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Abstract 

Typical cloud applications require high-level policy driven orchestration to achieve efficient resource utilisation 

and robust security to support different types of users and user scenarios. However, the efficient and secure 

utilisation of cloud resources to run applications is not trivial. Although there have been several efforts to support 

the coordinated deployment, and to a smaller extent the run-time orchestration of applications in the Cloud, no 

comprehensive solution has emerged until now that successfully leverages applications in an efficient, secure and 

seamless way. One of the major challenges is how to specify and manage Quality of Service (QoS) properties 

governing cloud applications. The solution to address these challenges could be a generic and pluggable framework 

that supports the optimal and secure deployment and run-time orchestration of applications in the Cloud. A 

specific aspect of such a cloud orchestration framework is the need to describe complex applications incorporating 

several services. These application descriptions must specify both the structure of the application and its QoS 

parameters, such as desired performance, economic viability and security. This paper proposes a cloud technology 

agnostic approach to application descriptions based on existing standards and describes how these application 

descriptions can be processed to manage applications in the Cloud. 

 
Keywords: Application Description Template; Application-level Cloud Orchestration; Quality of Service, Automated Scalability, 
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1. Introduction and Problem Statement 
Cloud computing has successfully addressed issues how to run applications on complex distributed 

computing infrastructures. Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a 

Service (SaaS) [1] solutions are widely used in academia and business to manage applications in the Cloud.  

However, there are application and infrastructure specific challenges, such as deployment, scalability and 

security requirements that must be addressed. At the one hand, on-demand access to cloud resources and 

services in a flexible and elastic way could result in significant cost savings due to more efficient and 

convenient resource utilisation. Additionally, it can also replace large investment costs and decrease long-

term operational costs. On the other hand, the efficient and dynamic utilisation of cloud resources and services 

is not trivial. The take up of cloud computing is still relatively low due to limited application-level flexibility 

and shortages in cloud specific skills.  

Porting and running applications in the Cloud has also been slowed down by the intrinsic complexity 

required to describe the services that compose the applications considering their deployment, migration, 

scalability and security requirements. As a result, the move to the Cloud has been somehow slower and more 

cautious in some application areas due to both application- and infrastructure-level complexity. For example 

public sector organisations [2] and Small- and Medium-sized Enterprises (SME) [3] are increasingly 

considering using the Cloud in their everyday activities but they still face difficulties of both economic and 

technical nature. Applications in these areas might run simulations, collect and process public service and 

social media data, etc. They have to process large volume of data and might have restrictions on execution, 

such as costs, deadlines, security, etc. To meet these requirements, efficient resource utilisation including 

resource scalability, such as CPU, disk and memory scalability has to be achieved. When faced with such 

complexity, application developers may decide not to take up or to abandon the Cloud if they are not properly 

supported. Although there have been several efforts to support the deployment, and to a smaller extent run-

time orchestration of cloud applications, no comprehensive solution has emerged that could be applied in both 
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academia and business to address the above challenges.  

To enable the execution of a large variety of applications in the Cloud in a cost effective, flexible, 

seamless and secure way, applications must be deployed, launched, executed and removed through a 

framework that hides cloud specific details from users. These phases need information about the applications, 

such as their architecture, resources and services they need, and Quality of Service (QoS) parameters they 

must meet. Application descriptions should define the application architecture, specify where to deploy and 

run applications, and formulate requirements towards their cost-effective execution and desired security 

policies. Application description is one of the major challenges in cloud computing considering complexity of 

applications and the Cloud itself. This description should help application developers to define applications in 

a simple, flexible, reusable and seamless way. It allows them specifying services and QoS properties of 

applications to enable their deployment and execution in the Cloud.  

Although there are several approaches that describe application architectures or even specify some 

policies, such descriptions are typically limited in their reach and specific to particular cloud infrastructures. 

Existing application description approaches (see in Section 3) allow specification of application architecture 

and definition of some policies that regulate deployment and execution of applications, but these approaches 

are not as efficient and flexible as required. Moreover, there is also a lack of a cloud agnostic framework that 

processes and enforces such descriptions in various cloud infrastructures. To support application developers, 

we elaborated a technology agnostic application description solution, called Application Description Template 

(ADT) that is presented in this paper together with a prototype framework that processes and acts upon such 

descriptions. 

The paper is structured as follows. Section 2 introduces an abstract view of application description. It 

identifies three challenges we addressed and design guidelines that the challenges are mapped to. Section 3 

describes the state of the art in application description approaches used in the Cloud and explains why we 

selected TOSCA (Topology and Orchestration Specification for Cloud Applications, an OASIS standard) [4] 

to implement ADT. Section 4 outlines the design of the ADT and the extended TOSCA policy architecture 

and explains how this design realises our design guidelines. Section 5 demonstrates the feasibility of the 

concept by presenting how a commercial application, called Magician, can be described with the ADT and 

managed in the Cloud with the MiCADO (Microservices-based Cloud Application-level Dynamic 

Orchestrator) [11] generic cloud orchestration framework. Section 6 contains conclusions and future work. 

2. Abstract View of Application Description 
To deploy and execute applications in the Cloud, first we have to describe them in a way that can be 

understood by all components involved. Such application description acts as conduits of information which 

connects various stakeholders and components. Furthermore, to foster cloud adoption we must strive to lower 

the learning barrier required to write the application descriptions and reduce as much as possible technology-

specific constraints. 
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Figure 1 - Abstract View of the Context of the Application Description Template 

We defined two main domains of this context. On the left of Figure 1 lies the technology agnostic 

Application Domain in which various application stakeholders engage in creating applications, describing 

them in a way which supports their deployment on cloud infrastructures, and finally, defining and selecting 

appropriate policies that govern their lifecycle. The right-hand side of Figure 1, Infrastructure Domain, 

contains elements that are specific to the deployment and execution services used by cloud providers (e.g. 

monitoring services, orchestration tools, security frameworks, etc.). These two domains might contain 

different solutions that offer similar or overlapping functionalities, and this can raise interoperability issues 

among different technologies. 

 

 
Figure 2 - The Application Submitter as a decoupling element. 

There are two main approaches to solve this problem and connect these two domains. In the first case 

(Approach A in Figure 1) a single description language specific to an infrastructure domain is propagated 

throughout all the elements and must be used to describe application and policies. This approach has the 

advantage to be simple and naturally arises when one single technology becomes dominant imposing its own 

language. On the other hand, it constrains the freedom of choice to the solution decided by the adopted 

technology. In comparison, Approach B allows for both domains to use different languages and employs a 

“lingua franca” which acts as a decoupling element in the middle. In our work we have followed Approach B 
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whereby the two domains are connected by a conceptual component, named Application Submitter, as 

depicted in the middle of Figure 2. The Application Submitter is a service that is be capable of converting the 

technology agnostic General Application Description (created and provided by the Application 

Stakeholder(s), typically the users or owners of the system) to an Infrastructure Specific Description used by 

different Infrastructure Components. 

3. Related Works: Application Description in Cloud Computing 

3.1 Overview of application description approaches 

There are currently three major application description approaches to target challenges described 

previously: cloud platform (e.g. Amazon, Microsoft Azure, Oracle, or OpenStack) dependent, cloud 

orchestration tool (e.g. Chef, Ansible or Juju) dependent, and platform and tool independent approaches (e.g. 

Camp and TOSCA).  

Cloud platform dependent approaches. Most leading cloud providers offer ways of describing 

applications and their properties. Amazon uses Amazon Machine Image (AMI) Template to describe all 

information required to launch an Amazon EC2 instance, and AWS Cloud Formation Template [5] to support 

development, deployment and running of applications on the Amazon cloud. Microsoft Azure Resource 

Manager Template [6] combines compute, storage and network resources into a single entity to manage 

applications in the Cloud. ORACLE uses Oracle VM Template [7] to enable quick configuration and 

provisioning of multi-tier application topologies onto virtualised and cloud environments by capturing the 

configuration and packaging of software components as self-contained building blocks called appliances that 

can be easily connected to form application blueprints, called as assemblies. OpenStack Heat Orchestration 

Template (HOT) [10] provides a template-based orchestration for describing a cloud application by executing 

OpenStack API calls. The template allows creating most OpenStack resource types as well as more advanced 

functionalities, such as high availability instances, auto-scaling and nested stacks instances. 

Cloud orchestration tool dependent approaches. Cloud orchestration tools typically offer higher level 

automation of application deployment compared to the native solutions of cloud providers. Chef and Juju are 

both open-source cloud orchestration tools. Chef [8] uses cookbooks and recipes to support integration with 

cloud-based platforms. Cookbooks and recipes describe system configuration and explicitly specify how to 

deploy and connect cloud application components. Ansible [40] takes an agentless approach and deploys and 

configures services and systems on cloud-based hosts from a remote server. Playbooks declare the desired 

state of a system, and the Ansible server executes commands via SSH to realise that state on a host. Juju [9] 

uses charms to enable deploying, managing, and scaling services on a wide variety of clouds. Charms 

encapsulate application configuration, define how services must be deployed, how they connect to other 

services, and how they can be scaled. They also define how services can be integrated, and how services react 

to events in the distributed environment.  

 Platform and tool independent approaches. These approaches provide a high-level description of 

applications that is not coupled with any specific cloud platform/middleware and tool. Topology and 

Orchestration Specification for Cloud Applications (TOSCA) [4] is an open source language specification 

that enables the description of portable cloud applications and the automation of their deployment and 

management. It allows the description of topologies, including nodes with their relationships and their 

policies. Cloud Application Management Platform (CAMP) [12] is a simple API specification to standardise 

the API of PaaS systems. The CAMP API has been designed for lifecycle management of applications. This 

management supports performing, uploading, configuring, customising, deploying/un-deploying, 

starting/stopping, snapshotting, suspending/restarting and deleting operations on an application/service, as 

well as monitoring the operation of the application. 

3.2 Comparison of application description approaches and justification of the selected approach 

All three investigated approaches properly describe the application architecture (or topology) specifying 

services they are composed of, how these services are connected, and artefacts and resources needed to run 
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applications. Although cloud platform dependent approaches work well in the given cloud environment, these 

do not fulfil our need for a “Lingua Franca” due to their specific dependencies on a particular cloud 

technology. Using these approaches would mean adopting Approach A and developing different application 

descriptions based on the targeted cloud platform. Although some of the cloud orchestration tools (e.g. Chef 

and Juju) support multiple cloud technologies providing certain independence from the cloud middleware, 

application developers are still restricted to use the given cloud orchestrator tool only. Therefore, such 

solutions still do not fulfil the requirements of a “Lingua Franca”. Further, these approaches are not based on 

standards and the majority of these approaches do not provide flexible QoS properties management.  

On the other end, TOSCA, as an application description solution, offers all features that cloud platform 

and orchestration dependent approaches do plus provides some additional ones. First, it defines the 

application architecture describing it as a combination of services specifying their topology and relationships. 

It also supports publishing, sharing and storing application descriptions. Second, TOSCA specifies how to 

manage applications defining implementation characteristics and constraints such as the packaging of 

installation artefacts and large variety of installation methodologies that vary from simple scripts to complex 

workflows. TOSCA does explicitly provide container or runtime support, for example it can specify how to 

run applications in Docker containers and virtual machines. Third, TOSCA allows specification of 

applications’ QoS properties, such as deployment, scalability, security, etc. This approach is flexible and 

generic enough to allow for the development of a comprehensive policy structure for the definition of various 

aspects and various stages of the applications’ lifecycle. Fourth, TOSCA is an open standard application 

description language supported by a growing number of communities and by OASIS as standardisation body. 

As a result, all major cloud orchestration tools and several cloud platforms either created plug-ins to process 

TOSCA-based application descriptions or developed translators to convert TOSCA descriptions into their 

native descriptions. For example, IBM developed a TOSCA plug-in [13] to process TOSCA application 

descriptions in Chef to be used in IBM Smart Cloud Orchestrator. OpenStack Heat leverages TOSCA as a 

standard based approach for modelling cloud stacks and applications using TOSCA Parser and Heat 

Translator [14]. Juju was extended to parse TOSCA based application descriptions transforming Juju topology 

model components into TOSCA compliant topology model components [15]. Finally, TOSCA is being 

actively used in both academic and non-academic communities. Therefore, there is large variety of 

implementations that offers a vast experience from which application developers can greatly benefit. Among 

these, the most promising are OpenTOSCA [16] and TOSCAMart [17]. Considering the features of TOSCA 

listed above, we selected it as the basis of our Application Description Template. However, TOSCA also has 

some limitations as it is highlighted in the related literature.  

Based on the overview of related works we identified three challenges designing and implementing ADT:  

• Challenge 1: to describe and manage containerised/virtualised applications in the Cloud, 

• Challenge 2: to define extensible and flexible policies for the management of a wide range of QoS 

properties and to provide parametrised support for these policies, and 

• Challenge 3: to support the deployment and management of the applications in a platform agnostic 

way. 

There were several efforts using TOSCA to address challenge 1 (description and management of 

containerised/virtualised applications in the Cloud) and challenge 3 (deploying and managing applications in 

a platform agnostic way). Cloudify [18] is an orchestration framework that has been extended with plugins to 

provide support for different cloud service providers, container platforms, as well as a variety of automation 

tools. It has its own Domain Specific Language (DSL) that uses TOSCA Simple Profile in YAML v1 as a 

base specification. DSL has strict typing, for example, there is one type defined for creating a non-

orchestrated Docker container, another type for a Docker container orchestrated by Docker Swarm, and a 

third type for a Docker container orchestrated by Kubernetes. ARIA [19], built on the Cloudify code base, 

keeps strict adherence to the normative DSL. It offers a set of TOSCA-based tools to support the orchestration 

of TOSCA normative templates. Puccini [20] extended ARIA with a frontend that translates an extended 
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TOSCA v1.1/v1.2 template into a middle language called Clout, then again into an orchestrator specific 

language before being fed to that orchestrator. Alien4Cloud [21] is an application management platform, 

which leverages the portability of TOSCA to encourage uptake of the cloud by enterprise organisations. It 

offers a custom DSL with strict, but not total adherence to TOSCA Simple Profile in YAML v1.0. Plugins 

and a graphical interface offer support for orchestrating and designing these TOSCA templates using various 

tools, including Cloudify, Mesos, Kubernetes and Puccini. 

There were further research efforts to address challenge 2 (extensible and flexible policies to manage QoS 

properties). The TOSCA specification defines some abstract non-normative policy types (access control, 

placement, etc.), and offers some design guidelines (such as the declarative approach), but it does not offer a 

detailed description on how to specify such policies. Breitenbücher et al. [22] elaborated an approach to 

assign policies to node templates and extended the TOSCA access policy with public access, no public access, 

secure password and only modelled port sub-policy. They also introduced a policy-aware deployment 

approach that generates an imperative executable Policy-Aware Provisioning Plan. It translates the topology 

template into an executable provisioning plan to enforce provisioning policies using the Policy-Aware 

Provisioning Plan Generator. They developed the OpenTOSCA platform to create, process and execute 

TOSCA specifications using Winery [23] and Vinothek [24]. Waizenegger et al. [25] proposed a taxonomy 

to describe policies. It contains four entities: stage, layer, effect and property. Stage defines the lifecycle stage 

in which the policy must be applied. Layer specifies the topology layer where the policy needs to be applied 

(similarly to TOSCA Targets). Effect defines how the policy effects the application. Property specifies 

parameters of the application. They combine the topology template and policies. They also defined two new 

policies: database encryption policy (sub-policy of the access control policy) and region policy (sub-policy of 

the placement policy). Kepes et al. [26] further extended policy taxonomies defining the policy signature and 

gave detailed overview of their policy taxonomy. They also introduced further sub-policies, such as response 

time and SQL injection firewall sub-policy. The authors elaborated a policy framework that transforms the 

abstract TOSCA entities into specific ones considering their functional requirements and policies. Their Plan 

Engine deploys and runs the application cooperating with the Runtime Monitor and the Policy Enforcing 

Manager. 

Our research, that was first outlined and initiated in [39], extends the above described related work on 

TOSCA regarding all three identified challenges. As a result, the presented ADT enables the description of 

applications at two different levels (virtual machines and containers), supports the definition of an extendable 

set of policies to manage QoS requirements, and enables the definition of a generic framework to process and 

act upon such descriptions for application-level cloud orchestration. Detailed analysis of these contributions is 

provided in Section 4. 

4. Extending TOSCA to Support Application-level Orchestration in the Cloud 
This section defines the Application Description Template (ADT), describes its structure and its elements, 

outlines the extended TOSCA policy hierarchy and explains the MiCADO reference architecture used to 

process and execute ADTs.  

To design the ADT, we have mapped the three challenges listed in Section 3 into six Design Guidelines. 

To target Challenge 1 (description of containerised/virtualised applications) we defined:  

• DG1 - Topology-based Description: We assume that the application architecture is described as 

topologies which represent the application services, their relations and how they are deployed into the 

infrastructure. 
• DG2 - Two-Level Topologies. We have restricted the deployment and execution of the applications 

into either containers or virtual machines, where containers could be further embedded in virtual 

machines. Such assumption does not dictate that each application needs to be deployed in containers 

(as some applications may be deployed directly into virtual machines) but sets a limit on the number of 

layers within the topologies. 
To address Challenge 2 (extensible and flexible policies) and Challenge 3 (technology agnosticism) we 
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defined 

• DG3 - Policy-based Behaviour: The behaviour of applications can be described by policies which 

govern the various aspects of the application lifecycle. 
• DG4 - Extensible Description. At the time of design not all requirements may have been known. 

Therefore, application descriptions should be extensible to cope with additional requirements. 
• DG5 - Infrastructure and Technology Agnosticism. The implementation of cloud infrastructure 

services must not affect the application description in any way. 
To help application developers in describing and managing applications we specified one more design 

guideline:  

• DG6 – Stakeholder vs Application Description. There are several stakeholders in the Cloud, such as 

cloud service developers, application developers, users, etc. They may need either the whole or a sub-

set of the application description based on their role. The application description should provide 

information about the application considering stakeholders’ role. 
Considering the limitations of the TOSCA based solutions, discussed in Section 3, we elaborated three 

major contributions addressing challenge 1, 2 and 3: 

• Contribution 1: developing the concept of the Application Description Template to describe 

applications deployed and executed in two levels, i.e. in containers and/or virtual machines (challenge 

1), 

• Contribution 2: introducing an extendable set of TOSCA policies to manage deployment, 

performance, scalability and security requirements of applications (challenge 2), and 

• Contribution 3: elaborating a generic framework that can automatically process Application 

Description Templates to deploy and manage applications in the Cloud in a platform agnostic way 

(challenge 3). 

4.1 Entities of the Application Description Template 

The ADT should manage three major structural entities: container images, virtual machines images and 

their policies, depicted in Figure 3. These entities are derived from the TOSCA Node element. They allow 

ADTs to satisfy three of the Design Guidelines: DG1 (Topology-based Description), DG2 (Two-Level 

Topologies), and DG3 (Policy-based Behaviour). In Figure 3 there are TOSCA nodes representing container 

images (Cont. 1, Cont. 2 and Cont. M) and a correlated set of nodes representing virtual machine images (VM 

1 and VM N). Container images are connected by TOSCA Relationships (continuous arrow) that define their 

mutual dependencies. Container images can be assigned to virtual machines using TOSCA Relationships 

(dotted arrow). Virtual machines can host one or more container images (e.g. VM 1 hosts two container 

images). Finally, policies (Policy 1 to Policy L) can target different nodes (containers or virtual machines). 

While relations between container images and container images and virtual machines are directly 

implemented with the TOSCA Relationship type, the connection between policies and nodes is implemented 

indirectly by defining one or more target nodes within the policies (dashed arrow). 
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Figure 3 – Structural Entities of the Application Description Template 

4.2 Structure of the Application Description Template 

TOSCA describes applications in Service Templates. These templates incorporate the Topology Template 

and the Management Plan. The Topology Template defines the structure of the application using 

NodeTemplates to specify nodes, and RelationTemplates to define how NodeTemplates are 

connected. NodeTemplates, derived from NodeTypes, define attributes, capabilities, interfaces, 

properties and requirements of applications’ nodes. TOSCA also specifies abstract PolicyTypes and 

PolicyTemplates that can be used to define certain aspects of the lifetime behaviour of the application. 

The Management Plan describes how to deploy and run the application in the Cloud.  

We have defined the Application Description Template (ADT), presented in Figure 4, based on many 

(although not all at the moment) of the features offered by TOSCA. We have used hierarchies of 

NodeTypes to define a simplified application topology spanning Containers and Virtual Machines, and 

TOSCA Policy constructs to define extensible and composable policies. An ADT defines the container and 

virtual machine levels in the Topology Template. At the bottom level are the virtual machines that host one or 

more containers.  ADT specifies the number of containers and virtual machines and how containers are 

allocated to virtual machines. This template enables assigning policies to applications, containers and virtual 

machines to govern how these entities are deployed and executed in the Cloud. It allows the definition of 

complex topologies and a rich and extendable set of policies that specify properties of the applications, for 

example deployment, security, scalability, etc. The ADT-based descriptions can be processed by different 

deployment and run-time orchestrators. ADT minimises the application developers’ efforts required to specify 

applications. This can be achieved by decomposing the application’s topology and policies into components 

that can be reused by application developers. 

The structure of the ADT is elaborated considering design guidelines DG4 (Extensible Description) and 

DG6 (Stakeholders vs Application Description). Each ADT contains four sections as illustrated on Figure 4. 

The Input/Output Section consists of the input and output variables of the application. The input sub-section 

enables application developers, who have written the ADT, to create a list of parameters of those values that 

either they or the applications’ users can define before submitting the application without any further 

knowledge of TOSCA or the ADT. This capability addresses DG6 (Stakeholders vs Application Description) 

distinguishing application developers, who have a deeper understanding of ADT, and application users, who 

only want to override a few selected variables. The output sub-section contains variables which are set during 

execution and should be returned to the user, for example the public IP address of a virtual machine 

provisioned during application deployment. These variables can refer to structural entities included in the 

Containers, Policies and Virtual Machines sections. The Container and Virtual Machine Sections describe 

containers, virtual machines and their relations. The containers are connected through TOSCA ConnectsTo 

Relationships, while containers are linked to a virtual machine on which they should be deployed using the 

TOSCA HostedOn Relationship. The Policies Section defines the QoS properties as Policy Elements which, 

in addition to specific information, also define a set of target nodes and the lifecycle phase to which these 



 Gabriele Pierantoni, Tamas Kiss, Gabor Terstyanszky, James DesLauriers, Gregoire Gesmier, Hai-Van Dang 9 

apply.  

 

 
Figure 4 – Structure of the Application Description Template (ADT) 

4.3 Extended Policy Hierarchy 

In order to comply with DG4 (Extensible Description) we use TOSCA types arranged in hierarchies to 

define the various structural entities of the ADT to allow extension of elements to match with a modification 

in one of the elements of the ADT. As a result, application developers can define a new sub-type in the 

hierarchy whilst the topology and overall structure of the ADT remains unchanged. This approach is 

particularly relevant for the definition of the extended policy hierarchy which we have designed considering 

TOSCA recommendations. First, the extended policy hierarchy follows the Declarative Model, e.g. it 

describes the parameters that govern the policy, but it does not specify how to implement the policy. Such 

Declarative Model supports developing various different application level orchestrators that act upon the 

defined policies, i.e. the policy definition does not define or restrict the implementation of the orchestrator. 

Second, we support the aggregation of policies in two different ways. First, policies can target one, more or all 

nodes, i.e. it is possible to define one policy for the entire application and a second one for a sub-set of nodes 

or for a single node. Second, policies cover distinct aspects of QoS, for example scalability, security, etc., and 

can be composed for each node. Such composition could lead to conflicts among the policies. As an example, 

a budget-constraining policy applied to the entire application may be in conflict with a deadline policy applied 

to either the entire application or one of its components that requires the usage of expensive resources. 

Another example could be that of a privacy constraint that requires the placement of a database in a certain 

geographical area with a policy that defines an incompatible budget limit. It must be emphasised that we do 

not address the conflicts of policies, but we added a priority field to the policy template which expresses 

conflict resolution criteria that can be used by the relevant element of the ADT. 
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Figure 5 - ADT Extended Policy Hierarchy 

We extended the Scaling and the Placement sub-policies of the TOSCA PolicyType and specified a new 

sub-policy called Access Control sub-policy to support deployment and execution of applications in the 

Cloud. The original TOSCA policies are highlighted in grey and new ones are presented in white in Fig. 5. 

The Placement and Scaling sub-policies contain several sub-sub-policies to support placement and scaling of 

different types of applications, for example Advanced Consumption Based Scaling and Budget Constrained 

Consumption Based Scaling. The Access Control branch encompasses security-related policies to describe 

functionalities such as Firewall Control and Secret Data Management which can be handled by security-

specific services of the targeted orchestrator (e.g. the MiCADO framework). By extending each branch, we 

have created a multi-layer hierarchy of TOSCA. Each sub-policy contains the information summarised in 

Figure 6. 

The first part, the Description Section, comprises of meta-data which defines the name, type and 

description of the policy, as well as a target (defined as a set of nodes in the topology) to which the policy 

should apply. The second part, the Properties Section, contains data that is either common to all policy types 

or specific to a particular policy type. Common Properties are Stage that defines at which stage of the 

lifecycle of the element the policy is applied, and Priority that is an arbitrary integer ranging from 0 to 100 

used to define the priority with which the policy will be implemented. Specific Properties vary depending on 

the nature of the policy itself. For example, a scalability policy based on CPU consumption defines various 

parameters that specify scalability thresholds, while a deployment policy defines minimum number of CPUs 

and minimum memory size for deployment. To allow for a uniform representation and to support the 

automatic parsing of the policy parameters, the specific properties are arranged in a table whereby each 

property is defined with name, value, range, default value and other meta-data fields. 

This combination of the hierarchical structure of types and sub-types, combined with the standard tabular 

representation of the parameters, support the extension of different policies with different levels of 

sophistication. As an example, the Consumption Based Budget Constrained policy (see Figure 5) extends the 

data set that defines Simple Consumption Based scalability policy. The possibility to define sub-policies 

similarly to the creation of sub-classes in object-oriented design also allows definition of the level of details 

which are exposed to ADT developers thus improving separation of concerns between application developers 
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with different interests and competences in the policy details. For example, the Advanced Consumption Based 

policy defines additional parameters governing the policy which are not defined in the Simple Consumption 

Based scalability policy (see Figure 5). 

 
Figure 6 - Structure of the ADT Policy Template 

4.4 Reference Architecture to Manage Application Description Templates 

Although DG5 (Technology Agnosticism) predicates to keep the dependencies on the technologies of the 

technology-specific domain (See Figure 1) to a minimum, we must define a minimal set of components and 

functionalities which we assume will be the recipients of the information contained in the ADT. To such aim, 

we have defined a generic reference architecture that is presented in Figure 7 and that we call MiCADO 

(Microservices-based Cloud Application-level Dynamic Orchestrator) Reference Architecture. Detailed 

description of MiCADO can be found in [11]. In this paper we only identify and describe the high-level 

building blocks of MiCADO that are required to process ADTs. 

 
Figure 7 - MiCADO Reference Architecture 

In the MiCADO Reference Architecture, ADTs are submitted to the Application Submitter which parses 

the description and creates three datasets: Virtual Machine (VM), container and policy related datasets. The 

Cloud Orchestrator creates and runs VMs in the Cloud using the VM data set. This orchestrator can either be 
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cloud specific that is tightly coupled to particular cloud middleware (e.g. Amazon or OpenStack), or it can 

also be more generic that supports the deployment of VMs in multiple heterogeneous clouds (e.g. Occopus 

[27]). The Container Orchestrator is working with a container manager (e.g. Docker Swarm or Kubernetes) to 

deploy and run containers in previously created VMs using the container data set. Finally, one or more Policy 

Enforcers receive the policy dataset and enforce various types of policies, for example scaling policies, 

security policies, etc. Due to the very different nature and behaviour of these enforcers, the reference 

architecture allows multiple independent Policy Enforcer components. The presence of the Cloud 

Orchestrator and the Container Orchestrator supports the two levels of DG2 (Two-Level Topologies), whilst 

one or more Policy Enforcer(s) allow to follow DG4 (Policy-based Behaviour). 

5. Deploying and Orchestrating Applications Using ADT – Case Study 
Although ADTs have been designed without the constraints of specific implementation technology, they 

have been used and tested for the description and execution of applications in the COLA (Cloud Orchestration 

at the Level of Application) project [28]. COLA is elaborating a generic pluggable framework called 

MiCADO (Microservices-based Cloud Application-level Dynamic Orchestrator) [4], to support optimal and 

secure deployment and run-time orchestration of applications in the Cloud, following the idea of the generic 

reference architecture presented in Figure 7 . MiCADO is a generic framework whose services are not 

restricted to particular technologies and can be implemented using different existing technologies. This 

framework provides the missing link between existing non-cloud aware applications and the dynamic 

capabilities of IaaS clouds by allowing connection to multiple technology implementations on demand. For 

example MiCADO can be connected to multiple cloud middleware (e.g. EC2 [29], CloudSigma [30], 

OpenStack [31], OpenNebula [32], etc.) and generic cloud access layers (e.g. CloudBroker Platform [33]) via 

well-defined interfaces to avoid dependence on one particular cloud technology. The current implementation 

of the framework is based on existing container management technologies (e.g. Docker Swarm [34]), cloud 

management and orchestration solutions (e.g. Occopus [27]), and monitoring tools (Prometheus [35]). For 

detailed architectural description of MiCADO please refer to [11].  

5.1 Magician –Data Mining Application 

In order to demonstrate the feasibility of the ADT concept, particularly how applications can be described, 

deployed and executed in a secure and scalable way, a social media data analytics application called Magician 

has been utilised as an example.  

The Aragon Regional Government in Spain decided to develop new communication channels with citizens 

to collect their feedback about the government’s services in order to further improve them. The authorities 

also want to provide information to companies in the region to improve existing businesses and develop new 

ones. The Regional Government utilises Magician, developed by Inycom [36], a Spanish ICT company. 

Magician offers social media data mining, competitor analysis and brand management needed for the Aragon 

Regional Government. It collects information from interactions with citizens and companies, and from 

Twitter tweets. Magician runs crawlers every two hours to collect Twitter tweets and data from authorities’ 

websites. The crawlers produce at least 1 TB data every year. 

The high-level architecture of Magician is presented in Figure 8. There are two major Magician services, 

highlighted in the figure in red boxes. The Semantic Processing service receives data from the social media 

crawlers and from local/regional authorities’ websites. It semantically processes and stores data in the Feed 

DB. The Classification service runs periodically to assort the semantically processed information based on 

categories defined by particular users. The Semantic Processing service can be deployed into multiple 

containers while the Classification service should be hosted in a single container to avoid database read/write 

inconsistency issues. Magician has to process and classify the collected data in less than two hours. The 

bottleneck is the Semantic Processing service because of the large data volume it has to handle. To process 

data and meet the time constraint the processing service should be scaled up and down automatically based on 

its load. Otherwise the service crashes when the load exceeds a certain level. 
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Figure 8 – Magician Application 

5.2 Description of the Magician Application with an ADT 

Magician has several requirements that need to be described in the ADT to support its deployment and 

execution. First, the application requires a two-layer topology made up of Docker containers running inside 

Virtual Machines. Second, a scaling policy is needed that allocates and releases resources and containers at 

certain CPU thresholds. Third, a security policy is required that controls access to sensitive data at runtime.  

In order to meet these requirements, standard TOSCA normative types were used alongside custom 

defined types which would support the specific technologies used in the MiCADO implementation that 

performs the required deployment, monitoring and scaling functionalities. As depicted in Figure 9, first, 

virtual machines are described in the VirtualMachineNode section using TOSCA normative compute nodes 

which have been extended to support a specific cloud orchestrator (Occopus [27]) and a specific IaaS cloud 

(CloudSigma [30]). This description features capabilities that match the CPU, memory and storage resources 

that the virtual machine must provide. Next, the Docker containers and their specific deployment properties 

are specified as custom types, which derive from the normative TOSCA type for container nodes, in the 

Magician section. At least two containers are needed to run Magician: one for the Semantic Processing 

service and another one for the Classifier service. These container nodes also describe the specific 

requirement of host, which links containers to virtual machines using the TOSCA normative HostedOn 

relationship type. The processing container should be scaled up and down considering the workload. The 

scaling policy is defined as a custom type which derives from the normative TOSCA type for scaling policies 

in the Scalability section. The scaling policy specifies the minimum and maximum CPU utilisation as 20% 

and 85% respectively, to guide the scaling operation. This means that when average CPU utilisation is above 

85% then a new container is launched, and the infrastructure is scaled up. Similarly, when CPU usage falls 

below 20% then a container is released and the infrastructure scales down. The security policy is specified as 

a custom type in the Secret_Distribution section. It is derived from the TOSCA Security policy. All these 
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policies are related to the Semantic Processing service containers, and there is no specific policy assigned to 

the Classifier container. 

 
Figure 9 – Application Description Template Instance for Magician. 

5.3 Processing the Application Description Template 

In order to process the generated ADT, we implemented a first prototype of the Application Submitter (see 

the MiCADO Reference Architecture on Figure 7). While the final version of the submitter will be richer in 

functionality, this version is sufficient to provide evidence regarding the applicability of the ADT concept. 

The generic architecture of the submitter is shown in Figure10. It is derived from the MiCADO Reference 

Architecture illustrated in Figure 7. In the current submitter implementation, the Cloud Orchestrator is hard-

coded (i.e. no VM scalability is supported, only container scalability), which permits testing of container 

orchestration and policy enforcement in isolation. This is the reason why in Figure 10 there is no VM 

Adaptor, only a Docker Adaptor for container orchestration. The Application Submitter contains two Policy 

Enforcers: the Scaling Policy Enforcer and the Security Enforcer. 

After submission, the ADT passes through the series of steps visualised in Figure 10. In the first step, the 

ADT is parsed and validated by the OpenStack TOSCA Parser [37], which checks whether the ADT follows 

the YAML syntax, and whether it adheres to the syntactic rules laid out in the TOSCA specification. 

Successful validation returns a complex Python object whose attributes and methods facilitate future 

processing of the template. This object is passed to a proprietary MiCADO Validator, which performs further 

validation to ensure that the ADT is compliant with the custom types that were described earlier. The Mapper 

component resolves any relative links and references in the Python object and separates the security-relevant 

sections of the template from the whole. Next, adaptors developed for each of the three end-components 

(Docker, Scaling Policy Enforcer and Security Enforcer) receive the newly parsed ADT and begin the 

translation step.  

The container-level portion of the ADT is translated into the format of a Docker Compose file so that it 

may be processed by Docker Swarm. The scaling policy and security descriptions from the ADT are 
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translated into configuration files which will be interpreted by their respective proprietary components, by the 

Scaling Policy Enforcer and the Security Enforcer.  

 

 
Figure 10 - Flow of ADT during processing by the Application Submitter 

The translation of the container-level portion considers three basic sets of information within data 

provided by the Mapper. The first are the TOSCA properties defined within the description of containers. 

These properties should align with the runtime arguments that can be passed to Docker via the docker run 

command or via a Docker Compose file and should follow the naming conventions of the Docker Compose 

format. The second set of information is contained within TOSCA artefacts, which define external data which 

must be retrieved during orchestration. The image from which to build the container is described as an artefact 

with properties that define the image name, as well as the repository where it can be found. The final set of 

information to translate comes in the form of TOSCA relationships. Relationships, such as the HostedOn 

relationship used in the Magician ADT, describe how the various nodes defined within the ADT should 

interact with each other. Translation of the HostedOn relationship first defines a constraint inside the 

Docker Compose file, but also requires cooperation from the cloud orchestrator to ensure an appropriate 

reference is made for that constraint. TOSCA standards also define a ConnectsTo relationship between two 

containers, and an AttachesTo relationship for connecting a container to a block storage volume. 

Translating an AttachesTo relationship requires defining a new volume and providing an appropriate 

reference to that volume, both inside the Docker Compose file. On the other hand, translating a 

ConnectsTo relationship involves defining a new network and referencing that network under both of the 

connecting components, again inside the Docker Compose file. Translating the scaling policies into an 

appropriate format is straightforward as the scaling component configuration file is also in YAML. 

Translation involves creating a new key in the scaling configuration with the name of the container to be 

deployed and the minimum and maximum CPU thresholds for scaling. The translation step for the Security 

Enforcer involves the creation of the Docker secret through API calls to Docker’s SDK.  

Once the translation is complete, the submitter instructs the related components to deploy and manage the 

application as specified in the policies. In the current prototype Docker Swarm [34] is responsible for the 

deployment of containers. We implemented a simple Scaling Policy Enforcer that uses alerts generated by a 

Prometheus-based monitoring system [35] to monitor the applications’ behaviour. The proof of concept 

Security Enforcer leverages the secrets feature built into Docker.  

To launch the application and enforce the necessary policies, the Application Submitter begins the 

execution step. The three components are executed in sequence and point to the configuration files which 

were created during the translation step. First, the Docker Compose file is passed to Docker Swarm and 
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executed with the docker deploy command. Next, the Scaling Policy Enforcer generates an alert based on the 

new information in the configuration file by reloading the Prometheus monitoring to check whether any 

scaling operation is needed. Finally, the Security Enforcer is executed and makes API calls to pass the 

sensitive data along a secure channel to the deployed container.  

5.4 Orchestrating Magician in the Cloud 

In order to test that deployment has been successful, and that the intended policies are indeed being 

enforced, several tools are used to monitor the application at runtime. Grafana [38] is an open-source graphing 

tool which offers out-of-the-box support for the graphical display of metrics from the Prometheus monitoring 

system. Grafana is used to show CPU usage as it surpasses the scaling thresholds set out in the ADT policies. 

Prometheus itself is utilised to ensure that accurate alerts have been generated by the scaling policy adaptor. 

Lastly, to provide a real-time visualisation of containers as they scale, Docker Swarm Visualiser, which 

connects directly to the Docker socket, is applied. Please note that as it was explained earlier, in this 

implementation only containers are scaling as the Cloud Orchestrator component is hard-coded.  

 
Figure 11 - Magician after launch and during the scale-up phase 

After deploying Magician on the CloudSigma cloud [30] it must be connected to an external database to 

begin data mining. Once connected, data mining starts, and CPU resources will be consumed. After a period 

of mining, Magician enters a sleep phase, waits for more data to be consolidated in the database and then 

begins mining again. Figure 11 shows the scaling-up stage of the Magician lifecycle after the application has 

been deployed and after the connection to the database has been established. The scaling policies are taking 

effect and the framework is scaling-up in response to the container CPU usage (in the upper-left graph) being 

well above the set threshold of 85%. At 16:08 a second (manually provisioned) virtual machine begins to pull 

the Magician image from an external repository as the container continues to scale-up. At 16:15 the pull 

completes, and the second Magician container begins mining data as well. Other virtual machines, which have 

also been started manually, begin pulling the Magician image as the containers scale, at 16:14 and 16:22. The 

first of these can been seen completing at 16:20 when the new container begins to mine and the CPU usage 

increases. The Docker-Swarm-Visualiser shows all four worker virtual machines and the status of the 

containers within them – either running or preparing. The Magician image on the fourth worker machine can 

still be seen in a preparing state since the pull has not yet finished. The Classifier container can be seen 

running on the first virtual machine and it is not scaling with the rest of the deployment.  
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Figure 12 - Magician during the end of its execution, during a scale-down phase. 

Figure 12 shows the scaling down stage of the lifecycle, where Magician enters sleep mode and the 

Scaling Policy Enforcer begins a scale down response. CPU usage by containers can be seen dropping as there 

are fewer database operations to carry out. Finally, with all mining tasks completed, all CPU usage drops, and 

containers are removed one by one from the infrastructure. Virtual machines which have already been 

manually shut down are shown with a red light in the Docker Swarm Visualiser. 

The above experiment has successfully demonstrated that a suitable Application Submitter can be written 

that reads and processes the designed ADT, and that is capable of deploying the described infrastructure and 

enforcing the defined policies. Further experimentation is currently ongoing and long-term pre-production 

runs are planned to further investigate how such solution eliminates system crashes and reduces costs. 

6. Conclusion and future work 
This paper described how a technology agnostic application description allows the definition of complex 

topologies and specification of an extendable set of policies based on the TOSCA language specification. We 

elaborated the Application Description Template (ADT) that can be processed by various deployment and 

run-time orchestrators. ADT describes applications to be deployed and executed in two levels: in containers 

and/or in virtual machines. Additionally, ADT enables defining scale up/down rules allowing adding and 

removing containers to/from virtual machines during scaling up/down operations. The TOSCA policy 

hierarchy was extended with several scalability and security policies, such as advanced consumption-based 

scalability, consumption-based budget constrained scalability, firewall setting, and secret management policy 

to handle deployment, performance, scalability and security requirements of applications. We defined a 

generic reference architecture, the MiCADO Reference Architecture, that processes Application Description 

Templates to deploy and manage applications in the Cloud in a platform agnostic way. The implemented 

proof of concept prototype has demonstrated the viability of the technology-agnostic approach and the way a 

TOSCA-based ADT can be used to describe application topologies and delegate to a component (Application 

Submitter) the translation to formats that are technology-specific. The use case presented in this paper has 

demonstrated that the designed ADT was capable of describing a multi-node topology of a fairly complex 

commercial application with specific policies.  

As ongoing and future work, the MiCADO application-level orchestration framework is currently being 

extended to implement further functionalities such as flexible submission lifecycle management and support 

for more detailed policies through an advanced Policy Keeper component. The Application Submitter is being 
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embedded into the MiCADO architecture and it will connect the ADTs with the application-level 

orchestration features of MiCADO. Additionally, over 20 applications (both commercial and scientific 

applications) are being described with ADTs and prototyped with MiCADO within the COLA project.  
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