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Flexibility in strategic flight planning

Abstract

A deterministic model that indicates flexibility of flights at the strategic level (up to 6 months ahead)
taking into account changing airspace configurations and capacity is formulated. Flexibility is quantified
by means of time windows (TWs). Flights complying with TWs guarantee that they will not impact
negatively any other flight. Three variants of the model and three types of TWs are tested on a large-
size data instance (the European network for an entire day of traffic). The model output specifies the
constrained flights (i.e., with TWs shorter than the maximum size allowed for their definition), the
constraining sector-hours and provides a list of saturated sector-hours. The meaning of each of the
results is explored, across the three TW model variants, as well as the capability of the model variants
to assure that capacity limits will not be exceeded. The criticality index, a measure of the sector-hour
saturation, is introduced. This index can be used to identify areas for potential improvements. Sharing
the information obtained from the TW model results at a strategic level can help both airlines and
air navigation service providers (ANSPs) to improve the network status: airlines can decide to re-route
heavily constrained flights (e.g., with one minute wide TWs), whereas ANSPs could decide to re-organise
the capacity provision of the saturated airspace portions. The TW model can be re-run with the proposed
changes, with the goal to assess the impact on both the individual stakeholders and the network. Thus,
the model offers the measure of flight flexibility, and can be used as a tool to assess the impact of changes,
helping in decision-making processes of airlines and ANSPs.

Keywords: flexibility, time windows, strategic flight planning, ATM, optimisation

1. Introduction1

Before the unprecedented decrease due to the COVID-19 pandemic, air traffic in Europe had been2

growing from 2 to 4% a year since 2011. June 2019 saw the record number of daily flights (around 36 0003

almost every day, with a maximum of more than 38 500 flights) handled by the European Air Traffic4

Management (ATM). Unfortunately, the amount of delay has been increasing as well, with the peak Air5

Traffic Flow Management (ATFM) delays in 2018 that were 61% higher than those in 2017 (Eurocontrol,6

2019b). A significant portion of ATFM delay was accrued en-route, with en-route air traffic control7

(ATC) capacity (28%), weather (19%) and en-route ATC staffing (17%) being the major contributing8

causes. A part of the delay with ATC capacity and ATC staffing reasons is caused by less than perfect9

information exchange between the airspace users (flight demand) and the ATM capacity providers.10

The European ATM system offers a high level of flight planning flexibility, as only the final flight11

plans need to be submitted, from 120 to 3 hours before departure (Network Manager, 2018). From12

conversations with different airline representatives we gathered that the earliest they tend to submit a13

flight plan is about 12 hours before the departure. On the one hand, this allows airspace users (AUs) the14

possibility to account for previously uncertain factors like weather forecasts, and thus create flight plans15

that are most convenient for the day of operations. On the other hand, this flexibility makes the ATM16

system less predictable, resulting in costs due to flow measures, and under-utilisation from a mismatch17

between available ATM capacity and traffic demand. When creating and subsequently submitting a18

flight plan AUs do not need to consider the capacity of ATM network elements involved, nor do they19

have that information. Thus, a precise traffic load on the airspace network is only known on the day20

of operations (i.e., in tactical phase). Conversely, the capacity provision (e.g., staffing levels) is usually21

planned about a year ahead and is updated as time progresses. On the day of operations, in cases22

when available airspace and airport capacity is lower than the planned air traffic, the Air Navigation23

Service Providers (ANSPs) and Network Manager agree on the ATFM measures to reduce the demand24

on the congested parts of the network. The ATFM measures impose delays on flights crossing congested25

network volumes. Alternatively, AUs have the option to re-route around the area in question to avoid26
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ATFM delay. These delays and deviations are very costly to airlines, e.g., estimated to be 1.93B e in27

2018, and 1.76Be in 2019 (Performance Review Commission, 2019).28

Hence, capacity-demand imbalances, and consequent delays, are not only caused by unforeseen fac-29

tors, like weather, but are also triggered by the lack of accurate information exchange at the required30

time horizons - months ahead for capacity provision planning, and hours ahead for flight (trajectory)31

planning - which often leads to congestion in parts of the network.32

Congestion in the air transport network can have many causes, in both tactical and strategic set-33

tings, which can be tackled from different points of view, depending on the impacted stakeholders. Many34

such air transport problems can be solved using techniques from operations management (Koksalmis,35

2019). They include, but are not limited to the following: demand and delay forecasting, delay reduc-36

tion, crew and runway scheduling, and gate assignment. In demand forecasting, Meyn (2002) studied37

simple probabilistic methods for demand prediction on sectors and airport arrivals, and more recently,38

Kolidakis and Botzoris (2018) used artificial neural network architectures. Delay forecasting: Güvercin39

et al. (2020) addressed the problem of forecasting flight delays of an airport while Delgado et al. (2021)40

analysed the risk of accruing delay at specific network elements and its economic impact for airspace41

users. Delay reduction is often addressed by introducing buffer times: the larger they are, the easier it is42

to absorb and thus not propagate delay (see, e.g., Sanjeevi and Venkatachalam (2020); Brueckner et al.43

(2021), and Eufrásio et al. (2021)). Crew scheduling, relying on Barnhart et al. (2003) who illustrate the44

specifics of the airline crew scheduling problem, recently linked the impact of uncertain flight times on45

the robustness of the crew pairs decisions (Wen et al., 2020) or the impact of delays on the reliability of46

scheduled crew pairings (Sun et al., 2020). Runway scheduling is of importance as runway capacity is47

often the bottleneck in the air transport network (see Ikli et al. (2021) for an up-to-date review). Gate48

assignment is important for the efficiency of airport operations, ensuring that aircraft do not need to49

wait on the ramp or in the air (for an overview on the literature, see Bouras et al. (2014)).50

Most of these papers propose deterministic models. However, uncertainty often plays important part51

in the mentioned problems. A review of stochastic modelling applications for solving different air traffic52

problems under uncertainty is available in Shone et al. (2021).53

This paper addresses a specific air transport problem, usually referred to as airspace congestion and54

mitigation. An extensive body of literature exists in this area, mostly dealing with tactical problems (i.e.,55

on the day of operations). Initially, most of these studies focused only on airport operations as those56

were the main bottlenecks. In this context, the works on the Ground Holding Problem (ground delays57

are assigned to flights at one or more airports in order to respect airport capacities) were born, starting58

with Odoni (1987)’s seminal paper and then continued considering a multi-airport setting (Vranas et al.,59

1994a,b) up to the present day where dynamic and stochastic approaches are introduced (Estes and Ball,60

2020). Later, the possibility of introducing delays in the air, as well as airspace capacity, was added61

(Bertsimas and Stock Patterson, 1998, 2000), managing to simultaneously take into account various62

aspects such as ground-holding, re-routing, speed control, and airborne holding on a flight-by-flight63

basis (Bertsimas et al., 2011). These studies are also important for the European ATM system where64

large portions of the airspace, particularly in central-northern Europe, are subject to demand greater65

than their capacity. In fact, as highlighted by Lulli and Odoni (2007), the resolution of air traffic flow66

management issues in Europe can be very complex due to the traffic flow regulation rules when multiple67

limitations exist simultaneously, both in the air and on the ground. Hence, the need to study solutions68

that take into account the fairness with which delays are assigned (see, e.g., Barnhart et al., 2012). It is69

out of scope of this paper to provide an extensive literature review on the tactical flight planning, but70

it is worth mentioning that there are continuous improvements in this area through the development of71

increasingly sophisticated models, based on different techniques. See for example the recent contribution72

from Xu et al. (2020) who propose a complex four module framework to reduce airspace users delays,73

or Liu et al. (2019) using machine learning to analyse ground delay program actions, or Ding et al.74

(2018) studying the impacts of post-departure flight rerouting on arrival times, or Woo and Moon (2021)75

who analyse airlines’ rescheduling actions when subject to a ground holding programme. Tactical flight76

planning is also expected to be enhanced thanks to the opportunities given by data availability and77

the capabilities provided by novel data-driven modelling techniques (see, e.g., Olive and Basora, 2020).78

Nowadays, availability of significant amounts of historic and real-time data in aviation are prompting79

the more ubiquitous use of data science and data analytics for a variety of applications as described80

by Chung et al. (2020). As data availability grows, different models for different time horizons in the81

planning process are being developed.82

In the flight planning area, to avoid delays due to the information exchange gap, it would be beneficial83
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for all the stakeholders to exploit the past and current information in the early, strategic planning stages.84

The term strategic used here refers to the period from six months to a few days before operations. A85

small number of studies deals with the strategic capacity-demand balancing, as opposed to the above86

cited tactical ones. Ivanov et al. (2019) propose re-design of ATM where the Network Manager would87

coordinate capacity and demand management decisions by ”ordering” needed configurations from ANSPs88

and assigning delays or re-routes to flights. The aim of the coordination is to minimise total costs. The89

effects of a more robust capacity planning are further investigated by Starita et al. (2020) where traffic and90

capacity provision uncertainties are taken into to consideration. Differently, Bolić et al. (2017) develop91

an integer programming model for strategic flight planning that uses past and early-shared flight-route92

information to find the best distribution of the proposed (4D) flight trajectories that respect the nominal93

capacity1 of the proposed network configurations2. They show that an alleviation of demand-capacity94

imbalances at the strategic planning level may lead to a reduction of the number of ATFM interventions95

on the day of operations, and the reduction of consequent delays. To the best of our knowledge, this is the96

first attempt at defining large-scale strategic traffic distribution by enforcing sector capacity constraints97

using an optimisation model on a realistic air traffic network (historic data are used for network and98

traffic description). We will refer to this model as Strategic Air Traffic Assignment (SATA) throughout99

this work.100

The SATA model assigns the scheduled/planned departure time and route for each flight. Flight101

cancellations are not allowed, and speed control is not taken into consideration, as it would make little102

sense in the strategic phase. The maximum allowed shift (difference between SATA-assigned times103

and requested times) to earlier or later departure/arrival times is bounded. Furthermore, the changing104

airspace configurations throughout the day and associated capacities are taken into account. However,105

as the model is deterministic, the resulting 4D trajectories could be construed to mean that all the flights106

need to adhere exactly to the specified timing constraints, which would greatly reduce the current levels107

of AU flexibility.108

This paper extends the work in Bolić et al. (2017) by proposing a model that quantifies flexibility for109

each flight trajectory. We term this flexibility measure time windows (TWs). Time windows are time110

intervals around each sequential operation (departure, arrival or entry into a sector) of a flight. As long111

as the flight operation is performed within the time window, the flight will not cause disturbances (i.e.,112

delay) to any other flight in the system, at any time. If a flight has to be performed in a highly congested113

environment with a number of interdependent flights, a ‘small’ delay may cause a large downstream114

effect. It follows that such flights are constrained to operate closely to their assigned times, and we refer115

to them as constrained. On the contrary, a flight is unconstrained when operated in a non-congested116

area where the same amount of delay may not have any impact other than the delay on the flight itself.117

In other words, should an unconstrained flight depart ‘slightly after’ the assigned time, it will not cause118

disruptions in the system. Thus, the duration of a time window is a measure of the flexibility that can119

be granted to perform the flight operation: the longer the duration of the time window, the greater the120

flexibility, of course. Since constrained and unconstrained flights may coexist at the same time in the121

network, the duration of time windows may vary among flights.122

The TW concept in the ATM context is not entirely new, but so far it only addresses the execution123

(while en-route) or tactical planning (on the day of operations) phases of a flight. In the the execution124

phase, Berechet et al. (2009) and Han et al. (2010) explore the TWs along the flight trajectory. Margellos125

and Lygeros (2013) use Monte Carlo simulations to assess the probability of flights meeting their TW126

constraints. More recently, Rodŕıguez-Sanz et al. (2019, 2020) analyse the duration of TWs as a function127

of distance from the origin, showing that precision deteriorates with the distance, forcing larger TWs128

further away from the origin. In the tactical phase, Castelli et al. (2011) propose a formulation to129

maximise the global duration of TWs over a small set of approximately 6 500 flights, 30 airports, 145130

sectors and 50 time periods. Their experimental environment is artificial as both airspace configuration131

and traffic demand are randomly generated. Nevertheless, it provides a depiction of the flight flexibility132

measure in a tactical setting, a few hours before departure.133

The contributions of this paper are extending two of the mentioned studies. Firstly, the tactical134

TW model proposed by Castelli et al. (2011) is generalised to a strategic context, to a very realistic135

1Nominal capacity is the number of allowed aircraft entries into a sector, under nominal conditions, within the defined
time horizon, usually an hour.

2Airspace configuration defines how the airspace of an area control center is organised. It can be divided in a different
number of airspace volumes, depending on expected traffic.
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characterisation of the European airspace, by considering the main features of the European capacity136

management (see Appendix A for a description). Secondly, computational experiments are run on real137

data (traffic, airspace configurations, etc.), and on much larger instances (around 30 000 flights, 230138

airports, 1 500 sectors and 1 440 time periods), as described in Section 5.139

The TW model uses as input the results of the SATA model (Bolić et al., 2017), characterising the140

flexibility of flight operations. The SATA model identifies deterministic times for each flight operation,141

without explicitly providing information on how much flexibility is left to perform such operations. The142

TW model allows answering the question: what is the exact time span within which an operator is143

expected to perform operations without causing disruptions to others? These time spans are the so-144

called time windows, and as such offer a measure of the robustness of the solutions of the SATA model.145

The wider the time windows, the more robust the operations. Contrarily, narrow time windows indicate146

a possibly unstable solution that may easily lead to disruptions when put into practice.147

As the proposed model addresses strategic flight planning, the main contribution of this work is148

the model that identifies the flexibility and constraints in the network, across multiple stakeholders,149

in the strategic flight planning phase. Furthermore, it can be used in the what-if scenario testing in150

the decision-making processes of AUs and ANSPs. The model identifies constrained and unconstrained151

flights and the distribution of the expected congestion in space and time across Europe. Once the TWs152

are assigned to flights, it is possible to identify the elements of the planned network configuration (i.e.,153

sectors or airports) that are going to be saturated. Thus, already at the strategic/pre-tactical level, an154

indication of the flexibility or constraints imposed on flights, and saturated network elements can be155

obtained. This information can then be shared with all the stakeholders, for example through the rolling156

Network Operations Plan (NOP3).157

The results we describe here are encouraging and highlights the opportunity to further explore ATM158

strategic aspects in order to better manage the system on the day of operations. The remainder of159

this paper unfolds as follows. Section 2 further describes the concept of time windows, and Section 3160

presents their mathematical definition and the formulation of an integer linear programming model with161

the objective of maximising TW duration, i.e., the flexibility that can be granted to flights. To better162

exploit capacity constraints, Section 4 presents two variants of the initial TW model. The application of163

these models is performed on a real data instance (Section 5) and the computational results are shown in164

Section 6. The robustness of the results is analysed in Section 7. Discussions, next steps and concluding165

remarks are given in Section 8.166

2. Time windows167

Currently, the scheduled departure and arrival times are the only portions of the flight plan that are168

planned strategically (i.e., they are published for each season, six months in advance). The schedules169

take into account the capacities of some airports (those that are slot controlled), and do not take into170

account the airspace capacity. However, in order to provide a strategic indication of the flight flexibility171

(TW duration) for a specific day, we need the (nominal) capacities of the network elements to be able172

to determine the departure and arrival times, and trajectories for that day. This is the result obtained173

from the SATA model (see Section 1) where departure times, subsequent sector entry times (i.e., the174

trajectory), and arrival times are determined with the aim of minimising the difference between what175

airlines ask for and what they can realistically obtain due to the presence of capacity constraints. We176

refer to departure, arrival, and sector entry times calculated by SATA as assigned departure, arrival,177

and sector entry times, respectively. We use these as input data into our model.178

For each flight trajectory, a TW is introduced at the departure airport, at each sector entry and at179

the arrival airport and is characterised by the assigned time and duration. Perhaps the most intuitive180

way to define TWs is to extend them forward into the future from the corresponding assigned departure,181

arrival and sector entry times. However, as we operate in the strategic planning phase, (i.e., before actual182

flight schedules are published), departure and arrival times earlier or later than the assigned ones may183

be considered. For this reason, we also explore two other possibilities where TWs can be extended both184

backward and forward in time, with respect to the assigned time, and the extensions can be symmetric185

or asymmetric. Thus, we introduce three types of TWs (Figure 1):186

3NOP is the tool managed by the Network Manager that collects and shares information from different stakeholders,
regarding the demand and available capacity, to mention some of the information.
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• Forward TWs, where TWs can be extended only forward with respect to the assigned time.187

• Symmetric TWs, where TWs extend both backward and forward from the assigned time, for the188

same number of time periods.189

• Asymmetric TWs, where TWs extend both backward and forward from the assigned time, with190

different number of time periods between backward and forward extensions.191

Figure 1: Three different types of TWs: Forward, Symmetric and Asymmetric. For each TW, the periods of time
where the departure (or sector entry) can be executed are represented by white rectangles, while the assigned time
is represented by a shaded rectangle.

3. Time window model formulation. The general case192

The longer the duration of TWs, the greater the flexibility. Thus, the natural objective is to maximise193

the overall duration of all TWs. For this purpose, a binary linear programming model is formulated, to194

which we refer as the TW model. The formulation takes into account the following assumptions:195

• The assigned times of all TWs are an input to the TW model. They are calculated by the SATA196

model, which - unlike most ATFM models (e.g., Bertsimas et al. (2011)) - takes into account the197

airspace configuration changes throughout the day, and multiple entries of a flight in any sector. TW198

assigned times and duration are computed separately because a formulation that simultaneously199

derives both turned out to be intractable, even in the simplest forward TW case (Corolli et al.,200

2010).201

• Only one type of TWs is applied in any one run of the model.202

• For a given flight, the duration of the TWs along the trajectory may vary depending on the area203

in which the flight is performed. For example, the departure airport could be in an area that is not204

very congested, but very crowded portions of airspace must be crossed during the flight. However,205

since the flexibility of a flight is limited by the TW of minimum duration, we impose that all TWs206

of a flight have the same duration, equal to the minimum one. Therefore, since all TWs are of the207

same duration and the flight speed is constant (see Section 1) once the departure TW of a flight208

has been determined, all the others are automatically identified. Different flights can have TWs of209

different duration, of course.210

• The duration of a TW is measured in terms of time periods. For simplicity’s sake, in this paper211

we always assume that a time period is equal to one minute. The generalisation to different time212

period sizes is straightforward.213

We finally define as sector-hour a period of time (hour or less) in a day, linked with the specific portion214

of airspace (i.e., sector) or airport, having a defined capacity in that period of time. As airport capacities215

can be defined for arrival, departure or general (mix of arrival and departure) operations, for the sake of216

simplicity, we also refer to these airport-hour capacities as sector-hour capacities in the further text.217

3.1. Notation218

The notation used to define the TW models is the following:219
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3.1.1. Sets220

A ≡ set of airports, indexed by a

S ≡ set of sectors, indexed by s

F ≡ set of flights, indexed by f

G ≡ set of pairs of flights (f ′, f ′′) that are connected, with turnaround time gf ′,f ′′

R ≡ set of routes, indexed by r, where rf is the chosen route for flight f

B ≡ {dep, arr, gen, ent} ≡ set of operations that can be performed by a flight,

where arr, dep, and gen stand for arrival, departure or generic movement type

(can be arrival or departure) at an airport, and ent stands for entry into a sector

Cbj ≡ set of sector-hours linked with the operation b at sector or airport j, indexed by c

T c ≡ set of time periods during which sector-hour c is active

3.1.2. Parameters221

origf ≡ departure airport of flight f

destf ≡ destination airport of flight f

nf ≡ number of elements (sectors and airports) along the chosen route rf

sir ≡ i-th element of route r

lir ≡ flight time from origin to the i-th element of route r

df ≡ assigned departure time of flight f

gf ′,f ′′ ≡ turnaround time between incoming flight f’ and outgoing flight f”, performed by the same aircraft

w−max ≡ maximum number of time periods belonging to a TW preceding its assigned time

w+
max ≡ maximum number of time periods belonging to a TW subsequent or equal to its assigned time

wmax ≡ w−max + w+
max ≡ maximum duration of each TW

wmin ≡ minimum duration of each TW

openc ≡ opening time period for sector-hour c (i.e., opening time of sector-hour c)

closec ≡ closing time period for sector-hour c

Qc ≡ capacity enforced during sector-hour c, (i.e., declared capacity of a sector j, during the sector-hour c)

3.1.3. Parameter-depending sets222

T −f,i ≡ set of feasible time periods, previous to the assigned time df + lirf ,

for flight f to arrive at i-th element of its route rf

T +
f,i ≡ set of feasible time periods, subsequent or equal to the assigned time df + lirf ,

for flight f to arrive at i-th element of its route rf

Tf,i ≡ T −f,i ∪ T
+
f,i ≡ set of feasible time periods for flight f to arrive at i-th element of its route rf

3.2. Decision variables223

Decision variables are used to capture the duration of departure TW for each flight.224

xf (t) =


1 if the TW for flight f is open

for departure at time t

0 otherwise

∀f ∈ F , t ∈ Tf,1
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3.3. Objective function225

The objective function maximises the total duration of all TWs.226

max
∑

f∈F,t∈Tf,1

xf (t) · γ(t− df ) (1)

Weight coefficients γ ensure that TW duration is distributed as fairly as possible, i.e., the model will227

favour the assignment of TWs of similar duration to each of two flights, rather than the assignment of a228

large TW to one flight and a small one to another.229

γ(τ) = 1− 2|τ |
wm · |F|

− w−max ≤ τ ≤ w+
max − 1, wm = max(w−max, w

+
max − 1)

Coefficients γ(τ) are always non-negative. Since |τ | ≤ wm, it follows that 0 ≤ |τ |
wm
≤ 1. Hence, γ(τ)230

is equal to 1 when τ = 0 and decreases as |τ | grows. When |τ | is equal to wm then 1 − 2
|F| is certainly231

non-negative for |F| > 1 (|F| = 1 is a trivial case that does not need to be investigated), hence:232

0 ≤ 1− 2

|F|
≤ γ(τ) ≤ 1.

See Appendix B for a more detailed discussion on γ(τ) coefficients.233

3.4. Constraints234

3.4.1. Decision variable definition constraints235

Binary decision variables xf (t) are monotone decreasing in T +
f,1: if a TW for flight f is open at time236

t+ 1 then it must also be open at time t.237

xf (t) ≥ xf (t+ 1) ∀f ∈ F , t ∈ T +
f,1 (2)

xf (t) are monotone increasing variables in T −f,1: if a TW for flight f is open at time t−1 then it must238

also be open at time t.239

xf (t) ≥ xf (t− 1) ∀f ∈ F , t ∈ T −f,1 (3)

3.4.2. Time window duration constraints240

There are two sets of TW duration constraints – minimum and maximum duration constraints. The241

minimum duration constraints guarantee that the specified minimum duration for TWs is respected.242 ∑
t∈Tf,1

xf (t) ≥ wmin ∀f ∈ F (4)

The maximum duration constraints are simply respected by defining the Tf,1 sets to contain a number243

of time periods equal to wmax.244

Tf,1 ≡ {df − w−max, . . . , df , . . . , df + w+
max − 1}

3.4.3. Connectivity constraints245

Connectivity constraints guarantee that the time between the arrival of the incoming flight f ′ and the246

departure of the outgoing flight f ′′, performed by the same aircraft, is greater or equal to the turnaround247

time gf ′,f ′′ :248

xf ′(t
′) + xf ′′(t

′′) ≤ 1 ∀(f ′, f ′′) ∈ G, t′ ∈ Tf ′,1, t′′ ∈ Tf ′′,1 : t′ + l
nf′
rf′ + gf ′,f ′′ ≥ t′′ (5)

3.4.4. Symmetry constraints249

These constraints are used for the symmetric TW case only. They guarantee that the departure TWs250

are symmetrical (see Section 2) with respect to the period of time df in which the departure/entry is251

assigned, i.e., a TW is open for departure at time df + τ if and only if it is open at time df − τ .252

xf (df + τ) = xf (df − τ) ∀f ∈ F , 1 ≤ τ ≤ w+
max − 1 (6)
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3.4.5. Capacity constraints253

Capacity constraints ensure that sector and airport capacities are respected for all sector-hours. The254

SATA is a deterministic model, and it allocates trajectories with the precision of one minute. If the SATA255

trajectories are flown within one minute accuracy, we can be sure that all the sector-hour capacities in256

the network, both saturated and unsaturated ones, are respected. However, the improvement we want257

to bring with the TW model is to determine how much flexibility in terms of time can be given to each258

trajectory. To be able to optimally compute the TWs, we need to take into account the possibility that259

TWs can extend into adjacent sector-hours, as shown in Figure 2.260

As TWs can extend backward and forward with respect to the assigned time of entry into a sector-261

hour, in Figure 2 we depict three possible cases of positioning of TWs within a sector-hour, for three262

flights having assigned entry times: after the closing of sector-hour c (flight f1), within the sector-hour c263

(flight f2), and before opening of sector-hour (flight f3). For these three flights, df +lirf is the time period264

in which this, i-th operation, is assigned, and is represented by the shaded rectangles in the figure. T −f,i265

is the set of time periods within which the sector entry can be performed earlier than scheduled, and T +
f,i266

is the set of time periods in which the sector entry can be on time (i.e., shaded rectangle) or postponed.267

The orange rectangles show the time periods t in which the three flights may reserve the unit of capacity268

in this particular sector-hour c. As can be seen, the TW of the flight f3 crosses into the sector-hour c269

from the previous sector-hour, the TW of the flight f2 is in its entirety within the sector-hour, and the270

TW of the flight f1 crosses back into the sector-hour c from the subsequent sector-hour c+1. However,271

it can happen that this particular sector-hour is not the most constraining one along the trajectory. In272

case another sector-hour is more constraining, it might happen that the TW cannot be extended to the273

orange coloured time periods.274

Figure 2: Description of time periods in which the unit of capacity may be reserved in sector-hour c, for 3 different
flights crossing the sector-hour c, open and active in time periods t ∈ T c.

With this in mind, the number of departures depac and arrivals arrac at an airport a during the275

sector-hour c, are calculated as follows:276

depac :=
∑

f∈F,t∈T c∩Tf,1 :
v1,depf,c (t)∧origf=a

xf (t) (7)

arrac :=
∑

f∈F,t∈T c∩Tf,nf
:

v
nf ,arr

f,c (t)∧destf=a

xf (t− lnf
rf ) (8)

Further, the number of entries entjc in the sector-hour c, of a sector j is calculated as follows:277
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entjc :=
∑

f∈F,i∈[2,nf−1],t∈T c∩Tf,i :
vi,ent
f,c (t)∧sirf =j

xf (t− lirf ), (9)

In all equations (7)-(9), vi,bf,c(t) is a logical parameter that determines whether the time period t is278

the first period, closest to df + lirf , in which flight f may reserve capacity in sector-hour c ∈ Cbsirf
. Since279

TWs can extend backward as well as forward with respect to the assigned time b (i.e., entry into a sector280

along the trajectory), vi,bf,c(t) is defined as:281

vi,bf,c(t) := (t ∈ T c ∩ T +
f,i ∧ (t = df + lirf ∨ t = openc)) ∨ (t ∈ T −f,i ∩ {closec − 1})

By exploiting the monotony of the decision variables as defined by constraints (2) and (3), if the time282

window for the i-th operation b of flight f is open at time t such that vi,bf,c(t) = true, then the flight283

reserves a unit of capacity in sector-hour c, otherwise it does not. For instance, vi,bf,c(t) = true for each284

of the orange coloured time-periods shown in Figure 2.285

Thus, the capacity constraints can be expressed as:286

depac ≤ Qc ∀a ∈ A, c ∈ Cdepa (10)

arrac ≤ Qc ∀a ∈ A, c ∈ Carra (11)

depac + arrac ≤ Qc ∀a ∈ A, c ∈ Cgena (12)

entjc ≤ Qc ∀j ∈ S, c ∈ Centj (13)

Constraints (10) impose the departure capacity at the airport (if defined), constraints (11) the arrival,287

and constraints (12) the general airport capacity. Constraints (13) impose sector capacity.288

4. Variants of TW model289

The mathematical model described in the previous Section 3 could lead to overly conservative so-290

lutions because it may reserve an excessive amount of capacity for each flight: in case a TW extends291

over two sector-hours (see Figure 2), the model reserves a whole unit of capacity in either of the two292

sector-hours, even though the flight will use only one unit of capacity. Thus, we term this initial variant293

as the conservative TW model. To allow for less conservative solutions, two variants of the conservative294

TW model are introduced, based on Castelli et al. (2011):295

• proportional TW model,296

• intermediate TW model.297

To define these variants, capacity counts (7), (8) and (9) are modified through the introduction of298

a capacity utilisation coefficient βif,c(t) (∈ [0, 1]). The coefficient βif,c(t) assigns to each period t of the299

i-th TW assigned to flight f the fraction of unit of capacity to be reserved in sector-hour c. Thus the300

capacity counts are modified to:301

depac :=
∑

f∈F,t∈T c∩Tf,1 :
origf=a

β1
f,c(t) · xf (t) (14)

arrac :=
∑

f∈F,t∈T c∩Tf,nf
:

destf=a

β
nf

f,c(t) · xf (t− lnf
rf ) (15)

entjc :=
∑

f∈F,i∈[2,nf−1],t∈T c∩Tf,i :
sirf

=j

βif,c(t) · xf (t− lirf ) (16)
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4.1. Proportional TW model302

In the proportional TW model, for a TW assigned to a flight f that extends across the sector-hour303

c, only a fraction of unit of capacity of c equal to the fraction of time periods of the TW present in304

sector-hour c is reserved.305

That is, if there is a 9-period TW, where the first 6 periods are located within sector-hour c1 and the306

remaining 3 periods extend into the sector-hour c2, as shown in Figure 3, only 2
3 of the unit of capacity307

of c1 and 1
3 of the unit capacity of c2 will be reserved. In the case of sector-hour c1, this is expressed by308

the ratio:309 ∑
t∈T c1∩Tf,i xf (t− lirf )∑
t∈Tf,i xf (t− lirf )

=
2

3
∀f ∈ F , i ∈ [1, nf ], c ∈ Cbj : sirf = j (17)

Figure 3: Example of a 9-period TW, with the 6 periods lying within sector-hour c1 and the remaining 3 periods
extending into c2.

Since the share of capacity to be reserved in a sector-hour c is given by the sum of the contributions310

of all the time periods during which c is active and the TW is open, the capacity utilisation coefficients311

βif,c(t) for the proportional TW model need to be defined in such a way that:312

∑
t∈T c∩Tf,i

βif,c(t) =

∑
t∈T c∩Tf,i xf (t− lirf )∑
t∈Tf,i xf (t− lirf )

∀f ∈ F , i ∈ [1, nf ], c ∈ Cbj : sirf = j (18)

4.2. Intermediate TW model313

Further, in the intermediate TW model, if the sector-hour c contains df + lirf , i.e., the assigned time314

of arrival of flight f at the i-th element of its route rf , one unit of capacity of c is reserved (as in the315

conservative model). In case the sector-hour c does not contain the period of assigned arrival, a fraction316

of unit of capacity of c, equal to the fraction of the number of TW periods lying within c is reserved (as317

in the proportional model).318

Taking up the previous example shown in Figure 3, if there is a 9-period TW, where the first 6319

periods, including df + lirf , are within sector-hour c1, and the other 3 periods extend to sector-hour c2,320

one unit of capacity of c1 and only 1
3 of the capacity of c2 will be reserved.321

Thus, for the intermediate model, capacity utilisation coefficients βif,c(t) are defined in such a way322

that:323

∑
t∈T c∩Tf,i

βif,c(t) =


1 if df + lirf ∈ T

c

∀f ∈ F , i ∈ [1, nf ], c ∈ Cbj : sirf = j∑
t∈T c∩Tf,i

xf (t−lirf )∑
t∈Tf,i

xf (t−lirf ) otherwise

The details on the implementation of these coefficients are given in Appendix C, from which we also324

understand that they cannot be computed for asymmetric TWs in the intermediate and proportional325

variants. Table 1 summarises TW model variants and TW types under analysis in this paper.326
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Table 1: Summary of TW model variants and TW types under study.

TW model variants
Conservative Intermediate Proportional

TW type Forward Asymmetric Symmetric Forward Symmetric Forward Symmetric

5. Data instance327

TW models are tested on a day of real air traffic data, encompassing the entire European Civil Avi-328

ation Conference (ECAC) airspace. Different data items are needed to run the models, including flights,329

airspace configuration, capacities of resources (sectors and airports), and trajectories. The SATA model330

also requires aircraft types and their operational costs, fuel costs, route charges (unit rates), and airline331

cost profiles. The data on air traffic and air network structures are sourced from EUROCONTROL’s332

Demand Data Repository 2 (DDR2). Cost data are taken from the report by Cook and Tanner (2015).333

The data instance is created with the traffic from September 1st, 2017, a busy, but not unduly334

disrupted day. This day is ranked as the fifth busiest day in 2017, but with significantly lower ATFM335

delay with respect to the better ranked days in 2017.336

5.1. Flights337

On September 1st, 2017, 36 881 flights were counted. However, we exclude the military flights,338

overflights, helicopters, and flights departing from and arriving at the same airport, thus ending with339

29 917 flights. Flight data consists of flight IDs, origin, destination, aircraft type, and requested departure340

times, all of which is sourced from DDR2 last-filed flight plans (so called m1 data).341

5.2. Airspace configuration and capacity of resources342

Each Area Control Center (ACC) usually changes the configuration of the active sectors several343

times throughout the day, to best accommodate the changing traffic demand (both number of flights and344

flow directions). The TW models apply changing sector configurations, the ones in place in Europe on345

September 1st 2017, which counted 204 airports and 1 458 sectors (this is the total number of different346

sectors that were open at some point on the chosen day, they are not all open/active at the same time).347

The capacity of active sectors is also needed, in order to define the capacity constraints. We sourced the348

airport and sector nominal capacities from the DDR2 data.349

5.3. Routes and departure times350

For each Origin-Destination (OD) – aircraft type combination we determine a set of routes to be used351

by the SATA model. The routes are sourced from the two AIRAC cycles in 2017 - February (AIRAC352

1702) and September (AIRAC 1709). However, to reduce the number of routes, we consider only the353

ones that differ significantly from one another in terms of geographical distance (more than 30 kilometres354

where the distance between the two routes is maximal). The SATA model takes as an input these sets of355

routes, and requested departure times from m0 (initial flight plan) where available, or m1 (last filed flight356

plan) files, and allows for a plus/minus 30 minute shift around those times. The SATA results, which357

are departure, subsequent sector entry, and arrival times (based on a route chosen by the optimisation)358

are then used as input in the TW model.359

6. Experimental results360

After running the SATA model to allocate trajectories and departure, sector entry and arrival times to361

all flights, we ran the different TW models to determine the flexibility that can be granted to each flight.362

All experiments were performed using the FICO XPRESS optimization software, version 8.8.0. It is a363

software specifically devoted to solving mixed-integer linear programming problems. We ran it on a 64 bit364

Intel(R) Xeon(R) W-2145 @3.70GHz 16 core CPU computer, having 32GB of RAM memory and Debian365

18.04 operating system. The computational time for the SATA model was 260 seconds. Computational366

times for all TW model variants are reported in Table 2. The conservative TW model is the fastest, as367

it is also the simplest (in terms of number of feasible solutions), with the proportional model being the368

slowest: after 300 seconds the forward case exhibits a relative gap equal to 3.86% (fifth row of Table 2),369

meaning that if we consider as optimal the best solution obtained so far (370 951 minutes, fourth row370
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of Table 2), we make an error which is at most equal to 3.86%, i.e., optimal solution ≤ 1.0386∗(best371

solution). In absolute terms, this means that the optimal solution could be at most 14 910 minutes372

higher than the best solution (last row of Table 2). As we are considering 29 917 flights, it follows that,373

on average, a TW could not be more than half a minute larger (14 910/29 917 = 0.498). Since the374

proportional forward case provides the highest objective function value among all TW model variants375

and types (see again the fourth row of Table 2), by stopping after 300 seconds we only provide a tiny376

underestimate of the maximum possible flexibility. In all other cases the optimality gap is even lower:377

1.22% for the proportional symmetric case, 0.02% in the intermediate forward case, and 0% otherwise.378

Table 2: Run times, objective function values, and optimality gaps of TW model variants for different TW types
(wmax = 15 min).

Conservative Intermediate Proportional

TW type Forward Asymmetric Symmetric Forward Symmetric Forward Symmetric
Run time (sec.) 2.2 2.2 3.2 300 300 300 300
Best Solution (min.) 339 950 368 589 315 010 345 488 325 558 370 951 335 386
Relative gap (%) 0.00 0.00 0.00 0.02 0.00 3.86 1.22
Absolute gap (min.) 0 0 0 78 6 14 910 4 140

For better clarity in the presentation of the results, here we define the term constrained flight in a379

formal manner. A constrained flight f has a TW, with the duration wf that is shorter than the maximum380

wmax. In other words, unconstrained flights are all the flights with TW duration equal to wmax.381

In this section, we first present the analysis of the duration of the TWs in different TW model382

variants and across various TW types (Section 6.1). Then, in Section 6.2 we evaluate the impact that383

the use of the intermediate and proportional variants has on capacity constraints compliance, as the384

model formulation does not ensure it (see details in Section 4).385

6.1. Flexibility across TW model variants386

Figure 4 shows the share of constrained and unconstrained flights across the three TW model variants387

(wmax = 15min). As expected, the number of constrained flights per TW model variant is inversely388

proportional to the level of capacity utilisation and therefore the conservative method has a greater389

number of constrained flights than the intermediate method, which in turn has a greater number than390

the proportional one.391

Also the type of TW, namely forward, symmetric and asymmetric, has an impact on the number of392

constrained flights. In all the three TW model variants, forward TWs always produce the lowest number393

of constrained flights when compared with asymmetric (only conservative TW model) and symmetric394

TW type. Again, it is expected, as forward TWs extend only in one direction, while the other two TW395

types can reach limits in both forward and backward directions.396

Conservative Intermediate Proportional
TW duration Forward Asymmetric Symmetric Forward Symmetric Forward Symmetric

1 3 166 205 6 005 3 185 5 849 2 337 5 471
2 735 272 0 728 0 527 0
3 730 280 1 204 711 1 090 472 868
4 731 295 0 683 0 507 0
5 787 368 1 225 730 1 032 531 832
6 674 2 551 0 619 0 508 0
7 616 728 1 088 553 879 478 691
8 732 756 0 634 0 495 0
9 639 734 1 178 557 904 446 727
10 739 2 793 0 600 0 499 0
11 667 1 102 1 239 512 970 477 818
12 607 1 084 0 458 0 442 0
13 707 1 142 1 122 537 785 480 801
14 700 1 082 0 592 0 452 0
15 17 687 16 525 16 856 18 818 18 408 21 266 19 709

Table 3: Distribution of flights across TW duration.

Table 3 shows the distribution of flights across TW durations, with wmax = 15 min.397
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Figure 4: Number and percentage of constrained and unconstrained flights across TW model variants per TW
type.

- Forward TWs. About a quarter of all the constrained flights have very tight constraints (1 min),398

while the rest are distributed across longer TW duration. From the operational point of view, a399

flight with 1 min TW means that it has to be performed with extreme precision - arriving at all400

scheduled points along the trajectory within a minute of the assigned time.401

- Symmetric TWs. The TW duration is always an odd number as each TW is being extended for402

one additional minute both forward and backward. Here, between 30 and 40% of all constrained403

flights have a TW of only one minute. Hence, there are many more severely constrained flights404

than in the forward TW case. Once again, the conservative model has the most constrained flights405

across all TW durations, followed by the intermediate and then proportional model.406

- Asymmetric TWs. A different behaviour is experienced in this case, which involves the conservative407

TW model only, as shown in column “Asymmetric” that illustrates the situation where TWs can408

extend from 5 minutes before to 10 minutes after the assigned time. The distribution of the TW409

duration is different with respect to the forward and symmetrical cases. First, this is the case that410

provides the lowest number of unconstrained flights (last row). In addition, we see that the largest411

share of constrained flights have TWs of 10 minutes, followed by TWs of 6 minutes. Instead, the412

number of extremely constrained flights (i.e., TWs of 1 minute) is very low, the lowest among all413

the different TW models and type variants presented here. Thus, the asymmetric TW type on414

one hand produces the highest number of constrained flights. On the other hand, it gives higher415

flexibility to constrained flights.416

The very different distribution of constrained flights in the Asymmetric type when compared with the417

Symmetric and Forward ones is due to the applied constraints. Asymmetric, Forward and Symmetric418

types require increasingly stringent constraints to allow a longer TW. Take for example a flight f , with419

departure time at 10:00 from a1 airport, and the trajectory that requires entry into sector s1 at 10:10,420
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in sector s2 at 10:30 and landing at airport a2 at 10:55. To assign a 2-minute Asymmetric TW to f it is421

necessary that all the airports and sectors along the trajectory have sufficient capacity to allow entry 1422

minute before, or 1 minute after the assigned time of entry. In this case we would have two possibilities:423

• TW sequence 1: a1 = [10:00,10:01], s1 = [10:10,10:11], s2 = [10:30,10:31], a2 = [10:55,10:56]424

• TW sequence 2: a1 = [9:59,10:00], s1 = [10:09,10:10], s2 = [10:29,10:30], a2 = [10:54,10:55]425

For a 2-minute Forward TW it is necessary that a1, s1, s2 and a2 have sufficient capacity to allow426

entry 1 minute after the assigned time, which is the first of the two possibilities in the Asymmetric427

type case. Finally, for a 2-minutes Symmetric TW it is necessary that a1, s1, s2 and a2 have sufficient428

capacity to allow entry both 1 minute before, and 1 minute after the assigned time. Thus, it requires429

both Asymmetric type case alternatives to be met, to then assign a 3-minute TW.430

These examples help us understand the existence of two peaks in the distribution of constrained431

TWs, and its relation with the other two TW types. The first, the 6-minute TWs category represents432

the flights for which it is not possible to postpone the departure with respect to the assigned time.433

However, they could depart up to 5 minutes earlier. These flights would be assigned a 1-minute Forward434

TW, as the earlier start is not a possibility here. Also in a Symmetric type case, only 1-minute TW435

would be assigned as the symmetric extension backward and forward is not possible. The second peak436

represents flights having 10-minute TWs, for which earlier start is not possible, but that can depart up437

to 10 minutes later. These flights would have been assigned a 1-minute Symmetric TW and a 10-minute438

Forward TW or longer.439

To sum up, there are clear differences between the three TW model variants, with the proportional440

model being the one that identifies the lowest number of constrained flights. However, this is offset by the441

large proportion of constrained flights having the most constrained TWs - almost half of all constrained442

flights are assigned 1 minute TW. The conservative TW model, with the Asymmetric TW type offers the443

highest flexibility (in terms of longer TWs) to the constrained flights. As such, we choose this particular444

model variant to further explore the impact the change of various parameters may have on the number445

of constrained/unconstrained flights, as shown in Section 7.446

6.2. Capacity violations analysis447

As already mentioned, the SATA model always respects capacity constraints. Therefore in each TW448

model variant and type, capacity constraints are not violated as long as all flights are executed at their449

assigned times. If, on the other hand, an operation is executed within a TW but at a time period450

other than the assigned one, the proportional and intermediate approaches may not guarantee that the451

capacity is respected. Thus, we have to verify whether and to what extent the use of the two model452

variants lead to capacity breaches.453

The capacity utilisation across sector-hours for both intermediate and proportional models is simu-454

lated by assigning a random departure time for each flight, within its associated TW. Based on these455

new departure times, subsequent sector entry times (and arrival at the destination airport) along the456

trajectory are calculated. The new entry times are used to compute the capacity utilisation counts for457

all sector-hours. The capacity utilisation is then compared with nominal sector-hour capacities.458

Departure times are randomised using the following three probability distribution functions:459

• Uniform: all time periods within a TW can be chosen for departure with equal probability.460

• Triangular-like:461

– Forward TWs: the probability monotonically decreases with time and hence the first time462

period has the highest probability for departure and the last time period the lowest.463

– Symmetric TWs: the probability monotonically decreases with time, symmetrically backward464

and forward. Thus, the assigned time period has the highest probability for departure, while465

the first and the last time periods have the lowest probability.466

• Mixed : the SATA-assigned time period has 0.5 probability to be chosen, whereas all the other time467

periods equally share the remaining probability.468
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Table 4: Percentage of sector-hours for which the capacity is violated. Values averaged over 100 000 random
instances (wmax = 15min).

Intermediate model Proportional model

TWs Uniform Triangular Mixed Uniform Triangular Mixed

Forward 0.12 0.05 0.06 1.71 1.36 1.57
Symmetric 0.05 0.03 0.02 0.31 0.25 0.26

We ran 100 000 simulations for each combination of the TW model (intermediate and proportional),469

probability distribution (uniform, triangular-like, mixed), and TW type (symmetric and forward). Each470

simulation was run for 29 917 flights, over 24 008 sector-hours.471

Table 4 shows the percentage of sector-hours for which the capacity is violated. These values are the472

average values across 100 000 simulations. Just for illustration, in case of the intermediate TW variant,473

forward TW type, and uniform distribution, about 29 sector-hours (0.12% out of 24 008 sector-hours)474

have their capacity violated. We observe that when the uniform distribution is applied slightly higher475

numbers of capacity violations occur with respect to the triangular-like and mixed distribution cases. In476

terms of absolute numbers of excess flights, our results show that on average, across 100 000 runs:477

• Intermediate TW model: from 1.0 to 1.1 excess flights;478

• Proportional TW model: from 1.1 to 1.4 excess flights.479

For further illustration, the maximum number of flights exceeding sector-hour capacity across all the480

simulations is 11, which only occurs in one sector-hour in Italy from 13:00 to 14:00. For example, the481

sector depicted in Figure 5 is one of those for which the capacity was breached by 11 flights (sector-hour482

capacity is 76). The inspection of the actual entry count data (i.e., what actually happened on the day)483

shows a few cases of exceeding the capacity for 11 or 13 flights across several sector-hours. Further, we484

looked at entry counts across more days, and found out that the count is often higher than nominal485

capacity, going up to 100 flights an hour. This leads us to conclude that the maximum capacity breaches486

unearthed in the simulations fall under the regular operations.487

Figure 5: Sector that had a few significant capacity violations in the simulations for feasibility testing.

From the results presented in the Table 4, the intermediate TW model presents a significantly lower488

number of capacity violations than the proportional one, and the symmetric TW type results in fewer489

capacity violations. Thus, we conclude that both the proportional and intermediate ways of assigning490

capacity are feasible, as they result in a very low number of capacity violations, and the magnitude of491

violations is usually handled in the daily operations.492

7. Robustness analysis493

In this section, we vary some key input parameters and analyse the effects of the variations on the494
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number of constrained/unconstrained flights, i.e. on flight flexibility. First, we consider the variation of495

minimum or maximum TW duration (Section 7.1). Next, we study the modification of capacity, where496

we first define the saturated sector-hours and then analyse the impact the variation of their capacity497

has on flights (Section 7.2). Finally, we assume that some flights do not respect their TWs, where their498

actual departure time ends-up being outside the assigned (departure) TW (Section 7.3). As mentioned499

at the end of Section 6.1, we use the conservative TW model, with the Asymmetric TW type for all the500

analyses, with all TWs ranging from -5 to +10 minutes from the assigned time.501

7.1. Variation of the minimum and maximum TW duration502

The first analysis involves the variation of the minimum TW duration, that can be changed from503

1, over 3 to 5 minutes. As can be seen in Figure 6, the minimum TW duration variation impacts the504

result very little, by slightly diminishing the number of constrained flights only when minimum TW is505

set to be 5 minutes. The second parameter we analyse is the maximum TW duration, looking at 15 and506

20 minute variations. We take only these two values into account as smaller value, like 10 minutes, is507

generally considered to be too short. Similarly, the TWs longer than 20 minutes make little sense, as508

an average flight time in Europe is between 90 and 120 minutes. The change of maximum TW duration509

from 15 to 20 minutes results in the much higher number of constrained flights (Fig. 7). This is due to510

the fact that the capacity needs to be reserved for a longer period of time.511
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Figure 6: Constrained vs. unconstrained flights for different values of minimum TW duration - 1, 3, 5 min
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Figure 7: Constrained vs. unconstrained flights for different values of maximum TW duration - 15 or 20 min
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Figure 8: Flights constrained by number of sector-hours.

7.2. Constrained flights and saturated sector-hours512

Even though both intermediate and proportional TW models reserve the capacity in a less constrain-513

ing manner than the conservative model, they both have a great number of very constrained flights,514

for both forward and symmetrical TW type (see Section 6.1). In order to avoid having a great number515

of very constrained flights, in the following analysis we will focus on the conservative TW model, with516

the asymmetric TW type, wmax = 15 min with (−5, 10) maximum backward and forward extension,517

respectively.518

Once it is ascertained that there are constrained flights, the natural next step is to find the sector-519

hours constraining the traversing flights. We term these sector-hours saturated.520

Definition. A saturated sector-hour is a sector-hour where the TW duration of some (constrained) flights521

cannot be equal to the maximum allowed value wmax because the capacity limit is reached.522

The saturated sector-hours indicate the bottlenecks in the network, and limit the flight flexibility.523

The flight flexibility could be improved by increasing the capacity of saturated sectors-hours, if and where524

possible. To be able to choose where it is best to intervene, we introduce a criticality index, defined as525

follows:526

Definition. The Criticality index kc measures the degree of criticality of a sector-hour as the total527

additional number of time periods that all flights constrained by the same sector-hour would have if it528

had sufficient capacity. The criticality index kc is:529

kc =
∑
f∈F c

(wmax − wf ),

where F c is the set of constrained flights that have TW duration constrained by the used-up capacity530

of the saturated sector-hour c. A high criticality index denotes the sector-hour for which a rise in531

capacity would bring the greatest increase of the objective function value. On the whole, the criticality532

index of a sector-hour is overestimating the criticality as a constrained flight could be limited by multiple533

sector-hours (see Figure 8).534

Figure 9 shows trajectories constrained by the sector shaded white, at flight level 340, at 10:15. The535

saturated sectors are coloured from red to white, depending on the criticality index value. The most536

constrained trajectories are shown in light yellow that turns to dark with more flexibility (i.e., longer TW537

duration). A flight from EDDS (Stuttgart, Germany) to GCLP (Gran Canaria, Spain) is shown, which538
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is constrained by this sector, and has a TW of 10 minutes, only going forward without the possibility of539

anticipating the assigned time.540

Figure 9: Examples of constrained flights and saturated sector-hours (source: ADAPT visualisation tool
https://visualization.adapt-h2020.eu/).

Table 5 shows the five sector-hours with highest criticality indices, out of 2 310 saturated sector-hours541

identified by the model. The start time, end time, capacity, number of constrained flights, and criticality542

index are shown for the chosen sector-hours. As can be seen, these constrain a significant number of543

flights, when compared to their respective capacity.544

Table 5: Criticality index for a sample of sector-hours (conservative TW model, asymmetric TWs (-5, 10),
wmax = 15.)

Sector Start time End time Capacity Constrained flights Criticality index
LTAAIE 21:00 22:00 47 53 429

EGTTEAST 21:00 22:00 40 49 388
EGTTSOUTH 21:00 22:00 70 55 354

LTBAALL 05:00 06:00 86 44 347
EGTTNWD 07:00 08:00 60 45 344

Thanks to this indicator it is possible to identify the sector-hours for which an increase in capacity545

brings the greatest benefits in terms of flexibility. In fact, Figure 10 shows how the total TW duration546

(the objective function of the conservative, asymmetric (-5,10) TW model) varies when the capacity of547

the sectors is increased by 5%. The increase is applied on different groups of sectors. We start with548

the 10% of the least saturated sector-hours (criticality index from 1 to 9), continue on the second 10%549

(criticality index from to 9 to 15) and so on. It is shown that by increasing the capacity by 5% on only550

the 10% of the sector-hours with the highest criticality index (141-429), a non-negligible increase (from551

the initial objective function value of 368 589 to 372 566, +1.08%) in the duration of the TWs, therefore552

in flexibility, is obtained. In fact, in terms of flights this means that 2 041 flights could increase the553

duration of their TWs with an overall gain of 3 977 minutes and 280 more unconstrained flights (+1.7%).554

This could be very useful information for the ANSPs and Network Manager as they could identify in555

advance the portions of the airspace where it would be most beneficial to intervene to ensure greater556

flexibility to flights on the day of operations.557

7.3. TW violation analysis558

The TWs are determined in a strategic setting, not taking into account many sources of tactical559

uncertainties. As such, in the tactical setting, TW violations may occur for a variety of factors, such as560
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Figure 10: TW objective function value variation when the capacity is increased by 5% for the saturated sector-
hours.

weather conditions, or reactionary delays due to crew or aircraft rotations, or other disruptions. These561

inconveniences may lead to the situation where the assigned TWs are too narrow, and thus difficult to be562

respected by airlines. For this reason, the robustness of the TW model needs to be checked against TW563

violations, evaluating what happens when a number of flights is not able to meet them, and thus need564

to be assigned new, previously unassigned resources. As an example, let the assigned time of a flight f565

be equal to 10:00, with the departure TW from 09:55 to 10:10. On the day of operations, however, flight566

f is only able to depart at 10:15, i.e., 5 minutes after the end of its TW. The problem to be faced is:567

when can this flight be rescheduled? Can the airline expect to find available resources at 10:15, or will568

the flight incur additional delay?569

To answer these questions, we simulate the tactical delays and analyse their impact on the flight flex-570

ibility. To do so, we apply the probability distribution of real departure delays at all European airports571

in September 2017 as illustrated in Figure 11a (Mitici et al., 2019). The distribution takes into account572

all the delays caused by airline and airport processes, and all ATFM delays. However, this exact amount573

of delays would be overly pessimistic in our setting, since the TW model allows for better strategic574

planning. As such, departure times and TWs respect airspace capacities which can reduce ATFM delays575

due to capacity and staffing reasons (see Bolić et al. (2017)). Thus, we want to study cases in which576

airlines are not able to meet TWs due to factors other than those addressed in the strategic planning.577

To do so, we adjust this delay distribution in two ways. First, from Figure 11a we observe that there is578

a share of flights that actually depart before their scheduled time. Since flights that are ready ahead of579

their assigned time represent non critical situations (e.g., night or early morning flights), we constrain580
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Figure 11: Distribution of departure delays at all European airports in September 2017.

the delay distribution to the −5 minutes (start time of the TW) on the left side. Second, to account581

for lower ATFM delays due to strategic planning, we re-scale the original probability distribution by a582

multiplicative factor of 0.25, 0.5 and 0.75. For example, with a re-scaling factor of 0.5, a delay of 10583

minutes is re-scaled to 10 ∗ 0.5 = 5 minutes (Figure 11b).584

Let D ⊆ F be the subset of flights that are expected to depart after the end of their departure TW585

according to these distributions. On average D is composed of 6.0% of the total number of flights for586

a re-scaling factor of 0.25, 14.5% for 0.5, and 22.9% for 0.75, respectively. A flight f ∈ D is referred to587

as delayed flight and dDf is the delayed departure time as assigned by the delay distribution. Since dDf588

is outside the departure TW for all f ∈ D, there is no guarantee that it is possible to respect network589

capacities for all flights f ∈ F , and there might be the need to further delay some of these flights (either590

in D and/or in F \ D) to accommodate them. For each flight f ∈ F , we also define as TW violation591

the difference between its departure time and the end of its departure TW. By setting the limit to 60592

minutes after the end of the departure TW, updated departure times dUf to minimise TW violations,593

while respecting the nominal capacities of the network, are computed by means of a new TW robustness594

optimisation model (its mathematical formulation is available in Appendix D). All delayed flights must595

be assigned an updated departure time equal to or later than the delayed one, i.e., dUf ≥ dDf ∀f ∈ D.596

Number of flights Rescaling factor
0.25 0.5 0.75

TW violation > 0 min 3 886 (13.0%) 7 000 (23.4%) 9 543 (31.9%)
TW violation > 10 min 348 (1.2%) 986 (3.3%) 2 150 (7.2%)
TW violation > 20 min 146 (0.5%) 329 (1.1%) 579 (1.9%)
TW violation > 30 min 66 (0.2%) 159 (0.5%) 243 (0.8%)
TW violation > 40 min 31 (0.1%) 80 (0.3%) 116 (0.4%)
TW violation > 50 min 15 (0.1%) 43 (0.1%) 63 (0.2%)

Average TW violation (min) 4.2 5.9 7.3

Table 6: Distribution of delayed flights and average TW violation per delayed flight, averaged across 100 runs for
3 different rescaling factors. The percentage values refer to the total number of flights (29 917).

Table 6 shows the results of the TW robustness model. From the first row, we see that to accom-597

modate all delayed flights, the number of flights violating their TWs slightly increases (from 6.0% to598

13.0% for the 0.25 re-scaling factor, from 14.5% to 23.4% for 0.5, and from 22.9% to 31.9% for 0.75,599

respectively). It means that some flights in F\D also have to depart after the end of their TWs. However,600

we notice that for all three re-scaling factors most flights violate their TWs for less than 10 minutes, and601
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even in the worst scenario (re-scaling factor = 0.75) the share of flights that need to depart more than602

20 minutes after the end of their departure TW sharply drops to less than 2%. In real operations, the603

average delay per delayed flight was reported to be 28.4 minutes in 2019 (Eurocontrol, 2019a). Consid-604

ering that the average TW violation per delayed flight (last row of Table 6) with re-scaling factor = 0.75605

is just 7.3 minutes, which may be on top of at most 10 minutes of TW width after the assigned time,606

for a total of 17.3 minutes, the average delay per delayed flight is much lower than in current, mostly607

tactical operations. Further, the limited percentage of flights with larger violation values indicates that608

the tail of violations distribution is limited, having little impact on major disruptive events. Thus, we609

believe that the TWs proposed in this paper are a robust tool that may be used in operational strategic610

flight planning.611

8. Discussion and concluding remarks612

8.1. Discussion of strategic flight planning implications613

The current European ATM system offers great flight planning flexibility, which is very tactical.614

Moving towards a more strategic way of planning will be acceptable as long as a viable compromise615

between flexibility and predictability can be achieved. The time windows (TW) models presented here616

demonstrate that it is possible to assign a measure of flexibility, i.e., a TW, to each flight and identify617

saturated elements of the network. As the model is computationally fast, it could be used to first assign618

flexibility and detect the network bottlenecks. As a second step, it could be used in the what-if scenarios619

aimed at improving the overall stakeholder and network situation. Here we discuss shortly two possible620

examples - change of airspace configuration or flight re-routes.621

The saturated sector-hours identify where and when the ATM network is under pressure. Further-622

more, the criticality index of the saturated elements indicate a magnitude of the improvement a rise623

in capacity of the element would bring to the objective function value. Having the information on the624

saturated sectors, and their criticality index, ANSPs could take mitigation actions to improve the sit-625

uation on the day of operations. For example, a supervisor having one or two saturated sectors, both626

with the low criticality index, might decide that the planned configuration is good enough as even if the627

capacity ends up being violated it will be for a small number of flights, which in many cases is what628

already happens in every-day operations. However, if there are few sector-hours within an area control629

center with high criticality indexes, the supervisor might decide to change the configuration into a one630

that brings more capacity. Further, this change can be inserted into TW model to re-run it and check631

what impact it would have on this particular airspace, and the entire network.632

In a different example, the TW model results could be used by the AUs. The AUs could inspect their633

constrained flights in terms of the flexibility assigned (i.e., low if they are constrained) and the saturation634

of the airspace the trajectory is planned to cross. For example, they could use the visualisation tool4 for635

visual inspection. Through inspection they could decide to keep the constrained flight plan, or to file for636

re-route through less constrained airspace, if available. Even the decision of retaining the constrained637

flight plan can be of use to AUs as they would have early information on the flight that has to be638

operated with the particular precision. In the case the AU opts for the re-route, this information can639

also be re-run in the TW model to ascertain the impact on the individual flight and on the network as640

a whole.641

To sum-up, the model results offer information on strategic flexibility and predictability, that can642

be used by different stakeholders, and the impact of the envisioned changes can be assessed. The next643

logical research step is to analyse in more detail the above described mitigation actions. For example, to644

identify saturated network elements, checking if configurations with higher capacity exist in that portion645

of airspace, and if they do, implement them in the TW model, and check for the overall impact.646

8.2. Concluding remarks647

In this paper, we describe three variations of the TW model, three types of TWs (forward, symmetric648

and asymmetric), and the computational experiments on real data with an entire day of traffic from the649

European ATM network. The three variants of the TW model give different results - the number of650

constrained flights per TW model variant is inversely proportional to the level of capacity utilisation and651

4Available at https://visualization.adapt-h2020.eu/
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therefore the conservative variant gives a greater number of constrained flights than the intermediate652

variant, which in turn has a larger number than the proportional one. In addition, the type of TW also653

impacts the number of constrained flights. In the three TW model variants, forward TWs always produce654

the lowest number of constrained flights when compared with the asymmetric (only conservative TW655

model) and symmetric TW type. Computational experiments show that on a busy day in the European656

network, with a particular (stringent) configuration in place, between 40 and 50 % of flights would be657

constrained (i.e., TWs lower than 15 min.), but not overly constrained (i.e., having TWs of 1 min.).658

Even though most of the flights do have some flexibility, this could be an indication of the insufficient659

capacity of the particular configurations in place at certain points in the network.660

Global Air Navigation Plan (GANP) (ICAO, 2016) sets global performance ambitions, by defining661

11 Key Performance Areas (KPAs), among them flexibility and predictability. Even though these two662

KPAs are recognised as important performance areas, common metrics are still not defined. Regarding663

the flexibility, GANP states “...the air navigation system should be flexible enough to integrate changes664

in business and operational trajectories at the frequency required by airspace users.” Its relevance is665

therefore clearly stated, even though the metric to measure it is not defined. Predictability is another666

KPA widely recognised as important, as in order to provide as efficient service as possible, an entity667

should be able to accurately predict the future demands on its system. What is more important, all668

ATM stakeholders recognise the importance of both having the flexibility and providing predictability,669

but they are often seen as opposing - high predictability is considered to limit the flexibility in the670

system. We believe that the approach presented in this paper offers some insight in the requirements671

of information exchange needed to ensure a measure of predictability, and more importantly to attempt672

the quantification of flight flexibility. For predictability, different stakeholders have to exchange different673

types of information at certain time horizons. For example, the airspace configuration and capacities674

planned by ANSPs, and the set of routes acceptable by airlines between the origin and destination675

airports. When these are available strategically, a picture of constraints and saturation points in the676

network can be obtained, as well as the measure of flight flexibility. Having enough time prior to the677

day of operations, different settings can be tried out to help in making the final decision.678

Of course, the strategic flight planning presented here is acceptable as long as these efforts result in679

better tactical/actual operations, where the goodness is measured in terms of delay and cost reduction,680

robustness of time windows, just to mention a few indicators. The first step in the robustness testing681

of TWs, presented in Section 7.3 shows that TWs could be used in operational strategic planning. With682

this result in mind, it is of great importance to assess the impact of strategic/pre-tactical planning on683

the tactical/actual operations. Thus, another line of future research direction lies in the assessment of684

the tactical impact of the strategic planning.685
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Delgado, L., Gurtner, G., Bolić, T., Castelli, L., 2021. Estimating economic severity of air traffic flow management720

regulations. Transportation Research Part C: Emerging Technologies 125, 103054.721

Ding, W., Zhang, Y., Hansen, M., 2018. Downstream impact of flight rerouting. Transportation Research Part C: Emerging722

Technologies 88, 176–186.723

Estes, A.S., Ball, M.O., 2020. Equity and strength in stochastic integer programming models for the dynamic single airport724

ground-holding problem. Transportation Science 54, 944–955.725

Eufrásio, A.B.R., Eller, R.A., Oliveira, A.V., 2021. Are on-time performance statistics worthless? An empirical study726

of the flight scheduling strategies of Brazilian airlines. Transportation Research Part E: Logistics and Transportation727

Review 145, 102186.728

Eurocontrol, 2019a. CODA Digest 2019 - All-causes delay and cancellations to air transport in Europe. Technical Report.729

EUROCONTROL.730

Eurocontrol, 2019b. Network Operations Report 2018. Technical Report. EUROCONTROL.731
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Appendix A. Introducing capacity matters789

European definition of a capacity is the number of entries within the defined time horizon, usually an790

hour. Thus, the nominal capacity defines how many flights can enter a sector during an hour, in nominal791

conditions. Unfavourable weather conditions, for instance, can require effective lowering of the nominal792

capacity, but that is done operationally, if there is a need for such measures (through ATFM measures).793

Today, the airspace users do not need to consider the capacity of the airspace they would like to fly794

through. However, European ANSPs have the information on what is considered the nominal capacity795

of each of the sectors under their jurisdiction. The actual capacity of an ANSP at each point in time796

depends on the applied sectorisation (i.e., configuration). A particular configuration consists of a number797

of sectors. The higher the number of sectors in a configuration, the higher the capacity of the airspace798

under the configuration. Figure A.12 depicts two configurations of an ANSP: with just one sector (left799

figure), and with two sectors, where the division is in the horizontal plane (right figure). The nominal800

capacity of the first configuration is lower than that of the second one (42 compared to 95 entries in an801

hour).802

The actual sectorisation is chosen by the supervisor, based on the traffic demand prediction (short-803

term prediction based on the submitted flight plans) and the staff availability. The changes are actuated804

when the need arises, at any time of day. As the configuration changes at need, the change can happen805

at any fraction of an hour. For example, it can happen that a particular configuration (see figure A.12a)806

is active from 8:00 to 10:20. In that case, the sector belonging to the configuration would have three807

sector-hour capacities assigned – two full sector-hour capacities (from 08:00 to 10:00) and a partial sector-808

hour capacity of 14 entries, the hourly capacity being scaled to 20 minutes. Two-sector configuration809

(figure A.12b) can be active from 10:20 to 11:00 where each sector of the configuration would have partial810

sector-hour capacities, with capacities scaled to 40 minutes of sector-hour duration. Thus, at each point811

in time, only the sectors belonging to the active configuration can be entered and crossed by flights.812
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(a) One active sector
(b) Two active sectors

Figure A.12: Sectorisation configurations with one active sector (left) and two active sectors (right).

Appendix B. Weight coefficients813

Weight coefficients γ(τ) are introduced in the objective function (1) to favour TWs of similar duration814

to each of two flights, rather than the assignment of a large TW to one flight and a small one to another.815

This fairer distribution of TWs’ duration is achieved by imposing that coefficients γ(τ) decrease as |τ |816

grows, so that greater weights are given to time periods closer to the assigned departure time df , where817

γ(τ) is the weight associated with the period t such that t− df = τ .818

Since the objective to be guaranteed is in any case the maximisation of flexibility, and therefore of819

the overall duration of the TW, in the following we define a sequence of decreasing weights which, within820

the same maximum duration of TWs, allows a more equitable distribution of TWs among the various821

flights.822

If we set wm = max(w−max, w
+
max − 1), the coefficients could therefore be defined as:823

γ(τ) = 1− |τ |
x

where − w−max ≤ τ ≤ w+
max − 1 and x > wm. (B.1)

Thus,824

1 = γ(0) > γmax = γ(±1) > · · · > γ(±wm) = γmin

Weight γ(0), associated with the assigned departure time df , is equal to 1; γmax is the weight825

associated with the time periods adjacent to df and, except for γ(0), is the maximum weight; γmin is826

associated with the most distant time periods from df .827

If we consider a feasible solution n for the TW optimisation problem (constraints (2) - (13)), we828

define Dn as the total sum of the number of time periods in which TWs are open, i.e., the total TW829

duration,830

Dn =
∑

f∈F,t∈Tf,1

xnf (t),

and On as the value of the objective function (1) for n, i.e., the weighted total TW duration,831

On =
∑

f∈F,t∈Tf,1

xnf (t) · γ(t− df ).

Dn would be equal to On if the weight coefficients γ all had value 1.832

Our goal is to choose values for the coefficients γ such that, given two feasible solutions n1 and n2,833

it is always true that834
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a) Any preferable feasible solution in terms of the objective function (1), must have a greater total835

TWs duration, i.e.,836

On1 > On2 ⇒ Dn1 ≥ Dn2 ; (B.2)

b) A solution with a greater duration also implies that it is preferable in terms of the weighted837

duration, i.e., of the objective function (1:)838

Dn1 > Dn2 ⇒ On1 > On2 (B.3)

In such a way if two solutions have the same total duration, the preferable solution is the one with839

a more equitable distribution of TWs’ duration. Therefore the optimal solution O must also have the840

maximum value of D.841

As an example, let n1 and n2 be two feasible solutions which differ only in the three TWs, twa, twb842

and twc, as shown in figure B.13.843

Figure B.13: Two feasible solutions n1 and n2, which differ only in the three TWs. Dn1 = 15 and Dn2 = 14,
hence n1 is a preferable solution with respect to n2.

n1 is a preferable solution with respect to n2 because Dn1 = Dn2 + 1. In order for equation B.3 to be844

valid, or rather On1 > On2 , it is necessary that 2γmin > γmax. In fact, n1 has twa and twb open in the845

time periods furthest from the start (those associated with the minimum weight) while in n2 they are846

closed. n2 has twc open in the time period closest to the start (associated with the maximum weight)847

while in n1 this is closed. Since these are the only differences, in order for n1 to be preferable to n2848

(i.e., in order to have On1 > On2), it is necessary that 2 times the minimum weight be greater than the849

maximum weight. If this inequality is valid, also 2γ
′
> γ

′′
is valid for any pair of cost coefficients γ

′
and850

γ
′′

such that γmin ≤ γ
′
< γ

′′ ≤ γmax.851

More generally, the inequality should be valid for any number m of time periods with the minimum852

weight that must have a total weight greater than m−1 periods with the maximum weight. To guarantee853

this, a characteristic that the weight coefficients γ must have is the following:854

mγmin > (m− 1)γmax where m is such that 2m− 1 ≤ |F|.

Considering that the maximum value for m is |F|+1
2 and the fact that the total number of flights is855

|F|, we must make sure that:856

γmin >
|F| − 1

|F|+ 1
γmax (B.4)

Combining equations B.1 and B.4 together:857

1− wm
x

>
|F| − 1

|F|+ 1
(1− 1

x
)

(|F|+ 1)(x− wm) > (|F| − 1)(x− 1)

x >
|F|(wm − 1) + wn + 1

2

(B.5)

Then we can set x = |F|
2 wm and therefore define the weight coefficients γ as:858

γ(τ) = 1− 2|τ |
wm · |F |

− w−max ≤ τ ≤ w+
max − 1
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Appendix C. Capacity utilisation coefficient859

When a TW is completely contained within a single sector-hour, it uses a unit of capacity. If, on the860

other hand, it spans two sectors-hours, in the conservative case a unit of capacity is reserved in both861

sectors, thus resulting in its under-utilisation since a flight will actually enter one or the other of the two862

sectors-hours. For this reason, the proportional and intermediate variants have been introduced (Section863

4) and the amount of capacity that must be reserved for that flight changes.864

To compute the exact sector-hour utilisation value, a capacity utilisation coefficient β is introduced.865

In case a TW extends over two sector-hours, one of the two contains the assigned time of entry df + lirf ,866

while the other only intersects either T +
f,i or T −f,i. For simplicity, we denote the latter sector-hour as c∗.867

Both in proportional and intermediate variants a fraction q∗ of unit of capacity of c∗ equal to the fraction868

of time periods of the TW present in sector-hour c∗ is reserved. In the former sector-hour, a whole unit869

of capacity is reserved in the intermediate variant, while a fraction of unit of capacity equal to 1− q∗ is870

reserved in the proportional variant. Therefore, to define the variants of the TW model it is sufficient871

to define only the capacity utilisation coefficients βif,c∗ relating to sector-hours c∗ which do not contain872

the time assigned for the i-th operation of flight f . We define these coefficients coefficients as B.873

Coefficient B can be defined as B(δ, τ) (∈ [0, 1]), where δ and τ are such that:874

- δ is the time difference between the assigned time of entry df + lirf and the first period, closest to875

df + lirf , in which flight f may reserve capacity in sector-hour c∗.876

– When c∗ intersects T +
f,i, as in upper case shown in Fig.C.14 (for which c∗ = c2), δ = openc∗ −877

df + lirf .878

– When c∗ intersects T −f,i, as in lower case shown in Fig.C.14 (for which c∗ = c1), δ = df + lirf −879

closec∗ + 1.880

where openc and closec represent the opening and closing time periods of sector-hour c, respectively.881

- τ is the difference between each of the TW periods covered by c∗ and the assigned time of entry882

df + lirf .883

We notice however that we can apply the intermediate and proportional TW model variants only for884

forward or symmetric TW types, because only in these cases we are able to implement the coefficient B.885

Figure C.14: Two TWs that extend over
sector-hours c1 e c2 for the Symmetric type.

Figure C.15: A TW that extends over sector-
hours c1 e c2 for the Forward type.

In fact, in both forward and in symmetric TW types, in case a TW extends over two sector-hours,886

it is sufficient to know the value of the decision variables for the TW periods covered by c∗ to establish887

the fractions of unit of capacity to be reserved in each of the two sector-hours.888

Forward TWs. In this case, a TW can only extend forward with respect to the assigned time of entry889

df + lirf , i.e., w−max = 0, T−f,i = ∅, therefore for the monotony constraint (2), if the TW is open in the890

period df + lirf + τ , then the duration of the TW is at least τ + 1.891

As an example, the TW depicted in Figure C.15 starts in c1, 3 minutes before the activation of the892

hour sector c2 (δ = 3). If the TW were not open 3 minutes after the time assigned by the SATA, that893

is in the first instant of activation of c2, then it would not be necessary to reserve any capacity in c2.894
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Table C.7: B(δ, τ) coefficients for Forward TWs
with w−

max = 0 and w+
max = 5

τ = 1 τ = 2 τ = 3 τ = 4

δ = 1 1
2

1
6

1
12

1
20

δ = 2 1
3

1
6

1
10

δ = 3 1
4

3
20

δ = 4 1
5

Table C.8: B(δ, τ) coefficients for Symmetric TWs
with w−

max = 4 and w+
max = 5

|τ | = 1 |τ | = 2 |τ | = 3 |τ | = 4

δ = 1 1
3

1
15

1
35

1
63

δ = 2 1
5

3
35

1
21

δ = 3 1
7

5
63

δ = 4 1
9

If instead it were open at the time period df + lirf + 3 (τ = 3) then it would reserve in c2 a fraction895

of capacity equal to 1
4 , since it would have a duration of 4 time periods, of which 1 in c2, otherwise no896

capacity would be reserved. If the TW would be open at the time period df + lirf +4 (τ = 4) then a total897

of 2
5 of a capacity unit would be reserved, since it would have a duration of 5 time periods, of which 2898

in c2. Having already reserved 1/4 unit of capacity, to obtain 2/5 it is sufficient to add 3/20, and so on.899

The fraction of capacity to be reserved can therefore be obtained as the sum of the coefficients B(δ, τ)900

through which a weight is given to each time period in which TW is open. In this way, the capacity qc2901

to be reserved in c2 is calculated, while for the sector-hour c1 a whole unit of capacity will be reserved902

in the intermediate TW model variant, or 1 − qc2 of unit of capacity in the case of proportional model903

variant.904

Symmetric TWs. Similar considerations can be made in this case, taking into account that, exploiting905

symmetry and monotony constraints (6, 2 and 3), the TW is open at time period df + lirf + τ , if it is906

open at df + lirf − τ and vice-versa. Therefore if the TW is open in the period df + lirf + τ , the duration907

of the TW is at least 2τ + 1, and the fractions of units of capacity to be reserved change accordingly.908

Asymmetric TWs. In thic case, instead, if the TW were open 3 minutes after the instant assigned by909

the SATA, we cannot know before solving the optimisation problem what fraction of capacity to reserve910

in c2 precisely because we cannot know how long the TW has extended.911

912

More generally, coefficients B(δ, τ), τ ≥ δ are defined as follows:913

B(δ, τ) =

{
δ

|τ |(|τ |+1) Forward Model
2δ−1

(2|τ |−1)(2|τ |+1) Symmetric Model

∀δ ∈ [1;max(w−max, w
+
max − 1)],∀τ ∈ [−w−max;w+

max − 1)], |τ | ≥ δ

Tables C.7 and C.8 give an example of the B(δ, τ) coefficients for forward and symmetric TWs.914

Once coefficients B(δ, τ) are defined, it is possible to formulate the capacity counts (14), (15), and915

(16) for both the intermediate and the proportional variant. Here we show how to derive equation (16)916

in the symmetric case. The others cases follow similar arguments.917

As in the symmetric case TWs extend backward and forward with respect to the assigned time of918

entry into a sector-hour, in figure C.16 we depict five different cases of positioning of TWs within a sector-919

hour. For flights f , df + lirf is the time period in which the i-th action is assigned, and is represented by920

the shaded rectangles in the figure. T −f,i is the set of time periods within which the sector entry can be921

performed earlier than assigned, and T +
f,i is the set of time periods in which the sector entry can be on922

time or postponed.923

In Figure C.16 we can see two TWs with df + lirf /∈ T c (cases 1 and 5): in these two cases, for both924

model variants a fraction calculated as the sum of the coefficients B(δ, τ) for the time periods in which925

the TW is open will be reserved in c. For TWs with df + lirf ∈ T
c (cases 2, 3 e 4), in the intermediate926

variant, a whole unit of capacity in c will be reserved. Conversely, in the proportional variant, only for927

case 3 a whole unit of capacity will be reserved in c; in cases 2 and 4 a fraction of the unit of capacity928

corresponding to the quantity reserved by the same TW in the adjacent sector-hour must be discounted.929

Thus, for the intermediate variant, the number of entries in sector-hour c of sector j (Equation 16)930

becomes:931
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Figure C.16: All five different cases of positioning of TWs within a sector-hour c.

entintj,c :=
∑

f∈F,i∈[2,nf−1],t∈T c :

t=df+l
i
rf
∧sirf =j

xf (t− lirf )

+
∑

f∈F,i∈[2,nf−1],t∈T c∩T +
f,i :

df+l
i
rf
<openc∧sirf =j

B(openc − (df + lirf ), t− (df + lirf )) · xf (t− lirf )

+
∑

f∈F,i∈[2,nf−1],t∈T −f,i :
df+l

i
rf
≥closec∧sirf =j

B((df + lirf )− closec + 1, t− (df + lirf )) · xf (t− lirf )

(C.1)

Instead, for the proportional variant, equation (16) becomes:932

entpropj,c :=entintj,c

−
∑

f∈F,i∈[2,nf−1],t∈T +
f,i :

df+l
i
rf
<closec∧t≥closec∧sirf =j

B(closec − (df + lirf ), t− (df + lirf )) · xf (t− lirf )

−
∑

f∈F,i∈[2,nf−1],t∈T −f,i :
df+l

i
rf
≥openc∧t<openc∧sirf =j

B((df + lirf )− openc + 1, t− (df + lirf )) · xf (t− lirf )

(C.2)

Capacity counts (14) and (15) are implemented in a similar way.933

Appendix D. TW Robusteness model934

This model appropriately modifies the TW model presented in Section 3. Its aim is to minimise the935

TW violations, as introduced in Section 7.3, to evaluate the effects of not respecting the departure TW936

by a set D ⊆ F of flights.937
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Appendix D.1. Notation938

Appendix D.1.1. Sets939

A ≡ set of airports, indexed by a

S ≡ set of sectors, indexed by s

F ≡ set of flights, indexed by f

D ≡ set of delayed flights that are assigned a delayed departure time dDf

G ≡ set of pairs of flights (f ′, f ′′) that are connected, with turnaround time gf ′,f ′′

R ≡ set of routes, indexed by r, where rf is the chosen route for flight f

B ≡ {dep, arr, gen, ent} ≡ set of operations that can be performed by a flight,

where arr, dep, and gen stand for arrival, departure or generic movement type

(can be arrival or departure) at an airport, and ent stands for entry into a sector

Cbj ≡ set of sector-hours linked with the operation b at sector or airport j, indexed by c

T c ≡ set of time periods during which sector-hour c is active

Appendix D.1.2. Parameters940

origf ≡ departure airport of flight f

destf ≡ destination airport of flight f

nf ≡ number of elements (sectors and airports) along the chosen route rf

sir ≡ i-th element of route r

lir ≡ flight time from origin to the i-th element of route r

twstartf ≡ first time of the departure TW of flight f

twendf ≡ last time of the departure TW of flight f

dDf ≡ delayed departure time of flight f

gf ′,f ′′ ≡ turnaround time between incoming flight f’ and outgoing flight f”, performed by the same aircraft

openc ≡ opening time period for sector-hour c (i.e., opening time of sector-hour c)

closec ≡ closing time period for sector-hour c

Qc ≡ capacity enforced during sector-hour c, (i.e., declared capacity of a sector j, during the sector-hour c)

Appendix D.1.3. Parameter-depending sets941

Tf,i ≡ {twstartf + lirf , . . . , tw
end
f + lirf + 60}

≡ set of feasible updated time periods for flight f to arrive at i-th element of its route rf

Appendix D.2. Decision variables942

Decision variables xf (t) are used to model the updated departure time dUf for flight f , vf is its TW943

violation.944

xf (t) =

{
1 if t is the updated departure time of flight f

0 otherwise
∀f ∈ F , t ∈ Tf,1

dUf =
∑
t∈Tf,1

xf (t) · t ∀f ∈ F (D.1)

vf =

{
dUf − twendf if dUf > twendf (f is not able to meet its TW )

0 otherwise
∀f ∈ F , t ∈ Tf,1
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Appendix D.3. Objective function945

The objective function minimises the total TW violation.946

min
∑
f∈F

vf (D.2)

Appendix D.4. Constraints947

Appendix D.4.1. TW violation definition948

If a flight is able to execute the departure within its TW, it has a null TW violation, otherwise TW949

violation is equal to the difference between the updated departure time dUf and the end of the TW twendf .950

vf (t) ≥ 0 ∀f ∈ F (D.3)

dUf − twendf ≤ vf ∀f ∈ F (D.4)

Since we propose the minimisation of violations vf can only be either 0 or dUf − twendf depending on951

whether the flight is able to depart within its TW or not.952

Appendix D.4.2. Updated departure time constrained953

All flights are assigned a single updated departure time dUf ; all delayed flights f ∈ D must be assigned954

an updated departure time dUf equal to or later than the delayed departure time dDf .955 ∑
t∈Tf,1

xf (t) = 1 ∀f ∈ F (D.5)

dUf ≥ dDf ∀f ∈ D (D.6)

Appendix D.4.3. Connectivity constraints956

Connectivity constraints guarantee that the time between the arrival of the incoming flight f ′ and the957

departure of the outgoing flight f ′′, performed by the same aircraft, is greater or equal to the turnaround958

time gf ′,f ′′ :959

xf ′(t
′) + xf ′′(t

′′) ≤ 1 ∀(f ′, f ′′) ∈ G, t′ ∈ Tf ′,1, t′′ ∈ Tf ′′,1 : t′ + l
nf′
rf′ + gf ′,f ′′ ≥ t′′ (D.7)

Appendix D.4.4. Capacity constraints960

The number of departures depac and arrivals arrac at an airport a during the sector-hour c, are961

calculated as follows:962

depac :=
∑

f∈F,t∈T c∩Tf,1 : origf=a

xf (t) (D.8)

arrac :=
∑

f∈F,t∈T c∩Tf,nf
: destf=a

xf (t− lnf
rf ) (D.9)

Further, the number of entries entjc in the sector-hour c, of a sector j is calculated as follows:963

entjc :=
∑

f∈F,i∈[2,nf−1],t∈T c∩Tf,i : sirf =j

xf (t− lirf ), (D.10)

Thus, the capacity constraints can be expressed as:964

depac ≤ Qc ∀a ∈ A, c ∈ Cdepa (D.11)

arrac ≤ Qc ∀a ∈ A, c ∈ Carra (D.12)

depac + arrac ≤ Qc ∀a ∈ A, c ∈ Cgena (D.13)

entjc ≤ Qc ∀j ∈ S, c ∈ Centj (D.14)
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