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Highlights Impact and implication
� Genetic analysis of UK Biobank MRI data revealed 13 vari-
ants associated with liver fat.

� Key mechanisms for liver fat accumulation include lipid
retention and enhanced de novo lipogenesis.

� Impaired triglyceride export lowers cardiovascular risk, while
enhanced de novo lipogenesis increases it.

� Higher liver fat is causally linked to non-alcoholic cirrhosis,
liver cancers, and type 2 diabetes, regardless of the un-
derlying mechanism.

� Findings indicate the need for personalized treatment and
risk assessment based on liver fat accumula-
tion mechanisms.
https://doi.org/10.1016/j.jhep.2024.06.030

© 2024 The Authors. Published by Elsevier B.V. on behalf of European Association

(http://creativecommons.org/licenses/by/4.0/). J. Hepatol. 2024, 81, 921–929
This research advances our understanding of the heterogeneity
in mechanisms influencing liver fat accumulation, providing
new insights into how liver fat accumulation may impact
various health outcomes. The findings challenge the notion that
liver fat is an independent risk factor for cardiovascular disease
and highlight the mechanistic effect of some genetic variants
on fat accumulation and the development of cardiovascular
diseases. This study is of particular importance for healthcare
professionals including physicians and researchers, as well as
patients, as it allows for more targeted and personalised
treatment by understanding the relationship between liver fat
and various health outcomes. The findings emphasise the need
for a personalised management approach and a reshaping of
risk assessment criteria. It also provides room for prioritising a
clinical intervention aimed at reducing liver fat content (likely via
intentional weight loss) that could help protect against liver-
related fibrosis and cancer.
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Background & Aims: The mechanisms underlying the association of steatotic liver disease with cardiovascular and cancer
outcomes are poorly understood. We aimed to use MRI-derived measures of liver fat and genetics to investigate causal mech-
anisms that link higher liver fat to various health outcomes.
Methods: We conducted a genome-wide association study on 37,358 UK Biobank participants to identify genetic variants
associated with liver fat measured from MRI scans. We used a Mendelian randomisation approach to investigate the causal effect
of liver fat on health outcomes independent of BMI, alcohol consumption and lipids using data from published genome-wide
association studies and FinnGen.
Results: We identified 13 genetic variants associated with liver fat that had differing effects on the risks of health outcomes.
Genetic variants associated with impaired hepatic triglyceride export showed liver fat-increasing alleles to be correlated with a
reduced risk of coronary artery disease and myocardial infarction but an elevated risk of type 2 diabetes, while variants associated
with enhanced de novo lipogenesis showed liver fat-increasing alleles to be linked to a higher risk of myocardial infarction and
coronary artery disease. Genetically higher liver fat content increased the risk of non-alcohol-related cirrhosis, hepatocellular
carcinoma, and intrahepatic bile duct and gallbladder cancers, exhibiting a dose-dependent relationship, irrespective of
the mechanism.
Conclusion: This study provides fresh insight into the heterogeneous effect of liver fat on health outcomes. It challenges the
notion that liver fat per se is an independent risk factor for cardiovascular disease, underscoring the dependency of this asso-
ciation on the specific mechanisms that drive fat accumulation in the liver. However, excess liver fat, regardless of the underlying
mechanism, appears to be causally linked to cirrhosis and cancers in a dose-dependent manner.

© 2024 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Higher liver fat in the form of MASLD (metabolic dysfunction
associated steatotic liver disease) has been linked to many
disease outcomes by observational studies. These studies for
example suggest that MASLD is an independent risk factor for
acute myocardial infarction, stroke, coronary artery disease,
and other atherosclerotic cardiovascular diseases indepen-
dently of any shared risk factor (age, sex, adiposity measures
and type 2 diabetes).1,2 People with MASLD also have been
found to have a twofold higher risk of developing type 2 dia-
betes3 and a higher risk of thyroid cancer, lung cancer, hepa-
tocellular carcinoma, colorectal cancer and breast cancer.4

However, these studies do not explain the existence of
* Corresponding author. Address: University of Lincoln, Joseph Banks Laboratories, Gree
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people with MASLD (with a high degree of liver fat) who never
develop cardiovascular disease or type 2 diabetes.

Despite the mounting evidence linking MASLD to the
increased risk of cardiovascular diseases, observational
studies remain limited in their approach due to selection bias
(owing to a lack of randomisation), presence of confounding
factors (e.g. obesity), and reverse causation.5 The evidence
from Mendelian randomisation studies on the causal role of
MASLD in cardiovascular disease is controversial. For example,
genetically defined MASLD has been shown to be associated
with a higher risk of arterial stiffness and heart failure but not
with coronary artery disease, stroke, ischemic stroke and its
subtypes.6 Mendelian randomisation studies of the association
between MASLD and cancers are scarce but suggest no
n Lane, Lincoln, Lincolnshire, LN6 7DL, United Kingdom.
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Association of genetic variants with liver fat, CVD and cancer
association between genetically predicted MASLD and the risk
of intrahepatic cholangiocarcinoma.7

While Mendelian randomisation studies have demonstrated
their robustness in identifying the causal effect of MASLD on
various disease outcomes, these investigations are not without
their limitations. Notably, some studies aiming to assess the
causal impact of MASLD have relied on circulating levels of liver
enzymes as proxies for the condition. However, liver enzymes,
such as alanine aminotransferase levels, are imperfect pre-
dictors of MASLD.8 Additionally, definitions of MASLD can vary
significantly depending on the diagnostic method employed,
whether it be a liver biopsy, ultrasound, CT scan, or MRI scans.
This variability in measurement methods introduces complexity
and may influence the outcomes and comparability of different
studies.9 Furthermore, the binary definition of MASLD, as either
present or absent, has constrained our ability to fully grasp the
nuanced, continuous relationship between liver fat content and
the risk of developing various diseases. By treating MASLD in a
binary manner, the potential dose-response effect of increasing
liver fat on disease risk is overlooked, limiting a comprehensive
understanding of these complex associations.

In this study, we aimed to obtain a precise continuous
measure of liver fat through gold standard MRI, transcending
binary definitions. We conducted a genome-wide association
study on 37,358 individuals from the UK Biobank to identify
genetic variants associated with liver fat. We performed Men-
delian randomisation analyses to investigate the causal re-
lationships between elevated liver fat and a broad spectrum of
health outcomes, including type 2 diabetes, different cardio-
vascular outcomes and liver cancer outcomes. Furthermore,
we characterised each genetic variant’s effects on lipids, BMI,
and pancreas fat, to gain deeper mechanistic insights.
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Employing multivariable Mendelian randomisation techniques,
we elucidated the unique and independent contributions of liver
fat to each disease outcome.

Patients and methods

Study design

Fig. 1 summarizes our study design. To identify genetic de-
terminants of liver fat, we performed a genome-wide associa-
tion study (GWAS) of MRI-derived measures of liver fat. To
understand the pleiotropic effect of each variant, we charac-
terised the effect of variants on different liver-related outcomes.
We performed a Mendelian randomisation study to understand
whether there is a causal effect of genetically predicted liver fat
on the risk of cardiovascular and liver cancer outcomes. We
conducted a multivariable Mendelian randomisation study to
infer the independent causal effect of liver fat on disease out-
comes independent of six correlated risk factors (BMI,10 HDL-
C,11 LDL-C,11 VLDL-C,12 triglycerides11 and alcohol con-
sumption;13 Table S1).

Image-derived measures of liver fat

We used previously reported data from the UK Biobank MRI
study.14 In the current study, we included 37,358 individuals of
White British ancestry who had MRI scans. The estimation of
proton density fat fraction (PDFF) in liver slices was done using
the PRESCO (Phase Regularized Estimation using Smoothing
and Constrained Optimization) algorithm based on multi-echo
data. For organ segmentation, manual annotations were per-
formed on both GRE and IDEAL scans (Fig. S1). These anno-
tations were thoroughly reviewed to ensure accuracy before
delian randomisation
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being utilised for modelling. We employed a customized U-net
convolutional neural network for each imaging modality, which
was then applied across all participant data. To combine data
from IDEAL and multi-echo scans, each modality was first in-
verse rank normalized, and then these values were averaged
between two scans, where both were available.

GWAS for liver PDFF were performed using REGENIE version
v3.1.1.15 We included only participants who self-reported their
ancestry as ‘White British’ and who clustered with this group in a
principal components analysis.We further excluded participants
exhibiting sex chromosome aneuploidy, with a discrepancy
between genetic and self-reported sex, heterozygosity and
missingness outliers, and genotype call rate outliers.16 Age,
age2, sex, genotyping array, imaging centre, and the first 10
principal components of the genotype relatedness matrix were
included. Liver PDFF was inverse normal transformed before
performing the association study. Imputed single nucleotide
polymorphisms were filtered to a minor allele frequency >0.01
and INFO score >0.9, leaving 9,788,243 single nucleotide poly-
morphisms included in the final association study.

Outcome data

We selected 12 health outcomes including type 2 diabetes, hy-
pertension, ischemic stroke, coronary artery disease, heart failure,
atrial fibrillation, myocardial infarction, peripheral artery disease,
chronic kidney disease, cirrhosis, hepatocellular carcinoma, and
intrahepatic bile ducts and gallbladder cancer. The definition of
cases and controls and sample size are summarized in Table S2.
We obtained genome-wide summary level data for the 12 out-
comes from FinnGen consortium Data Freeze 7 and 10. For all
outcomes except cirrhosis, hepatocellular carcinoma, intra-
hepatic bile duct and gallbladder cancer and peripheral artery
disease, we obtained genome-wide summary level data from
other independent published GWAS.17–24 We meta-analysed the
Mendelian randomisation results for eight outcomes available
from both FinnGen and published GWAS.

Mendelian randomisation

Mendelian randomisation is a statistical method that uses ge-
netic variants as an instrument to infer the causal effect of an
exposure (e.g., liver fat) on an outcome of interest (e.g., coro-
nary heart disease). We defined the instruments using inde-
pendent genetic variants (p <−5x10

-8, linkage disequilibrium
pruning of r2 >0.001 in a window of 10 Mb with the inclusion of
unrelated white Europeans from the 1000 Genomes refer-
ence panel).

We applied different methods of Mendelian randomisation.
For the main analysis, we used the inverse variance weighted
(IVW) method. However, it is important to acknowledge that the
IVW estimates could be susceptible to two principal sources of
bias: instrumental variable bias and horizontal pleiotropy. The
instrumental variable bias typically occurs due to a weaker
association between the instrument and exposure proportional
to the strength of the instrument and skewed towards the
confounded direction of the association. Horizontal pleiotropy
occurs when the instrument exhibits an association with the
outcome via a pathway different from the exposure, violating
the third assumption of Mendelian randomisation.25

To mitigate these potential biases, we performed different
sensitivity analyses. MR-Egger was applied to check for
Journal of Hepatology, Decem
horizontal pleiotropy through an examination of the Egger
intercept. Additionally, MR-PRESSO, weighted median, simple
mode, and weighted mode tests were conducted as robust-
ness checks.26

Since liver fat, BMI, alcohol consumption and lipids are
correlated risk factors, we performed a multivariable Mendelian
randomisation analysis to understand the direct causal effect of
liver fat on disease outcomes. Multivariable Mendelian ran-
domisation is an advanced form of the univariable method that
enables the assessment of multiple exposures on an outcome
of interest. The method provides a direct causal estimate for
each exposure while accounting for other exposures in
the model.27,28

All Mendelian randomisation analyses were performed using
“TwoSampleMR” package version 0.5.6.29 We used the “met-
afor” package for meta-analysis of results from FinnGen and
published GWAS. We used Benjamini-Hochberg–adjusted p
values <0.05 to classify significant IVW causal associations.

Data and resource availability

All FinnGen outcome data used in this study are available from
FinnGen Data Freezes 7 and 10 available at (https://www.
finngen.fi/en/access_results). Outcome data for type 2 dia-
betes are available from (https://kp4cd.org/node/872), hyper-
tension, ischemic stroke, coronary heart disease, heart failure,
atrial fibrillation and myocardial infarction are available from
(https://gwas.mrcieu.ac.uk/), and chronic kidney disease data
is available from (https://ckdgen.imbi.uni-freiburg.de).

Results
We measured liver PDFF in 37,358 individuals of White British
ancestry from the UK Biobank. The median age of participants
was 64 years (IQR 59-70), the median liver PDFF was 4.8% (IQR
2-5), and 27% of participants had a liver PDFF greater than 5%
(Table 1). We identified 13 independent variants strongly asso-
ciated with liver fat. Together, these variants explained 35.7% of
the variation in liver fat, with a high degree of statistical reliability
(I2 0.98; mean F-statistics 156 [min: 31, max: 856]; Table 2).
Among these variants, rs6446296 (CDHR4) emerged as a novel
finding, while others have been previously reported in GWAS
studies of MASLD30–34 (including rs738408 (PNPLA3),
rs58542926 (TMS6SF2), rs429358 (APOE), rs1260326 (GCKR),
rs2642438 (MARC-1), rs1229984 (ADH1B), rs28601761(TRIB1),
and rs7029757 (TOR1B)) or were in linkage disequilibrium with
previously reported variants31 (including rs7096937 (GPAM),
rs11867241 (DRG2) and rs188247550 (SUGP1)).

The liver fat-increasing alleles had a consistent dose-
dependent effect on a higher risk of cirrhosis, hepatocellular
carcinoma, and intrahepatic bile duct and gallbladder cancer
(Fig. 2). However, they exhibited a heterogenous effect on other
outcomes clustering into three main groups (Fig. 3). The first
group included TOR1B, MBOAT7, MARC1, and GPAM where
liver fat-increasing alleles were associated with lower tri-
glycerides and higher LDL-C and HDL-C. The second group
included variants with liver fat-increasing alleles associated
with lower triglycerides and lower LDL-C. These variants
included those in PNPLA3, TMS6SF2, APOE, and SUGP1. The
liver fat-increasing alleles at these variants were associated
with a higher risk of type 2 diabetes but a lower risk of coronary
artery disease and myocardial infarction. The third group
ber 2024. vol. 81 j 921–929 923
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Association of genetic variants with liver fat, CVD and cancer
included variants in TRIB1, GCKR, ADH1B, and CDHR4 with
liver fat-increasing alleles associated with higher triglycerides
and higher LDL-C, and lower risk of type 2 diabetes and higher
risk of coronary artery disease and myocardial infarction.

In our univariable Mendelian randomisation using IVW, a one
standard deviation (SD) increase in genetically determined liver fat
level (equivalent to a 5% increase in liver fat fraction) was asso-
ciated with a higher risk of cirrhosis (odds ratio [OR] 6.33; 95%CI
4.6-8.60; Benjamini-Hochberg–adjusted p = 6 × 10-30), hepato-
cellular carcinoma (OR 13.1; 95% CI 9.30-18.7; Benjamini-
Hochberg–adjusted p = 2 × 10-45) and intrahepatic bile duct and
gallbladder cancer (OR 3.7; 95% CI 2.90-4.70; Benjamini-Hoch-
berg–adjusted p = 1 × 10-25; Fig. 4), with consistent direction of
effect across different sensitivity tests (Table S3). No evidence of
pleiotropy was observed for these associations (Egger intercept p
value >0.05; Cochran’s Q <0.05; Table S4). These associations
remained unchanged even after correction for the causal role of
correlated risk factors (i.e., BMI, alcohol consumption, tri-
glycerides, HDL-C and LDL-C; Fig. 4 and Fig. S2, Table S5).
The sensitivity analysis excluding ADH1B and MBOAT7 vari-
ants from the liver fat instrument, due to their association with
alcohol metabolism or alcohol-related liver disease, did not
change our results (Fig. S3; Table S6).

There was a suggestive causal effect on risk of type 2 diabetes
(OR 1.2; 95% CI 1.10-1.32), which became stronger after cor-
recting for correlated risk factors in our multivariable Mendelian
randomisation (OR 1.3; 95%CI 1.23–1.40; Benjamini-Hochberg–
adjusted p = 6 × 10-20) (Fig. 5, Table S5). No evidence of a causal
associationwasdetectedbetweengenetically determined liver fat
and hypertension, ischemic stroke, coronary artery disease, heart
failure, atrial fibrillation, myocardial infarction, chronic kidney
disease or peripheral artery disease (Fig. 5). However, MR-Egger
intercept p value and Cochran’s Q indicated evidence of pleiot-
ropy for coronary artery disease, atrial fibrillation, myocardial
infarction, intrahepatic bile duct and gallbladder cancer and pe-
ripheral artery disease, type 2 diabetes, hypertension, heart fail-
ure, and chronic kidney disease. Consequently, we performed
MR-PRESSO for these outcomes to correct for pleiotropy. The
global testwas significant (p value <0.001) indicating thepresence
of outliers ranging from 1 to 5 variants. However, there was no
significant difference in estimated causal effect except for heart
failure and atrial fibrillation, where the direction of effect was
reversed, i.e. one SD increase in genetically determined liver fat
was associated with higher risk of developing heart failure and
atrial fibrillation (Table S7).

Given the heterogeneity in the effect of liver fat variants on
other outcomes, we conducted a secondary Mendelian ran-
domisation analysis using the three main groups of variants as
exposures. All three groups were associated with higher risk of
cirrhosis, hepatocellular carcinoma,and intrahepaticbileduct and
gallbladder cancer with consistent effect (Fig. S4). However, the
effect on other outcomes differed across the three groups of ex-
posures (Fig. S4). Group one (including variants in TOR1B,
MBOAT7, MARC1, and GPAM) showed no association with
cardiovascular outcomes. Group two (PNPLA3 locus, TMS6SF2,
APOE, and SUGP1) was associated with a higher risk of type 2
diabetes and lower risk of coronary artery disease andmyocardial
infarction, while group three (TRIB1, GCKR, ADH1B, andCDHR4)
was associatedwith a higher risk of coronary artery disease, heart
failure, myocardial infarction, and a lower risk of chronic kid-
ney disease.
ber 2024. vol. 81 j 921–929
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Fig. 2. The effect of liver fat variants on health outcomes. Effect of 13 liver fat-increasing alleles on 18 health outcomes. Colors and intensity represent the direction
and magnitude of Z-scores from linear regression in the genome-wide association model. Benjamini-Hochberg adjusted p values <0.05 are provided for
each association.

Table 2. Characteristics of the genetic variants associated with liver fat.

rsID Chromosome Position Effect allele Other allele EAF BETA SE p value Gene F-statistics

rs2642438 1 220970028 G A 0.705 0.057 0.008 9.80E-13 MARC1 50.9
rs1260326 2 27730940 T C 0.391 0.056 0.007 4.70E-14 GCKR 56.9
rs6446296 3 49838052 A G 0.791 0.050 0.009 2.30E-08 CDHR4 31.2
rs1229984 4 100239319 C T 0.976 0.157 0.024 3.80E-11 ADH1B 43.7
rs28601761 8 126500031 C G 0.579 0.062 0.007 5.90E-17 TRIB1 70.0
rs7029757 9 132566666 G A 0.904 0.072 0.012 6.40E-09 TOR1B 33.7
rs7096937 10 113950418 T C 0.270 0.062 0.008 4.60E-14 GPAM 56.9
rs11867241 17 17988586 C T 0.301 0.044 0.008 2.80E-08 DRG2 30.9
rs58542926 19 19379549 T C 0.075 0.313 0.014 6.80E-115 TM6SF2 519.0
rs188247550 19 19396616 T C 0.015 0.305 0.031 3.20E-22 SUGP1 94.0
rs429358 19 45411941 T C 0.848 0.123 0.010 2.00E-34 APOE 149.7
rs626283 19 54677189 T C 0.438 0.044 0.007 2.10E-09 MBOAT7 35.9
rs738408 22 44324730 T C 0.214 0.257 0.009 4.60E-188 PNPLA3 855.5

Effect allele: liver fat-increasing allele; Other allele: liver fat-decreasing allele; BETA: effect size; Gene: nearest protein-coding gene; F-statistics: average strength of the association
of each variant with the instrument (i.e. liver fat). Positions are based on Build 37. EAF, effect allele frequency; SE, standard error.
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Fig. 3. The heterogeneous effect of liver fat-increasing alleles on different health outcomes. Twelve of the 13 liver fat-increasing alleles are clustered into three
groups (y-axis) based on their effect on 17 health outcomes (x-axis). Z score are scaled to the range of [-1:1] with red indicating positive association and blue indicating
negative association.

Association of genetic variants with liver fat, CVD and cancer
Discussion
We measured liver fat fraction from MRI scans of 37,358 partici-
pants from the UK Biobank study and used its genetic de-
terminants to understand its causal role in cardiovascular and liver
cancer outcomes. Our findings suggest that liver fat is a hetero-
geneous phenotype, with distinct mechanisms capable of
increasing liver fat, some of which exhibit opposing effects on the
risk of diseases outside of the liver. Our study provides evidence
that genetically determined higher liver fat accumulation is
causally associated with an increased risk of cirrhosis, hepato-
cellular carcinoma, and intrahepatic bile duct and gallbladder
cancer. We did not, however, find evidence of a causal associa-
tion between genetically determined liver fat and cardiovascular
diseases like hypertension, ischemic stroke, and coronary ar-
tery disease.

The characterisation of liver fat variants reveals the involve-
ment of diverse mechanisms contributing to higher fat
926 Journal of Hepatology, Decem
accumulation in the liver, consistent with recent findings.30,31 One
group associated with impaired hepatic triglyceride export. This
group includes four variants that increase liver fat by increasing
triglyceride accumulation within hepatocytes through various
pathways. PNPLA3 liver fat-increasing allele is associated with
impairing lipid droplet remodelling and turnover leading to reten-
tion of triglycerides in hepatocytes.35,36 TM6SF2 is involved in
lipoprotein lipidation and the liver fat-increasing allele at this locus
is associated with a decreased secretion of VLDL from the liver,
lower serum cholesterol and triglyceride levels accompanied by
an accumulation of hepatic triglycerides.36,37APOE encodes for a
primary component of VLDL and chylomicrons. The liver fat-
increasing allele at APOE could diminish the liver’s ability to
produce VLDL leading to hepatic triglyceride accumulation.38

While the SUGP1 variant exhibits a similar pattern, there is
comparatively less evidence about its role in lipid metabolism.

The second group of variants increase the accumulation of
fat in the liver through increased fat synthesis or inhibition of
ber 2024. vol. 81 j 921–929
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lipid breakdown. This group includes variants in GCKR and
TRIB1. The GCKR liver fat-increasing allele increases glucoki-
nase enzyme activity in the liver which promotes de novo lipo-
genesis leading to the accumulation of hepatic triglycerides.36,39

TRIB1 is involved in regulating hepatic glycogenesis and lipo-
genesis. The TRIB1 liver fat-increasing allele is associated with
higher levels of plasma triglycerides and LDL-C and, conse-
quently, more hepatic triglyceride accumulation.40 The rest of
the variants have diverse effects on different outcomes.

Our results suggest that the association of higher liver fat
with the risk of cardiovascular diseases, specifically myocardial
infarction and coronary artery disease, depends on the specific
mechanism by which fat accumulates in the liver. For example,
if the underlying mechanism is through impaired hepatic tri-
glyceride export (as we see for variants in PNPLA3, TM6SF2,
APOE and SUGP1), higher liver fat is accompanied by lower
circulatory triglycerides and lower LDL-C and is linked to lower
risk of myocardial infarction and coronary artery disease. On
the other hand, if the underlying mechanism is through
increased de novo lipogenesis (for example through TRIB1 and
GCKR), higher liver fat is accompanied by higher triglycerides
and higher LDL-C, leading to more systemically delivered
atherogenic lipids and a higher risk of myocardial infarction and
coronary artery disease. It is important to note that increased
de novo lipogenesis is likely one of several mechanisms by
which these genetic variants influence liver fat accumulation.
Both mechanisms were associated with higher risk of type 2
diabetes as previously reported.41

Notably one previous Mendelian randomisation study which
used MASLD as exposure also found no causal association
between MASLD and cardiovascular diseases including coro-
nary artery disease and stroke.42 This finding and our novel
extension here appear somewhat contrary to evidence from
several observational studies showing an association between
MASLD and a higher risk of cardiovascular diseases.43–45

These contradictory findings may be attributed to the fact
Journal of Hepatology, Decem
that observational studies are confounded by obesity (and its
downstream metabolic consequences) which is a shared risk
factor for both MASLD and cardiovascular diseases, with 50-
90% of people with MASLD living with obesity.46 The current
guidelines by the UK NICE (National Institute for Health and
Care Excellence) state that ‘cardiovascular disease is the most
common cause of death in people with MASLD’.47 Our results
emphasise that higher fat accumulation in the liver may not be
an independent risk factor for cardiovascular diseases and is
not a single disease; the association depends on the underlying
lipid regulation mechanism. It is important to emphasise that
the potential benefits of a novel drug for MASLD could be
counteracted by an elevated risk of cardiovascular disease if
the drug simultaneously increases plasma lipid levels.48

This study provides strong evidence of a causal association
between genetically determined higher liver fat levels and an
increased risk of cirrhosis, hepatocellular carcinoma, and intra-
hepatic bile duct and gallbladder cancer, consistent with pre-
vious reports.31,49 These findings resonate with those of Bianco
et al. (2021)50 who reported that a genetic risk score for hepatic
accumulation can predict the risk of hepatocellular carcinoma,
both in at-risk individuals with MASLD and in the general pop-
ulation. Our results suggest the effect of liver fat variants on the
risk of liver cirrhosis and cancer is proportional to their effect on
liver fat; the bigger the effect on liver fat, the bigger the effect on
ber 2024. vol. 81 j 921–929 927
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the risk of cirrhosis and cancer, and vice versa. These findings
suggest that higher liver fat increases the risk of cirrhosis, he-
patocellular carcinoma, and intrahepatic bile duct and gall-
bladder cancer in a dose-dependent pattern and irrespective of
the mechanism by which candidate genes exert their effect on
liver fat (i.e. higher fat import and export to and from the liver). In
light of the poor prognosis of these diseases, these findings
provide a strong case for a clinical intervention aimed at
reducing liver fat content (likely predominantly by intentional
weight loss) regardless of a binary definition for MASLD. Clini-
cians must think about reshaping the risk assessment approach
and prioritise interventions (perhaps including novel incretin-
based weight loss drugs) that may mitigate the risk of liver
fibrosis and cancers.

Our study has some limitations. First, weused genetic variants
associated with a lifetime predisposition to accumulated liver fat.
Consequently, the study does not take into consideration the
impact of short-term liver fat change (including those influenced
by dietary changes, medication or lifestyle) on the risk of cardio-
vascular and metabolic diseases. Second, although our study
provides novel findings underpinning the two main mechanisms
involved in hepatic fat accumulation, we acknowledge that we
have used circulatory lipid levels, BMI, alcohol consumption and
disease outcomes for clustering liver fat variants which may not
providea comprehensive understandingof theheterogeneity and
complexity of liver fat accumulation. Future research utilising
unsupervised clustering of liver fat variants and multiomics data
could provide better understanding. Third, although the study
identified various genetic variants that are strongly associated
with liver fat accumulation andpossibly the risk of cardiovascular,
metabolic and oncologic outcomes, the mechanisms by which
those variants exert their effect are not fully understood, conse-
quently limiting the ability of this study to fully explain the effect of
928 Journal of Hepatology, Decem
those variants on health-related outcomes. Fourth, we limited our
discovery of liver fat associated genetic variants to the White
British population, which could negatively impact the general-
isability of this study. Identifying genetic variants associated with
liver fat in other ethnicgroupsmight reveal somenovel insight and
a different effect on liver fat accumulation and the risk of those
outcomes. Fifth, our study did not exclude the possibility that
excess alcohol intake, chronic viral hepatitis C, and Mendelian
disorders (e.g., hypobetalipoproteinaemia), known to affect he-
patic fat accumulation, could be contributing factors in this sub-
set of UK Biobank participants. Conducting sensitivity analyses
to examine the association of genetic variants with hepatic fat in
specific subgroups (e.g., with and without excess alcohol intake)
would help verify the consistency of these effects.51

Our results warrant further research to elucidate the short-
term effect of change in liver fat and the mechanisms behind
the genetic determinant of liver fat, as well as to explore such
effects in different populations.

This study provides a multifaceted understanding of the
association between liver fat accumulation and various health
outcomes. Our findings confirm and challenge some pre-
existing knowledge. While we provided evidence for the
adverse consequence of higher fat accumulation in the liver,
our findings challenge previous assumptions from observa-
tional studies that liver fat per se increases the risk of cardio-
vascular diseases. The association between liver fat and
cardiovascular disease is determined by the underlying mech-
anisms that increase fat accumulation in the liver and is prob-
ably influenced in large part through lipid regulation. These
distinct findings could have implications for clinical practice
and emphasise the need for more personalised treatment op-
tions that prioritise other complications of liver fat accumulation
such as liver fibrosis and cancers.
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