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Sustainable supplier selection and order allocation for multinational 

enterprises considering supply disruption in COVID-19 era 

 

Abstract: The unprecedented outbreak of COVID-19 has left many multinational 

enterprises facing extremely severe supply disruptions. Besides considering triple-

bottom-line requirements, managers now also have to consider supply disruption due 

to the pandemic more seriously. However, existing research does not take these two key 

objectives into account simultaneously. To bridge this research gap, based on the 

characteristics of COVID-19 and similar global emergency events, this paper proposes 

a model that aims to solve the problem of sustainable supplier selection and order 

allocation considering supply disruption in the COVID-19 era. It does so by using a 

multi-stage multi-objective optimization model applied to the different stages of 

development and spread of the pandemic. Then, a novel nRa-NSGA-II algorithm is 

proposed to solve the high-dimensional multi-objective optimization model. The 

applicability and effectiveness of the proposed model is illustrated in a well-known 

multinational producer of shortwave therapeutic instruments. 

 

Keywords: sustainable supplier selection; order allocation; supply disruption; multi-

stage multi-objective optimization; nRa-NSGA-II; COVID-19 

 

1. Introduction 

In recent years, due to increased attention being given to social and environmental 

issues, sustainable supply chain management (SSCM) has become an important 

practice globally (Christ and Burritt, 2019; Wu et al., 2021), enabling companies to 

improve their brand image, and have better economic stability, environment friendly 

and social benefits (Banerjee, 2002; Zhu and Sarkis, 2004; Zhu and Lai, 2019). 

However, global supply chains are more likely to be faced with a variety of destructive 

events, such as natural disasters, man-made attacks and technical failures (Hosseini et 
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al., 2019), leading to supply chain disruptions, which in turn give rise to failure to meet 

of supply chain sustainability goals (Amindoust, 2018). Particularly, in the recent 

COVID-19 pandemic, global supply chains have been facing unprecedented 

challenges, due to a big imbalance between supply and demand (Ivanov and Dolgui, 

2020). 94% of the Fortune 1000 companies have seen their supply chain disrupted due 

to COVID-19 (Sherman, 2020). For example, Hyundai closed its assembly plant in 

South Korea due to a lack of parts made in China, Renault suspended production in 

Busan, South Korea (Isidore, 2020), the world's leading ventilator manufacturer 

Hamilton, was unable to obtain humidifiers, the core accessory of ventilator, due to 

export restrictions of medical products in Romania, resulting in a suspension of 

production (Aspan and Elegant, 2020). These cases all show that it is essential to 

consider supply disruption in SSCM.  

 

Sustainable supplier selection (SSS) is already a key issue in SSCM, and so appropriate 

decision-making is the first precondition for supplier selection and order allocation (Wu 

and Barnes, 2012; Wu et al., 2020a, b). The resilience and geographical locations of 

suppliers are crucial to reduce the vulnerability of the focal company and the supply 

chain as a whole (Valipour Parkouhi et al., 2019). An efficient supply chain constructed 

from suppliers with high levels of both resilience and sustainability will be able to 

recover rapidly from supply disruption in time, and supply chain sustainability will be 

unaffected, or less affected, in the case of disruption (Amindoust, 2018). To this end, 

segregating suppliers geographically is an important strategy to reduce the risk of 

supply disruption (Hosseini et al., 2019) due to lockdowns caused by the outbreak of 

COVID-19 and similar global emergency events. In such case, cooperation with local 

suppliers becomes more important and needs more attention (Sharma et al., 2020). 

Consequently, for multinational manufacturing enterprises, it is crucial to build 

localized procurement networks (Sharma et al., 2020) and decentralize the location of 

suppliers (Hosseini et al., 2019) to enhance the resilience of the whole supply chain to 

deal with such global risk events. 
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Breaking down complex problems into a series of separate phases or stages can improve 

the efficiency of problem solving significantly (Wu and Barnes, 2012). On the one hand, 

the performance of suppliers may change during different phases resulting in different 

decision-making and order allocation schemes (Harridan and Cheaitou, 2017). For 

instance, Azadnia et al. (2015) and Moheb-Alizadeh and Handfield (2019) both found 

that the modification of supplier parameters during different decision-making periods 

will change the final decision-making and industrial manufacturing order allocation. 

On the other hand, demand and supply usually change over time in different periods 

(Cano-Belman and Meyr, 2019). Therefore, the dynamics of emergency events must be 

taken into account when adjusting supplier selection and order allocation (Kaur and 

Prakash Singh, 2021), especially for pandemics like COVID-19. The impact on SSCs 

is difficult to predict (Karmaker et al., 2021) because the performance of suppliers and 

the decision-making environments are changing rapidly. As the pandemic develops, the 

lockdown policies adopted and market demand at different stages are different, which 

will have a great impact on decision-making. Therefore, it is highly necessary to have 

a temporal model that reflects the different development phases of the pandemic, from 

the perspective of supply disruption in SSCM. 

 

The resilience and sustainability of the supply chain are both important in SSCM (Golan 

et al., 2020; Karmaker et al. 2021). On the one hand, supply disruption will seriously 

affect the sustainability of the whole supply chains. On the other hand, only considering 

sustainability will cause the supply chains to be unable to adjust and respond in time 

when a disruption suddenly occurs. However, current SSS and order allocation models 

in SSCM pay more attention to sustainability, and rarely consider how to respond to a 

pandemic such as COVID-19, which leads to regional and global lockdowns and 

disruption, and develops in a predictable pattern. This paper proposes a model capable 

of solving the first-tier supplier selection and order allocation problem of multinational 

enterprises when faced with the risk of supply disruption due to the COVID-19 

pandemic and similar global emergency events. It will do this by: 
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1) Proposing a five-stage temporal model of the pandemic. 

2) Grouping potential suppliers into one of four categories based on their geographical 

locations. 

3) Constructing an evaluation criteria system using intuitionistic fuzzy set to describe 

the evaluation value of decision-makers and calculating the sustainability and 

resilience scores for each supplier using TOPSIS and entropy weight method.  

4) Building a multi-stage multi-objective optimization model for SSS and order 

allocation considering geographical separation procurement and localized 

procurement to resist global supply disruption in different pandemic periods. The 

solutions of the model can reflect the optimal results of SSS and order allocation at 

the same time. 

5) Improving and extending the multi-objective optimization algorithm NSGA-II to 

make it converge with the decision-makers’ preferred direction in high-dimensional 

multi-objective optimization problems and eliminating the influence of different 

data types of each objective.  

 

The rest of the paper is organized as follows. Section 2 provides the literature review 

on supply disruption and resilience, and SSS and order allocation. Section 3 introduces 

the proposed multi-stage multi-objective optimization model and solution procedure. 

In section 4, the feasibility of the proposed model is demonstrated through an 

illustrative application in a well-known multinational producer of shortwave 

therapeutic instruments. Sensitivity analysis and comparative analysis are provided to 

demonstrate the advantages of the improved algorithm in Section 5. Section 6 discusses 

the results and considers the managerial implications. Finally, Section 7 presents some 

conclusions and considers the scope of future research work. 
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2. Literature review 

2.1 Supply disruption and resilience 

Supply disruption is usually caused by natural disasters such as earthquake, flood and 

volcanic explosion, or human factor such as political turmoil, terrorist attacks, which 

has a great negative impact on supply chains (Esmaeili-Najafabadi et al., 2019). 

Companies have realized that supply disruption can seriously affect their ability to 

successfully manage the supply chain and lead to the decline of supply chain 

sustainability (Li et al., 2010; Amindoust, 2018). Hence, more and more researchers 

have paid attention to this issue and how to as address it.  

 

Juttner and Maklan (2011) proposed the concept of supply chain resilience, and 

considered its relationship with supply chain vulnerability and supply chain risk 

management. Rajesh and Ravi (2015) define resilience in suppliers as the ability to 

provide high quality products at an economic price and with enough flexibility to adapt 

to changes in demand with a short lead time at low risk without compromising safety 

and environmental practices. Rezapour et al. (2017) design a resilient supply chain 

network, which includes emergency inventory, additional reserve capacity at suppliers 

and multiple sources. It shown that even if these measures do increase costs, they can 

still ensure that enterprises can maintain market share in the face of disruption. Scheibe 

and Blackhurst (2018) identify three dimensions to help explain the spread of a supply 

chain disruption, including the nature of the disruption, structure and dependence, and 

managerial decision-making. Li et al. (2020) studied the compensation, contingent 

purchase and inventory consumption strategies in a make-to-order supply chain during 

the two periods of disruption duration and disruption recovery, in order to reduce 

disruption loss. The above research provides a theoretical basis for dealing with supply 

chain disruption risk, defines the relationship between resilience and supply chain risk, 

analyzes the causes of disruption propagation and puts forward countermeasures.  
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Specifically, in view of the disruption risk caused by COVID-19, Ivanov (2020) 

proposed a simulation prediction model to observe and predict the short-term and long-

term impacts of the pandemic outbreak on the supply chain, and help so decision-

makers make supply chain plans during the pandemic. Govindan et al. (2020) proposes 

a decision-making tool to classify community members and manage the demand of 

medical supply chains. Li et al. (2021) studied the different effects of forward and 

backward disruption propagation on the supply chain in the pandemic, finding that 

forward disruption propagation has a greater impact on the supply/assembly network, 

and backward disruption propagation has a greater impact on the distribution company. 

Mahmoudi et al. (2021) proposed a supplier selection model from the green and 

resilience point of view to deal with the disruption of the pandemic, yet, social benefits 

are not considered.  

 

In short, on the one hand, individual qualified suppliers need to have sufficient 

resilience to resist different impact factors and ensure consistent supply (Rajesh and 

Ravi, 2015; Valipour Parkouhi et al., 2019; Kaur and Prakash Singh, 2021). On the 

other hand, it is also necessary to ensure that the entire sustainable supply chain has the 

lowest disruption probability. 

2.2 Sustainable supplier selection and order allocation 

Establishing partnerships with suppliers which have environmental, social and 

economic strength can improve the overall performance of supply chains (Buyukozkan 

and Cifci, 2011). How to choose the appropriate number of suppliers has always been 

an important issue (Burke et al., 2007). Reducing the number of suppliers can bring 

cost advantages through economy of scale but it increases the risk of disruption (Meena 

and Sarmah, 2015; Torabi et al., 2015). Therefore, many optimization methodologies 

have been proposed to determine the right number of suppliers and the order size 

allocation to each. In order to review current research on supplier selection and order 

allocation, and analyze the different advantages and disadvantages of model 
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construction and solution methods, eleven representative studies about supplier 

selection and order allocation in relation to "sustainable", "resilience", or "disruption" 

in high ranked journals were selected. Table 1 presents a comparison of them.  

 
[Take in Table 1 about here.] 

 

From Table 1 we can see that most existing studies are based solely on sustainability 

(e.g. Govindan et al., 2015; Cheraghalipour and Farsad, 2018; Harridan and Cheaitou, 

2017) or resilience (e.g. Torabi et al., 2015; Mari et al., 2019). Only Vahidi et al. (2018) 

took both sustainable and resilience into account by mixing them proportionally. As 

enterprises pay more attention to the risk of supply chain disruption, many studies 

consider disruption probability (risk) (e.g. Meena and Sarmah, 2015; Cheraghalipour 

and Farsad, 2018; PrasannaVenkatesan and Goh, 2016; Vahidi et al., 2018; Hosseini et 

al., 2019; Kaur and Prakash Singh, 2021). However, most of them combine disruption 

probability with other objectives, such as cost, rather than taking disruption probability 

as an individual objective. This makes their consideration of disruption probability 

insufficient, especially in this pandemic era.  

 

As to the construction and solution of the multi-objective optimization models, only a 

minority of studies are based on a single objective function (Meena and Sarmah, 2015; 

Kaur and Prakash Singh, 2021). When considering multi-objective functions, some 

studies transformed the multi-objective optimization problem into a single objective 

optimization problem (e.g. Vahidi et al., 2018; Torabi et al., 2015; Hosseini et al., 2019), 

whilst others apply multi-objective optimization algorithms (e.g. Cheraghalipour and 

Farsad, 2018; PrasannaVenkatesan and Goh, 2016; Mari et al., 2019; Kannan et al., 

2013; Govindan et al., 2015; Harridan and Cheaitou, 2017). However, both of these 

approaches have their own drawbacks. Whilst it is easy to opt for a local optimal 

solution, this risk losing important information when the multi-objective model is 

transformed into the single objective model. However, existing models of multi-

objective supplier selection and order allocation usually only consider two to three low 
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dimensional optimization problems (Wu and Barnes, 2016a). Thus, current 

optimization algorithms are more suitable for the single objective optimization 

problems, like 𝜀𝜀-constraint- differential evolution algorithm (Torabi et al., 2015; Vahidi 

et al., 2018), mixed integer programming (Hosseini et al., 2019; Kaur and Prakash 

Singh, 2021) or low dimensional multi-objective optimization problems, include multi-

objective linear programming (Kannan et al., 2013), MOHEV algorithm (Govindan et 

al., 2015), multi-choice goal programming (Cheraghalipour and Farsad, 2018), and 

multi-objective PSO algorithm (PrasannaVenkatesan and Goh, 2016; Wu and Barnes, 

2016b). Only Hosseini et al. (2019) have so far considered geographical separation 

when allocating orders, providing a quantitative mathematical expression for the 

geographic separation of suppliers. However, they did not consider the importance of 

local procurement nor the characteristics of suppliers in different geographical locations.  

2.3 Research gaps 

Through the above comprehensive literature review, four main research gaps can be 

summarized as follows: 

1) Supply chain disruption can have a great negative impact on supply chain 

performance (Esmaeili-Najafabadi et al., 2019). At present, SSC are facing serious 

disruptions due to the global medical crisis. Additionally, travel restrictions and 

lockdowns implemented by many countries have further affected the balance of 

supply and demand (Nikolopoulos et al., 2021). Even though existing research in 

the context of the pandemic has made contributions to impact prediction (Ivanov, 

2020), demand management (Govindan et al., 2020), disruption propagation impact 

(Li et al., 2021), and green supplier selection (Mahmoudi et al., 2021), none of the 

above research has taken into account the impact of the pandemic on SSCM at 

different development stages. Without a temporal model of the pandemic, SSS 

decision-making will result in low efficiency and effectiveness. 
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2) Whilst all the studies have taken cost into account, sustainability, resilience and 

disruption probability (risk) are rarely considered simultaneously. In other words, 

most current research only considers the traditional and basic triple-bottom-line 

sustainability or resilience perspectives separately. In order to cope with the 

challenges of the pandemic, focal companies should not only consider the basic 

triple-bottom-line of sustainability individually, but also consider resilience and 

suppliers’ geographic separation, simultaneously.  

 

3) Existing research transforms multiple objectives into a single objective (Vahidi et 

al., 2018; Hosseini et al., 2019) which are not suitable for multi-objective 

optimization, or only considers a small number of objective functions (Govindan et 

al., 2015; Prasanna Venkatesan and Goh, 2016). However, current optimization 

algorithms are not good in high-dimensional situations, where the Pareto solutions 

will occupy the whole frontier. Then, the effectiveness of the decision-making will 

be affected.  

 

4) Since COVID-19, lockdown policies have been implemented both regionally and 

globally (Nikolopoulos et al., 2021). Many companies stopped production because 

they are unable to obtain semi-finished products or raw materials from centralized 

suppliers (Aspan and Elegant, 2020). Although some studies have proposed the 

geographical separation of suppliers (Hosseini et al., 2019), they have not studied 

the appropriate division of suppliers according to their geographical locations in 

order to improve the ability of the whole supply chain to resist the risk of disruption, 

nor have they considered the establishment of localized procurement network to 

deal with the risk of global supply disruption caused by health emergencies. 

 

This research plans to bridge the above research gaps by proposing a multi-stage multi-

objective optimization model for SSS and order allocation considering supply 

disruption in COVID-19 era, and a corresponding algorithm to solve it effectively. 
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3. The sustainable supplier selection and order allocation model 

This section proposes a multi-stage multi-objective optimization model for SSS and 

order allocation considering supply disruption in COVID-19 era, and an improved 

heuristic algorithm to solve it. The proposed framework is shown in Figure 1.  
 

[Take in Figure 1 about here.] 
 
As Figure 1 shows, potential suppliers are firstly divided into one of four categories 

according to their geographical location to reflect the different impact of the pandemic 

on suppliers in different geographical locations.  Secondly, intuitionistic fuzzy 

numbers (IFNs) (Atanassov, 1986) are used to describe the performance of potential 

suppliers in terms of sustainability and resilience. The key reason for using IFNs is that 

decision-makers are more likely to undertake imprecise fuzzy evaluation through 

descriptive language when the evaluation criteria are difficult to quantify. IFNs can 

capture the fuzziness and uncertainty of evaluation language more comprehensively by 

using its membership degree, non-membership degree and hesitation degree (Li et al., 

2014). At the same time, in order to obtain the weightings of different criteria 

objectively, and to reflect the relationship between alternatives and positive/negative 

ideal reference points comprehensively (Wang et al., 2016), both the entropy weight 

method (Zou et al., 2006) and TOPSIS method (Opricovic and Tzeng, 2004) are used 

to obtain the sustainability and resilience score of each potential supplier.  Thirdly, the 

pandemic is divided into five stages, each with different characteristics.  Fourthly, a 

multi-stage multi-objective order allocation optimization model is constructed, which 

considers sustainability, resilience, geographical separation, disruption probability and 

total costs. The characteristics of different stages of the pandemic are reflected by 

specific parameter settings. In order to make up for the problem that the classical 

NSGA-II cannot effectively stratify in high dimension and reflect the decision-makers’ 

preference for each objective, this paper improves the dominance relation Ra-

dominance (Zou et al., 2020) and proposes a novel nRA-NSGA-II algorithm, which can 

reflect the preference of decision-makers and eliminate the influence of different data 
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types of each objective.  Finally, according to the principle of maximum expected 

order completion rate, the optimal solution of each stage is selected from the non-

dominated solution set.  

3.1 Multi-period division 

The dynamics of emergencies must be considered in supplier selection and order 

allocation (Kaur and Prakash Singh, 2021). Different phases of the pandemic have their 

own characteristics, which have great impact on the decision-making for SSS and order 

allocation. This research postulates a temporal model that divides the development and 

spread of COVID-19 into five periods, which refer to the daily confirmed cases in the 

United States (from January 23, 2020 to July 8, 2021 as shown in Figure 2), and to the 

impact on supply disruption in each period (Figure 3), including: workplace closures 

during the COVID-19 pandemic (column #1), restrictions on internal movement during 

the COVID-19 pandemic (column #2), and international travel controls during the 

COVID-19 pandemic (column #3). 

 
[Take in Figure 2 and 3 about here.] 

 

Firstly, the time before January 2020 is the normal stage. At this stage, the pandemic 

has not appeared, there is no lockdown policy, and the probability of supplier disruption 

is very low. Secondly, from January to March is the early stage. At this stage, the 

pandemic has just begun to appear, and the number of confirmed cases per day is very 

small. International and global lockdown policies have been adopted, but they are 

relatively minor, mainly affecting international and global suppliers. Thirdly, from 

March to November is the outbreak stage. At this stage, the number of daily confirmed 

cases increased day by day, and began to close workplaces and restrict internal 

movement in the country, resulting in slight local and regional lockdown, further 

serious border lockdown policy. All suppliers were affected to varying degrees 

according to the lockdown policy, local and regional suppliers are less affected, while 

international and global suppliers are more affected. Fourthly, from November to 

David Barnes
Sorry but I do not follow this section.  I am not sure what you mean by “columns” in Figure 3. Figure 3 is showing maps of the world.  I cannot see any columns. 
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January is the peak stage, in which the number of confirmed cases is very large and 

stable every day. Various types of lockdown policies are more serious than in the 

previous stage. Local, regional, international and global suppliers are seriously affected 

by the lockdown policy. Finally, from January to July is the recovery stage, in which 

the number of daily confirmed cases decreased day by day, and various types of 

lockdown policies became slight. Thus, combined with the basis of stage division, each 

period is characterized by differences in total demand, probability of disruption and 

priority of SSCM (shown as Table 2).  
 

[Take in Table 2 about here.] 
 
From Table 2 we can see that the first period is the Normal stage before the pandemic 

occurs. SSCs pay more attention to cost reduction and high efficiency. Then, in the 

second stage, the Early stage of the pandemic, customer demand rises slightly. SSCs 

are less concerned about costs, and more concerned about sustainability and the 

probability of disruption. In the third stage, the Outbreak stage, customer demand rises 

sharply. And the probability of supply disruption is high due to serious blockages in 

international and global transportation. In the fourth stage, the Peak stage, customer 

demand remains high, and the probability of supply disruption is very high as 

international, global, regional and local transportation are seriously blocked as well. 

SSCs have to pay more attention to sustainability and the probability of disruption 

during the third and fourth stage. In the last stage, the Recovery stage, customer demand 

returns to normal levels. The probability of supply disruption is lower due to the easing 

of various lockdown policies. SSCs will re-focus on cost reduction, while paying 

attention to sustainability and resilience. In short, according to above specific 

characteristics of the different stages, decision-makers can make more accurate and 

appropriate decisions. 
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3.2 Multi-objective optimization model 

3.2.1 Notations 

The notations used to formulate the decision-making problem are shown in Table 3. 
 

[Take in Table 3 about here.] 

3.2.2 Programming objectives 

(1) Decentralized procurement 

Decentralized procurement, separating suppliers geographically, is an important 

proactive strategy, which helps to reduce the risk of supply disruption geographically 

(Hosseini et al., 2019). Objective function (1) maximizes the sum of the distances 

between selected suppliers, so as to isolate the suppliers and carry out decentralized 

procurement. 

 Max ∑ 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽(𝑛𝑛𝑛𝑛≠𝑛𝑛𝑛𝑛)  (1) 

(2) Disruption probability 

In order to avoid the failure of supply chain caused by the interruption of selected 

suppliers, objective function (2) minimizes the probability of all selected suppliers 

being interrupted. 

 Min ∏ 𝜃𝜃𝑛𝑛𝑛𝑛𝑡𝑡𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽  (2) 

(3) Sustainability score 

The purpose of objective function (3) is to maximize the total sustainability score of the 

selected suppliers and ensure that more orders are allocated to those suppliers with a 

high sustainability score. 

 Max 
∑ 𝜁𝜁𝑛𝑛𝑛𝑛𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽
∑ 𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽

 (3) 

(4) Resilience score 

Objective function (4) maximizes the total resilience score of the selected suppliers and 

ensures that more orders are allocated to the suppliers with high resilience score. 
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 Max 
∑ 𝜂𝜂𝑛𝑛𝑛𝑛𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽
∑ 𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽

 (4) 

(5) Total cost 

Objective function (5) minimizes the total procurement cost, including fixed purchase 

costs, order costs, transportation costs, storage costs and penalty costs. (1 − 𝜃𝜃𝑛𝑛𝑛𝑛𝑡𝑡)𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡 

indicates the expected purchase quantity. The first part ∑ 𝑓𝑓𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽  represents the 

total fixed purchase cost. The second part ∑ 𝑀𝑀𝑛𝑛𝑡𝑡(1− 𝜃𝜃𝑛𝑛𝑛𝑛𝑡𝑡)𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡𝑢𝑢𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽  represents 

the total order cost, considering the procurement coefficient of each geographical 

region in each stage. The third part ∑ 𝑀𝑀𝑛𝑛𝑡𝑡(1− 𝜃𝜃𝑛𝑛𝑛𝑛𝑡𝑡)𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡𝛼𝛼𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽  represents the 

total transportation cost. The fourth part ∑ ℎ (1−𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛)𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛
2𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽   represents the total 

storage cost. Assuming the manufacturer produces evenly over time, the average 

storage is half of the expected purchase quantity. The fifth part ∑ 𝛽𝛽(𝐷𝐷𝑡𝑡 −𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽

∑(1− 𝜃𝜃𝑛𝑛𝑛𝑛𝑡𝑡)𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡) represents the penalty cost of being out of stock.  

Min 

� 𝑓𝑓𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽

+ � 𝑀𝑀𝑛𝑛𝑡𝑡(1− 𝜃𝜃𝑛𝑛𝑛𝑛𝑡𝑡)𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡𝑢𝑢𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽

+ � 𝑀𝑀𝑛𝑛𝑡𝑡(1− 𝜃𝜃𝑛𝑛𝑛𝑛𝑡𝑡)𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡𝛼𝛼𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽

+ 

� ℎ
(1− 𝜃𝜃𝑛𝑛𝑛𝑛𝑡𝑡)𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡

2
𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽

+ � 𝛽𝛽(𝐷𝐷𝑡𝑡 −�(1− 𝜃𝜃𝑛𝑛𝑛𝑛𝑡𝑡)𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡)
𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽

 

(5) 

3.2.3 Constraints 

 ∑ 𝑥𝑥𝐿𝐿𝑛𝑛𝐿𝐿𝑛𝑛∈𝐿𝐿 ≥ ε (6) 

 𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡 ≤ 𝐶𝐶𝑛𝑛𝑛𝑛𝑡𝑡 (7) 

 ∑ (1 − 𝜃𝜃𝑛𝑛𝑛𝑛𝑡𝑡)𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽 ≥ σ𝐷𝐷𝑡𝑡 (8) 

 τ𝐶𝐶𝑛𝑛𝑛𝑛𝑡𝑡 ≤ 𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡 (9) 

 ∑ 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽 ≤ φ (10) 

 𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡 𝜖𝜖 𝑁𝑁 (11) 

 𝑥𝑥𝑛𝑛𝑛𝑛 𝜖𝜖 {0, 1} (12) 

Constraint (6) guarantees that there is at least ε local supplier in the procurement plan. 
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Constraint (7) guarantees that the ordered quantity to each supplier does not exceed the 

supplier's production capacity. Constraint (8) indicates minimum expected order 

completion rate. Then, constraint (9) represents the minimum proportion of the 

purchase quantity from a single supplier and the production capacity of that supplier. 

Constraint (10) limits the number of suppliers. Constraint (11) ensures that the purchase 

quantity 𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡 is a positive integer. Constraint (12) ensures that the decision variable 

𝑥𝑥𝑛𝑛𝑛𝑛 is binary. 

3.3 Solution procedure 

3.3.1 Determine sustainable & resilience score  

The validity and reliability of the results obtained by the evaluation method are highly 

influenced by the criteria system (Rashidi et al., 2020). Hence, it is necessary to follow 

the triple bottom line (TBL) principle of sustainability and supplier resilience 

performance that needs to be considered carefully in a pandemic environment, and to 

build an appropriate evaluation criteria system according to the requirements of SSCM 

to determine the supplier's resilience and sustainable score firstly. 
 

As noted above, entropy-TOPSIS under intuition fuzzy environment is used to calculate 

the sustainable score and resilience score of potential suppliers. 

 

Definition 1 (Atanassov, 1986) Let X be a finite nonempty set. An intuition fuzzy set 

(IFS) A can be described as Equation (13): 

 𝐴𝐴 = {< 𝑥𝑥, 𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜈𝜈𝐴𝐴(𝑥𝑥) > | 𝑥𝑥 ∈ 𝑋𝑋} (13) 

where 𝜇𝜇𝐴𝐴(𝑥𝑥) and 𝜈𝜈𝐴𝐴(𝑥𝑥) denote the membership degree and non-membership degree 

of element x to the IFS A, 𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜈𝜈𝐴𝐴(𝑥𝑥) ∈ [0,1], and 0 ≤ 𝜇𝜇𝐴𝐴(𝑥𝑥) + 𝜈𝜈𝐴𝐴(𝑥𝑥) ≤ 1. 

 

Degree of hesitation 𝜋𝜋𝐴𝐴(𝑥𝑥) of the element x to A is defined as 𝜋𝜋𝐴𝐴(𝑥𝑥) = 1 − (𝜇𝜇𝐴𝐴(𝑥𝑥) +

𝜈𝜈𝐴𝐴(𝑥𝑥)). 𝜋𝜋𝐴𝐴(𝑥𝑥) ∈ [0,1], if 𝜋𝜋𝐴𝐴(𝑥𝑥) = 0, the IFS A is similar to a fuzzy set. 
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Definition 2 (Zhao et al., 2010) Let 𝐴𝐴1 = �𝜇𝜇𝐴𝐴1 , 𝜈𝜈𝐴𝐴1�  and 𝐴𝐴2 = �𝜇𝜇𝐴𝐴2 , 𝜈𝜈𝐴𝐴2�  be two 

IFNs, then the follow rules are obtained as Equation (14) and Equation (15). 

 A1⨁A2 = (μA1 + μA2 − μA1μA2 , νA1νA2) (14) 

 𝜆𝜆𝐴𝐴1 = (1 − �1 − 𝜇𝜇𝐴𝐴1�
𝜆𝜆, 𝜈𝜈𝐴𝐴1

𝜆𝜆) (15) 

Definition 3 (Szmidt and Kacprzyk, 2000) Let 𝐴𝐴1 = �𝜇𝜇𝐴𝐴1 , 𝜈𝜈𝐴𝐴1 ,𝜋𝜋𝐴𝐴1�  and 𝐴𝐴2 =

�𝜇𝜇𝐴𝐴2 , 𝜈𝜈𝐴𝐴2 ,𝜋𝜋𝐴𝐴2� be two IFNs, then, the distance between them is calculated by Equation 

(16):  

 𝑑𝑑(𝐴𝐴,𝐵𝐵) = �1
2

[�𝜇𝜇𝐴𝐴1 − 𝜇𝜇𝐴𝐴2�
2 + �𝜈𝜈𝐴𝐴1 − 𝜈𝜈𝐴𝐴2�

2 + �𝜋𝜋𝐴𝐴1 − 𝜋𝜋𝐴𝐴2�
2] (16) 

Definition 4 (Wei, 2008) Let 𝐴𝐴 = (𝜇𝜇𝐴𝐴, 𝜈𝜈𝐴𝐴,𝜋𝜋𝐴𝐴) is an IFN, then the score function 𝑆𝑆(𝐴𝐴) 

and the accuracy function 𝐻𝐻(𝐴𝐴) are defined as Equation (17) and Equation (18):  

 𝑆𝑆(𝐴𝐴) = 𝜇𝜇𝐴𝐴 − 𝜈𝜈𝐴𝐴 (17) 

 𝐻𝐻(𝐴𝐴) = 𝜇𝜇𝐴𝐴 + 𝜈𝜈𝐴𝐴 (18) 

Definition 5 (Wei, 2008) Let𝐴𝐴1 = �𝜇𝜇𝐴𝐴1 , 𝜈𝜈𝐴𝐴1 ,𝜋𝜋𝐴𝐴1�, 𝐴𝐴2 = �𝜇𝜇𝐴𝐴2 , 𝜈𝜈𝐴𝐴2 ,𝜋𝜋𝐴𝐴2� are two IFNs, 

then the comparison method between them is defined as: 

（1）If 𝑆𝑆(𝐴𝐴1) > 𝑆𝑆(𝐴𝐴2), then 𝐴𝐴1 > 𝐴𝐴2; 

（2）If 𝑆𝑆(𝐴𝐴1) < 𝑆𝑆(𝐴𝐴2), then 𝐴𝐴1 < 𝐴𝐴2; 

（3）If 𝑆𝑆(𝐴𝐴1) = 𝑆𝑆(𝐴𝐴2) 

① If 𝐻𝐻(𝐴𝐴1) > 𝐻𝐻(𝐴𝐴2), then 𝐴𝐴1 > 𝐴𝐴2 

② If 𝐻𝐻(𝐴𝐴1) < 𝐻𝐻(𝐴𝐴2), then 𝐴𝐴1 > 𝐴𝐴2 

③ If 𝐻𝐻(𝐴𝐴1) = 𝐻𝐻(𝐴𝐴2), then 𝐴𝐴1 = 𝐴𝐴2. 

 

Suppose that there are m suppliers 𝐴𝐴 = {𝐴𝐴1,𝐴𝐴2,⋯ ,𝐴𝐴𝑚𝑚} , n evaluation criteria 𝐶𝐶 =

{𝐶𝐶1,𝐶𝐶2,⋯ ,𝐶𝐶𝑛𝑛}. Each supplier is evaluated by decision-makers with respect to n criteria 

to form a decision matrix denoted by 𝑋𝑋 = �𝑥𝑥𝑛𝑛𝑛𝑛�𝑚𝑚×𝑛𝑛
.  Let 𝑊𝑊 = (𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝑛𝑛) be 
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the relative weight vector of evaluation criteria, satisfying ∑ 𝑤𝑤𝑛𝑛𝑛𝑛
𝑛𝑛=1 = 1.  

 

Then the main steps of the sustainable & resilience score calculation model approach 

can be described as follows: 

 

Step 1: Identify and define linguistic terms, obtain the corresponding fuzzy number of 

supplier 𝐴𝐴𝑛𝑛 with IFNs �𝜇𝜇𝑛𝑛𝑛𝑛, 𝜈𝜈𝑛𝑛𝑛𝑛 ,𝜋𝜋𝑛𝑛𝑛𝑛� on criterion 𝐶𝐶𝑛𝑛 as Table 4, and then construct 

the decision matrix X = (𝜇𝜇𝑛𝑛𝑛𝑛, 𝜈𝜈𝑛𝑛𝑛𝑛 ,𝜋𝜋𝑛𝑛𝑛𝑛)𝑚𝑚×𝑛𝑛. 

 
[Take in Table 4 about here.] 

 
Step 2: Calculate the weight of each criterion by entropy weight method. For IFS, fuzzy 

entropy 𝑒𝑒𝑛𝑛  is calculated as Equation (19) (Vlachos and Sergiadis, 2007): 

 𝑒𝑒𝑛𝑛 = − 1
𝑚𝑚𝑚𝑚𝑛𝑛 2

∑ (𝜇𝜇𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙 𝜇𝜇𝑛𝑛𝑛𝑛 + 𝜈𝜈𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙 𝜈𝜈𝑛𝑛𝑛𝑛 − (1 −𝜋𝜋𝑛𝑛𝑛𝑛)𝑙𝑙𝑙𝑙 (1 −𝑚𝑚
𝑛𝑛=1 𝜋𝜋𝑛𝑛𝑛𝑛) − 𝜋𝜋𝑛𝑛𝑛𝑛𝑙𝑙𝑙𝑙2) (19) 

Then, calculate the dispersion degree 𝑑𝑑𝑛𝑛 of each criterion, obtain the weight 𝑤𝑤𝑛𝑛 of 

each criterion as Equation (20) and Equation (21). 

 𝑑𝑑𝑛𝑛 = 1 − 𝑒𝑒𝑛𝑛 , 𝑗𝑗 = 1,2, … ,𝑙𝑙 (20) 

 𝑤𝑤𝑛𝑛 = 𝑑𝑑𝑗𝑗
∑ 𝑑𝑑𝑗𝑗𝑛𝑛
𝑗𝑗=1

, 𝑗𝑗 = 1,2, … ,𝑙𝑙 (21) 

Step 3: Calculate the distance between suppliers and positive and negative ideal 

solutions ∆𝑛𝑛𝑛𝑛+、∆𝑛𝑛𝑛𝑛−  under each criterion. Firstly, the score function and accurate function 

of each IFN are calculated by Definition 4, and the evaluation values under each 

criterion are sorted according to Definition 5, the positive and negative ideal solutions 

are obtained as Equation (22) and Equation (23). Then, ∆𝑛𝑛𝑛𝑛+、∆𝑛𝑛𝑛𝑛−   are calculated as 

Definition 3. 

 𝐶𝐶𝑆𝑆𝑡𝑡+ = (𝜇𝜇𝑛𝑛𝑛𝑛+ , 𝜈𝜈𝑛𝑛𝑛𝑛+,𝜋𝜋𝑛𝑛𝑛𝑛+) (22) 

 𝐶𝐶𝑆𝑆𝑡𝑡− = (𝜇𝜇𝑛𝑛𝑛𝑛− , 𝜈𝜈𝑛𝑛𝑛𝑛−,𝜋𝜋𝑛𝑛𝑛𝑛−) (23) 
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Where 𝜋𝜋𝑛𝑛𝑛𝑛+ = 1 − 𝜇𝜇𝑛𝑛𝑛𝑛+ − 𝜈𝜈𝑛𝑛𝑛𝑛+, 𝜋𝜋𝑛𝑛𝑛𝑛− = 1 − 𝜇𝜇𝑛𝑛𝑛𝑛− − 𝜈𝜈𝑛𝑛𝑛𝑛−. 

 

Step 4: Calculate the weighted distance 𝑑𝑑𝑛𝑛+、𝑑𝑑𝑛𝑛− between each supplier and positive 

and negative ideal solutions by Equation (24) and Equation (25). 

 𝑑𝑑𝑛𝑛+ = ∑ 𝑤𝑤𝑛𝑛∆𝑛𝑛𝑛𝑛+𝑛𝑛
𝑛𝑛=1  (24) 

 𝑑𝑑𝑛𝑛− = ∑ 𝑤𝑤𝑛𝑛∆𝑛𝑛𝑛𝑛−𝑛𝑛
𝑛𝑛=1  (25) 

Step 5: Calculate sustainable/resilience score 𝐶𝐶𝐶𝐶𝑛𝑛 of each supplier by Equation (26). 

 𝐶𝐶𝐶𝐶𝑛𝑛 = 𝑑𝑑𝑛𝑛
−

𝑑𝑑𝑛𝑛
++𝑑𝑑𝑛𝑛

− (26) 

3.3.2 Improved NSGA-II algorithm 

NSGA (non-dominated sorting genetic algorithm) is a classical multi-objective 

optimization algorithm based on traditional genetic algorithm proposed by Srinivas 

(1994), which embodies the idea of classification based on non-dominated relationship. 

But it also has the problems of complicated calculation, lack of elite strategy and 

difficulty in selecting shared parameters. In order to cover the defects of basic NSGA 

algorithm, Deb et al. (2002) proposed NSGA-II, which reduces the complexity of the 

algorithm through a fast non-dominated sorting algorithm, introduces elite strategy to 

expand the sampling space, effectively prevents the loss of understanding, and uses a 

crowding operator instead of shared parameters to ensure the diversity of the population.  

 

One of the major problems of multi-objective evolutionary algorithm based on Pareto 

sorting is that when the dimension of objective function is high, the convergence degree 

will decrease significantly. At the same time, it is necessary to proposed an algorithm 

considering decision-makers’ preference to provide diversified demand for customers 

(Bi et al., 2020). Ra-dominance is a new dominance relation, which can guide the 

solution set to a more responsive range according to a reference point and decision-

makers’ preference (Zou et al., 2020). The steps of deciding individual relationship 



-19- 

based on Ra-dominance are as follows: 

 

Step 1: Determining reference direction vector 𝑣𝑣. The reference direction is defined as 

the vector from reference point 𝑔𝑔  to solution 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 . Where 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  represents the 

nearest solution to 𝑔𝑔 . The weighted distance of solution 𝑥𝑥  to 𝑔𝑔  is defined as 

Equation (27): 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥 = �∑ 𝜔𝜔𝑛𝑛(𝑔𝑔𝑛𝑛 − 𝑓𝑓(𝑥𝑥)𝑛𝑛)2𝑚𝑚
𝑛𝑛=1  (27) 

where 𝜔𝜔𝑛𝑛 is the weight of 𝑑𝑑𝑖𝑖ℎ objective given by decision-makers, and ∑ 𝜔𝜔𝑛𝑛
𝑚𝑚
𝑛𝑛=1 = 1. 

 

However, there are often inconsistent dimensions of each objective in solving practical 

problems. This paper uses the idea of standardization, and defined the distance 

calculation equation as Equation (28): 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥 = �∑ 𝜔𝜔𝑛𝑛(
𝑔𝑔𝑛𝑛−𝑓𝑓(𝑥𝑥)𝑛𝑛

max𝑓𝑓𝑛𝑛−min𝑓𝑓𝑛𝑛
)2𝑚𝑚

𝑛𝑛=1  (28) 

Step 2: Determining preference radius  𝑟𝑟 . The preference radius  𝑟𝑟  is defined as 

Equation (29), which can represent the preference range of decision-makers: 

 𝑟𝑟 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖(𝑔𝑔, 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) · tan𝛼𝛼 (29) 

where 𝛼𝛼  is determined by the intuitive parameter 𝛿𝛿  given by decision-makers as 

Equation (30): 

 𝛼𝛼 = �
𝛿𝛿 · 𝜋𝜋

2
,   𝑑𝑑𝑓𝑓 0 < 𝛿𝛿 < 1

(1− 10−4) 𝜋𝜋
2

,   𝑑𝑑𝑓𝑓 𝛿𝛿 = 1
 (30) 

Step 3: Deciding individual dominance relationship. The Ra-dominance relationship is 

defined as follows: A solution 𝑥𝑥 is said to Ra-dominate a solution 𝑦𝑦 if: 

(a) 𝑥𝑥 dominates 𝑦𝑦 in the Pareto sense, or 

(b)  𝑥𝑥 and 𝑦𝑦 are Pareto-equivalent and 𝑑𝑑(𝑦𝑦, 𝑣𝑣) − 𝑑𝑑(𝑥𝑥, 𝑣𝑣) > 𝑟𝑟. 

where 𝑣𝑣  is reference direction vector, 𝑟𝑟  is reference radius,  𝑑𝑑(𝑦𝑦, 𝑣𝑣)  is the 

perpendicular distance from 𝑦𝑦 to 𝑣𝑣. 
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In order to distinguish from the standard Ra-domination, this research defines the 

improved Ra-dominance as nRa-dominance. Combining with NSGA-II algorithm, the 

nRa-NSGA-II algorithm is proposed as follow. 

 

Step 1: Initialize the population parameters, set the population size, evolution 

generations, crossover probability, mutation probability, obtain the reference point 𝑔𝑔 

and intuitive parameter 𝛿𝛿 of the decision-makers. 

 

Step 2: Build the multi-stage multi-objective order allocation model, code decision 

variable 𝑥𝑥𝑛𝑛𝑛𝑛𝑡𝑡 by 0, 1 coding to indicate whether to select the supplier, and code decision 

variable 𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡 by integer coding to indicate the quantity purchased from the supplier, 

the schematic diagram is as Figure 4. Where shaded numbers represent decision 

variables 𝑥𝑥𝑛𝑛𝑛𝑛 and the number after them stands for 𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡. Generate the initial parent 

population (order allocation scheme) 𝑃𝑃𝑡𝑡 with the population size of 𝑁𝑁, where 𝑖𝑖 is the 

population generation. 
 

[Take in Figure 4 about here.] 
 
Step 3: Perform fast non-dominated sorting and crowding degree calculation for all 

individuals based on nRa-dominance. 

 

Step 4: Generation of offspring population. For tournament selection, the individual for 

each comparison is set as 50% of the population size, and the individual with the 

smallest non-dominant order and the largest crowding degree is selected each time. 

Then, the offspring population 𝑄𝑄𝑡𝑡 with population size 𝑁𝑁 is obtained by crossover 

and mutation. 

 

Crossover operation: Generate a random number between 0 and 1, if it is less than the 

crossover probability, perform the crossover operation. Due to the characteristics of 

coding method, genes appear in pairs, hence, two integers are randomly selected from 
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0 to chromosome length in step size of 2, and the partial exchange of two chromosomes 

between the two integers, the schematic diagram is shown in Figure 5. If the infeasible 

order allocation scheme is generated, the crossover is performed again until the feasible 

solution is generated. 
 

[Take in Figure 5 about here.] 
 
Mutation operation: A random number from 0 to 1 is generated for each point of the 

decision variable 𝑥𝑥𝑛𝑛𝑛𝑛. If the random number is less than the mutation probability, the 

point of the decision variable 𝑥𝑥𝑛𝑛𝑛𝑛 is mutated. If 𝑥𝑥𝑛𝑛𝑛𝑛 is 1, it will be 0 after mutation; if 

𝑥𝑥𝑛𝑛𝑛𝑛 is 0, it will be 1 after mutation. Also, due to the way of coding, the corresponding 

decision variable  𝑄𝑄𝑛𝑛𝑛𝑛𝑡𝑡 becomes 0, or random numbers are generated. The schematic 

diagram is shown in Figure 6. If the infeasible order allocation scheme is generated, the 

mutation is performed again until the feasible solution is generated. 
 

[Take in Figure 6 about here.] 
 
Step 5: Merge the parent population and the offspring population. When the parent 

population and the offspring population are merged, because of the certain probability 

of crossover and mutation, some parent individuals do not carry out crossover and 

mutation. At the same time, due to the characteristics of integer coding, the same 

individuals may be generated in the crossover and mutation. In many experiments, it is 

found that there are more duplicate individuals in the merged population, which will 

seriously affect the diversity of the population. Therefore, it is necessary to eliminate 

duplicate individuals after population merging. 

 

Step 6: Based on the nRa-dominance, the fast non-dominated sorting and crowding 

degree calculation were carried out to select the next generation of parent population 

𝑃𝑃𝑡𝑡+1 with population size 𝑁𝑁. 

 

Step 7: Determine whether the maximum value of evolutionary generation is reached. 

If it is reached, the operation ends and the set of non-dominated order allocation scheme 
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set is output. Otherwise, let 𝑖𝑖 = 𝑖𝑖 + 1 and return to Step 3 to continue iteration until 

the maximum value of evolutionary generation is reached. 

3.3.3 Determining the optimal solution from the solution set 

The optimal order allocation solution is obtained according to the maximum expected 

order completion rate of the solution set, which calculated according to Equation (31). 
 

Expected completion rate =
∑ (1−𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛)𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∈𝐿𝐿,𝑅𝑅,𝐼𝐼,𝐽𝐽

𝐷𝐷𝑛𝑛
    (31) 

 
Thus, the optimal order allocation scheme in each stage is obtained. 

4. Illustrative application 

In this section, the feasibility of the proposed multi-stage multi-objective optimization 

model and the proposed algorithm is illustrated using the case of shortwave therapy 

equipment supply chain of Company B (a pseudonym, to ensure anonymity). Company 

B is a multinational enterprise established in the UK, now with offices in 55 countries, 

covering five continents, and having three medical product categories: cardiology, 

physiotherapy, and aesthetics. Shortwave therapeutic instruments have become subject 

to urgent and high demand during the COVID-19 era. However, the procurement of 

company's core components CPU mainboard, has been seriously affected, and has faced 

a high risk of supply disruption. The company has recognized the need to restructure 

their supply chains. Therefore, this paper uses the case of Company B to verify the 

feasibility and practicality of the proposed model. 

4.1 Decision-making environment and assumptions 

The basic decision-making problem and parameters required by the proposed model are 

based on a survey and interviews with the managers of the procurement and production 

departments of Company B. Considering the sensitive of business information, related 

costs, supplier capacity and market demand are converted according to a certain 
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proportion of company survey data. The disruption probability and impact parameters 

of disruption in each period are also assumed based on the interviews. The 

manufacturing center for Company B has twelve potential suppliers for its core 

component CPU mainboard. The location of alternative suppliers is assumed as follows. 

There are four local suppliers, three regional suppliers, three international suppliers and 

two global suppliers. The geographical location of each supplier and the parameters of 

each period are shown in Appendices A to C. In addition, the unit holding cost and unit 

penalty cost are €0.7 and €1.4, respectively. According to the characteristics of the 

industry and the specific requirements of the Company B, the customized criteria 

system is constructed and shown in Table 5 and Table 6. 

 

[Take in Tables 5 to 6 about here.] 

4.2 Implementation and experimental results 

Firstly, the sustainability and resilience evaluation values of each potential supplier are 

obtained (shown in Appendices D and E). Then, the sustainability score and resilience 

score of each supplier can be calculated according to section 3.3.1 (the results are shown 

in Table 7). Secondly, the decision-makers gives the reference point  𝑔𝑔 of each period 

according to section 3.3.2 (shown in Table 8), the weight 𝜔𝜔𝑛𝑛 of each period (shown in 

Table 9) and the intuitive parameter 𝛿𝛿 (𝛿𝛿 = 0.3). Based on interviews, we assume that 

if Company B wants to ensure a stable cooperation relationship with suppliers, then 

suppliers can give priority to supply when the supply risk occurs. The order quantity 

needs to reach about 65% of the supplier's capacity, the maximum number of suppliers 

is eight, the acceptable minimum order completion rate is 75%, ensure that there is at 

least one local supplier. Thus, 𝜎𝜎 = 0.75, 𝜏𝜏 = 0.65,𝜑𝜑 = 8, 𝜀𝜀 = 1. 
 

[Take in Tables 7 to 9 about here.] 
 
Then, the multi-stage multi-objective optimization model is solved in the MATLAB 

2017b environment. In this case, the population size is 100, the evolutionary generation 

is 100, the crossover probability is 0.95, the mutation probability is 0.05. In the non-
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dominated solution set obtained at each period, the order allocation scheme with the 

highest expected order completion rate is selected as the optimal solution. The result of 

order allocation is shown in Table 10. Meanwhile, Table 11 shows the objective 

function value and out of stock units of each period. The evolution of objective function 

value in each period is shown in Figure 7. The proportion of procurement volume of 

suppliers in different geographical locations in each period is shown in Figure 8. 
 

[Take in Tables 10 to 11 about here.] 
[Take in Figures 7 and 8 about here.] 

 
The following findings can be seen from the above results: Firstly, through the 

evolution of each generation of the objective function, it can be seen that the proposed 

algorithm has good convergence (shown in Figure 7).  Secondly, as the pandemic 

situation becomes more and more serious, due to the impact of the pandemic, the 

transportation cost is greatly increased, and the interruption probability of suppliers is 

also increased, resulting in an increasing shortage (shown in Table 11). At the same 

time, the number of suppliers selected is also increasing, which reduces the overall 

disruption probability of the supply chain to a certain extent (shown in Table 10).  

Thirdly, from the proportion of suppliers' purchase volume in different geographical 

locations, it can be seen that with the development of the pandemic, the proportion of 

local and regional suppliers' purchase volume is increasing (orange portions vs. blue 

portions in Figure 8). This is due to the transportation obstruction caused by the 

pandemic, which makes manufacturers seek local and regional cooperation as much as 

possible. 

5. Sensitivity and comparative analysis 

5.1 Sensitivity analysis 

Decision-makers can control the region of interest size by intuitive parameter 𝛿𝛿  to 

express the expected range near the reference direction vector, ranging from 0.1 to 1. 
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The weight reflects the decision-makers’ preference for each objective. Thus, in order 

to study the influence of intuitive parameter 𝛿𝛿 and the weights of different objectives 

on the optimization results, this sub-section takes t1 as an example, and makes 

sensitivity analysis by adjusting intuitive parameter 𝛿𝛿  and the weights of different 

objectives, respectively. The five scenarios of weight adjustment are shown in the Table 

12. Due to the characteristics of heuristic method, programming results are slightly 

different each time, the experimental results in this section are run independently ten 

times, and the average value is taken. The average value of the objective functions and 

the size of the solution set in different scenarios are summarized in Table 13. 

 
[Take in Tables 12 and 13, and Figure 9 about here.] 

 

In order to analyse the differences between different parameter 𝛿𝛿 more intuitively, the 

average value of objective function in different period is standardized by Equation (32), 

and the results are shown in Figure 9. 

 �

𝑥𝑥𝑛𝑛𝑗𝑗
∑ 𝑥𝑥𝑛𝑛𝑗𝑗𝑚𝑚
𝑛𝑛=1

 if 𝑗𝑗 is benefit criteria
1 𝑥𝑥𝑛𝑛𝑗𝑗⁄

∑ 1 𝑥𝑥𝑛𝑛𝑗𝑗⁄𝑚𝑚
𝑛𝑛=1

  if 𝑗𝑗 is cost criteria
 (32) 

From Figure 9 and Table 13 we can see that: Firstly, with the increase of the 𝛿𝛿, the 

corresponding preference radius will increase, which makes the region intercepted on 

the front become larger, so the size of the solution set increases greatly (shown in Table 

13). This will result that almost the whole population is the non-dominated solution set, 

and the hierarchical ability of the algorithm is significantly reduced. Therefore, the 

selection of 𝛿𝛿 should not be larger than 0.4. Secondly, from the performance of the 

objective function value (shown in Figure 9), when the 𝛿𝛿 ranges from 0.2 to 0.4, the 

average objective function value is better compared with other scenarios. It shows that 

too large or too small a solution set will have an adverse effect on the overall 

performance of the solution set. Therefore, the decision-maker should consider the 

performance of the objective function value and the size of the solution together when 

determining the intuitive parameter 𝛿𝛿. 
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In addition, the average value of the objective function in the different scenarios 

obtained by adjusting weights are shown in Table 14 and the intuitive diagram is shown 

in Figure 10. From Figure 10 and Table 14 we can see that, when the specific objective 

weight is larger, the performance of the corresponding objective function is better. 

Therefore, the decision-maker can adjust the weights to make the solution set converge 

to the preferred objective(s). This phenomenon reflects that the proposed model and the 

algorithm can fully reflect the decision-makers’ preference in different decision-making 

situations and make the solution set converge to the decision-makers’ preference. For 

example, the decision-maker can determine the weight of each objective according to 

the needs of Company B in different stages of the pandemic, and identify a solution set 

which is more appropriate for the specific decision-making requirements. 

 
[Take in Figure 10 and Table 14 about here.] 

5.2 Comparative analysis 

In order to verify the advantages of the proposed nRa-NSGA-II algorithm in high-

dimensional multi-objective optimization situation, this section compares it with the 

standard NSGA-II algorithm, r-NSGA-II algorithm (Ben Said et al., 2010) and NSGA-

II algorithm based on fuzzy domination (He et al., 2014) (hereinafter referred to as f-

NSGA-II). The reference point of r-NSGA-II algorithm is the same as nRa -NSGA-II. 

The threshold of nRa -NSGA-II, r-NSGA-II and f-NSGA-II are all taken as 0.3, the 

average value of the objective function results in this section are run independently ten 

times, and the average value is shown in Table 15. These results are also standardized 

by Equation (32), and shown in Figure 11. 

 
[Take in Tables 15 and 16, and Figure 11 about here.] 

 

From Figure 11 and Tables 14 and 15 we can see that, firstly, the solution set obtained 

by the proposed algorithm is better than other algorithms (shown in Figure 11), which 

reveals that the proposed algorithm can improve the performance of high-dimensional 
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multi-objective optimization.  Secondly, through the average expected order 

completion rate of the solution set obtained by different algorithms in each period, the 

proposed algorithm has a higher average expected order completion rate (shown in 

Table 16), ensuring more medical equipment demand can be met in the event of 

pandemic.  Thirdly, from the perspective of solution set size, under the same 

conditions, the solution set size obtained by the proposed method is much smaller 

(shown in Table 15). This shows that the proposed algorithm can more effectively 

stratify individuals in high-dimensional multi-objective optimization, and can reflect 

the preferences of a decision-maker more effectively. Combined with the first two 

points, the solution set obtained by the proposed algorithm is superior to the average 

value of the objective function and the average expected order completion rate. In 

addition, this phenomenon shows that the larger the solution set, the more dispersed the 

solution set, which will affect the overall level of the solution set and reduce the 

beneficial result of the order allocation scheme. Therefore, the proposed algorithm can 

effectively obtain a more high-quality and centralized solution set, which can provide 

more effective decision-making support. In conclusion, considering the above three 

advantages, the proposed nRa-NSGA-II algorithm is more suitable for solving the SSS 

and order allocation problem under the condition of considering more comprehensive 

objectives and demanding higher expected order completion rate. 

6. Discussion and managerial implication  

6.1 Discussion 

Firstly, as disruption risk has a great impact on the performance of supply chains 

(Esmaeili-Najafabadi et al., 2019), SSCs need resilience to deal with supply chain 

disruption (Rajesh and Ravi, 2015). Facing the huge disruption risk caused by the 

current pandemic, some pioneering studies explored the impact of the pandemic from 

different perspectives (e.g. Govindan et al., 2020; Li et al., 2021; Mahmoudi et al., 2021; 

Ivanov, 2020). Due to the unpredictability of the development and virus variation of 
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COVID-19 (Karmaker et al., 2021), it is recognized that the different stages of the 

pandemic have different characteristics and different impacts on SSCM, which have 

been ignored by existing studies. This research divides the development and spread of 

the pandemic into five stages from the perspective of the impact of supply disruption 

in SSCM, which enables the multi-period model constructed in this paper to fully 

capture these different features and impacts of the pandemic at different stages and to 

make appropriate SSS and order allocation decision-making. 

 

Secondly, the pandemic requires multinational enterprises to consider not only the 

sustainability of suppliers, but also their resilience at the same time. However, most of 

the current research only considers traditional sustainability (e.g. Govindan et al., 2015; 

Cheraghalipour and Farsad, 2018; Harridan and Cheaitou, 2017) or resilience (e.g. 

Torabi et al., 2015; Mari et al., 2019), seperately. Meanwhile, disruption probability 

(risk) is only combined with other objectives, rather than considered as a separate 

objective in the existing research (Kaur and Prakash Singh, 2021). Furthermore, the 

different lockdown policies of various countries in the pandemic (Nikolopoulos et al., 

2021) means multinational enterprises having to consider the geographical separation 

of suppliers. Thus, during the construction of the proposed model in Section 3.2, this 

research comprehensively considers the five objectives to ensure the low cost, high 

sustainability and resilience, low disruption probability and scattered supplier location 

of the procurement scheme. The illustrations in Section 4 show that the proposed model 

can ensure higher order completion rates during the whole process of the pandemic. 

 

Thirdly, a suitable heuristic algorithm is required to solve the high-dimensional multi-

objective optimization model. In this paper, the multi-objective optimization model is 

solved directly in order to avoid the local optimal solution when transforming multi-

objective into a single objective (Hosseini et al., 2019). In order to effectively solve the 

high-dimensional multi-objective optimization model, to reflect decision-makers’ 

preference for each objective, and to take the influence of different objective data types 

into account, this research proposes a novel nRa-NSGA-II algorithm based on Ra-



-29- 

NSGA-II algorithm (Zou et al., 2020), which makes up for the shortages of existing 

algorithms (which are only suitable for low dimensional problems) (Cheraghalipour 

and Farsad, 2018). The illustrations in Section 4 demonstrate the effectiveness of the 

proposed algorithm. The sensitivity analysis in Section 5 also shows that the proposed 

algorithm can effectively reflect decision-makers’ preferences and make the non-

dominated solution set converge towards the preferred direction. In addition, 

comparative analysis shows that compared with other algorithms (e.g. Ben Said et al., 

2010; He et al., 2014), the proposed algorithm can obtain the non-dominated solution 

set with better performances. 

 

Finally, in order to cope with the lockdown policy of the pandemic (Hosseini et al., 

2019), and reduce the risk of supply disruption caused by it, this research considers the 

characteristics of suppliers in different geographical locations and the importance of 

local procurement during the pandemic. Based on their different characteristics, this 

research divides potential suppliers into local, regional, international and global 

categories, while taking local procurement as an important constraint. The change of 

order allocation proportion of suppliers in different locations in different periods of the 

pandemic has been calculated in Section 4, which can guide decision-makers to make 

better purchasing plans to cope with the big challenges of pandemic. 

6.2 Managerial implication 

The research results can help multinational companies and SSCs which are affected by 

the pandemic to reconfigure their supplier selection and order allocation planning. In 

more detail, the application of the proposed model to Company B results in a 

quantitative analysis that can provide managers with the following managerial insights. 

 

First, both decentralized and centralized procurement have their own advantages and 

disadvantages. Using decentralized procurement, SSCs can reduce the negative impacts 

of disruption caused by the pandemic and the corresponding regional or global 
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lockdowns (Hosseini et al., 2019). Yet, under normal circumstances, decentralized 

procurement can cause monitoring difficulties and increased costs (Petersen et al., 

2020). Thus, in order to avoid the negative impacts of the pandemic and similar global 

emergence events, appropriate decentralized procurement is more appropriate to ensure 

consistent supply when disruption events occur (e.g. Tables 10 and 11). 

 

Second, from the result of the order allocation calculations, with the pandemic situation 

becoming more and more serious, local and regional procurement accounts for an 

increasing proportion of purchases (as shown in Figure 8). This important result 

reminds managers of the need to obtain as much information as possible about local 

suppliers who can meet the needs of their daily operations. 

 

Third, in order to minimize the effect of transportation disruption when the disruption 

suddenly occurs, SSCs of multinational enterprises should try to separate the 

geographical location of suppliers when making procurement plans, and maintain good 

cooperation with local and regional suppliers, in order to ensure timely supply in case 

of pandemic occurs. 

 

Fourth, the sensitivity analysis shows that decision-makers’ preferences (the weights 

given to different objectives) leads the solution set to converge towards the preference 

objective. Thus, any change of weights must reflect the decision-makers’ preference for 

different objective, especially under different decision-making situations. This requires 

the decision-maker to fully understand the demand preferences of companies for 

different objectives according to different characteristics in each decision-making 

period. Then, obtain an order allocation scheme that can meet the real needs of SSCs. 

 

Fifth, decision-makers can control the region of interest size by intuitive parameter 𝛿𝛿, 

the sensitivity analysis indicates that, to ensure the overall superiority of the non-

dominated solution set, decision-makers should give a reasonable intuitive parameter 

𝛿𝛿. For example, the most appropriate value of the parameter is 0.2 to 0.4 in case of 



-31- 

Company B. Decision-makers can also adjust the parameter values interactively 

according to the needs of decision-making in SSS and order allocation process. 

 

Finally, COVID-19 has variability, especially the Delta variant, which has been found 

all over the world (Bernal et al., 2021), making the pandemic repeated. In this case, 

decision makers need to judge the current stage according to the policy and pandemic 

development. At the same time, according to the actual situation, the parameters and 

priorities can be adjusted based on the five stages proposed in this paper, so as to deal 

flexibly with the impact of virus variants. 

7. Conclusions 

COVID-19 has brought unprecedented pressure to the global supply chains 

(Nikolopoulos et al., 2021). It results in shutdowns and production stoppages, 

regionally and globally, which are different from that caused by other natural disasters 

or human factors. At the same time, sustainability is still crucial to the operations of 

multinational enterprises (Zhu and Lia, 2019; Karmaker et al. 2021). Therefore, a 

specific SSS and order allocation method is urgently needed to deal with this new 

challenge. In the proposed framework, the development and spread of the pandemic is 

divided into five periods from the perspective of supply disruption in SSCM, while 

suppliers are categorized as either local, regional, international or global according to 

their geographical location. Taking the characteristics of the supply disruption caused 

by the pandemic into account, a novel multi-stage multi-objective optimization model 

is proposed, that considers more comprehensive objectives. To better solve the high-

dimensional multi-objective optimization model, this paper improves the traditional 

NSGA-II algorithm by proposing the nRa-NSGA-II algorithm. The feasibility of the 

proposed model and algorithm is verified in an illustrative application. Sensitivity and 

comparative analysis also show that the average objective function performance of the 

solution set obtained by the proposed model is more in line with the decision-making 

objectives, for instance, the expected average order completion rate is larger using the 

David Barnes
I am not sure what you mean by “repeated” here.  Maybe reword this phrase?  
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proposed approach.  

 

The contributions of this paper are summarized in the following four points. First, this 

research divides the development and spread of pandemic into five stages from the 

perspective of the impact of supply disruption in SSCM, which enables the multi-period 

model constructed in this paper to fully capture these different features and impacts of 

the pandemic at different stages.  Second, a multi-period multi-objective SSS and 

order allocation model is constructed to deal with the supply disruption in SSCs of 

multinational enterprises caused by the pandemic, considering sustainability, resilience, 

geographical separation, disruption probability and related costs, comprehensively and 

simultaneously. The proposed model can ensure sustainability whilst reducing the 

vulnerability of the whole supply chain and improving the expected order completion 

rate.  Third, a novel and more effective nRa-NSGA-II algorithm is proposed to solve 

the high-dimensional optimization problem, which makes up for the drawback that the 

existing order allocation algorithm is not suitable for high-dimensional optimization. 

The algorithm can obtain a better non-dominated solution set and reflect the preference 

of decision-makers in different decision-making situations.  Fourth, this paper divides 

potential suppliers into four categories, whilst taking local procurement into account, 

which clarifies the characteristics of suppliers in different locations in each stage of the 

pandemic, and so ensures consistent supply. Furthermore, it can reflect the importance 

of different suppliers in each stage of the pandemic and greatly reduce the vulnerability 

of the whole SSCs. 

 

There are also some shortcomings of this research. First, it is difficult to predict the 

impact of COVID-19 on SSC (Karmaker et al., 2021) and demand has great uncertainty 

(Alkahtani et al., 2021). Yet, one assumption of this research is that the customer 

demands of each stage are determined. Thus, the order allocation problem in the case 

of stochastic demand can be considered in future research. Furthermore, even if the 

algorithm proposed is also applicable to the case of a decrease of demand, further 

research considering this assumption is also an interesting question. Second, the focal 
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company and its performance are affected not only by the first-tier suppliers, but also 

by the upstream multi-tier suppliers. The experience of COVID-19 shows that due to 

the failure of supply chain nodes, disruption will affect the whole supply chain network 

(Golan et al., 2020). As such, it is necessary to research the whole interconnected supply 

chain network. Thus, the influence of the second-tier and the third-tier suppliers from 

the perspective of supply disruption is also an interesting research question. Finally, the 

focus of this paper is to propose a SSS and order allocation model when considering 

disruption risk in SSCM caused by the pandemic. Additionally, the virus may mutate 

and cause other effects. What's more, supply disruptions also have other triggers, such 

as political factors, transportation interruptions, etc. In addition, enterprises may also 

choose not to purchase or make an unethical purchase when disruption occurs. These 

are all interesting topics for future research on SSS and order allocation under 

circumstances of disruption. 
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Evaluate the sustainability and resilience of potential suppliers by 
integrateing Entropy weight method and TOPSIS
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stage

Outbreak 
stage

Peak 
stage

Construct the multi-stage multi-objective sustainable supplier 
selection and order allocation optimization model
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Identify the optimal non-dominated solution of each stage 
based on the order completion rate  

Figure 1: The proposed framework for sustainable supplier selection and order 

allocation 
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Figure 2: Daily new confirmed COVID -19 cases in the United States 
Source: Our World Data website 
https://ourworldindata.org/explorers/coronavirus-data-explorer 
  

https://ourworldindata.org/explorers/coronavirus-data-explorer


-40- 

Figure 3: Map of changes of lockdown policy 

Source: Our World Data website 

https://ourworldindata.org/grapher/workplace-closures-covid  

https://ourworldindata.org/grapher/internal-movement-covid  

https://ourworldindata.org/grapher/international-travel-covid  

 
  

https://ourworldindata.org/grapher/workplace-closures-covid
https://ourworldindata.org/grapher/internal-movement-covid
https://ourworldindata.org/grapher/international-travel-covid
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Figure 4: Schematic diagram of coding 

 

 

 

Figure 5: Schematic diagram of crossover operation 

 

 

 

Figure 6: Schematic diagram of mutation operation 
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Figure 7: The evolution of objective function value of each period 
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Figure 8: Proportion of procurement volume of suppliers in different geographical 

locations in each period 

 

 

Figure 9: Standardized value of objective functions with different parameter 𝛿𝛿 
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Benefit objectives (including Obj1, Obj3 and Obj4) 

 

Cost objectives (including Obj2 and Obj5) 
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Figure 11: Standardized value of objective functions obtained by different algorithms 
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Tables 

Table 1: Representative literature on sustainable supplier selection and order allocation 

Authors/Year 
Programming objectives Sigle-

Obj. 
Multi 
-Obj. Optimization methodology Features 

Sus. Res. Geo. Eco. Dis. 
Kannan et al., (2013) 

   √   √ Linear programming, max-
min method 

Combining economic and green supplier selection 
criteria. 

Torabi et al., (2015)  √  √  √  𝜀𝜀-constraint, differential 
evolution algorithm 

Operational & disruption risk are considered at the 
same time. 

Meena and Sarmah, (2015)    √ √ √  Stepwise procedure Compensation based on supplier failure risk and 
quantity discount are considered. 

Govindan et al., (2015) √   √   √ MOHEV algorithm A new metaheuristic algorithm is proposed. 

Cheraghalipour and 
Farsad, (2018) √   √ √  √ Multi-Choice Goal 

Programming 

Two types of quantity discount are considered and 
a novel hybrid MCDM-MILP approach is 
proposed. 

PrasannaVenkatesan and 
Goh, (2016) 

   √ √  √ Multi-objective PSO The conflict between the total cost considering 
interruption loss and purchase value is balanced. 

Harridan and Cheaitou, 
(2017) 

√   √   √ Integer liner programming 
model 

Multi objective configuration and bi-objective 
configuration are compared. 

Vahidi et al., (2018) √ √  √ √ √  𝜀𝜀-constraint, differential 
evolution algorithm 

Objective of sustainability and elasticity score is 
constructed. 

Mari et al., (2019)  √  √   √ Fuzzy programming The quantitative resilience criterion is proposed. 

Hosseini et al., (2019) 
  √ √ √ √  𝜀𝜀-constraint, 

Mixed integer programming 
Quantifying the geographical separation of 
suppliers. 

Kaur and Prakash Singh, 
(2021) 

   √ √ √  Mixed integer programming Different of disruption risk are considered for 
uncertain demand. 

The proposed model √ √ √ √ √  √ nRa-NSGA-II 
Considering resilience and sustainable objectives 
at the same time, a new high-dimensional multi-
objective optimization method is proposed. 

Notes: Sus.: Sustainability; Res.: Resilience; Geo.: Geographic separation; Eco.: Economic; Dis.: Disruption probability  
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Table 2: The five periods of the pandemic and their specific characteristics 

Period Description 
Demand 

level 

Lockdown situations Probability of 
disruption 

Priority of supply chain operations management 
Local Regional International Global 

t1 Normal stage Normal 0 0 0 0 Very low 
Costs, decentralized sourcing, disruption, sustainability, 
resilience 

t2 Early stage Rise slightly 0 0 1 1 Medium 
Sustainability, disruption, decentralized sourcing, 
resilience, costs 

t3 Outbreak stage Rise sharply 2 2 3 3 High 
Sustainability, disruption, decentralized sourcing, 
resilience, costs 

t4 Peak stage Rise sharply 3 3 4 4 Very high 
Sustainability, disruption, resilience, decentralized 
sourcing, costs 

t5 Recovery stage Normal 1 1 2 2 Low 
Cost, decentralized sourcing, sustainability, resilience, 
disruption 

 Notes: 0-4 respectively indicates the severity of the lockdown policy, 0 indicates no lockdown policy, and 4 indicates that the lockdown is very serious. 
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Table 3: The notations used in the proposed model 

 Notations  Illustrations 

 𝐿𝐿𝑑𝑑 𝑑𝑑𝑖𝑖ℎ local supplier 
 𝑅𝑅𝑑𝑑 𝑑𝑑𝑖𝑖ℎ region supplier 
 𝐼𝐼𝑑𝑑 𝑑𝑑𝑖𝑖ℎ international supplier 
 𝐺𝐺𝑑𝑑 𝑑𝑑𝑖𝑖ℎ global supplier 
 𝐿𝐿, 𝑅𝑅, 𝐼𝐼, 𝐺𝐺 The set of local, region, international, and global suppliers 

 𝑖𝑖 𝑖𝑖𝑖𝑖ℎ period 
Decision variables  
 𝑥𝑥𝑙𝑙𝑑𝑑 If supplier ni is selected, 1; 0, otherwise. 

 𝑄𝑄𝑙𝑙𝑑𝑑𝑖𝑖 Order quantity from supplier ni during period t. 
Parameters   
 𝐷𝐷𝑖𝑖 Demand during period t. 

 𝑓𝑓𝑙𝑙𝑑𝑑 Fixed ordering cost for supplier ni. (n = L, R, I, G) 

 𝑢𝑢𝑙𝑙𝑑𝑑 Unit cost for supplier ni. (n = L, R, I, G) 

 𝛼𝛼𝑙𝑙𝑑𝑑 Transportation cost for supplier ni per unit. 

 ℎ The unit holding cost. 

 𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑗𝑗 Distance between supplier ni, nj. (n = L, R, I, G) 

 𝑑𝑑𝑙𝑙𝑑𝑑 Distance between supplier ni and firm. (n = L, R, I, G) 

 𝛽𝛽 Unit penalty cost. 

 𝐶𝐶𝑙𝑙𝑑𝑑𝑖𝑖 Maximum supply capacity of supplier ni during period t. 

 𝑀𝑀𝑙𝑙𝑖𝑖 Impact of logistics disruption of n during period t. (n = L, R, I, G) 

 𝜁𝜁𝑙𝑙𝑑𝑑 Sustainable score of supplier ni. (n = L, R, I, G) 

 𝜂𝜂𝑙𝑙𝑑𝑑 Resilience score of supplier ni. (n = L, R, I, G) 

 𝜃𝜃𝑙𝑙𝑑𝑑𝑖𝑖 Supplier ni disruption probability during period t. (n = L, R, I, G)  

 𝜎𝜎 Minimum order completion rate. 

 𝜏𝜏 The minimum purchase proportion of a single supplier. 

 𝜑𝜑 Maximum number of suppliers selected. 

 𝜀𝜀 Minimum number of local suppliers 
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Table 4: Numerical variables and corresponding IFNs 

Linguistic terms IFNs 

Very good (VG) (0.90,0.05,0.05) 

Good (G) (0.75,0.15,0.10) 

Medium good (MG) (0.60,0.25,0.15) 

Medium (M) (0.50,0.40,0.10) 

Medium poor (MP) (0.40,0.50,0.10) 

Poor (P) (0.25,0.65,0.10) 

Very poor (VP) (0.10,0.80,0.10) 

 
 
Table 5: Resilience evaluation criteria and illustrations 

 Criteria Illustrations Reference 

𝑅𝑅𝐶𝐶1 Rerouting The ability to change the mode and route of 
transportation in case of disruption. 

Amindoust (2018);  
Hosseini and Al Khaled (2019) 

𝑅𝑅𝐶𝐶2 
Restorative 
capacity 

Timely resumption of normal production after 
supply interruption. 

Amindoust (2018);  
Hosseini and Al Khaled (2019) 

𝑅𝑅𝐶𝐶3 
Risk 
awareness 

The ability to predict and reduce potential 
risks of suppliers. Rajesh and Ravi (2015) 

𝑅𝑅𝐶𝐶4 
Surplus 
inventory 

The amount of inventory used by suppliers in 
daily production to cope with disruption risk. Amindoust (2018) 
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Table 6: Sustainable evaluation criteria and illustrations 

Criteria Sub-criteria Illustrations Reference 

Economic 

𝑆𝑆𝐶𝐶1 Quality 
Reliability of production 
quality. 

Li et al. (2019) 
Tong et al. (2020) 

𝑆𝑆𝐶𝐶2 Delivery 
Timeliness and reliability of 
suppliers’ delivery. 

Li et al. (2019) 
Jain and Singh (2020) 

𝑆𝑆𝐶𝐶3 Service 
Service provided during and 
after purchasing. 

Jain and Singh (2020) 
Hendiani et al. (2020) 

𝑆𝑆𝐶𝐶4 
Technology 

capability 
The application of new 
production technology. 

Tong et al. (2020) 
Jain and Singh (2020) 

Environment 

𝑆𝑆𝐶𝐶5 
Resource and 
energy 
consumption 

The consumption of resources 
and energy in the production 
process. 

Tong et al. (2020) 

𝑆𝑆𝐶𝐶6 Eco-design 
Design to reduce environmental 
impact throughout the product 
life cycle. 

Jain and Singh (2020) 

𝑆𝑆𝐶𝐶7 
Environmental 
management 
system 

Environmental standards and 
organizational structure that the 
supplier complies with and 
obtains certification, such as 
ISO 14001. 

Jain and Singh (2020) 

Social 

𝑆𝑆𝐶𝐶8 
Labor safety 

& healthy 

Production plans to protect the 
safe and health of their 
employees. 

Li et al., (2019) 
Tong et al., (2020) 
Jain and Singh (2020) 
Hendiani et al. (2020) 

𝑆𝑆𝐶𝐶9 Staff training 
Training level of knowledge and 
skills for employees. 

Tong et al., (2020) 
Hendiani et al., (2020) 

𝑆𝑆𝐶𝐶10 
Social 

responsibility 

The level of corporate 
investment in social 
responsibility activities. 

Jain and Singh (2020) 

 
 
Table 7: Sustainability score and flexibility score of each supplier 

 L1 L2 L3 L4 R1 R2 R3 I1 I2 I3 G1 G2 

𝜻𝜻𝒏𝒏𝒏𝒏 0.62 0.63 0.80 0.56 0.55 0.71 0.59 0.57 0.67 0.62 0.69 0.65 

𝜼𝜼𝒏𝒏𝒏𝒏 0.54 0.51 0.68 0.61 0.79 0.54 0.74 0.74 0.38 0.78 0.53 0.73 
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Table 8: Reference point  𝑔𝑔 of each period 

 Obj1 Obj2 Obj3 Obj4 Obj5 

t1 600 5.00E-06 0.6 0.6 180000 

t2 800 5.00E-06 0.6 0.6 220000 

t3 900 5.00E-08 0.6 0.6 420000 

t4 900 5.00E-07 0.6 0.6 600000 

t5 600 5.00E-06 0.6 0.6 200000 

 
 

Table 9: Weight 𝜔𝜔𝑛𝑛 of each period 

 Obj1 Obj2 Obj3 Obj4 Obj5 

t1 0.20 0.15 0.15 0.10 0.40 

t2 0.18 0.22 0.29 0.16 0.15 

t3 0.17 0.25 0.28 0.17 0.13 

t4 0.13 0.28 0.30 0.19 0.10 

t5 0.20 0.10 0.20 0.15 0.35 

 
 
Table 10: Sustainable supplier selection and order allocation results 

 L1 L2 L3 L4 R1 R2 R3 I1 I2 I3 G1 G2 

t1 0 2124 0 3106 0 0 2499 2341 0 0 2229 0 

t2 2183 2078 0 3888 3153 0 0 0 2366 0 0 2041 

t3 2833 2674 0 2643 2382 2816 3297 2499 0 0 2457 0 

t4 3136 2446 2932 3550 3299 0 2428 0 2426 0 0 2291 

t5 2094 1927 0 0 2414 2498 0 0 0 1953 2757 0 

 
 
Table 11: Objective function value and expected out of stock of each period 

 Obj1 Obj2 Obj3 Obj4 Obj5 Out of stock 

t1 510.18 7.20E-09 0.60 0.63 175068.69 22 

t2 874.75 2.40E-07 0.61 0.60 235584.72 105 

t3 921.32 2.04E-08 0.62 0.63 423389.85 875 

t4 1243.95 7.00E-08 0.63 0.63 550290.22 3452 

t5 432.99 8.52E-10 0.64 0.61 215183.70 44 
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Table 12: Weight adjustment of each scenario 

 Obj1 Obj2 Obj3 Obj4 Obj5 

Scenario #1 0.40 0.15 0.15 0.15 0.15 

Scenario #2 0.15 0.40 0.15 0.15 0.15 

Scenario #3 0.15 0.15 0.40 0.15 0.15 

Scenario #4 0.15 0.15 0.15 0.40 0.15 

Scenario #5 0.15 0.15 0.15 0.15 0.40 

 
Table 13: The average value of the objective function and the size of the solution set 

𝜹𝜹 Obj1 Obj2 Obj3 Obj4 Obj5 Solution set size 

0.1 552.74 1.45E-07 0.62 0.63 173354.99 9 

0.2 601.62 7.67E-08 0.62 0.63 177208.38 12 

0.3 599.34 7.47E-08 0.62 0.63 173018.06 15 

0.4 617.59 9.89E-08 0.62 0.65 174419.98 38 

0.5 506.29 7.37E-07 0.64 0.66 176529.27 63 

0.6 461.09 2.90E-07 0.64 0.66 178710.63 95 

0.7 418.33 4.04E-07 0.64 0.65 177809.20 100 

0.8 399.54 1.17E-06 0.65 0.64 178322.88 100 

0.9 383.23 2.14E-06 0.66 0.64 178843.73 100 

1.0 384.51 2.16E-06 0.66 0.64 178782.62 100 

 

Table 14: The average value of the objective function in different scenarios 

 Obj1 Obj2 Obj3 Obj4 Obj5 

Scenario #1 680.653  5.86E-08 0.620  0.622  169655.654  

Scenario #2 626.769  2.92E-08 0.620  0.621  169637.496  

Scenario #3 638.589  9.44E-08 0.623  0.623  170811.743  

Scenario #4 633.682  5.44E-08 0.619  0.633  168711.673  

Scenario #5 584.027  1.14E-07 0.618  0.626  167936.468  
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Table 15: The average value of the objective function and the size of the solution set 
by different optimization algorithms 

  Obj1 Obj2 Obj3 Obj4 Obj5 Solution set size 

t1 

nRa -NSGA-II 599.34 7.47E-08 0.62 0.63 173018.06 15 

r -NSGA-II 540.55 2.95E-07 0.61 0.69 183026.09 36 

f-NSGA-II 375.14 6.02E-06 0.66 0.65 156142.29 73 

NSGA-II 374.51 3.25E-06 0.65 0.63 157193.00 100 

t2 

nRa -NSGA-II 775.68 6.81E-07 0.61 0.61 223585.61 20 

r -NSGA-II 549.24 2.98E-06 0.61 0.66 227880.08 24 

f-NSGA-II 587.06 4.58E-05 0.66 0.63 224914.55 75 

NSGA-II 623.35 2.14E-05 0.65 0.64 225060.07 100 

t3 

nRa -NSGA-II 1153.79 1.04E-07 0.63 0.63 408667.03 11 

r -NSGA-II 961.77 1.28E-07 0.61 0.64 412558.87 78 

f-NSGA-II 1076.07 3.51E-06 0.65 0.64 427550.46 74 

NSGA-II 1024.73 1.72E-06 0.65 0.64 414889.55 100 

t4 

nRa -NSGA-II 1499.37 2.06E-07 0.62 0.66 519610.18 14 

r -NSGA-II 1022.68 4.83E-07 0.61 0.63 547240.60 38 

f-NSGA-II 1452.77 1.78E-06 0.65 0.64 564482.20 76 

NSGA-II 1181.27 9.76E-07 0.65 0.64 529387.32 100 

t5 

nRa -NSGA-II 659.21 3.42E-08 0.61 0.62 194434.68 21 

r -NSGA-II 524.88 6.22E-07 0.61 0.67 206262.84 30 

f-NSGA-II 565.98 1.40E-05 0.66 0.64 199513.13 71 

NSGA-II 547.91 5.45E-06 0.65 0.64 195770.41 100 

 
 
Table 16: The expected order completion rate of different allocation schemes 

 nRa -NSGA-II r -NSGA-II f-NSGA-II NSGA-II 

t1 93.84% 90.88% 84.28% 86.72% 

t2 89.28% 87.46% 82.27% 85.09% 

t3 88.27% 87.54% 80.14% 82.43% 

t4 79.72% 76.94% 78.18% 78.60% 

t5 91.37% 87.59% 83.18% 86.26% 
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Appendices 

Appendix A: Location, related costs and production capacity of potential suppliers 
 Longitude Latitude fni uni αni Capacity 

L1 49.07 18.92 21 12.5 0.0033 3200 
L2 49.2 18.88 24 11.6 0.0038 2800 
L3 49.04 19.73 20 12.3 0.0042 3600 
L4 49.24 18.95 22 10.5 0.0043 4000 
R1 48.14 17.11 27 13.1 0.0039 3400 
R2 48.72 21.25 25 11.3 0.0031 3500 
R3 49 21.24 29 13.8 0.0041 3300 
I1 2.2 48.51 30 16.7 0.0088 2900 
I2 52.52 13.41 33 17.2 0.0091 3600 
I3 59.93 30.31 31 16.9 0.0082 3000 
G1 121.45 31.21 36 18.8 0.0094 3200 
G2 -118.15 34.04 37 19 0.0098 3100 

Note: East longitude is positive and west longitude is negative.  
The longitude and latitude of Company B’s manufacturer is 49.22 and 18.74, respectively.  

 

Appendix B: Disruption probability and impact of logistics disruption of each period 
 Disruption probability Impact parameters of disruption 
 t1 t2 t3 t4 t5 t1 t2 t3 t4 t5 
L1 0.010 0.050 0.080 0.096 0.012 1.0 1.0 1.3 1.5 1.0 
L2 0.015 0.056 0.076 0.090 0.016 1.0 1.0 1.3 1.5 1.0 
L3 0.020 0.055 0.070 0.089 0.022 1.0 1.0 1.3 1.5 1.0 
L4 0.010 0.051 0.068 0.091 0.013 1.0 1.0 1.3 1.5 1.0 
R1 0.020 0.080 0.120 0.145 0.024 1.0 1.1 1.5 1.8 1.1 
R2 0.010 0.090 0.110 0.147 0.014 1.0 1.1 1.5 1.8 1.1 
R3 0.030 0.070 0.130 0.150 0.032 1.0 1.1 1.5 1.8 1.1 
I1 0.040 0.120 0.160 0.190 0.130 1.0 1.3 1.9 2.3 1.2 
I2 0.035 0.140 0.170 0.200 0.140 1.0 1.3 1.9 2.3 1.2 
I3 0.040 0.130 0.165 0.195 0.120 1.0 1.3 1.9 2.3 1.2 
G1 0.040 0.150 0.180 0.210 0.110 1.0 1.5 2.3 2.7 1.3 
G2 0.030 0.150 0.190 0.230 0.120 1.0 1.5 2.3 2.7 1.3 

 

Appendix C: Total demand of each period 

Period t1 t2 t3 t4 t5 

Total demand 12000 14500 20000 23000 13000 
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Appendix D: Sustainable evaluation of potential suppliers 

 𝑺𝑺𝑺𝑺𝟏𝟏 𝑺𝑺𝑺𝑺𝟐𝟐 𝑺𝑺𝑺𝑺𝟑𝟑 𝑺𝑺𝑺𝑺𝟒𝟒 𝑺𝑺𝑺𝑺𝟓𝟓 𝑺𝑺𝑺𝑺𝟔𝟔 𝑺𝑺𝑺𝑺𝟕𝟕 𝑺𝑺𝑺𝑺𝟖𝟖 𝑺𝑺𝑺𝑺𝟗𝟗 𝑺𝑺𝑺𝑺𝟏𝟏𝟏𝟏 

L1 G MG VP G VG MP M P VG G 

L2 MG MP VG MG M P VG VP VG G 

L3 MG MG G VG VG MG G M G VG 

L4 M M MG P MG VP VG MP VG MG 

R1 VG M G M MP MG VP M G P 

R2 G G MP M G VG MG G M MG 

R3 MP P VG G G M MG G MG VP 

I1 MG VG M MG VP G M VG P MP 

I2 VG VG MG MP P G MG G MG M 

I3 P G P MG VG VG MP G VP VG 

G1 G VP VG VG G MG P VG MG MG 

G2 VP VG G VP MG VG G MG MP VG 

 

 

Appendix E: Resilience evaluation of potential suppliers 

 𝑹𝑹𝑺𝑺𝟏𝟏 𝑹𝑹𝑺𝑺𝟐𝟐 𝑹𝑹𝑺𝑺𝟑𝟑 𝑹𝑹𝑺𝑺𝟒𝟒 

L1 M MG VP VG 

L2 MP MG VG VP 

L3 MG M VG M 

L4 VG MP P G 

R1 VG G M G 

R2 P G M MG 

R3 M VG MG G 

I1 G VP VG VG 

I2 VP M G P 

I3 G VG MG MG 

G1 MG P MP G 

G2 VG MG G MP 

 


