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ABSTRACT 

Microbial fuel cells (MFCs) produce electricity as a result of the microbial metabolism of organic 

substrates, hence they represent a sustainable approach for energy production and waste 

treatment. If the technology is to be implemented in industry, low cost and sustainable 

bioelectrodes must be developed to increase power output, increase waste treatment capacity, and 

improve service intervals. Although the current application of abiotic electrode catalysts, such as 

platinum and electrode binders such as Nafion leads to greater MFC performance, their use cost 

prohibitive. Novel bioelectrodes which use cost effective and sustainable materials are being 

developed. These electrodes are developed with the intention to reduce start-up time, reduce costs, 

extend life-span and improve core MFC performance metrics (ie. power density, current density, 

chemical oxygen demand (COD) reduction and Coulombic efficiency (CE)). Comparison of different 

MFC systems is not an easy task. This is due to variations in MFC design, construction, operation, and 

different inocula (in the case of mixed-culture MFCs). This high intra system variability should be  
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considered when assessing MFC data, operation and performance. In this review article, we examine 

the major issues surrounding bioanode and biocathode improvement in different MFC systems, with 

the ultimate goal of streamlining and standardising improvement processes. 

 

ABBREVIATIONS 

AHL  N-acyl homoserine lactone 

CE  coulombic efficiency 

CLSM  confocal laser scanning microscopy  

COD  chemical oxygen demand 

DCMFC  dual chamber MFC 

EAB  electroactive biofilm 

EET  extracellular electron transfer 

MFC  microbial fuel cell 

MSM  minimal salt media 

MWCNT multi-walled carbon nanotube 

ORR  oxygen reduction reaction 

PEM  proton exchange membrane 

QSM  quorum sensing molecule 

SCMFC  single chamber microbial fuel cell 

SEM  scanning electron microscopy 
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INTRODUCTION 

MFCs can produce electricity by exploiting the capability of exoelectrogenic bacteria to transfer 

electrons, via the metabolism of organic substrates to an electrode. MFCs represent a promising 

approach for sustainable energy production (Figure 1).1 MFCs have been reported to be tolerant of a 

wide range of carbon feed stocks in wastewater.2  

 

There are three main mechanisms of extracellular electron transfer (EET). The first, direct electron 

transfer, involves electrons which are transferred directly from the outer cell membrane to the 

electrode.3,4 The second, chemically mediated electron transfer, describes where electrons are 

transferred between the cell and the electrode via soluble redox shuttles such as flavins.5 Finally 

electron transfer is conducted by biological nanowires.6 The importance of the interaction between 

exoelectrogenic bacteria and the electrode cannot be understated. MFCs rely on the efficient 

transfer of electrons from anodic exoelectrogens to the cathode, where electrons participate in 

reduction reactions. 

 

In this review we explore avenues for improvement in both the anode and the cathode, with an 

emphasis on biological catalysis. These are explored within the context of the current challenges 

facing the field (Table 1.). In our opinion, with continued research and development, MFC system 

performance can be improved, enabling this technology to transcend from a research curiosity to 

application at industrial scale.  

 

BIOANODE CONSIDERATIONS 

A bioanode is defined as an anode with a biological component. At the bioanode, exoelectrogenic 

bacteria donate electrons to the electrode surface, which functions as the temporary terminal 
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electron acceptor under anaerobic conditions.7 In MFCs, anodes are associated with an adherent 

mass of cells known as the electroactive biofilm (EAB),8 and are thus not usually given the ‘bio’ 

designation. There are many factors, which can influence anodic electron uptake efficiency, some of 

which are discussed within this review. Improvement of the bioanode is an essential aspect for 

practical MFC system operation.  

 

Bioanode material 

The choice of bioanode material is an important consideration in MFC development. The material 

should be conductive and should not be corrosive. The material must also facilitate the attachment 

of microorganisms. A variety of anode materials have been used in different studies. Metal-based 

electrodes, such as stainless steel have been used,9 but the most commonly used are carbon-based, 

including carbon cloth,10 carbon paper,11 carbon brush,12 carbon felt,13 graphite rod14 and graphite 

plate.15 Many different arrangements of carbon-based electrodes in terms of their shape,16 size 17 

and physical location18 have been reported.  

 

Novel anode preparation techniques  

 The scope for novel directions in anodic surface development is shown by Zhang, et al.,19 wherein 

the common preparation methods of anodes were examined. Of note was their use of a multi-

walled carbon nanotube (MWCNT) and of vacuum filtration, as improved methods of anode 

preparation. The MWCNT functioned as a solid conductive matrix (or “nanowire”) for the biofilm. 

Four different anodic variations were prepared and compared in otherwise identical MFC systems; 

(i) Control – the activated carbon anode, inoculated once placed in the MFC with 4% v/v bacterial 

solution, (ii) Vacuum filtered MWCNT only – the activated carbon anode, had MWCNT vacuum 

filtered through it and once in the MFC was inoculated with 4 % v/v bacterial solution, (iii) Vacuum 
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filtered bacteria only – the activated carbon anode had bacterial solution filtered through it prior to 

insertion in the MFC, and (iv) Vacuum filtered MWCNT/bacterial hybrid – the activated carbon 

anode had MWCNT and bacterial solution vacuum filtered through it prior to insertion into the MFC. 

The ‘start-up’ time with the vacuum filtered MWCNT/bacterial hybrid was reduced by 53.8% 

compared to the control. However, in the “vacuum filtered bacteria only” system, the anode showed 

a prolonged start-up time, compared to control. These findings can be corresponded to the SEM 

analyses, which show the vacuum filtered MWCNT/bacterial hybrid with thick layers (40 µm), but 

with many µm-scale channels, which could accelerate the substrate transfer rate inside the biofilm. 

The built-in MWCNT nanowire enhanced both the electron transfer and the substrate diffusion 

property of the biofilm. However, in the case of the vacuum filtered bacteria only anode, SEM 

analysis displayed the entire electrode surface almost uniformly coated with a layer of 

approximately 10 µm in thickness. This seemingly ‘overloaded’ the anode with bacteria, likely 

contributing to a lack of substrate accessibility and thus a reduced substrate transfer rate. 

 

Anodic inoculum  

Depending on the desired application of the MFC system, different inoculum types can be deemed 

the most appropriate. Herein different inocula types are discussed. 

 

Pure culture 

Pure culture MFCs are those which contain only a single exoelectrogenic species. Pure culture MFCs 

are often used when conducting laboratory testing to investigate the impact of specific factors, to 

control the variation introduced by having more than one microorganism present.20 Pure cultures 

tend to have a higher medium specificity and are at an increased risk of contamination with 

undesired microbial growth,21,22 compared to mixed cultures. 
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Studies using pure cultures of exoelectrogenic extremophiles that operate under extreme 

conditions, have shown the capability of extremophiles to function in MFC conditions where other 

exoelectrogens would not survive.23,24 Monzon, et al. reported on improvements to an MFC system 

which used the extremophile Halanaerobium praevalens on the anode to treat high-salinity 

wastewater, which is difficult to treat using conventional technologies.25 The findings of this study 

are discussed in the section entitled “Quorum sensing”. Abrevaya et al. investigated two archaea 

microorganisms, namely; Haloferax volcanii and Natrialba magadii, used as biocatalysts in the anode 

of an MFC system.26 Both extremophiles are able to grow at high salt concentrations. In the case of 

H. volcanii, when natural red  was used as the redox mediator, the maximum power density 

recorded increased from 11.87 µW cm-2 to 50.98 µW cm-2. N. magadii showed a smaller proportional 

increase in power density upon the addition of natural red, from 4.57 µW cm-2 to 5.39 µW cm-2. 

 

Mixed culture 

Defined mixed cultures consist of two or more different known microorganism species, used 

together in the same MFC.27 Hassan, et al.’s study compared the performance of an MFC system 

containing pure cultures of (i) Nocardiopsis sp. KNU, (ii) Streptomyces enissocaesilis KNU, and (iii) a 

mixed-culture of both.28 The single cultures produced maximum power density values of 162 mW m-

2 and 145 mW m-2 respectively, whilst the coculture produced the highest value of 188 mW m-2. Ren, 

et al.’s study into the performance of a Clostridium cellulolyticum and Geobacter sulfurreducens 

defined mixed culture MFC system, showed that whilst the coculture produced a maximum power 

density of 143 mW m-2, neither pure culture alone produced electricity using cellulose as a 

substrate.29 C. cellulolyticum is a non-exoelectrogen, whereas G. sulfurreducens is an exoelectrogen. 

G. sulfurreducens is incapable of cellulose metabolism and when fed cellulose as a substrate, cannot 

break it down to produce power. When the two are used in combination, C. cellulolyticum 
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metabolises the cellulose such that it can be used by G. sulfurreducens, which goes on to produce 

power as a result of EET. This demonstrates that mixed cultures can access and use substrates that 

would be inaccessible to pure cultures. Also in the study, using scanning electron microscopy (SEM), 

the coculture’s EAB was compared with the EAB of an undefined mixed culture from activated 

sludge. The coculture’s EAB formed patchy but tight microcolony structures, whereas the undefined 

mixed culture formed a more uniform EAB. Fungal-bacterial cocultures have been less studied in 

MFC systems. Fernandez de Bios et al. used a defined culture of the fungus Trametes versicolor and 

the exoelectrogen Shewanella oneidensis in the anode chamber of an MFC so that the bacterium 

would use the networks of the fungus to transport the electrons to the anode.30 Their system, which 

was linked to azo dye degradation in the cathode chamber, generated stable electricity, (stable 

voltage of approximately 1000 mV across 1000 Ω resistance) which was enhanced when electro-

Fenton reactions occurred in the cathode chamber. 

 

An undefined mixed culture is where a sample from a natural or industrial setting is extracted, and 

used in an MFC,31 so the microbial make-up is undefined prior to use. The source of inoculum is of 

great importance, as it is from this source that the potential microbiological diversity comes. There 

are three main groups of inoculum sources; sediments and soils, wastewaters and extreme 

environments.32 In terms of achieving the highest degree of exoelectrogenic diversity, soil has been 

reported as the best inoculum source.32 Wastewater treatment is one of the most researched 

aspects in MFC technology33,34 and in many studies, wastewater is used as the inoculum source.35-37 

However wastewater is not a good source of exoelectrogenic diversity, as it does not contain 

insoluble minerals nor metals, which can serve as external electron acceptors.32 In their absence, 

microorganisms are unlikely to be under pressure to develop the ability to carry out EET, which is the 

defining feature of exoelectrogens. Undefined mixed culture has been a popular inoculum source in 

MFC studies to date. This greater diversity of exoelectrogens has a higher resistance against process 

disturbances, a lack of sterilisation requirements and a greater adaptive capacity,38 making it the 
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most pragmatic inoculum source for industrial applications. A method to increase exoelectrogenic 

diversity is to mix multiple inocula together, prior to or during enrichment in an MFC.32 Some of the 

disadvantages of using undefined mixed culture-based MFCs are the potential for substrate 

conversion to methane,39 the potential for the production of sulphides, e.g. H2S, which can be toxic 

to exoelectrogens and run to run variability as microorganisms may vary for each run.40  

 

Anolyte composition and characteristics 

There is currently no agreement on the ideal growth medium for anodic enrichment and operation 

of undefined mixed-culture MFCs. This is due to the inherent variability of different undefined 

mixed-culture inocula. Pure cultures however display high substrate specificity,38 making the 

development of a standardised growth medium much more attainable. The inherent variation and 

contamination risk that goes with wastewater treatment makes the use of pure culture difficult in 

that application. It has been shown that otherwise identical MFCs with different media or different 

pH values, give rise to different anodic microbial community make-ups and systemic process 

performances.41,42 

 

Medium type  

Defined media are commonly used when conducting laboratory testing into the impact of specific 

factors on MFCs, in order to reduce variables.43 A standard defined growth medium, often referred 

to as ‘synthetic wastewater’, reported extensively in the literature, normally consists of minimal salt 

media (MSM), supplemented with trace elements, vitamin mix, a carbon source, and a protein 

source.44-47 
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In many MFC industrial applications, including wastewater treatment, media are undefined or 

‘approximated’. Pandey, et al. reported that among the many different wastewater sources, 

distillery industry and agriculture processing wastewaters, in particular have better efficiency 

because of the presence of methanogenic inhibitors and electron transfer mediators such as lignin.48  

 

The medium used during the MFC enrichment process can be different to the eventual wastewater, 

which the MFC is being designed to treat. The enrichment medium can be defined medium which, 

through improvement, selects for the growth of the most advantageous exoelectrogenic species for 

the given purpose. Once the bioanode is enriched, the MFC can be exposed to wastewater and 

treatment may commence. The advantage of using a different enrichment medium over starting 

MFC operation with wastewater is that it may reduce ‘start-up’ time by allowing the biofilm to 

develop at a faster rate. There is no standardised definition of ‘start-up’ time across MFC studies, 

however it can be understood to describe the period of time before an MFC reaches its stable 

operating voltage. This voltage varies between MFC designs and studies, presenting another 

difficulty in intra-study comparisons. In the case of fed-batch culture MFCs, this is often defined as 

the return to the same operational voltage upon repeated fed-batch cycles. 

 

pH conditions 

Microbial bioanodic activity is greatest at an optimum pH, which varies between studies.49,50 

Therefore, consideration of initial pH and change in pH during operation are among important 

factors in MFC operation.51,42 pH is a factor which influences both single and dual chambered 

MFCs.52,53 
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In a single-chamber MFC (SCMFC) (Figure 2), both the anode and cathode are immersed in the same 

solution (normally fully immersed in the case of the anode and partially immersed in the case of the 

cathode), and hence are both subjected to similar pH conditions. He et al. found that an undefined 

mixed culture air-cathode SCMFC can tolerate an electrolyte pH as high as 10 with optimal 

conditions between pH 8 and 10.54  

 

In the case of dual-chamber MFCs (DCMFC) (Figure 3), Cheng, et al. reported the emergence of a pH 

gradient between the anodic and cathodic chambers, across the proton exchange membrane (PEM), 

as being detrimental to MFC system performance, by putting an electrochemical/thermodynamic 

constraint on MFC performance.55 They cite this as one of the major bottlenecks in MFC technology.  

Jadhav and Ghangrekar however, found in their study a greater pH difference between the anode 

and the cathode favoured higher current and voltage.56 They report a pH difference of 2 units 

between the chambers produced a maximum power density of 17.1 mW m-2, whereas no pH 

difference produced a maximum power density of 15.1 mW m-2. They state that a higher proton 

concentration gradient across the PEM increases the proton flux rate through the PEM. The use of 

pH buffers to sustain constant pH in MFC systems is commonplace in research.57 An ideal buffer 

should be able to maintain constant pH without interfering with chemical reactions or microbial 

physiology, whilst facilitating proton transport to the cathode for higher power densities and 

increased electrolyte conductivity.58 However in industrial scale wastewater treatment, the use of a 

buffer is viewed as impractical, principally due to cost.59   

 

Targeted biocatalytic and novel treatments  

To achieve improved core MFC performance metrics (power density, COD reduction, etc.), targeted 

treatments can be adopted. Herein, three such treatments are discussed.  
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Methanogenic inhibition 

A recurring theme in undefined mixed-culture MFCs is the proliferation of non-exoelectrogenic 

methanogens in the anodic chamber.60-62 In the anodic chamber, methanogens compete with 

exoelectrogens for free electrons, space on the anode and protons released by exoelectrogens for 

methanogenesis, thus reducing the CE of the MFC.63-65 The production of methane as a result of 

methanogenic activity in an MFC system makes their presence highly problematic in a technology 

that is hoped to provide an environmentally friendly energy source.66 A variety of methods for 

methanogen suppression have been reported (Table 2). 

 

Heat as a method of inoculum pre-treatment has been described by Vamshi Krishna and Venkata 

Mohan,65 wherein mixed-culture sludge was treated for one hour at 80 °C, followed by 24-hour 

anaerobic incubation at room temperature, before seeding in the MFC. Compared to the control 

mixed-culture sludge, power density increased from 92.08 mW m-2 to 128.26 mW m-2, whilst CE 

increased from 2.89% to 4.75%. A clear shift in bioanode microbial community make-up was also 

observed. In treated MFCs compared to controls, a huge proportional decrease in Firmicutes species 

and a total demise of Caldiserica species was observed, along with a huge proportional increase in 

proteobacteria. 

 

Iodopropane targets methyl corrinoid, the central molecule for both anabolic and catabolic 

pathways in methanogens. In the presence of iodopropane, methyl corrinoid binds to a propyl 

group instead of a methyl group, inhibiting the pathways requiring the methyl groups, thus 

inhibiting growth.67 Vamshi Krishna and Venkata Mohan65 describe pre-treating anaerobic sludge 

prior to use a SCMFC, with 50 mM 2-iodopropane in anaerobic conditions for 24 hours. Compared 
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to control mixed culture sludge, power density increased from 92.08 mW m-2 to 180.55 mW m-2, 

whilst CE increased from 2.89% to 6.188%. A clear shift in microbial community make-up on the 

bioanode was also observed. In the treated MFCs compared to controls, a huge proportional 

decrease in Firmicutes species and Caldiserica species was observed, along with a huge proportional 

increase in proteobacteria. 

 

Quorum sensing  

Quorum sensing is defined as the regulation of gene expression in response to fluctuations in cell-

population density.68 Quorum sensing bacteria produce and release chemical signal molecules 

referred to as quorum sensing molecules (QSMs), which increase in concentration as a function of 

cell density.69 The detection of a minimal threshold stimulatory concentration of a QSM leads to an 

alteration in gene expression.70 Certain QSMs transcribe genes for biofilm formation,71 making this 

an area of research that has potential for anodic improvements.  

 

In Gram-negative bacteria, N-Acyl homoserine lactones (AHLs) are the most common class of QSM.72 

Chen, et al. found a concentration of 10 µM of the AHL, 3OC12-HSL, in a mixed-culture DCMFC, led 

to a reduction in ‘start-up’ time from 10 days to 4 days compared to control, in addition to an 

increase in CE from 28.3% ± 4.1% to 36.2% ± 5.1%.73 In addition confocal laser scanning microscopy 

(CLSM) analysis showed that all AHLs tested (C4-HSL, C6-HSL and 3OC12-HSL) improved biofilm 

formation.  

 

Monzon, et al. described a SCMFC system with a pure culture of the extremophile H. praevalens.74 

Whilst precise figures were not given, a 95% increase in biofilm mass, along with a sustained 30% 
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increase in power density were reported with the addition of 100 nM 4-hydroxy-1-methyl-2-

quinolone (a QSM), compared to control. 

 

BIOCATHODE CONSIDERATIONS 

A much greater emphasis in MFC research has been placed on the anode compared to the cathode. 

However, research interest in the cathode is increasing. The most important attribute of a cathode is 

its ability to facilitate the oxygen reduction reaction (ORR). The speed at which the ORR takes place 

is a limiting factor in MFC electricity production. Cathodes are commonly made out of stainless steel 

or carbon. In order to improve the rate of the ORR, catalysts are coupled with the cathodes. 

Platinum is widely reported as an ORR catalyst and can be considered the ‘Gold Standard’ catalyst. In 

addition to platinum, different abiotic catalysts have been reported. However abiotic catalysts 

remain expensive and are susceptible to poisoning, thus requiring frequent replacement. An 

emerging method of cathodic improvement is the use of biological ORR catalysts such as 

microorganisms and enzymes.  The use of such biological elements at the cathode, has given rise to 

the term ‘biocathode’.  

 

Advantages of biocatalysts over abiotic catalysts 

After the ‘Gold Standard’ platinum catalyst, transition metal compounds and activated carbon are 

the most widely utilised abiotic ORR catalysts used in MFC cathodes.75-77 Compounds such as cobalt 

tetramethoxyphenylporphyrin (CoTMPP) have been shown to perform similarly to platinum 

cathodes at reduced cost and increased sustainability.78,79 However these catalysts remain expensive 

and are susceptible to poisoning, thus requiring frequent replacement. Wastewater constituents 

such as amino acids, sulphates and some organic dyes contribute to abiotic catalyst poisoning.77,80 

Poisoned cathodes show a small reduction peak in cyclic voltammetry analysis, demonstrating their 
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diminished ORR catalytic potential.81,82 An energy intensive, unsustainable process is used in 

platinum production, conflicting with the desire for MFCs to represent an environmentally friendly 

alternative energy source.83 Biocathodes can be much less cost prohibitive compared to abiotic 

cathodes, especially after initial investment.84 Due to a greater resistance to poisoning compared to 

platinum catalysed cathodes, cathode servicing intervals may be improved.85 In addition to 

catalysing the ORR, some catalysts can further assist in the bioremediation of wastewater that may 

not be fully addressed in the anode chamber, such as the reduction of nitrates, sulphates and 

dyes.86-89  

 

Bacterial biocathodes 

The growth of a bacterial biofilm on the cathode is rarely avoided and often reported.82 Whilst in 

most cases this biofilm is regarded to be detrimental or uninfluential, it may in fact suggest that 

there is some biological niche to be exploited by suitably equipped bacteria.90 Similar to bacteria that 

can donate electrons (ie. exoelectrogens), bacteria have been isolated that can accept electrons as 

part of their normal metabolism.91 The ability to utilise free electrons in the absence of a 

conventional, carbon based electron source enables these electrophillic bacteria to thrive on the 

electrically rich cathode surface. Hybrid systems have been developed that utilise both abiotic 

transition metal compounds and bacterial biofilms as ORR catalysts on the cathode.92 In such hybrid 

systems, oxygen can be produced by microorganisms enhancing transition metal oxidation, 

increasing the rate of electron acceptation by oxygen and thus increasing MFC power output.93  

 

Stability and efficacy are major issues requiring improvement in biocathodes. Maintaining bacterial 

cultures in an industrial wastewater treatment setting can be challenging. Different microorganisms 

have different nutrient requirements and have differing levels of sensitivity to changes in the 
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environment. In a manner similar to methanogen contamination at the anode (see section entitled 

“Methanogenic inhibition”), the cathode can also become contaminated by opportunistic 

microorganisms, which reduce the cathodic ORR efficiency. Their development is more prevalent in 

rich catholytes with high COD values. Methods to combat the development of ORR reducing bacteria 

at the cathode should be developed, in addition to methods with favour the growth of ORR 

increasing bacteria. One such method for promoting ORR increasing bacteria is potentiostatic 

enrichment, wherein a poised electrode encourages the growth of ORR catalysing 

microorganisms.91,94 In the absence of a carbon source, electrophilic bacterial cells are positively 

selected for. It has been reported that potentiostatically enriched aerobic bacterial biocathodes can 

have a similar performance to platinum catalysed cathodes.91  

 

Potentiostatic enrichment can also enable the discovery and isolation of effective ORR rate 

increasing microorganisms. Such microorganisms can be cultured and inoculated into the cathode as 

a method of increasing their cathodic prevalence.95 In studies assessing bacterial biocathodic make-

up, proteobacterial phyla have been found to dominate cathodic biofilms, with alphaproteobacteria 

and gammaproteobacteria reported as the most abundant classes.96,97  

 

Unlike DCMFCs, in SCMFCs, bacterial biocathodic cultures must grow in an anaerobic environment, 

as the interior of the air-breathing cathode is in contact with the anaerobic anolyte. Consequently 

the advantageous groups of microorganisms are expected to differ between DCMFCs and SCMFCs. 

Some investigations into immobilising microorganisms onto the cathode has been conducted, 

triggering an area for future research.98  

 

Enzymatic biocathodes 
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ORR catalysing enzymes, including bilirubin oxidase, laccase and other peroxidases have been 

reported as affective in MFC cathodes (Table 3).53,88,99 Bilirubin oxidase, for example has been 

successfully utilised in SCMFCs as an ORR catalyst, performing better than platinum.53 There are two 

main types of ORR catalysing enzymatic biocathodes; biocathodes with enzymes immobilized onto 

their surface, and microorganisms harbouring enzymes in-situ. A major advantage of immobilized 

enzymatic biocathodes over bacterial biocathodes is that they do not need to be provided with 

nutrients. However, this key advantage is often diminished by limitations of the immobilisation and 

additional costs. In terms of industrial application, wastewaters with a circumneutral pH are 

generally the most conducive to optimal enzyme activity.100 For wastewater with more extreme pH 

values and higher level salinity, researchers should look to enzymes produced by extremophiles 

naturally adapted to those conditions.24,101  

 

Various methods of enzyme immobilization have been reported, including enzyme encapsulation in 

silica and the immobilisation of single enzyme nanoparticles on nanostructured matrices.88,102 

Immobilizing enzymes at a close proximity to the cathode surface, enhances systemic efficiency.102 

ORR rate improving enzymes have been shown to require an active site – electrode distance of no 

more than 20 Ångströms (Å) for direct electron transfer to occur.103  

 

Using a host microorganism to produce, and extracellularly secrete the desired enzyme in-situ during 

MFC operation is potentially a more cost-effective alternative. Examples include the use of white rot 

fungi for the in-situ production of laccases in the cathodic chamber.104,105 However, contamination 

with proteolytic bacteria and enzyme inhibitors may prove problematic with this technique. 

Contamination often arises from the aeration of the cathodic chamber and potentially from bacterial 

infiltration across a damaged PEM. In addition to the method of extracellularly secreting enzymes, 

methods which involve cell membrane-bound enzymes have been investigated. One example is 
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surface display of O2 reducing enzymes in yeast, which enables the regeneration and immobilisation 

of the enzyme.106 A drawback, however, is that the native metabolism of the yeast host is in 

competition with the cathodic ORR’s demand for oxygen,107 reducing systemic performance. A 

method of addressing this drawback is the addition of electron transport chain inhibitors such as 

antimycin A.108 The enzyme delivery methods mentioned should be the focus future research, with 

synthetic biology investigated as a potential solution. 

 

EXTERNAL RESISTANCE 

An important consideration in MFC systems is the effect of external resistance. External resistance is 

of importance as it can affect the nature of the microbes selected at both the anode and the 

cathode. The ohmic (or internal) resistance (Rint) refers to the resistance of the electrodes, 

electrolytes and interconnections to electron and proton transport processes in the MFC. It is 

estimated by conducting polarisation tests and calculating the slope of the polarization curve at the 

linear (ohmic) region.109 The external resistance (Rext) controls the flow of electrons from the anode 

to the cathode, affecting potential (V) and current (I) outputs of MFCs according to Ohm’s Law (V = I 

Rext). The power output (W) is consequently affected by the external resistance, W = I2 Rext.
110 

Theoretically, MFC power output is maximised when the external resistor connected to the cell is 

equal to the total internal resistance.111 The external resistance has been investigated as an 

optimisation parameter in many studies. There are two general branches of these studies: The first is 

to compare the performance of different external loads on a given MFC system. The second is to 

vary the external load during MFC operation and compare to a control. In laboratory tests, MFCs are 

often operated with a constant external resistance. Meanwhile variations in operating conditions 

and the processes of biofilm growth and decay lead to significant changes of the internal resistance 

over time. This inevitably results in a mismatch between the internal and the external resistances, 

therefore decreasing MFC power output.112 
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Fernando, et al. examined external resistance as a potential tool for influencing azo dye reductive 

decolourisation kinetics in MFCs.113 In the study, the internal resistance of the MFC systems varied 

between 655 ± 2.2 Ω – 1020 ± 3.7 Ω at all tested external resistances. Different fixed external 

resistances in the range of 10 Ω to 46 kΩ were applied to otherwise identical MFCs. The maximum 

power densities obtained at 2.2 kΩ external resistance were significantly higher than those obtained 

at external resistances 50 Ω and 46 kΩ. Rismani-Yazdi, et al. conducted a study in which four fixed 

external resistances (20, 249, 480 and 1000 Ω) were tested by operating parallel MFCs 

independently at constant circuit loads for 10 weeks.110 Interestingly, in this study, where the ohmic 

resistance values were calculated to be between 301 – 382 Ω, the maximum power density was 

observed in the MFC with 20 Ω external resistance, followed by 249 Ω, 1000 Ω and finally 480 Ω. 

These results did not conform to the theoretical expectation that power density should increase the 

closer the external load is in value to the ohmic resistance. Many studies have shown bioanodic 

microbial community differences due to different external loads by DGGE analysis.110,42 Changes in 

MFC design and operational conditions affect the bacterial dynamics and metabolism, which in turn 

influence the current generation.110 Whilst acknowledging differences in external resistance leads to 

differences in anodic microbial community structure, Lyon, et al. questions the significance of this 

finding, as in their study, different communities were capable of producing the similar levels of 

power production, highlighting how dynamic MFC systems are.114 Buitrón, et al. showed that MFCs 

seem to ‘adapt’ to the external resistance to which they are subjected to.115 For example, an MFC 

‘adapted’ to an external resistance of 1000 Ω, generated current and power densities of 292.8 mA m-

2 and 49.8 mW m-2 respectively. However, when an identical MFC ‘adapted’ to an external resistance 

of 220 Ω, was suddenly applied to a 1000 Ω resistor, a reduction in current and power densities of 

40.1% and 35.7% respectively was observed. The electricity production was strongly influenced by 

the external resistance at which the cell was ‘adapted’. According to Buitrón, et al.,116 electroactive 
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bacteria acclimate properly to each change of external resistance (a selective pressure), promoting 

higher current density in time.  

 

The second branch of external resistance studies has been to vary the external resistance during 

operation. Grondin, et al. designed a system which intermittently connected the resistor in a 

connected/disconnected (on/off) manner.112 A 10 Ω external load was connected for a period of 5 

seconds, followed by disconnection for a period of 2 seconds, with the on/off process repeated 

throughout operation. Results were compared to a control MFC with a constantly connected 20 Ω 

external load. The internal resistance of the MFC in this study was estimated to be 19 – 24 Ω. 

Although the variable external resistance MFC had an ‘average power output per cycle’ value of 1.73 

± 0.03 mW, lower than the constant external resistance MFC, with 2.1 mW, the findings are 

significant, as they show that an MFC could be operated without significant losses in power output, 

even when the external resistance values are below the internal resistance. Buitrón, et al. compared 

a control to an MFC which was connected to a digital potentiometer with an array of fixed resistance 

values to vary the external load from 0 to 50 kΩ.116 The external resistance was varied ± 20 % 

according to system-calculated internal resistance. The external resistance which the system 

selected was that which theoretically provided the highest maximum output power, through 

estimation of the MFC’s internal resistance. This MFC was compared to an otherwise identical MFC 

with a constant resistance of 1500 Ω. It was found that the MFC with the varied external resistance, 

which took into account the systems present internal resistance had its ‘start-up’ time halved from 8 

to 4 days. 

 

CONCLUSIONS 

This review identifies major development areas in wastewater treating MFCs with emphasis on 

bioelectrodes. More research has been conducted into anodic development than into cathodic 
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development. However, research interest in biologically catalysed cathodes has increased in recent 

years. Although this review is not exhaustive, we have presented some of the major developments 

and challenges in the field and suggested areas for future research.  

 

For industrial application, the goal of bioanodic development is a highly efficient EAB, with a strong 

resilience to variation in wastewater composition, which requires infrequent servicing. Pure cultures 

are particularly useful for laboratory testing of the impact of specific factors, in order to reduce 

variables. Extremophile, pure or mixed, cultures are of particular interest for more specialised 

industrial applications and present an area worthy of greater interest. In the case of undefined 

mixed cultures, the choice of inoculum is of utmost importance, as it is from this source that all 

anodic microbial diversity is derived. Soil has been reported as the best inoculum source for 

achieving high exoelectrogenic diversity, whilst wastewater itself has been reported as a poor 

source. Mixed cultures consisting of a fungal component are an emerging direction for future 

research. MFCs have been shown to be robust systems, capable of treating a variety of different 

types of wastewater. The strategy could be explored of first exposing the anode to an enrichment 

medium, which selects for the growth of the most advantageous exoelectrogenic species, followed 

by exposure to the wastewater being treated. In many industrial scale-up models, an undefined 

anodic mixed culture is used. The growth of non-exoelectrogens, in particular methanogens is a 

recurring challenge when using such cultures. In this review a variety of methods to reduce the 

presence of methanogens were discussed. Exploitation of external resistance for MFC performance 

requires further improvement; however a study presented in this review questions its importance as 

a factor for improvement. Both perspectives should be considered before embarking on further 

research in this line. Methods to achieve enhanced anodic EABs, in particular the exploitation of 

bacterial quorum sensing were reported. Little research has been conducted in this area to date, and 
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along with quorum quenching, it represents a developing niche in the field. In addition to anodic 

development, quorum sensing and quorum quenching should be examined in biocathodic research.  

 

The main goal of biocathodic development for industrial application is the maximisation of the ORR 

rate using elements which are robust, cost-affective, and do not require frequent servicing. The aim 

to produce biocathodes which attain a superior performance to the ‘gold standard’ catalyst, 

platinum, will be a great advance in the field. In the case of immobilized enzymatic biocathodes, 

research should focus on improving enzymatic activity, stability, and lifespan. For bacterial 

biocathodes, various ORR rate improving species should be investigated, with the downstream goal 

of developing standard procedures for their use. The hybrid technique of utilising bacteria to 

maintain ORR rate improving enzymes in-situ may present the most effective solution.  

 

Throughout the literature, the main performance metrics are power density, current density, COD 

reduction and CE. These performance metrics are explained in detail in Logan et al.117 and do not 

form a comprehensive list of all possible MFC performance metrics. For instance, He suggested that 

energy as opposed to power may be a more useful measure.118 There are inconsistencies in 

reporting, with some studies reporting power density in W m-2 and others in W m-3. Such 

inconsistencies, in addition to variation in reactor size and design make meaningful comparisons 

between different studies difficult. Additionally, whilst the use of the ‘gold standard’ cathodic 

catalyst, platinum, produces superior results than other methods, it is expensive and its use can lead 

to microbial poisoning, making its use in industrial settings impractical.  

 

Finally it is important to look at microbial fuel cells in their broader context – beyond wastewater 

treatment and electricity production – as systems capable of producing useful products such as 
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drugs or biopolymers from waste. These developing applications in addition to the promise of 

environmentally friendly wastewater treatment, present potentially lucrative opportunities as well 

as contribution in the circular economy.  
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Table 1. A brief assessment of current challenges facing MFC research 

 Advantages Difficulties 

Development of a 
highly robust culture 
for a given MFC 
application 

Reduced service intervals 
 
Greater resistance to process 
disturbances 
 

Labour intensive 
 
Culture needs to tolerate a degree of 
wastewater variability  

Development of MFC 
standard operating 
procedures 

Necessary for industrial 
application 
 
Enables improved comparison 
across studies 

Repeated identical performance is 
difficult to attain in MFC systems 
 
Coordination across research groups 
is required 

Development of a 
bacterial ORR rate 
increasing culture 

Improved power output 
 
Cost reduction when compared to 
traditional ORR catalysts 

Contamination risks 
 
Using GMOs in waste treatment is 
potentially dangerous 

Development of an 
immobilized ORR rate 
increasing enzymatic 
biocathode 

Improved power output 
 
Cost reduction when compared to 
traditional ORR catalysts 

Life-span issues 

 

 

 

 

 

  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
Table 2. Comparison of recently reported methanogenic inhibition methods 

Inhibition tool Method of action References 

Heat shock pre-
treatment 

Methanogens are more sensitive to high 
temperatures than many exoelectrogens 

[65] 

Iodopropane pre-
treatment  

2-Iodopropane inhibits a critical step in 
methanogenesis 

[65] 

Marine algae 
Chaetoceros pre-
treatment 

Chaetoceros produces hexadecatrienoic acid which 
has been found to have methanogen inhibition 
properties 

[119][120] 

Nitroethane 
treatment 

Nitroethane has been shown to inhibit substrates 
used by ruminal methanogens 

[120][121] 
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Table 3. Comparison of recently reported enzymatic biocathodes  

Catalyst Performance 
compared to 

‘Gold Standard’ 
Platinum catalyst 

Lifespan Cost References 

Bilirubin 
Oxidase 

Superior Short – large 
scope for 
improvement 

Crude enzyme low 
Pure enzyme high 

[53] 

Laccase Superior Short – large 
scope for 
improvement 

Crude enzyme low 
Pure enzyme high 

[99] 

Endogenous 
Enzyme 
Secretion 

Currently inferior 
- scope to match, 
if purity and 
concentration are 
improved 

Indefinite - as long 
as enzyme 
producing 
microorganisms 
have access to 
nutrients and 
retain plasmid 

High initial 
investment in case 
of GMO 
Low cost for WT 

[99], [102],[103]  

Surface 
Presented 
Enzymes in 
Yeast 

Currently inferior 
- reduced by 
yeast’s 
competition with 
cathode for O2 

Indefinite – as 
long as yeast have 
access to nutrients 

High initial 
investment in case 
of GMO 
Low cost for WT 

[104], [105], 

[107] 
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Figure 1: A generalised single-chamber microbial fuel cell wastewater treatment system, with some 

major advantages listed.  
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Figure 2: Generalized structure of a single chamber microbial fuel cell, displaying a cathode without 

any catalyst.  
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Figure 3: Generalised structure of a dual chamber microbial fuel cell, displaying cathode without any 

catalyst.  

 

This article is protected by copyright. All rights reserved.


