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ABSTRACT 

 

There are remarkable ethnic differences in the incidence of metabolic 

syndrome associated features; including insulin resistance, type 2 diabetes, 

hypertension and cardiovascular diseases. Studies have suggested that 

South Asians (SA) present an unfavourable body fat phenotype, which 

includes a pattern of elevated visceral adipose tissue (VAT), and liver fat 

content; depots strongly associated with the progression of metabolic 

dysregulation. However, there are a limited number of studies examining 

body fat composition by ethnicity. 

The purpose of this thesis was to comprehensively phenotype VAT, 

abdominal subcutaneous adipose tissue (ASAT) and liver fat content in 

Caucasian (Cau), SA and Black African (BA) individuals from a large number 

of distinct populations. Here, I include data from three adult cohorts: the UK 

Biobank (n=9533) of mixed ethnicities, the DIRECT cohort (n=1553) of Cau 

pre-diabetic individuals and The West London Observation (TWLO) cohort 

(n=747) of mixed ethnicities. In addition, I present data from Pune Maternal 

Nutrition study (PMNS) cohort; comprising 423 young adults of SA descent 

in India. 

Analyses of body fat phenotype in Cau pre-diabetic populations showed 

higher VAT (mean differences= 0.5 litre, p<0.0001) and liver fat content 

(mean differences= 0.6%, p<0.0001), but lower ASAT (mean differences= -

0.2 litre, p<0.0001) compared to Cau from the general population (free-living). 

I also observed negative associations between VAT, ASAT, liver fat content 

and day to day physical activity in both pre-diabetic and general populations 

(pre-diabetic; VAT; r= -0.296, ASAT; r= -0.163, liver fat: r= -0.186 and general 

population; VAT; r= -0.185, ASAT: r= -0.374, liver fat: r= -0.139, p<0.001 for 

all).  

Analysis of both the TWLO and UK Biobank revealed no differences in VAT 

or liver fat in SA in UK compared to other ethnic groups (TWLO; VAT: SA: 

3.0 ± 1.6 litres, Cau: 3.3 ± 2.1 litres; liver fat: SA= 6.4 ± 11.1%, Cau= 6.5 ± 

13.6%, p=ns - UK Biobank; VAT: SA: 3.6 ± 1.6 litres, Cau: 3.8 ± 1.5 litres; 
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liver fat: SA: 4.6 ± 4.6%, Cau: 4.2 ± 4.6%, p=ns). Analysis of both these 

cohorts also revealed a more favourable body fat phenotype with BA males 

presenting significantly less VAT than SA and Cau males (p<0.05 for both). 

Data from the PMNS cohort revealed high levels of VAT in 18 year old India-

based SA population. A high proportion (58.7%) of these lean individuals also 

presented with the thin-outside fat inside (TOFI) phenotype (a ratio of VAT to 

ASAT).  

A key finding is the lack of an unfavourable body fat phenotype in UK based 

SA. Therefore, the increased incidence of metabolic syndrome associated 

features in the SA population may arise via a mechanism unrelated to 

elevated levels of VAT or liver fat.  
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Chapter 1. Introduction  

1.1 General introduction  

 

Obesity is considered a 21st century epidemic in developed and developing 

countries (1, 2). Obesity has massive public health consequences; it is a 

strong risk factor for type 2 diabetes (T2D) (relative risk >3), coronary heart 

diseases (CHD) and hypertension (HTN) (relative risk 2-3) (3-5). It also 

shares a linear relationship with all causes of mortality (relative risk 1.05) (6). 

Obesity is a physiological dysfunction with environmental, genetic and 

endocrine aetiologies. Hence, there is a drive to recognise it as a medical 

condition (7, 8). Obesity is defined by increased fat accumulation, which 

adversely affects normal body functions (1, 9) and is characterised by a body 

mass index (BMI) higher than 30 (10-12). BMI is the ratio of an individual’s 

weight (expressed in kilogram, kg) to height (expressed in meters squared, 

m2), and BMI unit is kg/m2 (13). The obesity BMI threshold (>30 kg/m2) and 

overweight threshold (>25 kg/m2) were based on extensive epidemiological 

studies demonstrating the relationship between BMI and mortality, which 

tends to be J or U shaped (14).  

In 2018, the World Health Organization (WHO) published data showing that 

1.9 billion adults were overweight, and 650 million were obese (15). Overall, 

39% of the world’s adults population were overweight (39% male and 40% 

female), and 13% of the world’s adult population was obese (11% male, and 

15% female) (15). By 2030, it is estimated that 57.8% (3.3 billion people) of 

the world adult population will have a BMI of 25 kg/m2 or higher (16, 17). 

Hence, the obesity-associated burden of disease is expected to rise in the 

forthcoming years. In developed countries, the number of adults who are 

overweight or obese often exceeds those who are normal weight (15). For 

example, in the United Kingdom (UK), the percentage of adults who are 

overweight (BMI = 25-29.9 kg/m2) or obese (BMI = 30-39 kg/m2) is 61% (65% 

male and 57% female) compared to 34% adult with normal BMI (31% males 

and 37% females, normal BMI ≥18.5-24.9kg/m2), according to the Health 

Survey for England 2017 (18).  
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The global rise in obesity has been reported among all ethnicities, although 

there are variations. For example, in the United States, Mexican American 

males and females had the highest prevalence of overweight (BMI = 25-30 

kg/m2: 43% males and 34% females) compared to Black African (BA) (33% 

males and 26% females) and Caucasian (Cau) (from white ancestry including 

Americans: 41% males and 30% females), whereas BA males and females 

exhibited a higher prevalence of morbid obesity (BMI >40 kg/m2: 7% males 

and 17% females) than Cau (4% males and 7% females), or Mexican 

Americans (5% males and 7% females) (19). In the UK, the South and East 

Asian group have lower BMI values than the Cau population despite showing 

greater susceptibility to developing T2D at lower BMI levels compared to Cau 

individuals (for the equivalent prevalence of T2D at 30 kg/m2 in Cau, BMI 

equated to 22 kg/m2 in South East Asians) (20).  

The high global obesity figures are mirrored in the UK, where data from the 

Health Survey for England 2016 showed that 40% of males and 30% of 

females are overweight, and 26% of males and 27% of females were obese 

(21). The prevalence of overweight and obesity in adults in the UK has almost 

tripled since 1980 in both genders (22). The enormous increase in the 

prevalence of obesity in adults, in addition to its associated health disorders, 

comes with a high economic cost to society. The financial burden of 

overweight and obesity in the UK is growing. In 2007, direct healthcare costs 

of obesity were estimated to be £3.2 billion, and indirect costs at £4.4 billion 

(23). Direct obesity healthcare costs include general practitioner 

consultations, in-patient / out-patient admissions and drug costs, while 

indirect costs include treating the consequences of obesity such as T2D, 

cardiovascular diseases (CVD), stroke, lost potential national output and loss 

of earnings from premature mortality (24). The economic cost of obesity is 

high, accounting for 5% of the entire National Health Service (NHS) budget. 

The UK foresight projections calculated future cost models on elevated BMI 

in 2025 and 2050 with the increasing prevalence of overweight and obesity 

predicted by the model was projected to add £5.5 billion (at 2002 prices) to 

the annual total cost of the NHS by 2050 (25). The total attributable to 
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overweight and obesity by 2050 is predicted to be £9.7 billion in the UK alone 

(25).  

 

1.2 Causes of obesity 

 

At first glance, the cause of obesity seems simple; energy intake exceeds 

energy expenditure. Nevertheless, this simplistic view, which is widely held 

to be true, hides massive complexities inherent in how we acquire and use 

energy. Thus, the factors associated with the development of obesity are 

complex and multifaceted (1). Although there are many reasons why an 

individual may become obese, it is now generally accepted by health and 

other professionals that the current prevalence of obesity is primarily due to 

people’s inherent biological susceptibility interacting or adapting with a 

changing environment that includes more sedentary elements and increased 

dietary abundance (26). Recently, obesity is increasingly recognised by 

medical societies and healthcare professionals as an endocrine disease, 

which is caused by health inequalities, genetic influence and social factors 

(27, 28).  

The specific causes of obesity differ between population groups and across 

a person’s life course, with the accumulation of excess fat being the result of 

a variety of causal pathways (1). This variability is an essential feature in that 

it points to a broad spectrum of different solutions. Indeed, the multifactorial 

condition of obesity is inherently unsuited to a ‘one size fits all’ approach, and 

the complexity of the aetiology of obesity is showing why this disorder is hard 

to treat.  

Large numbers of studies indicated that obesity represents a disorder of 

energy homeostasis (defined as the stability of the physiological parameters 

such as glucose and calcium levels to maintain life)  (29). For example, in a 

normal weight non-obese individual, the physiological homeostasis is 

functioning normally ‘in a healthy balanced way’ which results in well-

maintained body weight, with population studies showing greater than 99.5% 
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agreement between an individual energy intake to energy expenditure (29). 

Therefore, in a perfectly balanced energy-control, obesity in healthy 

populations may be a consequence of regular, relatively small, cumulative 

imbalances (~100 calories/day). These imbalances may result from 

variations in different environmental factors (living environment, opportunities 

for physical activity, food and drink access and availability), psychological 

factors (stress, emotional eating, depression, sleep disorder), development 

(early life impact, mothers health) and socioeconomic drivers (food 

marketing, the price of food and drink, portion size), genetic and epigenetic 

factors (1).  The obesity Foresight project produced a complex map 

representing the leading causes of obesity (25). Although the Foresight 

project focused primarily on the prevention of obesity, it offers a 

comprehensive approach for determining the causes of obesity based on 

robust scientific evidence from a wide range of disciplines to identify the 

influencing factors (25). The Foresight report concluded that the causes of 

obesity are highly complex and interchangeable, which can be grouped into 

genetic (biology), epigenetic (early life programming), and environmental 

factors (behaviour and socioeconomics) (25). Although a full discussion 

regarding obesity causes is beyond the scope of this thesis, the section below 

discuss in details the obesity causes which have relevance for the 

interpretation of later chapters in this thesis.  

1.2.1 Obesity: epigenetic causes 

As mentioned in Chapter 1 section 1.2, there are many factors involved in the 

development of obesity and its related disorders, including epigenetic, 

genetic and environmental factors. The epigenetic factors are the changes 

that affect the deoxyribonucleic acid (DNA) expression without changing the 

DNA sequence, such in early life programming (30). The early life 

environment (foetal malnutrition) has become an area of interest and a topic 

of investigation as a possible influence of adulthood obesity (31). Some of 

the variations in the prevalence of obesity-related metabolic disorders such 

as in the high prevalence of T2D and pre-diabetes (defined as fasting plasma 

glucose of 5.6–6.9 mmol/L and/or two hour post-challenge glucose of 7.8–

11.0 mmol/L) in South Asian (SA) compared to Cau living in the same 
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geographical location opened the door for an early adult life investigation (32, 

33). Currently, it is widely accepted that a relationship exists between foetal 

malnutrition and the development of obesity-related disorders (34, 35). 

However, many of the exact underpinning physiological mechanisms 

involved in understanding how obesity manifests from early life are still under 

investigation, with accumulating evidence supporting the negative impact of 

the mothers malnutrition or overnutrition on foetal development and adult life 

(31).  

Human development during foetal life occurs to establish the basic organ 

systems, including homeostatic mechanisms, necessary for independent 

survival after birth (35). The mother’s general health status usually 

establishes the intrauterine environment, and it is known to influence much 

of the foetal development, which includes the initial foetal survival and the 

development of vital organs (35). The mother’s nutritional intake and 

metabolism are known to affect the intrauterine environment and 

disturbances in these components during critical stages of foetal 

development. This could cause major changes in homeostatic regulation, 

leading to more severe problems in later life such as metabolic dysregulation 

(36). Several theories have emerged to explain the relationship between 

unbalanced early life growth, obesity and metabolic dysregulation such as 

CVD including the birthweight hypothesis (37, 38). The birthweight 

hypothesis proposes that low weight at birth has an impact on infant early 

catch-up and leads to increased incidence of CVD (36). A systematic review 

on 39 papers by Kelishadi et al. regarding the effect of birth weight on the 

growth trajectory, reported that 79.6% of all CVD risk factors were reported 

in early catch-up studies (38).   

During pregnancy, metabolic changes occur in lipid metabolism and the 

circulating levels of triglycerides (TG), cholesterol, fatty acids, and 

phospholipids. These changes contribute to conditions such as 

hyperlipidaemia, hyperphagia, lipogenesis, and increases in fat mass (FM) 

and body weight in the first and second trimesters of the pregnancy (39). In 

the 3rd trimester, changes in catabolic status due to the lack of adequate 

nutrition results in increases in TG, phospholipid, and cholesterol levels (40). 
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Studies that have investigated the different rates of growth have concluded 

that it is essential for the growth rate to remain constant throughout the 

different stages of early life, to minimise the risk of adverse health outcomes 

in later life (This topic will be discussed further in Chapter 3 in the Discussion 

3.4) (41).  

Evidence on the impact of early life programming on metabolic health and 

cardiovascular function come from previously documented famine and feast 

periods (39). During the Dutch Hunger Winter (1944-1945), offspring exposed 

to the famine in early gestation were at higher risk for the development of 

obesity, increased systolic blood pressure (SBP) and diastolic blood 

pressure (DBP), as well as a premature presentation of coronary artery 

disease (39). Interestingly, offspring exposed in late gestation were more 

likely to develop metabolic abnormalities such as impaired glucose tolerance 

(42). These studies highlighted that the organs and systems affected in 

adulthood often reflected the period at which the biological insult occurred 

during gestation (39). Interestingly, data from another famine in Saint 

Petersburg known as the Leningrad famine (1941–1944) show conflicting 

results. Offspring exposed to the Leningrad famine in utero showed no 

increase in blood pressure, atherogenic lipid profile or impaired glucose 

tolerance in later life (39). These variations in outcomes could be attributed 

to the fact that individuals from the Dutch Hunger Winter were well nourished 

before and after the famine, therefore helping to drive catch-up growth, 

accelerated catch-up growth associated with increased propensity to 

metabolic and CVD (39). In contrast, after the Leningrad famine, food 

remained scarce, so offspring exposed to the famine was born into a 

nutritionally deprived environment that matched their experiences in utero. 

Thereby supporting the role of a ‘Predictive Adaptive Response’ which is that 

foetal adaptations to scarcity become maladaptive only when affected 

individuals are later exposed to an environment of plenty (for example from 

rural to urban areas, or from developing to developed countries) (39). 

Neel in 1962 (43)  proposed the thrifty gene hypothesis which states that 

individuals who live in an environment characterised by unstable food supply 

(scarce) would maximise their probability of survival by maximising the 
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storage of surplus energy (43). From this point, genetic selection would 

favour the energy-conserving phenotype in such an environment. However, 

the selected genetic variations that were favoured for survival during 

malnutrition (scarce) would become unfavourable when nutrition is improved. 

This hypothesis assumes that the common genetic variants of the thrifty 

genes predispose to metabolic syndrome. In 1992, another thrifty hypothesis 

was proposed by Barker and Hales named as Barker’s hypothesis and stated 

that biological insults that occur in the uterus are likely to account for the 

development of metabolic alteration (44). Babies who experience an insult 

preconception (intrauterine through the mother’s malnutrition status) may 

have adapted to poor nutrition by reducing energy expenditure and becoming 

‘thrifty’. These metabolic adaptations, which lead the foetus to survive 

through scarce environment intrauterine successfully, showed beneficial 

when individuals have poor nutrition yet experienced the same early 

development environment during childhood and adulthood.  However, with 

increased food intake, these metabolic adaptations lose their beneficial effect 

and lead to increased risk of metabolic syndrome in adulthood (45).  

It has been proposed that foetal growth restriction (defined as a condition in 

which a baby has a smaller birth weight (less than 10th percentile) of those 

born at the same gestational age) and low birth weight may serve as a marker 

of adverse environmental influences for hampering growth, eventually over 

generations, leading to glucose intolerance and T2D (46, 47). Early catch-up 

growth (following foetal growth restriction), which is long viewed as an 

essential recovery from the deleterious effects of poor growth on 

development and health, is now recognised as a risk factor for insulin 

resistance, obesity and T2D (48). Some others proposed that this is the 

difference between an environment of scarce (in the uterus) and an 

environment of excess (after birth) that leads to metabolic dysregulation (36) 

(please refer to the discussions in Chapter 3 as we return to this topic to 

explain the results for Chapter 3).  

1.2.2 Obesity: genetic causes 

Through the years, many studies have suggested that gene modifications 

might be the primary cause underpinning the prevalence of obesity. In 1949, 
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it was noticed by chance that T2D mice who had a mutation in a certain gene 

(ob), despite similarity at birth with non-mutant mice, were predisposed to 

excessive eating and rapid weight gain by 4-fold than non-mutant mice during 

lifetime (49). In the mid-1990s, this gene was discovered by Friedman et al. 

as the gene responsible for leptin production. Leptin is a hormone produced 

by adipose tissue (AT) and plays an important role in appetite regulation by 

sending signals to the brain to stop eating (50). Leptin discovery helped in 

recognising fat as an endocrine organ (51).  In humans, leptin deficiency or 

resistance causes uncontrolled food intake and severe weight gain, such as 

in rare congenital cases of leptin deficiency or lipoatrophy, which is a 

condition where there is a lack of fat for leptin production (51).  Leptin 

supplements will reduce food intake and induce weight loss in some, but not 

all obese individuals, which is probably because not all obese individuals are 

characterised by leptin deficiency or resistance (52).  

Although a full discussion regarding the importance of genetics on obesity is 

beyond the scope of this thesis, Table 1.1 lists some genes and their 

associated phenotypes.  

Table 1.1 List of some genes identified to contribute to BMI and their associated phenotypes. BMI; 

Body Mass Index. 

Protein  Gene  Associated phenotype  

Leptin  LEP Morbid obesity caused by leptin 

deficiency 

Affect regulation of body weight and 

stimulating energy expenditure 

Leptin Receptor  LEPR Morbid obesity caused by leptin receptor 

deficiency. 

Affect regulation of satiety and energy 

expenditure. 

Pro-opiomelancotrin  POMC Early-onset obesity in children.  

 Affect appetite regulation   

Fat mass and 

obesity-associated  

FTO Obesity and increased fat mass.  

Affect neural function and appetite 

regulation.  

Melanocortin 

receptor  

MC4R Found in numerous appetite-controlling 

centres in the hypothalamus.  
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Adopted twin studies suggested high hereditability in obesity, which is 

responsible for up to 45-75% of an individual variation in BMI (53). However, 

this contribution might be overestimated due to limited interpretation of data 

from twin pair studies (54) in addition to using BMI as a tool for assessing 

body fatness which showed weak sensitivity on an individual level (55). 

Moreover, high genetic susceptibility to BMI is usually translated in a 

relatively small clinical significant though adult life (~ 0.3 - 0.5 kg/m2) (56, 57). 

For example, the FTO gene, one of the most well studied, only has a small 

impact on BMI variations of 0.1 – 0.4 kg/m2 (58). Not only identifying certain 

genotypes that lead to a risk of obesity, but it is also crucial to consider the 

contribution of gene-gene interaction, gene-environment interaction and 

gene-behavioural interaction (59). Studies on the incidence of obesity in pets 

and their owners demonstrated a similarly strong correlation between the 

owner and the pet weight (60), which indicates a strong environmental bias 

in the estimation of genetic heritability.  

The Pima Indians are a subgroup of Native Americans who live in Southern 

Arizona in the USA, and they exhibit one of the highest prevalence of obesity 

and T2D in the world and higher than the general US population (75% and 

64% in females and males respectively)(61). The incidence of T2D in Pima 

Indians over ten years found to be 19-fold higher than White American (62).  

Interestingly, a  group of the Pima Indians who live in semi-rural areas of 

Mexico make one fifth of the prevalence of T2D in the whole Pima Indian 

subgroup in the USA (T2D prevalence; 6.9% in Mexican Pima Indian, 38% in 

US Pima Indian, and 2.6 % in White American) (63). This example 

demonstrates that even at genetically susceptible population for developing 

associated obesity diseases; the environment has a noticeable impact on 

disease development (Figure 1.1) (63, 64).  
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Figure 1.1 Age-adjusted prevalence of type 2 diabetes in non-Pima Mexicans, Mexican Pima 
Indians, and the U.S. based Pima Indians. Data presented as ± 95 confidence interval, US; United 

States of America. Adjusted from Leslie O. Schulz et al. 2006 (63). 

 

 

1.2.3 Obesity: environmental causes  

Determining the environmental causes of obesity such as food consumption, 

energy intake and energy expenditure are highly complex. Wang et al. (65) 

investigated the association between adherence to healthy diet consumption 

and genetic predisposition to obesity and found that after following a healthy 

diet, weight loss was stronger in the genetically highly predisposed to obesity 

group (65). This concludes that environmental circumstances may diminish 

the effect of strong genetic predisposition to develop obesity.  

It is well known that there are enormous advantages of consuming a healthy 

diet, however achieving such is highly challenging in an environment that is 

obesogenic where it is common to promote cheap, large portions of dense 

energy diets and sedentary lifestyles via prolonged desk jobs and passive 

commuting (66, 67).  However, not every individual who experiences an 

obesogenic environment is obese. Additionally, there is an emerging 

phenotype of metabolically healthy obese individuals, commonly known as 

metabolically healthy obese (MHO) or fat-fit (68). This subgroup showed 
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increased cardiorespiratory fitness (as measured by achieving the physical 

activity guidelines) compared to unfit obese counterparts (69, 70). This 

increase in fitness level is associated with reduced abdominal adiposity in 

particular visceral adiposity, which is the fat accumulation inside the abdomen 

(see Chapter 1 section 1.3.2 Visceral Adipose Tissue) (71, 72). Despite the 

benefits of increased fitness in maintaining a healthy metabolic profile, 

Chritou et al. showed that increased adiposity is associated with an adverse 

metabolic risk independently of fitness measures (73). 

Moreover, some studies showed that MHO subjects have a lower risk for 

developing CVD and metabolic diseases compared to the metabolically 

unhealthy obese but, at the same time having a higher rate of CVD and 

metabolic diseases compared to normal-weight individuals (74). Since then, 

evidence shows conflicting data regarding the existence of MHO (75). The 

MHO phenotype might not present metabolic or CVD risks, but this does not 

necessitate a decrease in mortality (76). A recent follow-up study over 30 

years published in 2018 showed that individuals with increased adiposity, 

despite maintained metabolic health, are eventually transformed into 

individuals with unhealthy metabolic profiles (77). 

A study compared MHO with insulin resistance versus MHO with insulin 

sensitivity found that MHO with insulin sensitivity had significantly lower 

visceral adipose tissue (VAT) area (138 ± 27 cm2 in MHO insulin-sensitive 

versus 316 ± 91 cm2 in MHO insulin resistant) but similar subcutaneous 

adipose tissue area (935 ± 124 cm2 in MHO insulin-sensitive versus 890 ± 

110 cm2 in MHO insulin resistant) (78). Similarly, other studies showed lower 

visceral adiposity in MHO when compared to obese metabolically unhealthy 

(78-81) or weight-matched individuals (82). Importantly, MHO is 

characterised by lower visceral adiposity, smaller adipocytes and a reduced 

inflammatory profile compared to metabolically unhealthy obese individuals 

(77, 78). Visceral adiposity is associated with an increased predisposition to 

metabolic and CVD risk (83). It has been suggested that MHO cannot be 

seen as healthy despite no evidence of metabolic disease since subjects with 

MHO will still encounter other obesity-related comorbidities such as chronic 

pain and cancers (84). Taking together, this evidence suggests that MHO 
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does not exist, as MHO is merely experiencing a delayed-onset of metabolic 

diseases (77).  

 

Reducing abdominal adiposity via obesity management (weight loss via 

lifestyle modifications or obesity surgeries) can improve overall metabolic 

profiles, including glycaemic control, T2D and CVD risk in particular (85). 

Obesity is a preventable public health issue, which means the money spent 

on treating obesity could be saved through a better understanding of the 

condition, designing better treatments and improving prevention and early 

detection. 

1.3 Adiposity in obesity  

Fat or AT is a profoundly different component between individuals and within 

an individual (86). The terms fat and AT are often used interchangeably, but 

it is important to understand the distinction (87). AT consists of 80% fat (TG), 

and the rest is made up of water, proteins and minerals (86). Fat and AT are 

distinct with different compartments, and their taxonomic separation is 

important for any assessment of body mass and associated metabolic 

outcomes (86).  

AT is located in distinct depots in the human body, the main compartment 

making up approximately 85% of total AT is subcutaneous adipose tissue 

(SAT) forming an extended layer surrounding the entire body, the most 

important subdivisions to note are abdominal and glutofemoral (Figure 1.2).  
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Figure 1.2 Diagram for the distribution of adipose tissue compartments and ectopic fat. 

 

Closer examination of the abdominal subcutaneous adipose tissue (ASAT) 

(via radiological imaging studies) revealed further divisions; superficial and 

layers of upper ASAT which are separated by a facia layer (88).  Of particular 

importance is intra-abdominal adipose tissue or VAT, which is located 

internally in the abdomen and divided into omental AT (located around upper 

abdominal organs such as liver and pancreas) and mesenteric AT (located 

around lower abdominal organs such as the colon) (83). Besides these AT 

compartments, fat can be stored inside the organs such as in the liver, 

pancreas and kidneys (89). Despite that, AT compartments and ectopic fat 

might seem to be separated anatomically, but they appear to work in a 

controlled manner and govern metabolic regulation.  Research has shown 

that there is a considerable variation in the association between distinct AT 

compartments or fat depots and metabolic risk, with some AT and ectopic fat 

shown to be independent risk factors for disease development (90, 91).   
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1.3.1 Visceral adipose tissue (VAT) 

VAT is considered a metabolically active component of total body AT, which 

imposes distinct biochemical features that influence several normal and 

pathological processes in the human body (83). The VAT is characterised by 

a high number of large adipocytes as well as increased vascularity and a rich 

blood supply, which makes it more metabolically active (greater fat storage 

and release), leading to a higher lipid turnover than other fatty tissues (92). 

Studies have shown that larger adipocytes are more insulin resistant 

compared to small adipocytes (92). This might explain the strong association 

between increased VAT and insulin resistance observed in many studies (93-

95). Moreover, the amount of VAT is a significant risk factor determining the 

variations in systemic insulin resistance (96), Abate et al. studied the 

relationship between insulin sensitivity, measured via a euglycemic clamp, 

and visceral adiposity assessed by MRI in 39 healthy males, and 

demonstrated a significant negative association between VAT and insulin 

sensitivity (97).  Furthermore, increased VAT is a risk factor for developing 

T2D, and a predictor of CVD, independent of total body fat percentage, BMI 

or SAT (95, 98) (Figure 1.3). 

 

 
Figure 1.3 Increased VAT potential metabolic outcomes. VAT: Visceral Adipose Tissue; CVD: 

cardio metabolic risk, NEFA; non-esterified fatty acid.  
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Studies have showed that increased amount of VAT has been more closely 

linked with metabolic disorders than SAT (93), and a predictor of CVD 

independent of SAT (99). This might be due to the anatomical location of 

VAT, and the fact that free fatty acid (FFA) drains directly into the liver through 

the portal vein (96). This portal drainage of visceral AT provides direct hepatic 

access for the FFA and adipokines, which are highly secreted by visceral 

adipocytes (96, 100). Despite the evidence supporting the notion that VAT is 

a driver of insulin resistance syndrome (93, 101), others proposed that 

increased accumulation of VAT is a marker of dysfunctional AT, rather than 

a cause of insulin resistance (102).  Therefore, it is unclear whether visceral 

adiposity causes insulin resistance or insulin resistance causes adiposity 

dysfunction through an excessive release of NEFAs, which impairs insulin 

sensitivity and increased oxidative stress (103).  Whether VAT is a cause or 

a result of insulin resistance, its presence in excess amounts is a marker of 

metabolic dysfunction. Indeed, surgical removal of VAT resulted in improving 

metabolic profile in humans (104, 105). Importantly, excess visceral adiposity 

is reversible, and its reduction can have an excellent effect in diminishing 

cardiovascular and metabolic syndrome risks. Indeed, lifestyle modifications 

(diet and exercise) when leading to loss of VAT, even without weight loss, 

showed improvement in insulin sensitivity and circulating lipid levels (106, 

107).  

1.3.2 Subcutaneous adipose tissue (SAT) 

In an energy-balanced setup, SAT primary function is acting as an energy 

sink with an expanding ability to store excess energy intake (91). When SAT 

function is impaired or altered, the excess fat is stored in VAT or lean tissues 

(91). Upper and lower body SAT exhibits opposing association with obesity-

associated metabolic disorders and CVD risk (91). In addition, deep 

abdominal SAT showed similar association to VAT with obesity-associated 

metabolic disorders, while superficial abdominal SAT is shown to be benign 

(108). 
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Interestingly, studies performed on mice showed that transplantation of VAT 

to SAT location improves metabolic functions (109). The authors concluded 

that adipose depots own a “residence memory” and autologous 

transplantation of visceral fat to subcutaneous sites (chest or thigh) offers 

metabolic advantages (109). However, the removal of visceral fat alone did 

not improve the metabolic profile in mice which indicates that AT 

compartments are intrinsically different from each other not only anatomically 

but also on a functional and physiological level (109). In human studies, 

liposuction of large quantities (>9 kg) of subcutaneous abdominal fat results 

in large reductions in waist circumference (WC) (>12 cm), but showed no 

effect on cardiovascular risk factors (110).  By contrast, surgical removal of 

<1 kg of VAT results in substantial improvements in oral glucose tolerance, 

insulin sensitivity, fasting plasma glucose and insulin levels than in control 

patients (in proportion to the baseline) despite similar overall weight loss 

(104). Interestingly, surgical removal of SAT did not result in improvement in 

metabolic syndrome (110) with a few limited studies have linked the SAT to 

the development of obesity-related insulin resistance (97, 111). 

SAT, mainly in the lower body, plays an essential role in maintaining normal 

AT function, and it showed an opposing association with CVD across wide 

ranges of age and BMI (112, 113). A lower amount of body SAT is associated 

with lower total cholesterol and LDL cholesterol and lower TG (114, 115).  A 

study of 27,000 participants from 52 countries were investigated to measure 

the association between obesity and risk of myocardial infarction, an 

independent association was found between the larger hip circumference and 

lower risk of myocardial infarction (116).  Moreover, in 623 participants from 

the Hoorn study (117), increased SAT in the leg was associated with 

decreased risk of altered glucose in males (standardized beta coefficient for 

fasting glucose= -0.2, 95% confidence interval -0.4 to -0.1, standardized beta 

coefficient for post-load glucose= -0.1, 95% confidence interval -0.3 to 0.1) 

and females (standardized beta coefficient for fasting glucose= -0.2, 95% 

confidence interval -0.4 to -0.2, standardized beta coefficient for post-load 

glucose= -0.3, 95% confidence interval -0.4 to -0.1) (118).  
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Interestingly, in subjects with increased VAT, an increase in SAT correlated 

with reduced TG content and lower susceptibility to developing the metabolic 

syndrome (119). In mice studies, the surgical transplantation of SAT into 

visceral areas lead to improved glucose metabolism (through improved 

insulin sensitivity of their liver and muscles) (120), decreased body weight 

and reduction in total FM (121). In T2D patients who were treated with 

thiazolidinedione to improve insulin sensitivity showed increased total body 

mass which was primarily SAT (via the increased proliferation of 

subcutaneous adipocytes) accompanied with improved insulin sensitivity 

(122).  Furthermore, in some cases where there is no protective SAT (e.g. 

lipodystrophy), severe insulin resistance and diabetes developed (123-125). 

For example, in congenital lipodystrophy, there is a failure to develop 

adequate AT storage and fat is consequently stored ectopically (125).  

Indeed, a detailed study of AT content and distribution led to the realisation 

of the great importance of AT distribution (91, 126). For example, ‘thin outside 

fat inside’ (TOFI) who are normal weight subjects (BMI 18.5 < 25 kg/m2) but 

characterised with potential increased risk for developing metabolic diseases 

due to increased VAT accumulation (72). TOFI is estimated to affect 12% to 

13% of the general white population, who have a normal BMI (72). 

Furthermore, a prominent feature of the TOFI phenotype that they exhibit 

higher ectopic fat in the liver and muscles than normal BMI non-TOFIs, this 

emphasises the importance of AT distribution and ectopic fat in determining 

metabolic risks (72).  

1.3.3 Ectopic fat  

Ectopic fat refers to the accumulation of fat (TG) in lean tissues which lead to 

disturbing their normal function (i.e. normal clearance capacity) and may lead 

to tissue dysfunction (via lipotoxicity) and subsequent metabolic risk (127). 

Ectopic fat can be found in organs such as the liver, pancreas, heart, muscles 

and kidneys (102).   

1.3.3.1 Liver fat  

Accumulation of liver fat is a result of fat that builds up in the liver (more than 

5% of liver cells), not from alcohol abuse, that can damage the liver and lead 

to serious complications known clinically as non-alcohol fatty liver disease 
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(NAFLD) or fatty liver. Fatty liver is a condition with a broad spectrum and its 

symptoms are similar to that of alcohol-induced fatty liver damage but found 

in individuals who do not abuse alcohol; therefore males were consuming < 

30 g ethanol per day and females <20 g ethanol per day (128). Despite having 

no symptoms, fatty liver has been reported to affect between 20% - 30% of 

the general population (129), but it also varies with ethnicity, with high 

prevalence among Hispanic (45%), Cau (33%) and BA (24%) populations 

(130). Generally, the presence of increased fatty liver is higher in obese 

populations (odds ratio, 7.2; 95% confidence interval, 5.3-9.8) (131). 

However, the coexistence of the two conditions is not necessary. The 

prevalence of fatty liver or NAFLD in the general population increases in male 

sex (odds ratio, 1.4; 95% confidence interval, 1.1-2), elevated alanine amino 

transaminase  (ALT) (odds ratio, 5.66; 95% confidence interval, 4-8), fasting 

plasma glucose ≥126 mg/dL (odds ratio, 2.08; 95% confidence interval, 1.4-

3.05), total cholesterol ≥240 mg/dL (odds ratio, 1.5; 95% confidence interval, 

1.1-2.1), and TG ≥150 mg/dL (odds ratio, 1.8; 95% confidence interval, 1.3-

2.4) (131).  

Although fatty liver is associated with the global rise in obesity and affects 

70% to 80% of the obese population, it can also be found in non-obese 

individuals with elevated abdominal adiposity, dyslipidaemia and insulin 

resistance (128, 132, 133). The presence of fatty liver in non-obese 

individuals and its associated metabolic disorders such as T2D makes it a 

potential biomarker for the prediction and detection of various clinical 

endpoints (134). For example, in a longitudinal study on 906 non-diabetic 

subjects at baseline from the Insulin Resistance Atherosclerosis cohort, 

elevated aspartate amino transaminase (AST) and ALT (both markers of 

NAFLD) were significant predictors of T2D after adjusting for the percentage 

of body fat, WC, TG, impaired glucose tolerance and insulin sensitivity (135).  

Fatty liver has been associated with many health risk factors, such as HTN 

elevated TG, low levels of high-density lipoprotein (HDL) cholesterol and 

elevated insulin, as an umbrella marker of risk (132, 136, 137). Owing to its 

strong association with the metabolic syndrome, it has been proposed as 

both the hepatic manifestation of the metabolic syndrome (138) and as a 
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component for metabolic syndrome owing to its role in the progression of T2D 

and CVD (139-141). Sixty per cent of patients with fatty liver meet the 

National Cholesterol Education Programme Adult Treatment Panel-III criteria 

for the metabolic syndrome (142). Similarly, fatty liver was also shown to be 

a predictor of early alterations in cardiovascular function in the absence of 

HTN, T2D, morbid obesity and increased WC (143-146). Interestingly, Kim et 

al. reported that fatty liver is associated with carotid artery calcifications 

independently of the traditional risk factors, including visceral adiposity (147). 

The fatty liver starts with simple steatosis (fat accumulates in 5% of liver 

hepatocytes), but when markers of inflammation manifest, it progresses to 

non-alcoholic steatohepatitis (NASH) (148). Scarring tissue appearance in 

the hepatocytes as a result of inflammation is a further stage of the fatty liver 

spectrum, and it is known as ‘liver fibrosis’ (148). In the fibrotic stage, the liver 

function is limited but not fully inhibited. Prolonged inflammation in the fatty 

liver, left untreated, results in liver cirrhosis where the liver function is 

impaired. Persistent cirrhosis leads to liver failure. Despite its benign 

beginning, fatty liver is a condition that, if left untreated, can lead to life-

threatening conditions such as liver failure and hepatocellular carcinoma 

(149). Today, in parallel with the global increase in unhealthy lifestyle 

choices, NASH has become the third indication for liver transplantation (from 

1.2% in 2001 to 9.37% in 2009), with NASH recipients of transplant sharing 

features of older age, higher BMI and interestingly, mostly female (47% 

female versus 29% male) (150).   

Fatty liver and it progression rates to further liver conditions are 

unpredictable, which has necessitated the development of multiple screening 

and monitoring techniques. Individuals with fatty liver have few or no 

presentable symptoms, albeit occasional complaint of fatigue in the early 

stages of the disease, this silent nature of the condition makes it more crucial 

to identify an accurate assessment tool for diagnosis and treatment (151).  

There have been several hypotheses proposed to explain why fat is 

deposited in lean tissues such as the liver (103), including the overflow 

hypothesis (152). The overflow hypothesis suggests that adipocytes become 
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resistant to the effects of insulin or the exhaustion of AT storage capacity 

increases the lipolysis rates and the release of FFA delivery to the liver (153). 

This ‘overflow’ of FFA from the AT to the liver eventually exceeds the liver’s 

ability to produce fatty acids in the form of VLDL, causing fat to accumulate 

in the liver (153). Surplus lipid in the liver can cause lipid-induced dysfunction 

(lipotoxicity) and lipid-induced programmed cell death (lipoapoptosis, via 

ceramide overproduction) (154). This is consistent with the association 

between VAT and fatty liver (132); hepatic delivery of FFA increases as VAT 

compartment expands (155). Indeed, increased liver fat content correlates 

with total and visceral adiposity (139). The release of excess lipids to the 

circulation is proportion of the overall individuals’ FM, which increases the 

FFA flux to other non-adipose tissue (153). However, the ‘overflow’ 

hypothesis of excess FFA does not fully explain the development of excess 

liver fat accumulation as the condition exists in non-obese individuals. It has 

been suggested that oxidative stress and cytokine action are the second step 

in the overflow hypothesis (156, 157). 

Furthermore, in fatty liver, FFA and triacylglycerol metabolites (fatty acyl-

CoA, diacylglyceride and ceramides) accumulate (158). Diacylglyceride can 

activate protein kinase C, which phosphorylates insulin receptors, thereby 

inhibiting insulin signalling transduction and ultimately increasing hepatic 

glucose production. Indeed, fatty acids can induce intracellular inflammation 

by generating oxidative stress (158).  

To date, the exact mechanism of how increased adiposity, in particular, 

visceral adiposity, induces fatty liver has not been resolved. Furthermore, it 

is unclear why some individuals progress from fatty liver toward further stages 

of liver diseases and life-threatening disorders, while others do not. Currently, 

there are no specific drugs for fatty liver except lifestyle modifications through 

reducing calorie consumption and increased energy expenditure. With the 

global obesity epidemic, it is of great importance to understand the 

mechanism behind ectopic liver fat accumulation and its role in the 

development of metabolic diseases. The deep understanding and 

assessment of the contribution of ectopic fat in the liver will allow for precise 
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monitoring of healthy metabolic status and allow new insights for prevention, 

prediction and treatment of NAFLD.  

1.3.3.2 Pancreatic fat 

 

Less is known about the human pathophysiology consequences of lipid 

accumulation in the pancreas, sometimes referred to as intra-pancreatic 

cellular lipids or fatty pancreas, in particular with regards to metabolic 

syndrome (159, 160). Deposition of fat within pancreatic cells showed a link 

with a higher risk of T2D (161, 162), and is thought to follow a similar 

progression to NASH in the liver and is termed non-alcoholic steato-

pancreatitis (NASP) (163).  

β-cells, the insulin production site, are usually present with other endocrine 

cells in the Islets of Langerhans which are scattered throughout the pancreas 

(159). It has been suggested that excess ectopic pancreatic fat accumulation 

deteriorates β-cell function, exocrine function and insulin secretion (164). 

Pancreatic fat usually starts appearing several years before the diagnosis of 

T2D and has been proposed as a potential marker to identify individuals at 

risk, in particular in the case of pre-diabetes (please refer to Chpater 3 for an 

in-depth discussion on pre-diabtes) (165). However, it remains of a clinical 

challenge because the quantification of pancreatic fat is challenging due to 

the size and the location of the pancreas.  

The increased accumulation of lipids in the pancreas may arise through 

several different mechanisms including the local release of FFA, TG 

metabolic accumulation, oxidative stress and release of pro-inflammatory 

factors and cytokines production, all which have been shown to stimulate β-

cell injury (159). In obese individuals, increased lipolysis contributes to high 

levels of circulating NEFA (166) subsequently, various mechanisms including 

the formation of reactive long-chain fatty acyl-CoAs and toxic metabolites, 

such as ceramide, may contribute to the decline of β-cell mass (167, 168). In 

animal studies, adipocyte expansion (increase in the size), and TG 

accumulation increased in parallel in both exocrine and endocrine pancreatic 

regions (169).  This phenomenon leads to eventual β-cell dysfunction, leading 
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to lipoapoptosis and impaired insulin secretion as the animals develop pre-

diabetes and T2D (169, 170).  

β-cell impairment was thought to be irreversible, however, recently, it has 

been suggested that pancreatic β-cell function and recovery is possible. 

Elegant work by Roy Taylor’s group suggested that remission of T2D might 

be possible, by reduction in liver and pancreas fat, and therefore β-cells in 

the pancreas may recover and produce the right amount of insulin again 

allowing for the remission of T2D and pre-diabetes in some but not all cases 

(171).  

1.3.3.3 Other ectopic fat  

While beyond the scope of this thesis, other ectopic fat should be mentioned 

for context. These other ectopic fat sites are the muscle, the heart and the 

kidneys.  For example, muscle fat can be found between the muscle fibres 

(inter-muscular) or inside the muscle cells (intra-muscular) also known as 

intramyocellular lipid (IMCL) content which serves as an energy response for 

training. As seen in all ectopic fat depots, excess IMCL in obese individuals 

showed an association with T2D and insulin resistance (172). 

1.4 Quantifying obesity  

The most widely used method for obesity diagnosis is BMI which was 

originally named the Quetelet index after its discovery in 1835 by Adolph 

Quetelet (1796-1874). He was a Belgian statistician, and this index was 

included as part of his theory of the average man from his classic book (A 

Treatise on Man and the Development of his Faculties). The BMI was a 

simple measure used to classify people’s weight relative to an ideal weight 

for their height. In 1972, Ancel Keys explored the high correlation between 

BMI and adiposity (measured by skinfold and hydrodensitometry) and 

concluded that BMI usage is preferable in all population at all times (173). 

Since then, it has been accumulating evidence on the usability of BMI as a 

simple anthropometric index due to its fundamental repeatable and valid 

components that relate to the physical description of an individual or 

population (174, 175). 
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WC was another proposed method for central obesity assessment. Studies 

have shown a strong association between the metabolic syndrome and 

elevated abdominal size measured via WC, and it is estimated that for each 

11 cm increase in WC, there is an 80% increased risk for developing the 

metabolic syndrome (176). A prospective study of 714 non-diabetic 

participants found that after five years, 19.5% of the participants had 

developed the metabolic syndrome with elevated abdominal adiposity 

measured via WC was the best predictor (176). Therefore, central obesity is 

taken as an essential measurement for the diagnosis of metabolic syndrome; 

however, there are ethnic-gender disparities in determining the most 

appropriate WC threshold. The reason behind this is that different ethnic 

groups develop metabolic syndrome at a different level of abdominal 

adiposity (177, 178). The WC threshold for the diagnosis of metabolic 

syndrome in Cau, Middle Eastern and BA males is 10 cm higher than that 

suggested in Asian and Latin American males (177). For females, the WC 

threshold to diagnose metabolic syndrome is similar between Cau, Asian, 

Middle Eastern, BA and Latin American populations (177). One of the major 

problems for the diagnosis of the metabolic syndrome as well as with obesity 

is the applicability of appropriately defined threshold or biomarkers for 

different ethnicities, in particular, those at high risk for developing metabolic 

disease (20, 177).  

Currently, the WHO obesity classification using BMI defines undernutrition or 

underweight as <18.5 kg/m2, normal weight as 18.5–24.9 kg/m2, overweight 

as 25–29.9 kg/m2, obesity as ≥30 kg/m2, and ≥40 kg/m2 is considered morbid 

obesity (Figure 1.4). The fundamental health principle behind using BMI 

categories is that nutritional status is linked to longevity and mortality (179, 

180).  Individuals with a low BMI (underweight or undernutrition; less than 18 

kg/m2) have a higher risk of mortality and infectious diseases compared to 

those with higher BMI (27.5 – 30 kg/m2) values owing to their diminished 

immune status and low protection from fat stores during acute illness (181).  
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Figure 1.4 BMI Categorization and correspondent values based on WHO report 2001. BMI; body 

mass index, WHO; world health organisation.  

 

Furthermore, low BMI individuals are at risk of developing conditions such as 

nutritional deficiency and osteoporosis (182). The optimal BMI category for 

survival is between 22.5 - 25 kg/m2 (183, 184). Individuals who are overweight 

(>25 kg/m2) or obese (30 kg/m2) are at higher risk of non-communicable 

diseases as well as certain types of cancer (185). A report from the Global 

BMI Mortality Collaboration published in 2016 with data from 239 prospective 

studies in four continents (based on 10,625,411 participants and 385,879 

deaths) showed that overweight (BMI 25<30 kg/m2) and obesity grade I (BMI 

30<35 kg/m2) were associated with all-cause mortality (hazard ratio 1·1-1.2, 

95% confidence interval 1·1-1·2 for BMI 25-<30·0 kg/m2 and hazard ratio 1·6, 

95% confidence interval  1·4-1·5 for BMI 30<35 kg/m2) in a steep relationship 

across Europe, North America, East Asia, Australia and New Zealand (180). 

The Global BMI Mortality Collaboration 2016 analysis was restricted to never 

smokers and individuals who did not have a pre-existing chronic disease in 

order to eliminate cofounding bias (180).  

BMI is commonly used in epidemiological studies because it is easily 

obtainable and has low cost in money and time. Despite BMI being correlated 

with a more direct measure of obesity (186), it is assumed to represent the 

degree of overall adiposity, and it remains a score rather than objectively 

measured FM (or FM related metabolic disturbance). BMI does not 

distinguish between FM and fat-free mass (FFM) (187). Therefore, BMI only 

provides a surrogate measure of body fatness, with no information regarding 

body composition or fat distribution (187). This is important since it has been 

established that obesity-related disorders may be a function of body fat 

Undernutrition/ 
Underweight

•BMI < 18.5 
kg/m2

Normal weight

•BMI 18.5–24.9 
kg/m2

overweight

•BMI 25–29.9 
kg/m2

obesity

•BMI ≥30 kg/m2

Morbid obesity 

•BMI ≥40 kg/m2
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distribution rather than just total fat content (188). Moreover, since the 

inception of BMI, it has been known to have certain limitations particularly 

regard to its use in children, athletes, and for different ethnicities and age 

groups (187, 189). For example, using BMI for body builders and power 

athletes (rugby, boxing, wrestling etc.) who may have little body fat 

percentage, but their BMI would classify them as overweight or obese owing 

to their greater muscle mass (190).  

Moreover, loss of muscle mass such as that observed in sarcopenia can also 

make BMI assessment inaccurate (191). Furthermore, BMI cut-offs based on 

Cau individuals result in misclassifications of BMI in non-Cau ethnicities (192, 

193). In a large cross-sectional study from the UK Biobank, including 490,288 

participants (3.9% non-white) to assess the relationship between BMI and the 

prevalence of T2D in multi-ethnic groups, it was demonstrated that at the 

same level of obesity (>30 kg/m2), non-white individuals were 2 up to 4 fold 

more likely to develop T2D (20).   

As highlighted in section 1.3, adiposity in obesity, an accurate assessment of 

body composition vitally important. Historically, the most accurate method 

was cadaver dissection, but this is not feasible for the clinical quantification 

of body compositions. Depending on the criterion involved, the numerous 

methods available for measuring body composition in vivo can be divided into 

different categories (194). First, the direct body composition methods which 

include total body weighing, and chemical dissection (194). The second 

method of determining body composition involves techniques such as MRI, 

CT, dual-energy X-ray absorptiometry (DXA) and body density (194). There 

are also indirect methods, including skinfold, ultrasound and bioelectrical 

impedance (BEI or referred to as BIA) (194).  

1.4.1 Direct methods  

 

Direct body criterion methods of body composition assessment are those that 

directly measure the amount of chemical elements in the body (195). Cadaver 

studies are the most prominent example of direct body composition 

assessment (196, 197). In another method, in vivo neutron activation analysis 
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is carried out, where body content is measured at the elemental level (86). 

After exposure to a neutron field, gamma output is measured. However, this 

is rarely used due to the exposure to high levels of neutron radiation (86). 

1.4.2 Criterion methods  

 

Indirect methods of body composition assessment include deuterium oxide 

dilution, DXA and densitometry to measure FM, FFM, water, and rely on 

certain assumptions. This approach to assessing body composition using a 

two-component model (2-C), where tissue is either FM or FFM. More 

recently, the multi-component model was used where the components 

measured depend on the method used (86, 194).  

1.4.2.1 Magnetic resonance imaging (MRI) 

 

The importance of accurately measuring adiposity, both for scientific 

purposes (accurate assessment of obesity-related diseases) as well as 

providing better recommendations for preventing or reversing the effect of 

increased body adiposity, has led to the development of various advanced 

techniques to provide a more detailed measure of body adiposity than can be 

obtained using BMI. Imaging techniques such as computed tomography (CT) 

and MRI, have been utilised to assess body fat content and distribution (197) 

accurately. The applicability of CT has been limited by the fact that ionising 

radiation is required during the acquisition of the images, while MRI studies 

have been limited by the relatively high cost of the examination. Despite this, 

MRI has become the gold standard for the measurement of body fat 

distribution, owing to its accuracy and non-invasive nature (198-200). 

Although MRI measurements of body fat require technical and anatomical 

knowledge, applying this technique to a large population is useful to 

accurately assess fat content and distribution in relation to fatness such as 

age, gender, lifestyle, ethnicity and genetic make-up. Therefore, MR 

quantification of AT and ectopic fat was the method used throughout the 

thesis and discussed in details.  
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1.4.2.2    MR principles 

 

Although there may be high correlations between many of the different 

measurement techniques – there is generally a poor agreement between the 

imaging and non-imaging techniques (197). Diagnostic medical imaging 

technologies, including CT and MRI, provide a more accurate estimation of 

different body fat tissues from cross-sectional images of the body. Adiposity 

can be quantified using multiple contiguous scans to determine the area of 

subcutaneous and internal AT that can be converted to volumes as the 

distance between continues slices in known. Below is a brief description of 

the underlying principles of this method. 

MRI, also known as Magnetic Resonance (MR), utilises hydrogen nuclei (1H) 

mainly from water and fat. Hydrogen atoms are the most abundant nuclear 

magnetic resonance active nuclei in the body and are distributed widely 

throughout most tissues. This means the radio waves emitted from 1H after 

MR excitation are sufficient to be converted into a detailed image. The 

intensity of the signal acquired is relative to the number of hydrogen atoms 

present and allows different tissue types to be quantified. However, the 

number of 1H alone cannot distinguish between all tissues - fat and muscle, 

for instance, do not have markedly different amounts of hydrogen. 

To enable the differentiation between fat and muscle, an MR property known 

as spin-lattice ‘relaxation time, T1’ is employed. T1 relaxation time is the time 

required for the nuclei to release the energy they have absorbed from the 

applied radiofrequency pulses, and return to their natural equilibrium state. 

Based on the fact that the T1 for 1H in fat and muscle tissues are different, 

T1 can be used to differentiate these two tissues from each other within an 

image. 

The measurement of different T1 times can be maximized by manipulating 

the time interval between each radiofrequency pulse (known as the time to 

repeat or repetition time TR), and the time required to detect the induced 

signal known as echo time (TE). This process is called the pulse sequence, 

from inducing the radiofrequency wave until detecting the echo that contains 
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the MR signal. Specific pulse sequences have been developed to provide the 

optimum image contrast, in the minimum scan time, for each particular tissue 

under investigation. 

MRI images are either acquired in ‘slices’ where the whole body or particular 

section is scanned in a series of fixed-width 2dimensional (2D) slices or as a 

whole 3dimensional (3D) volume acquisition (201). For the 2D slice method, 

each MR scan consists of a series of cross-sectional images that together 

make up the body or the segment required. Each image must be analysed 

individually (via various techniques), and then the tissue areas can be 

calculated.  Since the slices are of known thickness, the relative tissue 

volumes can be calculated. MRI has been validated for measurements of fat 

content in phantoms, animals, and human cadavers (202). It has been shown 

to accurately quantify AT content in vivo, showing good agreement with the 

values produced by dissection and chemical analysis (203, 204). In addition, 

MRI has shown to be reliable and reproducible. The MRI fat content 

quantification reproducibly coefficients ranging from 0.3 – 2.3% and 

approximately 2% for reliability (204). 

1.4.2.3 MR liver and pancreas fat measurements 

  

Generally, in tissues containing lipid and water, there will be oscillation in 

signal intensity as a function of echo time. At some echo times, the fat and 

water signals are in phase (higher signal), and at others they are out of phase 

(lower signal); this gives rise to the oscillations in MR signal decay curve. An 

organ (liver or pancreas) with very little fat infiltration will generate a very 

smooth decay curve (without obvious oscillations in the decay), whereas one 

containing a higher level of fat shows significant oscillations throughout the 

decay. From these data, ‘heat-maps’ were generated to visualise regional 

differences in the fat deposition as in Figure 1.5, which shows the heat maps 

from four individuals with varying levels of fat in their liver and pancreas. Each 

process of the detailed method for MR fat quantification will be discussed in 

detail in the following chapters’ method sections.   
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Figure 1.5 Multi-echo and heat-map images from the liver and pancreas. A series of multi-echo 
(a–d) and corresponding heat-map images (e–f) from four volunteers, with varying levels of ectopic fat 

in both the liver and pancreas. A scale reflecting fat content from blue (low) to red (high) is also shown. 
Images (a) + (e) show high liver and high pancreatic fat. Images (b) + (f) show low liver fat and with fat 
infiltrating into the pancreas. Images (c) + (g) show high liver and low pancreatic fat. Images (d) + (h) 

show low liver and low pancreatic fat. The heat-map values were localised to the liver, hence the lack 
of relationship between the levels of fat in the adipose tissue and its colour. 

 

 

1.4.3 Quantifying obesity contributing factor: ethnicity 

 

Ethnicity has a noticeable impact on both AT distribution with SA having 

higher abdominal AT mass and lower lean mass compared with Cau (205). 

This ethnic group are more susceptible to obesity-related cardiometabolic 

consequences, with higher incidence rates of T2D equivalent to those with a 

BMI of 30 kg/m2, but occurring at much lesser obesity levels in SA, and BA 

(20, 206). The National Institute for Health and Clinical Excellence published 

in 2013 on BMI and preventing ill health and premature death in SA groups 

recommendation for using lower BMI thresholds (23 kg/m2 to indicate 

increased risk and 27.5 kg/m2 to indicate high risk) to trigger action to prevent 
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T2D among SA populations (207). A distinct phenomenon has been shown 

with increased abdominal adiposity at lower BMI in SA compared to Cau. 

Thus, the accurate assessment of regional AT distribution is an important 

predictor for assessing obesity-associated disorders in SA.  

1.5 Ethnicity 

 

Ethnicity is a complex and multifactorial concept which reflects the sharing of 

similar culture, religion and history (208). Although 99.9% of the human DNA 

is identical, natural selection and mutations have led to population differences 

(genetic drift) which are sufficiently characterised to identify an individual’s 

ethnicity (209) (Figure 1.6). 

 

 

 

 

 

 Figure 1.6 A representation of some of the complex factors that contribute to ethnicity definition. 
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In the topic of obesity measured via BMI in epidemiological studies, the ethnic 

disparities are clear (20, 210). For example, a meta-analysis review included 

data from National Health and Nutrition Examination Survey and the 

Behavioural Risk Factor Surveillance System looking at ethnic disparities in 

obesity prevalence in US between 1990 and 2001 and reported that obesity 

prevalence varied significantly by ethnicity, with Native American and Pacific 

Islanders at high risk, and Asian Americans (of Vietnamese, Korean, 

Japanese or other Asian ancestries) exhibiting remarkably low rates of 

obesity (Figure 1.7)(65). These differences may be influenced by a variety of 

cultural, lifestyle and socio-economic effects, although it has been suggested 

that these ethnic differences in propensity to obesity, persist after adjusting 

for these factors (211, 212).  

 

 

 
 
Figure 1.7 Adult obesity rates by ethnicity Percentage of normal weight, overweight, and obese 

adults (>30 years) within each ethnic group. Adapted from Wang et al. 2007 (65). 
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The UK is a cosmopolitan country with high ethnic diversity, between 2005 

and 2009, 9.3% of all babies born in England were of SA origin, including 

individuals from Pakistan, India, Bangladesh, Nepal and Sri-Lanka. Further 

5.3% were from Black British origins, including individuals from BA and 

African Caribbean ancestry (213). Table 1.2 shows the ethnic diversity 

distribution in the UK with 12.6% of the total UK population as non-Cau, and 

SA representing almost 50% of the non-Cau population in the UK (Table 1.2). 

Moreover, London was the most ethnically diverse area, with the highest 

proportion of non-white ethnic groups and the lowest proportion of white 

population, at 59.8% (213). 

 

Table 1.2 Ethnic diversity in the UK according to the 2011 Census, the Office of National Statistics. 

 

 

 

 

 

 

 

Ethnic group Population % of total population 

Caucasian 55,010,359 87.1 

Asian or Asian British 4,373,339 6.9 

Black or Black British 1,904,684 3.0 

Mixed or Multiple 1,250,229 2.0 

Gypsy/Traveller/Irish Traveller 63,193 0.1 

Other Ethnic Group 580,374 0.9 

Total 63,182,178 100 
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In the UK, SA accounts for 14.0% of total subjects with T2D despite 

representing less than 6.9% of the overall population, according to the 

Association Of Public Health Observatories (214) (Figure 1.8).  

 

 

 
Figure 1.8 Estimates of type 2 diabetes prevalence by ethnicity for England in 2010 from The 
Association of Public Health Observatories. South Asian (14.0% UR 6.5–26.6%) and Black (9.8% 

UR 3.9–20.8%) ethnic groups have a higher prevalence than Caucasian and other ethnic groups (6.9% 
UR 5.2–9.4%).  
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A large cross-sectional study of 490,288 subjects in the UK investigated the 

association between the incidence of T2D and adiposity, and showed 

significant variations by ethnicity, with T2D developed at remarkably low BMI 

in SA (male 21.6 kg/m2, female 22 kg/m2) compared with Black British (male 

26 kg/m2, female 28 kg/m2) and Cau (30 kg/m2 for male and female) 

populations (20) (Figure 1.9). 

 

 

 

 

 

 

 

 

 

 
Figure 1.9 Age-adjusted associations between type 2 diabetes prevalence and adiposity by 
ethnicity; South Asian (male 21.6 kg/m2, female 22 kg/m2), Black British (male 26 kg/m2, female 28 

kg/m2) and Caucasian (30 kg/m2 for male and female). No variances are shown in the Caucasian data 
because it represents the defined reference cut-off value for the analysis. Data adapted from Ntuk et 
al. 2014 (20).  

 

 

Studies looking at the incidence of obesity-related metabolic disorders such 

as insulin resistance, metabolic syndrome, T2D, HTN, CVD and stroke in 

different populations showed significant disparities among different ethnic 

groups (215-217). SA and Black individuals living in Europe have a 

remarkably higher prevalence of T2D compared to Cau (218-220), with the 

prevalence of T2D in SA adults shown to be between 6-10 times higher than 

Cau adults (221), developed at a younger age with a faster progression (222-

224). In a study in Oslo, looking at T2D susceptibility among four ethnic 

groups, SA had 3-4 fold higher risk compared to other ethnic groups after 
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adjusting for age and socioeconomic factors, despite comparable BMI, WC, 

and waist to hip ratio (WHR) (225). Black individuals showed three times 

higher susceptibility to develop T2D compared to Cau (226, 227).  Moreover, 

SA and Black individuals, tend to progress from impaired glucose tolerance 

(IGT> 100 mg/dL of plasma blood) to T2D at a faster rate (usually two times 

higher) than Cau (215, 228, 229).  

SA males, in particular, may be genetically predisposed to premature CVD 

as it is widely reported that they have significantly higher CVD mortality rates 

compared to other ethnicities, along with increased CVD risk in childhood 

(230, 231).  The predisposition of SA toward insulin resistance, together with 

raised TG and lower HDL cholesterol, are contributing factors to their 

elevated CVD risk (232-234). As such, SA populations are characterised as 

metabolically obese, even at normal-weight individuals (235). Furthermore, 

BA individuals showed increased susceptibility to HTN and insulin resistance, 

while TG levels are substantially lower compared to Cau (236-238). On the 

contrary, BA showed substantially lower CVD mortality rates when compared 

with Cau, whereas foreign-born BA populations have lower CHD mortality 

rates than USA-born BA who have increased rates compared with Cau (239-

241). In addition, studies demonstrated that BA individuals have a higher risk 

of stroke compared to Cau (242).  In the UK, a study conducted among people 

with T2D reported mortality from stroke was 3.5–4 times higher in BA than in 

Cau (243). Furthermore, in a 9-year follow-up study looking at the changes 

in plasma glucose, Black subjects developed HTN earlier than Cau or SA 

patients, but interestingly showed the most favourable lipid profiles (244, 

245). This is in agreement with the high incidence and prevalence of HTN in 

Black subjects with and without T2D (244, 246).  
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1.6 Aims of the thesis 

 

 To quantify visceral, abdominal subcutaneous, ectopic fat in the liver and 

pancreas in free-living general population, pre-diabetic and SA 

populations.  

 To examine the association between MRI derived measurements and 

age, gender and anthropometric measurements in the general population, 

pre-diabetic and SA populations.  

 To investigate the association between MRI derived measurements and 

metabolic parameters in high-risk populations for developing metabolic 

disorders, especially South Asians.  

 To determine the ethnic differences in phenotypes of body fat in South 

Asian, Cau and BA populations.  

 

 

1.6.1 Hypothesis  

The hypothesis investigated in this thesis is that SA populations have 

increased VAT and ectopic fat deposition in the liver compared to Cau 

populations, which may help to explain the differences in obesity-related 

disease prevalence. 
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Personal contribution to the research presented in this thesis  

All the work presented in this Thesis is the original work of the Thesis 

candidate unless otherwise stated. 

Briefly, this research aims to provide an in-depth body fat phenotyping in SA, 

Cau and BA populations. This necessitates being a part of national and 

international collaborations, including Indian, UK, and European cohorts.  

During the time as a PhD student, the author was involved on a day-to-day 

basis with the MR analysis of adipose tissue and ectopic fat quantification. 

My role involved: 

 Arranging the raw data and metadata with a clean presentation and 

ensuring all subjects scored valuable inputs. 

 Preparing the raw images for fat analysis and quantification. 

 Assessing the quality control of the images in the Diabetes Research 

on Patient Stratification (DIRECT), and Pune Maternal Nutrition Study 

(PMNS). 

 Optimizing the image tools to recover the non-analysable images, 

where possible. 

 Quantify the amount of VAT, ASAT contents, liver fat, pancreas fat 

contents from MR images in PMNS and DIRECT. 

 Co-ordinating the datasets for all the PMNS, DIRECT, The West 

London Observation study and UK Biobank including anthropometry, 

metabolic numbers, DXA, and MRI images.  

 Planning and executing the proper statistical analyses in presenting 

the results.  

The job entitled post-MR scanning operations. Therefore, the author was not 

involved in the subject recruitment or performing the scans because the 

breadth of the research required acquiring the data from multi-international 

collaborations. However, the author was closely monitoring the required 

detailed information on the recruitment and scanning from collaborators in 

the UK, Europe, and India.  
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During the time of my PhD, I performed adipose tissue quantification for 

2,001 subjects including the VAT, ASAT and liver fat contents presented 

in this research. I also managed a large dataset of 12,272 subjects, including 

anthropometry, metabolic profile, DXA, and MRI scan outcomes. 
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Chapter 2 Phenotyping body fat deposition and ectopic fat in free-

living and pre-diabetic populations.   

 

2.1 Introduction  

 

As discussed in Chapter 1, different body fat compartments have different 

association with metabolic diseases, in particular, the development of T2D; 

with VAT, liver and pancreatic fat showing a positive association with 

metabolic risk, and in some cases independent of each other (247), whereas 

other fat compartments such as ASAT showed an apparent protective role 

with metabolic risk (108).  

 

While various methodologies exist to measure overall body adiposity, 

available methods for measuring regional adiposity are more limited due to 

high technical demands or resource availability. Simple anthropometry, while 

cheap and easily obtainable, does not always provide a very accurate 

assessment for negative health outcomes. For example, despite its 

convenience, BMI fails to account for body composition (187). Furthermore, 

previous studies have confirmed that the relationship between BMI and 

regional body adiposity varies considerably by factors such as age (248), 

gender (249), and race/ethnicity (250). Similarly, WHR is also a poor marker 

of regional AT distribution since it is influenced by a number of factors such 

as frame size and skeletal muscle mass (251). 

 

The accurate measurement of different abdominal fat depots, including VAT, 

ASAT, liver and pancreatic fat, is crucial. This is because the risks associated 

with excess adiposity have consistently been shown to be a function of 

regional fat distribution, rather than overall fatness; accumulation of VAT is 

linked to the development of metabolic syndrome features, including insulin 

resistance, T2D, dyslipidaemia, inflammation, HTN and CVD (83). As 

mentioned in Chapter 1 The introduction, ectopic fat build-up, particularly in 

the liver, is also associated with insulin resistance and other metabolic 

complications (148), independently of age, gender, and BMI (252). In 

addition, body fat compartments (VAT and liver fat) can be found in high 
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amounts in lean subjects and increase their susceptibility for metabolic 

diseases such as T2D (72, 137).  Amongst anthropometric measures, WC 

represents the strongest correlation with abdominal adiposity and liver fat 

deposition (72). This is further complicated by the fact that abdominal, 

subcutaneous, VAT and liver fat may expand independently of each other 

(139, 253). Individual body fat compartments show different associations with 

all-cause mortality, relationships affected by age (254), gender (255), 

race/ethnicity (256) and socioeconomic and lifestyle factors such as diet and 

exercise (257, 258). In contrast to VAT, SAT may demonstrate a protective 

function against CVD development (108).  

 

Moreover, there are established gender differences in body fat compartments 

with males tending to accumulate higher VAT and liver fat, while females tend 

to accumulate higher ASAT (249, 259). However, less is known about these 

gender differences during early metabolic alterations such as pre-diabetes 

status and the progression to T2D.  Indeed, loss of VAT or liver fat is 

associated with an improvement in metabolic health without significant weight 

loss (257). Moreover, a recent study showed that both liver and pancreatic 

fat are key factors for the remission of T2D (171). Therefore, it is important to 

accurately measure VAT, ASAT, liver and pancreatic fat in order to determine 

metabolic health.  

 

Large scale analysis of the compartmental distribution of AT is often limited 

by the expense and time required to employ requisite imaging techniques. In 

this chapter, I analyse the relationship between body fat distribution and 

anthropometry of free-living and pre-diabetic populations from two of the 

largest available UK and European population studies: the UK Biobank and 

the DIRECT study. The UK Biobank provides a comprehensive means of 

assessing the relationship between body composition and anthropometry in 

a large population-based cohort of adults aged 40-70 years old, recruited 

between 2007 and 2010 (260). The DIRECT study recruited 1,558 pre-

diabetic subjects between the ages of 30-75 years, beginning in 2012 (261). 

Abdominal MR images were obtained for all participants allowing for the 

quantification of VAT, ASAT and ectopic fat content in the liver and pancreas. 
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The aim of this chapter is to examine the association between MRI derived 

abdominal adiposity measurements (ASAT, VAT, liver fat fraction, pancreatic 

fat) and age, gender, anthropometry and blood pressure in a free-living 

population. These results will be compared to those obtained in a cohort of 

pre-diabetic subjects.  

 

2.1.1 Objectives 

1. Investigate the association between MRI derived measurements     

(VAT, ASAT, liver fat)   and age, gender and anthropometries in a free-

living population (UK Biobank) 

2. Quantify ectopic fat depots (liver, pancreas) in a pre-diabetic 

population (DIRECT). 

3. Compare total body fat, VAT, ASAT and liver fat content between 

free-living and pre-diabetic populations.  

 

2.2 Methods 

2.2.1 Free-living population (UK Biobank) 

2.2.1.1 UK Biobank participants  

Written, informed consent was acquired from all participants as part of the 

large cross-sectional UK Biobank resource (260). The UK Biobank has 

approval from the North West Multi-Centre Research Ethics Committee 

(MREC). In total, data from 5,986 individuals (2,849M, 3,137F) from the UK 

Biobank, recruited between 2007 and 2010, were included. All participants 

were aged between 40 and 70 years old. The complete UK Biobank data set 

includes 502,656 UK adults (229,182 males and 273,474 females). 

Participant recruitment was conducted via centrally coordinated identification 

and invitation from population-based National Health Service patient registers 

of individuals living within a reasonable distance of an assessment centre. All 

participants from the general population were invited to participate. Exclusion 

criteria included participants who had metal in their bodies or devices such 

as pacemakers, were claustrophobic or anyone taking prescribed medication 

or females on the contraceptive pill. Participants underwent anthropometric 
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assessment, blood pressure, total body MRI scanning, MR liver proton 

density fat fraction (PDFF), detailed below in Section 2.2.1.4, acquired 

through UK Biobank Access Applications number 6569 and 9914 (Appendix 

1). 

 

2.2.1.2 UK Biobank anthropometric measurements  

At the UK Biobank centres, a touchscreen questionnaire was used to collect 

information on demographic characteristics and lifestyle exposure, including 

day to day events (www.ukbiobank.ac.uk/resources). Height (cm) was 

measured from bare feet using a Seca 202 height measure (Seca, Hamburg, 

Germany). Weight and body fat percentage was measured with a Tanita 

BC418ma BEI device (Tanita, Tokyo, Japan). From these values, BMI was 

calculated. BMI grouping corresponded to the following ranges; 1: 18.5<25 

kg/m2, 2: 25<30 kg/m2, 3: 30<40 kg/m2, 4: 40+ kg/m2. The average of two 

blood pressure measurements, taken moments apart, was obtained using an 

automated device (Omron, UK) (260). 

 

2.2.1.3 UK Biobank physical activity 

Physical activity and inactivity were measured from the International Physical 

Activity Questionnaire (IPAQ) during the participant’s essential visit to UK 

Biobank centre. The terms and the definition used for the physical activity and 

inactivity are summarized in the Appendix (Appendix 2). Participants 

responded to questions on physical activity and inactivity including walking, 

moderate, vigorous physical activity and time spent watching TV or driving. 

Scores for each of these questions were then used to calculate a single score 

for “total physical activity” over the previous week, in line with IPAQ guidelines 

(described in details in Appendix 2, expressed as “metabolic equivalent 

minutes” (MET minutes) of activity per week.  

http://www.ukbiobank.ac.uk/resources
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2.2.1.4 Measures of body fat content 

After the initial assessment, all eligible UK Biobank participants were invited 

for imaging assessment at UK Biobank Imaging centres. AT and ectopic fat 

content were acquired at the UK Biobank imaging Centre at Cheadle (UK) 

using a Siemens 1.5T Magnetom Aera. MR acquisitions were components of 

an extensive scanning protocol, including brain and cardiac imaging as well 

as DXA (GE-Lunar, Madison) to measure FM, fat percentage and lean mass.  

 

Visceral fat and ASAT were measured via MR dual-echo Dixon Vibe protocol. 

The participants were scanned in a supine position with arms along the sides, 

scan area from the neck to knees. There was no localiser (pilot scan) used to 

position the anatomical landmarks for the scan. Instead the subjects’ clavicles 

were used. The Dixon protocol covered a total of 1.1 m, divided over six 

overlapping slabs of axial 3D spoiled gradient dual-echo images. Images 

were acquired using the following parameters: TR=6.69 ms, TE=2.39/4.77 

ms, and bandwidth 400 Hz. Integrated scanner software (AMRA profile) was 

used to reconstruct water-fat Dixon images (in phase and out of phase) (262). 

A multi-echo spoiled-gradient-echo acquisition was used to calculated T2* 

and PDFF maps for the liver. A single transverse slice of the liver was 

captured using the following parameters; field of view=40x40 cm, 160x160 

acquisition matrix yielding a voxel size of 2.5 mm x 2.5 mm, 6 mm slice 

thickness, 20 flip angle, 27 ms TR, and 2 signal averages. Ten echo times 

were selected such that the signals from fat and water were in phase and out 

of phase at 1.5T. The acquisition of echoes needed for the liver PDFF images 

construction occurred during a single expiration breath-hold using the 

following echo times: TE: 2.38, 4.76, 9.52, 11.90, 14.28, 16.66, 19.04, 21.42, 

and 23.80 ms (263).  

 

2.2.2 Pre-diabetic population (DIRECT) 

2.2.2.1 DIRECT participants  

The DIRECT (Diabetes Research on Patient Stratification) Study is an 

Innovative Medicine Initiative (IMI) and a part of the seventh European Union 
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Framework. IMI DIRECT is a joint undertaking between four industries and 

21 academic partners throughout Europe (Figure 2.1). The DIRECT IMI was 

carried out under grant agreement number 115317 (DIRECT), resources of 

which are composed of financial contributions from the European Union's 

Seventh Framework Programme (FP7/2007-2013), and European 

Federation of Pharmaceutical Industries and Associations. The DIRECT IMI 

consortium had two phases; the first phase to identify pre-diabetic individuals, 

discover and validate biomarkers that predict the rate of glycaemic 

deterioration before and after T2D onset. The aim of the second phase was 

to predict the response to diabetes therapies and help stratify T2D into clearly 

definable subclasses that can be treated more effectively. Potential 

participants from four large Scandinavian studies were contacted if they were 

classified as pre-diabetic based on glycated hemoglobin (HbA1c) inclusion 

values ranging from 5.7 to 6.4% or 40-48 mmol/mol. 

 

Inclusion criteria comprised 1) HbA1c values ranging from 5.7 to 6.4% or 40-

48 mmol/mol, 2) Fasting blood glucose <10 mmol/l at recruitment, 3) Age 30-

75 years. Exclusion criteria comprised; 1) Diagnosis of type 1 or T2D, HbA1c 

≥6.5% (48 mmol/mol), fasting plasma glucose ≥7.0 mmol/L or 2 h plasma 

glucose >11.0 mmol/L; 2) Treatment with insulin-sensitising, glucose-

lowering or other antidiabetic drugs; 3) Pregnancy, lactation or plans to 

conceive within the study period; 4) Use of a pacemaker.  

 

Written, informed consent was acquired from all participants. Subjects with 

early stage of pre-diabetes were invited to take part in the study. Ethical 

approval was received from the National Research Ethics Service and 

Newcastle Hospital NHS Foundation Trust. All eligible volunteers were invited 

to a baseline assessment at one of six clinical research facilities (Figure 2.1) 

where they completed an MRI scan and a lifestyle questionnaire between 

November 2012 and November 2014 at seven different locations across 

northern Europe. In total, 1,558 participants (1,125 males, 433 females) were 

recruited and assessed at one of six centres (Figure 2.1).  
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Figure 2.1 The Diabetes Research on patients’ stratification (DIRECT) project landscape. A map 

representing the co-ordination teams and partners for the DIRECT cohort. Scanning took place at one 

of the 6 following centres; from Copenhagen; Technical University of Denmark, University of 

Copenhagen, From Kuopio; University of Eastern Finland, From Newcastle; University of Newcastle 

upon Tyne, From Exeter; University of Exeter, From Amsterdam: VU University Medical Centre 

Amsterdam; From Dundee: University of Dundee. Figure adapted from DIRECT Diabetes Research on 

patient stratification website. Access date 25 May 2018. 

 

For the purpose of the current research, subjects with Impaired Fasting 

Glucose (IFG) and Impaired Glucose Tolerance (IGT) were grouped as pre-

diabetes.  

2.2.2.2DIRECT anthropometric, body fat percentage and blood 

pressure measurements  

Examinations were carried out in the morning after a 10 h overnight fast. All 

measurement procedures were standardized across study sites and 

performed by trained nurses. Height was measured using calibrated wall-

mounted stadiometers, weight using calibrated scales, and waist and hip 

circumferences using non-stretchable measuring tapes. BMI grouping 

corresponded to the following ranges; 1: 18.5<25 kg/m2, 2: 25<30 kg/m2, 3: 
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30<40 kg/m2, 4: 40+ kg/m2. Average of two blood pressure measurements, 

taken moments apart, was obtained using an automated device (Omron, UK). 

Body fat percentage measured using DXA (GE-Lunar, Madison). 

 

2.2.2.3 DIRECT Physical activity assessment  

Habitual physical activity was assessed using a wrist-worn triaxial 

accelerometer (ActiGraph GT3X+; ActiGraph LLC, Pensacola, FL, USA). The 

monitor was fitted to the participant’s non-dominant wrist using an adjustable 

strap (ActiGraph LLC). The participant was requested to wear the monitor 

continuously for 10 days to allow habitual uninterrupted measures of physical 

activity. Participants were asked to wear an additional monitor on their 

dominant hip. The participants were instructed to remove the monitor only 

when undertaking water-based activities (deeper than 1m and lasting longer 

than 30min), or if the monitor caused discomfort. Participants were given a 

prepaid, addressed, padded envelope in which to deposit the monitor and 

return it. The raw data from the monitor was assessed and translated into 

Euclidean Norm Minus One (ENMO) metric outcome. ENMO is a widely used 

metric indicator of physical activity from raw data in epidemiological studies 

(264).     

 

2.2.2.4 DIRECT imaging protocol 

MR scanning protocols were standardized across study centres to harmonise 

the scan methodology due to different equipment used by each centre. 

Scanners used were 1.5 Tesla (T) Philips Intera at the University of Exeter in 

the UK, Siemens Espree 1.5T at the University of Newcastle in the UK, 

Siemens Avanto 1.5T in University of Eastern Finland in Finland and VU 

University Medical Centre Amsterdam in the Netherlands. Siemens Trio 3T 

used in the University of Dundee in the UK and an Achieva 3T in Copenhagen 

University in Denmark. All participants were scanned in the prone position 

with arms extended above the head. T1-weighted images were acquired from 

the diaphragm to acetabulum using the maximum fields of view during free 

breathing with a slice thickness of 10 mm x 10 mm slice gap. VAT and ASAT 
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were quantified from transverse T1-weighted MR images using Slice-O-Matic 

software.  

 

Liver and pancreas images were acquired using Multi-Echo sequence with a 

surface coil with the following parameters; TR = 1500 ms; field of view = 500 

mm; slice thickness = 10 mm, TE varied between 8-20 ms depending on the 

scanner used (increases the scanner strength, reduces the echo time), and 

were chosen to represent in and out of phase signals.  

 

2.2.2.5 DIRECT imaging analysis 

Raw MRI data was converted into an analysable format using ImageJ (Image; 

National Institute of Health, Bethesda, MD). After assessing the quality 

control of the image by ensuring: 1. enough contrast for visualising the 

organs, 2. the image was free from artefacts such as breathing or motion 

artefacts. For each specific image, an entire organ was selected using 

continued dots placed to cover the entire organ (in this case the liver or the 

pancreas), avoiding vascular structures. Representative area covered for 

liver and pancreas are shown in Figure 2.2. The liver and pancreas organ 

extractions were performed separately.  

 

 
Figure 2.2 Magnetic resonance organ extraction for fat quantification in the liver (A) and the 
pancreas (B) in the Diabetes Research on patients’ stratification (DIRECT) project. 
 

 
 
 

The mean signal intensity was measured at each echo time. A curve-fitting 

algorithm using the exponential model was used to derive a fat fraction, as 

well as the component T2* decays for fat and water. An automated pixel by 

pixel analysis was performed to obtain colour-coded parametric heat maps of 
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the entire liver and pancreas using script code in Matlab version 2013 

(Mathworks, Natick, MA, USA) (see the script code in Appendix 3). The 

relative portion of fat and water within each organ were then calculated from 

the T2* fitting curve of water and fat (Figure 2.3). The outcomes from each 

image were liver/pancreatic fat percentage, T2* (relaxation time), and R2* 

(relaxation rate).  
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Figure 2.3 Magnetic resonance ectopic fat quantification in the liver and the pancreas of the Diabetes Research on patients’ stratification (DIRECT) project. 
Examples of ectopic fat quantifications from 5 individuals in the liver (A-C) and pancreas (D, E). A) Low liver fat = 1.0%, B) Moderate liver fat content= 2.8%, C) High 
liver fat content= 15.1%. D) Low pancretic fat content= 4.7%, E) High pancretic fat content= 17.9%. 
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2.2.3 Statistical analysis 

Descriptive statistics were obtained for anthropometric, blood pressure and 

AT measurements, and are reported as mean and standard deviation. The 

log of liver fat fraction data was performed prior to analysis due to the non-

normally distributed nature of the liver data. Analyses were done in male and 

female subjects separately due to the established gender differences in 

regional adiposity. Gender differences were assessed using non-parametric 

Mann-Whitney U test. 

The differences in body fat distribution by age and BMI were assessed using 

Kruskal-Wallis test with multiple comparisons.  Correlation analysis was 

performed between anthropometric, MRI measures of visceral, ASAT and 

liver fat outcomes.  

Gender-specific comparison of MR body fat measurements between free-

living (UK Biobank) and pre-diabetic (DIRECT) populations was assessed 

using the non-parametric Mann-Whitney U test. All statistical analyses were 

performed using the Statistical Package for The Social Sciences (SPSS) 

version 23.0 (SPSS Inc. Chicago, USA) and graphs were generated using 

GraphPad Prism version 5.0 (GraphPad Software Inc. California, USA). 
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2.3 Results 

2.3.1 Free-living population UK Biobank  

2.3.1.1 UK Biobank population data 

Population characteristics for data from 5,986 individuals (2,849M, 3,137F) 

in the free-living population are shown in Table 2.1, including indirect 

measures of body fat as measured by dual emission X-ray absorptiometry 

(DXA) and MR.  

Table 2.1 Baseline characteristics of free-living population of the UK Biobank cohort. Outcome 
data from UK Biobank participants. VAT; Visceral adipose tissue; ASAT: Abdominal subcutaneous adipose tissue; DBP: Diastolic Blood 

Pressure, SBP: Systolic Blood Pressure, VAT and ASAT: n=6021, liver fat =5971 and DXA outcomes: n=5170. Mean ± standard deviation calculated 

using SPSS 23.0. 

 UK Biobank Cohort Mean ± SD Range 

A
n

th
ro

p
o

m
et

ry
 Age (years) 61.7 ± 7.1 44 - 73 

Waist circumference (cm) 87.4 ± 12.1 55 - 150 

Hip (cm) 101.3 ± 8.6 73 - 152 

Height (cm) 169.5 ± 9.2 141 - 203 

Weight (kg) 75.8 ± 15.1 39 - 160 

BMI (kg /cm2) 26.7 ± 4.4 14.2 - 49.2 

Blood pressure  
DBP (mmHg) 78.7 ± 10.0 36 - 120 

SBP (mmHg) 133.9 ± 17.7 75 - 221 

D
X

A
 

Total Fat Mass (kg)  25.8 ± 9.1 2.7 – 76.1 

Total Fat Free Mass (kg)  49.8 ± 10.2 7.4 - 84.9 

Total Lean Mass (kg) 47.1 ± 9.7 6.8 - 80.3 

Total Tissue Fat (%)  34.9 ± 8.2 8.2 - 58.4 

VAT mass (kg)  1.2 ± 0.90 0 - 6.2 

M
R

 VAT(litres) 3.7 ± 2.3 0.1 - 14.4 

ASAT (litres)  7.0 ± 3.2 0.7 – 23.5 

Liver fat PDFF (%) 4.1 ± 4.6 0.5 – 34.5 

 

 

 

MR data were complete and available in VAT for 5,985 (M=2,849, F=3,136), 

ASAT for 5,985 (M=2,849, F=3,136) and in liver fat for 5,971 (M=2,839, 

F=3,132) in the free-living population from the UK Biobank study. There was 

no pancreas fat data available because while it was included in the imaging 

protocol of the UK Biobank, the data had not been released for analysis by 

the UK Biobank; Figure 2.4 shows a flow chart demonstrating the MR images 

available for each body fat depots in the free-living population from the UK 

Biobank (Figure 2.4). 
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Figure 2.4 Flow chart demonstrating the MR images available for body fat depots of the free-

living population from the UK Biobank  

 

 

2.3.1.2 UK Biobank population data by gender 

Table 2.2 presents the free-living population anthropometry, blood pressure, 

body composition via DAX and MRI for males and females with significant 

gender differences observed in all outcomes. In the free-living population 

from UK Biobank study, males were older, heavier with wider WC than 

females (p<0.001 for all) (Table 2.2). DBP and SBP were significantly higher 

in males than females in the free-living population (p<0.001). Total FM, total 

FFM and total lean mass were available from the DXA scan (Table 2.2), with 

females having a significantly higher total FM and tissue fat percentage than 

males in the free-living population (p<0.001 for all) (Table 2.2). Lean mass 

and FFM were significantly higher in males than females in the free-living 

population from UK Biobank (p<0.001 for all) (Table 2.2). There was good 

agreement in the measurements of VAT via DXA and MR with males having 

higher VAT than females in both modalities (p<0.001 for all) (Table 2.2). 

meta data supplied 

n= 5985

MR visceral fat available 

n=5985

MR ASAT available 

n= 5985

MR liver fat available 

n= 5971
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There was a significant higher liver fat amount in males compared to females 

in the free-living population (p<0.001 for all) (Table 2.2).  

Table 2.2 Gender specific characteristics of the free-living population of the UK Biobank cohort. 

Outcome data from UK Biobank participants. VAT; Visceral adipose tissue; ASAT: Abdominal subcutaneous adipose tissue; DBP: Diastolic Blood 

Pressure, SBP: Systolic Blood Pressure, DXA: dual energy X-ray absorptiometry, n= M: 2,839, F: 3,132 except VAT and ASAT: M: 2,864, F: 3,157. A U-test for gender comparison was 

performed in SPSS 23.0. Mean ± standard deviation calculated using SPSS 23.0. 

  Males Females U-test 

Mean ± 
SD 

Range Mean ± 
SD 

Range p 
value 

A
n

th
ro

p
o

m
et

ry
 

Age (years) 62.4 ± 7.1 44 to 73 61.1 ± 7.1 45 to 73 <0.001 

Waist circumference (cm) 93.4 ± 10.0 63 to 150 81.8 ± 11.2 55 to 137 <0.001 

Hip (cm) 101.4 ± 8.4 77 to 150 101.3 ± 8.7 73 to 152 0.028 

Height (cm) 176.4 ± 6.5 153 to 203 163.3 ± 6.3 141 to 
193 

<0.001 

Weight (kg) 83.6 ± 13.4 51 to 160 68.7 ± 12.9 39 to 154 <0.001 

BMI (kg\m2) 27.1 ± 3.9 16 to 47 26.2 ± 4.7 14 to 49 <0.001 

Blood 
pressure 

DBP (mmHg) 80.3 ± 9.7 50 to 120 77.2 ± 11.1 36 to 118 <0.001 

SBP (mmHg) 137.5 ± 
16.4 

75 to 221 130.7 ± 
18.1 

82 to 202 <0.001 

D
X

A
 

Total Fat Mass (kg)  24.8 ± 8.6 5.3 to 76.1 26.8 ± 9.4 2.7 to 
73.0 

<0.001 

Total Fat Free Mass (kg)  58.7 ± 6.9 38.4 to 
84.2 

41.9 ± 4.9 7.5 to 
63.9 

<0.001 

Total Lean Mass (kg)  55.5 ± 6.6 36.4 to 
80.3 

39.7 ± 4.7 6.8 to 
60.5 

<0.001 

Total Tissue Fat (%)  30.3 ± 6.4 8.2 to 50.7 39.2 ± 7.3 14 to 58.4 <0.001 

VAT mass (kg)  1.7 ± 1.0 0.01 to 3.2 0.8 ± 0.6 0 to 4.3 <0.001 

VAT volume (kg)  1.8 ± 1.0 0.01 to 6.6 0.8 ± 0.6 0 to 4.5 <0.001 

M
R

 

VAT(litres) 4.9 ± 2.3 0.4 to 14.4 2.6 ± 1.5 0 to 12.1 <0.001 

ASAT (litres)  5.9 ± 2.5 0.7 to 22.3 8.0 ± 3.4 0.8 to 
23.5 

<0.001 

Liver fat PDFF (%) 4.7 ± 4.7 0.7 to 34.0 3.6 ± 4.5 0.5 to 
34.5 

<0.001 

 

 

Given that the sample size age in the free-living population ranged between 

44 years (middle age) and 73 years old (old age), a breakdown of VAT, ASAT 

and liver fat by age and gender was performed (Figure 2.5). Overall, the 

effect of age and gender on VAT in free-living population was significant; with 

males showing higher VAT compared to females in all age groups, except in 

70-73 years where VAT was similar between males and females in the free-

living population (Figure 2.5). Males showed significantly lower VAT in the 

age group 70-73 years compared to younger males in the free-living 

population (p<0.0001) (Figure 2.5). However, the number of subjects in the 

70-79 years group was limited (n = 5). Females also showed significant 

differences in VAT with age; the lowest amount of VAT (2.32 ± 1.41 litres) 
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observed in the youngest females (40-49 years), while the peak of VAT (2.83 

± 1.52 litres) was observed in 60-69 years group (p<0.0001) (Figure 2.5).   

 

 

Figure 2.5 Gender specific visceral adipose tissue (VAT) distribution by age in the free-living 
population. VAT distribution by age in (A) males and (B) females. Data presented as box and whisker 

plots: where error bars are min/max range, upper and lower edges are 25th and 75th percentiles and 
line median. P values are calculated from Kruskal-Wallis test with multiple comparison corrections in 
SPSS (v.23.0). Data obtained from UK Biobank. Graphs were done using Prism GraphPad version 5.0.  

 

Investigating the age groups impact on ASAT and liver fat in free-living 

populations showed no significant differences in ASAT or liver fat with age in 

males (ASAT: p=0.1601, Liver fat: p=0.1595), while the amount of ASAT and 

liver fat was significantly higher with age in females (ASAT: p=0.0002, liver 

fat: p<0.0001) (Figure 2.6). Liver fat showed significantly higher 

accumulation with age in females while it showed the opposite in males in the 

free-living population, but not significant (Figure 2.7).  
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Figure 2.6 Gender specific abdominal subcutaneous adipose tissue (ASAT) distribution by age 
in the free-living population. ASAT distribution by age in (A) males and (B) females. Data presented 

as box and whisker plots: where error bars are min/max range, upper and lower edges are 25th and 
75th percentiles and line median. P values are calculated from Kruskal-Wallis test with multiple 
comparison corrections in SPSS (v.24). Data obtained from UK Biobank. Graphs were done using 
Prism GraphPad Version 5.0. 

 

 

 

 

 

Figure 2.7 Gender specific distribution of liver fat distribution by age in the free-living 
population. Liver fat percentage distribution by age in (A) males and (B) females. Data presented as 

box and whisker plots: where error bars are min/max range, upper and lower edges are 25th and 75th 
percentiles and line median. P values are calculated from Kruskal-Wallis test with multiple comparison 
corrections in SPSS (v.24). Data obtained from UK Biobank. Graphs were done using Prism GraphPad 
version 5.0.   
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2.3.1.3 UK Biobank correlation analysis by gender 

Gender specific correlation analysis between liver fat fraction, VAT and ASAT 

with anthropometric measures and blood pressure in the free-living 

population are shown in Table 2.3. Overall, there were significant gender 

differences between body fat depots and ectopic fat in the free-living 

population. All measures were found to positively correlate with liver fat 

fraction, except age in males from free-living population (r= -0.016, p=ns) 

(Table 2.3). VAT showed a weak association with age in females (r=0.137, 

p<0.001) but not in males (Table 2.3, Figure 2.8). There was no significant 

association in ASAT with age in males or females (Table 2.3) (Figure 2.9). 

The strongest association with liver fat fraction in the free-living population 

was WC in both males (r= 0.510, p< 0.001) and females (r= 0.606, p<0.001). 

WC was also the strongest correlate with VAT in males (r= 0.777, p<0.001) 

and females (r=0.834, p<0.001). For ASAT, WC was the strongest correlate 

in males (r= 0.847) whereas, in females, it was hip circumference (r= 0.880) 

(p<0.001 for all, Table 2.3). 

 

In the free-living population, blood pressure and all anthropometry measures 

were significantly positively correlated with VAT, except height in females 

(Table 2.3). Amongst anthropometry, the strongest association with VAT was 

found with WC in both males (r=0.834, p<0.001) and females (WC r= 0.777, 

p<0.001). Similarly, anthropometric variables and blood pressure positively 

correlated with ASAT, except height in females; the strongest association 

with ASAT was WC in males (r=0.847, p<0.001) and HC in females (HC: r= 

0.888, p<0.001) (Table 2.3). In general, correlations in the free-living 

population were strongest for ASAT, followed by VAT then liver fat fraction. 
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Table 2.3 Gender specific correlations between VAT, ASAT, liver fat and anthropometry, blood pressure in the free-living population. An R-value for non-

parametric spearmen’s test was performed. The strongest correlations for each fat depot are in bold font, n=M: 2,839, F: 3,132 except VAT and ASAT: M: 2,864, F: 
3,157. Data obtained from UK Biobank. Statistics calculated using SPSS 23.0. 

 

 Liver Fat Fraction VAT Abdominal Subcutaneous AT 

 Male Female Male Female Male Female 

 R P value r P value R P value r P value R 
P 

value 
r 

P 
value 

Age (years) -0.016 ns 0.129 0.001 0.080 ns 0.137 0.001 -0.055 ns -0.038 ns 

Weight (kg) 0.480 0.001 0.491 0.001 0.742 0.001 0.742 0.001 0.837 0.001 0.897 0.001 

Height (cm) 0.388 0.001 -0.135 0.001 0.101 0.001 -0.011 ns 0.137 0.001 0.024 ns 

BMI (kg/m2) 0.449 0.001 0.485 0.001 0.755 0.001 0.696 0.001 0.792 0.001 0.839 0.001 

Waist (cm) 0.510 0.001 0.606 0.001 0.777 0.001 0.834 0.001 0.847 0.001 0.861 0.001 

Hip (cm) 0.388 0.001 0.441 0.001 0.604 0.001 0.667 0.001 0.793 0.001 0.880 0.001 

IPAQ -0.156 0.001 -0.122 0.001 -0.180 0.001 -0.187 0.001 -0.181 0.001 -0.193 0.001 

SBP (mmHg) 0.189 0.001 0.239 0.001 0.166 0.001 0.228 0.001 0.108 0.001 0.162 0.001 

DBP (mmHg) 0.209 0.001 0.230 0.001 0.206 0.001 0.250 0.001 0.176 0.001 0.261 0.001 

Total fat mass (%) 0.432 0.001 0.467 0.001 0.670 0.001 0.690 0.001 0.714 0.001 0.804 0.001 

VAT (litres) 0.634 0.001 0.718 0.001 - - - - 0.684 0.001 0.761 0.001 

ASAT (litres) 0.460 0.001 0.548 0.001 0.684 0.001 0.761 0.001 - - - - 

Liver fat (%) - - - - 0.530 0.001 0.605 0.001 0.389 0.001 0.433 0.001 
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There were gender differences in the association between abdominal AT 

distribution, liver fat and age; VAT and liver fat showed a weak correlation 

with age in females (VAT r=0.137, liver fat r=0.129, p<0.001), however in 

males, age did not show any significant correlation with VAT or liver fat 

(Figure 2.8, 2.9).  On the other hand, ASAT did not show any gender 

differences with age in the free-living population (Figure 2.10). 
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Figure 2.8 Gender-specific association between visceral adipose tissue distribution and age in the free-living population in (A) males and (B) females. Non-

parametric Spearmen’s test was performed. Data obtained from UK Biobank cohort. Graphs were done using GraphPad Prism version 5.0. 
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Figure 2.9 Gender-specific association between abdominal subcutaneous adipose tissue distribution and age in the free-living population in (A) males 
and (B) females. Non-parametric spearmen’s test was performed. Data obtained from UK Biobank cohort. Graphs were done using GraphPad Prism version 5.0. 
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Figure 2.10 Gender-specific association between liver fat distribution and age in the free-living population in (A) males and (B) females. Non-parametric 

spearmen’s test was performed. Data obtained from UK Biobank cohort. Graphs were done using GraphPad Prism version 5.0. 
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There were gender specific differences in the association between VAT, 

ASAT and BMI.  Overall, there was a significant association with BMI in VAT, 

ASAT and liver fat in the free-living population from the UK Biobank study 

(Figure 2.11, 2.12, 2.13). In VAT, the association with BMI was stronger in 

males (r=0.775, p<0.001) than females (r=0.696, p<0.001) in the free-living 

population, whereas in ASAT it was the opposite gender association with BMI 

(M: r=0.792, F: r= 0.839, p<0.001) (Figure 2.11, 2.12). Liver fat content 

showed similar gender pattern (moderate correlation) with BMI in the free-

living population (M: r=0.449, F: r=0.485, p<0.001) (Figure 2.13).   From all 

body fat depots, the strongest association with BMI was observed with ASAT 

in both males and females in the free-living population, followed by VAT and 

then liver fat content (Figure 2.11, 2.12, 2.13). 
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Figure 2.11 Gender-specific associations between visceral adipose tissue distribution and BMI in the free-living population in (A) males and (B) females. 

Non-parametric Spearmen’s test was performed. BMI: body mass index. Data obtained from UK Biobank cohort. Graphs were done using GraphPad Prism version 5.0. 

  

r=0.696 

p=< 0.001 

r=0.755 

p=< 0.001 
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Figure 2.12 Gender-specific association between abdominal subcutaneous adipose tissue distribution and BMI in the free-living population. In (A) males 
and (B) females. Non-parametric Spearmen’s test was performed. BMI: body mass index. Data obtained from UK Biobank cohort. Graphs were done using GraphPad 

Prism version 5.0.                                                       .

r=0.839 

p=< 0.001 

r=0.792 

p=< 0.001 
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Figure 2.13 Gender-specific association between liver fat distribution and BMI in the free-living population. In (A) males and (B) females. Non-parametric 

Spearmen’s test was performed. BMI: body mass index. Data obtained from the UK Biobank cohort. Graphs were done using GraphPad Prism version 5.0 

 

r=0.485 

p=< 0.001 

r=0.449 

p=< 0.001 
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Given the gender differences observed by age and BMI in VAT, ASAT, and 

liver fat in the free-living population, box and whisker plots were performed to 

illustrate the distribution of VAT and ASAT and liver fat fraction, by both 

gender and BMI group (Figure 2.14, 2.15, 2.16). The gender specific 

breakdown of VAT, ASAT and liver fat into BMI groups showed significantly 

higher fat depots as BMI groups increase in both genders (p<0.05), except 

liver fat in females in the free-living population (Figure 2.14, 2.15, 2.16). 

Overall, in the free-living population, the amount of VAT was higher in males 

than females, whereas it was the opposite with ASAT in all BMI groups 

(Figure 2.14, 2.15). The amount of liver fat was higher in males than females 

in all BMI groups in the free-living population. Further examination of gender 

differences in liver fat by BMI group revealed a similar amount of liver fat 

content in underweight males and females in the free-living population (<18.5 

kg/m2 median; M=0.91, F=1.01) (Table 2.4) (Figure 2.15).  
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Table 2.4 Gender specific summary statistics of liver fat in the free-living population. Data obtained from UK biobank. Statistics perform on SPSS (v. 23.0).  

 

 Female Male 

BMI group n Min 25th percentile Median 75th percentile Max n Min 
25th 

percentile 
Median 

75th 

percentile 
Max 

<18.5 kg/m2 4 0.52 0.83 1.01 1.29 6.31 36 0.65 0.74 0.91 1.05 2.86 

18.5 < 25 kg/m2 869 0.25 1.00 1.31 1.91 32.7 1389 0 1.08 1.51 2.53 26.2 

25 < 30 kg/m2 
1442 

 
0 1.42 2.22 4.28 31.9 1139 0 1.79 2.89 5.66 33.1 

30 < 35 kg/m2 474 0.51 2.12 3.92 8.11 34.5 422 0 3.08 5.71 10.8 36.2 

35+ kg/m2 111 0.62 3.21 6.22 11.4 31.4 177 0.99 5.97 9.09 14.3 36.2 
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Figure 2.14 Gender specific distribution of visceral adipose tissue by BMI groups in the free-living population in (A) males and (B) females. Data presented 

as box and whisker plots: where error bars are min/max range, upper and lower edges are 25th and 75th percentiles and line median. P values are calculated from 
Kruskal-Wallis test with multiple comparison corrections in SPSS (v.23.0). BMI: body mass index presented in kg/m2. Data obtained from UK biobank. Graphs were done 
using GraphPad Prism version 5.0 
  



93 
 

 

 
 
 
 
Figure 2.15 Gender specific distribution of abdominal adipose tissue distribution by BMI groups in the free-living population. In (A) males and (B) females. 

Data presented as box and whisker plots: where error bars are min/max range, upper and lower edges are 25th and 75th percentiles and line median. P values are 
calculated from Kruskal-Wallis test with multiple comparison corrections in SPSS (v.23.0). BMI: body mass index presented in kg/m2. Data obtained from UK biobank. 
Graphs were done using GraphPad Prism version 5.0 
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Figure 2.16 Gender specific distribution of liver fat by BMI groups in the free-living population in (A) males and (B) females. Data presented as mean and 
standard deviations. P values are calculated from Kruskal-Wallis test with multiple comparison corrections in SPSS (v.23.0). BMI: body mass index presented in kg/m2. 
Data obtained from UK biobank. Graphs were done using GraphPad Prism version 5.0.  
  

P =0.0438 
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2.3.1.4  Correlations between adiposity, liver fat fraction 

and physical activity in the UK Biobank 

In order to investigate the impact of day-to-day events on phenotypes of body 

fat depots in the free-living population, a gender-specific correlation analyses 

between VAT, ASAT and liver fat content in the free-living population was 

performed. The gender specific correlation between abdominal body fat 

compartments (VAT, ASAT, and liver fat fraction) and measures of day to day 

events; daily physical activity and inactivity questionnaire are shown in males 

in (Table 2.5) and females in (Table 2.6). Overall, all types of day to day 

events that include movement showed a negative association with abdominal 

AT and ectopic fat in the liver in the free-living population, with interesting 

variations in the type of movement, and all day to day events that include no 

body movements showed a positive association with abdominal AT and 

ectopic fat.  In males, amongst physical activity measures, usual walking 

pace provided the strongest correlation with liver fat fraction (r = -0.263), VAT 

(r= -0.341) and ASAT (r= -0.355, p<0.001 for all, Table 2.5). In females, 

usual walking pace provided the strongest correlation with both VAT (r= -

0.228) and ASAT (r= -0.230) (p<0.001 for both, Table 2.6). Days per week 

performing vigorous physical activity (>10 min) provided the strongest 

correlation with liver fat fraction in females (r= -0.181, p<0.001, Table 2.6). 

Amongst physical inactivity measures, time spent watching television 

provided the strongest correlation in both genders for all depots; VAT ((r 

values) M: 0.243, F: 0.201), ASAT (M: 0.198, F: 0.161) and liver fat fraction 

(M: 0.209, F: 0.134) (p<0.001 for all, Table 2.5 and Table 2.6).  
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Table 2.5 Correlation between abdominal body fat compartments (Liver fat fraction, VAT and ASAT) and measures of daily physical activity and inactivity 

in the free-living population males from UK Biobank. R values for the correlations between abdominal adiposity and liver fat outcomes with individual physical 

activity and inactivity outcomes. The strongest correlations are marked in bold font. AT: Adipose tissue; Significant results are highlighted by shading and in bold, 

with the strongest correlation highlighted in orange. n=2,839 except VAT and ASAT=2,864. Data obtained from UK Biobank. Statistics using SPSS 23.0.  

  

 
Correlations of physical activity and 

inactivity in Males 
Liver Fat Fraction  Visceral AT (MRI) Abdominal 

Subcutaneous AT 
 Correlation P value Correlation P value Correlation P value 

Physical Activity Measures 

Days/weeks walked 10+ minutes -0.105  <0.001 -0.159  <0.001 -0.172  <0.001 

Duration of Walks -0.069  <0.001 -0.105  <0.001 -0.112  <0.001 

Days/wk moderate physical activity 10+ min -0.077  <0.001 -0.135  <0.001 -0.172  <0.001 

Duration of moderate activity min -0.028 0.145 -0.079  <0.001 -0.109  <0.001 

Days/weeks vigorous physical activity 10+ min -0.154  <0.001 -0.210  <0.001 -0.191  <0.001 

Duration of vigorous activity -0.058  0.005 -0.096  <0.001 -0.104  <0.001 

Usual walking pace -0.263  <0.001 -0.341  <0.001 -0.355  <0.001 

Freq of stair climbing in last 4 weeks -0.137  <0.001 -0.183  <0.001 -0.164  <0.001 

Freq of walking for pleasure in last 4 weeks -0.041  0.031 -0.065  0.001 -0.057  0.003 

Duration of walking for pleasure -0.089  <0.001 -0.102  <0.001 -0.110  <0.001 

Freq of strenuous sports in last 4 weeks -0.062 0.171 -0.113  0.012 -0.088  0.049 

Duration of strenuous sports 0.015 0.743 0.014 0.757 0.039 0.39 

Freq of light DIY in last 4 weeks -0.029 0.163 -0.021 0.293 -0.014 0.478 

Duration of light DIY -0.044  0.033 -0.060  0.003 -0.056  0.006 

Freq of heavy DIY in last 4 weeks 0.015 0.534 -0.007 0.774 -0.004 0.864 

Duration of heavy DIY -0.044 0.072 -0.049  0.047 -0.007 0.763 

Freq of other exercises in last 4 weeks -0.114  <0.001 -0.162  <0.001 -0.149  <0.001 

Duration of other exercises -0.053  0.013 -0.070  0.001 -0.100  <0.001 

Types of physical activity in past 4 weeks -0.064  <0.001 -0.066  <0.001 -0.043  0.017 

Job involves heavy lifting 0.021 0.334 0.007 0.75 0.009 0.668 

Time spent doing vigorous physical activity -0.050  0.034 -0.069  0.003 -0.080  0.001 

Time spent doing moderate physical activity -0.069  0.004 -0.091  <0.001 -0.119  <0.001 

Time spent doing light physical activity -0.021 0.373 -0.074  0.002 -0.072  0.002 

Physical Inactivity Measures 

Time spent watching television 0.209  <0.001 0.243  <0.001 0.198  <0.001 

Time spent using computer 0.028 0.119 0.045  0.012 0.069  <0.001 

Time spent driving -0.050  0.034 -0.069  0.003 -0.080  0.001 
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Table 2.6 Pearson correlation between abdominal body fat compartments in UKBB (Liver fat fraction, VAT and ASAT) and measures of daily physical activity and inactivity 

in the free-living population females from UK Biobank. R values for the correlations between abdominal adiposity and liver fat outcomes with individual physical activity and inactivity 

outcomes. AT: Adipose tissue; Significant results are highlighted by shading and in bold, with the strongest correlation highlighted in orange. The strongest correlations for each fat depot 

are in bold font, n= 3132 except VAT and ASAT=3157. Data obtained from UK Biobank. Statistics using SPSS 23.0. 

Correlations of physical activity and inactivity in Females  
Liver Fat Fraction  Visceral AT (MRI) Abdominal Subcutaneous AT 

Correlation P value Correlation P value Correlation P value 

Physical Activity 

Measures 

Days/weeks walked 10+ minutes -0.062 <0.001 -0.069 <0.001 -0.084** <0.001 

Duration of Walks -0.065 <0.001 -0.092 <0.001 -0.086 <0.001 

Days/wk moderate physical activity 10+ min -0.121 <0.001 -0.117 <0.001 -0.158 <0.001 

Duration of moderate activity min -0.037 0.06 -0.036 0.068 -0.048* 0.013 

Days/weeks vigorous physical activity 10+ min -0.181 <0.001 -0.210 <0.001 -0.183 <0.001 

Duration of vigorous activity -0.083 <0.001 -0.085 <0.001 -0.076 <0.001 

Usual walking pace -0.134 <0.001 -0.228 <0.001 -0.230 <0.001 

Freq of stair climbing in last 4 weeks -0.080 <0.001 -0.111 <0.001 -0.117 <0.001 

Freq of walking for pleasure in last 4 weeks -0.018 0.376 -0.014 0.476 -0.042* 0.036 

Duration of walking for pleasure -0.049* 0.014 -0.084 <0.001 -0.102 <0.001 

Freq of strenuous sports in last 4 weeks -0.059 0.115 -0.094* 0.012 -0.084* 0.026 

Duration of strenuous sports 0.023 0.543 0.03 0.429 -0.001 0.976 

Freq of light DIY in last 4 weeks -0.018 0.409 -0.033 0.121 -0.048* 0.024 

Duration of light DIY -0.003 0.906 -0.03 0.156 -0.03 0.163 

Freq of heavy DIY in last 4 weeks -0.018 0.414 -0.03 0.157 -0.025 0.25 

Duration of heavy DIY -0.002 0.942 0.005 0.81 0.03 0.161 

Freq of other exercises in last 4 weeks -0.121** <0.001 -0.097** <0.001 -0.111** <0.001 

Duration of other exercises -0.035 0.123 -0.039 0.088 -0.033 0.153 

Types of physical activity in past 4 weeks 0.019 0.325 0.017 0.352 0.025 0.182 

Job involves heavy lifting -0.002 0.937 0.029 0.198 0.019 0.407 

Time spent doing vigorous physical activity -0.064* 0.012 -0.058* 0.022 -0.087 0.001 

Time spent doing moderate physical activity -0.080 0.002 -0.041 0.101 -0.043 0.088 

Time spent doing light physical activity -0.022 0.376 -0.023 0.356 -0.032 0.203 

Physical Inactivity 

Measures 

Time spent watching television 0.134 <0.001 0.201 <0.001 0.161 <0.001 

Time spent using computer 0.056 0.003 0.053 0.005 0.053 0.005 

Time spent driving -0.062 <0.001 -0.069 <0.001 -0.084 <0.001 
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2.3.2 Pre-diabetic population (the Diabetes Research on Patient 

Stratification) 

2.3.2.1  DIRECT Descriptive Statistics  

The characteristics of the 1,558 (1,125 males and 433 females) individuals in 

the pre-diabetic population from the DIRECT study are shown in Table 2.7. 

Participants’ average age in the pre-diabetic population was 61.0 ± 7.2 years, 

with a BMI of 28.8 ± 4.5 kg/m2 (Table 2.7). 

 

Table 2.7 Baseline characteristics of pre-diabetic participants from the DIRECT cohort. 

Outcomes data from DIRECT participants. ENMO: Euclidean Norm minus One; MRI: Magnetic resonance imaging; VAT: visceral 

adipose tissue; ASAT: Abdominal Subcutaneous Adipose Tissue; Trunk AT: Trunk Adipose Tissue; DXA: dual energy X-ray absorptiometry. Data 

presented as mean ± standard deviation calculated using SPSS 23.0. 

 
 

N Mean ± SD Range 

A
n

th
ro

p
o

m
et

ry
 

Age( years) 1558 61.0 ± 7.2 30.0 - 75.0 

Weight (kg) 1558 86.4 ± 14.4 43.0 - 142.5 

Height (cm) 1558 173.2 ± 8.7 145.0 - 204.0 

BMI (kg/m2) 1558 28.8 ± 4.5 16.9 – 54.3 

Waist Circumference (cm) 1552 100.9 ± 11.7 65.0 – 145 

Hip Circumference (cm) 1552 103.7 ± 8.8 85.0 – 152 

Blood 
pressure 

Diastolic blood pressure (mmHg) 1558 95.8 ± 12.2 51.3 – 135.3 

Systolic blood pressure (mmHg) 1558 129.5 ± 18.1 62.3 – 186.7 

M
R

I 

Liver fat (%) 1551 6.3 ± 5.9 0.3 - 37.6 

Pancreas fat (%) 1454 12.7 ± 8.6 0.2 – 39.3 

VAT (litres) 1408 5.5 ± 2.4 0.2 - 14.5 

ASAT (litres) 1405 6.6 ± 3.2 0.9 - 21.9 

VAT/ASAT  1405 1 ± 0.46 0.1 - 4.2 

DXA Body fat % 1034 28.2 ± 7.8 3.9 – 49.9 

Physical 
activity 

ENMO 1215 22.7 ± 7.2 0.6 – 54.6 

 

 

Data were available and complete for all variables for 1,405 out of 1,558 pre-

diabetic subjects due either missing data or missing variables, except for 

body fat (n=1034), and ENMO (n=1215) (Figure 2.17). 
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Figure 2.17 Flow chart demonstrating the MR images available for body fat depots in the pre-diabetic 

population.  

 

 

Gender specific differences in study outcomes of the pre-diabetic population 

are shown in Table 2.8. Significant differences between pre-diabetic male 

and females were found for the majority of measures, except age (p=0.478) 

(Table 2.8). Pre-diabetic females had a significantly higher BMI than pre-

diabetic male (F: BMI: 29.6 ± 5.5 kg/m2, M: 28.4 ± 3.9 kg/m2, p<0.001) (Table 

2.8). 

 

Pre-diabetic males were taller (p<0.001), and weighed more (p<0.001), with 

wider WC (p<0.001) but smaller hip circumference (p<0.001) compared to 

pre-diabetic females. Pre-diabetic males were more hypertensive than pre-

diabetic females (p<0.001 for DBP and SBP) (Table 2.8). Furthermore, pre-

diabetic males had significantly higher VAT than pre-diabetic females, 

whereas pre-diabetic females had significantly higher ASAT content (p<0.001 

for all) (Table 2.8). The ratio of VAT to ASAT observed to be significantly 

higher in pre-diabetic males compared to pre-diabetic females (p<0.001) 

(Table 2.8). There were significant gender differences in ectopic fat of pre-

meta data supplied 

n= 1552

MR liver fat available 

n= 1551

MR Pancreas fat available 

n=1454

MR visceral fat available 

n= 1408

MR ASAT available 

n= 1405
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diabetic population.  Pre-diabetic males had significantly less liver fat than 

pre-diabetic females (p<0.001) but had significantly more pancreas fat 

(p<0.001) (Table 2.8). The assessment of day to day events in the pre-

diabetic population, using an objective physical activity assessment tool 

(wristband), showed to be effective in the pre-diabetic population. Pre-

diabetic males showed significantly higher physical activity status than pre-

diabetic female (p=0.013). (Table 2.8).  

Table 2.8 Gender specific characteristics of pre-diabetic participants from the DIRECT cohort. 

Outcomes data from DIRECT participants. MRI: Magnetic resonance imaging; VAT: visceral adipose tissue; ASAT: Abdominal 

Subcutaneous Adipose Tissue; SBP: Systolic Blood Pressure: DBP: Diastolic Blood Pressure: DXA: dual energy X-ray absorptiometry, ENMO: Euclidean 

Norm minus One. Data presented as mean ± standard deviation. Gender differences were assessed using t-test and performed using SPSS 23.0. 

  Male (N=1,045) 
Female 
(N=362) 

p 
value 

A
n

th
ro

p
o

m
et

ry
 

 

Age (years) 60.8 ± 6.9 61.2 ± 8.0 0.478 

Weight (kg) 88.9 ± 13.5 79.9 ± 14.7 <0.001 

Height (cm) 176.7 ± 6.6 164.0 ± 6.6 <0.001 

BMI (kg/m2) 28.4 ± 3.9 29.6 ± 5.5 <0.001 

Waist Circumference (cm) 101.9 ± 10.6 98.1 ± 13.7 <0.001 

Hip Circumference (cm) 102.2 ± 7.2 107.8 ± 11.0 <0.001 

Waist-to-Hip Ratio (WHR) 0.997 ± 0.06 1.0 ± 0.1 <0.001 

Blood pressure 
Systolic blood pressure (mmHg) 130.4 ± 16.1 127.6 ± 21.6 0.006 

Diastolic blood pressure (mmHg) 97.1 ± 10.7 92.7 ± 21.6 <0.001 

 

M
R

I 

Liver fat (%) 5.9 ± 5.4 7.3 ± 7.0 <0.001 

Pancreas fat (%) 13.9 ± 8.5 9.3 ± 8.0 <0.001 

VAT (litres) 6.0 ± 2.3 4.2 ± 1.9 <0.001 

ASAT (litres) 5.8 ± 2.4 9.3 ± 3.5 <0.001 

VAT/ASAT 1.1 ± 0.4 0.4 ± 0.1 <0.001 

DXA Body fat % 26.0 ± 6.5 36.8 ± 5.8 <0.001 

Physical activity ENMO 23.0 ± 7.3 21.9 ± 7.1 0.013 

 

 
 

Participant characteristics and summary abdominal body composition 

compartments by gender and BMI group (lean versus overweight/obese) are 

shown in Table 2.9. Despite that, liver fat content was significantly higher in 

pre-diabetic females than pre-diabetic males, after dividing the subjects into 

lean and overweight/obese group, the amount of liver fat content was similar 

between lean pre-diabetic male and female (M: 3.2 ± 3.5, F: 3.6 ± 4.0) 

showing that the gender differences in pre-diabetic subjects in liver fat might 

be mediated by weight (Table 2.9). The gender differences in VAT and ASAT 

in the whole cohort showed the same pattern after dividing the groups into 
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lean and overweight/obese subjects; VAT was higher in pre-diabetic males 

compared to pre-diabetic females (among all BMI groups), and ASAT was 

higher in pre-diabetic females than pre-diabetic males (among all BMI 

groups) (p<0.001 for all) (Table 2.9).        . 
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Table 2.9 Gender specific characteristics in lean versus overweight pre-diabetic participants. Outcomes data from DIRECT participants.  Data presented as 

mean ± standard deviation. Data obtained from DIRECT study in males and females split by (lean group represents BMI ≤ 25 kgm-2; the overweight/obese group 

represents individuals with a BMI above 25 kgm-2). MRI: Magnetic resonance imaging; VAT: visceral adipose tissue; ASAT: Abdominal Subcutaneous Adipose Tissue; SBP: Systolic Blood Pressure: DBP: Diastolic Blood 

Pressure, DXA: Dual energy X-ray absorptiometry, ENMO: Euclidean Norm minus One. Data presented as mean ± standard deviation. T-test was performed for gender differences calculated using SPSS 23.0. 

  Male  Female  

A
n

th
ro

p
o

m
et

ry
 

 

 < 25 kg/m2 >25 kg/m2 p value < 25 kg/m2 >25 kg/m2 p value 

Age (years) 61.4 ± 6.8 60.7 ± 6.9 0.22 62.8 ± 7.0 60.7 ± 9.4 0.61 

Weight (kg) 73.8 ± 6.5 92.0 ± 12.3 <0.001 62.4 ± 7.0 80.1 ± 17.3 <0.001 

Height (cm) 177 ± 6.1 176 ± 6.71 0.22 164 ± 5.8 163 ± 14.9 <0.001 

BMI (kg/m2) 23.4 ± 1.2 29.4 ± 3.4 <0.001 23.1 ± 1.8 29.6 ± 6.0 <0.001 

Waist Circumference (cm) 90.0 ± 6.3 104 ± 9.5 <0.001 82.3 ± 8.6 97.9 ± 16.3 <0.001 

Hip Circumference (cm) 94.9 ± 4.0 103 ± 6.7 <0.001 95.2 ± 5.0 107 ± 14.3 <0.001 

Waist-to-Hip Ratio (WHR) 0.9 ± 0.1 1.0 ± 0.1 <0.001 0.9 ± 0.1 0.9 ± 0.1 <0.001 

Blood pressure 

 
 

SBP (mmHg) 127 ± 16.0 131 ± 15.9 0.001 123 ± 26.1 126 ± 24.5 0.004 

DBP (mmHg) 94.4 ± 10.3 97.6 ± 10.6 <0.001 88.0 ± 15.8 92.0 ± 16.5 <0.001 

M
R

I 

Liver fat MR (%) 3.2 ± 3.5 6.5 ± 5.6 <0.001 3.6 ± 4 7.4 ± 7.1 <0.001 

Pancreas fat MR (%) 11.4 ± 7.9 14.3 ± 8.6 <0.001 8.2 ± 7.4 9.5 ± 8.2 <0.001 

Visceral adipose tissue (litres) 4.1 ± 1.8 6.4 ± 2.2 <0.001 2.8 ± 1.4 4.2 ± 2.0 <0.001 

ASAT (litres) 3.6 ± 1.4 6.3 ± 2.4 <0.001 5.6 ± 2.0 9.3 ± 3.7 <0.001 

Trunk adipose tissue (litres) 7.7 ± 2.8 12.6 ± 3.8 <0.001 8.4 ± 2.8 13.5 ± 4.9 <0.001 

Physical activity ENMO 24.9 ± 8.4 22.6 ± 6.9 <0.001 23.8 ± 7.4 21.6 ± 7.6 0.014 

DXA Body Fat (%) 21.8 ± 6.2 27.0 ± 6.1 <0.001 30.9 ± 5.2 36.2 ± 7.3 <0.001 
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Gender specific breakdown of VAT, ASAT, liver and pancreatic fat by age 

was performed in the pre-diabetic population (Figure 2.18, 2.19, 2.20. 2.21). 

Overall, the effect of age and gender on VAT was minimal in the pre-diabetic 

population. The impact of age on the amount of VAT was less in pre-diabetic 

females compared to pre-diabetic males, but not significantly (M: p=0.412, F: 

p= 0.209) (Figure 2.18). The only major gender difference in VAT was 

observed in 30-39 years; with pre-diabetic females showed significantly more 

VAT than pre-diabetic males (VAT differences = 1.9 litres; median: M; 2.2, F; 

4.0, p<0.001) (Figure 2.18) interestingly, the correlation between VAT and 

age was not significant in either pre-diabetic males or females (M: r=0.015, 

F: r= 0.040, p=NS).  

 

Figure 2.18 Gender specific distribution of visceral adipose tissue (VAT) by age groups in the 
pre-diabetic population. In (A,) males and (B) females. Data presented as box and whisker plots: 

where error bars are min/max range, upper and lower edges are 25th and 75th percentiles and line 
median. P values are calculated from Kruskal-Wallis test with multiple comparison corrections in SPSS 
(v.23). Data obtained from DIRECT IMI. Graphs were performed using GraphPad Prism version 5.0 

The gender-specific breakdown of ASAT by age showed a consistent pattern 

with higher ASAT in pre-diabetic females compared to pre-diabetic males 

among all age groups (M: p=0.0002, F: p<0.0001), (Figure 2.19). 
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Figure 2.19 Gender specific distribution of abdominal subcutaneous adipose tissue (ASAT) by 
age groups in the pre-diabetic population in (A,) males and (B) females. Data presented as box and 

whisker plots: where error bars are min/max range, upper and lower edges are 25th and 75th percentiles 
and line median. P values are calculated from Kruskal-Wallis test with multiple comparison corrections 
in SPSS (v.23). Data obtained from DIRECT IMI. Graphs were performed using GraphPad Prism 
version 5.0 

Among pre-diabetic females, the highest ASAT was observed in 40-49 years 

compared to other pre-diabetic females, but compared to pre-diabetic males, 

the youngest pre-diabetic females had the highest ASAT content (ASAT M= 

12.0, F=4.1 litre) (Figure 2.19). The association of ASAT and age was 

significantly negative and stronger in pre-diabetic females than pre-diabetic 

males (M: r= -0.095, F: r=-0.252, p>0.001) (Figure 2.19). 

The gender specific breakdown of ectopic fat by age showed a distinct pattern 

in the youngest pre-diabetic males and females.  Pre-diabetic females in the 

30-39 age group had almost 3-fold liver fat content than pre-diabetic males 

(median; M: 3.38% F: 9.68%, p<0.001) (Figure 2.20). 
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Figure 2.20 Gender specific distribution of liver fat by age group groups in the pre-diabetic 
population. In (A,) males and (B) females. Data presented as box and whisker plots: where error bars 
are min/max range, upper and lower edges are 25th and 75th percentiles and line median. P values are 
calculated from Kruskal-Wallis test with multiple comparison corrections in SPSS (v.23). Data obtained 
from DIRECT IMI. Graphs were performed using GraphPad Prism version 5.0 

 

On the contrary, pancreatic fat showed an opposite pattern; with pre-diabetic 

males had significantly more pancreas fat than pre-diabetic females in all age 

groups, except for 30-39 years (Figure 2.21).  

 

Figure 2.21 Gender specific distribution of pancreas fat content by age group in pre-diabetic 
cohort. In (A,) males and (B) females. Data presented as box and whisker plots: where error bars are 
min/max range, upper and lower edges are 25th and 75th percentiles and line median. P values are 
calculated from Kruskal-Wallis test with multiple comparison corrections in SPSS (v.23). Data obtained 
from DIRECT IMI. Graphs were performed using GraphPad Prism version 5.0 
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2.3.1.2 DIRECT Correlation analysis 

Gender specific correlations between anthropometry, blood pressure, VAT 

and ASAT, liver and pancreas fat in the pre-diabetic population were done 

shown in Table 2.9. In pre-diabetic males and females, WC provided the 

strongest correlate with VAT (M r= 0.607, F r= 0.445, p<0.001) (Table 2.10). 

Looking at ASAT, BMI was the strongest correlate in pre-diabetic males (r= 

0.774, p<0.001), while hip circumference was the strongest correlate in pre-

diabetic females (r= 0.832, p<0.001) (Table 2.10). The correlation of ectopic 

fat in the pre-diabetic population showed that liver fat most strongly correlates 

with BMI in pre-diabetic males (r=0.41, p<0.001), and with WC in pre-diabetic 

females (r= 0.438, p<0.001) (Table 2.10). The strongest correlation with 

pancreatic fat was observed with VAT in males (r=0.376, p<0.001) and 

females (r= 0.208 p<0.001) (Table 2.10).  
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Table 2.10 Gender specific correlations between VAT, ASAT and liver fat fraction, anthropometry, blood pressure, physical activity in the pre-diabetic 
population. R values for correlations. The significant correlations for each fat depot are highlighted as **= p<0.001. Correlation done in SPSS (v.23.0). Data obtained 

from DIRECT IMI. BMI; body mass index: WHR; waist-to-hip ration: ENMO; Euclidean Norm minus One: SBP; systolic blood pressure: DSP; diastolic blood pressure: VAT; visceral adipose tissue: ASAT; abdominal subcutaneous adipose 

tissue: DXA: dual energy X-ray absorptiometry: MR; magnetic resonance. ** indicates correlation is significant at the 0.01 and * indicates correlation is significant at the 0.05. 

 

  VAT ASAT Liver Fat Pancreatic fat  

  Male Female Male Female Male Female Male  Female  

A
n

th
ro

p
o

m
e

tr
y 

Age 0.015 0.040 -0.095** -0.252** -0.083** -0.151** 0.09** 0.13** 

Weight 0.514** 0.386** 0.758** 0.808** 0.337** 0.393** 0.093** 0.125* 

Height 0.018 -0.078 0.126** 0.034 -0.059* -0.051 -0.051 -0.061 

BMI 0.567** 0.437** 0.774** 0.828** 0.412** 0.407** 0.133** 0.157** 

Waist 0.607** 0.445** 0.757** 0.779** 0.379** 0.438** 0.149** 0.028 

Hip 0.437** 0.310** 0.755** 0.832** 0.292** 0.350** 0.038 0.071 

WHR 0.530** 0.382** 0.430** 0.305** 0.301** 0.307** 0.128** 0.197** 

Physical Activity ENMO -0.269** -0.262** -0.257** -0.181** -0.138** -0.204** -.114** -0.051 

Blood pressure  SBP 0.170** 0.082 0.038 0.069 0.092** 0.000 0.018 -0.084 

DBP 0.219** 0.054 0.051 0.125* 0.103** 0.008 0.061* -0.116* 

DXA Body fat (%) 0.392** 0.281** 0.502** 0.710** 0.222** 0.317** -0.006 -0.307** 

MR 

VAT   0.498** 0.377** 0.395** 0.419** 0.376** 0.208** 

ASAT 0.498** 0.377**   0.297** 0.405** 0.102** 0.084 

Liver fat 0.395** 0.419** 0.297** 0.405**   0.037 0.142** 

Pancreatic Fat 0.376** 0.208** 0.102** 0.084 0.037 0.142**   
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The association between abdominal adiposity and age in the pre-diabetic 

population revealed a consistent gender pattern in VAT (Figure 2.22) ASAT 

(Figure 2.23) and liver fat (Figure 2.24), with negative correlations between 

age and ASAT and liver fat (Figure 2.23, 2.24) but not VAT in pre-diabetic 

males and females. The correlations between ASAT, liver fat, pancreatic fat 

and age were stronger in pre-diabetic females than pre-diabetic males 

(ASAT: M: r=-0.095, F: r=- 0.252, p< 0.001, Liver fat: M: -0.083, F: r= -0.151, 

p< 0.001, Pancreatic fat: M: r=0.09, p<0.002, F: r=0.13, p<0.008) (Table 2.9) 

(Figure 2.23, 2.24, 2.25).   
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Figure 2.22 Gender specific distribution of visceral adipose tissue content by age in the pre-diabetic population. In (A) males and (B) females. Non-

parametric Spearmen’s test was performed. Data obtained from DIRECT cohort. Graphs were done using GraphPad Prism version 5.0 
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Figure 2.23 Gender specific distribution of abdominal subcutaneous adipose tissue by age in the pre-diabetic population. In (A) males and (B) females. 

Non-parametric Spearmen’s test was performed. Data obtained from DIRECT cohort. Graphs were done using GraphPad Prism version 5.0 
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Figure 2.24 Gender specific distribution of liver fat fraction by age in the pre-diabetic population. In (A) males and (B) females. Non-parametric Spearmen’s 

test was performed. Data obtained from DIRECT cohort. Graphs were done using GraphPad Prism version 5.0 
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Figure 2.25 Gender specific distribution of pancreas fat fraction distribution by age in the pre-diabetic population. In (A) males and (B) females. Non-

parametric Spearmen’s test was performed. Data obtained from DIRECT cohort. Graphs were done using GraphPad Prism version 5.0 

r=0.13 
p=0.008 
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There were gender specific differences in the association between VAT 

(Figure 2.26), ASAT (Figure 2.27), ectopic fat (Figure 2.28, 2.29) and VAT, 

with pre-diabetic males showing stronger association with BMI (r=0.567, 

p<0.001) than pre-diabetic females (r=0.437, p<0.001), whereas in ASAT, 

pre-diabetic females had a stronger association with BMI (r=0.828, p<0.001) 

than pre-diabetic males (r=0.774, p<0.001) (Figure 2.26, 2.27).  

 

The association between ectopic fat and BMI showed gender differences in 

the pre-diabetic population. In terms of liver fat, there was a similar moderate 

association with BMI in pre-diabetic males (r=0.412, p<0.001) and females 

(r=0.407, p<0.001) (Figure 2.28). However, there was no significant 

association observed in pancreatic fat and BMI in pre-diabetic males, while 

pre-diabetic females showed a weak significant association with BMI 

(r=0.130, p<0.001) (Figure 2.29) 
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Figure 2.26 Gender specific distribution of visceral adipose tissue content with BMI in the pre-diabetic population. In (A) males and (B) females. Non-

parametric Spearmen’s test was performed. BMI: body mass index. Data obtained from DIRECT cohort. Graphs were done using GraphPad Prism version 5.0 

 

 

 

r=0.43 
p<0.001 
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Figure 2.27 Gender specific distribution of abdominal subcutaneous adipose tissue by BMI in the pre-diabetic population in (A) males and (B) females. 

Non-parametric Spearmen’s test was performed. BMI: body mass index. Data obtained from DIRECT cohort. Graphs were done using GraphPad Prism version 5.0 

  

r=0.82 
p=< 0.001 
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Figure 2.28 Gender specific distribution of liver fat by BMI in the pre-diabetic population. In (A) males and (B) females. Non-parametric Spearmen’s test was 

performed. BMI: body mass index. Data obtained from DIRECT cohort. Graphs were done using GraphPad Prism version 5.0 
.  

  

r=0.40 
p=< 0.001 
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Figure 2.29 Gender specific distribution of pancreas fat by BMI in the pre-diabetic population in (A) males and (B) females. Non-parametric Spearmen’s test 

was performed. BMI: body mass index. Data obtained from DIRECT cohort. Graphs were done using GraphPad Prism version 5.0 

r=0.13 
p=0.008 
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2.3.3 Comparison of total, regional and liver fat between free-living and 

pre-diabetic population 

The comparable age between the free-living and pre-diabetic population 

(61.7 ± 7.1 years in the free-living population versus 61.0 ± 7.2 years in the 

pre-diabetic population), enables a homogenous comparison in body 

composition, fat distribution and ectopic fat between free-living and pre-

diabetic populations. With age as an exception, body composition and blood 

pressure in free-living versus pre-diabetic populations showed significant 

distinct patterns. Overall, pre-diabetic subjects were taller (173.2 ± 8.7 cm in 

pre-diabetic versus 169.5 ± 9.2 cm in the free-living populations, p< 0.0001), 

heavier (28.8 ± 4.50 kg/m2 in pre-diabetic versus 26.7  ± 4.40 kg/m2 in the 

free-living populations, p<0.0001) with widest WHR (0.95 ± 0.07 in pre-

diabetic versus 0.86 ± 1.37 in the free-living population, p=0.0009). 

Furthermore, the pre-diabetic population were more pre-hypertensive 

whereas the free-living population were borderline pre-hypertension (DBP 

95.8 ± 12.2, SBP 129.5 ± 18.1 mmHg in pre-diabetic versus DBP 78.7 ± 10.0, 

SBP 133.9 ± 17.7 mmHg in the free-living population, p<0.0001 for both) 

(Table 2.11). 
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Table 2.11 Comparison in baseline characteristics and blood pressure between free-living and pre-

diabetic populations. Data presented as mean ± Standard deviations. Significance was calculated from 
nonparametric Mann-Whitney with multiple corrections in SPSS (v.23). Free living population data 
obtained from UK biobank and pre-diabetic data obtained from DIRECT IMI. VAT; visceral adipose tissue, ASAT; 

abdominal subcutaneous adipose tissue.  

  Male U-test Female U-test 

  Free-living Pre-diabetic p value Free-living Pre-diabetic p value 

A
n

th
ro

p
o

m
e

tr
y 

Age (years) 62.4 ± 7.1 60.8 ± 6.9 <0.001 61.1 ± 7.1 61.2 ± 8.0 0.478 

Waist (cm) 93.4 ± 10.0 101.9 ± 10.6 <0.001 81.8 ± 11.2 98.1 ± 13.7 <0.001 

Hip (cm) 101.4 ± 8.4 102.2 ± 7.2 0.028 101.3 ± 8.7 107.8 ± 11.0 <0.001 

Height (cm) 176.4 ± 6.5 176.7 ± 6.6 0.026 163.3 ± 6.3 164.0 ± 6.6 <0.001 

Weight (kg) 83.6 ± 13.4 88.9 ± 13.5 <0.001 68.7 ± 12.9 79.9 ± 14.7 <0.001 

BMI (kg\m2) 27.1 ± 3.9 28.4 ± 3.9 <0.001 26.2 ± 4.7 29.6 ± 5.5 <0.001 

Blood 
pressur

e 

DBP (mmHg) 80.3 ± 9.7 97.1 ± 10.7 <0.001 77.2 ± 11.1 92.7 ± 21.6 <0.001 

SBP (mmHg) 137.5 ± 16.4 130.4 ± 16.1 <0.001 130.7 ± 18.1 127.6 ± 21.6 0.006 

DXA 
Total Tissue Fat 

(%) 
30.3 ± 6.4 26.0 ± 6.45 <0.001 39.2 ± 7.3 36.8 ± 5.80 <0.001 

MR 

VAT(litres) 4.9 ± 2.3 6.0 ± 2.3 <0.001 2.6 ± 1.5 4.2 ± 1.9 <0.001 

ASAT (litres) 5.9 ± 2.5 5.8 ± 2.4 <0.045 8.0 ± 3.4 9.3 ± 3.5 <0.001 

Liver fat (%) 4.7 ± 4.7 5.9 ± 5.4 <0.001 3.6 ± 4.5 7.3 ± 7.0 <0.001 

VAT/ASAT 0.9 ± 0.3 
1.1  ±  0.4 

<0.001 
0.3 ± 0.1 0.5 ± 0.2 

<0.001 

  

 

In term of body composition in free-living versus pre-diabetic populations, 

percentage total body fat, measured via DXA scan, revealed unexpectedly 

significant higher adiposity in the free-living population (UK Biobank) males 

and females compared to their pre-diabetic counterparts (DIRECT) (males: 

p<0.0001, females: p<0.0001) (Figure 2.30).  
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2.30 Gender specific phenotyping of total body fat percentage between free-living and pre-
diabetic population in (A) males and (B) females. Data presented as box and whisker plots: where 
error bars are min/max range, upper and lower edges are 25th and 75th percentiles. P values are 
calculated from nonparametric Mann-Whitney in SPSS (v.23). Free-living population data obtained 
from UK Biobank and pre-diabetic data obtained from DIRECT. Graphs were performed using 
GraphPad Prism version 5.0 
 

The opposite pattern was observed in regional body fat distribution, with 

males and females from the former population revealing significantly less 

VAT (total mean difference= -1.35 litre in VAT, 7.6%), more ASAT (total mean 

difference = 0.05 litre in ASAT, 0.2%) and less liver fat (total mean difference 

= -2.45 % in liver fat, 11.4%) compared to their pre-diabetic counterparts 

(Figure 2.31, 2.32, 2.33 and Appendix 4 for Detailed Gender specific 

phenotyping of VAT, ASAT and liver fat between free-living and pre-diabetic 

population). The findings of higher total fat but lower VAT, ASAT and liver fat 

in the free-living population compared to the pre-diabetic population is 

intriguing. Clearly, the differences in subcutaneous fat, which may make up 

the differences in overall adiposity as measured by DXA, must be in the non-

abdominal area in the general population. Unfortunately, there was no data 

available to assess total subcutaneous AT in either population due to the MRI 

protocol used, which focused principally on the abdominal area of the 

participants.  Regardless, and notwithstanding the fact that the free-living 

population was not fully tested for their metabolic status, these results appear 

to confirm the importance of fat distribution, especially abdominal obesity 

(visceral and liver fat), as being the key factor in the development of metabolic 

dysfunction. In addition, the ratio of VAT to ASAT found to be higher in pre-

diabetic than free-living population (p>0.0001). 
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2.31 Gender specific phenotyping of visceral adipose tissue (VAT) between free-living and pre-diabetic population in (A) males and (B) females. Data 

presented as box and whisker plots: where error bars are min/max range, upper and lower edges are 25th and 75th percentiles. P values are calculated from 

nonparametric Mann-Whitney in SPSS (v.24). Free living population data obtained from UK biobank and pre-diabetic data obtained from DIRECT IMI. Graphs were 

performed using GraphPad Prism version 5.0. 
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2.32 Gender specific phenotyping of abdominal subcutaneous adipose tissue (ASAT) between free-living and pre-diabetic population in (A) males and (B) 

females. Data presented as box and whisker plots: where error bars are min/max range, upper and lower edges are 25th and 75th percentiles. P values are calculated 

from nonparametric Mann-Whitney in SPSS (v.24). Free living population data obtained from UK biobank and pre-diabetic data obtained from DIRECT IMI. Graphs 

were performed using GraphPad Prism version 5.0. 
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2.33 Gender specific phenotyping of liver fat percentage between free-living and pre-diabetic population in (A) males and (B) females. Data presented as 

mean ± standard deviations. P values are calculated from nonparametric Mann-Whitney in SPSS (v.24). Free living population data obtained from UK biobank and 

pre-diabetic data obtained from DIRECT IMI. Graphs were performed using GraphPad Prism version 5.                        .          .        . 
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The greatest fat difference between pre-diabetics and subjects from the free-

living population was observed in liver fat in males (percentage difference = 

22.6%), and in females (percentage difference = 67.9%). This suggests liver 

fat as a potential candidate biomarker in determining metabolic risk. Smaller 

differences between cohorts were observed for ASAT, suggesting it has less 

of a contribution to differences arising from pre-diabetes (Table 2.11). 

Significant differences between VAT and liver fat in free-living and pre-

diabetic population were observed in both males and females, these tended 

to be greater in females (percentage difference: VAT=47.1%, liver fat = 

67.9%) than in males (percentage difference: VAT=20.1%, liver fat = 22.6%) 

(Table 2.11). 

2.4 Discussion  

Large-scale imaging studies are a way to investigate physiological variation, 

disease development, and identify novel biomarkers of risk. Recent examples 

include the Rotterdam study (265), the Framingham Heart Study (266), the 

German National Cohort (267) and the Multi-Ethnic Study of Atherosclerosis 

(268). These studies have provided significant insights into complex disease 

processes, as well as identifying novel imaging biomarkers as a precursor for 

disease states. In this chapter, MRI data is analysed in order to explore the 

relationship(s) between anthropometry and adiposity in two large, distinct, 

cohorts. 

 

It is recognised that the increased health risks of obesity and associated 

features of the metabolic syndrome are more strongly associated with central 

rather than total adiposity (99), with increased VAT and ectopic fat in the liver 

is the key determinants (72, 148, 247). BMI is the current standard for obesity 

classification, but as with all anthropometric measurements, only offers a 

surrogate measure of body adiposity (187). WC is widely used as a surrogate 

of central fat distribution, but while easily obtainable, it is unable to distinguish 

between VAT and ASAT deposition (269). MRI, as described in Chapter 1, is 

a non-invasive technique that allows accurate measurement of whole-body 

fat and specific internal stores of AT and ectopic fat (89). MRI studies have 

demonstrated significant variation among individual AT compartments that 
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are not fully predicted by total body or trunk fat or standard anthropomorphic 

characteristics; such as skin-fold measurements, BMI, and WHR (200, 254). 

Ectopic fat in organs has also been linked to obesity, insulin resistance, T2D, 

in particular, liver and pancreas fat (137, 162). Moreover, a recent cross-

sectional study of 7,464 Chinese subjects demonstrated that the association 

between NAFLD and fatty pancreas with T2D is independent of age, gender, 

adiposity, and other cardio-metabolic risk factors (270). 

 

2.4.1 Genders differences in adiposity 
 

Gender differences in body adiposity, as previously described in Chapter 1, 

are well established, with females having a higher percentage of total body 

fat and SAT in the glutofemoral region (72, 249). These differences were 

confirmed in both the free-living (UK Biobank) and the pre-diabetic (DIRECT) 

cohorts. Nonetheless, there is some conflicting data in the literature regarding 

gender differences in VAT. While the great majority of studies show that 

males have greater VAT than females (254), a few showed no difference 

(271) .  

 

Here, was found a significant increase in VAT in males compared to females 

in both the free-living (UK Biobank) and pre-diabetic (DIRECT) populations, 

representing a combined total of around 7,500 males and females. While 

these differences only apply to an age range of 30-70 years, this data would 

suggest that there is a clear gender difference in VAT. Whether these gender 

differences in VAT are altered by age or not is fully understood. While 

previous papers have found ectopic and visceral fat increase as a person 

ages (72, 272, 273), here, only a relatively weak correlations between VAT 

and liver fat fraction with age in both free-living and pre-diabetic populations 

was observed. Given the lower age limit of these cohorts is around 30-40 

years of age, this data suggest that there is little effect of age on VAT and 

liver fat in middle age in free-living and pre-diabetic populations. Previous 

studies have indicated that VAT and ectopic fat increases in females post-

menopause, an effect due to alterations in sex hormone regulation (249). 

Furthermore, male to female transsexuals showed a proportional effect of sex 

hormone with VAT after sex hormonal therapy (274). Very little evidence was 
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found of increased VAT or liver fat fraction in females as they enter their 50s, 

suggesting further detailed analysis including precise information on an 

individual’s pre- and post-menopausal timeframe is necessary to fully resolve 

the impact of the menopause on the deposition of VAT and liver fat fraction.   

Gender differences in liver fat were observed between free-living and pre-

diabetic populations. As expected from the gender specific association seen 

in this Chapter and with others (249), in the free-living population, males had 

higher liver fat content than females, while unexpectedly, pre-diabetic 

females had higher liver fat content than pre-diabetic males. The gender 

difference in liver fat content pattern between free-living and pre-diabetic 

populations is interesting because it was the only fat depot that showed 

different gender body fat pattern. This might be because the trajectory 

threshold for liver fat content in order to develop pre-diabetes in females is 

higher than in males. In other words, it requires a higher accumulation of liver 

fat in females than in males to allow for the development of pre-diabetes. In 

addition, pre-diabetic females in my analysis had higher BMI than pre-

diabetic males which were not seen in the free-living population and therefore 

might contribute to their higher liver fat. Increased BMI is associated with 

increased adverse psychological symptoms such as depression and social 

stigmatization, an association that was found to be stronger in females 

compared to males (275). Studies have shown that psychological factors 

such as depression and stress have a greater impact on T2D females than 

males, whilst females appeared to be more vulnerable to the adverse effects 

of the metabolic impact of such psychological factors, as well as unhealthy 

behaviours (276). Furthermore, mice studies showed that female mice who 

were exposed to psychological stress via electrical floor shock had higher 

liver fat content than females control despite significant weight loss in both 

groups (277). The mechanism by how psychological stress can affect liver fat 

accumulation with possible larger magnitude in females than males remains 

unclear and certainly complex to measure. Indeed, several mechanisms have 

been suggested including markers related to increased inflammation, 

cytokine production, and oxidative stress species (276). However, these 

plausible mechanisms are less likely to be liver fat specific (as it is also 

observed with VAT). 
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2.4.2 Relationship between anthropometry, adiposity, and ectopic fat 

depots 
 

In agreement with previous data (72), anthropometric variables were more 

closely related to individual adiposity and ectopic fat stores. Similar to 

previous publications (72, 254, 269), it was found that WC provided the 

strongest correlate with liver fat fraction and VAT in both genders and in both 

cohorts (except in males for liver fat). Hip circumference was the strongest 

correlate for ASAT in females, as confirmed in most of the current literature 

(72, 254). However, in this Chapter,  these associations are confirmed in two 

metabolically separate cohorts; free-living (UK Biobank) and pre-diabetic 

(DIRECT) populations. Hence, if MRI, or other imaging modalities are not 

available to measure VAT, ASAT or liver fat, the data here suggests that 

these markers are the most accurate ones to estimate internal adiposity in 

both free-living and pre-diabetic populations. It should be noted that in both 

cohorts there was a large amount of variation in all abdominal fat depots by 

BMI group. Increased BMI showed great association with CVD and T2D in 

epidemiological studies (278), but it remains largely insensitive to detect 

changes at an individual level (187).  

 

There is evidence that VAT and ASAT play contrasting roles in the 

development of metabolic syndrome associated disorders. A recent review of 

2,515 T2D subjects, demonstrated that liver fat and VAT (measured with CT) 

were associated with T2D (measured by glucose intolerance compared to 

normal glucose tolerance (NGT) individuals), whereas abdominal 

subcutaneous adiposity showed an inverse relationship with T2D (279). The 

International Study of Prediction of Intra-abdominal Adiposity and its 

Relationships with Cardio-metabolic risk of 4,144 individuals showed that 

VAT, but not ASAT, was strongly related to cardio-metabolic risk factors in 

patients regardless of T2D status (280). In the analysis, the results showed 

that VAT, ASAT and liver fat were higher in pre-diabetic males and females 

compared to free living-population (p>0.001 for all). This observation 

suggests that VAT, ASAT, and liver fat can be used for stratifying at-risk 

phenotypes of developing T2D in particular liver fat since it showed the 
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highest mean difference in body fat depots between free-living and pre-

diabetes populations. In agreement with my results, Stefan et al. in an 

analysis of 1,003 subjects (405 pre-diabetic) suggested that liver fat and 

insulin resistance were independent determents of pre-diabetes and predict 

the progression from NGT to pre-diabetes status (165). A limitation of my 

analysis in order to draw fat depot-specific threshold with metabolic 

deleterious is the lack of available metabolic outcomes, such as fasting 

glucose and insulin. For the pre-diabetic population (DIRECT), β-cell function 

and insulin sensitivity were assessed using validated modelling methods 

based on an oral glucose tolerance test (OGTT), however, unfortunately at 

present these data were not available. My ability to compare the metabolic 

roles of VAT and ASAT is therefore limited. 
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2.4.3 Pancreatic fat and insulin resistance 
  

Insulin resistance and pancreatic β-cells play an important role in pre-

diabetes and in the progression to T2D since insulin resistant tissues do not 

normally respond to the hormone insulin (to allow normal glucose uptake) 

which in turn induce β-cells to produce insulin further leading to β-cell failure 

and eventually developing chronic hyperglycaemia and pre-diabetes (159, 

281). Furthermore, insulin resistance has a close association with fat 

metabolism – subjects with insulin resistance showed impaired fat 

metabolism which might be due to insulin hormone which is a known factor 

for lipolysis inhibition (282).  Today, there is an ongoing debate about whether 

β-cell failure actually results from chronic insulin resistance due to β-cell 

exhaustion or from increased pancreas fat due to increased lipid toxicity, 

which is due to inflammation and cytokine production in subjects with fatty 

pancreas (282).  

This debate is further complicated by the conflict in the current literature as 

to whether increased pancreatic fat is associated with pre-diabetes and T2D 

development or not. Yamazaki et al. in a longitudinal study of five years on 

813 subjects without T2D at baseline showed no association with CT derived 

pancreas fat and the development of T2D (283).   Despite that the Yamazaki 

et al. study has the power of a longitudinal study rather than a cross-sectional 

one, the progression rate of T2D in the study was only 7%, and it is further 

limited by the usage of CT as the modality of choice for the assessment of 

pancreas fat. CT assessment of pancreas fat based on the ratio of the 

pancreas to the spleen Hounsfield’s units attenuation which makes it 

sensitive to changes in the spleen as a cofounder rather than an accurate 

assessment of pancreas fat as when using MR (283).  

Further conflicts in the literature arise where few MR studies showed no 

association between increased pancreatic fat and pre-diabetes.  Kuhn et al. 

in a study of 431 pre-diabetic subjects demonstrated no association between 

increased MR-derived pancreatic fat and pre-diabetes as measured by OGTT 

between 5.6 and 9.6 mmol/L (284). However, these findings and others (285) 
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who showed no association between increased pancreatic fat and pre-

diabetes have a technical limitation in mostly using three regions of interests 

(as ±1.0 cm circular dotted area) as the employed method for assessing 

pancreatic fat content instead of a whole organ extraction as presented in this 

Chapter. Indeed, there are noticeable variations in pancreas fat content 

between different anatomical locations and therefore whole organ extraction, 

which is employed in this chapter, is the superior method for an accurate 

pancreas fat assessment (285).  

In this chapter, was presented an analysis of pancreas fat using MR 

quantification of whole organ extraction and showed increased pancreatic fat 

in pre-diabetic males and females. In agreement with the results of my 

analysis, a recent meta-analysis and a systemic review of the association 

between pancreas fat and T2D from CT and MR studies on a total of 3,403 

subjects (33.4% with T2D) showed increased pancreas fat content in patients 

with T2D compared to non-diabetic individuals (285). The strength of my 

analysis of pancreas fat is using MR whole organ extraction for the 

assessment of pancreas fat as well as a large sample size of homogenous 

pre-diabetic subjects. However, a major limitation of my pancreas fat analysis 

is that there was no data regard β-cell function in order to allow for a better 

understanding of the mechanism of altered pancreas function and fat 

deposition in the manifestation of T2D, which may allow for new insights in 

T2D prevention, diagnosis and treatment. Further research including 

comprehensive metabolic data is recommended to evaluate the effect of 

increased pancreas fat on the development of T2D. A limitation of my 

pancreas analysis is that the pancreas fat was only available in the pre-

diabetic population and therefore, it was not possible to make a comparison 

between free-living and pre-diabetic population. 

2.4.4 Impact of physical activity on adiposity   
 

It is well-established that increased physical activity is linked with abdominal 

body fat depots reduction (85). However, setting a dose-response 

relationship is challenging as part because assessing physical activity is 

predisposed to certain measurement challenges. IPAQ has been designed to 
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assess physical activity indirectly by engaging participants in answering 

questions on their everyday live physical activity. IPAQ is the most frequently 

used method to assess general physical activity in population studies such 

as in the UK Biobank because it is practical and comes with low cost (286). 

However, since IPAQ is largely dependent on the participants reporting their 

own level of physical activity, it has the capacity to over or underestimate true 

physical activity levels because of issues associated with memory, the 

participants ability and motivation to report accurately (286). In addition, IPAQ 

requires translation in particular in population studies such as UK Biobank 

aiming to capture  an actual representation of the whole population and 

ensure the inclusion of ethnic minorities and vulnerable subjects who may not 

speak English (286).  Furthermore, IPAQ responses were shown to be largely 

affected by participants’ sociodemographic and health status, for example, 

participants with higher education and better self-reported health status are 

likely to overestimate their physical activity using self-reported measures 

(287). On the other hand, objective direct methods for physical activity 

measurements such as wearable fitness accelerometers are commonly used 

for precise physical activity assessment and to overcome some of the self-

reported data issues related to memory, response bias and language barriers 

(288). Objective direct physical activity assessment, despite its advantages, 

remains costly, requires time and particular training and in some wearable 

devices, such as triaxial which is used in the pre-diabetic cohort in this study 

(DIRECT), and unable to measure physical water activities (288). Therefore, 

objective measures are often used as validation or a complement for the 

indirect physical activity assessment (288).  

In this chapter, was also presented physical activity assessments using both 

methods; the objective direct accelerometer used in the pre-diabetic cohort 

(DIRECT), and the self-reported physical activity assessment using IPAQ in 

the free-living population (UK Biobank). The two physical activity 

measurement outcomes were not comparable for various reasons including 

the technical differences in acquiring the data (direct versus indirect physical 

activity assessments), and their availability from two different cohorts (IPAQ 

from UK Biobank and ENMO from DIRECT).   However, VAT, ASAT and liver 

fat negatively correlated with physical activity to a similar degree in both 
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DIRECT (ENMO score) and UK Biobank (IPAQ). Correlation with individual 

physical activity parameters in the UK Biobank also showed similar r values 

for both VAT and ASAT. Table 2.12 demonstrates the correlation between 

VAT, ASAT, and liver fat using IPAQ and ENMO. Overall, the objective 

physical activity assessment using ENMO showed stronger correlations with 

fat depots than the IPAQ. It is noteworthy to mention that the ENMO covered 

a period of 10 days while the IPAQ covered two weeks.  

 

Table 2.12 The correlations between MR measurements and physical activity assessment using 
objective physical activity assessment (IPAQ) and subjective physical activity assessment 
(ENMO). IPAQ and ENMO. Values representing r from Pearson’s correlation. IPAQ: International Physical Activity 

Questionnaire, ENMO: Euclidean Norm Minus One. Statistics performed using SPSS v. 23.  

 IPAQ (UK Biobank) ENMO (DIRECT) 

MR measurements  Male Female Male Female 

VAT -0.180 -0.187 -0.269 -0.262 

ASAT -0.181 -0.193 -0.257 0.181 

Liver fat -0.156 -0.122 -0.138 -0.204 

 

Further work needs to be done to combine measurements of physical activity 

(IPAQ with wearable devices) for accurate assessment of physical activity, 

full inclusion of the population studied and ability to determine dose-response 

relationships between day to day lifestyle and phenotyping of body fat depots.  

 

Previous data from the UK Biobank has shown low levels of physical activity, 

high television viewing and poor sleep duration cluster together in overweight 

and obese individuals (289). Additional work showed an inverse relationship 

between physical activity and both BMI and body fat percentage (290). Here, 

was found higher liver fat deposition was associated with specific sedentary 

lifestyle variables, including time spent watching TV, time spent using a 

computer, and the presence of long-standing illness or disability. TV viewing 

is also linked with other unhealthy behaviours like snacking and is 

consistently associated with higher liver fat deposition (291). A recent large 

meta-analysis showed watching TV for more than 3 hours was strongly linked 

to all-cause mortality (292). The strongest correlation was observed between 

an individual physical activity outcome with liver fat fraction and VAT was the 

subjects usual walking pace. Conversely, lower liver fat was associated with 
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physical activity variables, including brisk walking pace and frequency of 

walking (as means of transport), performing moderate, vigorous or strenuous 

physical activity, and stair climbing. 

 

Previous studies have demonstrated that daily walking and active commuting 

is linked to reductions in VAT and improvements in insulin resistance (293, 

294).  A recent systematic review and meta-analysis of 24 studies examined 

the effects of physical activity on visceral fat and liver fat in subjects with T2D 

(295). The authors demonstrated that aerobic exercise, but not resistance 

training, effectively reduced both (295). Furthermore, even low levels of 

physical activity have been associated with reduced mortality in individuals 

with the metabolic syndrome (296). These data, together with the 

correlational analyses presented, suggest that even low-intensity aerobic 

exercise, such as walking or stair climbing, has a beneficial effect on lowering 

levels of VAT and ectopic fat. The lack of association between the duration 

of physical activity and liver fat as opposed to the frequency and reduced liver 

fat is interesting, suggesting that it is not the exercise duration for that 

important, rather performing it repeatedly. Overall, these relationships 

observed in this data represent a promising opportunity for effective 

intervention to reduce abdominal fat, especially in an elderly group of 

individuals for whom strenuous vigorous activity may not be feasible. Indeed, 

a number of interventional studies have linked an increase in physical activity 

(aerobic and resistance) with a reduction in liver fat (297-299). 

 

2.4.5 Strength and weakness of this study (phenotyping body fat 

deposition and ectopic fat in free-living and pre-diabetic populations)   
 

As mentioned in the introduction, there are various methods for body fat 

assessment. In this chapter, the gold standard modality, which is MR was 

used for the quantification of visceral, ASAT and ectopic fat in the liver and 

pancreas (89). Unfortunately, both cohorts did not include full body MR data 

to allow the quantification of total body fat. Therefore, DXA scan data (which 

was available for both cohorts) was used for the assessment of total body fat 

and its association with MR modality measurements. The correlation of total 
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fat percentage measured by DXA with MR fat depots was similar in pre-

diabetic and the general population. ASAT showed the strongest correlation 

with body fat percentage in pre-diabetic and general population males and 

females. UK Biobank cohort provided DXA quantifications of FFM and lean 

mass in addition to body fat percentage, and as expected, FFM and lean 

mass revealed significant gender differences with males having higher FFM 

and lean mass which might be due to physical variations between males and 

females (249). Despite the overall agreement in the correlation r values 

between DXA and MR measurements in both cohorts, DXA as a radiation 

source remains a concern (300). Therefore, further studies using MR to 

quantify full body fat with comprehensive physical activity assessment and 

metabolic data is required in order to fully understand the biological 

association of body fat phenotypes in metabolic disease developments.  

 

The major strengths of my data are the numbers of individuals included with 

MR data for body fat depots quantification. While the cross-sectional nature 

of the data-set is limiting in its inability to imply causality, it is the largest study 

of its kind to incorporate MRI-acquired measures of VAT, ASAT and liver fat, 

with detailed measures of physical activity. In addition, there are inherent 

issues regarding the self-reported physical activity propensity to 

measurement error, an effect more prevalent in aged populations where 

cognitive regression can impact on accuracy. The lack of age-related 

increases in VAT and liver fat fraction observed in males are especially of 

note, suggesting that levels of these depots are established by the time 

individuals reach 40 years of age. Secondly, the MR fat quantification 

included in this chapter did not include young adults (>30 years old) where 

an early manifestation of metabolic disease may occur, because both cohorts 

recruitment fallen between 30-70 years. Finally, this analysis did not include 

information on the ethnicity background of the subjects studied because the 

pre-diabetic cohort was mainly homogenous Cau cohort and the free-living 

population cohort, which had ethnicity data but unfortunately was not 

available at the time of this analysis. Ethnicity, as mentioned extensively in 

Chapter 1 Section 1.5, is a major factor altering the deposition of VAT and 
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ASAT, and a determining factor of regional AT deposition and its association 

with insulin resistance and the development of T2D.  
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Chapter 3 Phenotyping body fat deposition in South Asians 

3.1 Introduction 

SA, who makes one-quarter of the world population including individuals of 

India, Pakistan, Bangladesh and Nepal, have a higher prevalence of the 

metabolic syndrome compared with Cau populations (178, 206, 231). In India, 

the largest SA country, it is estimated that 65 million people are affected by 

T2D, with the number predicted to reach 109 million by 2035 (301, 302). As 

mentioned in Chapter 1 Section 1.5 Ethnicity, at a similar or even lower BMI, 

SA adults present a higher percentage body fat, lower lean mass and more 

visceral fat compared to Cau (20, 221, 225, 303). The ‘thin-fat phenotype’ in 

South Asians reflects a body composition comprised of reduced muscle mass 

but increased adiposity (235, 304, 305). It is evident that neonatal SAs are 

characterised with smaller anthropometric measurements but increased 

adiposity with relative preservation of body fat (306, 307). The compartmental 

distribution of AT is a key factor for metabolic deterioration, with VAT linked 

to increased CVD risk (308). This tendency towards increased central obesity, 

together with reduced HDL cholesterol levels and elevated circulating TG and 

cholesterol, are thought to contribute to SA increased susceptibility to 

develop metabolic syndrome associated morbidities (230, 233, 234). 

 

The foetal origins hypothesis, as previously mentioned in Chapter 1, Section 

1.2.1 Obesity: the epigenetic causes, has also been proposed as a further 

effect to explain the vulnerability of SA individuals to metabolic disease. This 

hypothesis posits that challenges in utero, such as malnutrition, lead to 

adaptive changes in metabolic-endocrine pathways necessary for the foetus 

to survive (44, 309). These changes persist into adult life, subsequently 

triggering degenerative conditions, including metabolic syndrome, CVD and 

T2D (310, 311). Such alterations in metabolic–endocrine pathways are 

reflected in reduced foetal growth and small size at birth; SA babies are 

among the smallest in the world, given that half of the world’s low birth weight 

babies are born in SA (low birth weight <2500 g) (312). 
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In order to better understand how this phenotype manifests, attempts have 

been made to compare the body composition of individuals born in India 

against White Cau counterparts. One such investigation is the PMNS (305), 

which was established in 1993. The PMNS monitored over 800 pregnant 

females recruited from 6 rural villages near Pune, one of the largest urban 

cities in West India. Mothers were comprehensively observed during 

pregnancy for anthropometric changes, nutritional intake, physical activity, 

and circulating nutrient levels. Once infants were born, growth measurements 

were performed every 6 months and individuals followed up every 6 years, 

investigating risk factors for T2D and CVD.  

 

In this Chapter, the amount of abdominal fat (VAT and ASAT) in the offspring 

of the PMNS was quantified from the MR imaging data collected at their 18-

year follow up.  The relationships between anthropometry, blood 

biochemistry and abdominal adiposity was examined in this cohort. 

Furthermore,  the relevance of ethnicity specific BMI cut-offs and the 

prevalence of sub-phenotypes, including the thin-fat phenotype within this 

population was also investigated. For further exploration on how ethnicity 

impacts of body fat deposition, an attempt was made to compare this young 

SA cohort with a comparable Cau cohort. 
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3.1.1 Aims 

 

1. Quantify the amount of VAT and ASAT in young SA adults in the PMNS. 

2. Investigate the associations between MRI derived measurements (ASAT 

and VAT) and age, gender, anthropometry and metabolic profile in the 

Pune Maternal Nutrition Study.  

 

3. Determine the prevalence of South Asian sub-phenotype; thin-fat 

phenotype in 18 years SA in India.  
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3.2 Methods 

3.2.1 Pune Maternal Nutritional Study (PMNS) participants 

PMNS was established in 1993 to study the Indian adiposity phenotype and 

has monitored a birth cohort raised in rural villages around Pune in Southern 

India. It provides measurements collected at various time points from 

conception up to 18 years of age. Written, informed consent was acquired 

from all volunteers. Ethical approval permission for this study was given by 

the village authorities in King Edward Memorial Hospital in Pune, India. The 

volunteers were recruited from six villages approximately 50 km from Pune, 

including Dhamari, Karandi, Kendur, Pabal, Pimpale-Jagtap, and Shikrapur. 

Ethnicity was self-reported, and all parents and grandparents were required 

to be of SA descent. 

 

All married females of reproductive age living in the six villages were 

approached and 2675 recruited (between June 1994 and April 1996). Of 

these, 1102 became pregnant and 762 delivered live babies. A flow diagram 

describing data collection and exclusions from the PMNS is presented in 

Figure 3.1. The data in this Chapter corresponds to 423 offspring (261 M, 

162 F, mean age 18.0 ± 0.60 yrs.) who returned for a follow-up assessment 

between 2008 and 2010 in King Edward Hospital, Pune, India. 



141 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 3.1. A flow diagram describing data collection and exclusions in the Pune Maternal Nutrition 

Study from six villages in rural India; adapted from (313). 

Data collection started 
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3.2.1.2 Study measurements 

Height (stadiometer, ATCO Healthcare Ltd, Mumbai, India) and weight 

(calibrated scale, CMS Instruments Ltd, London, UK) were measured by 

trained research nurses, and BMI calculated as weight divided by height 

squared. Callipers (CMS Instruments Ltd, London) was used to measure the 

sum of skin-fold thicknesses (biceps, triceps, subscapular and suprailiac), an 

index of subcutaneous adiposity. Blood pressure was taken by a semi-

automated sphygmomanometer (Welch-Allyn, Beaverton, OR, USA) and the 

mean of the 2nd and 3rd of three recordings used in the analysis. 

 

3.2.1.3 Metabolic markers 

Plasma glucose, cholesterol, HDL-cholesterol and triacylglycerol 

concentrations were measured using standard enzymatic methods (Roche 

Diagnostics, Mannheim, Germany). Between-batch coefficient of variation 

(CV) for all these assays were <3% in the normal range. Plasma insulin, 

proinsulin and 32–33 split proinsulin were measured using a two-site 

immunoenzymometric assay (Medgenix, Fleurus, Belgium); between-batch 

CV for insulin measurements were <6%. HOMA-IR, which is an index used 

to gauge insulin sensitivity calculated from fasting glucose and insulin levels, 

was calculated using the currently accepted standard (online Oxford HOMA 

calculator: available from www.dtu.ox.ac.uk) (314). OGTT was carried out 

according to the WHO protocol, using 75g glucose. Blood samples were 

collected for measurement of glucose and insulin at 0, 30 and 120 min. 

Individuals were classified as NGT if their fasting blood glucose between 4.4 

and 5.5 mmol/L (between 72 and 100 mg/dL) (Table 3.1). Elevated blood 

glucose or pre-diabetes status was classified as IFG between 5.6 and 6.9 

mmol/L (100-125 mg/dL)) or impaired glucose tolerance (> 7.0 mmol/L or 

>126 mg/dL). In this chapter, IFG threshold was implemented for the 

diagnosis of pre-diabetes as it is recommended for appropriate diagnosis of 

pre-diabetes in the general population with no observed disorders of glucose 

metabolism (i.e. hypertensive) (Table 3.1) (315).  
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Table 3.1 Recommended criteria for normal glucose and pre-diabetes. Updated from the American 

Diabetic Association 2013.  

Test 
Normal blood 

glucose 
Pre-diabetes 

Fasting plasma glucose (mmol/L) 4.5 - 5.5 
5.6 – 6.9 (Impaired fasting 

Glucose) 

Oral Glucose Tolerance Test 

(mmol/L) 
Below 6.9 

7.0 – 9.0 (Impaired glucose 

tolerance) 

 

 

3.2.1.4 MRI scanning protocol 

T1-weighted MR images were acquired at the Anushka Scanning Centre at 

Kem Hospital, Rasta Peth, Pune using a 1.0T Siemens Magnetom Harmony 

scanner (Siemens, Munich, Germany). Three 10 mm thick transverse slices 

located in the abdomen were acquired with subjects lying in a supine position 

using the following parameters; TR: 100 ms, echo time: 7.49 ms, 512x384 

matrix size and an 11 mm gap between slices.  

 

3.2.1.5 Technical quality assurance protocol for abdominal images 

prior to quantification of visceral and abdominal subcutaneous 

adiposity 

Before images were analysed, technical quality assurance was performed in 

order to evaluate the prevalence of image artefacts and to investigate factors 

affecting image analysability (Figure 3.2). Images were considered not 

analysable if any part of the anatomical region was missing in the dataset or 

constrained significant, any respiratory artefacts motion artefact over the 

abdominal region, and incomplete abdominal coverage.  
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Figure 3.2. A flow chart describing the process of generating the dataset for Pune Maternal Nutrition 

Study from data handling, quality control and creating the large dataset.  
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Apply image morphology 
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Match the fat values with the large 
dataset sheet. 
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3.2.1.6 MRI Image analysis.  

All dataset was analysed using Slice-O-Matic (Tomovision, Montreal, 

Canada) for abdominal subcutaneous and visceral adipose tissue 

quantification (316) with the area of adipose tissue recorded in cm2. The ASAT 

and VAT segmentation method based on two main tools; image morphology 

and manual editing that was conducted to label regions as ASAT or VAT. 

With the scanning parameters employed, fat appears as a high signal against 

a muted background of other tissues and noise. The images were segmented 

and analysed by labelling voxels as fat and non-fat components (316). The 

analysis procedure employed a contour-following algorithm to isolate 

individual structures from binary images produced by thresholding. The 

threshold needed to identify fat-component associated voxels was computed 

automatically from grey intensity histogram analysis and background-noise 

computation (317). Separated regions were then manually filled with 

appropriate tags for visceral fat (red) and subcutaneous fat (green) (Figure 

3.3). To verify segmentation precisely and make corrections, the tag coloured 

images (red or green) were superimposed on a greyscale image in 

transparency mode during analysis. After finishing the morphology phase, a 

manual edit was done to detect fine details, includes all the missing pixels 

from the semi-automated phase and remove any bowel content from the 

adiposity segmentation. The outcome was an adipose tissue area (cm2) for 

each compartment, which was calculated by summing the relevant voxel 

counts. Note that this analysis provides a direct measurement of the area of 

adipose tissue rather than of the quantity of triglyceride contained within the 

adipose tissue. 
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Figure 3.3 Quantification of visceral and abdominal adipose tissue in South Asian population 
using Slice-O-Matic software. The greyscale image was initially processed using mathematical 

morphology to segment the subcutaneous and internal fat. These were labelled (Tagged) with specific 
colour codes for each depot. In these studies, subcutaneous fat was coded green and internal fat 
(visceral fat) coded red. 

 

 

3.2.2 Statistical analysis  

Descriptive measures are reported as means ± standard deviation (s.d.). 

Data were checked for normality using the Shapiro-Wilk’s test. In the case of 

a normal distribution, means were compared using Student’s t-test; 

otherwise, the non-parametric Mann-Whitney U-test was used. Comparison 

of VAT and ASAT between different BMI cut-offs (WHO general population 

recommendations and proposed WHO SA recommendations) was examined 

using t-test for males and females separately. The relationship between 

quantitative variables (age, weight, height, BMI, VAT and ASAT) was 

analysed using Spearman’s rank correlation coefficient for non-normal 

distributed data in SPSS (version 23.0). Individuals were assessed for sub-

phenotypes including thin-fat and TOFI phenotype, which represents a ratio 

of VAT/ASAT. Cut-offs for the phenotype were defined as individuals with a 

VAT/ASAT ratio of greater than 1.04 in males and 0.45 in females (72). 

Circulating levels of glucose were used to define individuals as NGT (blood 
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glucose <5.5mmol/L) or pre-diabetic (blood glucose >5.6mmol/L) based on 

Diabetes UK guidelines (https://www.diabetes.co.uk/pre-diabetes.html). 

Linear regression analysis was used to model the relationship between VAT 

and ASAT with glycaemic status (as defined by a fasting blood glucose 

>5.6mmol/L). In Model 1, the contribution of glycaemic status was assessed 

for VAT and ASAT, in Model 2: gender and BMI were adjusted for. 

 

3.3 Results 

3.3.1 Pune Maternal Nutritional Study (PMNS) participants baseline 

characteristics  

MRI data was available from 599 subjects, 176 subjects were excluded from 

the analysis due to poor outcome after technical quality assurance protocol 

(Table 3.2), resulting in a total of 423 subjects included in the final analysis. 

  

Table 3.2 Exclusion criteria for PMNS magnetic resonance imaging data. Table listing the reasons 

for excluding MRI data of the PMNS. MRI; magnetic resonance imaging, PMNS; Pune Maternal Nutritional Study 

 n 

False ID number on the image  10 

ID number not on the list  1 

Not analysable due to image artefact   160 

IDs for not available images  5 

Total  176 

 

The results for the 423 individuals included in the cohort with study 

characteristics are shown in Table 3.3 The mean age of the sample was 18.0 

± 0.60 years (range: 16.6 - 19.5 years) and BMI ranged from 13.0 - 37.6 

kg/m2.  

https://www.diabetes.co.uk/pre-diabetes.html
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Table 3.3 Baseline characteristics of anthropometry, body composition, and metabolic profiling 

in adolescent South Asian in the PMNS cohort. Data presented as mean ± standard deviation. PMNS; 

Pune Maternal Nutritional Study, MR: Magnetic resonance imaging, DXA: Dual-energy X-ray, BMI: Body mass index, HOMA-IR: Homeostatic model 

assessment insulin resistance. Statistics done using SPSS version 23.0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

3.3.1.2 Pune Maternal Nutritional Study characteristics by gender 

Gender specific characteristics of the Pune Maternal Nutritional Study are 

shown in Table 3.4. Significant gender differences were recorded for the 

majority of parameters in the PMNS cohort. Overall, males were significantly 

taller (p<0.001) and heavier (p<0.001) with larger WC and waist to hip ratio 

than females in the PMNS cohort (p< 0.001 for all) (Table 3.4). There were 

gender differences in all body composition outcomes in the PMNS cohort; 

females had a large skinfold-thickness (difference=42.6%, 23.3 cm2 in 

skinfold thickness, p<0.001) and more total FM (34.8%, 4.1 kg differences in 

FM, p<0.001) but with less lean mass (difference= 18.8%, 14 kg in lean mass: 

F: 30.4 ± 3.6, M: 44.5 ± 5.5, p<0.001) than males (Table 3.4). Contrarily, 

  Mean ± SD Range 

A
n

th
ro

p
o

m
et

ry
 

Age (yrs.) 18.0 ± 0.60 16.6 - 19.5 

Weight (kg) 53.1 ± 11.0 23.6 - 97.8 

Height (cm) 164 ± 9.2 134 - 186 

BMI (kg/m2) 19.5 ± 3.3 13.0 - 37.6 

Waist circumference (cm) 71.6 ± 8.7 51.5 - 104 

Hip circumference (cm) 87.5 ± 8.5 19 - 117 

Waist-to-Hip Ratio 0.8 ± 0.2 0.7 - 3.8 

Skinfold Thickness (cm) 51.9 ± 28.9 14.3 - 177.3 

B
lo

o
d

 
p

re
ss

u
re

  Systolic Blood Pressure (mmHg) 108 ± 9.2 45 - 140 

Diastolic Blood Pressure (mmHg) 59.8 ± 7.6 34 - 82 

M
R

I 

Visceral Fat Area (cm2) 186 ± 63.6 34.9 - 400  

Abdominal Subcutaneous Area (cm2) 344 ± 216 34.9 - 1521 

VAT / ASAT ratio  0.6 ± 0.2 0.1 – 2.6 

D
X

A
 

Total Fat Mass (kg) 11.2 ± 6.8 2.1 - 40.0 

Total Lean Mass (kg) 39.1 ± 8.4 16.1 - 64.8 

Total Trunk Fat (kg) 5.4 ± 3.3 0.8 – 19.2 

M
e

ta
b

o
lic

 p
ro

fi
le

 Fasting Glucose (mmol/L) 8.0 ± 1.0 6.6 – 25.9 

Fasting Insulin (mU/L) 10.7 ± 5.6 2.0 - 55.6 

Cholesterol (mmol/L) 3.3 ± 0.6 1.6 - 6.1 

HDL Cholesterol (mmol/L) 1.0 ± 0.3 0.5- 3.9 

Triglycerides (mmol/L) 0.7 ± 0.3 0.2 - 3.1 

HOMA IR 1.4 ± 0.7 0.3 - 6.7 
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males presented significantly more VAT (differences= 20.1%, 37 cm2 in VAT, 

p< 0.001) than females in the PMNS cohort, despite having less total FM 

(Table 3.4), whereas females had significantly more ASAT 

(difference=23.3%, 80 cm2 in ASAT, p<0.001) than male counterparts in the 

PMNS study (Table 3.4).  

 

With few exceptions seen in insulin parameters, there were intriguing gender 

differences in all metabolic profile outcomes in reflection with body 

composition outcomes (Table 3.4).  Males were more hyperglycaemic 

(difference= 2.5%, 0.2 mmol in blood glucose, p>0.052), than females, which 

is interesting given that the latter had less lean mass (p<0.001), and therefore 

it is expected to observe lower glucose uptake with less muscle mass, 

particularly that both genders had similar age and BMI (Table 3.4). 

Furthermore, males had higher plasma triglyceride (differences= 15.4%, 0.1 

mmol in triglyceride, p>0.005), while having significantly less FM than 

females (Table 3.4).      
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Table 3.4 Gender specific baseline characteristics, blood pressure, body composition and 
metabolic phenotyping in adolescent South Asian in the PMNS cohort. Data obtained from the 

PMNS cohort. VAT; Visceral adipose tissue (cm2), ASAT; Abdominal subcutaneous adipose tissue (cm2), PMNS; Pune Maternal Nutritional 

Study. MR: Magnetic resonance imaging, DXA: Dual-energy X-ray, BMI: Body mass index, HOMA-IR: Homeostatic model assessment insulin resistance 

Data presented as mean ± standard deviation. Gender comparison performed by independent t-test in SPSS, version 24.0. Significance was taken at 

p<0.05 level.   

  Male (n=261) Female (n=162)  

  Mean ± SD Range Mean ± SD Range p 

A
n

th
ro

p
o

m
e

tr
y 

Age (yrs.) 18.2 ± 0.5 16.9 - 19.5 17.7 ± 0.61 16.6 - 19.2 0.504 

Weight (kg) 56.9 ± 10.6 36.0 - 97.8 46.8 ± 8.6 23.6 - 82.2 <0.001 

Height (cm) 169 ± 7.0 141 - 186 156 ± 6.2 134 - 185 <0.001 

BMI (kg/m2) 19.8 ± 3.2 13.7 - 31.2 19.1 ± 3.5 13.0 - 37.6 0.043 

Waist circumference 
(cm) 

73.2 ± 9 53 - 104 68.9 ± 7.5 51.5 - 98 <0.001 

Hip circumference 
(cm) 

87.7 ± 9.2 19 - 114 87.1 ± 7.3 61.4 - 117 0.451 

Waist-to-Hip Ratio 0.8 ± 0.2 0.7 - 3.8 0.8 ± 0.1 0.7 - 1 0.001 

Skinfold Thickness 
(cm) 

43.0 ± 25.6 14.3 - 161 66.3 ± 28.2 20.4 - 177 <0.001 

B
lo

o
d

 P
re

ss
u

re
 

Systolic Blood 
Pressure (mmHg) 

111 ± 10.1 45 – 146 105 ± 8.3 85 - 137 <0.001 

Diastolic Blood 
Pressure (mmHg) 

58 ± 8.3 34 -78 61.5 ± 6.8 43 – 82 <0.001 

M
R

I 

VAT Area (cm2) 203 ± 64.8 72.5 - 400 166 ± 62.3 34.9 - 344 <0.001 

ASAT Area (cm2) 304 ± 215 34.9 - 1372 384 ± 218 116 - 1521 <0.001 

VAT/ASAT ratio 0.9 ± 0.4 0.1 – 2.6 0.5 ± 0.2 0.1 – 1.4 <0.001 

D
X

A
 

Total Fat Mass (kg) 9.7 ± 6.8 2.1 - 35.0 13.7 ± 5.9 4.2 - 40.0 0.026 

Total Lean Mass (kg) 44.5 ± 5.5 28.8 - 64.8 30.4 ± 3.6 16.1 - 40.4 <0.001 

Total Trunk Fat (kg) 4.6 ± 3.6 0.8 - 19.2 6.1 ± 2.9 1.6 - 16.9 <0.001 

M
e

ta
b

o
lic

 P
ro

fi
le

 

Fasting Glucose 
(mmol/L) 

8.1 ± 0.5 6.7 - 10 7.9 ± 1.5 6.6 - 25.9 0.052 

Fasting Insulin 
(mU/L) 

10.3 ± 6 2.0 - 55.6 11.3 ± 4.7 2.6 - 30.4 0.075 

Cholesterol 
(mmol/L) 

3.3 ± 0.6 1.6 - 5.1 3.5 ± 0.6 1.9 - 6.1 0.001 

HDL Cholesterol 
(mmol/L) 

1.0 ± 0.3 0.6 - 3.9 1.1 ± 0.2 0.5 - 1.7 <0.001 

Triglycerides 
(mmol/L) 

0.7 ± 0.3 0.3 - 3.1 0.6 ± 0.3 0.2 - 2.1 0.005 

HOMA IR 1.4 ± 0.8 0.0 - 6.7 1.5 ± 0.6 0.3 - 3.8 0.127 
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3.3.2 Pune Maternal Nutritional Study correlation analysis 

Given the interesting gender differences in body composition and metabolic 

profile phenotyping in SA in PMNS cohort, the gender specific association 

between MR central adiposity compartmentalisation (VAT, ASAT), 

anthropometry, body composition (FM, lean mass) and metabolic profile 

phenotyping were further investigated (Table 3.5).  

Correlation analysis between VAT and ASAT (cm2) compartments with 

anthropometry, body composition, metabolic profile and additional outcomes, 

by gender, are shown in Table 3.5. In both genders, VAT was significantly 

associated with a number of outcomes including WC (M: r=0.547; F: r=0.561, 

p<0.001) and hip circumference (M: r=0.556, F: r=0.469 p<0.001). Fasting 

glucose (r=0.148) and cholesterol (r=0.282) were only significantly correlated 

with VAT in males (p<0.001 for both). ASAT was not associated with fasting 

glucose (M: r=0.089, F: r=-0.073), but showed a strong correlation with BMI 

(M: r=0.869, F: r=0.888), skinfold thickness (M: r=0.923, F: r=0.897) and 

fasting insulin (M: r=0.481, F: r=0.263) (p<0.001 for all Table 3.5). 
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Table 3.5 Gender specific correlation of VAT and ASAT compartments with anthropometry, 
body composition and metabolic profile phenotyping in adolescent South Asian in the PMNS 
cohort. Data obtained from the PMNS cohort. VAT: Visceral adipose tissue (cm2), ASAT: Abdominal subcutaneous adipose 

tissue (cm2), HDL: High-density lipoproteins. PMNS; Pune Maternal Nutritional Study. MR: Magnetic resonance imaging, DXA: Dual-energy X-ray, BMI: 

Body mass index, HOMA-IR: Homeostatic model assessment insulin resistance Data presented as mean ± standard deviation Spearman’s correlation 

carried out in SPSS (v. 24.0); ** indicates correlation is significant at the 0.01 and * indicates correlation is significant at the 0.05 level. 

 

  Male (n=261) Female (n=162) 
   VAT ASAT VAT ASAT 

 Age (years) 0.264** 0.083    0.445** 0.124 

A
n

th
ro

p
o

m
et

ry
 

 

Weight (kg) 0.548** 0.831** 0.511** 0.765** 

Height (cm) 0.198** 0.181** 0.008 -0.074 

BMI (kg/m2) 0.519** 0.869** 0.537** 0.888** 

Waist circumference (cm) 0.547** 0.896** 0.561** 0.850** 

Hip Circumference (cm) 0.556** 0.851** 0.469** 0.801** 

Waist-to-Hip Ratio 0.346** 0.592** 0.317** 0.401** 

Sum of Skinfolds  0.504** 0.923** 0.458** 0.897** 

B
lo

o
d

 

P
re

ss
u

re
  

Systolic blood pressure (mmHg) 0.284** 0.321** 0.218** 0.257** 

Diastolic blood pressure (mmHg) 0.153* 0.290** 0.137 0.317** 

D
X

A
 Total fat mass (kg)  0.531** 0.961** 0.516** 0.936** 

Total lean mass (kg) 0.377** 0.422** 0.398** 0.349** 

Trunk fat (kg) 0.551** 0.959** 0.544** 0.942** 

M
et

ab
o

lic
 P

ro
fi

le
 Fasting glucose (mmol/L) 0.148* 0.089 0.061 -0.073 

Fasting insulin (mu/L) 0.321** 0.481** 0.160* 0.263** 

Cholesterol (mmol/L) 0.272** 0.381** 0.054 0.189* 

HDL (mmol/L) -0.039 -0.125* -0.174* -0.106 

Triglycerides (mmol/L)  0.219** 0.373** 0.159* 0.163* 

HOMA IR  0.316** 0.463** 0.119 0.193* 

 

 

 

3.3.2.1 Pune Maternal Nutritional Study distribution 

characteristics 

Abdominal compartment of VAT and ASAT showed a weak but significant 

association with height in male (VAT: M; r=0.198, p<0.001, ASAT: M; 

r=0.181, p<0.001) (Figure 3.3). However, there was no observed association 

between VAT and ASAT with height in females, despite that the latter was 

shorter (Table 3.5) (Figure 3.4). The absence of an association between VAT 

and ASAT with height seen in females might indicate that height is less likely 

to contribute to VAT and ASAT content in adolescent SA females.              .       

.        .      . 
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Figure 3.4 Gender specific distribution of visceral adipose tissue (VAT) by height in adolescent South Asian in the PMNS cohort. Data obtained from the 

PMNS cohort. VAT: Visceral adipose tissue (cm2. PMNS; Pune Maternal Nutritional Study in (A) n= 261 male, (B) n=162 female; r values represent Spearman's 

test. Spearman’s correlation carried out in SPSS (v. 24.0); * significance was taken as p<0.05. Graphs done using GraphPad Prism version 5.0 

 
 

 

  



154 
 

 
 

 
 

 
 

Figure 3.5 Gender specific distribution of abdominal subcutaneous adipose tissue (ASAT) by height in adolescent South Asian in the PMNS cohort. Data 

obtained from the PMNS cohort. ASAT: abdominal subcutaneous adipose tissue (cm2). PMNS; Pune Maternal Nutritional Study in (A) n= 261 male, (B) n=162 

female; r values represent Spearman's test. Spearman’s correlation carried out in SPSS (v. 24.0); * significance was taken as p<0.05. Graphs done using GraphPad 
Prism version 5.0                 .         .       . 
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There was no observed gender differences in the association between VAT 

and weight; both adolescent SA males and females showed a significant 

association between VAT and weight (M: r=0.548, F: r=0.511, p<0.001 for 

both) (Figure 3.6). The significant association with weight was stronger for 

ASAT in both adolescent SA males and females (M: r=0.831, F: r=0.765, 

p<0.001 for both) (Figure 3.7).        .  
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Figure 3.6 Gender specific distribution of visceral adipose tissue (VAT) by weight in adolescent South Asian in the PMNS cohort. Data obtained from the 

PMNS cohort. VAT: Visceral adipose tissue (cm2). PMNS; Pune Maternal Nutritional Study in (A) n= 261 male, (B) n=162 female; r values represent Spearman's 

test. Spearman’s correlation carried out in SPSS (v. 24.0); * significance was taken as p<0.05. Graphs done using GraphPad Prism version 5.0 
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Figure 3.7 Gender specific distribution of abdominal adipose tissue (ASAT) by weight in adolescent South Asian in the PMNS cohort. Data obtained from 

the PMNS cohort. VAT: Visceral adipose tissue (cm2). PMNS; Pune Maternal Nutritional Study in (A) n= 261 male, (B) n=162 female; r values represent Spearman's 

test. Spearman’s correlation carried out in SPSS (v. 24.0); * significance was taken as p<0.05. Graphs done using GraphPad Prism version 5.0 
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As expected from the abdominal adiposity compartments association with 

weight in both genders, there was an observed strong association between 

BMI and VAT, the association was stronger with ASAT than VAT in both male 

and female (VAT; M: r=519, F: r= 0.537, ASAT; M: r=0.869, F: r=0.888, 

p<0.001 for all) (Figure 3.8, 3.9).                . 
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Figure 3.8 Gender specific distribution of visceral adipose tissue (VAT) by BMI in adolescent South Asian in the PMNS cohort. Data obtained from the 

PMNS cohort. VAT: Visceral adipose tissue (cm2). PMNS; Pune Maternal Nutritional Study in (A) n= 261 male, (B) n=162 female; r values represent Spearman's 

test. Spearman’s correlation carried out in SPSS (v. 24.0); * significance was taken as p<0.05. Graphs done using GraphPad Prism version 5.0. 
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Figure 3.9 Gender specific distribution of abdominal subcutaneous adipose tissue (ASAT) by BMI in adolescent South Asian in the PMNS cohort. Data 

obtained from the PMNS cohort. ASAT: abdominal subcutaneous adipose tissue (cm2). PMNS; Pune Maternal Nutritional Study in (A) n= 261 male, (B) n=162 

female; r values represent Spearman's test. Spearman’s correlation carried out in SPSS (v. 24.0); * significance was taken as p<0.05. Graphs done using GraphPad 
Prism version 5.0.                        .       .        .       . 
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3.3.2.2 BMI cut-offs 

The gender specific distribution of abdominal compartments (VAT and ASAT) 

by BMI grouping (underweight, normal, overweight, and obese; based on 

WHO general guidelines) in adolescent SA in the PMNS cohort is shown for 

VAT in Figure 3.10 and ASAT in Figure 3.11. There were significant 

differences in both depots between BMI groups in males and females 

(p<0.001 for all groups) (Figure 3.10, 3.11). There was an increase in ASAT 

as BMI group number increased for male and female subjects (p<0.001) 

(Figure 3.11). At any BMI point, ASAT was higher in female compared to 

male in the PMNS cohort (p<0.001) (Figure 3.10, 3.11). 
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Figure 3.10. Gender specific volume of visceral adipose tissue (VAT) by BMI groups in adolescent South Asian in PMNS cohort in ( A ) n= 261 male, ( B ) 

n=162 female BMI groups 1: Underweight: (<18kg/m2); 2: Normal (18<23 kg/m2), 3. Overweight (23.0<25.0 kg/m2), 4 Obese (>25 kg/m2), One-way Anova test was 
used to assess differences between all BMI groups except in males where the test was run excluding Obese BMI category (4) due to insufficient subject number;n=1. 
PMNS: Pune Maternal Nutritional Study, BMI: body mass index.  Data presented as mean ± standard deviation using SPSS (v. 24.0); * significance was taken as 

p<0.05. Graphs done using GraphPad Prism version 5.0. 
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Figure 3.11. Gender specific volume of abdominal subcutaneous adipose tissue (ASAT) by BMI groups in adolescent South Asian in PMNS cohort. In (A) 

n= 261 male, (B) n=162 female BMI groups 1: Underweight: (<18kg/m2); 2: Normal (18<23 kg/m2), 3. Overweight (23.0<25.0 kg/m2), 4 Obese (>25 kg/m2), One-way 
Anova test was used to assess differences between all BMI groups except in males where the test was run excluding Obese BMI category (4) due to insufficient 
subject number;n=1. PMNS: Pune Maternal Nutritional Study, BMI: body mass index.  Data presented as mean ± standard deviation using SPSS (v. 24.0); 

*significance was taken as p value (P)<0.05. Graphs done using GraphPad Prism version 5.0.        .              . 
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The distribution of VAT and ASAT was subsequently re-assessed using SA 

specific BMI cut-off (overweight >23 kg/m2, obese >27 kg/m2) and compared 

to standard WHO cut-off (overweight >25kg/m2, obese >30kg/m2) (Figure 

3.12). No significant differences between ranges were observed in VAT or 

ASAT area, in either gender between employing SA specific BMI cut-off or 

WHO cut-off. The comparison was not possible in obese males due to the 

limited number in WHO cut-offs (BMI >30 kg/m2, M: n=1). Since there were 

no significant differences observed between WHO and SA specific BMI cut-

offs, all the data presented from this point will be using WHO BMI cut-offs. 

 

 

  
 
Figure 3.12 Abdominal adiposity area distribution in adolescent South Asian male by BMI cut-
offs in the PMNS cohort. The distribution of VAT ( A ) and ASAT ( B ). BMI cut-off; South Asians 

specific BMI cut-offs (1= 18<23 kg/m2, 2= 23<25 kg/m2, 3= <25 kg/m2, white columns) versus WHO 
BMI cut-offs (1 =18<25 kg/m2, 2= 25<30 kg/m2, 3= >30 kg/m2, grey columns). A , B are box and whisker 

plots; where error bars are min/max range, upper and lower box edges are 25th and 75th percentiles 
and line median. Data analysed by t test with no significant differences between groups. Graphs done 
using GraphPad Prism version 5.0. 
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Figure 3.13 Abdominal adiposity area distribution in adolescent South Asian female by BMI cut-
offs in the PMNS cohort. The distribution of VAT (A) and ASAT (B). BMI cut-off; South Asians specific 

BMI cut-offs (1= 18<23 kg/m2, 2= 23<25 kg/m2, 3= <25 kg/m2, white columns) versus WHO BMI cut-
offs (1 =18<25 kg/m2, 2= 25<30 kg/m2, 3= >30 kg/m2, grey columns). A , B are box and whisker plots; 

where error bars are min/max range, upper and lower box edges are 25th and 75th percentiles and line 
median. Data analysed by t test with no significant differences between groups. Graphs done using 
GraphPad Prism version 5.0. 
 
 
 

3.3.3 South Asian sub-phenotypes of body fat  

3.3.3.1 The thin-fat phenotype:  

The thin fat phenotype is a SA specific phenotype in individuals with low or 

normal BMI but characterized by increased total body adiposity with less 

muscle mass and noticeable high insulin resistance compared to Cau. The 

thin fat phenotype has been reported in SA PMNS cohort compared to Cau 

since infancy and up to the age of 6 years (318, 319) but no information if this 

adverse phenotype persisted in adolescent SA compared to Cau. Since the 

study in this chapter (PMNS) did not include a control group, it was 

inaccessible to compare the cohort to Cau, however, an attempt was made 

to find a Cau cohort that is similar in anthropometry, and body composition 

measurements technique with PMNS and its comparison is discussed in 

more detail in the Discussion. A full statistical comparison of the two cohorts 

was unfortunately not possible as only mean ± standard deviation values 

were provided for general comparison, and no further analysis was allowed 

by the research group who provided these limited data. Overall, thin fat 

phenotype was evident in 18 years old SA compared to Cau with SA 

presented with lower BMI (BMI: PMNS M: 19.8 ± 3.2 kg/m2, F: 19.1 ± 3.46 
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kg/m2; versus Cau M: 22.5 ± 2.2 kg/m2, F: 21.7 ± 2.7 kg/m2), higher glucose 

levels (Glucose: PMNS: M: 8.11 ± 0.5 mmol/L, F;7.9 ± 1.55 mmol/L, Cau: M: 

5.2 ± 0.35 mmol/L, F: 5.1 ± 0.45 mmol/L ) and higher insulin (Insulin: M: 10.3 

± 6.0 mU/L, F: 11.3 ± 4.7 mU/L, Cau: M: 3.9 ± 2.2 mU/L, F: 5.9 ± 3.2 mU/L) 

than Cau (Cau data obtained from unpublished work of Dr James Parkinson).  

3.3.3.2 The thin outside fat inside phenotype: 

TOFI phenotype is a characterized by lean/ normal-weight individuals with an 

increased amount of VAT to ASAT and increased susceptibility for high risk 

of adverse metabolic profile, and it has been reported in Cau. Because there 

was a stronger correlation between BMI and ASAT in females, despite 

similarities in BMI, between both genders, an attempt was made to assess 

the incidence of TOFI phenotype in Pune cohort in males and females.  A 

gender comparison was performed by assessing the number of PMNS 

individuals classified as TOFI within the “normal” weight range. TOFI was 

calculated as from a previous publication (72) as the mean of the ratio of 

VAT/ASAT for healthy individuals was reported to be 0.59 (male) and 0.25 

(female), this was calculated as two standard deviations above the measured 

(mean VAT/ASAT) in healthy individuals (+2 s.d. male: 1.04, female: 0.45). 

Applying this published TOFI cut-off to my study of SA, I identified 35 males 

and 29 females presented with TOFI phenotype. 

Table 3.6 shows the number and percentage of male and females identified 

as TOFI for 18-25kg/m2. In females, the percentage of TOFI was higher than 

in males (TOFI %: M: 21.6%, F: 37.1%) despite that females had smaller WC 

than males (p<0.001) (Table 3.6). Comparing to TOFI prevalence in Cau 

(TOFI in Cau; M=14%, F=12%, reported previously in (72)), SA had almost 2 

fold higher TOFI in lean males, and 3 fold higher TOFI in lean females. These 

ethnic differences in TOFI phenotype indicate that almost a quarter of lean 

SA males and half of lean SA females have a phenotype associated with an 

adverse metabolic profile.  
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Table 3.6 Gender specific epidemiology of TOFI phenotype in adolescent South Asian in the 
PMNS. The number of male and female presenting as TOFI in the PUNE cohort WHO recommended 

18-25 kg/m2 ranges. Individuals were defined as TOFI if their VAT/ASAT ratio was >1.04 in males, and 
>0.45 in females (from (72)). TOFI; thin outside fat inside. PMNS; Pune Maternal Nutritional Study.  

 Male Female 

 18-25 kg/m2 18-25 kg/m2 

TOFI number 35/162 29/78 

TOFI (%) 21.6 37.1 

 

 

Since the published TOFI cut off was derived from Cau population, it may not 

be useful in the SA population (one size does not fit all); therefore an attempt 

was made to create a TOFI cut-off suitable for a SA population. To do so, a 

healthy subgroup was identified from the PMNS based on a BMI normal rage. 

The mean ratio of VAT/ASAT in healthy SA population was 0.88 (males) and 

0.50 females. Two standard deviations were added to the mean (SD: M: 0.43, 

F: 0.23) for the ratio of VAT/ASAT in order to create a TOFI threshold derived 

from SA population. The TOFI threshold for SA was set to 1.75 for males and 

0.97 for females. Using this threshold, 13 males (4.9 %) and 8 females (10.2 

%) were identified as TOFI-South Asian. Compared to Cau TOFI, SA specific 

TOFI estimated a lower percentage of TOFI in lean SA males (16.7% lower 

than TOFI-Caucasian cut-offs), and lean South Asian females (3.7% lower 

than TOFI-Caucasian cut-offs) than Cau male and female. Furthermore, lean 

SA used in this statistical comparison were 21 years younger than the Cau, 

and age showed a significant positive association with VAT (p<0.001) in 

adolescent SA males and females. Hence it is estimated that the prevalence 

of TOFI in older SA may be higher.  

The TOFI and thin-fat phenotypes are related to each other in term of lean 

characteristics but unfavourable adiposity and adverse metabolic risk. The 

main difference between the two phenotypes is that the TOFI phenotype was 

originally derived from individuals with a BMI range of 20 – 25 kg/m2 and it is 

unclear how applicable it is to subjects outside this range.   

3.3.4 Pune Maternal Nutritional Study gender specific characteristics 

by Impaired Fasting Glucose status 

As described in Section 3.2.1.1, pre-diabetes diagnosis falls into two 

categories; IFG: when the fasting plasma glucose result is between 5.6 
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mmol/L and 6.9 mmol/L, or Impaired Glucose Tolerance: when the OGTT is 

between 7.8 and 11.0 mmol/L. IFG for the measurements of pre-diabetes is 

recommended in the general population with no observed glucose 

metabolism disorders, including HTN. In this study of adolescent SA there 

was no observed HTN and therefore circulating levels of fasting glucose were 

used to define individuals as “normal fasting glucose” (NG: <5.5mmol/L) or 

pre-diabetic (PD) as IFG (PD: >5.6mmol/L, <6.9 mmol/L) (Table 3.7).  

 

Table 3.7 Distribution of normal blood glucose and pre-diabetes in adolescent South Asian 

from PMNS cohort. PMNS; Pune maternal nutritional study. 

Test  Normal blood glucose (NGT) Pre-diabetic (PD) 

 Value  N Value  N  

Fasting plasm 

glucose 

(mmol/L) 

Below 5.5 281 5.6 – 6.9 (Impaired 

fasting Glucose) 

142 

 

 

Gender specific presentation of anthropometry, body composition and blood 

biochemistry based on NGT and pre-diabetes classification are shown in 

Table 3.8. In males, significant differences between NGT and pre-diabetes 

groups were observed for several parameters, with pre-diabetes showing 

increased WHR (NG: 0.8 ± 0.1, pre-diabetes: 0.9 ± 0.3, p<=0.004), sum of 

skinfold thickness (NG: 40.8 ± 23.5 cm2, pre-diabetes: 46.0 ± 28.1 cm2, 

p=0.006) (Table 3.8). Interestingly, there were no observed differences in 

total FM or lean mass measured via DXA between NGT and pre-diabetes 

males, whereas VAT was more (15 cm2 higher VAT) in pre-diabetes than 

NGT adolescent SA males but not females.  It appeared from the lack of 

differences in FM and lean mass with the observed increased in VAT in pre-

diabetes than NGT that VAT might be an early biomarker for T2D in 

adolescent SA males but not females.  

Apart from blood glucose levels (p<0.001), there were no observed significant 

differences in anthropometry, body composition, and metabolic profile 

between NGT and pre-diabetes adolescent female, although the latter 

showed a trend toward lower BMI (Table 3.8).   
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Table 3.8 Gender specific characteristics by fasting glucose status in adolescent South Asian 
from the PMNS. VAT; Visceral adipose tissue, ASAT; Abdominal subcutaneous adipose tissue. NG: Normal glucose tolerance; PD: Pre-diabetic; 

Statistical analysis comparing NG and PD groups was carried out separately in males and females by Student’s t-test; significance was taken as p<0.05 

and indicated by *. Statistics carried out in SPSS version 23.0. 

 

 

Gender specific distribution of metabolic profile in NG and pre-diabetes is 

shown in (Figure 3.14), and as reported pre-diabetes females showed a 

trend toward lower BMI yet more insulin resistant than pre-diabetes males 

(Figure 3.14).  

  Male Female 

  NG (n=150) PD (n=111) NG (n=131) PD (n=31) 

A
n

th
ro

p
o

m
et

ry
 

Weight (kg) 56.6 ± 10.7 57.3 ± 10.5 47.2 ± 8.1 45.0 ± 10.4 

Height (cm) 170 ± 7.2 169 ± 6.8 156 ± 6.0 155 ± 6.8 

BMI (kg/m2) 19.6 ± 3.1 20.0 ± 3.25 19.2 ± 3.2 18.7 ± 4.5 

Waist circumference (cm) 72.6 ± 8.6 74.1 ± 9.4 69.3 ± 7.3 67.4 ± 8.4 

Hip circumference (cm) 87.9 ± 7.2 87.5 ± 11.4 87.5 ± 6.7 85.2 ± 9.3 

Waist-to-Hip Ratio 0.8 ± 0.1 0.9 ± 0.3* 0.8 ± 0.1 0.8 ± 0.1 

Skinfold Thickness (cm) 40.8 ± 23.5 46.0 ± 28.1* 67.3 ± 27.7 62.1 ± 30 

B
lo

o
d 

P
re

ss
u

re
 Systolic Blood Pressure 111 ± 10.5 111 ± 9.6 105 ± 7.8 108 ± 9.7 

Diastolic Blood Pressure 58.7 ± 8.3 57.1 ± 8.1 61.2 ± 6.5 62.4 ± 7.8 

M
R

I 

VAT Area (cm2) 197 ± 64.3 212 ± 64.9* 166 ± 61.3 165 ± 67.6 

ASAT Area (cm2) 291 ± 200 321 ± 233 393 ± 205 348 ± 267 

VAT/ASAT 0.9 ± 0.4 0.9 ± 0.4 0.5 ± 0.5 0.5 ± 0.2 

D
X

A
 

Total Fat Mass (kg) 9.2 ± 6.4 10.3 ± 7.2 14.0 ± 5.6 12.7 ± 7.0 

Total Lean Mass (kg) 44.7 ± 5.9 44.2 ± 4.9 30.5 ± 3.4 30.0 ± 4.6 

Total Trunk Fat (kg) 4.4 ± 3.4 5.0 ± 3.9 6.2 ± 2.9 5.5 ± 3.2 

M
et

ab
o

lic
 P

ro
fi

le
 Fasting Glucose (mmol/L) 5.2 ± 0.2 5.7 ± 0.2* 5.1 ± 0.2 6.1 ± 2.1* 

Fasting Insulin (mmol/L) 9.5 ± 5.2 11.5 ± 6.8* 11.3 ± 4.8 11.8 ± 4.7 

Cholesterol (mmol/L) 3.3 ± 0.6 3.3 ± 0.6 3.4 ± 0.6 3.6 ± 0.8 

HDL Cholesterol (mmol/L) 1 ± 0.2 1.1 ± 0.34 1.1 ± 0.2 1.1 ± 0.2 

Triglycerides (mmol/L) 0.8 ± 0.4 0.8 ± 0.3 0.7 ± 0.3 0.7 ± 0.4 

HOMA IR 1.2 ± 0.7 1.5 ± 0.9* 1.4 ± 0.7 1.5 ± 0.7 
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Figure 3.14 Illustration of gender specific metabolic profile distribution in NGT and PD adolescent South Asian in the PMNS cohort. BMI: body mass index, 

HOMA IR: homeostasis model assessment of insulin resistance, NGT: normal glucose tolerance (<5.5mmol/l), PD: pre-diabetic (>5.5mmo/L, >6.9mmol/L). One-way 
ANOVA carried out in SPSS (v.24.0).( A ) male,( B ): female A & B are box and whisker plots; where error bars are min/max range, upper and lower box edges are 

25th and 75th percentiles and line median. Data analysed by t with no significant differences between groups. Graphs done using GraphPad Prism version5.0.           .                                  
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The results of the OGTT as defined by normal fasting glucose tolerance or 

pre-diabetes classification is shown in Figure 3.15. A significant increase in 

circulating glucose profile was observed in males and females termed pre-

diabetic (p<0.001) compared to those defined as having NGT, with similarities 

in insulin secretion (Figure 3.15).  

 

 

Figure 3.15 Oral glucose tolerance test (OGTT) in the PMNS. NGT: normal glucose tolerance 
(<5.5mmol/l), PD: pre-diabetic (>5.5mmo/ml). Glucose (A, B) and insulin (C, D) levels following a 75g 
oral dose of glucose in fasted individuals from the PUNE cohort in males (A, C) and females (B , D). 

Data presented as mean ± s.d. Graphs done using GraphPad Prism version 5.0. 
 
 

 

VAT was significantly higher in pre-diabetes than NG males (p=0.03), while 

there were no significant differences in VAT between NG and pre-diabetes 

females (Figure 3.16). ASAT showed a trend to be higher in pre-diabetes 

compared to NG males and females, but this was not significant (p=0.9) 

(Figure 3.17). The ratio between VAT and ASAT was not different between 

NGT and pre-diabetes males and females (Figure 3.18).             .       .     .        

.         .      .       .  
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Figure 3.16 Gender specific visceral adipose tissue (VAT) distribution in the PMNS in NG and PD adolescent South Asian from PMNS. VAT: Visceral adipose 

tissue, ASAT: Abdominal subcutaneous adipose tissue, NGT: normal glucose tolerance (<5.5mmol/l), PD: pre-diabetics (>5.5mmo/ml). Mann-Whitney carried out in 
SPSS (v.24.0). A, B are box and whisker plots; where error bars are min/max range, upper and lower box edges are 25th and 75th percentiles and line median. Data 

analysed by t test. While columns in male, grey columns in female. 

P=                                                                             
P=ns                                                                             

A                                                                                       B  
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Figure 3.17 Gender specific abdominal subcutaneous adipose tissue (ASAT) distribution in the PMNS in NG and PD adolescent South Asian from PMNS. 

ASAT: Abdominal subcutaneous adipose tissue, NGT: normal glucose tolerance (<5.5mmol/l), PD: pre diabetics (>5.5mmo/ml). Mann-Whitney carried out in SPSS 
(v.24.0). A, B are box and whisker plots; where error bars are min/max range, upper and lower box edges are 25th and 75th percentiles and line median. Data analysed 

by t test with no significant differences between groups. While columns in male, grey columns in female.  

             P= ns                                                                                                                                 P=ns 

A                                                                                       B  
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Figure 3.18 Gender specific adipose tissue distribution in the PMNS in NG and PD adolescent South Asian from PMNS. VAT: Visceral adipose tissue, ASAT: 

Abdominal subcutaneous adipose tissue, NGT: normal glucose tolerance (<5.5mmol/l), PD: pre diabetics (>5.5mmo/ml). Mann-Whitney carried out in SPSS (v.24.0). 
A, B are box and whisker plots; where error bars are min/max range, upper and lower box edges are 25 th and 75th percentiles and line median. Data analysed by t-

test with no significant differences between groups. While columns in male, grey columns in female.  

             P= ns                                                                                                                                 P=ns 

A                                                                                       B  
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Linear regression analysis was used to model the relationship between VAT 

(Table 3.7) and ASAT (Table 3.8) with glycaemic status.  

Table 3.9 Modelling of VAT in adolescent South Asian of PMNS participants via linear 
regression. Data showing the results of linear regression of VAT comprising two models; M1 is Model 1: 

Glycaemic status; M2 is Model 2: Glycaemic status adjusted for gender and BMI. 

  Standardized 

Coefficients 

Beta 

P 

value 

M1 
Glycaemic Status 0.13 0.007 

M2 
Glycaemic Status adjusted for 

gender and age  

0.06 0.104 

Gender -0.21 <0.001 

BMI 0.54 <0.001 
 

 
Table 3.10 Modelling of ASAT in adolescent South Asian of PMNS participants via linear 
regression. Data showing the results of linear regression of VAT comprising two models; M1 is Model 1: 

Glycaemic status; M2 is Model 2: Glycaemic status adjusted for gender and BMI. 

 

  Standardized 

Coefficients 

Beta 

P 

value 

M1 
Glycaemic Status 0.03 0.570 

M2 
Glycaemic Status adjusted for 

gender and age  

0.02 0.421 

Gender 0.27 <0.001 

BMI 0.88 <0.001 

 

Results indicated a significant contribution of glycaemic status in VAT 

(p=0.007) but not ASAT (p=0.570), suggesting a more important role of VAT 

in the development of insulin resistance. Models for both VAT (p<0.001) and 

ASAT (p<0.001) showed more significant effect after including gender and 

BMI in the model.                                 .. 
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3.4 Discussion 

The prevalence of T2D is increasing worldwide, with 659 million people 

predicted to present with the condition by 2045 (301). Many elements 

contribute to its development including age, gender, diet, exercise and 

socioeconomic factors (320). Ethnicity is also a factor, with data from 

numerous countries indicating that SA populations present much higher rates 

of T2D compared to Cau (218, 245, 321-323). Studies have shown that SA 

populations have a higher body fat percentage compared to Cau at any given 

BMI (up to 5% higher) (250, 303, 324). SA populations also have a higher 

susceptibility to develop features of the metabolic syndrome at any given WC 

or WHR compared with Cau (225, 325). It has been proposed that this 

increased risk may result from increased central adiposity observed in SA 

(325); fat deposition strongly linked to insulin resistance and CVD (93, 326). 

This chapter presents the quantitative analysis of MRI acquired abdominal 

images from the 18-year-old participants of the PMNS. The relationships 

between VAT, ASAT and additional outcomes; including anthropometry, 

blood biochemistry and body composition were examined. Notable gender 

specific correlations between VAT and markers of insulin resistance were 

found, not observed with ASAT. In addition, the study data based on pre-

diabetic status and the generally accepted BMI cut-offs versus proposed BMI 

cut-offs specific for SA population were assessed. Lastly, given the young 

age of the SA population included in this study (18.0 ± 0.6 years), an 

unexpectedly high number of individuals of both genders in the PMNS who 

present with the TOFI phenotype were identified, suggesting the 

development of metabolic difficulties will be a feature of adult life for many of 

these individuals. 

 

The PMNS is a large ongoing study that provides in-depth mother-infant data 

from a homogenous SA population located in rural Southern India (327). 

Females in these communities usually work farming cash crops, with few 

educated beyond the primary school level (327). The PMNS was designed to 

examine the relationship between a mother's size, body composition, diet and 

micronutrient status on foetal development and subsequent infant growth 

(327). In addition to the wealth of data from India, PMNS investigations have 
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also utilised data from a mother-infant cohort for use as a Cau comparator 

group. This study, the Southampton’s Women’s Survey (SWS), represents 

the only study in Europe of females and their children to obtain information 

directly from mothers before conception in order to learn more about the 

dietary and lifestyle factors that influence infant health (328). 

 

Previous publications from the PMNS and SWS have demonstrated that, 

compared to their Cau counterparts, SA mothers were younger, lighter and 

shorter with a lower BMI (328). SA mothers gave birth to infants that were 

smaller in all anthropometric measurements at birth and became relatively 

even smaller up to 2 years of age, before a degree of catch-up growth at 3 

years (328). At 6 years, PMNS children were slimmer, thinner and had a higher 

body fat percentage (thin-fat phenotype) compared to their UK based 

counterparts (318, 328). Furthermore, SA boys had increased body fat 

deposition, with SA children of both genders demonstrating a metabolically 

unhealthy profile that was not explained by their adiposity (319). In addition to 

these data, a study by Krishnaveni et al. examined the anthropometry of 

urban SA children at three time points up to the age of 4 years and showed 

that the thin-fat phenotype persists in childhood and may explain SA 

‘diabetogenic’ phenotype in adulthood (329). All these studies have provided 

clear evidence of the “thin-fat phenotype” manifesting in SA children.  

 

The PMNS 18-years cohort is a reflection of the ‘Predictive Adaptive 

Response’ hypothesis mentioned in Chapter 1 Section 1.2.1, which is that 

foetal adaptations to scarcity become maladaptive only when affected 

individuals are later exposed to an environment of plenty as from rural to 

urban areas (39). PMNS adolescents were for malnourished mothers and so 

experienced scarce environment in utero while later in life they moved from 

rural to urban areas so experienced an environment of plenty and therefore 

this disparities in both environments might lead to the observed adverse 

metabolic dysregulation in PMNS offspring (39).  

 

In this Chapter, was found significant differences between males and females 

in the PMNS cohort; these includes established gender differences, such as 
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reductions in height, weight, VAT and increased ASAT, skinfold thickness in 

females compared to males, which have also been established in other 

ethnicities at a comparable age (330, 331). Height was weakly associated with 

VAT and ASAT in males but not females, despite those females being 

shorter, with less lean mass but a similar BMI to the males and therefore it 

expected that they would develop a stronger association between height and 

VAT or/and ASAT. Moreover, females were more insulin resistant compared 

to males, which might be explainable by their lower lean mass. Such an 

association demonstrates further gender differences in the pathophysiology 

of insulin resistance in SA. 

  

As mentioned previously in Chapter 2, pre-diabetes is a condition of glucose 

abnormalities; an intermediate status above-normal glucose (lower than 5.6 

mmol/L) and T2D, and it is estimated to affect more than 457 million 

individuals worldwide by 2045 (301). Its prevalence in the UK increased from 

11.6% to 35.3% from 2003 to 2011 and expected to affect 50% of all 

overweight and obese population in the UK (332). Pre-diabetes defined as 

elevated blood glucose above the normal level but below T2D threshold (301). 

Pre-diabetes can be diagnosed as IFG using fasting plasma glucose of 5.6 

to 6.9 mmol/L, or as impaired glucose tolerance using OGTT of 2 hours 

plasma glucose of 7.8 – 11.0 mmol/L (after ingestion of 75 mg oral glucose), 

and glycaemic haemoglobin A1C, which indicates average blood glucose in 

the last 2-3 months of between 5.7% and 6.4% (333). Other health institutions 

have published different thresholds for the diagnosis of pre-diabetes with 

slightly higher cut-offs of IFG (6.1 - 6.9 mmol/L) (334). HbA1c considered a 

superior method for diagnosing pre-diabetes due to its practicality (only one 

blood test) and temporal capturing but unfortunately, HbA1c was not 

measured in the PMNS protocol. Therefore, and given the young age (18.0 ± 

0.6 years) and low average BMI (19.5 ± 3.3 kg/m2) of PMNS cohort, the pre-

diabetes definition that I used was using the lower threshold of IFG of 5.6 to 

6.9 mmol/L to ensure proper sensitivity. 
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However, there is a growing scientific criticism of pre-diabetes; firstly, the 

label ‘pre-diabetes’ suggests that the condition has a linear link to T2D (the 

word ‘pre’ is a Latin word means before) (335). However, a Cochrane review 

of a total of 103 prospect cohort studies that investigated the prognosis from 

pre-diabetes (defined by FPG: <5.6 mmol/L >6.9 mmol/L, IFG: <6.1 mmol/L 

>6.9 mmol/L, IGT: plasma glucose after 2 hours of 75 g glucose ingestion < 

7.8 mmol/L > 11.1 mmol/L,  IFG+IGT or HbA1C: < 5.7% > 6.4% ) to T2D 

demonstrated no clear linear association (335). Additional studies have shown 

that the prognosis from pre-diabetes to T2D could be as low as 1.3 % of the 

studied population (336). While the emphasis on pre-diabetes is mainly from 

a prevention perspective, there are high rates of pre-diabetes patients who 

revert to normal glucose status at any time, even after more than one decade 

of being pre-diabetic (335). As an additional criticism, the way pre-diabetes is 

currently defined allows the pharmaceutical industry to target a relatively 

large population without enough clinical evidence supporting either the 

necessity of a drug treatment nor the long–term Hazard Ratio for the 

prognosis to T2D (335). For example, when the American Diabetes 

Association reduced the threshold of pre-diabetes from IFG of 6.1 mmol/L to 

5.6 mmol/L, this dramatically increased the number of people diagnosed with 

pre-diabetes worldwide (337). Revisiting the label of pre-diabetes as an 

independent condition; for example, labelling it as an abnormality in glucose 

signalling or impaired glycaemia, rather than implying a direct link to T2D, 

would provide much needed clarity for researchers, physicians and most 

importantly patients (337).  

 

In this Chapter, the term pre-diabetes used to categorize young individuals 

based on their elevated glucose status because they had similar main 

cofounders such as age, BMI, WC, total FM, total lean mass and ethnicity in 

order to provide in-depth understating of AT role in a well-characterised 

population. This characterization revealed interesting results with pre-

diabetes females represent a normal adipose tissue profile more than their 

normoglycaemic peers and therefore indicating the need for further studies 
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to understand T2D development in Indian focusing on AT content and 

distribution.     

 

Increased fasting blood glucose levels are an early indicator of glucose 

insensitivity, which may progress to insulin resistance and ultimately, T2D 

(338, 339). Comparison of individuals when categorised as NGT or pre-diabetic 

revealed a similar increase in VAT, but not ASAT, in pre-diabetic males. Pre-

diabetic males also presented increased fasting insulin, WHR, skinfold 

thickness and HOMA index. Linear regression analysis revealed a significant 

contribution of glycaemic status when modelling VAT, effects not observed 

when modelling ASAT. It is important to identify outcomes that indicate 

greater susceptibility to metabolic disease in later life. While these data are 

cross-sectional, meaning causality cannot be implied, the associations 

observed, notably in males, indicate that VAT appears to be an important 

marker for these effects. It should be noted that  cholesterol, triglycerides and 

the HOMA-IR are found to be more strongly correlated with ASAT than VAT 

in both males and females. Surprisingly, when the cohort was divided into 

normal glucose and pre-diabetic, I found an increase in ASAT in pre-diabetic 

males. This is surprising given several factors: first, previous evidence has 

demonstrated that VAT, not ASAT, has a positive association with insulin 

resistance (83, 93, 326). Secondly, some evidence indicated that ASAT usually 

outweighs VAT negative metabolic outcomes (93). Thirdly, epidemiological 

studies demonstrated that VAT is associated with all-cause mortality, while 

the SAT is associated with decreased all-cause mortality (188). Finally, 

according to the adipose tissue expandability hypothesis, the adverse effect 

of excess fat is linked to SAT ability to expand to accumulate excess lipid (the 

protective effect), and therefore prevent visceral and ectopic adiposity (91). 

In this cohort the contrary was seen, with pre-diabetic SA having a higher 

SAT than VAT. All these factors together with the findings described here, 

indicate a possible different metabolic pathophysiology in adipose tissue 

metabolism in SA. Longitudinal follow-up of these individuals will be required 

to clearly ascertain the role VAT and ASAT may play in the development of 

metabolic syndrome associated morbidities. It is also possible that SA in this 
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cohort had elevated deep ASAT which as mentioned in Chapter 1 Section 

1.3.2, has a similar adverse metabolic effect to VAT. However, during my 

analysis for the PMNS, I was not able to differentiate between deep and 

superficial ASAT due to low image resolution. The facia layer that separate 

superficial ASAT from deep ASAT is a thin collagen layer that requires high 

image resolution for visualization. 
 

BMI is strongly associated with mortality and morbidity in epidemiological 

studies, as mentioned in Chapter 1, and has a clear linear relationship with 

anthropometry and fat depots (14). However, additional data have shown a 

significant variation in an individual’s body fat within established BMI and WC 

cut-offs groups (72, 330, 340). The use of standardised BMI ranges for clinical 

classification of obesity across ethnic boundaries is also limited by the 

increased susceptibility to develop T2D at lower BMI and age in SA compared 

to Cau (20); SA, develop metabolically adverse outcomes at a lower BMI 

(approximately 6 kg/m2 lower) (20, 193, 341). As such, conventional clinical 

thresholds for obesity that were originally derived from populations of white 

Cau descent may not be appropriate for an ethnically diverse population (192).  

 

SA populations exhibit elevated adiposity at a lower body weight compared 

to Cau (248). As such, the number of SA who are classified as obese (and 

subsequently at higher risk of related comorbidities) is substantially 

underestimated when using unadjusted BMI classifications. This has led to 

revised BMI cut-offs for SA being published in order to more accurately reflect 

the increased metabolic risk in these populations (342, 343). In my analysis, I 

have compared the distribution of VAT and ASAT in the PMNS cohort based 

on the established WHO guidelines for obesity classification (189), and the SA 

specific BMI cut-offs (343). I found no significant differences in abdominal 

body fat distribution in either males or females between WHO and SA BMI 

cut-offs. Extensive work has been done to change these guidelines from 

overweight >25 kg/m2, obese >30 kg/m2 to overweight > 23 kg/m2 and obese 

27> kg/m2 (193, 343), however, it appears from this analysis that the scientific 

community may need to focus on implementing accurate obesity assessment 

tools such as MR (89) before calling for new guidelines. Moreover, the 

significant differences I observed between fat depots between all BMI groups 
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using WHO BMI cut-off guidelines indicate that using WHO BMI guidelines 

can be accepted with caution as a proxy measure to separate groups when 

MR is not available, although this may be limited by the very small number of 

individuals presenting higher BMI classifications of overweight and obese in 

PMNS.  

 

Different BMI ranges were compared by assessing the number of individuals 

in each BMI group that presented with the TOFI phenotype. The TOFI 

phenotype is calculated from a ratio of VAT and ASAT, with cut-offs originally 

derived from the range of abdominal adiposity stores in a defined healthy 

subset of volunteers (72). It is a mean of identifying those with an adverse fat 

distribution that may be at increased metabolic risk. It is appropriate for use 

in individuals with a BMI within the normal range (18-23kg/m2 specific for SA 

or 18-25kg/m2 general WHO). Anyone classified as overweight or obese 

cannot be classified as “thin”; therefore, high levels of VAT in these 

individuals represent a separate body composition type of disproportionately 

large amounts of visceral adiposity. The TOFI index is a useful quantitative 

tool to assess SA given the prevalence of the thin-fat phenotype in this 

population. While no differences in the number or percentage of individuals 

presenting with the TOFI phenotype was found between normal BMI group 

by WHO and SA specific cut-offs, what is striking is the exceptionally high 

numbers of young adults in the PMNS, of both genders, classified as TOFI 

as 21.6% in lean SA males and 37.9% in lean SA females. The original TOFI 

cut-offs were defined using a Cau population with a mean age of 38 years 

(72). In that population of substantially older individuals, only 14% of males 

and 12% of females presented as TOFI, compared to the 21.6% of males and 

37.9% of females of 18 years of age. Adiposity, hyperinsulinemia and the 

thin-fat phenotype in this population of SA have been reported at birth (318, 

328) and the data here indicate this phenotype is maintained into young 

adulthood. Taking the large difference in age and ethnicity between the 

published TOFI phenotype (72) and my SA cohort, a South Asian-specific 

TOFI was created (applying the published method (72) on my cohort), which 

results in a lower TOFI prevalence in SA specific than was found when using 

the generic cut-off. This indicated significant racial differences in the TOFI 



183 
 

threshold between Cau and SA proposed TOFI threshold. These differences, 

together with no observed differences in BMI SA specific cut-offs showed that 

central adiposity (VAT and ASAT) has significant differences in SA than Cau 

and an accurate tool for abdominal adiposity is required to determine the 

obesity risk in SA.  
 

One limitation of my work is the lack of liver fat data available for this cohort. 

In addition to SA neonates have been reported with increased all abdominal 

AT compartments  (344) and therefore, it would have been beneficial to 

measure liver fat given its association with metabolic disease (247). 

Interestingly, Prof Yanjik (PMNS lead researcher) reported orally that PMNS 

cohort was scanned for liver fat by ultrasound and only very few (~3% of the 

total cohort) had fatty liver (Yajnik 2018 personal communication). However, 

ultrasound remains a method of limited accuracy for determining liver fat 

content especially with increased SAT (as seen in the PMNS cohort), which 

may cause large scatter during the ultrasound scan (345). Therefore, and as 

this cohort reaches 24 years of age and will be going through additional 

follow-up scans, it is propose here that the MR imaging protocol includes liver 

and pancreas, as these two ectopic fat depots are important determinants of 

metabolic health.  It was demonstrated in Chapter 2 that liver and pancreatic 

fat were two-fold higher in pre-diabetic versus the free-living population in 

Europe and therefore it would be beneficial to examine if the same pattern 

exist in pre-diabetic versus normal SA population. This further detail in liver 

fat as well as VAT and ASAT will open up rich resources of allowing robust 

diagnosis, treatment and prevention of T2D in SA.   
 

As previously discussed in Chapter 1, the overflow hypothesis suggests that 

immature SAT will lead to an overflow of excess fat and subsequently 

increased VAT, and liver fat accumulation (256, 346). The analysis of SAT and 

VAT appears to partly contradict this hypothesis, as SA who were more 

insulin resistant showed higher levels of SAT. The reason for this difference, 

compared to what is normally observed in Cau subjects, may relate to 

differences in “deep ASAT” (347). Deep ASAT has been shown to have a 

similar association with metabolic health as in VAT and therefore ASAT may 

need more in-depth quantification than simply assessing its overall volume 
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(348). Unfortunately, it was not possible to further quantify the ASAT into deep 

and superficial ASAT due to the limited resolution of the MRI images.  The 

quantification of deep and superficial ASAT requires very high resolution 

images to be able to detect the fascia layer which builds up of thin collagen 

(348). 

 

Another limitation of this study is the lack of infant and maternal longitudinal 

data available for analysis. According to the thrifty phenotype hypothesis (43), 

reduced foetal growth is strongly associated with the development of chronic 

conditions in later life (44, 349). Neonatal outcomes such as birth weight, 

growth rate, catch-up growth and nutrition, as well as maternal factors such 

as age, diet and gestational diabetes status have all been implicated in the 

development of metabolic disease (37, 310, 350-353) and having such 

longitudinal data would have provided interesting correlates for the adiposity 

data generated here. Unfortunately, the longitudinal data of infant and 

mothers in the PUNE analysis was not available by the time of this analysis. 

Hopefully future work with our collaborators in India will allow these important 

relationships to be assessed, which will facilitate new horizons in the 

prevention of obesity associated metabolic disorders.  

 

The largest limitation in the analyses here is the lack of a Cau control group 

with a similar age range, with which to compare the PMNS cohort. The most 

recent follow-up of the University of Southampton SWS was carried out when 

children were 11 years of age and remain unpublished 

(https://www.mrc.soton.ac.uk/sws/the-survey/childrens-follow-up/). There is, 

therefore, a need for comparative imaging data. In order to try and address 

this issue, some unpublished data was obtained from a study of Cau of white 

European descent, aged 19 -27 years of age. These individuals were 

recruited based on their gestational age (37 to 42 weeks) and were defined 

as healthy, free from chronic disease and neuro-disability. Whole body 

imaging by MRI, anthropometry and blood biochemistry data were all 

obtained. While a direct statistical comparison of these two data sets would 

not be appropriate due to differences in image acquisition (PMNS covered 

three MR slices of the abdomen while Cau dataset covered all body), as well 

https://www.mrc.soton.ac.uk/sws/the-survey/childrens-follow-up/
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as issues regarding limited use of the data, Table 3.11 shows study data from 

this population next to that of the PMNS. 

 

Table 3.11 Anthropometry, blood biochemistry and body composition in South Asian and 
Caucasian young adults. Study data from age comparable South Asian and Caucasian young adults. 
Unpublished data courtesy of Dr J Parkinson. PMNS= Pune Maternal Nutritional Study, TOFI= Thin outside fat inside, HOME-IR = 

homeostatic model assessment of insulin resistance. Data presented as mean ± SD.  

 

The reductions in height, weight and BMI observed in individuals from the 

PMNS represent established ethnic differences in anthropometry. 

Furthermore, the large increase in fasting blood glucose, insulin (double in 

SA than Cau) and HOMA-IR in PMNS participants of both genders suggest 

a marked difference in glucose metabolism and insulin sensitivity (Table 

3.11). The number of individuals presenting as TOFI is also markedly higher 

(10 times) in the PMNS than Cau (Table 3.11). These observed racial 

differences might be due to reduced muscle mass in SA, which is associated 

with increased glucose circulation (354). In addition, PMNS children were born 

to malnourished mothers, which may indicate that the offspring (PMNS 

children) may have received inadequate substrate for skeletal and/or lean 

 

PMNS – South Asians 
Caucasians of European 

descent 

Male 
(n=261) 

Female 
(n=162) 

Male 
(n=27) 

Female 
(n=25) 

A
n

th
ro

p
o

m
e

tr
y Age (yrs.) 18.2 ± 0.5 17.7 ± 0.6 22.0 ± 2.3 23.5 ± 2.9 

Weight (kg) 56.9 ± 10.6 46.8 ± 8.6 71.7 ± 9.4 59.7 ± 8.7 

Height (cm) 169 ± 7.0 156 ± 6.2 178 ± 9.2 165 ± 6.5 

BMI (kg/m) 19.8 ± 3.2 19.1 ± 3.5 22.5 ± 2.2 21.7 ± 2.7 

B
lo

o
d

 

p
re

ss
u

re
 Systolic Blood Pressure 

(mmHg) 
111 ± 10.1 105 ± 8.3 123 ± 7.4 119 ± 7.9 

Diastolic Blood Pressure 
(mmHg) 

58.0 ± 8.3 61.5 ± 6.8 73.9 ± 7.1 72.8 ± 7.4 

M
e

ta
b

o
lic

 p
ro

fi
le

 

Fasting Glucose (mmol/L) 8.1 ± 0.5 7.9 ± 1.5 5.2 ± 0.3 5.1 ± 0.4 

Fasting Insulin (mU/L) 10.3 ± 6 11.3 ± 4.7 3.9 ± 2.2 5.9 ± 3.2 

Fasting Cholesterol 
(mmol/L) 

3.3 ± 0.6 3.5 ± 0.6 4.0 ± 0.6 4.4 ± 0.8 

Fasting HDL Cholesterol 
(mmol/L) 

1.0 ± 0.3 1.1 ± 0.2 1.5 ± 0.5 1.1 ± 0.2 

Fasting Triglycerides 
(mmol/L) 

0.7 ± 0.3 0.6 ± 0.3 0.7 ± 0.3 0.6 ± 0.3 

HOMA IR 1.4 ± 0.8 1.5 ± 0.6 0.9 ± 0.5 1.1 ± 0.5 

M
R

I 

d
er

iv
ed

  

m
ea

su
re

m

en
ts

 TOFI score (VAT/ASAT) 1 ± 2.1 0.5 ± 0.2 0.5 ± 0.2 0.3 ± 0.1 

TOFI percentage (%) 21.6 37.1 3.7 0.0 
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mass growth as mentioned in Chapter 1, Sections 1.2.1 (328, 355). 

Furthermore, changes in the environment from scarce (intrauterine; as the 

mothers were malnourished) into plenty (Indian mothers moved from rural to 

urban areas, which considered obesogenic environment), might reprogram 

SA children to survival adaption by preserving higher level on insulin and 

glucose to maintain sufficient sustainable energy (310). Finally, epigenetic 

environmental factors, which are highly complex, such as dietary intake and 

urban infrastructure, might be a prominent indicator of increased central 

adiposity in SA (356). Therefore, further studies that combine all aspects that 

contribute to metabolic health in SA is recommended to capture the full 

magnitude of the epigenetic contribution. Furthermore, comprehensive 

multidiscipline efforts to reduce metabolic diseases from primary care 

(monitoring mothers nutritional status), research community (for accurate 

assessment of adiposity) and government (physical activity promoting 

infrastructure) are urgently recommended to be put in place in order to tackle 

the increased burden of metabolic illness in South Asia.   

 

Increased blood pressure is a defining feature of the metabolic syndrome 

(357) and might have been expected to be increased in PMNS individuals. 

However, the large reduction observed here between the two cohorts 

suggests there may be separate pathophysiology to metabolic disease in SA. 

Published data on blood pressure is inconclusive, with a high degree of 

heterogeneity in blood pressure within different SA groups (Indians, 

Pakistanis and Bangladeshis) complicating matters (358). However, published 

work examining additional markers for CVD seems to indicate ethnic 

differences; muscle TG is reported to be associated with insulin sensitivity in 

Cau but not Asians (172). Furthermore, it has been suggested that SA have 

larger abdominal subcutaneous adipocytes size than Cau (339). Large 

adipocytes are dysfunctional, predicting insulin resistance and T2D 

independently of obesity, indicating genetic factors influencing adipocyte size 

may play a role in the pathogenesis insulin resistance (359).   

 

The MRI acquisition for the Cau individuals presented in Table 3.11 was a 

whole body MRI whereas a more limited acquisition of only three abdominal 
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slices was acquired in SA cohort. Therefore, the measurements of VAT + 

ASAT in the two studies are not directly comparable. Hence, the TOFI index 

based on a ratio of VAT and ASAT was calculated as a means to compare 

these data. While whole body MRI is considered the gold standard, due to 

time and cost, it is common to obtain more limited data sets with fewer slices, 

such as that in the presented study. Indeed many MRI studies only report a 

single slice through the abdomen (360). While this approach has drawbacks, 

a strong correlation has been reported between VAT measured from a single 

slice and whole volume measurements of VAT (360). The main criticism of 

single slice studies is that they often do not reflect the heterogeneous 

distribution of visceral fat within the entire depot (361). Here, the data from 

three MR abdominal slices were combined, which minimised time and cost 

while increasing sampling. This approach provides reasonable coverage 

through the abdomen and enables a shorter acquisition and analysis times 

compared to whole abdomen approach (200).  

 

The strengths of my study are the comprehensive phenotyping of a relatively 

large cohort of adolescent SA and the use of precise MR imaging techniques 

to characterise abdominal adiposity. The homogenous nature of the 

population, limited to a small rural region, is another factor worth considering. 

While the overall incidence of T2D in South Asia is high there is considerable 

heterogeneity in prevalence across SA countries (224, 225). Some of this 

variation can be attributed to differences in lifestyle factors, and 

socioeconomic development, which showed to be quite homogeneous for this 

rural farming population who moved into urban areas, and the accuracy of 

undiagnosed versus diagnosed diabetes statistics (224, 229). A high 

prevalence of T2D is also observed in SA migrant populations compared with 

other ethnic groups in the host country (245, 321, 322). Furthermore, studies 

investigating the incidence of T2D in migrant SA populations found a strong 

association with an increased duration of residence in Western countries 

(362). This effect, observed in both North America Western and Middle 

Eastern countries, has been attributed to exposure to a greater abundance 

of calorie-dense foods and reductions in physical activity (363, 364). As such, 
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the homogenous nature of the PMNS cohort is much less likely to be affected 

by the additional confounders of ethnic diversity within a SA population in 

Western countries, such as migration or the length of exposure to the 

potentially negative effects of a more Westernised lifestyle.  

 

The thin-fat phenotype whereby smaller SA babies have reduced muscle 

mass, but preserved body fat during their intrauterine development is 

hypothesised to underpin the increased susceptibility of these individuals to 

developing CVD. My analyses indicate that this phenotype, previously 

observed in infants and children of the PMNS cohort persists into young 

adulthood. Furthermore, my analysis of abdominal fat indicates that there is 

an increased proportion of VAT compared to ASAT, especially notable in SA 

males, a body composition which predisposes to an insulin-resistant state. 

Future work on this cohort should focus upon trying to obtain the extensive 

longitudinal data of both infants and mothers, in order to try and determine 

causal markers of increased visceral and abdominal subcutaneous fat. 

Determining the physiological pathways which lead to an adverse metabolic 

state will help clinicians in identifying individuals at increased risk and inform 

interventional studies aimed at reducing the burden of CVD and associated 

morbidities in SA. 
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Chapter 4. Phenotyping ethnic differences in body fat distribution and 

ectopic fat  

4.1 Introduction 

As was demonstrated in Chapter 3 and supported by literature studies, ethnic 

differences in anthropometry and body composition may be partly 

responsible for the variation in metabolic risk observed between different 

racial groups (215, 216). Compared to Cau, SA population have a higher WC 

and WHR (365, 366), while at any given BMI value, SA has 5% higher body 

fat (303, 324). It was also shown in Chapter 3 that SA have a higher 

prevalence of TOFI phenotype compared to Cau which manifest from early 

adulthood. Furthermore, it has been proposed that an increased susceptibility 

to VAT accumulation underpins the higher rates of T2D, insulin resistance 

and CVD observed in SA (256, 367, 368), which contrast with my findings in 

Chapter 3  where it was showed that higher SAT to be associated with insulin 

resistance in SA living in India. This is surprising and contrary to most of the 

literature on SA AT metabolism; where SAT showed either no or negative 

association with insulin resistance (108). Therefore, the aim is to examine 

whether this association was specific to the Pune population or whether it 

could also be found in SA living in Western Countries.  

 

A further conundrum in ethnic differences in body fat deposition and 

metabolic health outcomes have also been reported in BA populations, as 

described in Chapter 1. Individuals of BA descent present differences in 

anthropometry compared to Cau; with BA being heavier, with higher muscle 

mass, and increased prevalence for developing HTN and T2D compared to 

other ethnic groups. (216, 369, 370).   

 

Previous studies assessing body fat percentage in different ethnic groups 

including SA, BA and Cau have often relied on indirect anthropometric 

measurements, with limited data available on direct imaging for accurate 

mapping of adiposity. Furthermore, there is a lack of ethnic data regarding 

specific body fat distribution and ectopic fat in the liver. MR represents the 

gold standard for the measurement of body fat and ectopic fat deposition and 

distribution (139). In the previous Chapter, the body composition was 
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examined in an adolescent SA cohort, and an increased prevalence of an 

adverse fat distribution such as elevated VAT and ASAT was observed. While 

there was no Cau group to perform statistical analysis for comparison, the 

data was suggestive of strong differences between SA and Cau. This Chapter 

(4) describes access to ethnically diverse population allowing detailed 

examination of anthropometry, regional fat deposition, ectopic fat content and 

other metabolic markers in Cau, SA and BA from two different UK-based 

populations. 

 

 

4.1.1 Aims 

 

 Phenotype body fat depots (TAT, VAT, ASAT, liver fat) in SA, BA and 

Cau in two UK based studies of adults: 

1. The West London Observation Study (TWLO)  

2. The UK Biobank study 

 Compare the ethnic differences in phenotypes of body fat (VAT, ASAT 

and liver fat) and anthropometry in the two UK based studies. 

 Examine the SA paradox (which observed in the previous Chapter) in 

older SA living in the UK.  
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4.2 Methods 

4.2.1 The West London Observation Study (TWLO) 

4.2.1.1 TWLO study subjects 

The ethnic groups included in the TWLO study were; Cau, SA and BA (BA 

includes the Black Caribbean and Black African).  

The TWLO study consists of 747 healthy volunteers recruited from the UK 

general population in West London between 2000 and 2014. All volunteers 

provided written informed consent with ethics obtained from the 

Hammersmith and Queen Charlotte’s and Chelsea Hospital Research Ethics 

Committee, London (REC: 07Q04011/19). Volunteers were recruited via 

advertisements in websites, newspapers, and academic newsletters. 

Participants from all ethnicities were invited to take apart. Exclusion criteria 

included any individual with chronic disease, diabetes, CVD or liver disease, 

anyone taking prescribed medication, metal implants, claustrophobic 

subjects, pregnancy or females on the contraceptive pill. The mean age of all 

subjects was 41 years (range 17-75 years) with 59.7% male and 40.3% 

female. 

 

4.2.1.2 TWLO study anthropometry and body fat assessment 

Anthropometric measurements including age, weight, height, waist and hip 

were measured in each subject in the morning following an overnight fast. 

Subjects wore light scrubs to be weighed in kg by a Seca scale and height in 

m using a wall-mounted stadiometer. The Tanita Body Composition analyser 

-418MA (Tanita, Tokyo, Japan) was used to assess bioimpedance measures 

including body fat percentage, and FFM. 

 

4.2.1.3 TWLO study Magnetic Resonance Imaging (MRI) 

MRI of total and regional AT content was measured using a 1.5 T Philips 

Achieva scanner (Philips, Best, Netherlands) as described in Chapter 3 (200). 

Briefly, subjects lay in a prone position with arms straight above the head and 

were scanned from fingertips to toes for up to 15 minutes. Images were 

acquired with a whole body axial T1-weighted fast-spin-echo sequence using 

Q-body coil, without respiratory gating. Imaging parameters: TR 560 ms; TE 
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18 ms; slice thickness 10 mm; inter-slice gap 10 mm; flip angle 90 degrees; 

number of excitation 1. Transverse images were acquired as nine equal 

stacks of 12 or 13 slices at the iso-centre of the magnet to avoid image 

distortion.  

 

Images were analysed using Slice-O-Matic (Tomovision, Montreal, Quebec, 

Canada) as described in Chapter 3. There were approximately 120-140 

images per subject. The area of AT depots in (cm2) was calculated as the 

product of pixel number and pixel area. The AT volumes (cm3) of each 

compartment were calculated by multiplying the AT depot area by the sum of 

the slice thickness (10 mm) and slice gap (10 mm). Total and regional 

volumes were recorded in litres (L). The abdominal region was delineated as 

the image slices from the slice containing the femoral heads, to the slice 

containing the top of the liver/bottom of the lungs; therefore, the 

measurement of VAT contains a mixture of visceral, perineal, and 

retroperitoneal AT. Total adipose tissue (TAT) was calculated from the sum 

of SAT and internal adipose stores: TAT = SAT + Internal.  

 

4.2.1.4 TWLO study Magnetic Resonance Spectroscopy (MRS) 

Magnetic Resonance Spectroscopy (MRS) was performed during the same 

scanning session as MRI to determine Intra hepatocellular lipid (IHCL) (139, 

371). Liver fat content measured via MRS commonly known as IHCL while 

liver fat content measured via MRI is commonly known as liver fat fraction 

(345). Participants were positioned supine with arms resting by their side. 

Transverse images of the liver were used to ensure an accurate position of a 

(2 x 2 x 2 cm) voxel in the liver, avoiding blood vessels, fatty tissue and 

gallbladder. 1H MR spectra were obtained from the right lobe of the liver using 

an MRS localisation technique known as the Point-Resolved-Spectroscopy 

(PRESS) sequence (TR 1500 ms, TE 135 ms, 128 signal averages) without 

water suppression (372). 1H MR spectra were analysed to determine the 

levels of IHCL or liver fat content using jMRUI analysis package (AMRARES) 

(373, 374). IHCL or liver far content was quantified in the spectrum as a 

percentage ratio of the -CH2- (part of a chain of CH2 groups lipid resonances 
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with references to water resonance, after correcting for T1 and T2 (Figure 

4.1). 

 

 

 

 

Figure 4.1: Representative 
1

H MR spectra from the liver of (A) South Asian female subject with an 
IHCL of 13.7% and (B) from a Caucasian  female subject with an IHCL = 5.5 %. Values refer to the 

peak area of the IHCL peak with reference to the water peak after correcting for T1 and T2. Results 
are expressed as percentage ratio of the CH2 lipid peak area relative to the water peak area.  The X 
axis of the spectrum represents the frequency of the resonance and expressed in parts per millions. 
The Y axis represented the intensity of the resonance.  IHCL, intrahepatocellular lipids. Original data 
obtained from (139). 

 

4.2.1.5 TWLO study ethnicity assessment  

All participants ethnicity in the TWLO study was determined from a self-

reported questionnaire. 

4.2.2 UK Biobank  

4.2.2.1 UK Biobank participants 

This study represents a cross-sectional assessment of a subset of the UK 

Biobank, consisting of 9389 individuals from the multimodal-imaging cohort 

(375). As seen in Chapter 2 in the UK Biobank cohort, the age range for 

inclusion was 44-73 years, with individuals excluded if they had metal or 

electric implants, medical conditions that prohibited scanning or planned 

surgery within six weeks before scanning date. The 9389 subjects were 

scanned between August 2014 and September 2016. MR measurements for 

body fat compartments, percentage density liver fat fraction and patient meta-

data were acquired through UK Biobank Access Application number 9914 

and 6569. The ethical approval and the consent forms details were the same 

as detailed in Chapter 2.  The ethnicity of UK Biobank participants was 
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defined genetically through the projection of UK Biobank individuals into the 

principal component space of the 1000 Genomes Project samples (PMID: 

26432245) and supplied through research collaborator (see Appendix 5). 

 

4.2.2.2 UK Biobank anthropometry 

Anthropometry measurements were collected at UK Biobank assessment 

centres; height was measured using the Seca 202 height measure (Seca, 

Hamburg, Germany). The average of two blood pressure measurements, 

taken moments apart, was obtained using an automated device (Omron, UK). 

 

4.2.2.3 UK Biobank Body fat assessment 

After the initial assessment stage, all eligible participants were invited to the 

imaging centre. Images were acquired at the UK Biobank imaging Centre at 

Cheadle (UK) using a Siemens 1.5T Magnetom Aera. VAT and ASAT were 

measured using the dual-echo Dixon Vibe protocol as previously described 

in Chapter 2, and elsewhere (262). A multi-echo spoiled-gradient-echo 

acquisition was used to determine liver fat fraction (263). DXA scan (GE-

Lunar, Madison) was used to assess body fat percentage, total body FM, total 

FFM. 

4.2.2.4 UK Biobank physical activity 

The assessment of physical activity in the UK Biobank using the IPAQ was 

described in Chapter 2 the Method of UK Biobank physical activity. 

4.2.3 Statistical analysis 

Descriptive statistics were obtained for anthropometric and volume 

measurements and presented as mean ± standard deviation. Data were 

checked for normality using Shapiro-Wilk’s test. Analyses were carried out in 

male and female subjects separately given the established gender 

differences in body fat distribution. The log of liver fat fraction data was 

performed prior to analysis due to the non-normally distributed nature of data.  

The overall effect of ethnicity on study outcomes was assessed using one-

way analysis of variance (ANOVA) with Bonferroni correction for multiple 

comparisons, employed to assess pairwise comparisons. ANCOVA was used 

to examine the relationship between ethnicity and body composition 
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outcomes, adjusting for age, BMI and gender. If the initial model was 

significant, pairwise Bonferroni post-hoc tests were carried out in order to 

compare individual ethnic groups. In the TWLO study, IHCL values were log 

transformed as (log (IHCL+1)) prior to analysis in order to address the non-

normally distributed nature of the data, and an individual’s FFM was 

calculated by converting total AT (litres) into kg by multiplying by 0.9 and 

subtracting from the overall weight. In the UK Biobank, liver fat PDFF was log 

transformed prior to the analysis to address the non-normally distributed 

nature of the data. Significance was taken as p<0.05. All data were presented 

as mean ± s.d. Statistical analysis was performed using SPSS version 23. All 

statistical graphs were done using GraphPad Prism version 5.0. 

 

4.3 Results 

4.3.1 The West London Observation Study (TWLO) 

4.3.1.1 The West London Observation (TWLO) study descriptive 

statistics 

747 volunteers participated in the study. The mean age of all subjects was 

41 years (range 17-75 years) with 60% male and 40% female. Ethnic specific 

characteristics are shown for males in Table 4.1 and females in Table 4.2. 
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Table 4.1 Ethnic specific baseline characteristics of anthropometry and body composition in 
Caucasian (Cau), South Asian (SA) and Black African (BA) males of TWOL study. WC: waist 

circumference; WHR, waist-to-hip ratio. IHCL: intra-hepatocellular lipid; TAT: total adipose tissue; ASAT: subcutaneous adipose tissue; VAT: visceral 

adipose tissue; IHCL log transformed as IHCL+1. MRS: Magnetic resonance spectroscopy, MRI: Magnetic resonance imaging. TOFI; Thin outside fat 

inside, BEI; bio-electrical impedance. Data obtained from The West London Observation (TWLO) study. All data presented as mean ± SD; data analysed 

by one-way ANOVA with Bonferroni correction for pairwise comparisons (SPSS v 23.0). A significant was taken at < 0.05 and marked with bold font.  

  Male 

 
 

Cau (n=374) SA (n=68) BA (n=14) 

A
n

th
ro

p
o

m
et

ry
 

Age (years) 45.4 ± 14.5 41.5 ± 18 42.0 ± 15.9 

Weight (kg) 89.3 ± 16.8 79.2 ± 12.3 89.6 ± 15.6 

Height (cm) 173 ± 7.0 168 ± 6.0 168 ± 7.0 

BMI (kg/m2) 28.2 ± 4.6 26.9 ± 3.8 28.8 ± 4.0 

Waist (cm) 98.2 ± 13.7 95.2 ± 12.7 96.6 ± 12.3 

Hip (cm) 104.6 ± 8.4 100. 6 ± 6.2 103.5 ± 11.2 

WHR 0.9 ±  1.6 1.0 ±  2.0 0.9 ±  1.1 

MRS IHCL 8.8 ± 16.0 6.0 ± 9.8 2.9 ± 6.1 

M
R

I 

TAT (litres) 27.6 ± 11.4 26.7 ± 8.9 25.9 ± 9.6 

VAT (litres) 4.1 ± 2.4 3.6 ± 1.9 2.6 ± 1.8 

ASAT (litres) 6.0 ± 3.2 6.2 ± 2.8 6.3 ± 3.1 

TOFI score ( 
VAT/ASAT) 

0.6 ± 0.3 0.5 ± 0.3 0.6 ± 0.7 

 TOFI percentage 5.2 % 0 % 0 % 

BEI Fat Free Mass (kg) 64.5 ± 9.8 55.2 ± 7.3 66.3 ± 12.7 

Body Fat (%) 27.1 ± 7.5 29.9 ± 6.7 25.8 ± 8.1 
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In the TWOL study, SA males were shorter (p<0.001) and weighed less 

(p<0.001) with a smaller hip circumference (p<0.001) compared with Cau 

males (Table 4.1). SA males presented a higher total body fat percentage 

(2.8% differences in body fat) compared to Cau (p=0.014), and lower fat free 

mass (8.3 kg differences in fat free mass in SA males to other ethnic groups) 

compared to both Cau and BA males (p<0.001 for both, Table 4.1).  

SA females were shorter than Cau counterparts (p<0.001) but had similar 

height with BA females (Table 4.2).  
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Table 4.2 Ethnic specific baseline characteristics of anthropometry and body composition in 
Caucasian (Cau), South Asian (SA) and Black African (BA) females of TWOL study. WC: waist 

circumference; WHR, waist-to-hip ratio. IHCL: intra-hepatocellular lipid; TAT: total adipose tissue; ASAT: subcutaneous adipose tissue; VAT: visceral 

adipose tissue; IHCL log transformed as IHCL+1. MRS: Magnetic resonance spectroscopy, MRI: Magnetic resonance imaging. TOFI; Thin outside fat 

inside, BEI; bio-electrical impedance. Data obtained from The West London Observation (TWLO) study. All data presented as mean ± SD; data analysed 

by one-way ANOVA with Bonferroni correction for pairwise comparisons (SPSS v 23.0). A significant was taken at < 0.05 and marked with bold font. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  Female 

 
 

Cau (n=240) SA (n=22) BA (n=29) 

A
n

th
ro

p
o

m
et

ry
 

 

Age (years) 39.3 ± 14.5 37.5 ± 13.2 41.1 ± 10.7 

Weight (kg) 75.0 ± 18.2 72.1 ± 17.6 86.0 ± 16.7 

Height (cm) 170 ± 10 160 ± 10 160 ± 40 

BMI (kg/m2) 27.3 ± 6.7 28.2 ± 6.8 31.8 ± 6.3 

Waist (cm) 87.4 ± 17.5 90.9 ± 14.1 94.2 ± 15.8 

Hip (cm)  105.2 ± 12.8 104.6 ± 12.4 113.9 ± 12.2 

WHR 0.8 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 

MR
S 

IHCL 4.1 ± 11.1 6.7 ± 12.4 1.2 ± 1.5 

M
R

I 

TAT (litres) 32.9 ± 15.7 35.2 ± 14.6 41.0 ± 14.5 

VAT (litres) 2.5 ± 1.7 2.4 ± 1.2 1.7 ± 0.9 

ASAT (litres) 8.2 ± 4.9 8.9 ± 4.6 11.1 ± 4.8 

TOFI score  
( VAT/ASAT) 

0.3 ± 0.2 0.3 ± 0.1 0.2 ± 0 

 TOFI prevalence  5.4 % 0% 0% 

B
EI

 

Fat Free Mass 
(kg) 

45.5 ± 7.6 40.4 ± 5.7 49.2 ± 5.7 

Body Fat (%) 37.9 ± 10.2 42.5 ± 7.2 41.6 ± 7.5 
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In addition, ethnicity was found to have an effect on VAT distribution; with 

less VAT (1.5 litre difference in VAT) in BA males compared to Cau males 

(VAT: Cau: 4.1 ± 2.4 litres; BA: 2.6 ± 1.8 litres, p=0.043, Table 4.1) and 

females (0.7 litres differences in VAT) (VAT: Cau: 2.5 ± 1.7 litres; BA: 1.7 ± 

0.90 litres, p=0.044, Table 4.2). Furthermore, BA females had less VAT (0.8 

litre difference) than SA females but it was not statistically significant.  FFM 

was also less in SA females (10.3 kg differences in FFM in SA females 

compared to other ethnic groups) compared to females from other ethnic 

groups (p<0.001 for both, Table 4.2). Given the high percentage of SA TOFI 

phenotype reported in Chapter 3, no TOFI phenotype in lean SA males or 

females in the TWLO study were observed. Here, only the observation of the 

TOFI phenotype in Cau males (5.2%) and female (5.4%) but not in UK-based 

SA who lives in the UK. 

 

Significant increase in TAT (7.6% differences, 5.8 litres in TAT, p=0.028, 

Figure 4.2) and ASAT (15%, 2.9 litres difference in ASAT, p=0.007, Figure 

4.4) were observed in BA females compared with Cau counterparts (Table 

4.2). Gender-specific distribution of total, visceral, ASAT and IHCL by ethnic 

group are shown in Figure 4.2. There was no observed increase VAT or liver 

fat in SA compared to other ethnic groups in both males and females (Figure 

4.3 for VAT, Figure 4.5 for liver fat). The only observed ethnic variation was 

seen in BA with more TAT, SAT, but less VAT.  No significant ethnic 

differences in IHCL were observed in either males (M: p=0.126) or females 

(F: p=0.180) (Figure 4.5).  
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Figure 4.2 Ethnicity and Gender specific distribution of total adipose tissue (TAT) in Caucasians, South Asians and Black African adults from TWLO study. 
In males (A) in females (B); Data obtained from The West London Observation (TWLO) study. Data presented as box and whisker plots; where error bars are min/max 

range, upper and lower box edges are 25th and 75th percentiles and line median. P values calculated from one-way ANOVA analysis (SPSS (v. 23)). Graphs were 
done using GraphPad Prism version 5.0  

P=                                                                                              P= 
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Figure 4.3 Ethnicity and Gender specific distribution of visceral adipose (VAT) in Caucasians, South Asians and Black African adults from TWLO study. 

In males (A) in females (B); Data obtained from The West London Observation (TWLO) study. Data presented as box and whisker plots; where error bars are min/max 

range, upper and lower box edges are 25th and 75th percentiles and line median. P values calculated from one-way ANOVA analysis (SPSS (v. 23)). Graphs were 

done using GraphPad Prism version 5.0 

  

P=                                                                                              P= 
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Figure 4.4 Ethnicity and Gender specific distribution of abdominal adipose tissue (ASAT) in Caucasians, South Asians and Black African adults from 

TWLO study.  In males (A) in females (B); Data presented as box and whisker plots; where error bars are min/max range, upper and lower box edges are 25th and 

75th percentiles and line median. Data obtained from The West London Observation (TWLO) study. P values calculated from one-way ANOVA analysis (SPSS (v. 

23)). Graphs were done using GraphPad Prism version 5.0 

  

P=                                                                                              P= 
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Figure 4.5 Ethnicity and Gender specific distribution of intrahepatocellular lipid (IHCL) in Caucasians, South Asians and Black African adults from TWLO 
study. In males (A) in females (B); Data obtained from The West London Observation (TWLO) study. Data presented as mean and standards deviations. P values 

calculated from one-way ANOVA analysis (SPSS (v. 23)). Data plotted in this graph using IHCL but p values determined from log data. Graphs were done using 
GraphPad Prism version 5.0 

P=                                                                                              P= 
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Given the variation in TAT, VAT, ASAT, and IHCL,  a model blend of ANOVA 

and regression (known as ANCOVA) was performed for modelling the impact 

of ethnicity on each body fat compartment and ectopic fat, while adjusting for 

covariates such age, gender and BMI (Table 4.3). The results modelling the 

effect of ethnicity on TAT, ASAT, VAT and IHCL using an ANCOVA analysis, 

revealed a significant influence of all components (ethnicity, age, gender, 

BMI) in the model (p<0.001 for all, Table 4.3). The F statistic, which implies 

which of the factors has the lowest or the highest effect on the model, 

indicates that BMI contributes the most to TAT, VAT, ASAT, IHCL models, 

with ethnicity the least. These models show that in the TWLO study, ethnicity 

has a statistically significant effect on TAT, VAT, ASAT, and IHCL in the 

TWLO study, however, the impact is low compared to the effect of age, BMI 

and gender (Table 4.3).  

Table 4.3 Modelling the ethnicity impact on body composition outcomes in TWLO study. The 

models were performed using analysis of covariance (ANCOVA). The results of ANCOVA analyses 

modelling the effects of ethnicity group on TAT, ASAT, VAT and IHCL, showing the overall corrected 

model, the F statistics, ethnicity and additional covariates: BMI, age and gender. This model is used to 

show the impact of ethnicity among other contributors on TAT, ASAT, VAT and IHCL. The F statistics 

indicates the degree of impact, significance taken as  p< 0.05, TAT: total adipose tissue, ASAT: 

abdominal subcutaneous adipose tissue, VAT visceral adipose tissue, IHCL, intrahepatocellular lipid, 

BMI; Body mass index. Data obtained from The West London Observation (TWLO) study. Data 

analysed in SPSS (v. 23.0). 

 TAT ASAT VAT IHCL 

 F p-value F p-value F p-value F p-value 

The model 758.7 <0.001 682.1 <0.001 264.5 <0.001 32.323 <0.001 

Age 13.5 <0.001 21.6 <0.001 237.9 <0.001 9.910 0.002 

BMI 2976 <0.001 2796 <0.001 468.9 <0.001 100.839 <0.001 

Gender  313.7 <0.001 366.3 <0.001 121.9 <0.001 9.712 0.002 

Ethnicity  6.7 <0.001 8.44 <0.001 30.9 <0.001 6.203 0.002 
 

Because all the contributors (age, gender, BMI and ethnicity) showed a 

significant impact on TAT, ASAT, VAT and IHCL in the previous models 

(Table 4.3), additional post-hoc pairwise comparisons between individual 

ethnic groups were performed to identify the differences observed within each 

ethnic group (Table 4.4).   
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Table 4.4 Ethnicity specific models for the analysis of covariance (ANCOVA) with pairwise 
comparison in TAT, VAT, ASAT, and IHCL in TWLO study. Ethnic comparison of TAT, ASAT, VAT 

and IHCL, following adjustment for gender, age and BMI. Data presented as mean differences ± 
standard error. IHCL log transformed as IHCL+1 prior to analysis. This model is used to identify the 
difference between ethnicities in TAT, ASAT, VAT, and IHCL. Significance taken as p<0.001. TAT: total 

adipose tissue, ASAT: abdominal subcutaneous adipose tissue, VAT visceral adipose tissue, IHCL, intrahepatocellular lipids, Cau: Caucasians, SA: South 

Asian, BA: Black African. Data obtained from The West London Observation (TWLO). Data analysed in SPSS 24 using Bonferroni post-hoc test for multiple 

comparisons. 

  ANCOVA 

  Mean differences ± Standard error 95% confidence interval p value 

M
R

I 

TAT (litre)  

Cau versus SA -1.7 ± 0.6 -3.2 to -0.2 0.015 

Cau versus BA 1.8 ± 0.9 -0.2 to 3.9 0.103 

SA versus BA 3.6 ± 1.0 1.1 to 6.0 0.002 

ASAT (litre)  

Cau versus SA -0.8 ± 0.2 -1.3 to -0.3 <0.001 

Cau versus BA 0 ± 0.3 -0.7 to 0.6 1.000 

SA versus BA 0.8 ± 0.3 0 to 1.6 0.052 

VAT (litre)  

Cau versus SA 0.1 ± 0.2 -0.2 to 0.5 1.000 

Cau versus BA 1.7 ± 0.2 1.2 to 2.2 <0.001 

SA versus BA 1.6 ± 0.3 0 to 2.2 <0.001 

M
R

S 

IHCL (%)  

Cau versus SA 0.3 ± 1.5 -3.3 to 3.9 1.000 

Cau versus BA 7.6 ± 2.2 2.4 to 12.8 0.001 

SA versus BA 7.4 ± 2.5 1.3 to 13.4 0.012 

 

 

Significantly lower levels of VAT and IHCL were observed in BA compared to 

other ethnic groups (p<0.001), while no differences were observed between 

SA and Cau groups for either outcome (Table 4.4). After adjusting for BMI, 

age and gender, significantly higher levels of ASAT were observed in BA 

compared with SA and Cau, while TAT was greater in SA compared with both 

other ethnic groups (Table 4.4). 

 

4.3.2 UK Biobank ethnicity project 

The participants included in this chapter are a subset of the UK Biobank who 

completed MR scans for VAT, ASAT and liver fat fraction with available 

ethnicity information (n=9533). Gender and ethnicity were determined by 

Genome Wide Association Study (GWAS) analysis to describe the ancestry 

and for precise characterization of individuals’ biological ancestry in order to 
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reduce bias from self-reported data and ensure accuracy. The ethnic 

distributions of the imaging cohort subset compared to the entire UK Biobank 

data set are shown in Table 4.5. Table 4.5 Ethnicity distribution in the UK Biobank. The 

number (n) and percentage of each ethnic group within the total UK Biobank cohort and the imaging 

cohort.  

 
Total Participants 

(n=533,726) 
Imaging cohort 

(n=9533) 

Caucasians (Cau) 503,837 (94.4) 9356 (95.6) 

South Asian (SA) 10,141 (1.9) 123 (1.2) 

Black African (BA) 8006 (1.5) 54 (0.6) 

Other 11,742 (2.2) 230 (2.6) 

 

 

A similar ethnic distribution was observed in both sets of data (Table 4.5). 

Gender specific characteristics for the 9533 individuals are shown in Table 

4.6. Overall, males, in the UK Biobank study, were older, heavier and pre-

hypertensive than females in the UK Biobank study, whereas the latter had a 

more total body fat percentage (Table 4.6).   

Table 4.6 Gender specific baseline characteristics, blood pressure and body composition by 
DXA scan in the UK Biobank study. BMI: body mass index, DXA: dual x-ray absorptiometry. Data presented as mean ± standard 

deviations using SPSS v 24.0. 

 

 

The breakdown of VAT, ASAT and liver fat by gender and ethnicity is shown 

in Figure 4.6, 4.7, 4.8. There were no significant differences in VAT, ASAT, 

and liver fat fraction in SA males and females than other ethnic groups 

  Male (n=4595) Female (n=4938) 

  Mean ± 
SD 

Range Mean ± SD Range 

A
n

th
ro

p
o

m
et

ry
 Age (yrs.) 56.3 ± 7.7 40 - 70 54.8 ± 7.4 40 - 70 

Waist circumference (cm) 93.5 ± 10 63 - 150 81.9 ± 11.3 55 - 138 

Hip circumference (cm) 101.6 ± 7.2 78 - 150 101.2 ± 9.7 73 - 156 

Height (cm) 176 ± 6.0 152 - 201 163 ± 6.0 141 - 195 

Weight (kg) 83.7 ± 13.4 50 - 160 68.7 ± 12.8 39 - 154 

BMI (kg/m2) 27.2 ± 3.5 16.8 - 51.6 25.9 ± 4.7 14.4 - 64.9 

Blood 
pressure 

Diastolic Blood Pressure 
(mmHg) 

80.3 ± 9.8 47 - 120 77.2 ± 10.0 36 - 118 

Systolic Blood Pressure 
(mmHg) 

137.6 ± 16.7 75 - 221 130.6 ± 18.0 82 - 202 

D
X

A
 

Percentage body fat DXA 
(%)  

30.3 ± 6.4 8.2 - 50.7 39.1 ± 7.3 14.0 - 58.4 

Total fat mass DXA (kg) - 24.9 ± 8.7 5.2 - 76.1 26.6 ± 9.3 2.7 - 73.0 

Total fat free mass DXA 
(kg) - 

58.5 ± 6.8 38.4 - 84.2 41.9 ± 4.9 7.4 - 62.6 
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(Figure 4.6, 4.7, 4.8). The only observed ethnic difference in ASAT, VAT, 

liver fat fraction was in BA females with less VAT than other ethnic groups 

(p>0.001) (Figure 4.6). These differences show that BA females in the UK 

Biobank have more favourable adiposity than other ethnic groups.                                                

….... 
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Figure 4.6 Ethnicity and gender specific distribution of visceral adipose tissue (VAT) in Caucasians, South Asians and Black African in the UK Biobank 
study in males (A) females (B). Data are presented as mean ± 2 standard deviation, p values calculated from ANOVA test, significance taken as p<0.05. Graphs 

were done using GraphPad Prism version 5.0. 
  

                            

P=                                                                                                                                         

 

                            

P=                                                                                                                                         
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Figure 4.7 Ethnicity and gender specific distribution of abdominal subcutaneous adipose tissue (ASAT) in Caucasians, South Asians and Black African 
in the UK Biobank study in males (A) females (B). Data are presented as mean ± 2 standard deviation, p values calculated from ANOVA test, significance taken 

as p<0.05. Graphs were done using GraphPad Prism version 5.0. 
  

                            

P=                                                                                                                                         

 

                            

P=                                                                                                                                         
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Figure 4.8 Ethnicity and gender specific distribution of abdominal subcutaneous adipose tissue (ASAT) in Caucasians, South Asians and Black African 
in the UK Biobank study in males (A) females (B). Data are presented as mean ± 2 standard deviation, p values calculated from ANOVA test, significance taken as 

p<0.05. Graphs were done using GraphPad Prism version 5.0. 

                            

P=                                                                                                                                         

 

                            

P=                                                                                                                                         
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Ethnic specific baseline characteristics of anthropometry, blood pressure and 

body composition are shown in Table 4.7 for males and Table 4.8 for 

females.  

SA males were younger, lighter and shorter than both Cau (p<0.001 for all) 

and BA (p<0.001 for all) counterparts (Table 4.7). A significant ethnic 

difference in VAT is seen in BA males (30.6% differences in VAT) compared 

to Cau males (p=0.004) (Table 4.7). Total FFM was significantly lower in SA 

males compared to Cau and BA counterparts (p<0.001 for all). 

 
Table 4.7 Ethnic specific baseline characteristics of anthropometry, blood pressure, and body 
composition in Caucasian (Cau), South Asian (SA) and Black African (BA) males in the UK 
biobank study. Data for UK biobank participants by ethnicity; Caucasian (Cau), South Asian (SA) and Black African (BA). 

ASAT: abdominal subcutaneous adipose tissue; MR: Magnetic resonance, DXA: dual x-ray absorptiometry; VAT: visceral adipose tissue, N/A: not 

applicable. Statistical analysis by one-way ANOVA to detect the differences between ethnic groups in SPSS (version 23.0). A significant was taken at < 

0.05 and marked with bold font. 

 

  

 Males 
Caucasian 
(n=4486) 

South Asian 
(n=80) 

Black African 
(n=29) 

A
n

th
ro

p
o

m
e

tr
y 

Age (yrs.) 56.3 ± 7.6 53.5 ± 8.7 48.7 ± 7.0 

Weight (kg) 83.8 ± 13.4 76.6 ± 9.4 87.6 ± 12.9 

Height (cm) 176 ± 6 170 ± 5 175 ± 5 

BMI (kg/m2) 26.9 ± 3.9 26.2 ± 3.0 28.5 ± 3.6 

Waist circumference (cm) 93.5 ± 10.0 91.4 ± 8.0 92.0 ± 8.8 

Hip circumference (cm) 101.7 ± 7.1 99.2 ± 6.9 102.6 ± 6.3 

Waist to Hip Ratio 1.2 ± 0 1.3 ± 0.1 1.2 ± 0 

Blood 
pressure 

Diastolic Blood Pressure 
(mmHg) 

80.3 ± 9.8 80.3 ± 9.4 81.1 ± 10.1 

Systolic Blood Pressure 
(mmHg) 

137.0 ± 16.7 133.8 ± 17.5 136.2 ± 14.4 

M
R

 

VAT (litres) 4.9 ± 2.3 4.4 ± 1.5 3.6 ± 1.7 

ASAT (litres) 5.9 ± 2.5 6.1 ± 2.0 6.0 ± 2.6 

Liver fat fraction (%) 4.7 ± 4.7 4.4 ± 3.5 3.6 ± 4.0 

TOFI score 
( VAT/ASAT) 

0.7 ± 0.3 0.7 ± 0.3 0.6 ± 0.3 

TOFI prevalence  4.5 % 0 % 0 % 

D
X

A
 

Percentage body fat DXA 
(%) 

30.3 ± 6.4 32.8 ± 5.7 28.8 ± 7.2 

Total fat mass DXA (kg) 24.9 ± 8.7 23.9 ± 6.3 23.9 ± 8.1 

Total fat free mass DXA 
(kg) 

56.3 ± 7.6 48.7 ± 7.0 53.5 ± 8.7 
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Ethnic differences were observed in weight; BA females were significantly 

heavier than Cau (p=0.005) and SA (p=0.003) females. BA also presented 

significantly greater BMI, hip circumference, and total FFM compared to SA 

and Cau females (p<0.05 for all, Table 4.8).  

 
Table 4.8 Ethnic specific baseline characteristics of anthropometry, blood pressure, and body 
composition in Caucasian (Cau), South Asian (SA) and Black African (BA) females in the UK 
biobank study. Data for UK biobank participants by ethnicity; Caucasian (Cau), South Asian (SA) and Black African (BA). ASAT: abdominal 

subcutaneous adipose tissue; MR: Magnetic resonance, DXA: dual x-ray absorptiometry; VAT: visceral adipose tissue, N/A: not applicable. Statistical 

analysis by one-way ANOVA to detect the differences between ethnic groups in SPSS (version 23.0). A significant was taken at < 0.05 and marked with 

bold font. 

 
 

 

 

BA presented increased DBP compared to Cau (p=0.002) (Table 4.8). BMI, 

waist, hip and WHR were all significantly increased in BA compared to Cau 

and SA females (p<0.05 for all, Table 4.8). 

 

  

 Females 
Caucasian 
(n=4870) 

South Asian 
(n=43) 

Black African 
(n=25) 

A
n

th
ro

p
o

m
et

ry
 

Age (yrs.) 54.8 ± 7.3 50.9 ± 8.3 51.0 ± 6.9 

Weight (kg) 68.6 ± 12.8 66.3 ± 12.0 76.9 ± 11.9 

Height (m) 1.75 ± 0.1 1.70 ± 0.1 1.78 ± 0.1 

BMI (kg/m2) 25.9 ± 4.7 26.7 ± 4.4 29.8 ± 4.3 

Waist circumference (cm) 81.8 ± 11.3 84.1 ± 12.2 88.3 ± 9.9 

Hip circumference (cm) 101 ± 9.7 100.0 ± 9.0 106.2 ± 8.5 

Waist to Hip Ratio 1.5 ± 0.2 1.6 ± 0.1 1.4 ± 0.1 

B
lo

o
d

 

p
re

ss
u

re
 Diastolic Blood Pressure 

(mmHg) 
77.1 ± 10.0 79.6 ± 12.6 83.9 ± 8.4 

Systolic Blood Pressure 
(mmHg) 

130.6 ± 18.1 126.0 ± 20.6 136.0 ± 13.7 

M
R

 

VAT (litres) 2.6 ± 1.5 2.7 ± 1.7 2.0 ± 1.0 

ASAT (litres) 8.0 ± 3.4 8.6 ± 2.6 9.3 ± 3.5 

Liver fat fraction (%) 3.6 ± 4.5 4.8 ± 5.7 3.3 ± 3.2 

TOFI score  
( VAT/ASAT) 

0.3 ± 0.1 0.2 ± 0 0.1 ± 0 

TOFI prevalence  4.6 % 8.1 % 0% 

D
X

A
 

Percentage body fat DXA (%) 39.1 ± 7.3 42.0 ± 6.5 37.2 ± 7.4 

Total fat mass DXA (kg) 26.7 ± 9.4 27.5 ± 10.4 26.3 ± 8.5 

Total fat free mass DXA (kg) 42.0 ± 5.0 38.5 ± 6.4 45.6 ± 3.7 
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ANOVA analysis revealed significant ethnic differences in age; Cau 

individuals were older than SA and BA in both males and females. SA 

females were significantly shorter than Cau counterparts in both females 

(p<0.001 for both) and males (p<0.001). Significant ethnic differences in total 

FFM and body fat percentage (DXA) were observed in both males (Table 

4.7) and females (Table 4.8), with lower values observed in SA compared to 

other ethnic groups. 

 

As seen in The West London Observatory study in Table 4.3, and given the 

prior results of ethnicity variation in total body fat percentage, VAT, ASAT, 

and liver fat fraction, a model blends of ANOVA and regression (ANCOVA) 

was performed for modelling the impact of ethnicity on each body fat 

compartment and ectopic fat, while adjusting for covariates such as age, 

gender and BMI (Table 4.9).  

 

Table 4.9 modelling the ethnicity impact on body composition outcomes in the UK Biobank. 

Analysis of covariance (ANCOVA) modelling of ethnicity on body composition outcomes. The results 
of ANCOVA analyses modelling the effects of ethnicity group on TAT, ASAT, VAT and liver fat fraction, 
showing the overall corrected model, the F statistics (F), ethnicity and additional covariates: BMI, age 
and gender. This model is used to show the impact of ethnicity among other contributors on TAT, 
ASAT, VAT and liver fat fraction. The F statistics indicates the degree of impact, significance taken as 
p< 0.001. TAT: total adipose tissue, ASAT: abdominal subcutaneous adipose tissue, VAT visceral adipose tissue, BMI; body mass index, Data 

analysed in SPSS (v. 24.0). 

 

 Total fat mass (DXA) ASAT VAT Liver fat fraction 

 F p-value F p-value F p-value F p-value 

The model  4040 <0.001 15394 <0.001 3771 <0.001 924 <0.001 

Age 4.5 <0.001 17.1 <0.001 403 <0.001 43.1 <0.001 

BMI 10560 <0.001 65987 <0.001 19264 <0.001 345.7 <0.001 

Gender 19952 <0.001 17541 <0.001 8243 <0.001 177 <0.001 

Ethnicity 10.1 <0.001 36.0 <0.001 84.0 <0.001 14.4 <0.001 
 

 

The results modelling the effect of ethnicity on total body FM, ASAT, VAT and 

liver fat using the ANCOVA analysis, revealed a significant influence of all 

components (ethnicity, age, gender, BMI) in the model (p<0.001 for all, Table 

4.9). The F statistic, which implies which of the factors that has the lowest or 

the highest effect on the model, indicates that BMI contributes the most to 

ASAT, VAT and liver fat models, with ethnicity the least. These models show 
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that in the UK Biobank cohort, ethnicity has a statistically significant effect on 

TAT, VAT, ASAT, and IHCL in the UK Biobank study, however, this impact is 

small compared to the effects of age, BMI and gender. The findings of UK 

biobank and the West London Observation studies in modelling of ethnicity 

on body fat measurements are similar, which implies the homogeneity 

between the two studies and confirms the findings of the TWLO in a larger 

UK based study on 9533 subjects. 

Because all the contributes (age, gender, BMI and ethnicity) showed a 

significant impact on total body FM, ASAT, VAT and liver fat fraction in the 

previous models (Table 4.9), additional post-hoc pairwise comparisons 

between individual ethnic groups ANCOVA were performed to identify the 

differences observed within the ethnic groups on body FM, ASAT, VAT, liver 

fat fraction (Table 4.10).  

 
Table 4.10 Ethnicity specific models for the analysis of covariance (ANCOVA) with pairwise 
comparison in total body fat mass, VAT, ASAT, and liver fat fraction in the UK Biobank study. 

Comparison of total body fat mass, VAT, ASAT and liver fat fraction by ethnic group, following 
adjustment for gender, age and BMI. This model is used to identify the difference between ethnicities 
in total fat mass, ASAT, VAT and liver fat fraction. Significance taken as p<0.001. ASAT: abdominal subcutaneous 

adipose tissue, VAT visceral adipose tissue, MR: Magnetic resonance, DXA: Dual x-ray absorptiometry, Cau: Caucasians, SA: South Asian, BA: Black 

African. Data presented as mean difference ± standard error. Data analysed in SPSS 23 using Bonferroni post-hoc test for multiple comparisons. 

 

  ANCOVA 

 
 

Mean differences ± 
Standard error 

95% confidence interval p value 

D
X

A
 Total body fat mass (kg)    

Cau versus SA -0.6 ± 0.6 -1.8 to 0.7 0.863 

Cau versus BA 3.1 ± 0.8 1.4 to 4.8 <0.001 

 SA versus BA -3.6 ± 0.9 1.5 to 5.7 <0.001 

M
R

 

VAT (litre)  

Cau versus SA -0.2 ± 0.1 -0.9 to 0.5 0.326 

Cau versus BA 1.8 ± 0.2 -2.2 to -1.3 <0.001 

SA versus BA -1.6 ± 0.2 -2.1 to 1.1 <0.001 

ASAT (litre)  

Cau versus SA -0.4 ± 0.1 -0.7 to -0.1 0.005 

Cau versus BA 1 ± 0.2 0.5 to 1.4 <0.001 

SA versus BA 1.4 ± 0.2 0.8 to 2 <0.001 

Liver fat fraction (%)  

Cau versus SA 0.5 ± 0 -0.1 to 0 0.200 

Cau versus BA 0.2 ± 0.0 0.1 to 0.3 <0.001 

SA versus BA 0.3 ± 0.1 0.1 to 0.4 <0.001 
 

After adjusting for age, BMI and gender, significant differences were 

observed between SA and Cau in ASAT (-0.4 ± 0.1 litre, p=0.005 ASAT, data 
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expressed as mean difference). Significant differences between BA, SA and 

Cau were observed in total body FM (as measured by DXA), VAT, ASAT and 

liver fat fraction (p<0.001 for all) (Table 4.10). BA had a higher body FM than 

either (Cau 3.1 ± 0.8 kg, or SA -3.6 ± 0.9 kg, p<0.001) Cau and SA in the UK 

Biobank. Furthermore, BA had more favourable adiposity with less VAT (Cau 

1.8 ± 0.2 litre, SA -1.6 ± 0.2 litre , p<0.001) and less liver fat (Cau 0.2 ± 0 %, 

SA 0.3 ± 0.1 %, p<0.001) than other ethnic groups in the UK Biobank after 

adjusting for age, gender, BMI (Table 4.10).   

4.3.3 UK Biobank physical activity by ethnicity and gender 
 

As presented in Chapter 2 (body fat depots in free-living and pre-diabetic 

populations), day to day events as in physical activity and inactivity have 

significant associations with total, internal body fat deposition and ectopic fat 

content, therefore, the ethnic differences in day to day activity with body fat 

depots was explored further. The differences in physical activity between 

Cau, SA and BA by gender by comparing mean IPAQ outcomes using 

ANOVA test were examined (Table 4.11, 4.12). In male subjects, gender and 

ethnic differences in physical activity were found, whereas in contrast there 

were no ethnic differences in physical activity as measured by the IPAQ 

between Cau, SA and BA females (Table 4.11).  

Figure 4.11 Overall ethnic specific differences in physical activity between Caucasian, South 
Asian, Black African females in the UK Biobank. IPAQ: International Activity Questionnaire. All data presented as mean ± 

SD and calculated using SPSS 23.0. Data analysed by ANOVA test.  

 

 

 

However, in males, SA were significantly less physically active (measured via 

IPAQ) than males from other ethnic groups in the UK Biobank (Table 4.12). 

This shows gender and ethnic differences in physical activity among 

individuals who share the same geographical environment and indicating that 

such differences might have an effect on increased susceptibility to metabolic 

diseases in SA males but not females in the UK Biobank. Furthermore, the 

gender differences observed in physical activity with no ethnic differences 

 Caucasians South Asian Black African P value 

IPAQ 2016.8  ± 995.9 1970.3  ± 1177.3 1912.9  ± 1140 0.89 
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among females in the UK Biobank might indicate that the adiposity variations 

are less likely to be explained by physical activity factors in females, while 

perhaps it is likely in males.  

Figure 4.12 Overall ethnic specific differences in physical activity between Caucasian, South 
Asian, Black African males in the UK Biobank. IPAQ: International Activity Questionnaire, All data presented as mean ± SD 

and calculated using SPSS 23.0. Data analysed by ANOVA test.  

 

 

 

 

4.4  Discussion 

In this Chapter, ethnic variations in anthropometry and body fat distribution in 

two UK-based studies of Cau, SA, and BA adults was investigated. 

Significant differences between the ethnic groups that were consistent in both 

studies from the UK was found. These characteristics may contribute to the 

variation in susceptibility to developing metabolic syndrome associated 

features.   

 

While the frequency of global obesity continues to rise, there is a remarkable 

difference in its incidence between different ethnic groups. In the UK, obesity 

prevalence varies considerably between ethnic groups, with estimates 

differing according to the measurement used; for example, using BMI, obesity 

prevalence is higher among BA (32%) and SA (28%) females and lowest 

among Chinese (8%) females compared to females in the general population 

(21%). In males, obesity rates are lower in BA (17%) and SA (14%) 

populations and most markedly in Chinese individuals (6%) compared to 

males in the general population (22%) (376). There are therefore, gender and 

methodological considerations to accurately comparing obesity rates by 

ethnicity.  

 

Different ethnicities are associated with a variety of separate body shapes 

and distinct physiological responses to fat storage (377-379). As a result, 

there has been an ongoing debate regarding the validity of using current 

definitions of obesity for non-Cau ethnic groups. Indeed, revised BMI 

 Caucasians South Asian Black African P value 

IPAQ 2020.6  ± 1009.3 1565  ± 1027 1803.9  ± 904 0.005 



218 
 

thresholds and WC measures have been proposed for SA, who are at greater 

risk of developing chronic diseases at lower BMI levels than Cau populations 

(234, 343, 380, 381). One study, which tracked weight gain and T2D 

development in a large cohort of females over 20 years, found that SA 

population were twice as likely to develop T2D as Cau counterparts (228). 

Furthermore, this study demonstrated weight gain in SA confers considerably 

greater risk than comparable increases in Cau.  

One potential mechanism underlying this increased risk is increased body fat. 

Whilst the study here showed no differences in overall adiposity in UK-based 

Asians, previous studies have reported 3-5% increased body fat in Asians 

compared to Cau (324), with SA particularly susceptible to increased body 

fat, abdominal obesity and a predisposition to a high risk of T2D and CVD 

(20, 214, 233, 382). As mentioned previously, BMI does not distinguish 

between elevations in body weight from fat tissue or muscle mass, therefore, 

the estimates of central fat tissue have been proposed as a more accurate 

reflection of disease risk. Central adiposity may produce these effects via 

increased inflammatory cytokines release and decreased the release of 

factors, such as adiponectin, which are linked to increased insulin sensitivity, 

as discussed in Chapter 1 section 1.3.1 (93).  

 

In this Chapter, the ethnic differences in both anthropometry and body 

composition in two separate studies of middle-aged, UK-based individuals 

was assessed. Table 4.13 presents the percentage of Cau, SA and BA 

subjects within TWLO and UK Biobank studies imaging cohort, and how 

these percentages contrast with UK averages, as defined by data from the 

British Census 2011 (383). A close alignment would suggest that TWLO 

study and UK Biobank are representative of the normal UK population. 

However, in light of the census data, the UK Biobank cohort had a lower 

percentage of SA and BA individuals, while TWLO study had a higher 

proportion.  
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Table 4.13 Percentage distribution of Caucasians, South Asians and Black African in the UK 
general population, and the two included studies, TWLO, and UK Biobank.   TWLO; the West London 

Observation study, UK Biobank (both overall and imaging cohorts) and British Census 2011 (384).  

% 
British Census 2011 

(n=23,146,612) 
UK Biobank Imaging cohort 

(n=9533) 
TWLO study 

(n=747) 

Caucasian 91.3 95.6 82.1 

South Asian 3.2 1.2 12.0 

Black African 2.4 0.6 5.9 

 
Growing concerns about poorly represented ethnic minority groups in the UK 

Biobank led to the establishment of an Ethnicity Recruitment Sub-Group, 

tasked with ensuring that the recruitment drive took the ethnic diversity of the 

UK into consideration. The sub-group set targets to match these numbers 

and although a perfect match was not achieved, it successfully ensured that 

a significant number of ethnic minority individuals were included in the 

project. Recruiting ethnic minorities is challenging as there is evidence to 

suggest that ethnic minorities are less likely to enrol in clinical research 

compared to Cau (385). This is thought to relate to worries regarding the 

researchers motivation behind carrying out the clinical research, as well as 

worries about confidentiality of the information, especially in subjects with 

limited English proficiency (385).  At the end of recruitment, the overall UK 

Biobank’s Cau recruits were at just over 94%, with ethnic minorities 

represented by the remaining 6%. The UK Biobank imaging cohort analysed 

here is a slightly less diverse cross-section. As a result, the smaller number 

of SA and BA individuals, notably in the UK Biobank imaging cohort, clearly 

affects the power of the analysis to detect significant changes in study 

outcomes between groups (386).  

 

Despite these differences in the distribution of ethnicities, the similarity 

between the two studies regarding ethnic differences in anthropometry and 

body composition is remarkably strong. In both TWLO and UK Biobank 

studies, SA males were significantly shorter and lighter than their BA and Cau 

counterparts as shown previously (20), with additional reductions in hip 

circumference and FFM. In females, a similar pattern was observed across 

both cohorts, with SA females being significantly shorter with reduced FFM 

compared to other ethnic groups in both TWLO and UK Biobank studies. As 
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mentioned in the introduction, WHR is strongly associated with abdominal 

adiposity and cardio-metabolic disease (387). In agreement with previous 

studies (366, 388), increased WHR in SA was found compared to Cau 

females in the UK Biobank cohort, and a non-significant trend towards an 

increased WHR in TWLO study (p=0.088). However, greater VAT or liver fat 

in either SA males or females, compared to Cau counterparts in TWLO and 

UK Biobank, did not accompany this. Previous studies have indicated that SA 

presents increased TAT and VAT compared to Cau matched for age and BMI 

(339, 368). SA neonates are also reported to have elevated liver fat compared 

to Cau babies within the first two weeks of life (307). Anand and colleagues 

have published several papers comparing the metabolic health of SA and 

Cau individuals matched by age gender, and BMI group. They show 

increased TAT, VAT, liver fat and insulin resistance in SA, with their analysis 

of adipocyte size indicating SA have a lower capacity to store fat in 

subcutaneous depots leading to overflow into ectopic fat depots (389, 390).  

 

There are conflicting data regarding gender difference in VAT accumulation 

in SA; Park and colleagues reported an increase in VAT in SA females but 

not in SA males (238), whereas Lear et al. found increased VAT in both SA 

males and females after adjusting for age, BMI and total FM (250). However, 

neither of these findings were confirmed in the analyses here of TWLO or UK 

Biobank cohorts. No increased VAT or liver fat in SA compared to Cau was 

found, even after adjustment for age, gender and BMI. Given the increased 

average age of the two cohorts here compared to these studies, it is possible 

that by the mid- to late-forties Cau have “caught up” with regard to the 

increased VAT and liver fat deposition (353). Longitudinal studies in large 

populations will be needed to determine how ethnic specific differences in 

body fat accumulation manifest over time.  

 

In this Chapter, a significant increase in ASAT in SA compared to Cau in both 

TWLO and UK Biobank studies was found, even after adjustment for age, 

BMI and gender. ASAT has been linked to a “protective” role against the 

development of CVD and is not associated with a linear increase in the 

prevalence of obesity related risk factors (391). Furthermore, it has been 
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proposed that SA have a less developed ASAT compartment (characterised 

by larger SAT adipocyte size, which is more insulin resistant), leading to 

greater accumulation of adipose in visceral compartments in situations of 

energy excess (348, 392). This model hypothesises that ASAT is the first 

adipose tissue compartment to develop and mature, and any restriction on its 

capacity to store triglyceride would lead to the expansion of VAT and 

accumulation of lipid in ectopic organs such as the liver (256). It should be 

noted that some studies have suggested that in SA, ASAT may play a more 

prominent role in the pathogenesis of metabolic syndrome related symptoms 

(256). The data here is contrary to the prevailing idea that SA have greater 

VAT and less ASAT, however, it should be noted that the significant 

differences in ASAT that were observed only manifest in ANCOVA modelling 

analysis following adjustment for gender, age and BMI, which means that the 

amount of variations seen in SA ASAT can only be explained by ethnicity 

when removing the effect of age, gender and BMI. Furthermore, it indicates 

that the effect of age, gender and BMI might outweigh the differences in ASAT 

in SA compared to Cau in the UK.  Clearly, defining and comparing the 

metabolic activity of individual adipose compartments in different ethnicities 

will be required to determine the potential contribution of each depot in 

disease progression. 

 

As described in Chapter 3, further compartmentalisation of ASAT into deep 

and superficial ASAT might be important; as deep ASAT showed a similar 

link with metabolic dysfunction as VAT (393). Furthermore, it has been shown 

that deep ASAT is associated with lower adiponectin levels in SA compared 

to Cau; this association was eliminated when the authors adjusted for 

adipocyte size (389). From the data available, it was impossible to ascertain 

details on adipocyte size nor the separation of deep and superficial ASAT. 

The separation between deep and superficial ASAT is a thin collagen layer 

(Figure 4.4) and therefore, further in-depth analysis of body fat 

compartments in different ethnic groups is needed. 
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Figure 4.9 MRI of abdominal fat tissues compartments. The red arrow is pointing to where the two 

ASAT compartments are separated, the superficial ASAT is segmented and coloured in dark blue, the 
deep subcutaneous adipose tissue is segmented and coloured in light blue, and visceral adipose tissue 
in green. MR: Magnetic Resonance. Image obtained from Golan et al 2012 (394). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

One aspect of the analysis is that it is reproduced in both the TWLO study 

and UK Biobank cohorts is the reduced FFM, which includes lean mass that 

observed in both male and female SA compared to Cau. Increased lean 

mass, consisting mainly of skeletal muscle, is associated with improved 

insulin sensitivity while the adverse impact of sarcopenia, or low muscle 

mass, on insulin resistance and T2D is well-recognized (395, 396). FFM in 

the TWLO study was calculated by converting adiposity into kg and 

subtracting this figure from overall body weight (72), with bone mass not 

factored into the calculation. It therefore represents a different measure 

compared to DXA measurements of FFM available for UK Biobank 

individuals.  

 

BA individuals also demonstrated consistent ethnic differences compared 

with Cau and SA individuals of the same gender, in the analysis. Participants 

of BA descent were generally heavier and taller than the other ethnicities, and 

presented significantly greater FFM and reduced percentage body fat. These 

findings are in agreement with previous reports showing BA individuals have 

increased weight and lean mass compared to Cau (216, 397). Hull et al. also 

reported similar results with BA females having higher FFM and SA females 

having lower FFM compared to Cau (398). In agreement with this, the study 

here found BA males to have significantly less VAT than Cau and SA males 

in both TWLO and UK Biobank studies. These data would appear to be at 
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odds with the increased prevalence (almost double) of T2D in BA compared 

to Cau for a given BMI (399). 

 

In terms of metabolic syndrome susceptibility, BA presents a greater 

prevalence of HTN than Cau (369, 370). This is reflected in the UK Biobank 

data, with significantly increased DBP in BA compared with other ethnic 

groups in the UK Biobank, although this was only found in females. The lack 

of difference in blood pressure observed in males may be linked to the very 

small numbers of BA individuals with only 29 BA males included (compared 

to 4486 Cau males) in the UK Biobank. Previous studies have reported no 

difference in levels of obesity (400) and reduced abdominal visceral fat in 

Black American groups compared to Cau (401, 402). These studies, together 

with the data presented here, would indicate pathophysiology for T2D and 

CVD in subjects of Black race is perhaps in response to a different 

mechanism unrelated to increased abdominal and ectopic fat. The rates of 

HTN in BA are extremely high, with increased salt sensitivity and alterations 

in the renin-angiotensin system representing a possible underlying 

mechanism for the increased susceptibility to developing metabolic syndrome 

associated morbidities (403). 

 

With regards to body fat distribution, one possible reason for the lack of ethnic 

differences is that both populations are subject to “healthy volunteer” 

selection bias (404). Neither cohort is fully representative of the general 

population, having excluded individuals with metabolic diseases that would 

predispose to higher abdominal fat. In order to substantiate the role of VAT 

and liver fat, or lack thereof, was limited to indirectly characterising groups as 

“normal”, based upon replication of previously published ethnic and sex 

differences in anthropometry (324, 365, 366).  

From a statistical point of view, the approach employed to assess the ethnic 

differences in anthropometry and body composition is also worth 

consideration. By adjusting for BMI here, it was attempted to remove its 

potential confounding influence on ethnic differences in body fat. However, 

within this statistical adjustment is the tacit acceptance that BMI behaves 

similarly in different ethnicities. Accumulated evidence suggests that males 
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and females of SA origin have a greater risk for developing CVD at lower BMI 

levels than other ethnicities (250). Ethnic differences may, therefore, exist in 

the strength of the relationships between body size and metabolic and 

cardiovascular risk factors, and has prompted calls for lower BMI cut-offs for 

SA (343). However, directly excluding this confounder for my analyses by 

matching individuals on BMI is hindered by the lack of consensus regarding 

appropriate BMI cut-offs for SA, mostly due to variation within SA themselves 

(405).  

 

A further limitation of my analyses in this Chapter is the lack of metabolic data 

(such as glucose, TG, insulin) which would have provided a means of 

assessing the ethnic specific association between fat depots, lean mass and 

clinical outcomes. While the available literature provides comprehensive 

details on the relationships between metabolic syndrome associated markers 

and both ethnicity and fat depots, it was not possible to draw any direct 

conclusions regarding metabolic risk in the cohorts here. Together with the 

observational nature of the study, my data therefore, represents a means of 

assessing ethnic differences in body fat distribution using the gold standard 

techniques of MRI in the UK biobank and MRI plus MRS in TWLO study for 

AT and liver fat analysis respectively. Despite the differences in the method 

for measuring liver fat, the results in TWLO and UK biobank were similar in 

female but not in male, which might be due to very small number of BA in 

TWLO study (n=14). From the analysis here, it was only possible to be able 

to speculate on the relationships between body composition and the 

development of adverse phenotypes. 

 

The strengths of my study include the availability of both anthropometric and 

body composition data measured via MRI and MRS in two relatively large 

data sets in the UK. The consistency of results between the two studies is 

promising but my results are more confirmatory than novel.  

 

In conclusion, the data here demonstrates significant ethnic differences in AT 

that are strongly associated with metabolic risk. Further work will be required 
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to determine how the nature of these individual fat stores influences the 

development of metabolic syndrome associated features.   
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Chapter 5 Conclusions 
 

The aim of this thesis was to provide an in-depth examination of the ethnic 

differences in compartmental adiposity. Specific adipose depots are causally 

linked to the development of features of the metabolic syndrome associated 

and, in terms of obesity-associated metabolic diseases such as T2D and 

CVD. SA populations have at least double the burden in the prevalence of 

T2D and CVD compared to Cau (224). Furthermore, SA develops T2D ten 

years earlier than Cau in developed countries, and with earlier progression 

rate in developing countries such as the UK (20). In this thesis, it was possible 

to examine the body fat phenotype of SA who reside in their country of origin 

(India) and SA living in the UK. 

Unanswered questions regarding why SA have a higher susceptibility of 

developing obesity-related metabolic disorders highlight the importance of 

quantifying and assessing the ethnic differences in obesity associated 

metabolic diseases. Quantifying ethnic differences in body adiposity requires 

the use of accurate phenotyping, given the established differences between 

separate AT compartments and their association with metabolic disease 

development (91). Answering these questions should help prevention, 

detection, and treatment of metabolic diseases and allow new insight into 

racial disparities of fat metabolism and the pathophysiology of obesity-

associated metabolic diseases as well as provide the scientific community 

with ethnic-specific guidelines to improve global metabolic health.  

Findings from the present thesis have demonstrated: 

 Assessing adult body fat distribution in separate UK-based 

populations confirmed distinct patterns in pre-diabetic compared to 

free-living (free of known-diseases) individuals. Despite total body 

adiposity being higher in free-living populations, pre-diabetics had 

more VAT (7.6% increase) and more ectopic fat in the liver (11.4% 

increase) compared to free-living population. These differences 

confirm the association between these depots and an adverse 

metabolic phenotype. Additional comparison revealed pre-diabetic 
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females to have more liver fat than pre-diabetic males, an effect 

directly opposed to what is observed in free-living population. These 

data suggest gender differences in fat metabolism may influence 

metabolic disease progression. 

 

 In contrast to physical inactivity, day to day episodes of physical 

activity were associated with lower regional and ectopic fat in liver and 

pancreas. These observations were valid in both free-living and pre-

diabetes populations. Based on these associations, physical activity 

assessed objectively by self-reported questionnaires appears 

effective. 

 

 Applying updated BMI guidelines for SA (±2 kg/m2 for each BMI 

category after the underweight category) did not offer any more 

insights when applied to a homogeneous SA population. The previous 

results are enforced by the remarkable number of lean SA who 

presented with unfavourable fat distribution as revealed by the TOFI 

phenotype. Interestingly, SA females who were hyperglycaemic 

showed a trend towards lower BMI compared to normal-glycaemic 

females. Taken together, these observations imply BMI is unable to 

accurately represent body fat in SA.  

 

 Findings of this study demonstrated contrasting metabolic profiles in 

SA living in India compared to the UK; In India, lean SA presented a 

remarkably adverse phenotype compared to age equivalent Cau 

(21.6% TOFI in males, 37.1% TOFI in females). SA residents in the 

UK had very low presence of this adverse adiposity (8.1% only in 

female), despite that the fact that they were much older (18 compared 

to 39-years-old). This highlights a possible high metabolic vulnerability 

in SA towards environmental inputs. Furthermore, the results of this 

study confirm that the thin-fat phenotype presented in SA infants up to 

6 years old, persists in 18-year-old.  
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 Data in adults indicate that even after adjusting for confounders such 

as age, gender and BMI, UK based SA did not have significantly 

higher VAT or liver fat compared to other ethnic groups. This 

important result was replicated in two, large, unrelated populations. 

While limited by the lack of metabolic data, these data suggest that 

increased VAT and IHCL may not be contributing factors to the 

increased prevalence of metabolic disease observed in SA. 

Furthermore, the PMNS cohort showed stronger correlations between 

fasting glucose and insulin in levels of SAT rather than VAT. This 

suggests gender and racial differences in the pathophysiology of 

insulin resistance where SAT may not play a protective role in SA, and 

therefore, phenotypes such as MHO, where individuals might have 

high amount of fat but low risk of metabolic disease dysregulation due 

to subcutaneous fat distribution, are less likely to occur in SA 

population. 

 

 Regarding the pathophysiology of metabolic syndrome in SA, my 

analysis of the PMNS cohort indicate that a reduced muscle mass, 

associated with lower glucose uptake, increased insulin secretion and 

subsequent insulin resistance may play a key role.  

 BA populations have a higher burden of metabolic diseases compared 

to Cau (231). However, my data indicate that BA also showed 

favourable body adiposity, with less VAT and less liver fat compared 

to SA and Cau. The data here, therefore, indicate distinct ethnic 

variations may exist in body fat metabolism and metabolic 

dysregulation. 
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5.1 What went wrong? 

 During the research for this thesis, the metabolic data and blood 

biochemistry markers including blood glucose (fasting + 2 hours 

OGTT), insulin (fasting + 2 hours OGTT), and TG were planned to be 

revealed for the cohorts included in my thesis. These metabolic data 

would have provided in-depth understating into the metabolic 

pathophysiology in SA compared to Cau since SA have shown higher 

glucose response and lower insulin sensitivity compared to Cau after 

identical meals consumption (406). However, these data did not 

release by the time of writing the thesis. Therefore, one of the most 

significant limitations in the data presented here is the lack of 

metabolic data for the participants in two of my three results chapters, 

limiting my ability to draw conclusions regarding ethnic differences in 

the association(s) between metabolic dysregulation and body fat 

compartments. Certainly, once the metabolic data is available it 

requires further investigation.  

 

 The data presented from the European pre-diabetes cohort (DIRECT) 

in Chapter 2 was scheduled to have ethnicity data released at the 

beginning of 2017. However, these data have not yet been released 

despite continuous follow up and will require further investigation once 

available.  

 

5.2 Limitations  

 A major limitation is the proportional lack of SA participants; the total 

percentage of SA in this study overall is 4.6%. Indeed, the UK Biobank 

had a lower percentage of SA at 1.2%. To overcome this obstacle, it 

was possible to obtain abdominal MR scans of SA participants from 

India, made available by our collaboration with the PMNS, who 

allowed analyse of their MR scans of SA (total SA in PMNS= 443, 

which is four times more than were available from the UK Biobank).  
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 The cross-sectional nature of the data in this thesis was a barrier as 

it limits discussion of causality. Longitudinal follow-up, which remains 

expensive and problematic, of the populations that were studied, 

would provide additional understanding of the dynamics of fat 

metabolism with time and diet and physical activity interventions.     

 

 The relatively small number of obese SA in Chapter 3 limited the 

applicability of the results. Therefore for future studies, it may be 

beneficial to have a larger cohort that more comprehensively 

represents all BMI ranges. For example, recruitment of SA in India, 

the largest SA country, would benefit by recruiting from cities or states 

like Delhi and Punjab where the obesity prevalence is 27.8%, and 

perhaps avoid Tripura where the obesity prevalence is less than 5%. 

          5.3 Future work 
 

 In future studies, more concentrated effort needs to be made to obtain 

an equal proportion of participants from all ethnicities studied. The low 

percentage of non-Cau participation in biomedical studies is a well-

established obstacle facing medical committees in order to fully 

understand the metabolic importance of ethnic differences (407). 

Therefore, future work in this area is needed in order to identify the 

magnitude of the barriers (i.e. culture, religion) behind this obstacle 

and also for the relative entities (i.e. social) to develop proper 

strategies to overcome them.  

 

 Further investigation into the effects of overall muscle mass (size and 

quality) and its contribution to the development of metabolic syndrome 

associated features is required. My work has indicated that such 

future studies be carried out in a longitudinal nature with ethnic and 

gender specific fashion for precise findings.   
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 Metabolic disorders and adverse fat adiposity manifest at an early 

stage in SA (328) and therefore, the policy guidelines and intervention 

studies using MR for SA should be aimed accordingly.  

 

 Implementing current advanced technologies such as continues 

glucose monitoring and creating a longitudinal profile of 

subjects/participants can provide insights into the triggers underlying 

elevated blood glucose (dietary, physiological, etc.). This will enable 

the creation of clustering maps for elevated blood glucose triggers, 

insulin profiling and T2D progressions in young SA. Comparing such 

profiles with Cau would allow an in-depth understanding of the ethnic 

differences in the metabolic feedback loop and its short-term and 

long-term impact on body fat phenotyping.  

 

 

 Furthermore, future interventions will highly benefit from social and 

religious aspects in combination with dietary patterns. This will allow 

not only the evaluation of micro and macro nutritional intake, which 

certainly showed an impact on body composition (408) but also the 

way of food preparation which does differ by ethnicities and religious 

practices (409). For example, elements such as cooking practices and 

certain edible oils usage have shown to impact adversely on body 

compositions in SA (409) and therefore require further investigations. 

 

 Gut microbiome alteration (quantity and composition) has a role in 

metabolic disease establishment and the manifestation of insulin 

resistant, obesity and contributing to AT deposition (410). Although 

the exact underlying mechanism is not yet fully illustrated, ethnicity 

has been shown to be the strongest determinant of gut microbial 

makeup, even in the same geographical location (411). Hence, a 

greater understanding of alterations of the gut microbiota, in 

combination with dietary patterns, may provide insights into capturing 

the full magnitude of ethnicity-environment interaction and its impact 

on metabolic disorders.  
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 Obesity is associated with constant state of chronic low-grade 

inflammation leading to activation and infiltration of pro-inflammatory 

immune cells and a dysregulated production of high levels of pro-

inflammatory cytokines, which contributes to insulin resistance and 

T2D progression (412). SA populations have shown worse 

inflammatory profile compared to Cau (389). Hence, future studies 

might benefit from adding inflammation markers (in particular the 

makers that enable the assessment of adipocytes function rather than 

volume only, for example, adiponectin and resisted) which would 

enable greater understanding of the crosstalk between ethnicity, 

immune system and adipocytes and may shed a light in better 

treatment modalities for obesity and obesity-related diseases. 

Furthermore, adipocytes size has been shown to account for the 

adverse metabolic profile and body composition in SA compared to 

Cau (389). However, adipocyte extraction is currently an invasive 

procedure (through biopsies) and therefore future biotechnological 

studies focusing on developing non-invasive tools for individualized 

assessment of adipocyte size may shed a light into the mechanism 

behind the increased prevalence of obesity associated diseases in 

SA.  

 

 The contrast between Indian and UK based SA, highlights the need 

to identify the potentially different pathophysiology of metabolic 

syndrome associated features in native and immigrant populations. 

Furthermore, the impact of day to day events and the magnitude of 

environmental impact (i.e. food accessibility, food quality, deprivation, 

air pollution, transport infrastructure, sports facilities, green areas, 

etc.) in rural versus urban environments warrants further 

investigation. Cross-sectional studies focused on expats communities 

living in different countries could offer important insight into ethnic 

differences in fat metabolism and magnitude of environmental 

contribution.  
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Cross-referenced Chapter 2 Page 66.  
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UK Biobank access application number 6569 

Principal Investigator Dr Olof Dahlqvist Leinhard  

Address Advanced MR Analytics AB, AMRA, Teknikringen 7, Linköping, SE-58330, Sweden 

Summary of research Key words: Obesity, Biomarkers, Ectopic fat, Visceral fat  

The aim of the proposed study is to investigate relationships between fat distribution and 

other factors related to the metabolic syndrome. Most population studies are today using 

BMI, Waist to Hip ratio or total amount of body fat as measurements and biomarkers for 

obesity. Imaging methods are now being introduced and can offer improved accuracy and 

reproducibility for the biomarkers indicating obesity related diseases. A new automatic 

analysis method is here proposed for the analysis of abdominal MR images acquired within 

the UK Biobank study, offering a unique possibility to quantify abdominal fat distribution. 

These measures of fat distribution will be returned to the UK Biobank enabling access to 

these biomarkers for the research community, thereby supporting obesity-related research 

in line with the purpose of the UK Biobank. We expect that the proposed work, to quantify 

and localize fat volume in specific organs of importance, will enable identification of new 

and more specific biomarkers for chronic diseases where body composition plays an 

important role. This will have great impact in many of the proposed research projects 

starting or already started within UK Biobank. After MR scanning, we will analyse the data 

and quantify abdominal fat and subcutaneous fat in the abdominal region, as well as thigh 

muscle volume, using automated image analysis. These measures will then be correlated to 

other factors related to obesity and the metabolic syndrome, such as genetic and 

demographic data, life style and dietary information, blood analysis data and metabolic 

information. We intend to analyze the full cohort of the UK Biobank imaging study. 

UK Biobank access application number 9914 

Dr Rajarshi Banerjee, Perspectum Diagnostics Ltd, Oxford Principal 

Investigator: Dr Rajarshi Banerjee Department: Oxford Centre for Innovation Institution: 

Perspectum Diagnostics Ltd, Oxford Centre for Innovation, New Road, Oxford, OX1 1BY, 

United Kingdom 

Tags: 9914, disease, Fat, Fibrosis, inflammation, Iron, Liver Summary:  

Perspectum Diagnostics has developed a method of analysing magnetic resonance imaging 

(MRI) data that gives an accurate estimate of the amount of liver fat, the amount of liver 

iron, and the extent of inflammation and scarring in the liver. These three characteristics of 

the liver are also the most important in the diagnosis of liver disease. By analysing the 

abdominal MR images from all UK Biobank participants, we can determine approximately 

how many have abnormal liver composition, and the distribution of each of these measures 

in the population. Finally, and most importantly, we can examine the outcomes of the 

participants with liver disease, and determine which biomarkers are predictive of these 

outcomes. 1b: New, clinically meaningful data will be generated from the existing DICOM 

images, and fed back in to the UK Biobank data repository. These data will be directly 
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relevant to future health outcomes and of use to other researchers. Excess liver fat is 

associated with coronary artery atheroma and metabolic syndrome, and is strongly 

associated with obesity-related disease. Liver fibrosis and inflammation are both associated 

with adverse outcomes, which is especially relevant in those with fatty liver disease. We 

will be able to show which patients have liver disease, and future researchers can link these 

findings to specific outcomes. 1c: The MRI scans from the imaging enhancement study will 

be analysed by LiverMultiScan to determine liver fat, iron, inflammation and fibrosis (LIF 

score). These measures have separately been validated against liver biopsies from patients. 

These data will then be compared to measures of body composition, serum markers (lipid 

profile, iron stores, CRP and others) and habits associated with liver disease (e.g. alcohol 

intake, exercise and diet). We will follow up all patients and identify those with a liver-

related clinical outcome (e.g. liver failure, hepatic encephalopathy), and determine which 

prognostic factors best predict these outcomes in this population. 1d: All 100,000 

participants from the UK Biobank imaging enhancement study (i.e. the full cohort from the 

imaging enhancement study) will be analysed to determine the baseline liver health profiles 

of the population. Clinical outcomes data will be collected, with the aim of capturing – every 

liver-related death – every episode of oesophageal variceal bleeding – every new diagnosis 

of cirrhosis – every new diagnosis of liver failure or gross ascites due to liver disease 

(excluding malignant ascites) – every new primary hepatocellular carcinoma and 

cholangiocarcinoma – every new pancreatic carcinoma 
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Appendix 2 UK Biobank Physical Activity Questionnaire (IPAQ) and 
Guidelines for Data Processing and Analysis of the International (IPAQ). 
 
Cross-referenced in Chapter 2 Page 66. 
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  The touch screen question Hint given for the participants  Field ID  

Physical Activity 

Measures 

Days/weeks walked 10+ 

minutes 

In a typical WEEK, on how many days did you walk for at least 

10 minutes at a time? 

Include walking that you do at work, travelling to and from work, 

and for sport or leisure. 

864 

Duration of Walks 
How many minutes did you usually spend walking on a typical 

DAY?  

If the time spent walking on each day of the week varies a Lot, 

provide an average of the walking time 

874 

Days/wk moderate 

physical activity 10+ min 

In a typical WEEK, on how many days did you do 10 minutes or 

more of moderate physical activities like carrying light loads, 

cycling at normal pace? (Do not include walking)? 

Moderate activities examples:  walking upstairs, going to the 

gym(push-ups, weight lifting, dynamic yoga), jogging, energetic 

dancing, aerobics and gardening 

Remember to include activities that you do for work, leisure, travel 

and around the house. 

884 

Duration of moderate 

activity min 

How many minutes did you usually spend doing moderate 

activities on a typical DAY? 

 894 

Days/weeks vigorous 

physical activity 10+ min 

In a typical WEEK, how many days did you do 10 minutes or 

more of vigorous physical activity? (These are activities that 

make you sweat or breathe hard such as fast cycling, aerobics, 

heavy lifting 

Vigorous activities examples:  running (not slow > 5 mph), cycling 

uphill, carrying heavy furniture upstairs, martial arts, competitive 

sports or intensive exercise 

Remember to include heavy activities that you do for work, 

leisure, travel and around the house. 

904 

Duration of vigorous 

activity 

How many minutes did you usually spend doing vigorous 

activities on a typical DAY? 

 914 

Usual walking pace 

How would you describe your usual walking pace? Slow pace is defined as less than 3 miles per hour (6000 

steps/hour) 

Steady average pace is defined as between 3-4 miles per hour 

(7500 steps per hour). 

Fast pace is defined as more than 4 miles per hour (10000 steps 

per hour) 

924 
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Freq of stair climbing in 

last 4 weeks 

At home, during the last 4 weeks, about how many times a DAY 

do you climb a flight of stairs? (approx. 10 steps) 

For all participants except those who indicated they were unable 

to walk.  

943 

Freq of walking for 

pleasure in last 4 weeks 

How many times in the last 4 weeks did you go walking for 

pleasure? 

 971 

Duration of walking for 

pleasure 

Each time you went walking for pleasure, about how long did 

you spend doing it? 

 981 

Freq of strenuous sports 

in last 4 weeks 

How many times in the last 4 weeks did you do strenuous 

sports 

For all participants who indicated that they spent time doing 

strenuous sports in the previous 4 weeks 

991 

Duration of strenuous 

sports 

Each time you did strenuous sports, about how long did you 

spend doing it? 

Examples of strenuous sports:  Heavy DIY includes chopping wood, 

home or car maintenance, lifting heavy objects or using heavy 

tools.  

1001 

Freq of light DIY in last 4 

weeks 

How many times in the last 4 weeks did you do light DIY? Examples of light DIY: pruning, watering the lawn and carpentry) in 

the previous 4 weeks 

1011 

Duration of light DIY 
Each time you did light DIY, about how long did you spend 

doing it? 

 1021 

Freq of heavy DIY in last 

4 weeks 

How many times in the last 4 weeks did you do heavy DIY?  2624 

Duration of heavy DIY 
Each time you did heavy DIY, about how long did you spend 

doing it? 

 2634 

Freq of other exercises 

in last 4 weeks 

How many times in the last 4 weeks did you do other exercises 

such as swimming, cycling, keep fit? 

 3637 

Duration of other 

exercises 

Each time you did other exercises such as swimming, cycling, 

keep fit, about how long did you spend doing them 

 3647 
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Table 2.9 UK bio Bank physical activity and inactivity terms and it definition including the questions asked for the participants from the touchscreen 

questionnaire during the imaging visit at one of the UK Bio Bank imaging centres. 

Types of physical activity 

in past 4 weeks 

In the last 4 weeks did you spend any time doing the following: 

walking, other exercise, strenuous sport, light DIY, heavy DIY 

Strenuous sports include sports that make you sweat or breathe 

hard. 

Heavy DIY includes chopping wood, home or car maintenance, 

lifting heavy objects or using heavy tools. 

6164 

Job involves heavy lifting 
Does your work involve heavy manual or physical work?  Physical work includes work that involves handling of heavy 

objects and use of heavy tools. 

816 

Time spent doing 

vigorous physical activity 

Yesterday, about how long did you spend doing activities that 

needed vigorous effort, making you breathe hard?  

 104900 

Time spent doing 

moderate physical 

activity 

Yesterday, about how long did you spend doing activities that 

needed moderate effort, making you somewhat short of 

breath?  

 104910 

Time spent doing light 

physical activity 

Yesterday, about how long did you spend doing activities that 

needed some light effort, involving movement but not making 

you short of breath 

Hatha yoga and siling not for competition  104920 

Physical 

Inactivity 

Measures 

Time spent watching 

television 

In a typical DAY, how many hours do you spend watching TV?  1070 

Time spent using 

computer 

In a typical DAY, how many hours do you spend using the 

computer? 

 1080 

Time spent driving  In a typical DAY, how many hours do you spend driving?  1090 
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Guidelines for Data Processing and Analysis of the International Physical 
Activity Questionnaire (IPAQ) 
 
– Short and Long Forms 
November 2005 

Contents 
1. Introduction 
2. Uses of IPAQ Instruments 
3. Summary Characteristics of Short and Long Forms 
4. Overview of Continuous and Categorical Analyses of IPAQ 
5. Protocol for Short Form 
6. Protocol for Long Form 
7. Data Processing Rules 
8. Summary Algorithms 
Appendix 1. At A Glance IPAQ Scoring Protocol – Short Forms 
Appendix 2. At A Glance IPAQ Scoring Protocol – Long Forms 
Revised November 2005 2 

1. Introduction 
This document describes recommended methods of scoring the data derived from 
the telephone / interview administered and self-administered IPAQ short and long 
form instruments. The methods outlined provide a revision to earlier scoring 
protocols 
for the IPAQ short form and provide for the first time a comparable scoring method 
for IPAQ long form. Latest versions of IPAQ instruments are available from 
www.ipaq.ki.se. 
Although there are many different ways to analyse physical activity data, to date 
there is no formal consensus on a ‘correct’ method for defining or describing levels 
of 
physical activity based on self–report population surveys. The use of different 
scoring 
protocols makes it very difficult to compare within and between countries, even 
when 
the same instrument has been used. Use of these scoring methods will enhance 
the 
comparability between surveys, provided identical sampling and survey methods 
have been used. 
2. Uses of IPAQ Instruments 
IPAQ short form is an instrument designed primarily for population surveillance of 
physical activity among adults. It has been developed and tested for use in adults 
(age range of 15-69 years) and until further development and testing is undertaken 
the use of IPAQ with older and younger age groups is not recommended. 
IPAQ short and long forms are sometimes being used as an evaluation tool in 
intervention studies, but this was not the intended purpose of IPAQ. Users should 
carefully note the range of domains and types of activities included in IPAQ before 
using it in this context. Use as an outcome measure in small scale intervention 
studies is not recommended. 
3. Summary Characteristics of IPAQ Short and Long Forms 
1. IPAQ assesses physical activity undertaken across a comprehensive set of 
domains including: 
a. leisure time physical activity 
b. domestic and gardening (yard) activities 
c. work-related physical activity 
d. transport-related physical activity; 
2. The IPAQ short form asks about three specific types of activity undertaken in 
the four domains introduced above. The specific types of activity that are 
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assessed are walking, moderate-intensity activities and vigorous-intensity 
activities. 
3. The items in the short IPAQ form were structured to provide separate scores on 
walking, moderate-intensity and vigorous-intensity activity. Computation of the 
total score for the short form requires summation of the duration (in minutes) 
and frequency (days) of walking, moderate-intensity and vigorous-intensity 
activities. Domain specific estimates cannot be estimated. 
Revised November 2005 3 

4. The IPAQ long form asks details about the specific types of activities 
undertaken within each of the four domains. Examples include walking for 
transportation and moderate-intensity leisure-time activity. 
5. The items in the long IPAQ form were structured to provide separate domain 
specific scores for walking, moderate-intensity and vigorous-intensity activity 
within each of the work, transportation, domestic chores and gardening (yard) 
and leisure-time domains. Computation of the total scores for the long form 
requires summation of the duration (in minutes) and frequency (days) for all the 
types of activities in all domains. Domain specific scores or activity specific sub 
scores 
may be calculated. Domain specific scores require summation of the 
scores for walking, moderate-intensity and vigorous-intensity activities within the 
specific domain, whereas activity-specific scores require summation of the 
scores for the specific type of activity across domains. 
4. Overview of Continuous and Categorical Analyses of IPAQ 
Both categorical and continuous indicators of physical activity are possible from 
both 
IPAQ forms. However, given the non-normal distribution of energy expenditure in 
many populations, it is suggested that the continuous indicator be presented as 
median minutes/week or median MET–minutes/week rather than means (such as 
mean minutes/week or mean MET-minutes/week). 
4.1 Continuous Variables 
Data collected with IPAQ can be reported as a continuous measure. One measure 
of 
the volume of activity can be computed by weighting each type of activity by its 
energy requirements defined in METs to yield a score in MET–minutes. METs are 
multiples of the resting metabolic rate and a MET-minute is computed by 
multiplying 
the MET score of an activity by the minutes performed. MET-minute scores are 
equivalent to kilocalories for a 60 kilogram person. Kilocalories may be computed 
from MET-minutes using the following equation: MET-min x (weight in kilograms/60 
kilograms). MET-minutes/day or MET-minutes/week can be presented although 
the 
latter is more frequently used and is thus suggested. 
Details for the computation for summary variables from IPAQ short and long forms 
are detailed below. As there are no established thresholds for presenting 
METminutes, 
the IPAQ Research Committee propose that these data are reported as 
comparisons of median values and interquartile ranges for different populations. 
4.2 Categorical Variable: Rationale for Cut Point Values 
There are three levels of physical activity proposed to classify populations: 
1. Low 
2. Moderate 
3. High 
Revised November 2005 4 

The algorithms for the short and long forms are defined in more detail in Sections 
5.3 
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and 6.3, respectively. Rules for data cleaning and processing prior to computing 
the 
algorithms appear in Section 7. 
Regular participation is a key concept included in current public health guidelines 
for 
physical activity.1 Therefore, both the total volume and the number of 
days/sessions 
are included in the IPAQ analysis algorithms. 
The criteria for these levels have been set taking into account that IPAQ asks 
questions in all domains of daily life, resulting in higher median MET-minutes 
estimates than would have been estimated from leisure-time participation alone. 
The 
criteria for these three levels are shown below. 
Given that measures such as IPAQ assess total physical activity in all domains, the 
“leisure time physical activity” based public health recommendation of 30 minutes 
on 
most days will be achieved by most adults in a population. Although widely 
accepted 
as a goal, in absolute terms 30 minutes of moderate-intensity activity is low and 
broadly equivalent to the background or basal levels of activity adult individuals 
would accumulate in a day. Therefore a new, higher cutpoint is needed to describe 
the levels of physical activity associated with health benefits for measures such as 
IPAQ, which report on a broad range of domains of physical activity. 
‘High’ 
This category was developed to describe higher levels of participation. Although it 
is 
known that greater health benefits are associated with increased levels of activity 
there is no consensus on the exact amount of activity for maximal benefit. In the 
absence of any established criteria, the IPAQ Research Committee proposes a 
measure which equates to approximately at least one hour per day or more, of at 
least moderate-intensity activity above the basal level of physical activity 
Considering 
that basal activity may be considered to be equivalent to approximately 5000 steps 
per day, it is proposed that “high active” category be considered as those who 
move 
at least 12,500 steps per day, or the equivalent in moderate and vigorous activities. 
This represents at least an hour more moderate-intensity activity over and above 
the 
basal level of activity, or half an hour of vigorous-intensity activity over and above 
basal levels daily. These calculations were based on emerging results of 
pedometers 
studies.2 
This category provides a higher threshold of measures of total physical activity and 
is 
a useful mechanism to distinguish variation in population groups. Also it could be 
used to set population targets for health-enhancing physical activity when 
multidomain 
instruments, such as IPAQ are used. 
1 Pate RR, Pratt M, Blair SN, Haskell WL , Macera CA, Bouchard C et al. Physical 
activity and public health. A recommendation 
from the Centers for Disease Control and Prevention and the American College of 
Sports Medicine. Journal of American 
Medical Association 1995; 273(5):402-7. and U.S. Department of Health and 
Human Services. Physical Activity and Health: A 
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Report of the Surgeon General. Department of Health and Human Services, 
Centers for Disease Control and Prevention, 
National Center for Chronic Disease Prevention and Health Promotion, The 
Presidents' Council on Physical Fitness and Sports: 
Atlanta, GA:USA. 1996. 
2 Tudor-Locke C, Bassett DR Jr. How many steps/day are enough? Preliminary 
pedometer indices for public health. Sports 
Med. 2004;34(1):1-8. 
Revised November2005 5 

‘Moderate’ 
This category is defined as doing some activity, more than the low active category. 
It 
is proposed that it is a level of activity equivalent to “half an hour of at least 
moderate-intensity PA on most days”, the former leisure time-based physical 
activity 
population health recommendation. 
‘Low’ 
This category is simply defined as not meeting any of the criteria for either of the 
previous categories. 
5. Protocol for IPAQ Short Form 
5.1 Continuous Scores 
Median values and interquartile ranges can be computed for walking (W), 
moderateintensity 
activities (M), vigorous-intensity activities (V) and a combined total physical 
activity score. All continuous scores are expressed in MET-minutes/week as 
defined 
below. 
5.2 MET Values and Formula for Computation of MET-minutes/week 
The selected MET values were derived from work undertaken during the IPAQ 
Reliability Study undertaken in 2000-20013. Using the Ainsworth et al. 
Compendium 
(Med Sci Sports Med 2000) an average MET score was derived for each type of 
activity. For example; all types of walking were included and an average MET 
value 
for walking was created. The same procedure was undertaken for moderate-
intensity 
activities and vigorous-intensity activities. The following values continue to be used 
for the analysis of IPAQ data: Walking = 3.3 METs, Moderate PA = 4.0 METs and 
Vigorous PA = 8.0 METs. Using these values, four continuous scores are defined: 
Walking MET-minutes/week = 3.3 * walking minutes * walking days 
Moderate MET-minutes/week = 4.0 * moderate-intensity activity minutes * 
moderate days 
Vigorous MET-minutes/week = 8.0 * vigorous-intensity activity minutes * vigorous-
intensity days 
Total physical activity MET-minutes/week = sum of Walking + Moderate + Vigorous 
METminutes/ 
week scores. 
5.3 Categorical Score 
Category 1 Low 
This is the lowest level of physical activity. Those individuals who not meet criteria 
for Categories 2 or 3 are considered to have a ‘low’ physical activity level. 
3 Craig CL,Marshall A , Sjostrom M et al. International Physical Activity 
Questionnaire: 12 country reliability and 
validity Med Sci Sports Exerc 2003;August 
Revised November2005 6 
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Category 2 Moderate 
The pattern of activity to be classified as ‘moderate’ is either of the following 
criteria: 
a) 3 or more days of vigorous-intensity activity of at least 20 minutes per day 
OR 
b) 5 or more days of moderate-intensity activity and/or walking of at least 30 
minutes per day 
OR 
c) 5 or more days of any combination of walking, moderate-intensity or vigorous 
intensity activities achieving a minimum Total physical activity of at least 600 
MET-minutes/week. 
Individuals meeting at least one of the above criteria would be defined as 
accumulating a minimum level of activity and therefore be classified as ‘moderate’. 
See Section 7.5 for information about combining days across categories. 
Category 3 High 
A separate category labelled ‘high’ can be computed to describe higher levels of 
participation. 
The two criteria for classification as ‘high’ are: 
a) vigorous-intensity activity on at least 3 days achieving a minimum Total 
physical activity of at least 1500 MET-minutes/week 
OR 
b) 7 or more days of any combination of walking, moderate-intensity or 
vigorous-intensity activities achieving a minimum Total physical activity 
of at least 3000 MET-minutes/week. 
See Section 7.5 for information about combining days across categories. 
5.4 Sitting Question in IPAQ Short Form 
The IPAQ sitting question is an additional indicator variable of time spent in 
sedentary activity and is not included as part of any summary score of physical 
activity. Data on sitting should be reported as median values and interquartile 
ranges. 
To-date there are few data on sedentary (sitting) behaviours and no well-accepted 
thresholds for data presented as categorical levels. 
6. Protocol for IPAQ Long Form 
The long form of IPAQ asks in detail about walking, moderate-intensity and 
vigorousintensity 
physical activity in each of the four domains. Note: asking more detailed 
questions regarding physical activity within domains is likely to produce higher 
prevalence estimates than the more generic IPAQ short form. 
Revised November2005 7 

6.1 Continuous Score 
Data collected with the IPAQ long form can be reported as a continuous measure 
and reported as median MET-minutes. Median values and interquartile ranges can 
be computed for walking (W), moderate-intensity activities (M), and vigorous-
intensity 
activities (V) within each domain using the formulas below. Total scores may also 
be 
calculated for walking (W), moderate-intensity activities (M), and vigorous-intensity 
activities (V); for each domain (work, transport, domestic and garden, and leisure) 
and for an overall grand total. 
6.2 MET Values and Formula for Computation of MET-minutes 
Work Domain 
Walking MET-minutes/week at work = 3.3 * walking minutes * walking days at work 
Moderate MET-minutes/week at work= 4.0 * moderate-intensity activity minutes * 
moderate-intensity 
days at work 
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Vigorous MET-minutes/week at work= 8.0 * vigorous-intensity activity minutes * 
vigorous-intensity 
days at work 
Total Work MET-minutes/week =sum of Walking + Moderate + Vigorous MET-
minutes/week scores at 
work. 
Active Transportation Domain 
Walking MET-minutes/week for transport = 3.3 * walking minutes * walking days 
for transportation 
Cycle MET-minutes/week for transport= 6.0 * cycling minutes * cycle days for 
transportation 
Total Transport MET-minutes/week = sum of Walking + Cycling MET-
minutes/week scores for 
transportation. 
Domestic and Garden [Yard Work] Domain 
Vigorous MET-minutes/week yard chores= 5.5 * vigorous-intensity activity minutes 
* vigorous-intensity 
days doing yard work (Note: the MET value of 5.5 indicates that vigorous 
garden/yard work should 
be considered a moderate-intensity activity for scoring and computing total 
moderate intensity 
activities.) 
Moderate MET-minutes/week yard chores= 4.0 * moderate-intensity activity 
minutes * moderateintensity 
days doing yard work 
Moderate MET-minutes/week inside chores= 3.0* moderate-intensity activity 
minutes * moderateintensity 
days doing inside chores. 
Total Domestic and Garden MET-minutes/week =sum of Vigorous yard + Moderate 
yard + Moderate 
inside chores MET-minutes/week scores. 
Leisure-Time Domain 
Walking MET-minutes/week leisure = 3.3 * walking minutes * walking days in 
leisure 
Moderate MET-minutes/week leisure = 4.0 * moderate-intensity activity minutes * 
moderate-intensity 
days in leisure 
Vigorous MET-minutes/week leisure = 8.0 * vigorous-intensity activity minutes * 
vigorous-intensity 
days in leisure 
Total Leisure-Time MET-minutes/week = sum of Walking + Moderate + Vigorous 
MET-minutes/week 
scores in leisure. 
Revised November2005 8 

Total Scores for all Walking, Moderate and Vigorous Physical Activities 
Total Walking MET-minutes/week = Walking MET-minutes/week (at Work + for 
Transport + in Leisure) 
Total Moderate MET-minutes/week total = Moderate MET-minutes/week (at Work 
+ Yard chores + 
inside chores + in Leisure time) + Cycling Met-minutes/week for Transport + 
Vigorous Yard chores 
MET-minutes/week 
Total Vigorous MET-minutes/week = Vigorous MET-minutes/week (at Work + in 
Leisure) 



283 
 

Note: Cycling MET value and Vigorous garden/yard work MET value fall within the 
coding range of 
moderate-intensity activities. 
Total Physical Activity Scores 
An overall total physical activity MET-minutes/week score can be computed as: 
Total physical activity MET-minutes/week = sum of Total (Walking + Moderate + 
Vigorous) METminutes/ 
week scores. 
This is equivalent to computing: 
Total physical activity MET-minutes/week = sum of Total Work + Total Transport + 
Total Domestic and 
Garden + Total Leisure-Time MET-minutes/week scores. 
As there are no established thresholds for presenting MET-minutes, the IPAQ 
Research Committee proposes that these data are reported as comparisons of 
median values and interquartile ranges for different populations. 
6.3 Categorical Score 
As noted earlier, regular participation is a key concept included in current public 
health guidelines for physical activity.4 Therefore, both the total volume and the 
number of day/sessions are included in the IPAQ analysis algorithms. There are 
three levels of physical activity proposed to classify populations – ‘low’, ’moderate’, 
and ‘high’. The criteria for these levels are the same as for the IPAQ short 
[described 
earlier in Section 4.2] 
Category 1 Low 
This is the lowest level of physical activity. Those individuals who not meet criteria 
for Categories 2 or 3 are considered ‘low’. 
Category 2 Moderate 
The pattern of activity to be classified as ‘moderate’ is either of the following 
criteria: 
d) 3 or more days of vigorous-intensity activity of at least 20 minutes per day 
OR 
e) 5 or more days of moderate-intensity activity and/or walking of at least 30 
minutes per day 
OR 
4 Pate RR, Pratt M, Blair SN, Haskell WL , Macera CA, Bouchard C et al. Physical 
activity and public health. A recommendation 
from the Centers for Disease Control and Prevention and the American College of 
Sports Medicine. Journal of American 
Medical Association 1995; 273(5):402-7. and U.S. Department of Health and 
Human Services. Physical Activity and Health: A 
Report of the Surgeon General. Department of Health and Human Services, 
Centers for Disease Control and Prevention, 
National Center for Chronic Disease Prevention and Health Promotion, The 
Presidents' Council on Physical Fitness and Sports: 
Atlanta, GA:USA. 1996. 
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f) 5 or more days of any combination of walking, moderate-intensity or 
vigorousintensity 
activities achieving a minimum Total physical activity of at least 600 
MET-minutes/week. 
Individuals meeting at least one of the above criteria would be defined as 
accumulating a moderate level of activity. See Section 7.5 for information about 
combining days across categories. 
Category 3 High 
A separate category labelled ‘high’ can be computed to describe higher levels of 
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participation. 
The two criteria for classification as ‘high’ are: 
a) vigorous-intensity activity on at least 3 days achieving a minimum Total 
physical activity of at least 1500 MET-minutes/week 
OR 
b) 7 or more days of any combination of walking, moderate-intensity or 
vigorous-intensity activities achieving a minimum Total physical activity 
of at least 3000 MET-minutes/week. 
See Section 7.5 for information about combining days across categories. 
6.4 IPAQ Sitting Question IPAQ Long Form 
The IPAQ sitting question is an additional indicator variable and is not included as 
part of any summary score of physical activity. To-date there are few data on 
sedentary (sitting) behaviours and no well-accepted thresholds for data presented 
as 
categorical levels. For the sitting question ‘Minutes’ is used as the indicator to 
reflect 
time spent in sitting rather than MET-minutes which would suggest an estimate of 
energy expenditure. 
IPAQ long assesses an estimate of sitting on a typical weekday, weekend day and 
time spent sitting during travel (see transport domain questions). 
Summary sitting variables include 
Sitting Total Minutes/week = weekday sitting minutes* 5 weekdays + weekend day 
sitting minutes* 2 
weekend days 
Average Sitting Total Minutes/day = (weekday sitting minutes* 5 weekdays + 
weekend day sitting 
minutes* 2 weekend days) / 7 
Note: The above calculation of ‘Sitting Total’ excludes time spent sitting during 
travel because the 
introduction in IPAQ long directs the responder to NOT include this component as 
it would have 
already been captured under the Transport section. If a summary sitting variable 
including time spent 
sitting for transport is required, it should be calculated by adding the time reported 
(travelling in a 
motor vehicle) under transport to the above formula. Care should be taken in 
reporting these alternate 
data to clearly distinguish the ‘total sitting’ variable from a ‘total sitting – including 
transport’ variable. 
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7. Data Processing Rules 
In addition to a standardized approach to computing categorical and continuous 
measures of physical activity, it is necessary to undertake standard methods for 
the 
cleaning and treatment of IPAQ datasets. The use of different approaches and 
rules 
would introduce variability and reduce the comparability of data. 
There are no established rules for data cleaning and processing on physical 
activity. 
Thus, to allow more accurate comparisons across studies IPAQ Research 
Committee 
has established and recommends the following guidelines: 
7.1 Data Cleaning 
I. Any responses to duration (time) provided in the hours and minutes response 
option should be converted from hours and minutes into minutes. 
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II. To ensure that responses in ‘minutes’ were not entered in the ‘hours’ column by 
mistake during self-completion or during data entry process, values of ‘15’, ‘30’, 
‘45’, ‘60’ and ‘90’ in the ‘hours’ column should be converted to ‘15’, ‘30’, ‘45’, ‘60’ 
and ‘90’ minutes, respectively, in the minutes column. 
III. In some cases duration (time) will be reported as weekly (not daily) e.g., 
VWHRS, VWMINS. These data should be converted into an average daily time 
by dividing by 7. 
IV. If ‘don’t know’ or ‘refused ‘ or data are missing for time or days then that case is 
removed from analysis. 
Note: Both the number of days and daily time are required for the creation of 
categorical and 
continuous summary variables 
7.2 Maximum Values for Excluding Outliers 
This rule is to exclude data which are unreasonably high; these data are to be 
considered outliers and thus are excluded from analysis. All cases in which the 
sum 
total of all Walking, Moderate and Vigorous time variables is greater than 960 
minutes (16 hours) should be excluded from the analysis. This assumes that on 
average an individual of 8 hours per day is spent sleeping. 
The ‘days’ variables can take the range 0-7 days, or 8, 9 (don’t know or refused); 
values greater than 9 should not be allowed and those cases excluded from 
analysis. 
7.3 Minimum Values for Duration of Activity 
Only values of 10 or more minutes of activity should be included in the calculation 
of 
summary scores. The rationale being that the scientific evidence indicates that 
episodes or bouts of at least 10 minutes are required to achieve health benefits. 
Responses of less than 10 minutes [and their associated days] should be re-coded 
to 
‘zero’. 
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7.4 Truncation of Data Rules 
This rule attempts to normalize the distribution of levels of activity which are 
usually 
skewed in national or large population data sets. 
In IPAQ short - it is recommended that all Walking, Moderate and Vigorous time 
variables exceeding ‘ 3 hours’ or ‘180 minutes’ are truncated (that is re-coded) to 
be 
equal to ‘180 minutes’ in a new variable. This rule permits a maximum of 21 hours 
of 
activity in a week to be reported for each category (3 hours * 7 days). 
In IPAQ long – the truncation process is more complicated, but to be consistent 
with 
the approach for IPAQ short requires that the variables total Walking, total 
Moderateintensity 
and total Vigorous-intensity activity are calculated and then, for each of 
these summed behaviours, the total value should be truncated to 3 hours (180 
minutes). 
When analysing the data as categorical variable or presenting median and 
interquartile ranges of the MET-minute scores, the application of the truncation rule 
will not affect the results. This rule does have the important effect of preventing 
misclassification in the ‘high’ category. For example, an individual who reports 
walking for 10 minutes on 6 days and 12 hours of moderate activity on one day 
could 
be coded as ‘high’ because this pattern meets the ‘7 day” and “3000 MET-min” 
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criteria for ‘high’. However, this uncommon pattern of activity is unlikely to yield the 
health benefits that the ‘high’ category is intended to represent. 
Although using median is recommended due to the skewed distribution of scores, if 
IPAQ data are analysed and presented as a continuous variable using mean 
values, 
the application of the truncation rule will produce slightly lower mean values than 
would otherwise be obtained. 
7.5 Calculating MET-minute/week Scores 
Data processing rules 7.2, 7.3, and 7.4 deals first with excluding outlier data, then 
secondly, with recoding minimum values and then finally dealing with high values. 
These rules will ensure that highly active people remain classified as ‘high’, while 
decreasing the chances that less active individuals are misclassified and coded as 
‘high’. 
Using the resulting variables, convert time and days to MET-minute/week scores 
[see above Sections 5.2 and 6.2; METS x days x daily time]. 
7.6 Calculating Total Days for Presenting Categorical Data on Moderate and 
High Levels 
Presenting IPAQ data using categorical variables requires the total number of 
‘days’ 
on which all physical activity was undertaken to be assessed. This is difficult 
because 
frequency in ‘days’ is asked separately for walking, moderate-intensity and 
vigorousintensity 
activities, thus allowing the total number of ‘days’ to range from a minimum 
Revised November2005 12 

of 0 to a maximum of 21’days’ per week in IPAQ short and higher in IPAQ long. 
The 
IPAQ instrument does not record if different types of activity are undertaken on the 
same day. 
In calculating ‘moderately active’, the primary requirement is to identify those 
individuals who undertake activity on at least ‘5 days’/week [see Sections 4.2 and 
5.3]. Individuals who meet this criterion should be coded in a new variable called 
“at 
least five days” and this variable should be used to identify those meeting criterion 
b) 
at least 30 minutes of moderate-intensity activity and/or walking; and those 
meeting 
criterion c) any combination of walking, moderate-intensity or vigorous-intensity 
activities achieving a minimum of 600 MET-minutes/week. 
Below are two examples showing this coding in practice: 
i) an individual who reports ‘2 days of moderate-intensity’ and ‘3 days of walking’ 
should be coded as a value indicating “at least five days”; 
ii) an individual reporting ‘2 days of vigorous-intensity’, ‘2 days of 
moderateintensity’ 
and ‘2 days of walking should be coded as a value to indicate “at 
least five days” [even though the actual total is 6]. 
The original frequency of ‘days’ for each type of activity should remain in the data 
file 
for use in the other calculations. 
The same approach as described above is used to calculate total days for 
computing 
the ‘high’ category. The primary requirement according to the stated criteria is to 
identify those individuals who undertake a combination of walking, moderate-
intensity 
and or vigorous-intensity activity on at least 7 days/week [See section 4.2]. 
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Individuals who meet this criterion should be coded as a value in a new variable to 
reflect “at least 7 days”. 
Below are two examples showing this coding in practice: 
i) an individual who reports ‘4 days of moderate-intensity’ and ‘3 days of walking’ 
should be coded as the new variable “at least 7 days”. 
ii) an individual reporting ‘3 days of vigorous-intensity’, ‘3 days moderateintensity’ 
and ‘3 days walking’ should be coded as “at least 7 days” [even 
though the total adds to 9] . 
8. Summary algorithms 
The algorithms in Appendix 1 and Appendix 2 to this document show how these 
rules 
work in an analysis plan, to develop the categories 1 [Low], 2 [Moderate], and 3 
[High] levels of activity. 
IPAQ Research Committee 
November 2005 
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IPAQ Scoring Protocol (Short Forms) 
Continuous Score 
Expressed as MET-min per week: MET level x minutes of activity/day x days per 
week 
Sample Calculation 
MET levels MET-minutes/week for 30 min/day, 5 days 
Walking = 3.3 METs 3.3*30*5 = 495 MET-minutes/week 
Moderate Intensity = 4.0 METs 4.0*30*5 = 600 MET-minutes/week 
Vigorous Intensity = 8.0 METs 8.0*30*5 = 1,200 MET-minutes/week 
___________________________ 
TOTAL = 2,295 MET-minutes/week 
Total MET-minutes/week = Walk (METs*min*days) + Mod (METs*min*days) + Vig 
(METs*min*days) 
Categorical Score- three levels of physical activity are proposed 
1. Low 

No activity is reported OR 
Some activity is reported but not enough to meet Categories 2 or 3. 

2. Moderate 
Either of the following 3 criteria 

3 or more days of vigorous activity of at least 20 minutes per day OR 
5 or more days of moderate-intensity activity and/or walking of at least 30 

minutes 
per day OR 

5 or more days of any combination of walking, moderate-intensity or 
vigorousintensity 
activities achieving a minimum of at least 600 MET-minutes/week. 
3. High 
Any one of the following 2 criteria 

Vigorous-intensity activity on at least 3 days and accumulating at least 1500 
MET-minutes/week OR 

7 or more days of any combination of walking, moderate- or vigorous-intensity 
activities accumulating at least 3000 MET-minutes/week 
Please review the full document “Guidelines for the data processing and 
analysis of the International 
Physical Activity Questionnaire” for more detailed description of IPAQ 
analysis and recommendations for 
data cleaning and processing [www.ipaq.ki.se]. 
Revised November2005 14 
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IPAQ Scoring Protocol (Long Forms) 
Continuous Score 
Expressed as MET-minutes per week: MET level x minutes of activity/day x days 
per week 
Sample Calculation 
MET levels MET-minutes/week for 30 min/day, 5 days 
Walking at work= 3.3 METs 3.3*30*5 = 495 MET-minutes/week 
Cycling for transportation= 6.0 METs 6.0*30*5 = 900 MET-minutes/week 
Moderate yard work= 4.0 METs 4.0*30*5 = 600 MET-minutes/week 
Vigorous intensity in leisure= 8.0 METs 8.0*30*5 = 1,200 MET-minutes/week 
___________________________ 
TOTAL = 3,195 MET-minutes/week 
Domain Sub Scores 
Total MET-minutes/week at work = Walk (METs*min*days) + Mod 
(METs*min*days) + Vig 
(METs*min*days) at work 
Total MET-minutes/week for transportation = Walk (METs*min*days) + Cycle 
(METs*min*days) for transportation 
Total MET-minutes/week from domestic and garden = Vig (METs*min*days) yard 
work + 
Mod (METs*min*days) yard work + Mod (METs*min*days) inside chores 
Total MET-minutes/week in leisure-time = Walk (METs*min*days) + Mod 
(METs*min*days) 
+ Vig (METs*min*days) in leisure-time 
Walking, Moderate-Intensity and Vigorous-Intensity Sub Scores 
Total Walking MET-minutes/week = Walk MET-minutes/week (at Work + for 
Transport + in 
Leisure) 
Total Moderate MET-minutes/week = Cycle MET-minutes/week for Transport + 
Mod METminutes/ 
week (Work + Yard chores + Inside chores + Leisure) + Vigorous Yard chores 
METminutes 
Note: The above is a total moderate activities only score. If you require a total of 
all moderate-intensity 
physical activities you would sum Total Walking and Total Moderate 
Total Vigorous MET-minutes/week = Vig MET-minutes/week (at Work + in 
Leisure) 
Total Physical Activity Score 
Total Physical Activity MET-minutes/week = Walking MET-minutes/week + 
Moderate METminutes/ 
week + Total Vigorous MET-minutes/week 
Continued……….. 
Revised November2005 15 

Also 
Total Physical Activity MET-minutes/week = Total MET-minutes/week (at Work + 
for 
Transport + in Chores + in Leisure) 
Categorical Score- three levels of physical activity are proposed 
1. Low 
No activity is reported OR 
a. Some activity is reported but not enough to meet Categories 2 or 3. 
2. Moderate 
Either of the following 3 criteria 
a. 3 or more days of vigorous-intensity activity of at least 20 minutes per day OR 



289 
 

b. 5 or more days of moderate-intensity activity and/or walking of at least 30 
minutes per day OR 
c. 5 or more days of any combination of walking, moderate-intensity or 
vigorousintensity 
activities achieving a minimum of at least 600 MET-min/week. 
3. High 
Any one of the following 2 criteria 

Vigorous-intensity activity on at least 3 days and accumulating at least 1500 
MET-minutes/week OR 

7 or more days of any combination of walking, moderate- or vigorous- intensity 
activities accumulating at least 3000 MET-minutes/week 
Please review the full document “Guidelines for the data processing and 
analysis of the International Physical Activity Questionnaire” for more detailed 
description of IPAQ analysis and recommendations for data cleaning and 
processing [www.ipaq.ki.se]. 
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Appendix 3 Matlab codes for liver and pancreas quantification  

Cross-referenced in Chapter 2 Page 72  
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Matlab codes for liver and pancreas quantification  

%% Create fat map 
a = x(:,:,1); 
b = x(:,:,2); 
fatfrac =b./(a+b); 
%fatfrac=a./(a+b); 

  
figure('Name','Fat Fraction','NumberTitle','on');imagesc(fatfrac, 

[0 0.5]); 
axis image; 

  
%mask adipose tissue 
%fprintf(1,'Draw Adipose Mask (please)\n'); 

  
%%% 23-5-13: Ask user to draw NOT fat (before drew fat) 
fprintf(1,'Please draw Adipose Mask (draw around everything that is 

NOT FAT)\n'); 

  
mask3=roipoly;close all 
mask3 = ~mask3; %<---- flip definition of mask (23-5-13) 

  
fatfrac = fatfrac.*abs(1-mask3); 
x(:,:,3) = x(:,:,3).*abs(1-mask3); 

  

 

  
%% mask background and blood vessels 

  
%2sd threshold for vessels and exclude outliers (T2*>50) 
x3=x(:,:,3); 
t2_threshold = median(x3((x3>0)&(x3<50)))+2*std 

(x3((x3>0)&(x3<50))); 

  
m1 = (x(:,:,3)<t2_threshold)&(x(:,:,3)>0); 

  
%erode mask around blood vessels 
erodedmask = imerode(m1,strel('disk',1)); 
%figure('Name','T2* mask','NumberTitle','on');imagesc(erodedmask); 
%axis image; 

  

  
%liver only image and histogram 
liveronly = fatfrac.*erodedmask; 
figure('Name','Masked fat','NumberTitle','on');imagesc(liveronly, 

[0 0.4]); 
axis image; 
mean_liver_fat = mean(liveronly(erodedmask)); 
stan_dev_liver_fat = std (liveronly(erodedmask)); 
fprintf(1,'Liver fat = %1.2f +/- %1.2f 

percent\n',mean_liver_fat*100,stan_dev_liver_fat*100); 

  
%%% 18-6-13: At this point, calculate R2* 
t2star = x(:,:,3); 
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r2star = 1e3./t2star; 
r2star(isinf(r2star))=0; 

  
%T2* map 
nr=1;nc=2; 
figure('Name','T2*','NumberTitle','on'); 
subplot(nr,nc,1) 
imagesc(t2star, [0 80]);colorbar 
axis image;title('T2*/ms') 
subplot(nr,nc,2) 
imagesc(r2star, [0 50]);colorbar 

 

  
%Liver only T2* map 
nr=1;nc=2; 
figure('Name','Masked T2*','NumberTitle','on'); 
subplot(nr,nc,1) 
imagesc(t2star.*erodedmask, [0 80]);colorbar 
axis image;title('T2*/ms') 
subplot(nr,nc,2) 
imagesc(r2star.*erodedmask, [0 50]);colorbar 
axis image;title('R2*/s^{') 

  

  

  
mean_liver_t2star = mean(t2star(erodedmask)); 
stan_dev_liver_t2star = std (t2star(erodedmask)); 
mean_liver_r2star = mean(r2star(erodedmask)); 
stan_dev_liver_r2star = std (r2star(erodedmask)); 

  
fprintf(1,'Liver T2* = %1.2f +/- %1.2f 

ms\n',mean_liver_t2star,stan_dev_liver_t2star); 
fprintf(1,'Liver R2* = %1.2f +/- %1.2f s^-

1\n',mean_liver_r2star,stan_dev_liver_r2star); 

  
%% fat histogram 
[h, bin] = histc(liveronly(erodedmask),0:0.01:0.5); 
figure('Name','Fat 

histogram','NumberTitle','on');plot(0:0.01:0.5,h); 

  
%% T2 hist 
edges = 1:1:150; 
x3=x(:,:,3);[h, bin] = histc(x3(:),edges); 
figure('Name','T2* histogram','NumberTitle','on');plot(edges,h); 
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Appendix 4 Detailed Gender specific phenotyping of VAT, ASAT and 

liver fat between free-living and pre-diabetic population 

Cross-references in Chapter 2 Page 120 
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Gender specific phenotyping of VAT/ASAT ratio between free-living and pre-diabetic population in (A) men and (B) women. Data presented as box and 

whisper plots: where error bars are min/max range, upper and lower edges are 25th and 75th percentiles. p values are calculated from nonparametric Mann-Whitney 
in SPSS (v.23). Free living population data obtained from UK biobank and pre-diabetic data obtained from DIRECT IMI. VAT; visceral adipose tissue, ASAT; abdominal 
subcutaneous adipose tissue. Graphs were performed using GraphPad Prism version 5.0. This graph shows that overall the ratio of VAT/ASAT is higher in males (A) 
than in females (B) in both population which might be partially due to the males has higher percentage in particular in pre-diabetic populations.  The gender pattern 
between two populations are consistent with what was seeing in VAT and ASAT separately.  
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Detailed Gender specific phenotyping of VAT, ASAT and liver fat between free-living and pre-diabetic population in. Data presented as mean ± Standard 

deviations. ¶ indicates significance of p>0.001 calculated from nonparametric Mann-Whitney in SPSS (v.23). Free living population data obtained from UK biobank 

and pre-diabetic data obtained from DIRECT IMI. VAT; visceral adipose tissue, ASAT; abdominal subcutaneous adipose tissue 

  

 Male Female  

 
VAT ASAT Liver fat  VAT ASAT Liver fat  

 
Free-living  Pre-diabetic  Free-living Pre-diabetic  Free-living Pre-diabetic  Free-living  Pre-diabetic  Free-living Pre-diabetic  Free-living Pre-diabetic  

N number  
2849 1045 2849 1042 2839 1120 3136 362 3136 362 3132 428 

Mean ± SD 4.9 ± 2.3 6.0 ± 2.3¶ 5.8 ± 2.5 5.7 ± 2.4¶ 4.7 ± 4.7 5.9 ± 5.4¶ 2.1 ± 1.5 4.2 ± 1.9¶ 8.0 ± 3.4 9.3 ± 3.5¶ 3.6 ± 4.5 7.3 ± 7.0¶ 

Minimum 0.35 0.4191 0.65 0.9088 0.65 0.26 0.1 0.2036 0.77 1.882 0.45 0.35 

25% Percentile 3.255 4.303 4.27 4.122 1.74 2.15 1.46 2.824 5.57 6.564 1.32 2.17 

Median 4.63 5.971 5.5 5.397 2.87 4.105 2.33 4.002 7.5 8.688 1.96 4.615 

75% Percentile 6.39 7.567 7.07 6.873 5.69 7.805 3.51 5.361 9.93 11.89 3.698 9.66 

Maximum 14.41 14.49 22.32 21.94 34.04 37.59 12.09 10.79 23.48 20.89 34.5 34.81 
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Detailed Gender specific phenotyping of VAT, ASAT and liver fat between free-living and pre-diabetic population in. Data presented as mean ± Standard 

deviations. ¶ indicates significance of p>0.001 calculated from nonparametric Mann-Whitney in SPSS (v.23). Free living population data obtained from UK biobank 

and pre-diabetic data obtained from DIRECT IMI. VAT; visceral adipose tissue, ASAT; abdominal subcutaneous adipose tissue.  

 

  

 Free living population Pre-diabetic population p value  

Mean differences between 

free-living and pre-diabetic 

groups (95% confidence 

interval) 

Age 

(years) 
61.7 ± 7.1 (44-73) 61.0 ± 7.2 (30 – 75) ns - 

Height 

(cm)  
169.5 ± 9.2 173.2 ± 8.7 < 0.0001 -3.70 ( -4.21 to -3.18) 

Weight 

(kg)  
75.8 ± 15.1  86.4 ± 14.4 < 0.0001 -10.6 (-11.2 to -9.99) 

BMI 

(kg/m2) 
26.7  ± 4.40 28.8  ± 4.50 <0.0001 -2.10 (-2.24 to -1.96) 

WHR 0.86 ± 1.37 0.95 ± 0.07 0.009   0.09 (0.0217 to 0.1583) 

SBP 

(mmHg) 
133.9 ± 17.7 129.5 ± 18.1  <0.0001 -4.9 (-5.92 to -3.87) 

DBP 

(mmHg) 
78.7 ± 10.0 95.8 ± 12.2 <0.0001 16 (15.1 to 17.2) 
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Appendix 5 UK Biobank ethnicity collaborator manuscript (Genome-wide 
genetic data on ~500,000 UK Biobank participants) 
Cross-referenced in Chapter 4 page 195 
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Manuscript title: Genome-wide genetic data on ~500,000 UK Biobank participants  

Clare Bycroft et al  

Abstract  

The UK Biobank project is a large prospective cohort study of ~500,000 individuals from across the 

United Kingdom, aged between 40-69 at recruitment. A rich variety of phenotypic and health-related 

information is available on each participant, making the resource unprecedented in its size and scope. 

Here we describe the genome-wide genotype data (~805,000 markers) collected on all individuals in 

the cohort and its quality control procedures. Genotype data on this scale offers novel opportunities 

for assessing quality issues, although the wide range of ancestries of the individuals in the cohort also 

creates particular challenges. We also conducted a set of analyses that reveal properties of the genetic 

data – such as population structure and relatedness – that can be important for downstream analyses. 

In addition, we phased and imputed genotypes into the dataset, using computationally efficient 

methods combined with the Haplotype Reference Consortium (HRC) and UK10K haplotype resource. 

This increases the number of testable variants by over 100-fold to ~96 million variants. We also 

imputed classical allelic variation at 11 human leukocyte antigen (HLA) genes, and as a quality control 

check of this imputation, we replicate signals of known associations between HLA alleles and many 

common diseases. We describe tools that allow efficient genome-wide association studies (GWAS) of 

multiple traits and fast phenome-wide association studies (PheWAS), which work together with a new 

compressed file format that has been used to distribute the dataset. As a further check of the 

genotyped and imputed datasets, we performed a test-case genome-wide association scan on a well-

studied human trait, standing height. 
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Appendix 6.1 List of methods of calculation / definitions used through the thesis 

according to chapters’ appearance to facilte interpretation of the results through 

all chapters 

Not cross-referenced as it is a summary.  
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List of methods of calculation / definitions used through the thesis according to chapters’ 

appearance  

1. Chapter One 

1.1  Fat markers:  

1.1.1 Visceral adipose tissue: defined as the abdominal adipose tissue deposition in the 

abdominal cavity excluding abdominal subcutaneous adipose tissue.  

1.1.2 Subcutaneous adipose tissue: defined as the adipose tissue deposition subcutaneously 

(under the skin).  

1.1.3 Ectopic fat: defined as deposition of fat (triglycerides) in lean tissues such as liver and 

pancreas.  

1.1.4 Liver fat: defined as the deposition of fat (triglycerides) within the liver cells (hepatocytes) 

– it is different from adipose tissue which is located within adipocytes  

1.1.4 Pancreas fat: defined as the deposition of fat (triglycerides) within the pancreas cells - it 

is different from adipose tissue which is located within adipocytes   

2. Chapter Two  

2.1 Fat markers:  

2.1.1 Visceral adipose tissue volume was recorded in litres (l) and defined as the volume of 

the adipose tissue within the abdominal cavity, excluding adipose tissue outside the abdominal 

skeletal muscles and adipose tissue and lipids within and posterior of the spine and posterior 

of the back muscles. 

2.1.2 Abdominal subcutaneous adipose tissue volume was recorded in litres (l) and defined 

as subcutaneous adipose tissue in the abdomen from the top of the femoral head to the top 

of the thoracic vertebrae T9. 

2.1.3 Liver fat : measured as a percentage (%) and defined as relative proportion of fat to 

water in the liver using the calculation = fat / ( water + fat )  

2.1.4 Pancreatic fat: measured as a percentage (%) and defined as relative proportion of fat 

to water in the pancreas using the calculation = fat / ( water + fat).  

2.2 Blood Glucose:  

2.2.1 Pre-diabetes: (mmol/mml) defines as HbAc1 values ranging from 5.7 to 6.4% or 40-48 

mmol/mol.  

3. Chapter Three 

3.1 Fat markers:  

3.1.1 Visceral adipose tissue area was recorded in (cm2) and represents the number of pixels 

within the abdominal cavity multiplied by the total area excluding the abdominal subcutaneous 

adipose tissue area.   
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3.1.2 Abdominal subcutaneous adipose tissue area was recorded in (cm2) and represents the 

number of pixels within the subcutaneous abdominal cavity multiplied by the total area 

excluding the internal abdominal adipose tissue area.   

3.2 Blood Glucose:  

3.2.1 Normal Blood Glucose or normogycaemic: defined as blood glucose ranging between 

4.5 to 5.5 mmol/L 

3.2.2 Pre-diabetes or hyperglycemea: defined as impaired fasting glucose between 5.6 and 

6.9 mmol/L or impaired glucose tolerance of > 7.0 mmol/L. 

4. Chapter Four   

4.1 Fat Markers  

4.1.1 Visceral adipose tissue: volume was recorded in litres (l) is the volume of the adipose 

tissue within the abdominal cavity, excluding adipose tissue outside the abdominal skeletal 

muscles and adipose tissue and lipids within and posterior of the spine and posterior of the 

back muscles. 

4.1.2 Abdominal subcutaneous adipose tissue volume was recorded in litres (l) subcutaneous 

adipose tissue in the abdomen from the top of the femoral head to the top of the thoracic 

vertebrae T9. 

4.1.3 Liver fat:  

4.1.3.1 The West London Observation Study, liver fat was measured as intra-hepatocellular 

lipid (IHCL) content as percentage ratio of the -CH2- (part of a chain of CH2 groups lipid 

resonances with references to water resonance. The value refer to the peak area of the IHCL 

peak with reference to the water peak after correcting for T1 and T2.  

4.1.3.2 The UK Biobank Ethnicity project, liver fat was measured as a percentage (%) and 

defined as relative proportion of fat to water in the liver using the calculation = fat / ( water + 

fat ). 
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Appendix 6.2 List of main calculations/ definitions used in fat/glucose measurements 

Not cross-referenced as it is a summary.  

  
measurement definition  unit  

fa
t 

d
e

p
o

s
it

 

Liver fat Measured via magnetic resonance spectroscopy as intra-hepatocellular lipid (IHCL) content as percentage 
ratio of the -CH2- (part of a chain of CH2 groups lipid resonances with references to water resonance. The 
value refer to the peak area of the IHCL peak with reference to the water peak after correcting for T1 and T2.  

no unit as 
it is a ratio, 
some 
papers 
use % 

Liver fat Measured via magnetic resonance imaging as the relative proportion of fat to water in the liver using the 
calculation = fat / ( water + fat ). 

% 

Visceral adipose 
tissue 

Measured via magentic resonance imaging as the volume of the adipose tissue within the abdominal cavity, 
excluding adipose tissue outside the abdominal skeletal muscles and adipose tissue and lipids within and 
posterior of the spine and posterior of the back muscles. 

litre 

Visceral adipose 
tissue area  

Measured measured via magentic resonance imaging as the number of pixels within the abdominal cavity 
multiplied by the total area excluding the abdominal subcutaneous adipose tissue area.   

cm2 

Abdominal 
subcutaneous 
adipose tissue 

Measured measured via magentic resonance imaging as the subcutaneous adipose tissue in the abdomen 
from the top of the femoral head to the top of the thoracic vertebrae T9. 

litre 

Abdominal 
subcutaneous 
adipose tissue area  

Measured via magnetic resonance imaging as the number of pixels within the subcutaneous abdominal cavity 
multiplied by the total area excluding the internal abdominal adipose tissue area 

cm2 

Pancreatic fat Measured via magnetic resonance imaging as the relative proportion of fat to water in the pancreas using the 
calculation = fat / ( water + fat).  
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Normal Blood 
Glucose or 
normogycaemic 

blood plasma glucose ranging between 4.5 to 5.5 mmol/L 

Pre-diabetes or 
hyperglycemea 

Impaired fasting plasma glucose between 5.6 and 6.9 mmol/L or impaired glucose tolerance of > 7.0 mmol/L 

Pre-diabetes HbAc1 values ranging from 5.7 to 6.4%   mmol/mml 

 


