5 45.50 3.033E+06 1.14E-11

6 45.55 3.047E+06 1.13E-11

7 45.06 3.046E+06 1.12E-11

8 45.34 3.040E+06 1.13E-11

9 45.06 3.041E+06 1.12E-11

10 44.87 3.044E+06 1.11E-11

11 44.66 3.034E+06 1.10E-11

12 44.62 3.035E+06 1.10E-11

13 45.53 3.052E+06 1.13E-11

14 44.56 3.035E+06 1.10E-11

15 44.59 3.036E+06 1.10E-11

16 44.51 3.029E+06 1.10E-11

17 44.46 3.021E+06 1.10E-11

18 45.45 3.036E+06 1.13E-11

19 44.55 3.038E+06 1.10E-11

20 45.02 3.021E+06 1.12E-11

Average 44.97 3.035E+06 1.117E-11

STD 0.37 1.045E+04 1.337E-13

testsignal PADONLY with 100mV 4k7 @0.5V

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.715E+05

Sample No. phase f c

1 45.43 2.998E+04 1.14E-11

2 44.85 2.990E+04 1.12E-11

3 45.29 2.998E+04 1.14E-11

4 44.96 3.002E+04 1.12E-11

5 45.26 3.013E+04 1.13E-11

6 44.91 3.011E+04 1.12E-11

7 45.18 3.005E+04 1.13E-11

8 45.14 2.999E+04 1.13E-11

9 45.07 3.004E+04 1.13E-11

10 45.41 2.908E+04 1.18E-11

11 45.47 2.910E+04 1.18E-11

12 45.32 2.794E+04 1.22E-11

13 45.10 2.805E+04 1.21E-11

14 44.57 2.798E+04 1.19E-11

15 44.58 2.792E+04 1.19E-11

16 45.31 2.798E+04 1.22E-11

17 44.72 2.798E+04 1.19E-11

18 44.93 2.796E+04 1.20E-11

19 45.14 2.789E+04 1.22E-11

20 44.89 2.806E+04 1.20E-11

Average 45.08 2.901E+04 1.168E-11

STD 0.27 9.992E+02 3.815E-13

testsignal noQFG5with 200mVpp 470k @0.5VDC

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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RIN= 4.715E+05

Sample No. phase f c

1 44.71 2.996E+04 1.12E-11

2 45.15 2.996E+04 1.13E-11

3 45.29 3.006E+04 1.13E-11

4 45.24 2.991E+04 1.14E-11

5 45.13 3.008E+04 1.13E-11

6 45.09 3.004E+04 1.13E-11

7 45.25 3.003E+04 1.13E-11

8 45.26 2.999E+04 1.14E-11

9 45.08 2.995E+04 1.13E-11

10 45.20 3.006E+04 1.13E-11

11 44.55 2.998E+04 1.11E-11

12 44.78 3.001E+04 1.12E-11

13 44.68 2.986E+04 1.12E-11

14 44.79 3.106E+04 1.08E-11

15 45.29 3.086E+04 1.10E-11

16 45.11 3.107E+04 1.09E-11

17 44.59 3.102E+04 1.07E-11

18 44.68 3.092E+04 1.08E-11

19 46.76 3.095E+04 1.16E-11

20 44.91 3.103E+04 1.08E-11

Average 45.08 3.034E+04 1.116E-11

STD 0.47 4.918E+02 2.385E-13

testsignal PADONLY with 200mVpp 470k @0.5VDC

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div

ch1=Vin (dc+ac. 200mV/div)

ch2=vin (ac portion, 50mV/div)

ch3=vtp (ac portion, 50mV/div)

Time scale = 2µs/div
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