

WestminsterResearch

http://www.westminster.ac.uk/research/westminsterresearch

Electrosprayed core-shell nanoparticles of PVP and shellac for furnishing biphasic controlled release of ferulic acid

Lei Cui Zhe-Peng Liu Deng-Guang Yu Shu-Ping Zhang S. W. Annie Bligh Na Zhao

This is an author's accepted manuscript of an article published in Colloid and Polymer Science, 292 (9), pp. 2089-2096, September 2014.

The final publication is available at Springer via http://dx.doi.org/10.1007/s00396-014-3226-8

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Users are permitted to download and/or print one copy for non-commercial private study or research. Further distribution and any use of material from within this archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: (<u>http://westminsterresearch.wmin.ac.uk/</u>).

In case of abuse or copyright appearing without permission e-mail <u>repository@westminster.ac.uk</u>

2		
3		
4	1	Electrosprayed core-shell hanopartciles of PVP and shellac for
5		
6 7	2	furnishing biphasic controlled release of ferulic acid
8	2	
9	5	Lei Cui ¹ * The Dong Liu ² Dong CuongYu ³ * Shu Ding Thong ¹
10	4	Let Cut^{-1} , Zhe-I eng Liu, Deng-Ouang Iu \rightarrow Shu-I ing Zhang ,
11	5	Sw Annie Bligh, Na Znao
12	6	1
13	7	Tin Ka Ping College of Science, University of Shanghai for Science and Technology, 516
14	8	Jungong Road, Shanghai 200093, China
16	9	² School of Medical Instrument and Food Engineering, University of Shanghai for Science and
17	10	Technology, 516 Jungong Road, Shanghai 200093, China
18	11	³ School of Materials Science & Engineering, University of Shanghai for Science and Technology,
19	12	516 Jungong Road, Shanghai 200093, P. R. China
20	13	⁴ Department of Complementary Medicine. School of Life Sciences. University of Westminster.
21	14	115 New Cavendish Street London W1W 6UW
23	15	
24	15	
25	10	
26	17	
27	18	
28	19	
29	20	
31	21	Running Head: Biphasic release PVP-shellac nanoparticles
32	22	
33	23	
34	24	
35	25	
37	25	
38	20	Corresponding outhors
39	27	Dr. Lei Cui and Dr. Dang Cuang Yu
40	28	DI. Lei Cui and DI. Deng-Guang Tu
41	29	
42	30	Address:
43 44	31	Tin Ka Ping College of Science,
45	32	University of Shanghai for Science and Technology,
46	33	516 Jungong Road,
47	34	Yangpu District,
48	35	Shanghai 200093, P.R. China
49	36	Tel: +86-21-55274069
50 51	37	Fax: +86-21-55270632
52	20	Fmail : vdg017@gmail.com (DG Vu): cuilei15@uset.edu.cn (L Cui)
53	20	Eman. yugor/@gman.com (EO Tu), cultite usst.euu.ch (E Cul)
54	39	
55	40	
56	41	
5/	42	
00 59		
60		1

2		
3 4		
5		
6		
7 8		
9		
10		
12		
13		
14 15		
16		
17		
18 19		
20		
21		
22 23		
24		
25		
26 27		
28		
29 20		
30 31		
32		
33 34		
35		
36		
37 38		
39		
40 ⊿1		
42		
43		
44 45		
46		
47 40		
40 49		
50		
51 52		
53		
54		
55 56		
57		
58		
ว9 60		

15	Abstract Coaxial electrospraying was explored to organize polymer excipients in a core-shell
44	manner for providing biphasic controlled release of active ingredient. With ferulic acid (FA) as a
45	model drug, and shellac and polyvinylpyrrolidone as the core and shell polymeric matrices,
46	core-shell nanoparticles were successfully fabricated. A series of tests were carried out to
47	characterize the prepared core-shell nanoparticles and also the nanoparticles prepared using a
48	single fluid electrospraying of the shell or core fluids alone. The core-shell nanoparticles had an
49	average diameter of 530 ± 80 nm with clear core-shell structure. The contained FA was converted
50	to an amorphous state both in the core and the shell parts due to the favorable hydrogen bonding
51	between the components. In vitro dissolution tests demonstrated that the core-shell nanoparticles
52	were able to provide the desired biphasic drug controlled release profiles. Coaxial electrospraying
53	is a useful tool for the development of novel nano drug delivery systems from polymers.
54	Keywords Coaxial electrospraying; Core-shell nanopartciles; Shellac; Bipahsic controlled release;
54 55	Keywords Coaxial electrospraying; Core-shell nanopartciles; Shellac; Bipahsic controlled release; Structural nanocomposites
54 55 56	Keywords Coaxial electrospraying; Core-shell nanopartciles; Shellac; Bipahsic controlled release; Structural nanocomposites
54 55 56 57	Keywords Coaxial electrospraying; Core-shell nanopartciles; Shellac; Bipahsic controlled release; Structural nanocomposites
54 55 56 57 58	Keywords Coaxial electrospraying; Core-shell nanopartciles; Shellac; Bipahsic controlled release; Structural nanocomposites Introduction Nanosizing strategies have exerted great influence on the development of novel drug delivery
 54 55 56 57 58 59 	Keywords Coaxial electrospraying; Core-shell nanopartciles; Shellac; Bipahsic controlled release; Structural nanocomposites Introduction Nanosizing strategies have exerted great influence on the development of novel drug delivery systems (DDS) [1,2]. Today, as the progress of nanotechnology, more and more attention has been
 54 55 56 57 58 59 60 	Keywords Coaxial electrospraying; Core-shell nanopartciles; Shellac; Bipahsic controlled release; Structural nanocomposites Introduction Nanosizing strategies have exerted great influence on the development of novel drug delivery systems (DDS) [1,2]. Today, as the progress of nanotechnology, more and more attention has been paid to the fabrication of nanostructures, by which improved or even new functional performances
 54 55 56 57 58 59 60 61 	Keywords Coaxial electrospraying; Core-shell nanopartciles; Shellac; Bipahsic controlled release; Structural nanocomposites Introduction Nanosizing strategies have exerted great influence on the development of novel drug delivery systems (DDS) [1,2]. Today, as the progress of nanotechnology, more and more attention has been paid to the fabrication of nanostructures, by which improved or even new functional performances can be achieved [3]. One of the most popular and simple nanostructures is the core-shell structure
 54 55 56 57 58 59 60 61 62 	Keywords Coaxial electrospraying; Core-shell nanoparteiles; Shellac; Bipahsic controlled release; Structural nanocomposites Introduction Nanosizing strategies have exerted great influence on the development of novel drug delivery systems (DDS) [1,2]. Today, as the progress of nanotechnology, more and more attention has been paid to the fabrication of nanostructures, by which improved or even new functional performances can be achieved [3]. One of the most popular and simple nanostructures is the core-shell structure (with different exterior and interior) [4], and many complicated structures are essentially the
 54 55 56 57 58 59 60 61 62 63 	Keywords Coaxial electrospraying; Core-shell nanoparteiles; Shellac; Bipahsic controlled release; Structural nanocomposites Introduction Nanosizing strategies have exerted great influence on the development of novel drug delivery systems (DDS) [1,2]. Today, as the progress of nanotechnology, more and more attention has been paid to the fabrication of nanostructures, by which improved or even new functional performances can be achieved [3]. One of the most popular and simple nanostructures is the core-shell structure (with different exterior and interior) [4], and many complicated structures are essentially the derivatives of this structure, such as making holes in the shell or encapsulating even smaller

Colloid and Polymer Science

65	Because of the usefulness of this structure in tailoring the functions of the products, a wide
66	variety of methods have been reported for the fabrication of core-shell products, such as
67	core-sheath nanofibers and core-shell nanoparticles [5, 6]. It is a common sense that the bottom-up
68	approaches are more suitable than top-down approaches for the synthesis of core-shell
69	nanostructures [7]. However, coaxial electrohydrodynamic atomization processes (EHDA,
70	including electrospinning, electrospraying and e-jet printing) have successfully been used to
71	generate core-shell nanostructures in a top-down manner, for instance in the preparation of
72	core-sheath nanofibers by electrospinning [8, 9]. Compared with some bottom-up chemical
73	methods which are often multiple-step, time-consuming, coaxial electrospraying is able to
74	generate core-shell nanoparticles in a single step and straightforwardly [10].
75	Based on the fact that liquids can readily interact with electrical energy, EHDA processes are
76	developed for preparing nano products through the fast removing of organic solvents employing
77	electrical energy directly [11-13]. The fast drying electrospinning process not only can propagate
78	the physical state of the components in the liquid solutions into the solid nanofibers, but also can
79	duplicate the concentric structure of the spinneret on a macroscale to products on a nanoscale.
80	Thus, the components in the sheath and core fluids often occur in the sheath and core parts of the
81	nanofibers, respectively, with little diffusion [14]. Similarly, coaxial electrospraying has been
82	proved to be a powerful tool for generating core-shell micro-/nano-particles, and also hollow
83	microspheres from the concentric fluids based on the templates of a concentric spray head [15-17].
84	Biphasic drug controlled release is a special release type that obeys biological rhythm for safe
85	and effective drug delivery and convenient administration [18]. An initial rapid release of a

86 fraction of the dose after administration is in favor of relieving the symptoms of the disease, and

2 2
ა ⊿
4 5
ວ ເ
0 7
/ 0
8
9
10
11
12
13
14
15
16
1/
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
55

1

87	later a sustained release of the remaining dose over a defined period can optimize the therapy and
88	avoid repeated administration for the patients' convenience [19]. Many traditional pharmaceutical
89	methods and also the emerged advanced techniques have been exploited in literature to produce
90	novel materials or DDS for furnishing biphasic release, taking its advantage in a more accurate
91	time-programmed administration of active ingredients and fulfilling the specific therapeutic needs
92	of some diseases. [20].

93 Over the past several decades, polymer science has acted as the backbone for supporting the 94 development of pharmaceutics, particularly in the area of controlled release [21]. Because of their 95 relative abundance, low cost, and bio-degradable and eco-friendly profiles, natural polymeric 96 materials has drawn increasing attention and interest as potential pharmaceutical excipients [22]. 97 Shellac is the purified product of the natural material Lac which is secreted by the small parasitic 98 insect Kerria Lacca on various host trees in South Eastern Asia. It has properties of water 99 resistance, biocompatibility and fine membrane forming ability. Shellac has found its applications 100 in agriculture, food products, and DDS as the only pharmaceutically used resin of animal origin 101 [23]. The dissolution behavior of shellac may be of interest for sustained release or colon targeting 102 applications, particularly in the drug formations of traditional coating way [24].

Building on the above-mentioned knowledge, this study investigated the preparation of drug-loaded core-shell nanoparticles using a coaxial electrospraying process for providing a biphasic drug controlled release profile. Shellac and polyvinylpyrrolidone (PVP) were exploited as the core and shell polymeric matrices, respectively. PVP has a wide variety of applications in pharmaceutics, medicine and cosmetics [25,26]. Ferulic acid (FA), 4-hydroxy-3-methoxycinnamic acid, was explored as a drug model. It is an antioxidant that is able to neutralize free radicals

Colloid and Polymer Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

109 (superoxide, nitric oxide and hydroxyl radical), which can cause oxidative damage to cell 110 membranes and DNA. Studies have shown that FA can decrease blood glucose levels and so could 111 be applicable for the treatment of diabetes patients and it can also reduce the risk of many cancers, 112 including cancer of the stomach, breast, colon, liver, prostate, lung and tongue [27, 28]. 113 Experimental 114 Materials FA was purchased from Shanghai Winherb Medical Sci & Tech Development Co., 115 Ltd (Shanghai, China). PVP K25 ($M_w = 30,000$) was purchased from the Sigma-Aldrich Co. Ltd. 116 (Shanghai, China). Shellac (purity of 95%, wax free) was supplied by the ShengHui Agricultural 117 science and Technology Co., Ltd. (Yunnan, China). Sodium hydrate, hydrochloric acid and 118 anhydrous ethanol were provided by the Shanghai Shiyi Chemical Reagent Co., Ltd. (Shanghai, 119 China). All chemicals used were analytical grade. Water was double distilled just before use. 120 **Coaxial electrospraying** A mixed solution of 5% (w/v) PVP and 1% (w/v) FA in ethanol was 121 prepared as the shell fluid. The core solution consisted of 10% (w/v) shellac and 1% (w/v) FA in 122 ethanol. A homemade concentric spinneret was used to carry out coaxial electrospraying. Two 123 syringe pumps (KDS 100 and KDS 200, Cole-Parmer, Vernon Hills, IL, USA) were employed to 124 drive the shell and core fluids. A high voltage supply (ZGF 60kV / 2 mA, Shanghai Sute Electrical 125 Co., Ltd, Shanghai, China) provided an applied voltage below 60 kV. All electrospraying 126 processes were carried out under ambient conditions (27 °C \pm 2 °C with relative humidity 51% \pm 127 7%). The resultant nanoparticles were collected on a metal collector wrapped with aluminum foil 128 at a fixed distance of 10 cm from the needle tip of the spray head. Experiments were recorded 129 using a digital video recorder (PowerShot A640, Canon, Japan) under $11 \times$ magnifications. The 130 nanoparticles were stored in a desiccator before characterization was undertaken. Details of the

131 parameters for electrospraying and the resultant products are listed in Table 1.

132 Characterization

Morphology and structure The morphologies of the core-shell nanoparticles were assessed using an S-4800 field emission scanning electron microscope (FESEM, Hitachi, Tokyo, Japan). Their average sizes were determined by measuring the diameters of more than 100 particles in FESEM images using the Image J software (National Institutes of Health, Bethesda, MD, USA). The topographies of raw PVP and FA were observed under cross-polarized light using an XP-700 polarized optical microscope (Shanghai Changfang Optical Instrument Co. Ltd, Shanghai, China) and crude shellac was observed using the PowerShot A640 digital video recorder. Transmission electron microscopy (TEM) images of nanoparticles N3 were taken on a JEM 2100F field-emission transmission electron microscope (JEOL, Tokyo, Japan). TEM samples were prepared by fixing a lacey carbon coated copper grid on the metal collector and nanoparticles sprayed directly onto the grid.

Physical status of the components X-ray diffraction (XRD) was performed on a D/Max-BR 145 diffractometer (RigaKu, Tokyo, Japan) over the 2θ range of 5–60° using Cu K α radiation at 40 146 mV and 30 mA. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra were 147 recorded on a Nicolet-Nexus 670 FTIR spectrometer (Nicolet Instrument Corporation, Madison, 148 WI, USA) over the range 500-4000 cm⁻¹ and at a resolution of 2 cm⁻¹. Approximately 5 mg of the 149 materials were placed directly on the diamond window for spectra acquisition.

In vitro dissolution In vitro dissolution tests were carried out according to the Chinese
Pharmacopoeia (2010 Ed.). Dissolution studies were undertaken following Method II, a paddle
method, using a RCZ-8A apparatus (Tianjin University Radio Factory, Tianjin, China). 200 mg

153	samples of N1, N2 and N3 were first placed in 600 mL of 0.01N HCl for 2 h, and later 0.24 g
154	sodium hydrate was added to the dissolution medium to adjust its pH value to 7.0. The
155	temperature of the dissolution medium was fixed at 37 ± 1 °C and the instrument was set to stir at
156	50 rpm. At predetermined time points, aliquots of 5.0 mL were withdrawn from the dissolution
157	medium and replaced with fresh medium to maintain a constant volume. After filtration through a
158	0.22 μ m membrane (Millipore, MA, USA) and appropriate dilution with phosphate buffer (PBS,
159	pH7.0, 0.1M), samples were analyzed at λ_{max} =322 nm using a UV-vis spectrophotometer
160	(UV-2102PC, Unico Instrument Co. Ltd., Shanghai, China). The cumulative amount of FA
161	released at each time point was back-calculated from the data obtained against a predetermined
162	calibration curve. Experiments were carried out six times and results are reported as mean values
163	± S.D.
164	Results and discussion
164 165	Results and discussionCoaxial electrosprayingA schematic diagram of the coaxial electrospraying process is shown
164 165 166	Results and discussion Coaxial electrospraying A schematic diagram of the coaxial electrospraying process is shown in Fig. 1a. A typical electrospraying system consists of four major components: one or more
164 165 166 167	Results and discussion Coaxial electrospraying A schematic diagram of the coaxial electrospraying process is shown in Fig. 1a. A typical electrospraying system consists of four major components: one or more syringe pumps, a power supply, a spray head and a collector, by which the electrical energy is
164 165 166 167 168	Results and discussion Coaxial electrospraying A schematic diagram of the coaxial electrospraying process is shown in Fig. 1a. A typical electrospraying system consists of four major components: one or more syringe pumps, a power supply, a spray head and a collector, by which the electrical energy is directly exploited to dry and solidify micro-fluid jets, causing solvent evaporation and producing
 164 165 166 167 168 169 	Results and discussion Coaxial electrospraying A schematic diagram of the coaxial electrospraying process is shown in Fig. 1a. A typical electrospraying system consists of four major components: one or more syringe pumps, a power supply, a spray head and a collector, by which the electrical energy is directly exploited to dry and solidify micro-fluid jets, causing solvent evaporation and producing micro-/nano- size products effectively. During the electrospraying process, a liquid is fed to a
 164 165 166 167 168 169 170 	Results and discussion Coaxial electrospraying A schematic diagram of the coaxial electrospraying process is shown in Fig. 1a. A typical electrospraying system consists of four major components: one or more syringe pumps, a power supply, a spray head and a collector, by which the electrical energy is directly exploited to dry and solidify micro-fluid jets, causing solvent evaporation and producing micro-/nano- size products effectively. During the electrospraying process, a liquid is fed to a metal capillary at the end of which a droplet is formed. When the droplet is exposed to a strong
 164 165 166 167 168 169 170 171 	Results and discussion Coaxial electrospraying A schematic diagram of the coaxial electrospraying process is shown in Fig. 1a. A typical electrospraying system consists of four major components: one or more syringe pumps, a power supply, a spray head and a collector, by which the electrical energy is directly exploited to dry and solidify micro-fluid jets, causing solvent evaporation and producing micro-/nano- size products effectively. During the electrospraying process, a liquid is fed to a metal capillary at the end of which a droplet is formed. When the droplet is exposed to a strong electrical field, a charge is induced on its surface. Provided the liquid has sufficient electrical
 164 165 166 167 168 169 170 171 172 	Results and discussion Coaxial electrospraying A schematic diagram of the coaxial electrospraying process is shown in Fig. 1a. A typical electrospraying system consists of four major components: one or more syringe pumps, a power supply, a spray head and a collector, by which the electrical energy is directly exploited to dry and solidify micro-fluid jets, causing solvent evaporation and producing micro-/nano- size products effectively. During the electrospraying process, a liquid is fed to a metal capillary at the end of which a droplet is formed. When the droplet is exposed to a strong electrical field, a charge is induced on its surface. Provided the liquid has sufficient electrical conductivity, there will be a range of combinations of the liquid flow rate and the applied voltage

174 narrow jet is formed (cone-jet mode) which subsequently breaks up into fine droplets (Fig. 1b).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

175	Electrospraying first generates near-monodisperse droplets whose size can be varied between a
176	few to hundreds of micrometers. Later, the droplets rapidly shrink due to the fast evaporation of
177	solvents resulting from the Coulombic explosion. The huge surface areas of the micro-droplets
178	provide the possibility for complete of the solvents and the solidification of products. The facile
179	interactions of electrons with fluid solvents accelerate their evaporation [29]. The electrons always
180	accumulate on the surface of droplets and result in the fast fission to bring a Coulombic explosion
181	(i.e. atomization). Thus during the coaxial electrospraying processes, the outer shell fluids can
182	dominate the splitting of droplets step-by-step, and by which the next level of droplets also have
183	the core-shell structures until the formation of solid core-shell nanoparticles (Fig. 1b).
184	The arrangement of the apparatus used in this work is shown in Fig. 2a. The inset of Fig. 2a
185	shows a digital picture of the home-made concentric spray head, which consists of two stainless
186	steel capillaries, with the smaller one (27G, , the outer and inner diameters are 1.25 and 0.84,
187	respectively) penetrated through the larger one (18G, the outer and inner diameters are 0.42 and
188	0.21, respectively) to form a concentric structure. The inner capillary projected a length of 0.2 mm
189	out of the outer capillary for avoiding possible mixing. An alligator clip was used to connect the
190	spray head with the power supply (Fig. 2b).
191	After some optimization, a fixed high voltage of 20 kV was applied. A typical coaxial
192	electrospraying process was exhibited in Fig. 2c, which was taken under a same shell and core
193	fluid flow rate of 0.2 mL/h. A short straight thinning jet is emitted from the compound Taylor cone
194	(Fig. 2c and 2d) and is followed by the explosion atomization region. The core fluid showed dark

- brown color due to the dissolution of shellac and the shell fluid can be discerned by the visible
- 196 inner capillary in Fig. 2d. The Taylor cone exhibited a triangle with straight line, while the Taylor

Colloid and Polymer Science

197	cone of the electrospinning always shows a camber line due to high surface tensions of
198	electrospinnable solutions [19]. When one of the shell or core fluid flow rates was adjusted to 0
199	mL/h, then a single fluid electrospraying could be implemented for the preparation of
200	nanoparticles N1 and N2.
201	Morphology and structure Single fluid electrospraying of the shell and core fluid alone
202	resulted in solid products of the nanoparticles N1 and N2 (Table 1 and Fig. 3a and b). They have
203	an average diameter of 470 ± 110 nm (Fig. 3a) and 720 ± 180 nm (Fig. 3b), respectively. With
204	core and shell flow rates were controlled at 0.2 mL/h, the core-shell nanoparticles N3 were
205	generated, which had an average diameter of 530 ± 80 nm (Fig. 3c and 3d). The insets of Fig. 3a, b
206	and d showed that nanoparticles N2 and N3 were compact and spherical nanoparticles, whereas
207	nanoparticles N1 were somewhat flat with depressions. All the three types of nanoparticles had a
208	few satellites on the surface.
209	Fig. 4 shows the TEM images of the coaxial electrosprayed nanoparticles N3. They have
210	clear core-shell structures, with the cores a darker gray color because of the presence of shellac.
211	There is uniform gray shading in both the shell and core parts of the microparticles in all the
212	images, indicating that FA is uniformly distributed in the PVP matrix of the shell part, and also in
213	the shellac matrix of the core part. The satellites had a similar gray level of the shell part,
214	suggesting that they were fabricated by the fission of the shell fluid during the coaxial

- electrospraying process.
- Physical status and compability

The crude FA exists as crystalline materials, which is demonstrated by the observation of colorful images when their particles are viewed under polarized light (Fig. 5a). In contrast to the

2
2
3
4
5
6
7
0
8
9
10
11
40
12
13
14
15
16
10
17
18
19
20
20
21
22
23
2/
24
25
26
27
28
20
29
30
31
32
202
33
34
35
36
27
31
38
39
40
11
40
42
43
44
45
40
46
47
48
49
50
50
51
52
53
51
54
55
56
57
52
50
59
60

219	observations of FA under polarized light, the images of PVP powders show no bright colors,
220	suggesting it is amorphous (Fig. 5b). Shellac exists as reddish-brown platelets, as shown by the
221	digital picture in Fig. 5c. The physical status of the components and nanoparticles were further
222	investigated using XRD. The presence of distinct peaks in the XRD patterns of the FA raw
223	particles indicated that FA was present as crystalline material with characteristic diffraction peaks
224	(Fig. 5d). No distinct peaks in the spectrum of PVP and shellac evidently indicated that the
225	molecular orientation and arrangement of the polymers were disordered, i.e. an amorphous state.
226	Similarly, there were no discrete peaks in the spectrum of nanoparticles N1, N2 and N3, which
227	implied that the original crystalline FA was no longer present as crystalline material, but had been
228	converted into an amorphous state, no matter it is in the core part or in the shell part (Fig. 5d). The
229	solubility behavior of poorly water-soluble drugs is one of the most challenging aspects of the
230	formulation development in pharmaceutics [30]. It is desirable if the process can alter the physical
231	status of drug to the favorable nanocrystalline, amorphous or solid solution phases for effective
232	drug delivery. Here, the coaxial electrospraying process exhibited its capability of generating
233	amorphous structural nanomaterials of poorly water-soluble drug.
234	ATR-FTIR was conducted to investigate the compatibility between the active ingredients and
235	the polymeric matrices in the nanoparticles. Compared to the spectra of pure FA and shellac, there
236	are significant changes in the spectra of the nanoparticles (Fig. 6), including (1) the characteristic
237	peaks of the carbonyl groups (C=O stretch vibration) at 1714 cm ⁻¹ in shellac spectra shifting to
238	1698 cm ⁻¹ in nanoparticles N2 and to 1702 cm ⁻¹ in Nanoparticles N3. Similarly, the characteristic
239	peaks of the carbonyl groups (C=O stretch vibration) at 1660 cm ⁻¹ in PVP spectra shifting to 1654

240 cm⁻¹ in nanoparticles N1, and 1656 cm⁻¹ in Nanoparticles N3 ; (2) the decrease or even

Colloid and Polymer Science

241	disappearance of the numerous peaks in the finger region of FA in all the three types of
242	nanoparticles; (3) the characteristic peaks of the carbonyl groups (C=O stretch vibration) at 1663
243	and 1689 cm-1 of FA melting into the 1654 cm ⁻¹ in nanoparticles N1, 1698 cm ⁻¹ in nanoparticles
244	N2, and 1656 cm ⁻¹ and 1702 cm ⁻¹ in nanoparticles N3. All these changes can be attributed to
245	hydrogen bonding between FA and shellac, and between FA and PVP, including (1) between C=O
246	of FA and O-H of shellac, and (2) between the C=O of shellac/PVP and the O-H of FA, as clearly
247	shown in the molecular formula (Fig. 6). All these secondary interactions would avail to the
248	formation of FA-PVP nanocomposites in nanoparticles N1 and the shell part of nanoparticles N3,
249	and the formation of FA-shellac nanocomposites in nanoparticles N2 and the core part of
250	nanoparticles N3. Thus the nanoparticles were essentially a structural nanocomposite.
251	Functional performance and controlled-release mechanism The in vitro drug release profiles
252	of the three nanoparticles are given in Fig. 7a and 7b. The nanoparticles N1 disappeared instantly
253	when they were put into the acidic dissolution medium. In vitro dissolution tests verified that all
254	the FA was dissolved into the bulk media in the first hour. This result is attributed to the
255	hydrophilic properties of PVP, large surface areas of the nanoparticles, and the amorphous status
256	of FA in the nanocomposites, which made the FA molecules can dissolve simultaneously with PVP
257	molecules through erosion mechanism.
258	The nanoparticles N2 released only 1.7% of the incorporated FA during 1 h immersion in the
259	acid dissolution medium. This resulted from the insolubility of shellac in low pH environments.
260	After the dissolution environment was changed to a neutral condition, nanopartciles N2 released
261	the embedded FA over around 9 h in a sustained manner. The nanoparticles N3 evidently exhibited
262	a combination of the release profiles of nanoparticles N1 and N2 with the shell part providing an

263 initial rapid release and the core part furnishing a sustained release.

264	A suggested mechanism is put forward in Fig. 7c. Based on the different dissolution
265	properties of the polymeric excipients, and intentional arrangement of them into the core-shell
266	nanostructure, a structure-activity relationship at nanoscale can be achieved. The release of the
267	encapsulated drug in the core-shell nanoparticles can be manipulated step-by-step through the
268	gradual dissolutions of the layered polymer matrices in different environments. In the present
269	biphasic release profiles provided by nanoparticles N3, 51.2% of the contained drug was freed
270	during the first phase, and the remnant released in a sustained manner. Certainly, the release
271	content in the two phases can be easily tuned simply through the adjustment of drug content in the
272	shell or core fluids during the preparation of the core-shell nanoparticles. Further in vivo
273	experiments will be conducted to investigate the medicinal effects of the nanoparticles N3.

274 Conclusions

Core-shell nanoparticles were successfully fabricated using a coaxial electrospraying process. FESEM and TEM images demonstrated that the core-shell nanoparticles had an average diameter of 530 ± 80 nm with clear core-shell structure. XRD and polarized microscopy showed that the contained FA was converted to an amorphous state both in the core and the shell parts due to the favorable hydrogen bonding between the components, as verified by the ATR-FTIR spectra. In vitro dissolution tests demonstrated that the core-shell nanoparticles could combine the drug release profiles provided by the nanoparticles prepared from the shell or core fluid alone through a single fluid electrospraying, providing the designed biphasic drug release profiles. Coaxial electrospraying is a powerful tool for generating core-shell nanostructures with tailored components and compositions, and thus to realize a structure-activity relationship at nanoscale.

Colloid and Polymer Science

285 286 287	Acknowledgements This work was supported by the National Science Foundation of China (Nos. 51373101 & 21202097), the Natural Science Foundation of Shanghai (No.13ZR1428900) and the Key Project of the Shanghai Municipal Education Commission (No.13ZZ113).			
288	References			
289	 Farokhzad OC (2008) Nanotechnology for drug delivery: the perfect partnership. Expert Opin			
290	Drug Del 5:927–929			
291	2. Hubbell JA, Chikoti A (2012) Nanomaterials for drug delivery. Science 337: 303-305			
292	3. Webster TJ (2006) Nanomedicine: what's in a definition? Int J Nanomedicine 1:115-116			
293 294 295	4. Liang X, Li J, Joo JB, Gutierrez A, Tillekarathe A, Lee I, Yin Y, Zaera F (2012) Diffusion through the shells of yolk–shell and core–shell nanostructures in the liquid phase. Angew Chem Int Ed 51: 8034-8036			
296	 Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of			
297	polymers. Prog Polym Sci 38:963–991			
298 299	6. Enayati M, Ahmad Z, Stride E, Edirisinghe M (2010) One step electrohydrodynamic production of drug-loaded micro- and nano-particles. J Roy Soc Interf 7:667-675			
300	 Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis			
301	mechanisms, characterization, and applications. Chem Rev 112: 2373-2433			
302	 Moghe AK, Gupta BS (2008) Co-axial electrospinning for nanofiber structures: Preparation			
303	and applications. Polym Rev 48:353-377			
304	 Yu DG, Liao Y, Li X, Chian W, Li Y, Wang X (2013) Colon-targeted drug delivery			
305	core-sheath nanofibers prepared using a modified coaxial electrospinning. J Control Release			
306	172:e14–e97			
307	 Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Canan-Calvo AM (2002)			
308	Micro/nano encapsulation via electrified coaxial liquid jets. Science 295:1695–1698			
309	 Nagy ZK, Balogh A, Drávavölgyi G, Ferguson J, Pataki H, Vajna B, Marosi G (2013)			
310	Solvent-free melt electrospinning for preparation of fast dissolving drug delivery system and			
311	comparison with solvent-based electrospun and melt extruded systems. J Pharm Sci			
312	102:508–517			
313	 Li W, Yu DG, Chen K, Wang G, Williams GR (2013) Smooth preparation of ibuprofen/zein			
314	microcomposites using an epoxy-coated electrospraying head. Mater Lett 93:125-128			
315	 Nagy ZK, Wagner I, Suhajda Á, Tobak T, Harasztos AH, Vigh T, Sóti PL, Pataki H, Molnár			
316	K, Marosi G (2014) Nanofibrous solid dosage form of living bacteria prepared by			
317	electrospinning. eXPRESS Polym Lett 8:352–361			
318 319	14. Yu DG, Wang X, Li XY, Chian W, Li Y, Liao YZ (2013) Electrospun biphasic drug release polyvinylpyrrolidone/ ethyl cellulose core/sheath nanofibers. Acta Biomater 9:5665-5672			
320	15. Eltayeb M, Stride E, Edirisinghe M (2013) Electrosprayed core-shell polymer-lipid			

3	321	nanoparticles for active component delivery. Nanotechnology 24:465604 (9pp)
3	322 16 323	 Zhang Q, Wang L, Wei Z, Wang X, Long S, Yang J (2012) A new simple method to prepare hollow PES microspheres. Colloid Polym Sci 290:1257–1263
3	324 17 325	Zhang Q, Liu J, Wang X, Li M, Yang J (2010) Controlling internal nanostructures of porous microspheres prepared via electrospraying. Colloid Polym Sci 288:1385–1391
3 3 3	326 18 327 328	8. Song B, Wu C, Chang J (2012) Dual drug release from electrospun poly (lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomater 8:1901-1907
3 3 3	329 19 330 331	P. Yu DG, Liu F, Cui L, Liu ZP, Wang X, Bligh SWA (2013) Coaxial electrospinning using a concentric Teflon spinneret to prepare biphasic-release nanofibers of helicid. RSC Adv 3:17775-17783
3 3 3	332 20 333 334	9. Yu DG, Williams GR, Wang X, Liu XK, Li HL, Bligh SWA (2013) Dual drug release nanocomposites prepared using a combination of electrospraying and electrospinning. RSC Adv 3:4652-4658
3	335 21 336	. Krushnakumar J Gandhi, Subhash V Deshmane, Kailash R Biyani (2012) Polymers in pharmaceutical drug delivery system: A review. Int J Pharma Sci Rev Res 14:57-66
3	337 22 338	2. Ogaji IJ, Nep EI, Audu-Peter JD (2012) Advances in natural polymers as pharmaceutical excipients. Pharm Anal Acta 3:146
3 3 3	339 23 340 341	B. Limmatvapirat S, Panchapornpon D, Limmatvapirat C, Nunthanid J, Luangtana-Anan M, Puttipipatkhachorn S (2008) Formation of shellac succinate having improved enteric film properties through dry media reaction. Eur J Pharm Biopharm 70:335–344
3 3 3	342 24 343 344	4. Limmatvapirat S, Limmatvapirat C, Puttipipatkhachorn S, Nuntanid J, Luangtana-anan M (2007) Enhanced enteric properties and stability of shellac films through composite salts formation. Eur J Pharm Biopharm 67:690–698
3	345 25 346	5. Yu DG, White K, Yang JH, Wang X, Qian W, Li Y (2012) PVP nanofibers prepared using co-axial electrospinning with salt solution as sheath fluid. Mater Lett 67: 78-80
3 3 3	347 26 348 349	5. Vigh T, HorváthováT, Balogh A, Sóti PL, Drávavögyi G, Nagy ZK, Marosi G (2013) Polymer-free and polyvinylpirrolidone-based electrospun solid dosage forms for drug dissolution enhancement. Eur J Pharm Sci 49:595–602
3 3 3	350 27 351 352	Yang JM, Zha L, Yu DG, Liu J (2012) Coaxial electrospinning with acetic acid for preparing ferulic acid/zein composite fibers with improved drug release profiles. Colloid Surf B: Biointerf 102:737-743.
3 3 3	353 28 354 355	8. Anselmi C, Centini M, Maggiore M, Gaggelli N, Andreassi M, Buonocore A, Beretta G, Facino RM (2008) Permeation and distribution of ferulic acid and its α-cyclodextrin complex from different formulations in hairless rat skin. J Pharm Biomed Anal. 46 (2008) 645-652
3	356 29	9. Salata OV (2005) Tools of nanotechnology: Electrospray. Curr Nanosci 1: 25-33
3	357 30	D. Li XY, Li YC, Yu DG, Liao YZ, Wang X (2013) Fast disintegrating quercetin-loaded drug

358	delivery systems fabricated using coaxial electrospinning. Int J Mol Sci 14:21647-21659
359	
360 361	Table and Figure Caption
362	Table 1 Parameters used for electrospraying and details of the nanoparticulate products
363 364	Fig. 1 Coaxial electrospraying: (a) a schematic diagram of the coaxial electrospraying process; (b) a diagram of the atomization mechanism
365 366 367 368 369	Fig. 2 Implementation of the coaxial electrospraying process. a) the arrangement of the apparatus used in this work (the inset Image is the nozzle of the concentric spray head); b) the connection of the spray head with the power supply using an alligator clip; c) a typical coaxial electrospraying process under an applied voltage of 20 kV, with a same shell and core fluid flow rates of 0.2 mL/h; d) the compound Taylor cone
370 371	Fig. 3 FESEM images of the nanoparticles, and their diameter distributions, (a) nanoparticles N1, (b) nanoparticles N2, (c) and (d) nanoparticles N3 with different magnifications
372	Fig. 4 TEM images of nanoparticles N3
373 374 375	Fig. 5 XRD patterns and observations of the crude particles. a) microscopy images viewed under cross-polarized light: a) FA; b) PVP; c) a digital image of shellac; d) XRD patterns of the starting materials and nanoparticles N1, N2 AND N3
376 377	Fig. 6 ATR-FTIR spectra of the raw materials and nanoparticles, and the molecular structures of PVP, FA and shellac
378 379 380	Fig. 7 <i>In vitro</i> dissolution tests. a) <i>in vitro</i> FA release profiles during the whole time period (n=6); b) <i>in vitro</i> FA release profiles of the first hour (n=6); c) a schematic about the drug controlled release mechanisms from the core-shell nanoparticles
381	
382	
383	
384	
385	
386	
388	
389	
390	
391	
392	
393	
394	
395	
396	

397	
398	Table 1 Parameters used for electrospraying and details of the nanoparticulate products
399	

Ne	Electrospraying	Flow rate (mL/h)		Manulala	Diameter
INO.	process	Shell fluid ^a	Core fluid ^b	Morphology	(nm)
N1	Single fluid	0.4		Nanoparticles	470 ± 110
N2	Single fluid		0.4	Nanoparticles	720 ± 180
N3	Coaxial	0.2	0.2	Nanoparticles	530 ± 80

^a The shell fluid consisted of 5% (w/v) PVP K25 and 1% (w/v) FA in ethanol.

^b The core fluid consisted of 10% (w/v) shellac and 1% (w/v) FA in ethanol.

nsisted u.

Fig. 1 Coaxial electrospraying: (a) a schematic diagram of the coaxial electrospraying process; (b) a diagram of the atomization mechanism 60x59mm (300 x 300 DPI)

Fig. 2 Implementation of the coaxial electrospraying process. a) the arrangement of the apparatus used in this work (the inset Image is the nozzle of the concentric spray head); b) the connection of the spray head with the power supply using an alligator clip; c) a typical coaxial electrospraying process under an applied voltage of 20 kV, with a same shell and core fluid flow rates of 0.2 mL/h; d) the compound Taylor cone 60x56mm (300 x 300 DPI)

Fig. 3 FESEM images of the nanoparticles, and their diameter distributions, (a) nanoparticles N1, (b) nanoparticles N2, (c) and (d) nanoparticles N3 with different magnifications 60x51mm (300 x 300 DPI)

60

Fig. 4 TEM images of nanoparticles N3 70x48mm (300 x 300 DPI)

Fig. 5 XRD patterns and observations of the crude particles. a) microscopy images viewed under crosspolarized light: a) FA; b) PVP; c) a digital image of shellac; d) XRD patterns of the starting materials and nanoparticles N1, N2, and N3 70x49mm (300 x 300 DPI)

3450

A2931

2930

2930

3000

Fig. 6 ATR-FTIR spectra of the raw materials and nanoparticles, and the molecular structures of PVP, FA and

shellac

70x57mm (300 x 300 DPI)

2500

Wavenumber (cm⁻¹)

FA

PVP

Shellac

N1

N2

N3

4000

HO-

C=O

ЬН

Shellac

PVP

FA

OH

0

HO

CH₃O

1514

1288 11423

1287

1000

,1619

1660

1714

1423/\1654

1698

656

1500

1702

2000

1663

1689

