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Abstract 

Due to the extensive use of xenobiotic azo dyes in the colour industry and their proven 
mutagenic and cytotoxic nature, their treatment prior to discharge is essential and is 
legally enforced. However, currently used wastewater treatment technologies such as 
activated sludge systems, anaerobic digestion, electrochemical destruction, adsorption 
and membrane filtration are ineffective in removing azo dyes due to reasons such as 
inefficient dye degradation, slow degradation kinetics, toxic metabolite formation, inhibitory 
costs and generation of secondary waste streams. Therefore, in this study, microbial fuel 
cells (MFCs) were studied as possible systems that could effectively degrade azo dyes 
with an additional benefit of concomitant biogenic electricity generation.  

The co-metabolic degradation of the model azo dye Acid Orange-7 (AO-7) using 
Shewanella oneidensis and mixed anaerobic cultures in MFC was carried out with 
particular emphasis on AO-7 degradation kinetics in the initial study. The effect of using 
various carbon sources including cheaper complex ones such as molasses and corn 
steep liquor as electron donors for azo dye degradation in MFCs was also investigated. 
The outcomes of this study demonstrated that fast AO-7 reductive degradation kinetics 
using cheap, sustainable co-substrate types can be achieved with concomitant 
bioelectricity generation in two-chamber MFCs. Power densities up-to 37 mWm-2 were 
observed in the two-chamber MFC system during AO-7 decolourisation.  

Co-metabolic reductive degradation of azo dye mixtures using dye acclimated mixed 
microbial populations under industrially relevant conditions (high temperatures and 
salinities) and  changes in microbial community structure in the MFCs in presence of 
complex azo dye mixtures in two-chamber MFCs was investigated. The outcomes of this 
work demonstrated that efficient colour and organic content removal can be achieved 
under high temperatures and moderate salinities using azo dye adapted mixed microbial 
populations in two-chamber MFCs. Microbial community analysis of the original anaerobic 
consortium and the azo dye adapted microbial culture following MFC operation indicated 
that both cultures were dominated by bacteria belonging to the phylum Firmicutes. 
However, bacteria belonging to phyla Proteobacteria and Bacteroidetes also became 
selected following MFC operation. Peak power densities up-to 27 mWm-2 were observed 
in this study during decolourisation of complex azo dye mixtures. 

The complete degradation of the azo dye AO-7 using a sequential reductive – oxidative 
bioprocess in a combined MFC-aerobic bioreactor system operating at ambient 
temperature in continuous mode was studied. The outcomes of this study demonstrated 
that the azo dye AO-7 can be fully decolourised and degraded into non-toxic and simpler 
metabolites. Maximum power densities up-to 52 mWm-2 were observed during azo dye 
degradation. A modular scale-up version (with a volumetric scale-up factor of 6) of the two 
stage integrated bioreactor system demonstrated the capability to efficiently treat two 
types of real wastewater originating from colour industry without any apparent 
deterioration of reactor performance in terms of dye decolourisation and COD removal. 

The use of applied external resistance (Rext) and redox mediators as tools for enhancing 
azo dye degradation kinetics in dual chamber MFCs was studied. The outcomes of this 
work suggest that azo dye reductive degradation kinetics in MFC anodes can be 
influenced by varying Rext. Furthermore, AO-7 reductive degradation kinetics was 
improved in a concentration-dependent manner by exogenous addition of two electron 
shuttling compounds anthraquinone-2,6-disulfonic acid and anthraquinone-2-sulfonic acid 
in MFC anodes. 

The overall outcomes of this study implies that MFCs could be successfully applied for 
achieving enhanced azo dye reductive biodegradation kinetics in MFC anodes coupled 
with concomitant bioelectricity generation. It further demonstrated that MFC systems can 
be successfully integrated with existing wastewater treatment technologies such as 
activated sludge systems for complete degradation and toxicity removal of azo dyes and 
their biotransformation metabolites. 
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1.1. Dyes and the history of the colour industry 

Dyes impart colour to various materials such as textile, paper and leather in a way 

that the colour is not readily altered by factors such as washing, light or heat. Prior 

to the industrial revolution, all dyes that were in human use were produced from 

natural sources. Written records of the first use of dyes and colouring agents run 

as far back in history as 4600 years in ancient China and ancient Egypt. When 

Alexander the Great’s army conquered the Persian capital of Susa in 331 BCE, 

they took custody of vast stocks of magnificent purple dyed royal robes. By the 

time of the Alexander the Great’s conquest of the Persian Empire, the colour 

industry utilising many natural dyes was a thriving industry in that part of the 

ancient world. A myriad of colours were provided by natural sources. A bright 

yellow/flavonoid colour originating from Reseda luteola (weld) seeds and 

blue/indigo colour originating from Indigofera tinctoria (indigo plant) leaves are a 

few examples of natural dyes that were used to colour textiles, walls and other 

materials throughout the ancient world.  

Following the industrial revolution, synthetic dyes started to replace the natural 

dyes from colour industry processes. In 1856, William Henry Perkins (Figure 1.2) 

synthesised the first synthetic dyestuff –aniline based cationic dye called 

Mauveine while trying to synthesize the antimalarial drug quinine (Tyagi and 

Yadav, 2001). The first synthetic azo dye Bismarck Brown was synthesised by the 

German industrial chemist Johann Peter Griess in the year 1858 (Figure 1.1).  
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Figure 1.1: Bismarck Brown, one of the first synthetic azo dyes  

The emergence of a vast variety of synthetic dyes including azo dyes soon 

followed after these discoveries and transformed the colour industry in a major 

way. Synthetic dyes were cheaper to produce, offered a large variety of colours 

and could be made available in vast quantities for the rapidly expanding and highly 

profitable colour industry. These advancements displaced the natural dyes from 

the industrial market and synthetic dyes replaced them rapidly. 

 

Figure 1.2: Sir William Henry Perkins is considered as the father of the synthetic 
colour industry due to his invention of the first ever synthetic dye Mauveine. 
(Image adapted from - http://en.wikipedia.org/wiki/William_Henry_Perkin)  

 

Since the industrial revolution, thousands of different types of synthetic dyes 

bearing a vast variety of properties are chemically synthesised and are made 

available in substantial quantities for the colour industry. The extent of the use of 

http://en.wikipedia.org/wiki/William_Henry_Perkin
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synthetic dyes spans from textile industry, where it is used in most quantities to 

paper and leather industries. Other industrial sectors using synthetic dyes include 

food, petroleum and pharmaceutical industries.  

1.2. Types of synthetic dyes and their uses in the colour 

industry 

1.2.1. Basic dyes (cationic dyes) 

Basic dyes are cationic in nature and carry cationic groups such as –NR3
+ and 

=NR2
+. They are mostly aniline based synthetic dyes (Christie, 2001). Due to the 

cationic nature of the basic dyes, they are well suited for dyeing anionic fibres 

such as acrylic fibres and less well used in dyeing wool or nylon. However, basic 

dyes are known for their intrinsic poor lightfastness and poor adherence to fibre 

substrates (Shah and Jain, 1983). Common basic dyes include methylene blue, 

safranin and crystal violet.  

1.2.2. Acid dyes 

Acid dyes are organic dyes bearing sulfonic, carboxylic or phenol groups that 

exhibit affinity to cationic sites of fibres. The fixation of the dye during the dyeing 

process is mainly due to salt formation between the anionic groups of the dye and 

cationic groups of the fibre substrate (Christie, 2001). During the dyeing process 

using acid dyes, the pH value of the dye bath is often reduced in order to maintain 

the amino groups of the fibre substrate in protonated state, hence, increasing the 

fixation of acid dyes to the fibres substrate (Carpar et al, 2006). Acid dyes are 

often effective at dyeing wool, silk and nylon fibres, whereas they are ineffective 

when used with cellulosic fibre types such as cotton. Acid dyes comprises of 

synthetic dyes belonging to anthraquinone, azobenzene and triphenylmethane 

chemical classes (Figure 1.3).  
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Figure 1.3: Acid dyes belonging to different chemical classes (A) anthraquinone 
(Alizarin) (CAS No- 72-48-0) (B) azobenzene (Methyl Orange) (CAS No- 547-58-0) 
and (C) Triphenylmethane (Bromocresol green) (CAS No- 76-60-8) 

 

1.2.3. Direct dyes 

Direct dyes generally are relatively large dye molecules that are adhered to the 

fibre substrate by hydrogen bonding and Van der Waals attractions. Hence, 

slightly alkaline media and temperatures close to boiling point are used in dye 

baths in order to ensure good affinity of the direct dye to its fibre substrate. 

Furthermore, salts such as Na2SO4, NaCl and Na2CO3 are often used in order to 

drive the direct dye on to the fibre substrate. Direct dyes are mostly used for 

cellulosic fibre substrates such as cotton and jute. However, due to the weak 

bonding affinities between the direct dye and the fibre substrate, they are known 

for poor washfastness and excessive dye wastage and discharge during dyeing 

processes (Christie, 2001).  

1.2.4. Reactive dyes 

Reactive dyes possess chemical substituent groups that can directly react and 

form covalent linkages with the fibre substrate. The covalent linkage of reactive 

dyes to their substrates gives them excellent washfastness. Moreover, cold 

reactive dyes enable the use of reactive dyes at room temperature. Unlike 

disperse dyes where high temperatures are required for dyeing process, cold 
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reactive dyes allow high affinity to its fibre substrate under milder conditions. 

Therefore, reactive dyes are the most favoured type of dye class amongst all dye 

types used in the colour industry and have seen widespread use within the 

industry (Chiou and Li, 2003). Common commercial examples of reactive dyes 

include Reactive Black-5 (CAS No - 17095-24-8) and Reactive Red-3 (CAS No- 

23211-47-4).  

1.2.5. Disperse dyes 

Disperse dyes are highly conjugated planer structures that are often insoluble in 

water. Disperse dyes are often finely ground with a dispersing agent and made 

available for dyeing in the form of aqueous suspensions (Neamtu et al, 2004). Due 

to the absence of ionising groups and planer structures of disperse dyes, they are 

well suited  for dyeing hydrophobic synthetic fibres such as acrylic, nylon, 

polyester and cellulose triacetate. Some examples of commercially used disperse 

azo dyes include Disperse Red-1 (CAS No- 2872-52-8) and Disperse Orange-1 

(CAS No- 2581-69-3).  

1.3. Azo compounds and their chemistry 

Majority of the synthetic dyes currently being used in the colour industry belong to 

the azo chemical class (Pandey et al, 2007). Azo compounds are characterized by 

its possession of one or more azo chemical moieties (-N=N-). The azo linkages in 

a chemical compound could be flanked by alkyl or aryl groups. Despite azo 

chemical groups (-N=N-) being known as chromophoric (colour bearing) chemical 

groups, for azo dyes to exhibit vividly different colours, several prerequisite 

chemical properties are necessary.    
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1.3.1. Azo dyes and colour 

In addition to bearing the azo chromophore, azo dyes are required to exhibit 

resonance of electrons (de-localised p-orbital electrons) in a conjugated aromatic 

ring system (Abrahart, 1977). 

When comparing the chromogenic properties of following two compounds, it 

becomes apparent that the presence of an azo chemical moiety alone would not 

allow an organic compound to confer properties of a dye. 

 

Figure 1.4: Two compounds exemplifying an A) an alkyl azo compound and B) an 
aryl azo compound.  

 

The chromogenic properties of the aforementioned two compounds are distinctly 

different because the alkyl azo compound lacks a conjugated system and 

resonance of electrons. Hence, alkyl azomethane is colourless whereas aryl 

azobenzene is orange in colour (Figure 1.4). 
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1.3.2. Azobenzenes and the effect of chemical substituent groups 

of the aryl rings on colour 

In addition to possessing chromophoric groups, many organic dyes including azo 

dyes possess auxochromes which cause the colour of a dye to shift towards either 

end of the visible spectrum. Examples of auxochromes include carboxylic and 

sulfonic acid groups, amino, nitro and hydroxyl substituent groups of the aryl rings. 

Therefore, auxochromes are used as aryl ring substituents that can give target 

colours in organic dyes. Furthermore, auxochromes are used to influence the 

water solubility of the organic dye. For an example, substituting an aryl ring of an 

azo dye with electron donating chemical groups (such as –NH2) prompts the dye 

to exhibit a bathochromic shift (shift of the emission spectrum towards a longer 

wavelength). By contrast, the presence of an electron withdrawing chemical 

groups (such as –OH groups) on azo dye aryl rings prompts the opposite effect 

(Hypsochromic shift) (Towns, 1999). This becomes apparent by observing the 

bathochromic shift of absorbance maxima (λmax) of structurally similar azo dyes 

carrying different substituent groups at the same position of the aryl ring (Figure 

1.5). 

 

Figure 1.5: The bathochromic shift of –OH substituted azobenzene from 347nm to 
386nm when azobenzene is substituted with –NH2 group at the same position of 
the aryl ring.  
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1.3.3. The extent of production and usage of azo dyes in colour 

industry  

As of 2009, the annual global production of synthetic dyes exceeded 900,000 

tonnes (Chequer et al, 2009) and is expected to be well over a million tonnes per 

annum at present. Nearly two-thirds (60% - 70%) of all synthetic dyes are azo 

dyes (Van der Zee et al, 2001). Therefore, azo dyes are considered as the most 

commonly used dyestuff in the colour industry. Moreover, a vast variety numbering 

over 10,000 chemically different azo dyes are currently being used in the colour 

industry. Most azo dye precursors are produced from primary aromatic products 

obtained from the distillation process of coal tar. Diazotization reactions of 

aromatic diazonium compounds are mainly used for synthesis of many azo dyes 

(Tyagi and Yadav, 1990).  

The preference for azo dyes over other dye types in the colour industry is due to 

their industrially desirable properties such as ease and low cost of synthesis and 

being available in vast variety of colours. Other desirable properties include high 

washfastness and lightfastness.  

1.3.4. Azo dye contaminated wastewater disposal and legislation 

pertaining to colour industry wastewater discharge 

During the dyeing processes in colour industry, up-to 50% of the used dyes may 

not be fixed to their fibre substrates and hence may be washed out to form highly 

coloured effluent streams (Figure1.6). The discharge of synthetic dye containing 

wastewater is not desirable due to several reasons. Firstly, the high colour 

intensity of many synthetic dyes may interfere with penetration of sunlight when 

mixed with natural waterstreams and may hinder photosynthesis and disrupt 

ecosystems. Hence, highly coloured watersteams are undesirable in terms of 
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aesthetic and biodiversity perspectives.  Secondly, majority of synthetic dyes are 

highly recalcitrant in the natural environment. They are not naturally encountered 

by the microbes in the environment and hence, are not easily biodegraded. 

Furthermore, synthetic dyes are resistant to photolysis and can withstand high 

temperatures. Therefore, they tend to accumulate in the environment and impart 

harmful effects in the biosphere. Recalcitrant azo dyes may undergo partial 

biotransformation into other compounds if discharged untreated. The dyes 

themselves and/or their biotransformation products are demonstrated to be toxic 

and in many instances carcinogenic in nature (Mansour et al, 2009). Benzidine 

and 1-phenylazo-2-hydroxynaphthalene (Sudan dyes) based dyes are especially 

noted for their genotoxic and mutagenic potential (Weber, 1991). The genotoxic 

nature of these dyes and their biotransformation products is often attributed to 

their planar structure and their ability to intercalate between DNA double helices 

(Mansour et al, 2009). Therefore, the use of benzidine based azo dyes is banned 

in Europe. 

For example, in Turkey, where its textile products accounts for up-to 14% of the 

total European textile imports, it is estimated that approximately 150 million tonnes 

of dye contaminated wastewater is produced annually (Ozkan-Yucel and Gokcay, 

2013). Therefore, treatment of effluent water containing synthetic dyes (and other 

pollutants) from industries such as textile, leather/tannery, paper printing and 

cosmetic industries is environmentally important and enforced legally. Recently 

there has been an increase in environmental awareness from the public leading to 

more stringent legislation pertaining to uncontrolled industrial waste release into 

the natural environment (Christie, 2007). 
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Figure 1.6: A highly coloured wastewater stream from the textile industry being 
released unlawfully into a natural waterway (source – www.sophied.net)  

 

The discharge of azo compounds, along with other pollutants, into water streams 

is one of the concerns highlighted in the Water Framework Directive (WFD 

2000/60/EC) and is strictly regulated by environmental regulatory agencies such 

as the UK Environment Agency. Regulations specified under (EC) 1907/2006 

directive prohibits discharge of many industrially used azo compounds to the 

environment (Christie, 2007). The permissible standards for textile colouring 

industry effluent as specified by Water Framework Directive (WFD) and DEFRA 

(Department for Environment Food and Rural Affairs) are as follows; pH 5.5-9, 

Chemical Oxygen Demand (COD) – 250 mgL-1 and Biochemical Oxygen Demand 

(BOD) – 30 mgL-1 (eco-web.com). However, typical untreated textile industry 

effluent has been reported to possess characteristics shown in table 1.1. Hence, 

treatment is essential prior to discharge into natural water streams. 

 

 

 

http://www.sophied.net/
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Table 1.1: Typical properties of untreated textile wastewater (Adel et al, 2004) 

 

1.4. Problem statement 

Due to the low levels of fixation of azo dyes to their substrate, up to 50% of the 

initial dye mass used may remain in the spent dye bath in a form which no longer 

has affinity for the substrate. Since the dyes cannot be reused in the dyeing 

process, they are usually discarded, along with other process wastewater, as 

effluent. Azo dyes are mostly regarded as recalcitrant environmental pollutants 

due to their xenobiotic nature. Hence they can accumulate in ecosystems, be 

transferred along food chains and may cause harmful effects to human health. 

Some azo dyes such as dinitroaniline orange and orthonitroaniline orange are 

reported to be mutagenic and some have been shown to be linked to basal cell 

carcinoma (a common type of skin cancer) (Engel et al,. 2008). Benzidine-derived 

azo dyes are carcinogens and their use is discontinued from western industrialised 

countries (Pandey et al, 2007). Wastewater containing azo dyes is usually 

Parameters Values 

pH 

Biochemical Oxygen Demand (mgL-1) 

Chemical Oxygen Demand (mgL-1) 

Total Suspended Solids (mgL-1) 

Total Dissolved Solids (mgL-1) 

Chloride (mgL-1) 

Total Kjeldahl Nitrogen (mgL-1) 

Colour (Pt-Co scale) 

7.0– 12.0 

80 – 6,000 

      150 – 12,000 

15 – 8,000 

2,900 -3,100 

1000 - 1600 

       70 – 80 

       50 - 2500 
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intensely coloured and this not only affects the aesthetics of the receiving water 

bodies but also reduces the solubility of oxygen in water. Azo dye concentrations 

as low as 1 mgL-1 are highly visible and therefore, the colour intensity prevents 

sunlight from penetrating through the water to reach plants, algae and other 

photosynthetic organisms growing on river beds, thus affecting aquatic life. Azo 

dye containing wastewater is usually complex and may contain particulates, high 

salt concentrations and low/high pH all of which pose problems to conventional 

wastewater treatment methods. Due to these environmental risks of synthetic dye 

wastewater discharge and already stringent legal requirements, it is imperative 

that colour industry wastewater is treated to an acceptable standard recognised by 

environment agencies before being released to the environment.  

1.5. Current methods for treatment of colour industry 

wastewater 

Due to environmental risks and legal obligations, colour industry wastewater 

needs to be treated for colour, organic compounds including toxic ones, inorganic 

ions such as nitrates, sulphates and phosphates and heavy metal ions. Several 

technologies are currently in use for colour and organics removal. These range 

from physico-chemical degradation methods to biological degradation methods 

(Figure 1.8).  

1.5.1. Physico-chemical dye removal methods 

Advanced oxidation processes (AOP) utilising various strong oxidants is the most 

common physico-chemical approach to industrial dye removal (Erkurt, 2010). 

Oxidation of the azo (-N=N-) bond and the flanking aryl rings has been achieved 

by subjecting the azo bond or the aryl rings to attack by free radicals such as OH· 
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created by free radical generating chemical species such as O3 and H2O2. UV light 

has been used in combination with strong oxidising agents in order to increase the 

efficiency of degradation process by photolysis; combinations such as O3/H2O2, 

UV/H2O2, UV/O3, are currently in use for chemical treatment of azo dyes. In 

addition, Fenton’s reagent (Fe2+/ H2O2) has been used to oxidize azo dye 

contaminated effluent waters (Petrova et al, 2008). The Fenton’s reaction is as 

follows;  

Fe2+ + H+ + H2O2 → Fe3+ + H2O + OH
.
 ----------- (1) (El-Desoky et al, 2010)  

The oxidative free radical generating properties of H2O2 is enhanced by the 

presence of Fe2+ that acts as a catalyst in mildly acidic solution. Hydroxyl radicals 

generated act as powerful non-specific oxidising agents that are capable of 

degrading a wide range of environmental pollutants including synthetic dyes. Other 

chemical AOP methods utilise oxidising agents such as sodium hypochlorite. 

Chemical AOP methods are not sustainable at larger industrial scales due to high 

cost of oxidising reagents such as hydrogen peroxide and sodium hypochlorite. 

Moreover, the exact chemical nature of the products generated from chemical 

AOP oxidation of various environmental pollutants can be unpredictable (Dos 

Santos et al, 2007, Robinson et al, 2001). Therefore, the disposal of the resultant 

effluent can be problematic.  

Chemical reduction of azo dyes into their constituent aminobenzenes is also 

possible using reductant chemical species such as sulphide, cysteine and Fe2+ 

(Ozkan-Yucel and Gokcay, 2013). 

Many industrial dye users in the UK use coagulation/flocculation methods coupled 

to dissolved air floatation (DAF). DAF processes are almost always combined to a 

coagulation/flocculation process where coagulants such as AlCl3 or FeCl3 are used 
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to coagulate the pollutants and air saturation of the aqueous medium containing 

the dye pollutant wastewater is used for phase separation. Using physico-chemical 

means such as DAF to treat azo dye contaminated industrial effluents is high in 

energy expenditure, costly due to the high cost of chemical coagulants used and 

produces large amounts of sludge (Mu et al, 2009). Coagulation/flocculation 

processes can be slow depending on the operational conditions such as pH and 

hence, it is difficult to implement to larger dye wastewater volumes (Vandevivere 

et al, 1998).  

Adsorption of synthetic dyes is another physico-chemical method that utilises a 

range of adsorbents such as activated carbon, wood chips, clay, rice hulls and 

inactivated microbial biomass. Adsorption and biosorption methods using support 

materials such as activated carbon and inactivated biomass also leads to disposal 

problems of the spent sorbent. Using adsorbents such as activated carbon is 

known to be particularly costly and regeneration of the sorbent material can be a 

problem (Robinson et al, 2001). Adsorption of polar and charged dyes such as 

reactive dyes however, have proven to be problematic with conventional low-cost 

adsorbents such as wood chips and inactivated biomass due to the excessively 

hydrophilic nature of charged dyes (Ozkan-Yucel and Gokcay, 2013). Membrane 

filtration has also been used but it is very expensive and leaves a concentrated 

dye stream which requires further treatment prior to disposal. Membrane filtration 

is also known to be rapid and highly successful at laboratory scales but ineffective 

at larger industrial scales due to high cost and intrinsic pitfalls of the process such 

as membrane fouling and clogging (Wu et al, 1998).  

1.5.2. Electrochemical removal of synthetic dyes 

Electrochemical removal of environmental pollutants including azo dyes involves 

passing an electrical current via electrodes through an aqueous solution 
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containing the target pollutant that will result in oxidation or reduction reactions. In 

addition to electro-oxidation and electro-reduction, processes such as electro-

coagulation and electro-flocculation could also lead to removal of target pollutants 

(Banat et al, 1996). Conventional coagulation phase separation techniques used 

for dye removal involves the introduction of Fe3+ or Al3+ ions and hydroxyl ions in 

the form of NaOH or soda lime into the contaminated water, leading to 

precipitation of dye pollutants. In electrocoagulation methods however, Fe or Al 

sacrificial anodes are routinely employed so that during the electrochemical 

process, Fe3+ or Al3+ ions are generated at the anode and OH- ions are generated 

at the cathode and they act as coagulants of dye pollutants (Tarr, 2003). Varying 

the current density of the electrochemical cell can be used as a control measure 

for the release of metal ions required for coagulation reactions from the sacrificial 

anodes.   

Electrochemical cells in which reductive and oxidative degradation of synthetic 

dyes takes place, several electrode materials can be utilised. Activated carbon, 

graphite felt, platinum, titanium (Chou et al, 2011), steel, polypyrrole and boron 

doped diamond (BDD) (Lopes et al, 2004) are the most common types of 

electrodes used for electrochemically assisted dye removal. 

Other electrochemical methods such as electro-Fenton processes photo-assisted 

electro-Fenton processes where hydrogen peroxide and Fe2+ are generated in-situ 

within the electrochemical cell have also gained considerable interest for synthetic 

dye removal from wastewater (Guivarch et al, 2003, Xie et al, 2006). All 

electrochemical methods however, require a large input of electrical energy in 

order to achieve pollutant removal or degraration of the target pollutant.   

 



17 
 

1.5.3. Biological degradation methods 

Biological methods are attractive in the sense that they require low energy input, 

low cost and are environmentally more acceptable than physico-chemical 

methods. Whole cell microorganisms and fungi as well as enzymes have been 

used. The dyes can be degraded reductively or oxidatively.  

1.5.4. Reductive degradation of azo dyes 

Reduction of azo bonds by various microorganisms under anaerobic conditions 

leads to the formation of aminobenzenes which may subsequently be mineralised 

oxidatively. Reductive degradation of azo moieties in synthetic dyes leads to the 

formation of corresponding aminobenzenes as shown in the expression  2. 

Reduction can be carried out by different mechanisms such as enzymes, redox 

mediators (mediated electron transfer into the –N=N- moiety) and biogenic 

reductant molecules such as sulfide (Pandey et al, 2007) (Figure 1.7). Several 

species of bacterial genera such as Clostridium, Eubacterium and some yeasts 

and fungi are capable of producing NADPH/NADH dependant non-specific 

Azobenzene reductases that have the capability of reducing azo bonds (Pandey et 

al, 2007). Azo bonds are proposed to be operational as an electron sink or a 

terminal electron acceptor during the process of anaerobic ATP generation for 

cellular energy requirements (Chengalroyan and Dabbs, 2013, Doble and Kumar, 

2005). Biological and chemical reduction of the azo moiety can be represented in 

the following general formula. 

R-N=N-R’ + 4H+ +4e- → R-NH2 + R’-NH2 --------- (2)   
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Figure 1.7: Modes of azo dye reductive degradation in biotic environments under 
anaerobic conditions. Biogenic sulphide present in sulphate reducing anaerobic 
environments leads to direct chemical reduction of azo moieties (adapted from – 
Pandey et al, 2007).  

The reductive equivalents for the azo bond reduction could be provided from the 

oxidation of numerous carbon sources. Sugars such as glucose, sucrose, lactose 

(Jain et al, 2012), organic acids such as pyruvate, acetate and benzoic acid 

(Murali et al, 2013) and amino acids such as cysteine (Logan et al, 2005) were 

reported as the carbon sources for azo dye degradation in several previous 

studies. Several complex unrefined electron donors such as molasses, rapeseed 

cake, corn-steep liquor and starch (Jain et al, 2012) were also reported.  

It is widely accepted that the anaerobic reductive cleavage only leads to the 

decolourisation of an azo compound rather than its mineralisation. Anaerobic azo 

dye reduction is routinely reported in literature in both immobilised (e.g. Upflow 

Anaerobic Sludge Blanket-UASB) and suspended biophase reactors. However, 

the rate of subsequent mineralization (i.e. of aminobenzenes) under anaerobic 

conditions is very slow. 
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Although colourless, the direct discharge of aminobenzene containing wastewater 

is not legally permitted due to high toxicity of aminobenzenes. The environmental 

toxicity of aminobenzenes ranks very high among other well-known environmental 

pollutants. The toxicity of mono-substituted benzenes to acetoclastic methanogens 

were found to be in the following order:  COOH < H < OH < NH2 < NO2, (Razo-

Flores, 1997) where nitrobenzenes are also converted to aminobenzenes under 

anaerobic conditions. This clearly shows the highly toxic nature of aminobenzenes 

and hence it is necessary they are further broken down to other less toxic 

compounds. Ortho substituted aminophenols such as 1-amino-2-naphthol are 

thought to be toxic and mutagenic (Gottlieb et al, 2003, Ruiz-Arias et al, 2010). 

However, the toxic/mutagenic nature of such aminobenzenes is not well 

established and is subject to debate. Therefore, it is necessary to explore the 

environmental toxicity of these aminobenzenes.  

Metabolic oxidation of the dyes by bacteria is reported to be very difficult as the 

molecules are too big to be assimilated through the cell membranes of most wild-

type microorganisms used to date. Genetically engineered bacteria such as 

Xenophilus azovorans KF46F and Pseudomonas aeruginosa K22 are two 

examples that are capable of azo dye degradation under aerobic conditions 

(Pandey et al, 2007). However, it is thought that the decolourisation occurs under 

microaerophillic conditions in isolated microaerophillic zones within the culture 

broth by reductive cleavage of the azo moiety. Several non-specific enzymes, 

isolated from aerobic organisms such as Bacillus spp, Pseudomonas aeruginosa 

and Staphylococcus aureus, have been reported to possess the capability of 

reducing azo bonds (Ooi et al, 2007). It is widely known that most azo dyes pass 

unchanged through aerobic wastewater treatment processes such as activated 

sludge systems. It is known that conventional biological wastewater treatment 
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technologies such as anaerobic digesters or activated sludge systems are 

incapable of effectively neutralising the environmental toxicity of majority of the 

synthetic dyes. Combined anaerobic - aerobic processes were shown to degrade 

azo dyes in previous studies (Khehra et al, 2006), however the anaerobic process 

is too slow and some of the produced amines may be toxic to the aerobes in the 

subsequent process. The aerobic further degradation of monocyclic 

aminobenzenes is thought to proceed via the formation of catechol derivatives as 

shown in several previous studies (Junker et al, 1994, Kalme et al, 2007). The 

aromatic ring activation reactions carried out by mono-oxygenase and di-

oxygenase enzymes prompt aromatic ring opening and further degradation of 

amines. Highly substituted aminobenzenes however, can exhibit extensive 

resistance to biodegradation and therefore, could pose environmental problems.  

An extensive amount of work exists on oxidation of dyes using fungal species, 

especially white rot fungi such as Pleurotus ostreatus and Trametes versicolor (Fu 

and Viraragharan, 2001; www.sophied.net) or their enzymes – laccases, 

peroxidases (Teerapatsakul et al, 2008). Although fungal oxidases are reported to 

be able to act non-specifically on many azo dyes, the terminal degradation 

products of fungal oxidation of azo compounds could be more toxic than the 

parent dyes. Another drawback with fungal cultures is that they require rather long 

growth phases before actually producing high amounts of active enzymes. 

Therefore, it is clear that novel and innovative avenues of better treating colour 

industry wastewater must be sought in order to alleviate the environmental 

damage caused by the uncontrolled discharge of synthetic dyes. The current 

methods that are employed for colour industry wastewater treatment are 

summerised in figure 1.8.  
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Figure 1.8: Current and proposed methods for removal of synthetic dyes from 
industrial wastewater (adapted from – Martinez-Huitle and Brillas, 2009) 
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1.6. Use of Bioelectrochemical systems for azo dye 

removal  

From the foregoing discussion, it is apparent that there is need to develop more 

effective and eco-friendly treatment methods for azo dye containing wastewater 

due to the limitations of current wastewater treatment technologies when used for 

the treatment of azo dye contaminated wastewater. Recently, Bioelectrochemical 

systems (BES) have been proposed as a promising alternative of not only 

wastewater treatment but also concomitant energy production (Rozendal et al, 

2008; Hawkes et al, 2010).  

1.6.1. Bio-electrochemical systems and microbial fuel cells (MFC) 

Bio-electrochemical systems use microbes to catalyse oxidation and reduction 

reactions at the anode and cathodes respectively in electrochemical cells. They 

are unique systems that could convert the chemical energy of biodegradable 

organic contaminants in wastewater to biogenic electricity (MFCs) or to 

hydrogen/value-added chemical products in microbial electrolysis cells (MECs) 

(Pant et al, 2012).  

1.6.2. Microbial fuel cells and the history of Bioelectrochemical 

systems 

Microbial fuel cells are BES that utilise micro-organisms e.g. Shewanella, 

Geobacter, Rhodoferax, yeasts and mixed microbial populations to catalyse an 

oxidation and reduction reaction at an anode and cathode electrode respectively 

and can produce electricity when connected to a load/resistor via an external 

circuit (Figure 1.9a).  
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Observations of electrochemical phenomena relating to biological systems are not 

new. In 1771, the Italian physicist Luigi Galvani observed that a dead frog’s legs 

would twitch when a small current was passed through it with the aid of electrodes. 

This observation is widely regarded as the first reported instance of a bioelectrical 

phenomenon (Ieropoulos et al, 2005). Thereafter, in 1911, M.C Potter 

demonstrated that electrical energy can be produced in electrochemical cells by 

living cultures of Escherichia coli and Saccharomyces cerevisiae with the aid of 

platinum electrodes (Potter, 1911). Potter’s study is currently regarded as the first 

instance where the concept of MFCs was experimentally demonstrated. 

Subsequent to this breakthrough study by Potter in 1911, the concept of 

electrochemical phenomena involving microbes was largely overlooked or 

neglected for many decades. Aside from a handful of studies such as Cohen, 1931 

and Berk et al, 1964, very little scientific interest was given to the electrochemical 

phenomena involving microbial metabolism until early 1980s. Following the 

intense debate on the looming energy crisis and the current extent of the 

environmental damage occurring due to industrialisation and extensive fossil fuel 

burning, a renewed interest was placed on environmentally cleaner and more 

sustainable alternatives for energy generation and environmental remediation. In 

this context, biofuels and other alternative environmentally sustainable 

technologies were given the primary emphasis. Research on MFCs and other BES 

was reinvigorated due to aforementioned reasons by many leading research 

institutions world-wide after many years of lapse following the breakthrough study 

by Potter. MFCs and BES had an additional appeal of environmental remediation 

and contaminant removal coupled with concomitant electricity/biohydrogen 

generation. In this view, MFCs are unique systems that are capable of converting 

the chemical energy of contaminants to usable biogenic electrical energy. 
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1.6.3. Working principle of MFCs 

MFCs generally comprise of an anode, a cathode, an external circuit and an ion 

selective membrane separating the anode and the cathode (Figure1.9). In brief, 

organic substrates such as glucose and acetate are oxidised at the anode end of 

the MFCs by microorganisms in the anode compartment. Electrons and protons 

are released due to the microbial catabolism of organic substrates.  

C6H12O6 + 6H2O → 24e- + 24H+ + 6CO2 (∆G0 = -1438 kJ mol-1) -------- (3) 

C2H3O2
- + 2H2O → 8e- + 7H+ + 2CO2 (∆G0 = -375 kJ mol-1) ---------- (4) 

The electrons are picked up by the anode electrode and flow through the external 

circuit into the cathode end of the MFC, where, a chemical species with a high 

redox potential such as oxygen or ferricyanide will accept electrons to undergo 

reduction. The protons produced in the process permeate into the cathode side of 

the MFC through an ion permeable membrane placed between the anode and 

cathode compartments. In the cathode, atmospheric oxygen is most often used as 

the electron acceptor where it undergoes reduction as follows.  

O2 + 4e- + 4H+ → 2H2O ---------- (5) 

In order to catalyse the above reaction, various oxygen reducing catalyst materials 

are employed. The most common cathode catalyst material is Platinum. However, 

due to the high cost of platinum catalyst material, the use of alternative cheaper 

catalyst materials is preferred for MFCs. Alternative cheaper cathode catalysts 

demonstrated to have a promising potential include cobalt 

tetramethylphenylporphyrin (CoTMPP) (Cheng et al, 2005), metal phthalocyanine 

(PC) derivatives such as FePC, activated carbon (HaoYu et al, 2007) and 

biological catalyst materials such as peroxidase enzymes such as laccases 

(Schaetzle et al, 2009).  
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Figure 1.9: The working principle of a microbial fuel cell (MFC) and microbial 
electrolysis cell (MEC) and microbially catalysed direct electron transfer from 
substrate oxidation onto electrode surfaces (image adapted from Rozendal et al, 
2008) 

 

Electron transfer to the anode electrode is thought to occur by several different 

mechanisms. Electron transfer could be mediated through various natural or 

synthetic electron shuttles or redox mediators. Natural electron shuttles include 

compounds such as riboflavin (Velasquez-Orta et al, 2010) and humic acid 

(Thygesen et al, 2009). Well studied synthetic electron shuttles include 

anthraquinone-2,6-disulfonic acid (AQDS) (Aeschbacher et al, 2009) and 

anthraquinone-2-sulfonic acid (AQS) (Tsujimura et al, 2001). Direct electron 

transfer to the anode occurs through microbial membrane-bound electron transfer 

proteins such as Mtr cytochrome protein complexes and so-called nanowires, 
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microbial pilli-like extracellular electrically conductive appendages (Schroder et al, 

2007).  

1.6.4. Thermodynamics of MFCs 

In order to produce electrical energy in MFCs, the overall reaction of the bio-

electrochemical cell must be thermodynamically favourable. Gibbs free energy of 

the electrochemical reaction is a measure that can be used in order to assess the 

feasibility of an MFC system to produce electricity. Gibbs free energy is calculated 

as follows. 

ΔGr = ΔG0
r + RT.lnΠ -------------- (6) 

Where, ΔGr is the Gibbs free energy (J) of the reaction at specific conditions, ΔG0
r 

is the Gibbs free energy (J) at standard conditions (298.15 K temperature, 1 bar 

pressure and 1M concentrations of all chemical species), R is the universal gas 

constant (8.31447 J mol-1 K-1), T (Kelvins) is the absolute temperature and Π is the 

equilibrium constant.  

The amount of useful work that can be obtained from the electrochemical 

reactions of an MFC is related to the electromotive force (Eemf) of the system. 

Electromotive force is also defined as the potential difference between the anode 

and the cathode of an electrochemical cell.  

Eemf = - ΔGr/nF ----------------- (7) 

Where, n is the number of electrons transferred per reaction and F is the 

Faraday’s constant (9.64853 X 104 Cmol-1). 

Under standard conditions (where Π = 1), the EMF can be written as follows. 

E0
emf = - ΔG0

r/nF ------------------- (8) 
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Where, E0
emf is the EMF at standard conditions.  

Therefore, from equations (7) and (8) the EMF for the overall reaction could be 

written as: 

Eemf = E0
emf – (RT/nF) ln(Π) ----------- (9)  

When individual anode and cathode half cells of the MFC are considered: 

Eemf = Ecathode – Eanode -------------- (10) 

For an MFC operating under ideal conditions utilising 5mM acetate at pH 7 in the 

anode as the sole electron donor and a cathode utilising oxygen as the sole 

electron acceptor at atmospheric pressure (pO2 = 0.2) at pH 7: 

Anode 

2HCO3
- + 9H+ + 8e- → CH3COO- + 4H2O; Eanode = -0.296 V --------- (11) 

Cathode 

O2 + 4e- + 4H+ → 2H2O; Ecathode = 0.805 V ---------- (12) 

 From equation (10), Eemf of this MFC is: 

= 0.805 – (-) 0.296 = 1.106 V 

Therefore, MFCs utilising acetate as the electron donor and atmospheric oxygen 

as the sole electron acceptor under aforementioned conditions, it is widely 

accepted that theoretical electromotive force or open circuit potential (OCV) would 

never exceed 1.1 Volts (Logan et al, 2006). In an ideal MFC therefore, the open 

circuit potential would equal to the thermodynamic Eemf value calculated using the 

potentials of anode and cathode half cells.  
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1.6.5. Internal losses of MFCs and OCV 

In real MFCs however, the OCV never reaches the thermodynamically calculated 

theoretical value due to several inherent limitations of BES. These limitations are 

referred to as overpotentials. Therefore, in order to reduce the effect of 

overpotentials and to optimise the energy efficiency of bioelectrochemical 

systems, a good level of understanding relating to internal losses of BES is 

needed. The overpotentials in MFC systems are categorised into four main areas. 

They are activation overpotentials, Ohmic losses, bacterial metabolic losses and 

concentration polarisation losses (Rabaey and Verstraete, 2005).  

Activation overpotentials are related to the activation energies of anodic and 

cathodic oxidation/reduction reactions. Activation losses could relate to the 

compounds undergoing oxidation in the anode and where the microbially 

catalysed electron transfer occurs. This could be related to electron carrying cell 

surface proteins or electron shuttling mediator compounds. Activation losses could 

also occur at the cathode where electrons are coupled with a final electron 

acceptor. Improving electrode catalysis and increasing electrode surface areas are 

general strategies used in order to circumvent the adverse effects of activation 

losses to MFC performance. 

Concentration losses occur mainly due to mass transport limitations of the 

reactants to or from the electrodes and due to the formation of concentration 

gradients perpendicular to the plane of the electrode. When sufficient mixing of the 

surrounding electrolyte is absent, the process of simple diffusion becomes 

inadequate for efficiently transporting reactants to the electrode and products 

away from the electrode. This leads to the formation of concentration gradients of 

reactants and products and is a major contributor for concentration losses in 
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MFCs. Therefore, adequate mixing of the bulk electrolyte is essential for 

minimising the concentration related losses in MFC systems.  

Ohmic losses of an MFC system is related to the resistance to flow of electrons 

and counter ions through electrodes, external circuit, electrode interconnections, 

ion selective membranes and the electrolyte. Electrode spacing and solution 

conductivity are primarily important in reducing Ohmic losses. It has been shown 

that electrode spacing and Ohmic losses exhibit an inverse relationship (Rozendal 

et al, 2008). Other factors such as high resistivity of the ion selective membrane 

and poor electrical interconnections (especially at the electrodes) could also 

contribute to high Ohmic losses in MFCs. 

Bacterial metabolic action in the anode results in release of electrons and protons 

from the organic substrates and the electrons being transferred down a redox 

potential gradient to a terminal electron acceptor. In MFCs, the anode electrode 

acts as the terminal electron acceptor. When electrons are transferred from 

reduced substrates such as acetate (E’0 = -0.296V) or reduced electron carriers 

such as NADH (E’0 = -0.32V), the higher the potential difference between the 

electron donor and the electron acceptor (i.e. the anode) the energy gain for the 

anode microorganism will be higher. However, the voltage output of the MFC 

system will be lower. In order to maximise the OCV of the MFC, the potential of 

the anode must be kept as low as possible. Under very low anode potentials 

however, the anode bacteria may seek alternative terminal electron acceptors in 

the anolyte solution and the electrons may be diverted to fermentative or 

methanogenic metabolic pathways (Logan et al, 2006). Polarisation plots of MFCs 

are routinely used to assess the system performance and the energy losses 

occurring due to overpotentials can be approximately represented graphically as 

shown in figure 1.10.  
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Figure 1.10: Regions of a polarisation curve used to assess the MFC performance 
depicting the energy losses. Zone-1- activation losses, zone-2- Ohmic losses, 
Zone-3- concentration losses (adapted from- Rabaey et al, 2005) 

 

As shown in the following equation, the observed cell voltage can be expressed as 

the difference between thermodynamically calculated electromotive force and the 

sum of anodic overpotential, cathodic overpotential and Ohmic losses of the MFC 

system.  

Ecell = Eemf – (Σηa + / Σηc/ + IRΩ) -------------- (13)  

Where, Σηa and Σηc respectively are anode and cathode related overpotentials 

and IRΩ is the sum of all Ohmic losses which are proportional to the current drawn 

from the MFC system.  

1.6.6. Types of Microbial fuel cells 

Architecture and the material of construction of MFCs differentiated and evolved 

over many years of MFC related research. The design and construction of MFCs 

can make a considerable influence in terms of optimal performance, internal 

energy losses and the mode of operation (i.e. batch or continuous operation). One 
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of the very first MFC designs included the conventional H-type configuration where 

two glass bottles were held clamped together between a glass bridge. The junction 

held an ion specific membrane or an agar salt bridge and the glass compartments 

house the anode and cathode electrodes (Figure 1.11-A). There are several 

variations of the two chamber system where attempts were made to increase the 

available membrane surface area, electrode surface area and to reduce the 

distance between electrodes (Figure 1.11-B) (Logan et al, 2006). The two-

chamber system is mostly suitable for fundamental studies due to its intrinsic 

limitations such as very high internal resistances and consequently, high internal 

energy losses and the limited ability to operate in the continuous-flow mode, 

hence, reducing its practical applicability for larger-scale real wastewater treatment 

processes. Other variations of two chamber MFCs include miniaturised reactors 

which are well suited for remote sensing applications (Ringeisen et al, 2006). In 

almost all two-chamber MFCs utilising atmospheric oxygen as the terminal 

electron acceptor, the catholyte is actively aerated in order to circumvent the low 

solubility of oxygen in the aqueous catholyte. This demands a further energy input 

into the operation of the MFC system and hence, reduces its energy efficiency.  

 

Figure 1.11: Types of two chambered microbial fuel cells (A) the conventional H-
type (B) the rectangular type two-chamber systems with high membrane surface 
areas  
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Single-chamber MFCs are a later development where the cathode was removed 

from the catholyte and was placed exposed to atmospheric oxygen and is 

passively aerated (Logan et al, 2006). The anode is housed within the single 

reactor compartment containing the anolyte medium (Figure 1.13). The single 

chamber type MFCs are more energy efficient compared to their two-chamber 

counterparts due to several reasons. The distance between the anode and the 

cathode is significantly reduced and no energy expenditure is required for active 

oxygenation of the catholyte as the cathode is passively aerated. Furthermore, 

anode and cathode surface areas could be considerably increased compared to 

two-chamber systems. Mono-chamber MFC systems could be considered as 

innovative reactor designs due to their efficiency and versatility they offer in terms 

of performance and operational standpoints. Hence, single-chamber air cathode 

type MFCs routinely register higher power performance and are more sustainable 

compared to their two-chamber counterparts. Single chamber MFC systems (such 

as tubular up-flow systems in particular) are well suited for continuous-flow mode 

reactor operation.  

Other less commonly utilised MFC types include benthic/sediment deployed MFCs 

where the anode resides in the sediment and the cathode is exposed to 

atmospheric oxygen. The benthic MFCs use the sediment as the source of 

substrate as well as the source of microbial inoculum. The sediment is rich in 

various microbial communities including ones that are capable of extracellular 

electron transfer. The electrochemically active microbes residing within the 

sediment oxidise naturally found decomposing organic substrate and transfer a 

portion of the electrons released on-to the anode electrode of the benthic MFC, 

placed within the sediment. The electrons are then drawn towards the cathode 

electrode (placed exposed to atmospheric oxygen) via the external circuit. The 
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current generated within the external circuit is used to power various remote-

sensing devices. The major advantage of this type of MFCs is that they can be 

deployed for powering remote sensing and environmental monitoring devices as a 

reliable source of power and can be left unattended unlike using conventional 

batteries (Figure 1.12).  

 

Figure 1.12: The working principle of a benthic MFC system and a benthic MFC 
system being readied for deployment in marine sediment for remote sensing 
applications (Guzman et al, 2010).  

 

Sediment/benthic MFCs have gained much research interest in recent times due 

to their potential remote sensing applications in environmental, marine and military 

sectors. 
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Figure 1.13: (A) tubular up-flow type single chamber MFC systems for continuous 
flow operation (used in this study) (B) rectangular type single chamber systems for 
batch operation (Logan et al, 2006) (C) single chamber MFC with an inner 
concentric type cathode for continuous flow operation (Logan et al, 2006). 

 

1.6.7. Microbial electrolysis cells 

Microbial electrolysis cells (MECs) are similar to MFCs but instead of the external 

load, they utilise a small external power source to bias the thermodynamics of the 

reactions occurring in the anode and cathode of BES (Figure 1.9b). MECs are 

mainly utilised for production of biohydrogen by microbially assisted electrolysis of 

water at the cathode of an MEC. Furthermore, MEC systems are also utilised for 

the production of value added products such as Sodium hydroxide (Chen et al, 
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2012), hydrogen peroxide (Foley et al, 2010), recovery of precious metals, and 

microbially assisted desalination (Luo et al, 2010). MECs may be useful in terms of 

(forcefully) transferring electrons into the (-N=N-) moiety of azo pollutants, 

resulting in reductive cleavage of the dye pollutant (Mu et al, 2009). Especially 

when the electron accepting azo dye possessing a low redox potential, an external 

power supply would be useful for biasing thermodynamics towards the reductive 

azo moiety degradation (as shown in expression 2).  

1.6.8. The use of BES for pollutant removal 

Although the primary aim of the majority of research involving BES is to enhance 

the generation of biogenic electricity (in the case of MFCs) and cathodic hydrogen 

evolution (in the case of MECs), significant and growing amount of research is 

currently being devoted towards a variety of other applications of BES. Apart from 

the use of BES for the removal of more readily oxidisable organics such as sugars, 

fatty acids and amino acids present in wastewater, increasing attention is now 

diverted towards the removal of more recalcitrant waste types. Particularly, the 

organic and inorganic wastes originating from various chemical industries tend to 

be more recalcitrant compared to wastes originating from the agricultural sector or 

the food industry. Different types of MFCs were used in either batch or continuous 

flow modes and both anodic and cathodic chambers were used in several previous 

studies that demonstrated the ability of MFC systems to effectively degrade and in 

some instances, detoxify recalcitrant environmental pollutants. Some of the recent 

studies highlighting the use of BES systems used for pollutant removal are 

summarised in Table 1.2.  
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Table 1.2: A summary of current studies utilising BES for the purpose of removal 
of recalcitrant pollutants. Particular attention has been paid for the studies 
involving azo dyes as the environmental pollutant. 

Recalcitrant 

pollutant 

BES type and 

compartment 

used 

Microbial culture Reference 

Furfural Single chamber type 

MFC anode 

compartment 

Pre-acclimated mixed 

microbial culture 

Luo et al, 2010 

Microcrystalline 

cellulose 

Two-chamber MFC 

anode 

Bovine rumen mixed 

microbial culture 

Rismani-Yazdi et al, 

2007 

Phenol Two-chamber MFC 

anode 

Pre-acclimated mixed 

microbial culture 

Luo et al, 2010 

Nitrobenzene Two-chamber MFC 

cathode 

Mixed anaerobic 

consortium 

Mu et al, 2009 

1,2-dichloroethane Two-chamber MFC 

anode 

Pre-acclimated mixed 

microbial culture 

Pham et al, 2009 

4-nitrophenol Two-chamber MFC 

cathode 

Anaerobic sludge Zhu and Ni, 2009 

Petroleum 

hydrocarbon 

contaminated soil 

U-tube type soil MFC Mixed microbial 

community from 

saline, petroleum 

contaminated soil 

Wang et al, 2012 

Brilliant Red X-3B (azo 

dye) 

Single chamber MFC 

anode with glucose as 

co-substrate 

Mixture of anaerobic 

and aerobic sludge 

inoculum 

Sun et al, 2009 

Congo-Red (azo dye) Two-chamber MFC 

anode with glucose as 

the co-substrate 

Anaerobically digested 

sludge 

Li et al, 2010 

Methyl Orange, 

Orange-1 and Orange-

2 (azo dyes) 

*Two-chamber MFC 

cathode compartment 

Klebsiella pneumoniae 

strain L17 

Liu et al, 2009 
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Methyl Orange (azo 

dye) 

**Two-chamber MFC 

cathode compartment 

Anaerobic sludge Ding et al, 2010 

Amaranth (azo dye) 
‡
Two-chamber MFC 

cathode compartment 

Anaerobic mixed 

culture 

Fu et al, 2010 

Orange-2 (azo dye) Microbially assisted 

electrolysis of the azo 

dye at the cathode 

MFC enriched mixed 

microbial consortium 

Mu et al, 2009 

Brilliant Red X-3B  Constructed wetland 

up-flow type MFC 

anode 

Anaerobic sludge in 

addition to the soil 

microbial community 

Fang et al, 2013 

    

*The pH of the cathode was maintained at 3.0. 

**The cathode compartments was irradiated with visible light and Rutile coated 

graphite cathodes were used.   

‡Cathode compartment was capable of in-situ H2O2 generation and exogenously 

supplemented with Fe2+ in order to form Fenton’s reagent 

In addition to the removal of organic xenobiotic environmental pollutants as listed 

above, several studies used BES for the purpose of removal of industrially 

important inorganic pollutants such as sulphide (Rabaey et al, 2006) sulphate 

(Zhao et al, 2008) and Nitrate (Virdis et al, 2008). In the aforementioned studies 

carried out involving azo dyes however, (Liu et al, 2009, Ding et al, 2010, Mu et al, 

2009 and Fu et al, 2010), MFCs were employed only for reductive degradation of 

azo dyes in either anode or the cathode compartments. Means for further 

degradation and detoxification of the resulting aminobenzenes were not explored 

in any of the studies. Furthermore, in some studies (Mu et al, 2009), azo dye 

reduction process was assisted by exogenous supply of electrical energy. 

Therefore, means for full degradation and detoxification of azo dyes and their 

biotransformation products coupled with a sustainable approach (i.e. with no 
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exogenous supply of electrical energy and utilising waste material as the energy 

source for BES) should be the focus of developing BES for treatment of colour 

industry wastewater.  

The removal of pollutants from wastewater in a sustainable fashion has always 

been one of the top priorities for methods used for recalcitrant waste removal. In 

this view, most physico-chemical waste treatment methods score poorly due to 

their intrinsic pitfalls such as very high energy expenditure, high cost of application 

and operation and generation of secondary waste products that lead to further 

disposal problems.   

Concomitant energy recovery in the form of electricity while removing azo dye 

pollutants from simulated effluent water has been reported in recent literature and 

is an interesting development in terms of the use of BES to achieve pollutant 

removal (Liu et al, 2009).  

Most BES research involved the use of carbohydrates and organic acids e.g. 

acetate as a substrate. However, due to cost considerations, it is preferable to use 

unrefined substrate types such as nutrient rich agricultural wastes (eg. molasses, 

lignocellulosic material and rapeseed cake) for concomitant bioremediation of 

environmental pollutants and concomitant recovery of biogenic electrical energy in 

MFCs.  

Current drawbacks of BES systems include low growth rate of microbes, electron 

diversion to methane formation, membrane pH gradients and electrode potential 

losses (Rabaey et al, 2005). The microorganisms utilised in BES are unique in the 

sense that they can transfer electrons (from oxidation of organic matter) 

extracellularly to an insoluble electron acceptor (e.g. electrode). The redox 

potential of the electron accepting chemical species or the electrode in BES is of 
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paramount importance in the view of efficient electron transfer from the oxidised 

organic substrate. The redox potential of the electron accepting electrode can be 

biased by suitable choice of oxidant in the cathode or by a power supply to 

improve electron transfer (i.e. MECs).  

The redox potential of the dyes/electron acceptor was highlighted as a predictive 

measure of their biodegradability when dye degradation was studied oxidatively 

using laccases or reductively using yeast (Zille et al, 2004).  The addition of redox 

mediators is a possible way by which electron transfer (hence azo dye reductive 

degradation and MFC electrochemical performance) could be improved. 

Bioaugmentation is a widely used strategy in bioremediation but it has not been 

fully exploited in BES (Saratale et al, 2010; www.biofuture.ie). The use of process 

integration by coupling different treatment systems together e.g. MFC + activated 

sludge could also aid the mineralization of azo dyes. Ultimately a system that is 

able to operate on real wastewaters on a large scale is required. So the influence 

of scale up on the performance of BES needs investigation. Since BES is a recent 

development, very little information exists regarding their potential for treatment of 

azo dye containing wastewater. (Liu et al,. 2009; Sun et al,.2009 and Li et al,. 

2010). 

1.7. Hypothesis 

Azo dye compounds in polluted industrial effluent water can be fully degraded into 

non-toxic intermediates using either BES alone or in conjunction with already 

existing wastewater treatment technologies.  

1.8. Aims and objectives of the current project 

The overall aim of this project is to investigate the technical feasibility of 

bioelectrochemical systems, as a standalone system or in conjunction with 
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conventional wastewater treatment processes, for treatment of azo dye-containing 

industrial wastewater. 

In order to achieve the aforementioned aim, research was directed through 

following specific objectives. 

1.8.1. Specific objectives 

1. To investigate the co-metabolic reductive degradation of azo dyes in 

the anode of microbial fuel cells.  

For the initial study, the model mono azo dye Acid Orange-7 (AO-7) was selected. 

Azo dyes are known to pass through aerobic biotreatment systems unchanged 

(Pandey et al, 2007). Hence, the best strategy of completely degrading azo dyes 

would be to employ a sequential reductive-oxidative degradation process. For this 

purpose, the reductive degradation of azo dyes with the aid of a co-substrate (i.e. 

electron donor for azo moiety reduction) in the anodes of MFCs was studied. Azo 

dyes that carry highly charged substituent groups (such as the sulfonate group in 

AO-7) and with high molecular weight (some exceeding 1 kDa) are highly unlikely 

to cross largely non-polar biological membranes and enter the cellular interior of 

bacterial cells. Therefore, the reduction of azo moieties by means of transfer of 

electrons is likely to occur in the extracellular milieu (Cervantes and Dos Santos, 

2010, Pandey et al, 2007) with electrons coming from a co-substrate (i.e. glucose, 

acetate). Furthermore, the ability of MFCs to use oxygen indirectly as the terminal 

electron acceptor also confers MFCs an additional advantage over conventional 

anaerobic systems in terms of faster microbial metabolic rates and growth rates 

that could potentially be beneficial in achieving faster azo dye degradation kinetics 

in MFC anodes. The azo dye degradation was analysed with respect to the 

kinetics of degradation, the nature of degradation products formed and the toxicity 
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of the formed intermediates. A pure culture of Shewanella oneidensis MR-1 and 

anaerobic mixed cultures were used as inocula. The effect of using various un-

refined co substrate types as well as different anode pH was also investigated. 

2. To investigate the co-metabolic decolourisation of azo dye mixtures under 

industrially relevant conditions using dye-acclimated mixed microbial 

populations 

In real industrial scenarios, it is very unlikely that single azo dyes are encountered 

and the industrial wastewater may exhibit certain extreme traits such as high 

temperatures and high salinities. Moreover, it is highly disadvantageous to utilise 

pure cultures for industrial wastewater treatment due to high cost and operational 

limitations. Therefore, in the second related study, the co-metabolic degradation of 

complex azo dye mixtures using a dye-acclimated mixed culture was investigated. 

Experimental conditions included a range of industrially relevant temperatures and 

salinities routinely encountered in colour industry wastewater. Microbial community 

dynamics during MFC operation were investigated using 16s rDNA microbial 

community profiling methods.  

3. To examine the effect of process integration on azo dye degradation.  

A complete degradation and detoxification of azo dyes and their intermediates is 

desired. The aminobenzenes yielding from the reductive degradation of AO-7 in 

the MFC stage are expected to be amenable to further degradation into less toxic 

intermediates if an aerobic treatment stage analogous to an activated sludge 

system is present. Therefore, a sequential MFC-aerobic integrated bioreactor 

system configuration was investigated for the full degradation of the model azo 

dye AO-7. Single-chamber tubular-type MFCs that are best suited for continuous 

flow operation were used for the study. An azo dye acclimated mixed microbial 

culture was used in the MFC stage in order to obtain optimum decolourisation of 
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the model azo dye. Other important aspects of operation such as the hydraulic 

retention time (HRT), dye loading rate, ability to operate at ambient temperature, 

long term operational stability of the integrated reactor system and the response of 

the reactor to sudden shock loadings of the azo dye were also investigated. The 

chemical nature and the toxicity of degradation products were also studied. 

4. To evaluate the influence of scale up on treatment of azo dyes in 

bioelectrochemical systems (tubular air-breathing MFCs).  

To assess the potential industrial applicability of the tested integrated MFC-aerobic 

integrated bioreactor system, it is essential to investigate the scalability of the 

system. For this purpose, a modular scale-up approach was used. The volumetric 

scale-up factor of 6 was used in the up-scaled reactor system. The reactor system 

was initially tested in continuous-flow mode at ambient temperature using AO-7 as 

the model azo dye. This was followed by feeding the reactor system with real 

industrial wastewater originating from colour industry. The real wastewater used 

included wastewater collected from an acid dyebath for wool and an acid dyebath 

for leather. Colour and COD removal and concomitant bio-electricity generation 

was monitored during the feeding cycles of the model wastewater containing AO-7 

and the two types of real colour industry wastewater.  

5. To investigate the effects of the exogenous addition of redox mediators 

and the effect of external resistance on azo dye reductive degradation in 

MFCs.  

Other factors that could affect azo dye decolourisation rates in MFCs include the 

presence of redox mediators and the anode potential. Exogenous addition of 

synthetic redox mediators such as anthraquinone-2,6-disulfonic acid (AQDS) and 

anthraquinone-2-sulfonic acid (AQS) was investigated using a range of 
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concentrations of these two compounds on the reductive decolourisation of AO7 in 

MFC anodes.  

The MFC anode potential is influenced by the applied external resistance and 

therefore, it could be used as a convenient tool to vary anode potential without 

exogenous polarisation of the anode compartment. The effect of a range of 

external resistances were tested on the reductive decolourisation of three model 

azo dyes AO-7, Reactive Red-3 (RR-3) and Direct Yellow 106 (DY-106) in the 

anode compartments of MFCs.  
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Chapter 2 - Materials and Methods 
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2.1. Chemicals 

AO7 Sodium salt (Figure 2.1) (purity ≥98.0%), sodium pyruvate, sodium acetate, 

corn-steep liquor, sulfanillic acid and 1-amino-2-naphthol were purchased from 

Sigma Aldrich (UK). All chemicals were of analytical grade and were used without 

further purification. Ficodox Plus ™ mixed COD reagent was purchased from 

Fisher Scientific (UK).  

 

Figure 2.1: Acid Orange 7 structure 

The dye mixtures used in simulated wastewater comprised of 18 structurally 

different dyes of commercial grade (Table 2.1). Molasses for the anolyte medium 

was purchased from Billington’s, UK and the buffer salts (analytical grade) were 

purchased from Sigma Aldrich, UK. Ficodox Plus™ mixed COD reagent was 

purchased from Fisher Scientific, UK. Reagents and enzymes for PCR and were 

purchased from New England Biolabs (USA). All molecular biology grade reagents 

for denaturing gradient gel electrophoresis (DGGE) analysis were purchased from 

Sigma Aldrich, UK. Azo dyes except for AO-7, Methyl Orange, Reactive Black-5, 

Congo Red and Reactive Red -3 were obtained from industrial sources by a 

previous Europe-wide study relating to colour industry wastewater treatment 

(Sophied European project FP6 - http://www.sophied.net/).  

 

http://www.sophied.net/
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Table 2.1: The composition of azo dye mixture used in chapter 4, their molecular 
weights and absorbance maxima (λmax)  

Dye CAS registry 

number 

Molecular weight 

(gmol-1) 

λmax (nm) 

Acid Black 107 12218-96-1 N/A* 576 

Acid Black 194 61931-02-0 461.38 570 

Acid Black 210 99576-15-5 938.02 606 

Acid Orange 7 633-96-5 350.32 484 

Acid Red 266 57741-47-6 467.78 496 

Acid Yellow 194 61814-52-6 N/A** 446 

Acid Yellow 49 12239-15-5 426.28 396 

Congo Red 573-58-0 696.65 497 

Direct Blue 71 4399-55-7 1029.9 580 

Direct Red 80 2610-10-8 1373 536 

Direct Yellow 106 12222-60-5 1325 402 

Disperse Blue 124 61951-51-7 377.42 466 

Methyl Orange 547-58-0 327.33 464 

Reactive Black 5 17095-24-8 991.82 596 

Reactive Blue 222 93051-44-6 1460.91 610 

Reactive Red 195 93050-79-4 1136.32 526 

Reactive Red 3 23211-47-4 774.04 532 

Reactive Yellow 145 93050-80-7 1026.3 418 

N/A – Molecular weight not available 

*Acid Black 107 structure unspecified and the molecular weight is not available 

**Acid Yellow 194 is a di-sulphonated co-complex dye (Espantaleón et al, 2003). The 

formula weight and the structure are not available. 

Molasses used as the co-substrate in the work described in chapters 4,5 and 6 

was purchased from Billington’s (UK). 
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The real industrial wastewater used in the work described in chapter 6 was 

obtained from a previous Europe-wide industrial study relating to colour industry 

wastewater treatment (Sophied project FP-6 http://www.sophied.net/). The 

industrial wastewater originated from two acid dyebaths in Europe used 

respectively for tanning of leather and colour fixation on wool fabrics. The exact 

dye content and other auxiliary components were unknown. Typical characteristics 

of the two industrial wastewaters are listed in Table 2.2.  

Table 2.2: Typical characteristics of the two colour industry wastewaters used in 
this study at unmodified state 

Parameter Acid dyebath 

wastewater for wool 

Acid dyebath 

wastewater for 

leather 

   

pH 7.75 7.2 

Total dissolved solids (TDS) 161 mgL-1 146 mgL-1 

Conductivity 3.15 ± 1.2 mScm-1 289 ± 33 µScm-1 

Oxidation/reduction potential 

(ORP) vs Ag/AgCl 

-53 mV -18.9 mV 

COD 1000 ± 60 mgL-1 1280 ± 40 mgL-1 

 

Conductivity and TDS measurements were taken using an Oakton PC-700 

(Oakton Instruments, UK) conductivity probe. ORP measurements were made 

using a BASi Ag/AgCl reference electrode (BASi reference electrodes, USA). The 

Ag/AgCl reference electrode contained 3M NaCl electrolyte and was +196 mV 

versus the standard hydrogen electrode (SHE) at 25°C.  

http://www.sophied.net/
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The two synthetic redox mediators Anthraquinone-2-sulfonic acid sodium salt 

(AQS) and Anthraquinone-2,6-disulfonic acid disodium salt (AQDS) used for the 

work presented in chapter 7 were purchased from Sigma Aldrich (UK) and Fisher 

Scientific (UK) respectively. The structures of the synthetic redox mediators used 

are indicated in table 2.3. All microbial growth medium components were 

purchased from Sigma Aldrich and used without further purification. Reagents 

used for molecular microbial profiling work were purchased from Sigma Aldrich 

(UK) and New England Biolabs (USA). 

Table 2.3: Synthetic redox mediators used in chapter 7 

Redox mediator MW (Da) Structure 

Anthraquinone-2-

sulfonic acid 

310.27 

 

Antharquinone-2,6-

disulfonic acid 

412.3 

 

 

The three model azo dyes Acid Orange-7 (AO7), Reactive Red-3 (RR3) and Direct 

Yellow-106 (DY106) (analytical grade) used in this study were purchased from 

Sigma Aldrich (UK). The three structurally different azo dyes and their absorbance 

maxima are shown in table 2.4. 
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Table 2.4: The three model azo dyes used in the work presented in chapter 7, 
their structures, molecular weights and absorbance maxima 

Dye MW (Da) Structure λmax (nm) 

Acid Orange-7 350.32 

 

484 

Reactive Red-3 774.04 

 

532 

Direct Yellow 

106 

1325 

 

402 

 

2.2. Bacterial strains, their maintenance and MFC anode 

culture media 

Shewanella oneidensis strain 14063 and Vibrio fischeri strain 13938 were 

purchased from NCIMB (UK) and cryopreserved stock cultures were maintained at 

-80˚C. Anaerobic digested sludge samples were obtained from Mogden Sewage 

Treatment Works London (UK). Anaerobic sludge inoculum was initially grown in 

trypticase-soy broth and later sub-cultured into minimal medium (Tables 2.4 and 

2.5) supplemented with sodium pyruvate and casein hydrolysate. Vibrio fischeri for 

bioluminescence toxicity assays was grown in oceanibulbus growth medium 

(NCIMB growth media catalogue) (Table 2.3). Histidine auxotroph strains 

Salmonella typhimurium strain TA 1535 and strain TA 1538 for the soft agar 

overlay Ames mutagenicity test were obtained from the University of Westminster 

culture collection. Both S.typhimurium strains were initially grown in Luria Bertani 
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(LB) medium (Sigma Aldrich) and maintained as glycerol cryopreserved stock 

cultures at -80˚C. 

The original anaerobic mixed microbial consortium for the study described in 

chapter 4 was obtained from Mogden Sewage Treatment Works London (UK). The 

anaerobic microbial consortium was initially acclimated at 30˚C over a period of 

five months in a solution containing all 18 azo dyes (each dye at 10 mgL-1) in 

Winogradsky columns (column height – 42cm) supplemented with microcrystalline 

cellulose (1% w/v) (Sigma Aldrich) as a carbon source. Dyes were replenished in 

the Winogradsky columns approximately every week after complete 

decolourisation of the solution was observed. 

The anolyte minimal salts medium for the study presented in chapter 3 consisted 

of (gL-1) NH4Cl, 0.46; KCl, 0.225; NaH2PO4, 2.5; Na2HPO4, 4.11; (NH4)2SO4, 0.225; 

1% (V/V) of the trace element solution as described by Marsilli et al, 2008 and 0.3% 

(V/V) vitamin mix as described by Wolin et al, 1963. The anolyte minimal medium 

was supplemented with 500 mgL-1 Casein hydrolysate (Sigma Aldrich UK) and 

20mM Sodium pyruvate as the primary carbon source. The vitamin stock solution 

(100X concentrated) for minimal media comprised of the following (Table 2.5). 
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Table 2.5: Components of the vitamin mix stock solution used in this study 

Component Concentration (mgL-1) 

P-aminobenzoic acid (PABA) 50 

L-ascorbic acid 100 

Folic acid 50 

Riboflavin 10 

Nicotinic acid 100 

Pantothenic acid 100 

Thiamine hydrochloride 10 

Biotin 100 

 

The trace elements stock solution (100X concentrated) used in this study 

comprised of the following (Table 2.6). 

Table 2.6: Components of the trace elements stock solution used in this study 

Component Concentration (mgL-1) 

Nitrilotriacetic acid (NTA) 1500 

MnCl2.4H2O 100 

FeSO4.7H2O 300 

CoCl2.6H2O 170 

ZnCl2 170 

CuSO4.5H2O 40 

AlK(SO4)2.12H2O 5 

H2BO4 5 

NaMoO4 90 

NiCl2 120 

NaWO4.2H2O 20 

NaSeO4 100 
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Simulated wastewater anolyte medium for the study presented in chapter 5 

containing a mixture of all 18 azo dyes (20 mgL-1 each dye, total dye content 360 

mgL-1) and molasses (4 gL-1) as a co-substrate was formulated in 50 mM, pH-7 

phosphate buffer (21 mM NaH2PO4 and 29 mM Na2HPO4). 

The synthetic wastewater medium used for the work described in chapter 5 

comprised of Molasses (2 gL-1) as the electron donor, dissolved in tap water. 

Common auxiliary salts that are routinely present in textile wastewater 

Na2SO4.10H2O and NaCl were added (2% W/V, 1:1 ratio) to the synthetic 

wastewater anolyte medium in order to provide the necessary ionic strength for 

MFC operation. The final pH of the anolyte medium feed was 7.6 ± 0.2. AO7 was 

supplemented into the synthetic wastewater from a stock solution. The synthetic 

wastewater was stripped of dissolved oxygen by sparging nitrogen gas for 10 

minutes before being continuously fed into the MFC stage of the two-stage reactor 

system. 

The MFCs used for the study described in chapter 5 were inoculated with the 

same azo dye acclimated mixed microbial population as described earlier from 

already operational MFCs treating simulated azo dye wastewater. The azo dye 

adapted mixed microbial culture was introduced into the MFC units at 10% of the 

total reactor working volume. During start-up, the inoculated MFCs were operated 

in fed-batch mode up-to three consecutive cycles in order to obtain reproducible 

MFC performance from all replicate reactors. The same synthetic medium without 

the azo dye was used during the start-up of MFC reactors.  

For the work described in chapter 6, model wastewater containing AO-7 (35 mgL-1) 

was prepared as described below. For the latter part of the study involving real 

industrial wastewater, the colour industry effluent was modified by supplementing 

it with 2 gL-1 of molasses to act as a co-substrate during colour removal. The real 
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wastewater influent for continuous reactor operation was autoclaved at 110°C for 

15 minutes. The industrial wastewater influents from wool colouring and leather 

tanning indicated COD values of 3950 ± 40 mgL-1 and 4250 ± 30 mgL-1 following 

the supplementation of 2 gL-1 of molasses co-substrate. The MFC stage was 

inoculated with an azo dye adapted mixed microbial consortium from a 

continuously fed tubular MFC system treating AO-7 as described earlier. 

The minimal growth medium used in the work described in chapter 7 was the 

same as described earlier but was supplemented with glucose (1gL-1) as the 

carbon source. For the experiments involving various external resistances, dyes 

were introduced into anode medium at a concentration of 50 mgL-1 from a filter 

sterilised stock solution before starting each experiment. For the experiments 

involving synthetic redox mediators, AQDS and AQS were supplemented into the 

anode growth medium at concentrations 20 µM, 50 µM and 150 µM from filter 

sterilised 10 mM synthetic redox mediator stock solutions. All experiments with 

synthetic redox mediators were carried out using AO-7 as the model azo 

compound, supplemented into the anode medium at a concentration of 210 mgL-1 

from a filter sterilised stock solution. All experiments were carried out in a 

temperature controlled environment (30⁰C) in an incubator. 

The inoculum source for the two-chamber MFC system was the azo dye adapted 

mixed bacterial culture from an already operating fed-batch MFC system treating 

simulated azo dye wastewater as described earlier. The biomass was centrifuged, 

washed twice with sterile phosphate buffer before being introduced into the anode 

chamber at approximately 90 mg wet biomass per anode volume (150 mL).  

The anolyte medium (apart from the vitamin solutions and redox mediators) and all 

MFC components were sterilised by autoclaving at 121⁰C for 15 minutes. 
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2.3. Bio-electrochemical systems and operation 

For the study described in chapter 3, the H-type MFCs were constructed with two 

identical Duran glass bottles and were held together with an external metal clip. 

The anode and cathode compartments were separated with a cation exchange 

membrane (CMI-7000, Membranes International- USA). Two rubber gaskets were 

used to ensure a seal. The electrodes were constructed from carbon cloth (Figure 

2.2). The cathode contained a Pt catalyst layer with a Pt loading of 0.5 mgcm-2. Pt 

powder for the cathode was mixed with carbon black powder (Sigma Aldrich, UK) 

for a 10% (w/w) mixture. This mixture was suspended in Nafion ionomer solution 

(Sigma Aldrich) and the suspension was applied as a uniform coating on the 

cathode electrodes using a paint brush. Electrode connections were made by 

soldering insulated Copper wire onto the electrodes using Lead solder. All 

exposed connections were coated with non-conductive epoxy for insulation. Each 

electrode had a projected surface area of 20 cm2. An external load of 2200 Ω was 

used in all experiments and the potential across the resistor was recorded using 

the Picolog ADC-24 (Pico Technology, UK) online data logging system. 
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Figure 2.2: Schematic diagram of the two-chamber MFC set-up used throughout 
this work.  

 

The catholyte and anolyte solutions were buffered to pH 7.0 using 50mM 

phosphate buffer (21mM - NaH2PO4 and 29mM- Na2HPO4) in all experiments.  

The experiments were carried out in batch mode with a working volume of 150 mL 

in each MFC compartment. During start—up, the anode was seeded with actively 

growing S. oneidensis or anaerobically digested sludge seed culture (10% V/V of 

the total anolyte volume). The anolyte was purged with nitrogen gas for 10 minutes 

through a 0.22 µm pore diameter filter prior to inoculation. The catholyte was 

actively aerated at an air flow rate of 100 mLmin-1 using an aquarium pump. All 

experiments were conducted at 30°C using a Stuart 160 incubator (Fisher 

Scientific, UK). 

For the work described in chapter 4, the same H-type, two-chamber MFC 

configuration described earlier was used. An external resistance of 1kΩ was used 

in all experiments and the potential across the external resistance was recorded 

using a Picolog ADC-24 (Pico-Technology, UK) online data logging system. Prior 
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to inoculation, the anolyte medium was sparged with nitrogen gas for 10 minutes 

and the MFC headspace was also filled with nitrogen gas. The anode was seeded 

with the previously described azo dye adapted microbial consortium (10% v/v of 

the anode volume) from a Winogradsky column.The MFCs were operated in fed 

batch mode. Each fed-batch cycle was initiated when the MFC voltage fell below 

50mV and 75% anode contents were removed and replenished with fresh dye-

containing medium when starting new cycles. The catholyte was sparged 

continuously with air at a flow rate of 200 mLmin-1. All experiments were 

conducted in a temperature regulated Stuart 160 incubator (Fisher Scientific, UK). 

Cylindrical single chamber MFCs were used in the work presented in chapter 5. 

They were constructed from polyvinyl chloride and had a working volume of 

200mL. The reactor dimensions were 3.5 cm (internal diameter) and 30 cm length. 

Both electrodes were constructed from carbon fabric (PRF composite materials, 

Dorset, UK). The concentric anode had a projected surface area of 96cm2 

whereas the cathode had a surface area of 64 cm2 (measured). The cathode 

contained a platinum catalyst layer on one side (Pt loading at 0.35 mgcm-2) and a 

Polytetrafluoroethylene (PTFE) diffusion layer on the other side in order to 

minimise water loss through the membrane. The cathode catalyst layer was 

applied as described earlier in section 2.1.4. and the PTFE gas diffusion layer was 

applied as described by Antolini et al, 2002. The connections on the electrodes 

were secured using insulated copper wire soldered to the electrodes and the 

connection interfaces were insulated with non-conductive epoxy. The anode and 

the cathode were separated by a CMI-7000 cation exchange membrane 

(Membranes International, USA). Electrode spacing between the anode and the 

cathode was approximately 1.3 cm. The external circuit of the MFCs were 

connected across a 1000 Ohm resistor to a data acquisition system (Picolog ADC-



57 
 

24, Pico Technology, UK) in order to gather voltage data, set at a data recording 

interval of 10 minutes (Figures 2.3 and 2.4). All single-chamber MFCs were 

simultaneously and continuously fed using a multi-channel peristaltic pump 

(Watson-Marlow, UK) with an up-flow configuration. The outflowing effluent from 

the MFC stage was continuously fed-into the aerobic second stage of the reactor 

installed downstream to the MFC stage. The dye containing influent feeding rate 

was varied throughout the study.  

The working volume of the subsequent aerobic stage was 1000 mL. The aerobic 

reactor was continuously aerated at an air sparging rate of 200 mL air per minute 

through a ceramic air stone sparger using an aquarium pump and was 

continuously agitated using a magnetic mixer. All constituent stages of the 

integrated reactor system were operated at ambient temperature without 

exogenous control of temperature. The temperature in the laboratory varied from 

14.6⁰C (during winter) and 26⁰C (during summer).  
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Figure 2.3: Schematic diagram and the hydraulic-flow of the integrated MFC – 
aerobic bioreactor system treating AO-7 containing synthetic wastewater. The 
components of the system are [1] nitrogen gas bag [2] synthetic wastewater 
feeding tank [3] peristaltic pump [4] carbon fabric anode [5] data logging system [6] 
external resistor [7] cation exchange membrane [8] platinised carbon cathode [9] 
air pump [10] air stone sparger [11] magnetic mixer 
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Figure 2.4: The experimental set-up during the start-up stage of the continuous 
run of the two-stage integrated MFC-aerobic bioreactor system for the treatment of 
the model colour industry wastewater containing AO-7.  

 

For the work described in chapter 6, three MFC units were incorporated to 

produce a modular scale-up model for the initial MFC stage of the two-stage 

system. The system components and the hydraulic flow of the up-scaled system 

are shown in Figure 2.5. The MFCs were arranged in tandem but operated as a 

single unit in terms of hydraulic flow. 
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Figure 2.5: Components and the hydraulic flow of the up-scaled two-stage 
integrated bioreactor system featuring integrated MFC modules. (1) Wastewater 
feed (2) peristaltic pump (3) air pump (4) air stone sparger (5) magnetic mixer 

 

The working volume of a single MFC module was 400 mL and had a combined 

working volume of 1200 mL in the integrated reactor system. The MFC reactor 

construction was of polyvinyl chloride (PVC) tubes and had an internal diameter of 

3.5 cm and a length of 60 cm. The anode and the cathode were made of carbon 

paper (PRF composite materials, Dorset, UK) and had surface areas of 192 cm2 

(projected) and 128 cm2 (measured) respectively. The electrode spacing between 

the anode and the cathode was approximately 1.3 cm. The hollow concentric 

anode ran through the length of the PVC tube. Platinum powder was used as the 

oxygen reduction catalyst in the cathode and was coated on to the cathode 

membrane-facing side at 0.35 mgcm-2. The air facing side of the cathode 

contained a PTFE diffusion layer in order to minimise water loss through the cation 

exchange membrane. The Pt catalyst layer and the PTFE diffusion layer was 

applied as described earlie. Electrical connections on the electrodes were secured 
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by soldering copper wire onto the electrodes and the exposed junctions were 

sealed with non-conductive epoxy. A cation exchange membrane (CMI-7000 – 

Membranes International, USA) separated the anode and the cathode in all three 

MFC modules. The spacing between the anode and the cathode was 

approximately 1.5 cm in each MFC module. Three MFC modules were connected 

in parallel to a 500 Ohm external resistor and the voltage across the resistance 

was monitored using a Picolog ADC-24 (Pico Technology, UK) data logging 

system at a data recording interval of 10 minutes. The external electrical circuit in 

the system is indicated in Figure 2.6. Real or model dye wastewater was 

continuously fed with an up-flow configuration to the MFC modules using a 

peristaltic pump. The effluent from the MFC stage was collectively fed into the 

second aerobic stage of the integrated bioreactor system (Figures 2.7 and 2.9). 

The aerobic bioreactor stage was actively aerated continuously through an 

airstone sparger at an air flow rate of 400 mL air per minute. The aerobic reactor 

was continuously agitated using a magnetic mixer. The working volume of the 

aerobic stage was 2 L. The HRTs of the MFC stage and the subsequent aerobic 

stage respectively were 13.3 hours and 22.2 hours.  
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Figure 2.6: The parallel configured external electrical circuit of the three combined 
MFC modules used in this study.  

 

 

Figure 2.7: The up-scaled two stage MFC-aerobic reactor system (during start-up 
of the continuous run) used for the treatment of AO-7 containing model 
wastewater and two types of real colour industry wastewater 
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Figure 2.8: The scaled up tubular MFC modules (three reactors acting in unison) 

treating real colour industry wastewater from leather tanning. 

The work presented in chapter 7 used the same conventional H-type MFC system 

described earlier. The anode and cathode chambers were operated with a working 

volume of 150 mL and the measured surface area of the electrodes was 20 cm2. 

The cathode contained a platinum catalyst layer with a Pt loading of 0.5 mgcm-2. 

The cathode catalyst layer was applied as described earlier. The anode and 

cathode chambers were separated by a cation exchange membrane (CMI 7000 – 

Membranes International, USA). For start-up of the system, the MFCs were 
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allowed to produce a stable voltage across a 1 kΩ resistor for three consecutive 

fed-batch cycles in dye-free media before being used in experiments. 

2.4. Experimental design 

In the first study described in chapter 3, investigated the kinetics of AO7 

decolourisation by S.oneidensis in MFC anodes at AO7 concentrations ranging 

from 35 mgL-1 to 350 mgL-1 using dual chamber MFCs assembled and operated 

as described earlier. The effect of inoculum type on AO7 decolourisation (at an 

AO7 concentration of 35 mgL-1) was studied using S.oneidensis, anaerobic 

digested sludge and a mixed inoculum of anaerobic sludge and S.oneidensis at a 

volumetric ratio of 1:1 (the total inoculum was 10% V/V of the working volume of 

the anode). The control was an MFC containing AO7 (35 mgL-1) with no 

microorganism. The effect of pH on AO-7 decolourisation by S.oneidensis was 

investigated by changing the anolyte medium pH from pH-4 to pH-9 using 2N HCl 

or NaOH to adjust the anolyte pH. Starting AO-7 concentration was kept constant 

at 35 mgL-1 throughout the set of experiments investigating the effect of pH on AO-

7 decolourisation. The anolyte medium composition was the same as in other 

parts of this study (co-substrate – Sodium pyruvate at 20 mM concentration). The 

effect of co-substrate type on AO7 decolourisation kinetics was determined at AO7 

concentrations of 35 mgL-1 and 195 mgL-1 in MFCs inoculated with S. oneidensis. 

The co-substrates chosen were sodium acetate, rapeseed cake, molasses and 

corn-steep liquor (Sigma Aldrich, UK) and were supplemented in the anolyte 

medium at a concentration of 300 mgL-1. The abiotic control experiments used in 

this work were not seeded with the microbial inoculum but used the same medium 

as the other experiments and were assembled and operated under the same 

conditions as the tests. The colour removal by adsorption in abiotic controls is 

presented in appendix 1.  
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The work described in chapter 4 was conducted in several separate experiments 

as indicated below. 

Experiment 1: Long-term fed-batch operation of the MFC system containing the 

simulated wastewater was conducted at 30°C for 50 days. Microbial community 

analysis was carried out on samples collected at the end of the fed-batch 

operation (after 50 days) and un-adapted anaerobically digested sludge.  

Experiment 2: The effect of operating temperature on decolourisation of azo dye 

mixtures was investigated at 20˚C, 30˚C, 40˚C and 50˚C respectively.  

Experiment 3: The effect of salt concentration in the anode feed on 

decolourisation of the dye mixture was investigated using anolyte feed solutions 

containing salt contents ranging from 0% - 2.5% (w/v). Salts used were NaCl and 

Na2SO4.10H2O in a ratio of 1:1 (temperature controlled at 30˚C at all salt 

concentrations).  

The abiotic controls used in the experiments described in chapter 4 contained the 

same molasses medium and the azo dye mixture but were not seeded with the 

azo dye adapted microbial consortium. All abiotic control MFCs containing media 

and the dye mixture (360 mgL-1) were autoclaved at 121°C for 15 minutes and 

were used without inoculation. All experiments were conducted in duplicate and 

the values reported are means ± SD of the mean. 

The assessment of azo dye adsorption: A separate test was carried out in order to 

assess the colour removal contribution from dye adsorption on to biomass and 

other surfaces in the MFC (eg. electrodes and membrane). Microbial cultures in 

MFCs that showed a stable voltage output after start-up (after 72 hours) were heat 

killed by autoclaving (121°C for 15 minutes). The azo dye mixture (sterilised at 

121°C for 15minutes) was introduced into the heat inactivated MFCs at the same 



66 
 

concentration (360 mgL-1) and colour removal was assessed after 24 hours of 

incubation at 30°C.  

In the work described in chapter 5, the MFC stage of the experimental set-up 

consisted of three identical MFC units operating in continuous flow mode, two of 

which were duplicate tests and the other was an open-circuit control. The azo dye 

loading rate was incrementally varied from 70 g m-3day-1 to 210 g m-3day-1 during 

the experiments. The hydraulic residence time (HRT) of the influent within the 

MFC stage of the integrated reactor system was 12 hours during all dye loading 

rates. Samples were drawn from all reactors at set time points throughout the 

experimental run (total length- 154 days). Sampling was conducted from the 

influent (i.e. feeding tank), the MFC reactors and the aerobic stage bioreactors. 

The HRT of the subsequent aerobic reactor stage was 60 hours. The values 

reported are means of duplicate experiments. The components of the integrated 

two stage MFC-aerobic reactor system treating AO-7 containing synthetic 

wastewater and its hydraulic flow is depicted in the schematic diagram (Figure 2.6). 

Following the two-stage continuous runs, the ability of the MFC stage of the 

system to recover from a sudden shock-load of AO-7 was investigated. AO-7 was 

spiked into the MFC reactor stage from a 5 gL-1 AO-7 stock solution to reach a 

final AO-7 concentration of 400 mgL-1 in the MFC stage. The recovery of the MFC 

stage was tracked in terms of colour and COD removal. 

In the work described in chapter 6, experiments were designed and carried out 

with the aim of investigating the effect of scale-up of the integrated MFC-aerobic 

two-stage bioreactor system for azo dye removal and to investigate the reactor 

performance when used for the treatment of model and real industrial wastewaters. 

A modular scale-up was used in which the MFC stage comprised of three 400 mL 

MFC units acted in unison to act as the initial stage of the two-stage system.  
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During the initial experiment where model wastewater containing AO-7 was used, 

the AO-7 loading rate was maintained at 126 gm-3day-1 (COD loading of 5.76 kg 

CODm-3day-1). In the experiment where real colour industry wastewater was used, 

COD loadings of 7.11 kgCODm-3day-1 (dye wastewater from wool colouring) and 

7.65 kgCODm-3day-1 (dye wastewater from leather tanning) respectively were 

maintained. Colour and COD removal performance of the reactor system during 

the experimental runs were monitored.  

In the work described in chapter 7, separate experiments were carried out several 

at different applied external resistances 10 Ω, 510 Ω, 2.2 kΩ, 10 kΩ and 46 kΩ for 

each model azo dye. An open circuit control was run in parallel with all 

experiments for comparison purposes. All experiments were carried out in 

duplicate and the data presented are means ± SD of duplicate tests. For the 

experiments involving synthetic redox mediators, the concentration of the two 

mediators tested (AQDS and AQS) were varied from 20 µM to 150 µM. The control 

experiment included all other components in the anolyte solution except for the 

synthetic redox mediator.  

 2.5. Analytical procedure 

2.5.1. AO7 decolourisation and kinetic study 

The decolourisation of AO7 in MFC anodes in work described in chapter 3, 5 and 

7 were assessed using a UV-Visible spectrophotometer (Perkin-Elmer; Lambda-

35).  AO7 removal was quantified using spectrophotometric standard calibrations 

constructed at the peak absorbance (λmax) of the dye (484nm). The AO7 removal 

efficiency (RE) was calculated as follows: 

  ( )  
             
                ------------------- 1 
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Where, C0AO7 and CtAO7 are AO7 concentrations (mM) at the start and at each time 

point respectively.  

The kinetics of AO7 decolourisation was modelled using first order kinetic models. 

The first order rate constants (k) for AO7 decolourisation reactions can be 

estimated using the integrated first order rate law. 

  [  ]  ( )      [  ] --------------------- 2 

Where, C0 and Ct respectively are AO7 concentrations of the starting sample and 

at each time point. Therefore, -k for the decolourisation of AO7 at each 

concentration would be equal to the slope of a linear plot of ln[Ct/C0] against time 

(t). 

2.5.2. Assessment of decolourisation of the azo dye mix containing 

simulated wastewater 

The decolourisation of the azo dye mix containing feed solution used in the work 

described in chapter 4 was monitored spectrophotometrically using a Perkin-Elmer 

Lambda-35 UV-visible spectrophotometer. The peak area between wavelengths 

400nm-650nm was used to monitor colour removal as described by Nigam et al, 

2000; as compliance of different wavelengths within this range is required by 

environmental agencies dealing with such effluents. The decolourisation efficiency 

(DE) of the dye mixture was calculated as follows: 

   ( )  
     
  

       ---------------------3 

Where, A0 and At are absorbance peak area values between the wavelength 

range 400 nm - 650 nm of UV-Visible spectra scans in the starting solution and at 

each time point respectively. Kinetics of dye decolourisation during MFC fed-batch 

operation was modelled using first order kinetic models. The first order kinetic 
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constants of decolourisation (K (decol)) can be estimated using the integrated first-

order rate law. 

ln (At) = - K (decol) * t + ln (A0)  --------------------- 4 

Where, A0 and At are absorbance peak area values between the wavelength 

range 400 nm - 650 nm of UV-Visible spectra scans in the starting solution and at 

each time point respectively. 

In order to assess the colour removal in more complex real industrial wastewater 

used in work described in chapter 7, UV – visible scans of real wastewater and the 

decolourised samples were used (Perkin – Elmer Lambda-35 UV-Visible 

spectrophotometer). The colour removal efficiencies were established by 

calculating the peak area reduction within the wavelength region 400 nm – 650 nm 

of the UV-vis scans of influent and effluent wastewater samples, as described 

earlier in equation 3. 

Colour removal in the MFC anodes used in the work described in chapter 7 was 

assessed using a UV-visible spectrophotometer (Lambda-35, Perkin Elmer). Azo 

dye degradation was modelled into first order kinetics. The first-order 

decolourisation kinetic constants (k) were estimated as described earlier in 

equation 2.  

2.5.3. COD removal 

Chemical oxygen demand (COD) of the samples was determined using the closed 

reflux titrimetric method as described in Environment Agency (UK) Standard 

method 5220D (Westwood, 2007). Appropriately diluted 2 mL samples were used 

for each determination. Briefly, the samples were centrifuged at 6000 g for 10 

minutes and the supernatant was filtered through a 0.22 µm PTFE filter in order to 

remove suspended biomass. Appropriately diluted 2 mL samples were added to 
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3.8 mL of Ficodox mixed COD reagent and was digested on a pre-heated heating 

block for 1.5 hours at 150°C in closed digestion tubes. A 0.025M ferrous 

ammonium sulphate (FAS) titrant was used with 2-3 drops of Ferroin indicator 

solution (Fisher Scientific, UK) in order to titrimetrically determine the residual 

Potassium dichromate contained in the Ficodox digestate following the digestion 

with the sample. The COD removal was calculated using the following equation: 

COD (mgL-1) = (Vb – Vs)  *  DF  * M * 4000 ------------------ 5 

Where Vb and Vs are ferrous ammonium sulphate (FAS) titrant volumes for the 

blank and the sample respectively, DF is the sample dilution factor and M is the 

molarity of FAS titrant.  

The percentage COD removal was calculated as follows: 

                       
         

    
       --------------- 6 

Where, CODi and CODs are initial COD and sample COD value at each time point 

respectively. 

The COD removal kinetic constants (K (CODrem)) in the work described in chapter 4 

were determined as follows: 

ln (CODs) = - k (CODrem) * t + ln (CODi)  ----------------- 7 

Where, CODi and CODs respectively are initial and sample COD concentration 

values at each time point. 

The -k (CODrem) is equal to the slope of linear plot of ln(CODs/CODi) against time (t). 

2.5.4. Extraction of AO-7 degradation products 

In the work described in chapter 5, the final effluent samples collected at the end 

of the aerobic second stage were centrifuged at 8000 g for 10 minutes and filtered 
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through PTFE membrane filters (0.22 µm) in order to remove suspended biomass. 

The supernatant was then acidified to pH-2 using 3N HCl in order to precipitate 

soluble proteins. The solution was then centrifuged at 8000 g for 10 minutes and 

the supernatant was used for metabolite extraction. The metabolites in these 

samples were extracted into equal volumes of ethyl acetate. The extracts were 

concentrated by rotary evaporation and dried over anhydrous Na2SO4 in a 

desiccator to obtain crystals. These crystals were then dissolved in 1 mL of HPLC 

grade methanol.   

2.5.5. Detection of degradation products using HPLC 

For the work presented in chapter 3, the degradation products of AO7 

decolourisation were identified using HPLC according to the procedure described 

by Mu et al, 2009. The HPLC system (DIONEX GS50) was equipped with a 

Phenomenex Gemini C18 reversed phase column (5 µm, 150 X 4.6 mm) and a 

Photodiode Array (PDA) detector (DIONEX PDA-100). The two standard 

compounds sulfanilic acid and 1-amino-2-naphthol were detected at wavelengths 

248 nm and 284 nm respectively. The mobile phase consisted of 50% methanol 

and 50% 33 mM (pH 7) phosphate buffer. The mobile phase was pumped at a flow 

rate of 1 mLmin-1 and the sample injection volume was 20 µL. The presence of the 

two AO7 decolourisation metabolites Sulfanilic acid and 1-amino-2-naphthol were 

confirmed using the retention times (Rt) of the standard compounds. 

2.5.6. Identification of degradation metabolites using HPLC-MS 

In the work described in chapter 5, the separation of AO7 degradation metabolites 

was carried out using HPLC (Dionex GS50). The HPLC system was equipped with 

a Phenomenex Gemini® reversed phase C18 column (5 µm, 150 X 4.6 mm). The 

detection of the metabolites was done at 248 nm using a photodiode array 

detector (Dionex PDA-100). The mobile phases were 0.05% (V/V) formic acid in 
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Acetonitrile (mobile phase-A) and HPLC grade water (mobile phase-B). 

Subsequent to a 1 minute equilibration before injection, a linear gradient of 10% - 

90% of mobile phase-A (0.05% formic acid in Acetonitrile) was used over 29 

minutes. The sample injection volume was 20 µL and a flow rate of 1 mLmin-1 was 

used.  

The HPLC system was interfaced with Surveyor® MSQ plus Z-spray electrospray 

ionisation (ESI) mass spectrometer. The mass spectrometer was operated in the 

positive mode with a cone voltage of 70 V and the probe temperature was 400°C. 

The needle voltage was maintained at 3 kV and the capillary temperature was set 

to 200°C. Nitrogen was used as the cone gas. The mass range selected was from 

45 – 500 amu. Quasi-molecular ions formed in ESI-MS were identified using the 

NIST mass spectra database. 

2.5.7. Quantification of 4-aminobenzenesulfonic acid and 1-amino-2-

naphthol 

Quantification of the two reductive degradation products of AO-7 4-

aminobenzenesulfonic acid and 1-amino-2-naphthol (produced at the end of the 

MFC stage) in the work described in chapter 5 was carried out using HPLC. The 

authentic standards of both compounds (analytical grade) were purchased from 

Sigma Aldrich (UK). Samples from both MFC stage and the aerobic stage were 

analysed using a reversed phase Phenomenex Gemini® C18 column. The mobile 

phases were acetonitrile and HPLC grade water (60:40 V/V) pumped at a flow rate 

of 1 mLmin-1. The sample injection volume was 20 µL and the detection of both 

compounds was conducted at 248 nm. For identification of 4-

aminobenzenesulfonic acid and 1-amino-2-naphthol in samples, the retention 

times (Rt) of the standard compounds were compared to those of samples. 

Standard curves for both compounds were constructed and the concentrations of 
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both compounds present in all samples were directly read from the standard 

curves. 

HPLC gradient elution of the metabolites contained in the samples was carried out 

for the work described in chapter 6, in order to investigate the chemical changes 

that took place during the two-stage decolourisation process. The separation of 

metabolites using HPLC gradient elution was carried as described earlier. Briefly, 

the Dionex GS50 HPLC system was equipped with a Phenomenex Gemini® 

reversed phase C18 column (5 µm, 150 X 4.6 mm). The detection of the 

metabolites was done at 248 nm using a photodiode array detector (Dionex PDA-

100). The mobile phases were Acetonitrile (mobile phase-A) and HPLC grade 

water (mobile phase-B). Subsequent to a 1minute equilibration before injection, a 

linear gradient of 10% - 90% of mobile phase-A (Acetonitrile) was used over 29 

minutes. The sample injection volume was 20 µL and a flow rate of 1 mLmin-1 was 

used. 

2.5.8. Fourier Transform Infra-Red (FTIR) analysis 

FTIR spectroscopy was carried out in order to further understand the chemical 

nature of the substituent groups present in the fully decolourised samples 

originating from the aerobic stage of the integrated reactor system. Ethyl acetate 

extracts obtained from the aerobic bioreactor stage of the reactor and the AO-7 

containing influent were obtained using the procedure described in the section 2.7. 

The dry crystals obtained were finely ground to powder form and were mixed with 

spectroscopically pure KBr (5:95 ratio) (BDH chemicals, UK) and pressed into 

translucent pellets using a laboratory press. The KBr pellets were fixed in the 

sample holder and FTIR scans were conducted at the mid IR region ranging from 

400 cm-1 to 4000 cm-1 at 16 scan speed (Perkin Elmer, Spectrum One) (Eastman 

Dental Institute, University College, London). 
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2.5.9. Toxicity assessment 

Vibrio fischeri (NCIMB strain 13938) was initially grown in NCIMB growth medium 

1537 (Oceanibulbus medium) (Table 2.7).  

Table 2.7: Composition of Oceanibulbus medium for V.fischeri (13938) 

Component Concentration (gL-1) 

Tryptone 10 

Yeast extract 5 

NaCl 10 

Sigma Aldrich sea salts ready mixture 

(S9983) 

14 

 

V.fischeri was grown in Oceanibulbus medium for 72 hours (22°C, 150 rpm) before 

the cells were harvested by centrifugation at 4000 X g. The cell pellet was washed 

twice with sterile phosphate buffer (50 mM, pH 7.1) and was resuspended in a 

sterile 2% NaCl solution before being used in the toxicity assay.  

Toxicity assays were conducted according to the Microtox® standard acute toxicity 

testing procedure (Gaudet, 1994). The luminescence inhibition cytotoxicity 

assessment procedure was checked using phenol solutions ranging from 5 mgL-1 

to 45 mgL-1 (Figure 2.9) prior to be used for the determination of toxicity of the 

samples originating from this study. The luminescence inhibition was measured as 

described below. 
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Figure 2.9: Vibrio fischeri acute cytotoxicity assay dose-response curve using 
phenol (5 mgL-1 – 45 mgL-1).  

 

For the acute toxicity work described in chapter 5, bioluminescence based toxicity 

assessment of samples was carried out using the standard Microtox® V.fischeri 

luminescence reduction assay as described earlier. The half maximal inhibitory 

concentrations (IC50) (indicating a reduction of half of the total luminescent 

intensity compared to controls) were expressed as a COD equivalent of the 

analysed samples. All samples for toxicity testing were obtained when the reactor 

system was operating at its highest AO-7 loading rate (210 gm-3day-1).  

2.5.10. Mutagenicity assessment using Ames test 

Mutagenicity of the reductive decolourisation products generated following full 

colour removal in MFCs in experiments that contained AO-7 concentrations 

ranging from 35 mgL-1 to 350 mgL-1 was established using soft overlay agar Ames 

mutagenicity testing procedure as described by Maron and Ames, 1983. The two 

histidine auxotroph strains S.typhimurium TA 1535 and TA 1538 carry the 

following two mutations respectively in their histidine synthesis genes hisG 

(hisG46 – a base-pair mutation) and hisD (hisD3052 – a frame-shift mutation) 

(Maron and Ames, 1983). The two strains tested are unable to synthesise histidine 
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on their own and therefore, are unable to grow on histidine deficient growth media. 

The mutagenic potential of a tested chemical or physical mutagen is proportional 

to the rate of reversion of the tested strains from histidine auxotroph to a histidine 

prototroph (Maron and Ames, 1983). Where the reverted strain acquires the 

capability of synthesise histidine and grow on histidine deficient growth medium 

following exposure to a mutagen.  

The mutagenicity tests were carried out on Vogel-Bonner minimal agar plates with 

a soft-top agar layer seeded with the test organism and the test chemicals. The 

composition of the Vogel-Bonner minimal medium-E (VBE) (50X concentrated) is 

shown in Table 2.8 (Pilatz et al, 2006). 

 Table 2.8: The composition of the Vogel-Bonner minimal medium-E (50X stock) 
used in the Ames mutagenicity study 

Component Concentration (gL-1) 

MgSO4.7H2O 10  

Citric acid monohydrate 100  

K2HPO4 500  

Na(NH4)HPO4 175  

 

For preparing VBE glucose agar plates, following components were used (Table 

2.9) 
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Table 2.9: Components used for the preparation of VBE glucose agar plates 

Component Quantity 

Agar 15 g 

50X VBE from stock 20 mL 

Glucose from a 40% (w/v) stock solution 50 mL 

DI water to 1000 mL  

 

The composition of the soft top agar overlay is shown in Table 2.10. 

Table 2.10: Soft-top agar overlay composition (for 600 mL) 

Component Quantity 

VBE glucose agar solution 200 mL 

NaCl 3 g 

Trace stock solution 60 mL 

DI water to 600 mL  

 

The composition of the trace stock solution is shown in Table 2.11. 

Table 2.11: Trace stock solution composition for soft top agar overlay 

Component Quantity 

  

Biotin 6.1 mg 

Histidine 5.25 mg 

DI water to 100 mL  
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All components were autoclaved at 121°C for 15 minutes except the glucose stock 

solution and the trace stock solution for soft top agar overlays. Glucose stock was 

autoclaved at 110°C for 10 minutes and the trace stock solution was filter sterilised 

through a sterile 0.22 µm pore diameter PTFE filter.  

Test culture strains S.typhimurium strains TA 1535 and TA 1538 were grown in LB 

media overnight and the overnight cultures were used for Ames mutagenicity 

testing.  

VBE glucose agar (15 mL) was first poured in to petri dishes and allowed to set. 

The test organism (100 µL) and the test chemical (i.e. AO-7 degradation products 

or the unreduced dye) (100 µL) were added to 2 mL of molten soft-top agar and 

poured over the first layer of agar. When the top layer was set, the plates were 

incubated at 37°C for 72 hours. The revertant colonies developed on the soft agar 

overlay were counted using a semi-automatic bacterial colony counter (American 

Optical Quebec 3327). All tests were carried out in duplicate with sodium azide 

being used as a positive control (Figure 2.10) and sterilised deionised water being 

used for the background plate. The average background colony count was 

subtracted from all tests.  
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Figure 2.10: Positive controls for Ames mutagenicity tests using NaN3 as the 
known model mutagen for the two test strains of S.typhimurium TA 1535 and TA 
1538. 

 

2.5.11. Electrochemical monitoring 

Polarization curves for determining power density vs current density plots were 

constructed using a range of external resistances spanning 1Ω - 1MΩ. The 

external circuit of the MFC was opened to connect various external resistances 

when the system exhibited a stable voltage across the initial 2200Ω external 

resistor. The current flowing through each external load was calculated using the 

Ohm’s law. 

I = E/R  ------------- 8 

Where, I is the current flowing through the load (mA), E is the potential across the 

resistor (mV) and R is the external resistance (Ω).  

The power produced was calculated using the following equation: 

P = E I --------------- 9 
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Where, P is Power produced (mW), E is the potential (mV) and I is the current 

(mA). 

The current density and power density values were calculated by normalising 

current and power values to the projected surface area of the anode (20 cm2).  

Coulombic efficiency (CE) was calculated by integrating the measured current 

over time based on the observed COD removal as follows (Logan et al, 2006): 

   ( )  
 ∫    

 
 

          
        --------------- 10 

Where, M is the molecular weight of Oxygen (32), I is current (A), F is the 

Faraday’s constant (96485 Cmol-1), b is the number of electrons exchanged per 

mol of oxygen (4), Van is the working volume of the anode (L) and ΔCOD is the 

change of COD over time (t) (g CODL-1). 

In the work described in chapter 5, the test MFC units were operated in closed 

circuit configuration with 500 Ω external resistances whereas the control MFC 

reactor was operated in open circuit configuration. Voltage data acquisition from all 

reactors was conducted using a Picolog (Pico Technology, UK) data logging 

system. The current flowing through the external circuit was calculated using the 

Ohm’s law as previously described in equation 8. The Power produced by the 

MFC systems was calculated as previously described in equation 9. The current 

and power values obtained were normalised to the anode surface area (96 cm2) to 

construct polarisation curves and power-current plots. External circuits were 

opened at the end of the MFC operation in order to connect various external 

resistances ranging from 1 Ω to 1 MΩ. When the potential differences across each 

resistance reached a stable value, they were used to construct polarisation curves 

and power-current plots. 
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The external circuits of the three integrated MFC modules were connected in 

parallel configuration to a 500 Ohm load as shown in figure 2.6. The ADC-24 

(Pico-Technology, UK) data logging system was connected in parallel across the 

500 Ohm resistance. Polarisation curves of the collective three-module system 

were recorded by varying the external resistance from 1 Ohm to 1 Mega Ohm and 

recording the registered voltage across each external load. Current flowing across 

each resistance was calculated using the Ohm’s law, as shown in equation 8. The 

power produced was calculated as earlier described according to equation 9. 

Current and power values were normalised to the anode surface area (192 cm2) 

and were used to construct power-current plots. 

For the work described in chapter 7, the total internal resistance (Rint) of the MFC 

systems were estimated using the polarisation slope method as described by 

Menicucci et al, 2006 and Fan et al, 2008. During each experiment, the external 

circuit of the MFCs were opened to connect various external resistances ranging 

from 1 Ω – 1 MΩ.  When the potential across each resistance indicated a stable 

voltage value, it was used to construct polarisation curves and power-current plots 

as described earlier. The maximum power density (Pmax) of the MFC systems was 

obtained from power-current curves. The slope of the Ohmic polarisation region 

represents the total internal resistance (Rint) (Menicucci et al, 2006, Liang et al, 

2007 and Fan et al, 2008).  

Cyclic voltammetry of the experiments involving synthetic redox mediators was 

carried out using a PG 581 potentiostat (UniScan Instruments, UK). MFC anodes 

were used as the working electrode whereas the cathode was used as the counter 

electrode. Ag/AgCl electrode (4M KCl, BASi reference electrodes, USA) was used 

as the reference electrode. A scan rate of 10 mVsec-1 was used and the potential 

sweeps were carried out within the potential range of (-) 500 mV to 500 mV.  
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2.5.12. Microbial community analysis  

For the work described in chapter 4, microbial community analysis was carried out 

by amplification and analysis of the V3 region of the 16s ribosomal DNA (rDNA) of 

bacteria (Figure 2.11) using PCR and DGGE. Total genomic DNA was extracted 

using the phenol-chloroform method (Ogram et al, 1987) from the original 

anaerobic digested sludge and the bulk culture liquid from an MFC fed with 

simulated wastewater containing the azo dye mixture operated in fed-batch mode 

for 50 days. Extracted total microbial genomic DNA was verified on 1% (w/v) 

agarose gels prior to PCR amplification. The DNA extracts were checked for purity 

using the A260/A280 ratio and quantified using a Nano-Drop (Nano-1000, Thermo 

Scientific, USA) spectrophotometer. The 16s rDNA hypervariable V3 regions were 

then amplified using the following set of universal primers; F357-GC (E.coli 

numbering) (5'-CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA 

CGG GGG GCC TAC GGG AGG CAG CAG-3') and R518 (E.coli numbering) (5'-

ATT ACC GCG GCT GCT GG-3') (Sun et al, 2012).  

 

Figure 2.11: The bacterial 16s rRNA gene (approximate total length – 1.5 kb) and 
the hypervariable V3 region amplified for microbial community profiling in this 
study (shown within the red circle).  
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The PCR reaction mixture (50 µL) included the following components: 

2X PCR master mix (New England Biolabs) --------------------- 25 µL 

Nuclease free water ---------------------------------------------------- 22 µL 

Forward and Reverse primers --------------------------------------- 1 µL each 

Template whole genomic DNA --------------------------------------- 1 µL 

The PCR was performed using Bio-Rad PCR system MJ-Mini (UK) under following 

conditions: initial denaturation at 95 °C for 4 min, followed by 30 cycles of 95 °C for 

0.5 min, 58 °C for 1 min, 72 °C for 0.5 min, and finally at 72°C for 7 min. PCR 

products were run on 1.5% (w/v) agarose gels for product size confirmation prior 

to DGGE runs. 

DGGE was performed using CBS Scientific DASG-250 universal mutation 

detection system. PCR products were loaded and run on 8% (w/v) polyacrylamide 

gels (37.5:1 acrylamide:bis-acrylamide) with a denaturant gradient ranging from 30% 

- 60% across the gel (100% corresponding to 7M urea and 40% deionised 

formamide).  

The components of the denaturing gel are listed in Table 2.12. 
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Table 2.12: composition of the denaturing gels (8% acrylamide) used in microbial 
community analysis 

Component Quantity   

0% 30% 60% 

    

Tris acetate EDTA (TAE) 

buffer 50X stock 

0.5 mL 0.5 mL 0.5 mL 

Acrylamide (40% 37.5:1 

stock) 

5 mL 5 mL 5 mL 

Deionised Formamide - 3 mL 6 mL 

Urea - 3.15 g 6.3 g 

Glycerol 0.5 mL 0.5 mL 0.5 mL 

Nuclease free water To 25 mL To 25 mL To 25 mL 

 

The solutions were cast within the glass plates using a gradient delivery system 

and the samples were loaded with a tracker dye (6X – Promega, USA) inside the 

wells. 

Electrophoresis was conducted in 1X Tris-Acetate EDTA (TAE) buffer at 200 V for 

5 hours at 60˚C. Following electrophoresis, the gel was stained using SYBR 

Green-1 DNA stain (Sigma Aldrich, UK) and visualised using a transilluminator 

table. Bands of interest were excised out of the gel using sterile scalpels and 

incubated at 4˚C in tubes containing 100 µL of sterile nuclease-free water for 48 

hours. This solution was used as the template for the second round of PCR 

amplification using the universal primer set F338 (5'-ACT CCT ACG GGA GGC 

AGC AG-3') and R518 using the same PCR conditions indicated before. The 

amplified products were loaded in 40 µL volumes onto 1.5% agarose gels for 

verification. The bands were excised from agarose gels and PCR products were 
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purified using a QiaQuick gel extraction system (QiaGen, UK). Following the 

verification of PCR products on 1.5% agarose gels, the PCR amplicons were 

sequenced at the Wolfson Institute for Biomedical Research, University College 

London, UK.  

The sequences obtained were compared with those in the NCBI GenBank 16s 

rDNA nucleotide sequence repository using NCBI BLAST nucleotide search tool 

(http://blast.ncbi.nlm.nih.gov/Blast). Phylogenetic analysis of the sequences was 

conducted using Mega-5.05 molecular evolutionary genetics analysis tool with 

neighbour joining method (with 1000 bootstrap replicates). 

For the work described in chapter 7, changes in microbial communities during the 

experiments involving different external resistances were investigated using PCR-

DDGE. The total genomic DNA from the samples obtained from MFCs operated 

under various Rext was extracted using a Sigma Aldrich Gen-Elute bacterial DNA 

kit as per manufacturer’s instructions. The whole genomic DNA isolates were 

verified on 1% (w/v) agarose gels prior to PCR amplifications. The hypervariable 

V3 region of the bacterial 16s rRNA gene was amplified using the following set of 

primers – F357-GC (5'-CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG 

GCA CGG GGG GCC TAC GGG AGG CAG CAG-3') and R518 (5'-ATT ACC 

GCG GCT GCT GG-3') (Sun et al, 2013). The PCR conditions were the same as 

described earlier. The amplified sections were verified on 1.5% (w/v) agarose gels 

for correct product size confirmation prior to DGGE microbial community profiling.  

Microbial community profiling was carried out using Bio-Rad D-Code universal 

mutation detection system (USA). Poly acrylamide gels (8%) with a denaturing 

gradient ranging from 30% to 60% (100% corresponding to 7M urea and 40% 

deionised formamide) were formulated from components as shown in table- 2.12 

and were cast into the glass plates using the Bio-Rad model-475 gradient delivery 

http://blast.ncbi.nlm.nih.gov/Blast
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system. The samples were loaded into the wells in with a tracker dye (6X 

concentrated, Promega, USA) and run for 16 hours at 70 Volts. The temperature 

of the system was maintained at 60°C throughout the run. Following the DGGE 

run, the gels were stained using the DNA stain SYBR Green-1 (Sigma Aldrich- UK) 

and was visualised under polarised light using a transilluminator table.   

The gel images were scanned and analysed using the gel image analysis software 

PhyElph© version 1.6. DGGE fingerprints were analysed for their differences in 

the band patterns using unweighted pair-group method with arithmetic mean 

(UPGMA) clustering method. UPGMA algorithm with Jaccard’s coefficient was 

used to cluster the band distances on gel images. Dendrograms were created 

using UPGMA clustering algorithm (PhyElph© version 1.6). 

Bands of interest were excised out of the DGGE gel using sterile scalpels and the 

cut-out gel blocks were incubated at 4°C for 24 hours in tubes containing 100 µL of 

nuclease free water. This was used as the template for second round of PCR 

amplification using the primer set F-338 (5’-ACT CCT ACG GGA GGC AGC AG-3’) 

and R518 (Sun et al, 2012). The products were verified for products size on 1.5% 

(w/v) agarose gels and checked for concentration and purity using a Nano-Drop 

spectrophotometer (ND 1000, Thermo Scientific, USA). The DNA samples were 

sequenced at GATC Biotech, Germany. 

The obtained 16s rDNA fingerprints were analysed using the NCBI GenBank 16s 

rDNA gene fingerprint repository (http://blast.ncbi.nlm.nih.gov/Blast) using the 

basic local alignment search tool (BLAST). Phylogenetic relationships of the 16s 

rDNA gene fingerprints were established using Mega 5.05 evolutionary genetics 

analysis tool with neighbour joining method (1000 bootstrap replicates were used). 

http://blast.ncbi.nlm.nih.gov/Blast
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2.6. Statistical analysis of data 

All experimental data indicated on the graphs are the means of duplicate 

experiments unless otherwise stated and the error bars represent the standard 

deviation of the mean (SD). Statistical analysis of data was conducted by one-way 

analysis of variance (ANOVA) with Tukey post-test using Prism GraphPad 5.0.  
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Chapter 3 - Co-metabolic reductive 

degradation of Acid Orange - 7 in microbial fuel 

cell anodes 
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Summary 

The decolourisation of acid orange 7 (AO7) (C.I.15510) through co-metabolism in 

a microbial fuel cell by Shewanella oneidensis strain 14063 was investigated with 

respect to the kinetics of decolourisation, extent of degradation and toxicity of 

biotransformation products. The aim of this work was to investigate the 

decolourisation of AO7 in the anode of a MFC through co-metabolism. Of 

particular interest were the kinetics of decolourisation, extent of degradation and 

the toxicity of biotransformation products. 

Rapid decolourisation of AO7 (> 98% within 30 hours) was achieved at all tested 

dye concentrations with concomitant power production. The aminobenzene 

degradation products were recalcitrant under tested conditions. The first order 

kinetic constant of decolourisation (k) decreased from 0.709 ± 0.05 h-1 to 0.05 ± 

0.01h-1 (co-substrate- pyruvate) when the dye concentration was raised from 35 

mgL-1 to 350 mgL-1. The use of unrefined co-substrates such as rapeseed cake, 

corn-steep liquor and molasses also indicated comparable or better AO7 

decolourisation kinetic constant values. The fully decolourised solutions indicated 

increased toxicity as the initial AO7 concentration was increased.  

This work highlights the possibility of using microbial fuel cells to achieve high 

kinetic rates of AO7 decolourisation through co-metabolism with concomitant 

electricity production and could potentially be utilised as the initial step of a two 

stage anaerobic/aerobic process for azo dye biotreatment. 

 

 

The experimental outcomes of the work described in this chapter were published in, Fernando, E., Keshavarz, T., Kyazze, 

G., 2012. Enhanced bio-decolourisation of acid orange 7 by Shewanella oneidensis through co-metabolism in a microbial 

fuel cell. International Biodeterioration & Biodegradation 72, 1-9. 
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3.2. Results and discussion 

3.2.1. Anodic decolourisation of AO7 and kinetics of AO7 

removal 

AO7 was rapidly decolourised in MFC anodes at low to moderate concentrations 

(the respective removal rates at AO7 concentrations 35 mgL-1 and 70 mgL-1 were 

254.6 mgL-1day-1 and 500.4 mgL-1day-1). The rapid colour removal observed is 

associated with the reduction of the AO7 chromophore at 484 nm (Figure 3.1A). 

 

Figure 3.1: (A) Absorption spectra showing the reduction of peak intensity of the 
chromophore at 484 nm over a 10 hour period (starting AO7 conc-70mgL-1) and 
(B). The effect of AO7 concentration on decolourisation rate in MFC anodes 
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The temporal AO7 removal reached > 90% at all tested dye concentrations after 

30 hours of MFC operation (Figure 3.1B). 

AO7 decolourisation kinetics could be fitted to a first order logarithmic decay 

model as described in equation 2 (Figure 3.2A). The reaction rate constants (k) for 

the decolourisation reactions decreased with increasing AO7 concentration. A 

linear correlation can be observed between the rate constant (k) of AO7 

decolourisation and initial AO7 concentration (Figure 3.2B).  

 

Figure 3.2: (A) The first order logarithmic decay models of AO7 removal in MFC 
anodes and (B) the linear relationship between the first order rate constant (k) of 
AO7 removal and initial AO7 concentration  

     

This effect may be attributed to the toxicity of the dye or its decolourisation 

metabolites when found in rising concentrations to the anode microbes. IsIk and 

Sponza 2004 and Inan Beydilli and Pavlostathis 2005 reported that accumulation 

of aminobenzene azo dye decolourisation metabolites induces an inhibitory effect 

on decolourisation rates.  

Previously, in studies that utilised mixed anaerobic cultures, Van der Zee et al, 

2001, Van der Zee et al., 2000 and Mendez-Paz et al, 2003 suggested that 

file:///E:/PhD%20research/PhD%20Thesis%20write-up/Thesis%20full/Results%20and%20discussion.docx%23_ENREF_11
file:///E:/PhD%20research/PhD%20Thesis%20write-up/Thesis%20full/Results%20and%20discussion.docx%23_ENREF_11
file:///E:/PhD%20research/PhD%20Thesis%20write-up/Thesis%20full/Results%20and%20discussion.docx%23_ENREF_10
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anaerobic decolourisation of AO7 can be fitted to a first-order autocatalytic model 

due to the possible redox mediator role played by 1-amino-2-naphthol, one of the 

metabolites of AO7 reductive decolourisation. It was suggested that 1-amino-2-

naphthol in its amino-quinone form may play a role as a redox mediator, catalysing 

the transfer of reducing equivalents to the azo moiety of AO7 molecules, leading to 

its accelerated decolourisation. However, this reported phenomenon was not 

evident at high AO7 concentrations in this study (k values did not increase as dye 

concentration increased), most probably due to the inhibitory effect to the anode 

microbial population caused by the toxicity of the dye or the accumulation of its 

decolourisation metabolites. Any possible inhibitory effect on microbial growth or 

metabolism may eventually lead to reduced rates of substrate oxidation and may 

hamper the release of reducing equivalents.  

S. oneidensis utilised in this study indicated rapid AO7 decolourisation kinetics at 

low to moderate AO7 concentrations. The decolourisation kinetic constants (k) 

observed in this study are comparable or better in comparison to that of other 

studies utilising pure or mixed microbial cultures (Table 3.1).  

 

 

 

 

 

 

 



93 
 

Table 3.1: Comparison of AO7 removal rates, first order kinetic constants of 
decolourisation, different inocula and reactor types reported in other studies 

AO7 
conc. 
(mgL-1) 

Removal rate 
(mgl-1d-1) (dye 
conc.) 

Decolourisati
on kinetic 
constant, k 
(h-1) (dye 
conc.) 

Culture Reactor 
type 

Reference 

30 to 300 NG* 0.1 (60mgL
-1

) 
0.08(300mgL

-1
) 

Methanogenic 
and mixed 
anaerobic 
cultures 

Anaerobic batch 
reactor 

Bras et al, 2001 

60  to 300 300 0.066(300mgL
-1

) Anaerobic 
sludge from 
pulp and 
paper 
wastewater 
treatment 
plant 

Up-flow 
anaerobic 
sludge blanket 
(UASB) 

Carvalho et al, 
2007 

35 to 350 
 
 
 

254.6
 
(35mgL

-1
) 

500.43 (70mgL
-1

) 
551 (195mgL

-1
) 

290 (350mgL
-1

) 
 

0.709(35mgL
-1

) 
0.587(70mgL

-1
) 

0.352(195mgL
-1

) 
0.05(350mgL

-1
) 

Shewanella 
oneidensis  

Dual chamber 
MFC 

This study 

10  to 200 NG* 0.082(10mgL
-1

) 
0.047 (50mgL

-1
) 

0.04(100mgL
-1

) 
0.020 (200mgL

-1
) 

Alcaligens 
faecalis and 
Rhodococcus 
erythropolis 

Erlenmeyer 
flasks  

Mutafov et al, 
2007 

 

The decolourisation of AO7 improved marginally when anaerobic sludge was 

utilised as the inoculum (k= 0.781 ± 0.021 h-1 at AO7 conc. 35 mgL-1) (Figure 

3.3A). This could be due to the action of biogenic sulphide produced by the 

sulphate reducing microbial communities that are ubiquitously found in anaerobic 

sludge. AO7 decolourisation rates were higher in UASB reactors inoculated with 

anaerobic granular sludge compared to chemical reduction of AO7 using sulphide 

at comparable concentrations as reported by Van der zee et al, 2001. Hence, the 

presence of biogenic sulphide may be responsible for the marginal increase of 

AO7 decolourisation rate observed in this study when anaerobic sludge was 

utilised to inoculate MFC anodes. However, the electrochemical performance of 

MFCs was markedly lower when anaerobic sludge was utilised (Figure 3.3B), 

possibly due to the diversion of electrons to methane generation pathways by 
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methanogenic bacteria usually found in anaerobic sludge (Mendez-Paz et al, 

2005). Supplementing the anaerobic sludge inoculum with S. oneidensis pure 

culture resulted in restoration of the MFC performance to a limited extent (19 ± 1.6 

mWm-2) while maintaining a high AO7 decolourisation rate (k= 0.713 ± 0.017 h-1) 

(Figures 3.3A and 3.3B). 

 

Figure 3.3: (A) AO7 removal using anaerobic sludge as the inoculum compared to 
AO7 removal using S.oneidensis pure culture and (B) comparison of MFC 
performance. 

 

3.2.2. The effect of co-substrate type on decolourisation 

kinetics of AO7 

The use of unrefined co-substrate types such as rapeseed cake, corn-steep liquor 

and molasses indicated high AO7 decolourisation kinetic constants (table 2). 

Acetate indicated the lowest decolourisation constant (k) value. Identification of 

most suitable and efficient substrate types for biological wastewater treatment is of 

utmost importance in the view of sustainability and cost effectiveness of novel 

wastewater treatment processes. The high kinetic rates of AO7 decolourisation 

utilising unrefined co-substrate types such as rapeseed cake, corn-steep liquor 
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and molasses achieved in this study implies that these relatively cheap raw 

materials could potentially be used in novel textile wastewater treatment 

processes to effectively decolourise azo dyes using microbial fuel cells. 

Table 3.2: Comparison of AO7 decolourisation kinetic constants (k) and maximum 
power densities (Pmax) with different co-substrate types 

Co-substrate AO7 at 35mgL-1 AO7 at 195mgL-1 

  

 K (h-1) Pmax (mWm-2) K (h-1) Pmax (mWm-2) 

Rapeseed 

cake 

0.82 ± 0.02 33.4 ± 2.76 0.3 ± 0.013 15.22 ± 2.89 

Corn-steep 

liquor 

0.86 ± 0.014 39.2 ± 1.39 0.32 ± 0.012 19.28 ± 3.41 

Molasses 0.69 ± 0.017 26.4 ± 3.16 0.29 ± 0.009 14.0 ± 2.2 

Acetate 0.37 ± 0.011 29.4 ± 2.29 0.06 ±0.003 17.29 ± 1.27 

 

Values are means of duplicate experiments ± SD 

3.2.3. The effect of pH on AO-7 co-metabolic degradation 

in MFC anodes by S.oneidensis 

The best decolourisation performance was observed when the anolyte medium pH 

was close to the neutral pH value. At pH-7, over 90% AO-7 decolourisation was 

achieved within four hours whereas at low pH (pH-4) and high pH (pH-9), time to 

reach 90% AO-7 decolourisation increased substantially to 56 hours and 29 hours 

respectively (Figure 3.4).  



96 
 

0 20 40 60
0

20

40

60

80

100
pH-4

pH-5

pH-7

pH-8

pH-9

pH-6

Time (h)

A
O

-7
 r

e
m

o
v
a
l 
e
ff

ic
ie

n
c
y
 (

%
)

 

Figure 3.4: The effect of pH on AO-7 co-metabolic decolourisation by 
S.oneidensis in MFC anodes 

 

This suggests that S.oneidensis is not capable of tolerating extreme high or 

extreme low pH values and its metabolic activity is severely restrained at these 

extremities. The hindrance of microbial metabolic action in turn severely affects 

the electron transfer into the azo moiety of AO-7 and its reductive decolourisation.  
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Figure 3.5: The effect of pH variation on MFC power output during AO-7 
decolourisation by S.oneidensis.  
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The variations of pH away from neutral value induced serious adverse effects on 

MFC power output. As depicted on Figure 3.5, when pH shifts away from the 

neutral value towards the acidic end (pH 4) and alkaline end (pH 9) both exert a 

negative effect on MFC power densities. This suggests that adverse conditions 

such as high or low pH values greatly hinder the external electron transfer activity 

of S.oneidensis. This could be partly due to the reduced bacterial metabolic action 

of bacteria when encountered with adverse conditions such as extreme pH.  

3.2.4. Decolourisation metabolites of AO7 and COD 

removal during MFC operation 

Aminobenzene products of AO7 reductive decolourisation - sulfanilic acid and 1-

amino-2-naphthol - were detected upon analysis of the decolourised liquid using 

HPLC (Retention times 1.6 min and 4.3 min respectively) (Figure 3.6). The 

presence of the two compounds after full decolourisation of the anolyte (after ~ 30 

hours) and after 48 hours, suggests that these degradation products are 

recalcitrant under the test conditions. 
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Figure 3.6: HPLC profile of fully decolourised effluents from MFC anodes (A) at 30 
hours and (B) at 48 hours indicate the presence of Sulfanilic acid (Rt = 1.57 min) 
and 1-amino-2-naphthol (Rt = 4.3min). The two decolourisation metabolites are 
persistent under test conditions (initial AO7 concentration before decolourisation – 
195 mgL-1). 

 

Shewanella species producing flavonoid compounds that are capable of 

enhancing extracellular electron transfer is reported in earlier studies (von 

Canstein et al, 2008). Therefore, a possible mechanism for the observed rapid 

biotransformation of AO7 into aminobenzenes would be the shuttling of electrons 

produced by microbial substrate oxidation into the azo moiety via microbial 

extracellular redox mediators such as flavin compounds. 

The COD removal after 48 hours of MFC operation at the initial AO7 concentration 

of 350 mgL-1 was 73.7±1.5% compared to 93.5±0.9% COD removal in the control 

MFC, where no dye was added (Figure 3.7). The theoretical oxygen demand 

(ThOD) of AO7 (calculated using stoichiometric oxygen equivalent required for 

complete oxidation) at a concentration of 1mM (350 mgL-1) is 672 mgL-1. The 
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remaining COD value of the fully decolourised AO7 solution (at 350 mgL-1 initial 

dye concentration) after 48 hours was greater than the ThOD (table 3.3).  
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Figure 3.7: COD removal during MFC operation within a 48 hour period  

 

Hence, the results indicate that the COD removal is primarily associated with the 

microbial oxidation of the primary carbon source (i.e. Pyruvate) rather than the 

utilisation of the dye pollutant as a carbon and energy source. This further 

indicates that the decolourisation metabolites of AO7 are persistent and do not 

easily catabolise under tested conditions.  

Table 3.3: Comparison of initial and final (after 48 hour MFC operation) COD 
values at various initial AO7 concentrations 

Initial AO7 

concentration 

 

Control (no dye) 

 

Test (70 mgL
-1

) 

 

Test (195 mgL
-1

) 

 

Test (350 mgL
-1

) 

 

Initial COD (mgL
-

1
) 

 

 

2583 ± 23.7 

 

2833.3 ± 61* 

 

2916.6 ± 42.4** 

 

3166.6 ± 47.7** 

COD at 48 hours 

(mgL
-1

)  

166.6 ± 2.57 332.3 ± 3.5* 501.7 ± 8** 833.3 ± 13.3** 
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The COD values are means of duplicate experiments ± SD. Means are 

significantly different from control values at P< 0.05*, P< 0.01** analysed by one 

way ANOVA in conjunction with Tukey post-test. 

3.2.6. Assessment of mutagenic potential of the AO7 

decolourisation metabolites using the Ames test. 

It was previously shown that many aminobenzenes resulting from azo dye 

reductive degradation harbour a significant mutagenic and carcinogenic potential 

(Chequer et al, 2011 and Ferraz et al, 2011). However, the toxicity and 

mutagenicity profiles of reductively decolourised AO7 solutions has not been 

widely characterised in earlier studies that reported the phenomenon of anaerobic 

decolourisation of AO7. Therefore, a more complete understanding of the 

mutagenicity of AO7 reductive biotransformation products is required. Furthermore, 

benzidine and 1-phenylazo-2-hydroxynaphthalene based azo dyes have been 

banned from commercial use in the European Union due to their high mutagenic 

potential (Mansour et al, 2009 and Pandey et al, 2007). They are mainly 

associated with hepatic and bladder cancers as shown in toxicology studies 

involving rodents (Pandey et al, 2007). Toxicological and mutagenic potential data 

obtained from animal models such as rodents can be extrapolated to humans 

(Stiborova et al, 2002). In this study, Ames mutagenicity testing was carried out 

using S.typhimurium histidine auxotrophs TA1535 and TA1538 on the influent feed 

solution containing unreduced AO-7 (at 350 mgL-1) and reductively decolourised 

AO-7 solutions that contained initial AO-7 concentrations ranging from 35 mgL-1 to 

350 mgL-1.  
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Figure 3.8: Mean His+ revertant colonies of S.typhimurium TA1535 and TA1538 
for unreduced AO-7 (at 350 mgL-1) and decolourised AO-7 at various initial AO-7 
concentrations ranging from 35 mgL-1 to 350 mgL-1 during Ames mutagenicity test 
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Figure 3.9: S.typhimurium TA1535 and TA1538 His+ revertants fold increase 
above background (control) plate during Ames mutagenicity test of unreduced AO-
7 (at 350 mgL-1) and decolourised AO-7 (initial AO-7 concentrations before 
decolourisation ranged from 35 mgL-1 – 350 mgL-1)  

The results of this study suggest that both S.typhimurium histidine auxotroph 

strains (TA1535 and TA1538) undergo reversion where both strains acquire the 
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capability to grow on Histidine deficient minimal growth medium when they are 

exposed to AO-7 decolourisation metabolites. The appearance His+ revertants for 

both S.typhimurium strains indicated a concentration dependant effect where the 

lowest number of His+ revertants was observed at the lowest AO-7 degradation 

metabolite concentration (35 mgL-1) and the highest number of His+ revertants 

observed at the highest AO-7 degradation metabolite concentration (Figure 3.8). 

Unreduced AO-7 (at 350 mgL-1) indicated His+ revertant fold increases of 1.72 and 

2.35 respectively for the two strains TA1535 and TA1538 above the background 

plate. At 35 mgL-1, His+ revertants fold increases above the background plate for 

TA1535 and TA1538 respectively were 4.27 and 4.35 fold. However, at high AO-7 

concentrations (350 mgL-1 – decolourised), the His+ reversion rate fold increases 

stood significantly higher (p < 0.05, t-test) at 15.18 and 22.28 respectively for 

TA1535 and TA1538 compared to background (control) revertant plates (Figure 

3.9).  

The two Histidine auxotrophs tested in this study S.typhimurium TA1535 and 

TA1538 carry a base-pair mutation (point mutation) (hisG46) and a frame-shift 

mutation (hisD3052) respectively in their Histidine synthesis genes and therefore, 

are unable to grow on Histidine deficient growth media. The high reversion rates 

observed for both S.typhimurium Histidine auxotroph strains at high AO-7 

decolourisation metabolite concentrations suggests that reductive degradation 

metabolites of AO-7 are capable of inducing both point mutations and frame-shift 

mutations in S.typhimurium. The mutagenic and carcinogenic potentials of these 

azo dye derivatives have been attributed to their planer aromatic structures, where 

they can intercalate between DNA double helixes with relative ease. Furthermore, 

it is generally accepted that non-polar and planer aromatic structures are more 

potent mutagens compared to aromatics substituted with polar and charged 
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substituent groups (Gottlieb et al, 2003). Sulfanilic acid (4-aminobenzenesulfonic 

acid) is one of the reductive degradation products of AO-7 and it is a highly 

charged aminobenzene due to the presence of the sulfonic acid group. Therefore, 

it can be expected in the case of AO-7 that high mutagenic potential of AO-7 

reductive degradation metabolites detected by Ames test in this study, is mostly 

due to the relatively non polar naphthalene derivative 1-amino-2-naphthol.  

3.2.7. Assessment of electrochemical parameters during 

AO7 decolourisation 

Electrochemical monitoring of the MFCs during AO7 decolourisation indicated a 

statistically significant (P< 0.05) decline of power densities obtained from the 

system with increasing AO7 concentrations. The maximum power density reduced 

from 37 mWm-2 to 19.3 mWm-2 when the dye concentration was increased from 70 

mgL-1 to 350 mgL-1 (Figure 3.10B). However, the presence of AO7 in the anode 

compartment up to a concentration of 70 mgL-1 had no apparent effect on MFC 

electrochemical performance compared to the control MFC with no AO7. This 

suggests that the anodic microbial population may tolerate low to moderate AO7 

pollutant concentrations without any detrimental effect on the electrochemical 

performance (Figures 3.10A and 3.10B). The notable reduction of power densities 

at high dye concentrations indicate that a significant portion of the electrons 

released during microbial substrate oxidation is diverted to reducing the azo 

chromophore into aminobenzenes. 
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Figure 3.10: (A) polarisation curves and (B) Power density-current density plots 
during AO7 decolourisation (using pyruvate as the co-substrate) containing initial 
AO7 concentrations of 70 mgL-1, 195 mgL-1 and 350 mgL-1(C) Comparison of 
maximum power densities, Coulombic efficiencies and percentage COD removal 
at different initial AO7 concentrations. Bars with asterisks indicate that they were 
significantly different (one way ANOVA, P< 0.05 with Tukey post-test). 

 

The presence of alternative electron acceptors in abundance (in this case AO7) for 

the anode bacterial population may greatly diminish the Coulombic efficiency. The 

statistically significant (P< 0.05) reduction of Coulombic efficiency by almost half 

when the AO7 concentration was increased from 70 mgL-1 to 350 mgL-1 (Figure 

3.10C) suggests that the observed drop in electrochemical performance may be 

caused by the competition for electrons by the dye pollutant. Another contributory 

factor for this effect could be the accumulation of toxic decolourisation metabolites 

of AO7.  
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Li et al, 2010 demonstrated the possibility of employing an MFC system utilising 

an aerobic bio-cathode to achieve more complete mineralisation of the model azo 

dye Congo Red operating in an anaerobic aerobic mode sequential manner. A 

two-step approach utilising aerobic biotreatment, oxidative enzymatic treatment 

such as laccase (Teerapatsakul et al, 2008) or photo-catalysed Fenton reactions 

(Aleboyeh et al, 2005 and Chacon et al, 2006) as a second treatment stage could 

hold promise in developing an industrially applicable system for treating azo dye 

polluted industrial effluents. 

3.3. Concluding remarks 

This study demonstrated the possibility of utilising the electrochemically active 

bacterium S. oneidensis (strain 14063) to achieve enhanced kinetic rates of AO7 

decolourisation and concomitant production of electrical energy using an MFC 

system. This work further demonstrates that unrefined, cheaper co-substrate types 

such as rapeseed cake, corn-steep liquor and molasses can be successfully 

utilised to achieve high decolourisation kinetics of azo dyes in MFCs. Therefore, 

the enhanced decolourisation kinetic rates  achieved in this study utilising 

unrefined co-substrate types implies that MFCs could potentially be employed as 

the initial step of a two stage anaerobic/aerobic biological treatment process for 

treating azo dye contaminated industrial effluents. 
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Chapter 4 - Co-metabolic decolourisation of 

azo dye mixtures by dye-acclimated mixed 

microbial populations in MFCs 
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Summary 

This study was focused on assessing the suitability of bio-electrochemical systems 

using azo dye adapted mixed cultures for decolourising complex azo dye mixtures 

at industrially relevant conditions. Of particular interest were the influence of 

operating conditions such as temperature and salinity and the bacterial community 

composition of the azo dye degrading adapted mixed culture. 

In this study, azo dye adapted mixed microbial consortium was used to effectively 

remove colour from azo dye mixtures and to simultaneously generate bio-

electricity using microbial fuel cells (MFCs). Operating temperature (20°C-50°C) 

and salinity (0.5% w/v - 2.5% w/v) were varied during experiments. Reactor 

operation at 50°C improved dye decolourisation and COD removal kinetic 

constants by approximately two fold compared to the kinetic constants at 30°C. 

Decolourisation and COD removal kinetic constants remained high (0.28 h-1 and 

0.064 h-1 respectively) at moderate salinity (1% w/v) but deteriorated 

approximately four fold when the salinity was raised to 2.5% (w/v). Molecular 

phylogenetic analysis of microbial cultures used in the study indicated that both 

un-acclimated and dye acclimated cultures from MFCs were predominantly 

comprised of Firmicutes bacteria. This study demonstrates the possibility of using 

adapted microbial consortia in MFCs for achieving efficient bio-decolourisation of 

complex azo dye mixtures and concomitant bio-electricity generation under 

industrially relevant conditions. 

 

 

The experimental outcomes of the work described in this chapter were published in, Fernando, E., Keshavarz, T., Kyazze, 

G., 2013. Simultaneous co-metabolic decolourisation of azo dye mixtures and bio-electricity generation under thermophillic 

(50°C) and saline conditions by an adapted anaerobic mixed culture in microbial fuel cells. Bioresource Technology 127, 1-

8. 
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4.2. Results and Discussion 

4.2.1. Decolourisation of azo dye mixtures during fed-

batch MFC operation 

The decolourisation of the feed solution containing the azo dye mixture was 

confirmed by visual observation and spectrophotometric scans, suggesting a rapid 

removal of azo chromophores of the dye mixture during MFC operation (Figure 

4.1). The persistent high peak intensities near the UV region (220-300 nm) of the 

spectra scans of samples taken at 6, 20 and 36 hours can be attributed to the 

formation of colourless amines during azo dye decolourisation. Under anoxic 

condition, azo dyes are known to undergo reductive decolourisation into their 

respective aminobenzines by membrane bound non-specific reductase enzymes. 

In view of anionic nature and large molecular size of many azo dyes, it can be 

expected that they are incapable of crossing largely non-polar biological 

membranes into cellular interior.  Hence, the rapid decolourisation of azo dye 

mixtures observed in this study can be attributed to extra-cellular co-metabolic 

reductive decolourisation by the anodic microbial community. However, it was 

difficult to identify the exact nature of the decolourisation metabolites in this study 

due to the complex nature of the dye mixture and the complex carbon source used 

(molasses). 



109 
 

 

Figure 4.1: Absorption spectra of the feed solution (0 hours – spectrum-A) and 
samples taken at 6, 20 and 36 hours (spectra B, C and D) respectively indicate the 
decrease in peak intensity at the visible region of the spectrum over-time; 
indicating the decolourisation of the azo dye mixture. Inset: (A) fed-batch feed 
solution, (B), (C) and (D) are samples taken after 6, 20 and 36 hours of MFC 
operation respectively (temperature- 30°C, Experiment-1). 

 

4.2.2. Decolourisation and COD removal performance 

during MFC fed-batch operation 

Decolourisation of the azo dye mixture and COD reduction in the influent feed 

solution reached over 90% in all of the cycles (Figure 4.2). This suggests that 

efficient and repeatable colour removal from azo dye mixtures is possible when 

adapted anaerobic microbial consortia are employed in fed-batch operation. When 

the colour removal by adsorption processes was assessed, the decolourisation 

was found to be as low as 1.6% ± 0.21% (n=3) (appendix 2). Therefore, the 

contribution from adsorption to colour removal in this study was considered to be 

small. In the work presented in the previous chapter, it was demonstrated that 
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better decolourisation kinetics compared to other anaerobic systems (eg. UASB 

reactors) could be achieved for the model azo dye Acid Orange-7 (AO-7) in the 

electrochemically active environment of MFCs. This was attributed to the more 

effective transfer of reducing equivalents to the azo moiety in an electrochemically 

active environment of a MFC, eventually leading to rapid reductive decolourisation 

of the model azo dye. Sanroman et al, 2004 reported the possibility of 

electrochemical decolourisation of textile azo dye mixtures up-to 2-3 dyes. 

However, biological decolourisation of azo dye mixtures is rarely reported in 

literature. Previously, Nigam et al, 1996 demonstrated that enrichment anaerobic 

mixed cultures were capable of decolourising azo dye mixtures containing up-to 

nine structurally different dyes. In the view of large structural diversity and wide 

range of molecular weights of azo dyes, it can be expected that their 

decolourisation may benefit from the use of adapted anaerobic microbial consortia 

rather than the use of pure cultures. 
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Figure 4.2 (A): Decolourisation of azo dye mixtures (B) COD reduction of the feed 
solution and (C) MFC voltage generation during fed-batch operation (arrows 
indicate the fresh medium feeding and start of new fed-batch cycles- Experiment-1; 
temperature- 30°C). 

 



112 
 

Harazono and Nakamura, 2005 demonstrated that azo dye mixtures comprising of 

three component dyes can be decolourised using purified fungal manganese 

peroxidase (MnP) and in liquid fermentations of bacidiomycete fungus 

Phanerochaete sordida. The decolourisation of azo dye mixtures observed in the 

aforementioned study was attributed to the MnP activity of the culture. Similarly, in 

a study by Selvam et al, 2003, dye industry effluents containing azo dye mixtures 

were decolourised by white rot fungus Thelephora sp. In this case, decolourisation 

was attributed to the fungal extracellular production of lignin peroxidase (LiP), 

laccase and MnP. Although white rot fungi are shown to non-specifically degrade a 

wide variety of poly aromatic compounds including azo dyes, the lignolytic 

oxidative enzyme production in liquid fermentations is known to be inconsistent 

(Robinson et al, 2001). This could be mainly due to the unfamiliar environment of 

liquid fermentations for wood degrading fungi as opposed to solid-state 

fermentations (SSF) where their natural environment is more closely simulated. 

Therefore, the use of adapted bacterial cultures rather than fungal cultures for 

rapid colour removal in colour industry effluent would be advantageous in 

operational standpoint. 

The results of this study indicates that it is possible to achieve over 90% colour 

and COD removal in azo dye mixtures in a repeatable manner during fed-batch 

MFC operation (Figures 4.2A and 4.2B). This highlights the potential advantages 

of using an adapted mixed microbial consortium for azo dye removal. The use of 

the electrochemically active environment of MFCs could confer additional benefits 

such as enhancing azo dye removal kinetics and concomitant bio-electricity 

production (Figure 4.2C). 
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4.2.3. Decolourisation and bio-electrochemical system 

performances under thermophillic and saline conditions 

4.2.3.1. The effect of operating temperature (Experiment-2) 

The kinetic constants for colour and COD removal indicated approximately a 6.5 

fold and 3.5 fold enhancements respectively when the operating temperature was 

raised from 20°C to 50°C (Table 4.1). This suggests that the adapted microbial 

consortium prefers thermophillic operation for dye decolourisation and COD 

reduction over mesophillic operation. The composition of the adapted microbial 

consortium determined by 16s rDNA analysis suggests that bacteria belonging to 

genera Clostridium and Eubacterium are predominant (Table 4.3). Many bacteria 

belonging to aforementioned genera are known to produce thermostable enzymes 

(Gomes and Steiner, 1998) and known to function under thermophillic conditions 

(Lo et al, 2011). The effect of operating temperature was also reflected in the 

electrochemical performance of the MFC system where, peak power density 

obtainable from the system increased approximately two-fold from 13.22 ± 2.42 

mWm-2 to 25.6 ± 2.77 mWm-2 when the operating conditions were changed from 

sub-mesophillic (20°C) to thermophillic (50°C) (Table 4.1).  
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Table 4.1: The effect of operating temperature on colour removal, COD removal 
and electrochemical performance (peak power densities obtainable from the MFC 
system). Values are means of duplicate experiments ± SD (Experiment-2) (ND – 
no detectable change) 

Operating 

temperature (°C) 

K-decolourisation 

(h-1) 

K-COD removal 

(h-1) 

Peak power 

density (mWm-2) 

20 0.0412 ± 0.001 0.0114 ± 0.004 13.22 ± 2.42 

30 0.132 ± 0.021 0.0236 ± 0.007 16.18 ± 3.12 

40 0.22 ± 0.016 0.036 ± 0.011 19.67 ± 3.44 

50 0.27 ± 0.029 0.04 ± 0.009 25.6 ± 2.77 

Abiotic control ND ND 0.21 ± 0.1 

 

4.2.3.2. The effect of salinity (Experiment-3) 

The common auxiliary salts present in textile wet processing processes were 

added in this study by addition of varying (w/v %) amounts of NaCl and 

Na2SO4.10H2O (Glauber’s salt) in a ratio of 1.1.  

Table 4.2: The effect of salinity on colour removal, COD removal and 
electrochemical performance of the MFC system (temperature - 30°C). Values are 
means of duplicate experiments ± SD (Experiment-3) (ND – no detectable change). 

Salt content 

 (w/v %) 

K-decolourisation (h-1) K-COD removal  

(h-1) 

Peak power 

density (mWm-2) 

0 0.1831 ± 0.024 0.0466 ± 0.006 14.568 ± 1.21 

1 0.28 ± 0.043 0.0644 ± 0.01 22.27 ± 4.77 

2.0 0.0975 ± 0.007 0.0301 ± 0.009 27.65 ± 2.11 

2.5 0.064 ± 0.009 0.0197 ± 0.003 13.58 ± 2.9 

Abiotic control ND ND 0.16 ± 0.15 
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The results indicated that reasonable decolourisation and COD removal kinetic 

rates can be maintained up-to a solution salt content of 2% (w/v). This 

performance deteriorated about 4.4 fold and 3.3 fold respectively in terms of colour 

and COD removal when the solution salt content was raised from 1% (w/v) to 2.5% 

(w/v). The high power densities of the MFC system observed at high salt content 

(1% - 2% w/v) could be due to the better electrochemical performance of 

electrochemically active bacteria at high ionic strength. Similar to these findings, 

Liu et al, 2005 reported that high power densities yielded in single chamber MFCs 

inoculated with anaerobic mixed cultures at high (salt content- 0.6% - 2.3% w/v) 

ionic strengths. However, the salt content appears to indicate an inhibitory effect 

on power output of the MFC system at 2.5% (w/v), suggesting that it may be out of 

the tolerable range (Table 4.2). Colour industry wastewater often contains 

mixtures of azo dyes with a vast chemical structural diversity. Moreover, during 

textile wet processing, large amounts of sodium sulphate decahydrate (Glauber’s 

salt) and sodium chloride are added to improve the migration and fixation of dye 

molecules into the textile substrate. The temperature during textile wet processing 

is maintained at around 90°C and the effluent is often hot when discharged 

(Schlaeppi, 1998). A previous study aimed at characterising textile effluent 

generated from textile wet processing plants in south-east Asia reported salinities 

between 1% (w/v) – 3.3% (w/v) (Roy et al, 2010). Therefore, the findings of this 

study indicating the potential industrial applicability of such systems employing 

robust, azo dye adapted mixed microbial consortia are promising.  
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4.2.3. Bacterial 16s rDNA community analysis of the 

original anaerobic digested sludge and azo dye/MFC 

adapted dye degrading culture 

Comparison of DGGE fingerprints of the original anaerobic digested sludge and 

azo dye/MFC adapted microbial cultures indicate different banding patters; 

suggesting that a different microbial community becomes selected under the 

conditions used in this study (Figure 4.3). 

 

Figure 4.3: 16s rDNA PCR-DGGE profiles of (A) original un-acclimated anaerobic 
digested sludge (B) azo dye/MFC acclimated microbial culture after approximately 
50 days of fed-batch operation (temperature-30°C). 

 

Phylogenetic analysis of 16s rDNA sequences obtained from the original 

anaerobic culture revealed that majority (87%) comprised of bacterial species 

belonged to genera Clostridium and Eubacterium (Figure 4.4A). Phylogenetic 

affiliations of the identified bacterial species are shown in table 4.3. Many 

substrate types suitable for fermentative hydrogenic and methanogenic growth are 
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encountered in anaerobic wastewater treatment plants (Venkata Mohan, 2009). 

Therefore, a high proportion of such Firmicutes can be expected in anaerobically 

digested sludge.  

Clear differences in phylogenetic relationships can be observed between the 

original anaerobic microbial community and the dye/MFC adapted microbial 

consortium capable of bio-decolourisation of azo dye mixtures. More Gram 

negatives belonging to phyla Bacteroidetes and Proteobacteria were selected 

under these conditions (43%) (Figure 4.4B). This may be attributed to the 

electrochemically active environment provided to the microbial community in the 

form of a microbial fuel cell. In earlier studies, Gram negative organisms such as 

Pseudomonas sp. and Flavobacterium sp. are reported to be responsible for 

extracellular electron transfer (EET) in MFCs (Rabaey and Verstraete, 2005 and 

Nien et al, 2011). Some Flavobacterium sp. are also known to be moderately 

halotolerant (Saha et al, 2006 and Yoshie et al, 2006).  
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Table 4.3: Phylogenetic affiliations of PCR-DGGE sequences of the un-adapted 
anaerobic culture (designated AnslA) and azo dye adapted culture (designated 
Cyc1A) based on the 16s rDNA sequences in the NCBI 16s rDNA sequence 
repository 

Sample Closest relative (% 

similarity) 

GenBank accession 

number 

 Phylogenetic affiliation 

     

AnslA1 Clostridium 

saccharobutylicum 

strain P262 (98) 

NR_036951.1   Firmicutes 

AnslA2 Pseudomonas 

delhiensis strain 

RLD-1 (96) 

NR_043731.1   Proteobacteria 

AnslA3 Eubacterium 

nitritogenes strain 

JCM 6485 (96) 

NR_024684.1   Firmicutes 

AnslA4 Clostridium 

sardiniense strain 

DSM 2632 (100) 

NR_041006.1   Firmicutes 

AnslA5 Clostridium 

butyricum strain 

VPI3266 (99) 

NR_042144.1   Firmicutes 

AnslA6 Clostridium colicanis 

strain 3WC2 (99) 

NR_028964.1   Firmicutes 

AnslA7 Clostridium baratii 

strain IP 2227 (97) 

NR_029229.1   Firmicutes 

AnslA8 Clostridium 

uliginosum strain 

CK55 (99) 

NR_028920.1   Firmicutes 

Cyc1A1 Clostridium 

saccharobutylicum 

strain P262 (100) 

NR_036951.1   Firmicutes 

Cyc1A2 Pseudomonas NR_028987.1   Proteobacteria 

http://www.ncbi.nlm.nih.gov/nucleotide/310975087?report=genbank&log$=nucltop&blast_rank=1&RID=WCRTDH1P016
http://www.ncbi.nlm.nih.gov/nucleotide/343204007?report=genbank&log$=nucltop&blast_rank=1&RID=WCRNZ098016
http://www.ncbi.nlm.nih.gov/nucleotide/219856865?report=genbank&log$=nucltop&blast_rank=8&RID=WCRVK6MT012
http://www.ncbi.nlm.nih.gov/nucleotide/343200319?report=genbank&log$=nucltop&blast_rank=3&RID=WCS8FFBB016
http://www.ncbi.nlm.nih.gov/nucleotide/343201418?report=genbank&log$=nucltop&blast_rank=3&RID=WCSGPJ4001N
http://www.ncbi.nlm.nih.gov/nucleotide/265678659?report=genbank&log$=nucltop&blast_rank=2&RID=WCSN6YB7016
http://www.ncbi.nlm.nih.gov/nucleotide/265678921?report=genbank&log$=nucltop&blast_rank=2&RID=WCSR8UMH01S
http://www.ncbi.nlm.nih.gov/nucleotide/265678615?report=genbank&log$=nucltop&blast_rank=1&RID=WCSXEB7C013
http://www.ncbi.nlm.nih.gov/nucleotide/310975087?report=genbank&log$=nucltop&blast_rank=1&RID=WCT065RF01N
http://www.ncbi.nlm.nih.gov/nucleotide/265678682?report=genbank&log$=nucltop&blast_rank=1&RID=WCT5PPS7013
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trivialis strain P 

513/19 (100) 

Cyc1A3 Flavobacterium 

lindanitolerans strain 

IP10 (94) 

NR_044208.1   Bacteroidetes 

Cyc1A4 Sedimentibacter 

hydroxybenzoicus  

strain JW/Z-1 (96) 

NR_029146.1   Firmicutes 

Cyc1A5 Clostridium baratii 

strain IP 2227 (99) 

NR_029229.1   Firmicutes 

Cyc1A6 Clostridium colicanis 

strain 3WC2 (95) 

NR_028964.1   Firmicutes 

Cyc1A7 Pseudomonas poae 

strain P 527/13(99) 

NR_028986.1   Proteobacteria 

 

 

 

http://www.ncbi.nlm.nih.gov/nucleotide/343198973?report=genbank&log$=nucltop&blast_rank=1&RID=WCT8CE3E013
http://www.ncbi.nlm.nih.gov/nucleotide/265678841?report=genbank&log$=nucltop&blast_rank=1&RID=WCTMHNPC012
http://www.ncbi.nlm.nih.gov/nucleotide/265678921?report=genbank&log$=nucltop&blast_rank=1&RID=WCTRWYVN012
http://www.ncbi.nlm.nih.gov/nucleotide/265678659?report=genbank&log$=nucltop&blast_rank=4&RID=WCTTFHG101N
http://www.ncbi.nlm.nih.gov/nucleotide/265678681?report=genbank&log$=nucltop&blast_rank=2&RID=WCTVZ4FS016
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Figure 4.4: Phylogenetic relationships of (A) 16s rDNA sequences from the 
original un-adapted anaerobic digested sludge and (B) 16s rDNA sequences from 
azo dye/MFC adapted microbial consortium after 50 days of fed-batch operation 
Numbers above or below branches indicate bootstrap values (≥ 75%) from 1000 
replicates and scale bars indicate the number of nucleotide substitutions per site. 

 

The high proportion of Firmicutes such as Clostridium sp. and Eubacterium sp. 

found both in the un-adapted original anaerobic culture and the dye/MFC adapted 

bacterial consortium may explain the ability of the microbial community to operate 

efficiently under thermophillic conditions. Clostridium species are well known for 

fermentative growth under thermophillic conditions (Lo et al, 2009 and Zverlov et 

al, 2010).  

Previous work by Park et al, 2001 was able to isolate and characterise a 

Clostridium sp. closely related to Clostridium butyricum from MFCs fed with starch 

processing wastewater. Further characterisation of the isolate revealed that the 

organism was capable of fermentative growth as well as neutral red reduction and 

Fe (III) reduction; suggesting that organism is electrochemically active and 

capable of carrying out extracellular electron transfer. These findings implies that 

the Firmicutes that became selected during dye fed cycles within the 
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electrochemically active environment of MFCs in this study may also be capable of 

extracellular electron transfer onto the electrode as well as the azo moiety of the 

dye compounds, leading to their effective reductive decolourisation.  

4.3. Concluding remarks 

The outcomes of this work implies that wastewater containing complex azo dye 

mixtures can be effectively decolourised under industrially relevant conditions such 

as high temperature and moderately saline conditions using an adapted anaerobic 

microbial consortium in MFCs. Efficient colour removal of the dye mix containing 

simulated wastewater and concomitant bio-electricity production was achieved 

using the unrefined co-substrate molasses as the electron donor. The molecular 

phylogenetic analysis conducted in this study demonstrated that bacteria 

belonging to phylum Firmicutes was predominant in planktonic MFC anode 

solutions following long-term MFC operation. This work demonstrates that MFCs 

could potentially be employed as an efficient system for reductive colour removal 

from azo dye contaminated wastewater. 
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Chapter 5 - An integrated MFC – aerobic 

bioreactor process for complete degradation of 

Acid Orange-7  
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Summary 

The objective of this study was to fully biodegrade the azo dye AO-7 using an 

integrated MFC-aerobic system into non-toxic intermediates. Simulated 

wastewater containing AO-7 and the cheap, sustainable co-substrate molasses as 

the electron donor was continuously fed to the integrated set up of MFC-aerobic 

bioreactor system during experiments. 

In this study, the commercially used azo dye Acid Orange-7 (AO-7) was fully 

degraded into less toxic intermediates using an integrated microbial fuel cell (MFC) 

and aerobic bioreactor system. The integrated bioreactor system was operated at 

ambient temperature and continuous-flow mode. AO-7 loading rate was varied 

during experiments from 70 gm-3day-1 to 210 gm-3day-1. Colour and soluble COD 

removal rates reached > 90% under all AO-7 loading rates. The MFC treatment 

stage prompted AO-7 to undergo reductive degradation into its constituent 

aminobenzenes. HPLC-MS analysis of metabolite extracts from the aerobic stage 

of the bioreactor system indicated further oxidative degradation of the resulting 

aminobenzenes into simpler compounds. Eco-toxicity testing of the effluents using 

bioluminescent Vibrio fischeri cells indicated that aerobic stage effluent indicated 

toxicity reductions of approximately five-fold and ten-fold respectively compared to 

the dye wastewater influent and MFC-stage effluent. 

 

 

 

The experimental outcomes of the work described in this chapter were published in, Fernando, E., Keshavarz, T., Kyazze, 

G., 2014a. Complete degradation of the azo dye Acid Orange-7 and bioelectricity generation in an integrated microbial fuel 

cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature. Bioresource Technology 156, 

155-162. 
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5.2. Results and discussion 

5.2.1. AO7 degradation, colour removal and soluble COD 

reduction during two-stage reactor operation 

The AO-7 loading rate was incrementally varied over the course of reactor 

operation from 70 gm-3day-1 to 210 gm-3day-1. However, the effluent AO-7 

concentrations measured at both the MFC stage and the aerobic stages of the 

integrated bioreactor were below 8 mgL-1, indicated a high (>90%) AO-7 removal 

efficiency throughout the reactor operation. The incremental variation of AO-7 

feeding during continuous reactor operation did not adversely affect the AO-7 

removal efficiency of the integrated reactor system and >90% removal efficiencies 

were reached even at the highest AO-7 loading rate (210 gm-3day-1). This 

indicates the robustness of the integrated reactor system and the ability to deal 

with high pollutant loading rates. The reactor system was capable of sustaining the 

high removal rates throughout the long-term operation (more than 150 days) 

without noticeable deterioration to colour removal or soluble COD removal 

performances.  The open circuit control reactor (analogous to a conventional 

anaerobic process) was unable to reach the same level of AO-7 decolourisation 

compared to continuous MFC reactors under the same HRT at any of the three 

dye loading rates tested (Figure 5.1A). 

The removal of AO-7 during the two-stage operation suggests that largest 

proportion of AO-7 was degraded during the anoxic MFC stage of the reactor 

operation. No noticeable AO-7 removal and hence, colour removal can be 

observed at the aerobic stage of the integrated reactor system. This suggests that 

AO-7 is only amenable to reductive biotransformation at the anoxic MFC stage but 
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the residual AO-7 is recalcitrant under aerated latter stage of the reactor (Figure 

5.1A). These observations corroborate well with the results of numerous other 

studies that demonstrated the reductive colour removal of various azo dyes and 

the recalcitrance of the unreduced azo dyes under aerobic conditions (O’Neill et al, 

2000, Rajaguru et al, 2000, Shaul, 1991).  

 

Figure 5.1: (A) AO-7 removal during the two stage operation at various AO-7 
loading rates over a period of 150 days and (B) COD removal performance of the 
integrated bioreactor system at each stage 

 

Soluble COD reduction was observed during both MFC stage and the aerobic 

stage. However, the COD reduction during the MFC stage was only partial. The 

relatively high concentrations of soluble COD at the end of the MFC stage can be 
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attributed to the residual co-substrate (molasses) from the MFC stage and 

recalcitrant aminobenzenes resulting from the biological reduction process of AO-7. 

The further reduction of COD during the subsequent aerobic stage of the 

integrated reactor suggests that a larger proportion of the molasses co-substrate 

and the amine biotransformation products have been consumed during the 

sequential MFC – aerobic treatment stages (Figure 5.1B). The total COD loading 

in the reactor system ranged from 1.044 kgCODm-3day-1 (at 70g m-3day-1 AO-7 

loading rate) to 1.26 kgCODm-3day-1 (at 210 gm-3day-1 AO-7 loading rate). This 

indicates that the integrated reactor system was capable of effectively dealing with 

high COD loading rates over prolonged operational periods (over 150 days) 

without suffering a substantial reduction in COD removal efficiency. The COD 

value of molasses containing blank medium without AO-7 was measured to be 

2950 ± 60 mg CODL-1. Although the contribution of AO-7 to total COD 

concentration was relatively small (approximately 10% of total soluble COD at 210 

gm-3day-1 AO-7 loading rate), high COD removal efficiencies achieved (often 

above 90% removal) throughout the aerobic treatments stage suggests that 

refractory amines have been utilised by the bacterial mixed population for their 

carbon and energy needs. The integrated bioreactor system was operated at 

ambient temperature and temperature fluctuations had little or no apparent effect 

on colour removal efficiency or soluble COD reduction in the combined bioreactor 

stages. Particularly, during winter months where the temperature was lower, no 

adverse effects on aforementioned parameters could be observed.  

5.2.2. Aminobenzene formation during the MFC stage and 

amine removal in the subsequent aerobic stage 

Effluent samples collected subsequent to the anoxic MFC stage indicated that 

both constituent aminobenzenes of AO-7 (4-aminobenzenesulfonic acid and 1-
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amino-2-naphthol) were formed as a result of reductive azo bond cleavage. 

Increasing concentrations of both aminobenzenes were detected when the AO-7 

loading rate was elevated from 70 gm-3day-1 to 210 gm-3day-1 (Figures 5.2A and 

5.2B).  

 

Figure 5.2: (A) Removal of 1-amino-2-naphthol within the MFC stage and aerobic 
stages of integrated bioreactor operation and (B) removal of 4-
aminobenzenesulfonic acid (Sulfanilic acid) during the integrated bioreactor 
operation over a period of 150 days.  

 

The prevalent high concentrations of both amines at the anoxic MFC stage 

suggests that under the hydraulic retention time (HRT) the MFCs operate at, the 

MFC stage treatment is unable to degrade both aminobenzenes effectively and 
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hence are washed out into the effluent entering the subsequent aerobic treatment 

stage of the reactor system.  

Effluent samples collected at the end of the aerobic treatment stage of the 

integrated reactor system however, indicated considerably smaller concentrations 

of both aminobenzenes. This suggested that both constituent amines 4-

aminobenzenesulfonic acid and 1-amino-2-naphthol were amenable to further 

degradation under the aerobic conditions utilised in the latter stage of the 

integrated bioreactor in this study. The observed additional reduction of soluble 

COD in the second aerobic stage of the reactor (Figure 5.1B) corroborates well 

with the data presented in figures 5.1A and 5.1B.  

Ortho-substituted aminophenols such as 1-amino-2-naphthol are known for 

undergoing autoxidation reactions to form more refractory and highly coloured 

polymeric products upon exposure to oxygen (Kudlich et al, 1999). In this study 

however, no such accumulation of coloured, polymeric autoxidation products were 

observed. Especially at high AO-7 loadings (210 gm-3day-1) the effluent of the 

second stage was colourless and indicated no accumulation of coloured polymeric 

residues. This indicates that the aerobic stage of the reactor system is capable of 

effectively degrading autoxidation prone aminophenols such as 1-amino-2-naphtol. 

Sulfonated aminobenzenes such as 4-aminobenzoic acid are particularly known 

for their refractory nature (Gan et al, 2012). The use of azo dye adapted mixed 

microbial population in this study however, enabled 4-aminobenzenesulfonic acid 

removal rates up-to 74% even at the highest AO-7 loading (210 gm-3day-1) (Figure 

5.2B). 

In a very recent similar study, Cui et al, 2013 utilised a microbially assisted 

electrolysis system coupled to a subsequent aerobic stage to treat model 

wastewater containing the azo dye Alizarin Yellow – R (AYR). However, this 
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process utilised by Cui et al, 2013 being an electrolysis system, it required the use 

of an exogenous power supply and was unable to operate effectively in the 

absence of power. Electrolysis processes for azo dye treatment are not favoured 

due to high operational costs. Furthermore, a toxicity assessment about the end 

products of the aerobic stage was not conducted by Cui et al, 2013 in that study. 

5.2.3. Toxicity reduction during the two stage reactor 

operation 

Achieving low environmental toxicity of the effluents is important for any 

biotreatment strategy used for recalcitrant waste removal (Ayed et al, 2011). Some 

aminobenzenes resulting from azo dye reductive biotransformation are 

demonstrated to be highly toxic to humans and other organisms including 

microorganisms (Skipper et al, 2010, Chen et al, 2009). Results of this study 

indicate that the amines formed at the end of the anoxic MFC stage induce a 

bioluminescence reduction toxicity effect on V.fischeri cells (Figure 5.3). The half 

maximal luminescence inhibition value (EC50) for the AO-7 containing synthetic 

wastewater influent and MFC effluent were 127 mgCODL-1 and 63.3 mgCODL-1 

respectively. The effluent of the MFC stage indicated a marked increase in the 

EC50 value (637 mgCODL-1) suggesting a significant (p < 0.01, ANOVA) reduction 

in toxicity compared to both MFC stage influent and MFC stage effluent. 

Interestingly, the low EC50 value (high toxicity) of the dye wastewater influent 

suggests that the presence of unreduced AO-7 itself in high concentrations may 

contribute to high environmental toxicity.  
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Figure 5.3: Vibrio fischeri luminescence based toxicity determinations of MFC 
influent, MFC effluent and aerobic stage effluent at the highest AO-7 loading rate 
(210 gm-3day-1).  

 

Therefore, the results suggest that environmental toxicity of the samples were 

considerably reduced by subjecting the MFC stage effluent to aerobic post-

treatment. The toxicity of the aerobic stage effluent was approximately 5-fold lower 

compared to synthetic wastewater influent and 10-fold lower compared to amine 

containing MFC stage effluent. These findings corroborate well with few other 

previous studies where a reduction of toxicity was observed following aerobic 

treatment of decolourised azo dye wastewater (Gottlieb et al, 2003, Kalme et al, 

2007). 

5.2.4. Biogenic electricity generation during AO-7 

degradation 

Tubular type MFC operation during AO-7 removal resulted in concomitant biogenic 

electricity production. Current density reached approximately 125 mAm-2 during 

MFC operation (across a 500 Ω). Current output during reactor operation was 

subject to fluctuation, most likely due to wide temperature variations in the 

laboratory during the long operational periods (Figure 5.4). 
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Figure 5.4: MFC current production (mean of duplicate MFCs) during the tubular 
MFC operation (Rext = 500Ω). 

 

Open circuit control indicated an OCV of 641 ± 37 mV throughout the study (data 

not shown). Subsequent electrochemical performance characterisation of the 

MFCs at the end of the operational run using polarisation tests indicated maximum 

power densities of 51.9 ± 4 mWm-2 (Figure 5.5).  

0 200 400 600
0

200

400

600

0

20

40

60

Power density (mWm
-2

)

Potential (mV)
Current density (mAm

-2
)

P
o

te
n

ti
a
l 
(m

V
)

P
o

w
e
r d

e
n

s
ity

 (m
W

m
-2)

 

Figure 5.5: Current-power plot and a polarisation curve indicating the tubular MFC 
electrochemical performance at the end of the long term continuous MFC run. 

 

This demonstrates the ability of the two-stage bioreactor system to generate 

bioelectricity while degrading recalcitrant AO-7. The electron donor used in this 

study was a waste material and the anolyte medium did not include a buffering 
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system. Instead, common textile wastewater auxiliary salts Na2SO4.10H2O and 

NaCl was added to adjust the ionic strength. This demonstrates the potential 

practical applications of an MFC-aerobic reactor system for complete degradation 

of colour industry wastewater and concomitant bioelectricity production.  

5.2.5. Degradation of aminobenzenes in the aerobic 

second stage 

HPLC analysis of the metabolite extracts of effluent samples from the aerobic 

stage of the two-stage reactor indicated that numerous degradation products were 

formed (Figure 5.6A). The aminobenzenes were degraded into several different 

simpler metabolites during the aerobic treatment stage and this suggests that 

oxidative degradation of aminobenzenes is the most effective way of removing 

them from colour industry wastewater. These findings are further reinforced by the 

COD removal and toxicity reduction data. A further reduction of COD from the 

anoxic first stage (MFC stage) effluent was observed in the aerobic second stage. 

A concomitant and marked reduction of toxicity was also observed in the aerobic 

stage effluent compared to the MFC stage effluent, suggesting that aminobenzene 

reductive biotransformation products were degraded into simpler non-toxic 

metabolites. 
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Figure 5.6: (A) HPLC gradient elution profile of the effluent of the aerobic 
treatment stage of the integrated reactor system and inset: isocratic flow HPLC 
profile of the effluent from the anoxic MFC stage, indicating the formation of 
amines 4-aminobenzenesulfonic acid (Rt = 1.6 min) and 1-amino-2-naphthol (Rt = 
4.3 min) and (B) FTIR spectra overlay of the extracts of AO-7 containing influent 
and the aerobic stage effluent 
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5.2.6. Putative biodegradation pathway of AO-7  

Based on the HPLC-MS identification of the AO-7 biotransformation metabolites, a 

putative biodegradation pathway is suggested. Products of reductive 

biotransformation (MFC stage) of AO-7 were identified as 1-amino-2-naphthol and 

4-aminobenzenesulfonic acid by HPLC peaks compared to authentic standard 

compounds (Figure 5.6A – inset). These biotransformation products are further 

catabolised into simpler and less toxic metabolites at the latter aerobic stage of the 

integrated bioreactor system. The suggested biodegradation pathways based on 

identified HPLC-MS intermediates for 4-aminobenzenesulfonic acid and 1-amino-

2-naphthol are depicted in figures 5.7A and 5.7B respectively. 
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Figure 5.7: Putative aerobic biodegradation pathways of (A) 4-
aminobenzenebenzenesulfonic acid and (B) 1-amino-2-naphthol based on 
intermediates identified by HPLC-MS 

 

The formation of 4-aminophenol (M+H+ = 110.2, Rt = 14.4 min) from 4-

aminobenzenesulfonic acid under aerobic conditions suggests an aerobic de-

sulfonation reaction, probably due to the action of mono-oxygenase enzymes. 

Similar de-sulfonation reactions on sulfonated aminobenzenes catalysed by mono-
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oxygenase enzymes were earlier reported by Kalme et al, 2007. They 

demonstrated that Pseudomonas desmolyticum NCIM 2112 was capable of 

carrying out a series of oxidative de-sulfonation reactions using mono-oxygenase 

enzymes on azo dyes carrying multiple sulfonic acid groups. Formation of 1, 4-

benzenediol (M+H+ = 111.3, Rt = 19.1 min) from 4-aminophenol suggests that 

oxidative de-amination to form a benzenediol derivative. Mono-oxygenases are 

also known to catalyse de-amination reactions of aminobenzenes to form catechol 

derivatives (Junker et al, 1994). The sequential de-sulfonation and de-amination of 

4-aminobenzenesulfonic acid to form 1, 4-benzenediol indicates the action of 

mono-oxygenases and further suggests that di-oxygenases may not be involved in 

the aromatic ring activation reactions. The sequential aromatic ring activation 

reactions catalysed by mono-oxygenase could eventually lead to oxidative 

aromatic ring opening (formation of 4-hydroxymuconic semialdehyde) (M+H+ = 

143.2, Rt = 9.8 min) (Takenaka et al, 2003).  

Similar to the oxidative deamination of 4-aminobenzenesulfonic acid by the action 

of mono-oxygenase, the formation of 1, 2-naphthalenediol (M+H+ = 161.2, Rt = 

22.6 min) suggests that 1-amino-2-naphthol undergoes oxidative de-amination, 

most probably due to the action of a mono-oxygenase. Following the activation of 

one aromatic ring in the form of a naphthalenediol structure, it becomes 

susceptible to further oxidative catabolism. The intradiol cleavage of 1, 2-

naphthalenediol leads to the formation of 2-carboxycinnamic acid (M+H+ = 193.2, 

Rt = 11.5 min). Beta-oxidation-like two-carbon shortening of the opened aromatic 

ring of 2-carboxycinnamic acid may eventually lead to the formation of Benzene-1, 

2-dioic acid (Phthalic acid) ([M+2H]2+ = 84.0, Rt = 11.1 min). In an earlier study 

conducted by Annweiler et al, 2000 on aerobic naphthalene degradation by 

Bacillus thermoleovorans, it was demonstrated that naphthalene is catabolised by 
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the bacterium for its carbon and energy needs via the intermediates 2, 3-

naphthalenediol, 2-carboxycinnamic acid, phthalic acid and benzoic acid. Benzoic 

acid can be further catabolised and its intermediates can be fed into TCA cycle 

relatively easily in benzoate degradation pathways (Nogales et al, 2010). 

Therefore, the intermediates of AO-7 degradation entering TCA cycle could lead to 

mineralisation.  

The use of an azo dye adapted mixed microbial population in this study gives an 

additional advantage of a larger diversity of aerobic degradation pathways for 

recalcitrant compounds such as aminobenzenes (Saratale et al, 2009). The dye 

adapted mixed microbial culture used in this study has been characterised in the 

work described in chapter 4, and several Pseudomonas species were identified. 

Earlier studies indicated that many Pseudomonas species are capable of 

converting recalcitrant sulfonated aminobenzenes to more biodegradable 

compounds with the action of mono and di-oxygenase enzymes (Kalme et al, 

2000). The possible action of mono-oxygenases in de-sulfonation and de-

amination reactions of sulfonated aminobenzenes observed in this study could be 

due to the production of such enzymes by numerous Pseudomonads present in 

the mixed microbial population. 

The FTIR spectroscopy of the influent sample indicated a characteristic peak for 

the aromatic azo bond (-N=N-) stretch at 1503 cm-1.  Furthermore, peaks 

characteristic for the S=O stretch and S-O stretch of sulfonic acid groups were 

evident at wavenumbers 1402 cm-1 and 1182 cm-1. In the FTIR spectra of the 

extracts from the aerobic stage effluent however, the peaks for the azo moiety at 

1503 cm-1 and the sulfonic acid groups at 1402 cm-1 and 1182 cm-1 were absent; 

suggesting that the unreduced azo moieties and intact sulfonic acid groups were 

absent in the treated effluent. Aerobic stage effluent produced peaks characteristic 
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for the carbonyl stretch (C=O) of the carboxylic acids and aldehydes (at 1626 cm-1), 

O-H stretch of carboxylic acids (3330 cm-1), C-H stretch of aldehydes and C-O 

stretch of catechols and naphthols (at 1040 cm-1). Additional peaks characteristic 

of N-H2 wagging of aminobenzenes (at 821 cm-1) and O-C stretch of carboxylic 

acids were also identifiable in the aerobic stage extracts. The FTIR spectra 

indicate that the aerobic stage extracts are distinctly different to the AO-7 

containing influent with regards to its chemical nature. The formation of catechol 

and naphthalenediol derivatives, aldehydes and carboxylic acids with the 

concomitant elimination of the azo moieties and sulfonic acid groups of AO-7 is 

further supported by FTIR analysis of the samples (Figure 5.6B).  

Sequential reduction of soluble COD in the two stages of the integrated bioreactor 

system, the formation of numerous metabolites in the aerobic degradation stage 

and the marked reduction of environmental toxicity suggests that AO-7 is 

completely degraded to non-toxic intermediates by the mixed microbial population 

in the combined MFC-aerobic bioreactor. The use of continuous bioreactors 

utilising waste materials such as molasses for the treatment of recalcitrant wastes 

are particularly favoured due to industrial applicability and cost considerations. 

Moreover, the use of unbuffered anode medium for the continuous MFC anode 

further enhances the cost effectiveness of this reactor system because the use of 

buffered media for wastewater treatment is highly disadvantageous in cost and 

operational standpoints. The prospect of biogenic electricity production during azo 

dye removal is an added advantage of using tubular MFC systems such as the 

ones used in the current study. The integrated bioreactor system tested in this 

study was also capable of operating successfully under wide temperature 

fluctuations (14.6°C - 26°C). This is another potential advantage for industrial 

applications because exogenous temperature regulation is known to be costly and 
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hence, a bioreactor system that could tolerate a wide temperature range would be 

advantageous. The findings of this study further implies that MFC technology can 

be used in combination with activated sludge communal wastewater treatment 

systems in order to sustainably deal with recalcitrant colour industry wastewater.  

5.2.7. The effect of shock AO-7 loadings on MFC 

operation  

For a continuous bioreactor being developed for potential colour industry waste 

treatment applications, it is necessary to possess the ability to withstand shock 

loadings of xenobiotics and COD levels. In colour industry waste streams, it is 

likely to encounter very high dye concentrations and COD levels. Therefore, any 

potential MFC based system developed for this purpose must be robust enough to 

withstand such conditions. Hence, as part of this study, shock AO-7 loadings of 

400 mgL-1 were introduced in order to monitor the response of the MFC stage from 

such a shock load. 
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Figure 5.8: The recovery of the MFC stage from a shock AO-7 loading (400mgL-1) 
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Following an initial lag of about 10 hours, the AO-7 concentration indicated a rapid 

decrease (Figure 5.8) suggesting that the MFC stage was capable of withstanding 

shock loadings of AO7. However, the AO-7 concentration to fall below 50 mgL-1 

took approximately 75 hours. This could be due to the high level of cytotoxicity 

originating from the formation of very high quantities of aminobenzenes during the 

reductive decolourisation process. 

5.3. Concluding remarks 

The findings of this study demonstrate that an integrated MFC-aerobic bioreactor 

configuration is capable of achieving complete biodegradation of the model azo 

dye AO-7. The two-stage process was capable of bringing about significant 

reductions in environmental toxicity, colour and soluble COD of the model 

wastewater, coupled with simultaneous bio-electricity generation. The 

aminobenzenes generated at the end of the anaerobic MFC stage were effectively 

converted to non-toxic and simpler compounds at the end of the aerobic reactor 

operation. This integrated bioreactor system was capable of using a cheap and 

sustainable electron donor (molasses), mixed microbial populations, sustain longer 

operational periods (150 days) in continuous flow mode and was able to operate at 

ambient temperature under wide temperature fluctuations (often low temperatures). 

Therefore, this indicates the potential colour industry wastewater treatment 

applications of the integrated bioreactor system described in this study. 
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Chapter 6 - The scale up tubular air-

breathing MFCs and treatment of real colour 

industry wastewater 
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Summary 

The scalability of any MFC based system is of vital importance if they are to be 

utilised for potential field applications. In this study, an MFC – aerobic integrated 

bioreactor system was investigated for its scalability for the purpose of treatment 

of simulated colour industry wastewater containing the model azo dye AO-7 and 

two types of real colour industry wastewater. A volumetric MFC scale-up factor of 

6 (200 mL to 1200 mL reactor volume at MFC stage) from the previous study 

(reactor system described in chapter-5) was used. The real colour industry 

wastewater originated from acid dyebaths for wool colouring and leather tanning. 

The influent containing real wastewater was fed to the reactor in continuous mode 

at ambient temperature. Three MFC units were integrated to act in unison as a 

single module for wastewater treatment and an aerobic bioreactor mimicking an 

activated sludge system operating downstream to the MFC module was installed 

in order to ensure more complete degradation of colouring agents found in the real 

wastewater. Total colour removal in the final effluent exceeded 90% in all 

experiments where both synthetic (AO-7 containing) and real wastewater was 

used as the influent feed. The COD reduction also exceeded 80% in all 

experiments under the same conditions. The MFC modules connected in parallel 

configuration allowed obtaining higher current densities than that can be obtained 

from a single MFC unit. The maximum current density of the MFC stack reached 

1150 mAm-2 when connected in parallel configuration. The outcome of this work 

implies that suitably up-scaled MFC – aerobic integrated bioprocesses could be 

used for colour industry wastewater treatment in industrially relevant conditions 

with possible prospects of bio-electricity generation.  
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6.2. Results and discussion 

6.2.1. Decolourisation and COD removal in AO-7 

containing model wastewater in the scaled up MFC-

aerobic reactor system  

It was demonstrated earlier (Chapter 5) that MFC- aerobic integrated reactor 

system was capable of fully degrading AO-7 containing simulated colour industry 

wastewater into non-toxic simpler metabolites. The modular scale – up of the 

same two – stage system was tested initially in continuous mode in this study 

using the same synthetic medium containing AO-7 (35 mgL-1).  

 

Figure 6.1: (A) Colour removal of the model wastewater containing AO-7 (35 mgL-

1) fed into the scaled-up MFC system in the MFC and aerobic stages and (B) 
residual COD of the samples taken in the MFC and aerobic stages 
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The results indicate that the colour and COD removal reached above 90% and 

therefore, the performance of the scaled-up two-stage MFC-aerobic reactor 

system was comparable to the similar but smaller reactor system (200 mL working 

volume) utilised in the previous study described in chapter 5 (Figure 6.1A and 

6.1B). This suggests that the integrated MFC-aerobic two-stage reactor system is 

capable of operating without any deterioration of its colour and COD removal 

performances when it is scaled-up by a volume scale factor of 6 (1200 mL total 

working volume in the three integrated MFC modules) and operating on the same 

synthetic wastewater medium containing AO-7. Previously (chapter 5) it was 

demonstrated that an MFC – aerobic two stage reactor set – up was the ideal 

configuration for more complete degradation and toxicity removal of azo dyes such 

as AO-7. Therefore, the same two – stage MFC aerobic reactor set up was used in 

the up-scaled model reactor.  

6.2.2. Decolourisation of real colour industry wastewater 

in the scaled up system 

For any potential wastewater treatment system tested for field application, it is 

essential to possess the capability to effectively deal with real wastewater types. 

This is especially relevant to biological wastewater treatment systems developed 

for the removal of xenobiotic compounds. Although the use of model wastewater 

often containing a single dye is ubiquitous in many studies done in this area, the 

use of real colour industry wastewater is relatively rare. It is not always possible 

and adequate to extrapolate the information obtained from studies utilising model 

wastewater into a scenario where real colour industry wastewater is encountered. 

Therefore, it is essential to conduct experiments utilising real colour industry 

wastewater when attempting to scale up prospective wastewater treatment 
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systems. Therefore, in this study, two types of real colour industry wastewater 

were tested; namely, acid dyebath wastewater from wool colouring and acid 

dyebath wastewater from leather tanning.  

When using real colour industry wastewater from wool colouring, the effluent from 

the MFC stage and the aerobic stage indicated a slow, sequential colour reduction 

during the start – up phase (Figure 6.2). Subsequently however, both MFC and 

aerobic stages reached high colour removal performances exceeding 90% 

decolourisation (Figure 6.3A).  

 

Figure 6.2: Absorption spectra showing the decolourisation of real colour industry 
wastewater from an acid dyebath for wool in the scaled-up MFC system at the 
MFC stage and the aerobic stage. Inset – clear visible colour difference between 
the influent real dye wastewater and the final effluent. 

 

Furthermore, COD reduction indicated a stepwise reduction compared to the 

influent COD, indicating a COD level below 500 mgL-1 for the final effluent (Figure 

6.3B).  
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Figure 6.3: (A) Colour removal performance of scaled up MFC reactor system 
treating real wastewater originating from an acid dyebath for wool at the MFC 
stage and aerobic stage (B) residual COD of the samples obtained from the MFC 
stage  

 

Therefore, similar to the previous study that used an integrated MFC – aerobic 

process (chapter 5), it can be expected that due to the stepwise and sequential 

COD reduction, some of the decolourisation metabolites formed in the anaerobic 

MFC stage are further oxidised into simpler compounds during the aerobic stage.  
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Figure 6.4: Absorption spectra showing decolourisation of real colour industry 
wastewater from leather tanning in the scaled – up MFC – aerobic bioreactor 
during the MFC stage and aerobic stage. Inset – comparison of vials from left to 
right containing leather tanning real wastewater influent, MFC stage effluent, 
aerobic stage effluent and model wastewater containing only molasses 

 

Similar to the previous observations with real colour industry wastewater from wool 

colouring, the intense colour of the influent was almost completely removed from 

real wastewater originating from leather tanning when it was used as the influent 

feed for the scaled-up integrated MFC – aerobic reactor system (figure 6.4). This 

clearly suggests that the scaled-up integrated MFC module coupled to the aerobic 

reactor system is capable of effectively removing colour from both types of real 

colour industry wastewater tested in this study. The final colour removal efficiency 

of the combined MFC-aerobic stages of the reactor reached over 90% (Figure 

6.5A) when leather tanning wastewater was used as the influent. This clearly 

demonstrates that the scaled-up integrated MFC – aerobic system is a versatile 

bioreactor system that can effectively deal with different types of real colour 

industry wastewater.  
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Figure 6.5: (A) Decolourisation performance of the scaled up MFC-aerobic reactor 
system when using real colour industry wastewater originating from leather 
tanning during the MFC stage and aerobic stage (B) COD removal performance 
during MFC stage and aerobic stage.  

 

Residual COD levels of the samples also indicated a stepwise reduction at the end 

of the MFC stage and the aerobic stage compared to the influent COD when real 

leather tanning wastewater was used as the influent. This suggests that 

decolourisation metabolites were further oxidised into simpler compounds at the 

aerobic reactor stage of the integrated system. The unmodified (without the 

addition of the co-substrate molasses) COD values for the two types of real 

wastewaters were 1000 ± 60 mgL-1 and 1280 ± 40 mgL-1 respectively for wool 

colouring wastewater and leather tanning wastewater. The residual COD values of 

the final effluent exiting from the aerobic stage when both types of real wastewater 
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were used in the scaled – up reactor system were below 500 mgL-1 (figures 6.3B 

and 6.5B). This clearly suggests that organic components contained in the two 

types of wastewater (including colouring agents) were oxidised in a stepwise 

manner during the process into simpler and colourless compounds. When leather 

tanning wastewater was used as the influent, colour removal at the end of the 

MFC stage remained at 80% or below, but the overall colour removal of the 

combined MFC + aerobic process was over 90%. This is in contrast to other work 

done using this two stage system. When azo dyes (i.e. AO-7) was used as the 

model compounds in synthetic wastewater, most of the colour removal (˃ 90%) 

occurred at the MFC stage rather than at the aerobic stage because most azo 

moieties (-N=N-) undergo reductive degradation in the anaerobic MFC stage. 

However, contrary to the observations relating to azo dyes such as AO-7, when 

leather tanning wastewater was used as the influent, the aerobic stage accounted 

for more than 10% of the total decolourisation (Figure 6.5A). This suggests that 

leather tanning real wastewater used here may contain other types of dyes 

belonging to dye classes such as anthraquinone or triphenylmethane dyes which 

could be amenable to degradation in the aerobic reactor stage.  

6.2.3. Electrochemical performance of the parallel 

connected MFC modules during real and simulated 

wastewater treatment 

Connecting stacked MFCs in series configuration could lead to undesirable energy 

losses due to effects such as voltage reversal and potential drop across each MFC 

unit when connected in series. Voltage reversal is thought to occur due to sudden 

fuel starvation in the anode of one or more MFCs in an MFC stack and as a result, 

a sudden loss of bacterial catalytic activity transferring electrons to the anode 

(Aelterman et al, 2006, Ieropoulos et al, 2008, Oh and Logan, 2006). However, 
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voltage reversal is mainly encountered during batch operation of MFC stacks and 

hence, operating MFCs in continuous mode and by ensuring good mixing, the 

undesirable energy losses of voltage reversal could be circumvented. The voltage 

drop across each MFC during a series connection of an MFC stack mainly occurs 

due to the internal resistance of MFCs (Zhuang et al, 2012). MFC systems when 

used as a single unit, suffer from the intrinsic theoretical maximum voltage output 

upper limit of about 1.2 Volts. However, due to various internal energy losses as 

discussed in chapter 1, the actual voltage obtained under field conditions is lower 

than 1.2 V. Therefore, when scaling up MFC systems, it is essential to connect 

multiple MFC units in either series or parallel configurations in order to obtain 

useful and high enough voltage or current outputs. Parallel connection of multiple 

MFCs is useful in terms of obtaining high current densities.  

The current production of an MFC module during AO-7 containing simulated 

wastewater is depicted in figure 6.6. Current densities across a Rext of 500 Ω 

reached a maximum of approximately 200 mAm-2 and stayed relatively stable 

throughout continuous reactor operation.  
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Figure 6.6: Current production in scaled – up MFC modules during AO-7 
containing simulated wastewater treatment (Rext = 500 Ω) 
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Polarisation curves and power current plots of individual scaled-up MFC units 

indicated average maximum current and power densities of 550 mAm-2 and 49 

mWm-2 respectively during real colour industry wastewater treatment (Figure 6.7). 

The average open circuit potential (OCP) of an individual MFC module of the 

integrated MFC stage reached 297 ± 31 mV during the same operational period.  
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Figure 6.7: The average individual electrochemical performance of the three 
parallel connected MFC modules during real dye wastewater treatment. 

 

When the MFC modules were connected in parallel configuration, maximum 

current densities as high as 1150 mAm-2 could be obtained while the maximum 

power density obtainable from the parallel connected MFC modules remained a 

modest 54 mWm-2 (Figure 6.8). However, the OCP remained at 275 mV. This 

indicates that the parallel connected MFC units allows drawing a larger maximum 

current while the maximum power density obtainable from such parallel connected 

MFC units is not notably different to the maximum power that can be drawn 

compared to a single MFC unit. The OCP of the parallel connected MFCs (275 

mV) remained close to that of a single MFC unit (297 mV), indicating that no 

significant enhancement of voltage output is possible in parallel MFC 
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configuration. These findings are in agreement with an earlier study conducted by 

Zhuang et al, 2012 in which they used parallel and series connected MFC stacks 

and found that current outputs can be enhanced when the MFC units are stacked 

in parallel configuration with no significant enhancement to the voltage output or 

power density.  

 

Figure 6.8: The power – current plot and polarisation curve of the parallel 
connected integrated MFC module while treating real colour industry wastewater 
from an acid dyebath for wool.  

 

6.2.4. Degradation of colouring agents in real colour 

industry wastewater in the MFC – aerobic two stage 

process 

Effective colour removal from both types of colour industry wastewater was 

achieved using the scaled – up MFC-aerobic bioreactor system as shown in 

figures 6.3 and 6.5. However, it is necessary to assess the degradation of various 

colouring components contained within real colour industry wastewater during the 

two stage treatment process. Comparison of HPLC elution profiles of the influents 

and the effluents at various stages of the two stage process was carried out for 

this purpose. 
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Figure 6.9: overlay of HPLC chromatograms of real colour industry wastewater 
from leather tanning. Compared chromatograms indicate the blank media (i.e. 
molasses without colour industry wastewater), real leather tanning wastewater 
supplemented with molasses (influent), the effluent from MFC stage and the 
effluent from the aerobic stage of the integrated scaled – up bioreactor system 

 

HPLC analysis of the samples obtained from the two-stage operation reactor when 

leather tanning wastewater was used as the reactor feed indicates that numerous 

metabolites were produced at the end of the aerobic stage of the treatment 

process (Figure 6.9). The HPLC spectrum of the aerobic stage effluent (final 

effluent) was markedly different from the HPLC spectra of the blank medium, real 

wastewater influent feed and the MFC stage effluent.   



154 
 

 

Figure 6.10: Overlay of HPLC chromatograms of real colour industry wastewater 
from wool colouring. Compared chromatograms indicate real colour industry 
wastewater from wool colouring, MFC stage effluent and aerobic stage effluent of 
the integrated scaled- up bioreactor system.  

 

HPLC chromatograms of the samples obtained from the integrated bioreactor 

system operating on wool colouring real wastewater being used as the influent 

feed also indicated that many metabolites were produced at the end of the 

decolourisation process in the final effluent (aerobic stage effluent) (Figure 6.10). 

The chromatograms indicate that during the decolourisation process of both types 

of wastewater, a clear biotransformation of the colouring agents contained in the 

wastewater takes place. Furthermore, the number of metabolites produced at the 

end of the aerobic stage is greater than the number of metabolites present at the 

end of anaerobic MFC stage in both instances where two different types of colour 

industry wastewater was used (Figures 6.9 and 6.10). This clearly indicates that 

decolourisation metabolites produced as a result of biotransformation of colouring 

agents at the MFC stage undergoes further catabolism into simpler compounds in 
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the aerobic stage. These findings are similar to earlier findings presented in 

chapter 5, where simulated colour industry wastewater containing AO-7 as the 

model azo dye compound underwent a sequential biotransformation into 

aminobenzenes and then other simpler organic compounds in a similar MFC – 

aerobic combined bioreactor process.  

6.3. Concluding remarks 

The findings of this study indicate that the MFC – aerobic integrated bioreactor 

system could be successfully scaled up to suitable scales using numerous MFC 

modules in order to handle larger colour industry wastewater volumes. The system 

was capable of effectively handling real wastewater originating from acid dyebaths 

for wool colouring and leather tanning in continuous flow mode at ambient 

temperature. The parallel configured MFC connection of numerous MFC modules 

allowed the current that can be drawn from the system to be enhanced. The 

findings of this study implies that suitably scaled – up MFC stacks operating in 

continuous flow mode could potentially be incorporated with aerobic processes 

such as activated sludge systems in order to treat complex colour industry 

wastewater. This brings about possibilities of effective colour industry wastewater 

treatment, good colour removal, detoxification and potential energy recovery with 

the use of MFCs during wastewater treatment.  

 

 



156 
 

 

Chapter 7 - External resistance and redox 

mediators as potential tools for influencing 

azo dye reductive decolourisation kinetics in 

MFCs 
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Summary 

Azo moieties of polar and highly charged dyes are thought to undergo reductive 

degradation into constituent amines in the extracellular milieu of bacterial cells due 

to their inability to penetrate into cellular interior. The aims of this study were to 

investigate the influence of MFC external resistance on azo dye reductive 

degradation kinetics, to investigate microbial community shifts under various Rexts 

and to investigate the influence of exogenous addition of synthetic redox 

mediators on azo dye reductive degradation in MFC anodes. In this study, 

experiments were conducted in MFCs to investigate the influence of applied 

external resistance on the reductive decolourisation kinetics of three structurally 

different commercial azo dyes. The results indicate that at very high current 

densities (low Rext) and very low current densities (high Rext), the reductive 

decolourisation kinetic constants were lower for all three tested azo dyes in 

comparison to a moderate optimum Rext (2.2 kΩ), close to the internal resistance 

of the MFC systems. PCR-DGGE of the 16s rRNA gene microbial community 

fingerprints were distinctly different between experiments that utilised different 

Rexts. Molecular phylogenetic microbial profiling indicated that the microbial 

communities selected at different Rexts were distinctly different. Exogenous 

supplementation of the two synthetic electron shuttling compounds Antharquinone-

2,6-disulfonic acid (AQDS) and Anthraquinone-2-sulfonic acid (AQS) was found to 

enhance decolourisation kinetic constants of AO-7 reductive degradation. The 

enhanced decolourisation kinetic constants obtained using a moderate Rext 

indicates that Rext can be used as a potential tool for influencing azo dye reductive 

degradation in MFCs. 

The experimental outcomes of the work described in this chapter were published in, Fernando, E., Keshavarz, T., Kyazze, 

G., 2014b. External resistance as a potential tool for influencing azo dye reductive decolourisation kinetics in microbial fuel 

cells. International Biodeterioration & Biodegradation 89, 7-14 
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7.2. Results and discussion 

7.2.1. Azo dye degradation kinetics and MFC external 

resistance 

The reductive azo dye degradation constants were significantly higher (p < 0.05) 

compared to open circuit controls under all tested external resistances. This was 

observed for all three azo dyes used in this study (Figures 7.1A, 7.1B and 7.1C). 

This suggests that the transfer of reducing equivalents to the azo moiety is more 

efficient in the electrochemically active environment of an MFC anode in 

comparison to open circuit controls. A similar trend was observed in a previous 

study conducted by Kalathil et al, 2012 who reports that a MFC system treating 

real textile wastewater (Rext = 50 Ω) indicated 75% colour removal in 48 hours 

compared to 62% colour removal in a similar time-scale in an open circuit MFC. 

The open circuit controls (infinite Rext) are analogous to an anaerobic reactor, 

where the microbes must resort to utilising alternative terminal electron acceptors 

due to the absence of a functional anode.  The highest reductive azo dye 

degradation constants (k) were observed for all tested dyes at the external 

resistance 2.2 kΩ and the (k) values were significantly higher (p < 0.05, ANOVA) 

compared to (k) values at other tested external resistances. Moreover, this trend 

was observed for all three structurally different azo dyes tested in this study. 

Considering the large molecular weight of the tested azo dyes and their highly 

charged nature, it can be expected that these dyes are incapable of crossing non-

polar biological membranes and penetrating into cellular interior of anolyte 

microorganisms. Therefore, the transfer of reducing equivalents to reduce azo 

moieties would occur extracellularly. The experimental evidence in this study 

suggests that the efficient exo-electrogenic nature of anode microorganisms 

enhances the rate of azo dye reductive degradation under an optimum external 
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resistance. The internal resistance of the MFC systems (estimated using 

polarisation slope method) used in this study varied between 655 ± 2.2 Ω - 1020 ± 

3.7 Ω at all tested external resistances. Menicucci et al, 2006 reported that 

maximum sustainable current and power obtainable from an MFC system is 

greatly influenced by the applied external resistance. Therefore, this ‘optimum’ 

external resistance may affect the external electron transfer efficiency of the 

anodic exo-electrogens and may eventually influence azo dye reductive 

degradation kinetics as observed in the current study.  In terms of terminal 

electron acceptor availability for microbial metabolism, it could be expected that 

under higher Rext, more reducing equivalents will be transferred to azo moieties 

utilised as alternative terminal electron acceptors. But interestingly, in this study, 

low azo dye reductive decolourisation rates under high Rext (10 kΩ and 46 kΩ) for 

all three azo dyes tested were observed. Under high external resistances, mostly 

fermentative and methanogenic microbial communities become selected in MFCs 

and the environment for exo-electrogenic bacteria becomes unfavourable (Jung 

and Regan, 2011). Therefore, this unfavourable environment for exo-electrogens 

under high Rext may account for the low azo dye reductive decolourisation rates 

observed in this study. Conversely, under low Rext (high current densities), the 

anode and the azo moieties are competitive terminal electron acceptors and 

therefore, may account for the low azo dye decolourisation rates observed at low 

Rext (10 Ω and 510 Ω) in this study. This is also reflected in the 16s rRNA PCR-

DGGE microbial community fingerprints where less microbial diversity is observed 

at very high and very low Rexts (Figure 7.4A). 

Findings of a previous study by Cai et al, 2011 utilising the well-known 

electrochemically active microorganism Shewanella oneidensis MR-1 and 

sulfonated azo dye Methyl Orange (MO) as the electron acceptor for anaerobic 
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growth, indicated that S.oneidensis can utilise its Mtr respiratory pathway in order 

to transfer electrons extra cellularly on-to the azo moiety. Mtr respiratory pathway 

is demonstrated to be essential for reversibly reducing electron carriers such as 

flavins and electrodes poised at a suitable potential in MFC environments 

(Coursolle et al, 2010). The findings of the current study indicates that the 

efficiency of direct/mediated extracellular electron transfer by the MFC anode exo-

electrogenic bacteria on-to the azo moiety of structurally diverse azo dyes can be 

conveniently varied by applied external resistance.  
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Figure 7.1:  Decolourisation kinetic constants of azo dyes at various external 
resistances compared to open circuit controls of A) AO7 B) RR3 and C) DY106 
(starting dye concentration for all dyes is 50 mgL-1). 

 

The decolourisation kinetic constants (k) at 2.2 kΩ indicated 3.2 fold, 1.75 fold and 

3.8 fold enhancements compared to (k) values of experiments conducted at low 
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Rext (10Ω), for AO7, RR3 and DY106 respectively. Similarly, (k) values of 

decolourisation for AO7, RR3 and DY106 respectively, at 2.2 kΩ were 3 fold, 1.95 

fold and 2.1 fold higher compared to (k) values at high Rext (46 kΩ).  

7.2.2. Simultaneous power production in MFCs coupled 

to azo dye degradation under various external 

resistances 

The power densities of MFCs operating under various external resistances 

indicate a similar trend to the decolourisation kinetic constants observed in this 

study. In the three experiments utilising AO7, RR3 and DY106 in the anodes, their 

highest power densities were observed when an external resistance of 2.2 kΩ was 

applied.  Pmax values at 2.2 kΩ Rext reached 52 mWm-2, 48.3 mWm-2 and 40.4 

mWm-2 respectively during AO7, RR3 and DY106 reductive degradation in the 

anode (Figure 7.2). The maximum power densities obtained at 2.2kΩ external 

resistance for all three azo dyes were significantly higher (P<0.05) than those 

obtained at external resistances 10 Ω and 46 kΩ. These findings on power 

densities observed at high current densities (low Rext) are in agreement with the 

findings of the earlier study conducted by Menicucci et al, 2006. Contrary to 

findings of this study and the findings by Menicucci et al, 2006 however, Lyon et 

al, 2010 found that external resistance has little effect on MFC power production. 

Furthermore, the findings of this study on power densities from the MFCs 

produced under different external resistances during concomitant reductive 

degradation of all three azo dyes corroborate with the findings by Katuri et al, 

2011.  
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Figure 7.2: The variation of maximum power densities obtainable from MFCs 
during concomitant azo dye degradation in the MFC anode with different applied 
external resistances.  

 

7.2.3. COD reduction in MFCs during azo dye reductive 

decolourisation under various external resistances 

COD reduction (after 72 hours of MFC operation) during azo dye degradation 

indicated that at high current densities (low Rext -10Ω), the effluent quality was 

significantly better (p<0.01, one way ANOVA with Tukey post-test) compared to 

open circuit controls for all tested azo dyes (Figure 7.3). In experiments conducted 

with three model azo dyes, the COD reduction under all tested external 

resistances was better compared to open circuit controls.  
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Figure 7.3: COD reduction performance of MFC systems at 72 hours of operation 
during decolourisation experiments of three model azo dyes under various Rext        
(* and ** indicates p<0.05 and p<0.01 respectively; one way ANOVA and Tukey 
post-test).  

 

However, the differences in COD removal between low Rext (10 Ω) and 2.2 kΩ Rext 

were not statistically significant in all experiments (p<0.05, one way ANOVA with 

Tukey post-test). This clearly indicates that enhanced azo dye decolourisation 

rates can be achieved by using an ‘optimum’ Rext for a given MFC system without 

any significant deterioration of COD removal and MFC power production. 

7.2.4. Microbial community variations in MFCs under 

different external resistances 

DGGE fingerprints reflecting the different microbial communities selected under 

different Rexts were distinctly different from each other (Figure 7.4A shows the 

DGGE fingerprints of MFCs operated under different Rexts utilising AO-7 as the 

model azo dye). Interestingly, the microbial community DGGE profiles did not 

significantly differ from each other when different dyes were used. DGGE 

fingerprint profiles of MFCs operating under the same Rext but different azo dyes 

(i.e. AO-7, RR-3 and DY-106) did not differ from each other (DGGE fingerprints 
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are not shown for RR-3 and DY-106 experiments). Moreover, UPGMA cluster 

analysis indicates that the bacterial community profiles developed under different 

Rexts distinctly differ from each other and from the open circuit control (Figure 

7.4B).  

 

Figure 7.4: (A) DGGE fingerprints during AO-7 decolourisation in MFCs operating 
under various Rexts. Lanes 1-6 respectively were MFCs operating under 1- 10 Ω, 2- 
510 Ω, 3- 2.2 kΩ, 4- 10 kΩ, 5- 46 kΩ and 6- open circuit (OC) control. (B) UPGMA 
cluster dendrogram using Jaccard’s coefficient generated from the DGGE 
fingerprints. The scale bar at the bottom indicates percentage similarity based on 
Jaccard’s coefficient and the figures on the branches represent the distance 
between the clusters generated.  

 

This further suggests that the different azo dye used has little or no influence on 

the microbial community selected, whereas the applied external resistance exerts 

a major effect on the selection of different microbial communities in the MFC 

anode. Furthermore, the microbial diversity appeared to be enhanced at moderate 

external resistances (510 Ω and 2.2 kΩ Rexts – lanes 2 and 3) compared to 

extreme low (10 Ω – lane -1) extreme high (46 kΩ – lane -5) Rexts. These 

enhancements in bacterial diversity observed at moderate Rexts may account for 

the enhanced colour removal and power performances observed when the MFC 

systems are operated at moderate external resistances (close to Rint) in this study. 
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Identification of various bacterial communities selected under various external 

resistances were identified and profiled using 16s rDNA fingerprinting (Table 7.1).  

Table 7.1: Phylogenetic affiliations of the 16s rDNA sequences obtained from 
experiments conducted under various Rexts and open circuit (OC) control 
experiments based on the sequences in the 16s ribosomal DNA repository of 
NCBI. 

Band 

(experiment) 

Closest relative 

(% similarity) 

GenBank 

accession 

Phylogenetic 

affiliation 

a (10 Ω) Sphingobacterium 

multivorum strain 

IAM14316 (100) 

NR_040992.1 Bacteroidetes 

b (10 Ω) Sphingobacterium 

thalpophilum strain 

DSM 11723 (95) 

NR_042135.1 Bacteroidetes 

c (10 Ω) Rhodococcus 

erythropolis strain PR4 

(99) 

NR_074622.1 Actinobacteria 

d (10 Ω) Actinomyces funkei 

strain CCUG 42773 

(90) 

NR_028960 Actinobacteria 

e (510 Ω) Dysgonomonas mossii 

strain DSM22836 (99) 

NR_025484.1 Bacteroidetes 

f (510 Ω) Pseudomonas 

protegens strain Pf-5 

(99) 

NR_074599.1 Proteobacteria 

g (510 Ω) Pseudomonas 

plecoglossicida strain 

FPC951 (100) 

NR_024662.1 Proteobacteria 

h (510 Ω) Pelotomaculum 

propionicicum strain 

MGP (88) 

NR_041000.1 Firmicutes 
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i (510 Ω) Dickeya zeae strain 

Ech1591 (99) 

NR_102824.1 Proteobacteria 

j (10 kΩ) Klebsiella variicola 

Strain F2R9 (99) 

NR_025635.1 Proteobacteria 

k (10 kΩ) Klebsiella pneumoniae 

strain DSM30104 (98 

NR_036794.1 Proteobacteria 

l (10 kΩ) Pseudomonas 

plecoglossicida strain 

FPC951 (99) 

NR_024662.1 Proteobacteria 

m (10 kΩ) Methylobacterium 

extorquens strain AM1 

(98) 

NR_074138.1 Proteobacteria 

n (OC control) Pseudomonas putida 

strain F1 (98) 

NR_074739.1 Proteobacteria 

o (OC control) Pseudomonas poae 

strain RE*1-1-14 (97) 

NR_102514.1 Proteobacteria 

p (OC control) Pseudomonas 

japonica strain 

IAM15071 

NR_074138.1 Proteobacteria 

q (OC control) Clostridium 

saccharobutylicum 

Strain P262 (97) 

NR_036951.1 Firmicutes 

r (OC control) Clostridium uliginosum 

strain CK55 (96) 

NR_028920.1 Firmicutes 

 



168 
 

 

Figure 7.5: Phylogenetic tree of the bacterial communities selected in MFC 
anodes under various Rexts and open circuit operation constructed using the 
neighbour joining method. Bootstrap values ≥ 70% (from 1000 bootstrap 
replicates) are shown at the nodes of the tree and the scale bar indicates the 
number of substitutions per site.  
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Phylogenetic analysis of microbial communities selected at various external 

resistances and open circuit conditions indicate significant differences in microbial 

identities (Table 7.1). At open circuit conditions (controls) where the cathode is 

unable to accept electrons and is analogous to a conventional anaerobic reactor, 

fermentative anaerobes such as Clostridium species were observed with other 

facultative aerobes belonging to genus Pseudomonas. At moderate Rext (510 Ω), 

several organisms belonging to phyla such as Proteobacteria (Pseudomonas 

protegens, Pseudomonas plecoglossicida and Dickeya zeae), Firmicutes 

(Pelotomaculum propionicicum) and Bacteroidetes (Dysgonomonas mossii) were 

selected. At high Rexts (10 kΩ), Proteobacteria belonging to genera such as 

Klebsiella, Pseudomonas and Methylobacterium were selected. Species belonging 

to the genus Klebsiella are especially known for fermentative growth (Cheng et al, 

2010) and therefore, the selection of Klebsiella sp. at high Rexts could be reflective 

of the electron transfer limitations encountered by the anode organisms at high 

Rexts. The low anode potentials that prevail under high Rexts tend to render the 

anode ineffective as a terminal electron acceptor (Jung and Regan, 2011). These 

conditions may favour methanogenic microbial communities rather than exo-

electrogenic bacteria. Organisms belonging to the genus Methylobacterium are 

known for their ability to utilise methane as the sole source of carbon and energy 

(Van Aken et al, 2004). The presence of methane oxidising bacteria such as 

Methylobacterium extorquens could be indicative of high prevalence of methane 

generating prokaryotes at high Rexts (10 kΩ). No species belonging to phyla 

Firmicutes and Proteobacteria were identified at low Rext (10 Ω), whereas species 

belonging to phyla Actinobacteria (Rhodococcus sp. and Actinomyces sp) and 

Bacteriodetes (Sphingomonas sp.) were identified. A previous study conducted by 

Jung and Regan, (2011) found that when the MFCs were operated with an Rext 

close to their internal resistance and subsequently changed to a higher Rext, 
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significant microbial community shifts do occur. Whereas, decreasing the Rext 

below the Rint does not significantly influence microbial community structures in 

acetate fed and glucose fed MFCs. To the contrary of the latter observation 

however, significant changes in microbial community at low Rexts (10 Ω) from the 

microbial community at moderately low Rext (510 Ω) were found in this study 

(Table 7.1 and Figure 7.5).  

7.2.5. The effect of exogenous addition of synthetic redox 

mediators on azo dye decolourisation in MFC anodes 

Synthetic and natural redox mediators such as AQDS, AQS and riboflavin are 

known to reversibly conduct reduction/oxidation reactions by carrying electrons 

between various chemical species. Reductive azo dye degradation by means of 

electron transfer on the azo moieties is an important starting step of any bacterial 

azo dye degradation strategy.  Therefore, it is important to investigate avenues to 

enhance the reductive degradation of azo dyes in order to avoid it becoming a 

rate-limiting factor in the process of azo dye biodegradation. Redox mediators are 

capable of lowering thermodynamic limitations of electron transfer reactions and 

were reported in several previous studies to be capable of enhancing azo dye 

reductive degradation kinetics (Dos Santos et al, 2003, Dos Santos et al, 2004, 

Rodriguez et al, 2012).  
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Figure 7.6: Cyclic voltammograms of AO-7 containing MFC anodes following the 
addition of synthetic redox mediators AQDS (solid line) and AQS (dashed line) 
indicating reversible oxidation-reduction peaks characteristic of redox mediatory 
role played by these compounds. 

 

Cyclic voltammograms of AQDS and AQS redox mediator containing MFC anodes 

indicate that these two compounds are indeed capable of ferrying electrons 

reversibly from and to the anode electrode (Figure 7.6). This suggests that the two 

synthetic redox compounds used in this study carry out oxidation/reduction 

reactions in a reversible manner. This further suggests that the presence of such 

synthetic electron shuttling compounds would assist ferrying electrons to the azo 

moieties of various azo dyes if they were included in the MFC anode. 

In this view, the presence of compounds that are capable of ferrying electrons 

reversibly to azo moieties of various azo dyes would be beneficial in enhancing 

reductive degradation kinetics and faster attenuation of dyes from synthetic 

wastewater. The two synthetic redox mediators AQDS and AQS were used in a 

range of concentrations in this study in order to investigate the possible azo dye 

degradation kinetic enhancements in microbial fuel cells. A portion of the reducing 

equivalents released as a result of oxidation of organic substrate (glucose in this 

study) will be diverted to reducing the azo moieties while the remainder of the 
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reducing equivalents will be transferred to the anode by the exo-electrogenic 

bacteria (assuming that no other electron sinks are present in the anode medium). 

C6H12O6 + 6H2O → 24e- + 24H+ + 6CO2 (∆G0 = -1438 kJ mol-1) ----- (1) 

The thermodynamic barriers of electron transfer on to the azo moieties leading to 

their reductive degradation are expected to be lowered by the presence of the two 

redox mediators AQDS and AQS.  

 

Figure 7.7: The concentration dependant effect of the exogenous 
supplementation of the redox mediator AQDS on the first-order decolourisation 
kinetic constants (k) of the azo dye AO-7 in MFC anodes (AO-7 concentration = 
210 mgL-1) 
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Figure 7.8: The concentration dependant effect of the exogenous 
supplementation of the redox mediator AQS on the first-order decolourisation 
kinetic constants (k) of the azo dye AO-7 in MFC anodes (AO-7 concentration = 
210 mgL-1) 

 

The enhancement of AO-7 decolourisation observed in this study as a result of the 

addition of synthetic redox mediators indicated a concentration-dependant effect. 

The first order kinetic constants were significantly enhanced in both experiments 

where AQDS and AQS were utilised as electron shuttles. The AO-7 

decolourisation kinetic constants were significantly improved (p<0.05, ANOVA) 

compared to controls (no mediator) from 0.28 h-1 and 0.22 h-1 to 0.58 h-1 and 0.88 

h-1 (mediator concentration – 150 µM) respectively for AQDS and AQS (Figures 

7.7 and 7.8).  
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Figure 7.9: The non-linear saturation – type relationship between the mediator 
concentration in MFC anodes and AO-7 decolourisation kinetic constants (k) for 
AQDS and AQS 

 

The relationship between the AO-7 decolourisation kinetic constant (k) and the 

mediator concentration (in both experiments where AQDS or AQS were utilised) 

was not linear, but rather exhibited a saturation-type hyperbolic relationship 

(Figure 7.9). It is widely accepted that a reductive-oxidative sequential 

biodegradation approach is suitable for achieving full degradation of azo dyes in 

potential industrial applications (O’Neill et al, 2000, Pandey et al, 2007). Therefore, 

avoiding kinetic limitations in the initial reductive degradation step of azo dyes is 

extremely important in order to circumvent any possible bottlenecks in the overall 

process. Therefore, when MFCs are considered for potential industrial or pilot 

scale azo dye removal applications, optimisation of the anode potential by means 

of optimising the Rext and exogenous addition of synthetic or natural electron 

shuttling compounds may assist in enhancing the overall efficiency of azo dye 

removal process.  
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7.3. Concluding remarks 

The outcome of the work indicates that microbial fuel cell external resistance can 

be used as a potential tool for influencing azo dye reductive degradation kinetics. 

The influence of Rext on exo-electrogenic bacteria for optimum power production 

can be utilised to enhance the efficiency of reductive degradation of azo moieties 

of various azo dye compounds. The choice of the external resistance for achieving 

optimum azo dye reductive degradation kinetics did not significantly deteriorate the 

effluent quality in terms of COD removal. Apart from influencing azo dye 

degradation kinetics and MFC power outputs, the variations in Rext significantly 

influenced the selection of significantly diverse microbial communities in the MFC 

anodes. Furthermore, exogenous supplementation of electron shuttling 

compounds could further enhance azo dye reductive decolourisation kinetics. 

Therefore, these approaches for azo dye reductive degradation kinetic 

enhancement could potentially be used in the initial stage of the reductive-

oxidative two-stage bioprocesses involving microbial fuel cells. 
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Chapter 8 - Conclusions 
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The initial study (Chapter 3) utilising AO-7 as the model azo dye in two-chamber 

MFC anodes demonstrated that enhanced azo dye reductive degradation kinetics 

can be achieved by employing either S.oneidensis pure cultures or mixed 

anaerobic microbial populations. At the four dye concentrations tested (35 mgL-1, 

70 mgL-1, 195 mgL-1 and 350 mgL-1), colour removal efficiencies exceeding 98% 

were reached within 30 hours of MFC operation. The decolourisation kinetic 

constants (k) indicated a concentration – dependant decrease from 0.709 ± 0.05 h-

1 to 0.05 ± 0.01h-1 when the azo dye concentration was raised from 35 mgL-1 to 

350 mgL-1. The two constituent amines formed during the decolourisation process 

were identified as sulfanilic acid (4-aminobenzenesulfonic acid) and 1-amino-2-

naphthol. It can be inferred from these results that when the amine degradation 

products were formed in increasing concentration (i.e. when high concentrations of 

AO-7 is introduced into MFC anodes), the decolourisation kinetic constants are 

adversely affected probably due to their toxic effects to the anode microorganisms. 

The Ames mutagenicity tests subsequently carried out using two Histidine 

auxotroph strains of S.typhimurium confirmed that the mutagenic potential of the 

decolourisation products increase in a concentration – dependent manner. This 

clearly indicates that it is potentially dangerous to discharge reductively 

decolourised AO-7 contaminated wastewater into the environment due to its 

mutagenic potential and toxicity. Simultaneous bioelectricity generation was 

achieved during AO-7 reductive degradation at all dye concentrations. This study 

further demonstrated that cheaper and sustainable substrate types such as 

molasses and corn-steep liquor can be used as the electron donor for azo dye 

reductive degradation and concomitant bioelectricity generation in MFC anodes. 

Fast AO-7 reductive degradation kinetics achieved in this study holds promise for 

utilising MFC based systems as the initial step of a two-stage anaerobic-aerobic 

sequential treatment regimen for complete degradation of azo dyes. However, the 
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toxic and mutagenic amines generated in MFC anodes during AO-7 reductive 

degradation suggest that the decolourised effluent is not suitable to be released 

without further aerobic treatment.  

In the second study (Chapter 4), the reductive degradation of complex azo dye 

mixtures under industrially relevant conditions such as high salinities and high 

temperatures was investigated in two-chamber MFCs. Azo dye contaminated 

wastewater is more likely to contain many different structurally different dye 

compounds and may also contain various auxiliary salts such as Na2SO4 and NaCl 

used during the dyeing process. Hence, it is imperative for any potential 

wastewater treatment system to be capable of effectively dealing with multiple azo 

dyes under industrially relevant conditions. A potential system would ideally be 

capable of operating utilising cheap and sustainable electron donors such as 

molasses. The azo dye adapted mixed microbial consortium used in this study 

was capable of effective colour and organic load removal over 90% using 

molasses as the electron donor during MFC operation with concomitant 

bioelectricity generation (Pmax = 16 mWm-2). Thermophillic operation at 50°C 

allowed for enhanced performances in terms of azo dye degradation kinetic 

constants (k = 0.27h-1) and MFC bioelectricity generation (Pmax = 25.6 mWm-2) 

compared to mesophillic operation of MFCs at 30°C. Furthermore, the MFC 

systems were capable of effectively removing colour and COD at moderate 

salinities. The outcome of this study implies that MFC based systems could 

successfully be employed for effective colour and COD removal from complex azo 

dye mixtures. The microbial communities selected during azo dye degradation 

were distinctly different to the microbial communities found in the original mixed 

bacterial population. It can be inferred that microbial community structure is 

markedly influenced by the presence of azo dyes in MFC anodes and this may 
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potentially play an important role in effective degradation of complex azo dye 

mixtures by the azo dye adapted mixed bacterial population. 

In the third study (Chapter 5), the possibility of complete degradation of the model 

azo dye AO-7 using an integrated MFC – aerobic sequential biotreatment process 

was investigated. Tubular mono-chamber MFCs operated in continuous mode fed 

with AO-7 containing synthetic wastewater medium was used in this study. The 

synthetic wastewater medium was supplemented with molasses to act as the 

electron donor for azo dye reductive degradation and MFC operation and the 

reactor system was operated at ambient temperature. The synthetic wastewater 

medium did not include a buffering system but was instead adjusted with common 

colour industry wastewater auxiliary salts Na2SO4 and NaCl, in order to provide 

necessary ionic strength for MFC operation. Colour and soluble COD removal 

rates in excess of 90% in the final effluent were achieved even when the AO-7 

loading rates were incrementally varied from 70 gm-3day-1 to 210 gm-3day-1. This 

suggests that the two-stage integrated bioreactor system is capable of effective 

colour and organics removal even at high azo dye loading rates. HPLC-MS 

analysis indicated that aminobenzenes were further degraded into simpler and non 

–toxic (determined using the V.fischeri toxicity assessment procedure) metabolites 

at the end of the MFC-aerobic two-stage reactor operation. The two-stage system 

was capable of operating at ambient temperature, often encountering low 

temperatures and was capable of operating effectively for long operational periods 

(in excess of 150 days) in continuous mode. This highlights the robustness of such 

MFC-aerobic integrated reactor systems and therefore, would suit potential 

industrial scale colour industry wastewater treatment processes. Furthermore, the 

MFC stage was capable of continues bioelectricity production during azo dye 

degradation and therefore highlights the additional benefits of such systems in 
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terms of sustainable bioenergy production. Outcomes of this study implies that 

MFC based technologies in conjunction with existing wastewater treatment 

technologies such as activated sludge systems can effectively be used for colour 

industry wastewater treatment.  

In the penultimate study (Chapter 6), an up-scaled version of the MFC – aerobic 

two stage bioreactor system was used in order to treat real colour industry 

wastewater originating from acid dyebaths for wool colouring and leather tanning. 

The system comprised of several mono-chamber MFC units acting in unison in 

continuous flow mode and had a working volume of 1.2 L. The MFC stage was 

hydraulically connected to a subsequent aerobic bioreactor stage (2 L working 

volume) mimicking an activated sludge system in order to achieve more complete 

degradation of colouring agents found within colour industry wastewater used in 

the study. The individual MFC modules used in the scaled-up MFC system were 

connected in parallel configuration with the aim of attaining higher current 

densities. Colour and COD removal in the final effluents when synthetic 

wastewater (containing AO-7 as the azo dye) was used, reached over 90% and 

85% respectively, suggesting that the scaled up two-stage reactor was in par in 

terms of performance with the smaller two- stage reactor used in the previous 

study. When both types of synthetic wastewater were used, colour and COD 

removal efficiencies of the final effluents exceeded 95% and 80% respectively. 

Current output (1150 mAm-2) of the parallel connected MFC modules was found to 

be an enhancement from single MFC modules (550 mAm-2), whereas the power 

densities remained relatively unchanged when the MFC modules were stacked in 

parallel configuration (54 mWm-2 from parallel stacked MFCs compared to 49 

mWm-2 from individual modules). Comparison of HPLC chromatograms of dye 

contaminated influent wastewater and decolourised final effluent from the aerobic 
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stage suggested that numerous degradation products were formed during the two-

stage biotreatment process. It can be inferred from these findings that modular 

MFC scale-up could potentially be used in conjunction with other existing 

wastewater treatment technologies such as activated sludge systems for effective 

colour and organic removal from colour industry wastewater and concomitant 

bioelectricity generation. 

In the final study (Chapter 7), the influence of applied external resistance (Rext) 

and exogenous addition of synthetic electron shuttling compounds Anthraquinone-

2-sulfonic acid (AQS) and Antharquinone-2,6-disulfonic acid (AQDS) on the 

decolourisation kinetics of three model azo dyes AO-7, Reactive red -3 (RR-3) and 

Direct yellow-106 (DY-106) was investigated in two-chamber MFCs. The Rext is 

known to significantly influence the anode potential and hence, the metabolism of 

the microbial populations residing in the MFC anode. The reductive 

decolourisation kinetic constants (k) of all three tested azo dyes in MFC anodes 

were found to be enhanced at moderate Rexts, whereas application of extremely 

low (10 Ω) and extremely high (46 kΩ) Rexts considerably hindered decolourisation 

kinetic constants of all three model dyes. Microbial community dynamic studies 

indicated that microbial populations being selected under different Rexts were 

markedly different. Maximum power densities obtained from the two chamber 

systems during dye degradation were also found to be higher when moderate Rexts 

were used, as opposed to extreme high or extreme low Rexts. This suggests that 

application of moderate Rexts (between 500 Ω to 2.2 kΩ in this study) would 

enhance the selection of exo-electrogenic bacteria, whereas the application of 

extremes of Rexts would promote mostly the selection of fermentative 

microorganisms, eventually leading to a deterioration of azo dye reductive 

degradation kinetics and MFC power outputs. The addition of synthetic electron 
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shuttling compounds such as AQDS and AQS enhanced k values of AO-7 

reductive degradation in a concentration-dependant manner. However, at very 

high mediator concentrations (150 µM), the k values indicated a saturation-type 

non-linear relationship in relation to the mediator concentration. The outcomes of 

this work demonstrates that Rext and the exogenous supplementation of electron 

shuttling compounds are capable of influencing azo dye reductive degradation 

kinetics in MFC based colour industry wastewater treatment systems. 
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Chapter 9 - Future work 
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The final outcome of this research underscores several areas of potential further 

study. These may allow further optimisation and improvement of the developed 

bioelectrochemical systems for colour industry wastewater treatment.  

9.1. Development of biocathodes for colour 

industry wastewater treatment 

When two-chamber bioelectrochemical systems are considered, biocathodes are 

an exciting new prospect in terms sustainability of BES and cost reduction of using 

abiotic cathode catalysts (i.e. precious metal catalysts). The use of biocathodes 

eliminates the need for the use of precious metals such as platinum in MFC 

cathodes (He and Angenent, 2006). Many previous studies demonstrated the 

potential of biocathodes utilising various microorganisms as the cathode catalyst 

for the cathodic oxygen reduction reaction in MFCs (Clauwaert et al, 2007, Freguia 

et al, 2010, Lefebvre et al, 2008, You et al, 2009). The outcomes of current work 

demonstrated that in order to achieve complete biodegradation of azo dyes in 

colour industry wastewater by MFC based systems utilising various types of 

bacteria, a two stage sequential strategy comprising of reductive and oxidative 

degradation steps is necessary. Therefore, if these reductive and oxidative stages 

are to be combined in a two-chamber MFC system, the utilisation of a biocathode 

would be the ideal strategy for the final oxidative degradation step. The colourless 

but toxic amines generated in the reductive degradation step in MFC anode would 

be fed into the biocathodes where the amines would undergo further degradation 

oxidatively in the biocathode. Very few previous studies investigated this possibility 

of using biocathodes of BES for the treatment of aminobenzenes generated from 

azo dye reductive degradation (Hou et al, 2012, Liu et al, 2009, Sun et al, 2011, 

Wang et al, 2013). Therefore, additional work could be carried out in this area in 
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order to investigate the possibility of utilising biocathodes for the purpose of 

efficient degradation and detoxification of azo dyes and their harmful 

transformation products and for simultaneous bioelectricity generation.  

9.2. The use of enzymes as the cathode catalyst in 

MFCs for simultaneous azo dye degradation and 

bioelectricity generation 

The use of peroxidese and phenol oxidase enzymes for the purpose of dye 

degradation including azo dyes is well documented in previous research (Kwang-

Soo and Chang-Jin, 1998, Chivukula and Renganathan, 1995, Spadaro and 

Ranganathan, 1994). Phenol oxidase enzymes such as laccases and many other 

peroxidases possess high redox potentials (Xu et al, 1996). Therefore, they could 

be used for the purpose of electron abstraction from the cathode and subsequent 

reduction of oxygen to water in the cathodic compartment in MFCs.  

4e- + 4H+ + O2 → 2H2O 

This has been demonstrated in several previous studies where the noble metal 

catalyst cathode was replaced by a laccase catalysed cathode in MFCs (Schaetzle 

et al, 2009, Szczupak et al, 2012). Considering the ability of phenol oxidases such 

as laccases to non-specifically degrade dye compounds such as azo dyes, these 

enzymes could potentially be utilised in MFC cathodes in the twin-role of 

degrading azo compounds as well as carrying out the vital oxygen reduction 

reaction without the assistance of any noble metal catalyst. Furthermore, enzyme 

immobilisation on electrode surfaces could enhance the catalytic efficiency and the 

longevity of the active form of the enzyme than when suspended in solution. 

Hence the use of laccase, other phenol oxidases and peroxidase enzymes as the 
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cathode catalysts in MFCs and dye degrading agents in biocathodes would be an 

exciting area of further study.  

9.3. Integrating advanced oxidation processes 

(AOP) with MFCs for complete azo dye degradation 

Many AOP based processes have previously been studied and demonstrated to 

possess the capability to degrade dye compounds. The use of MFC’s for in-situ 

generation of H2O2 and hydroxyl radical has been demonstrated in a few recent 

studies (Fu et al, 2010, Liu et al, 2011, Zhu and Logan, 2013). In-situ generation of 

Fenton’s reagent or hydroxyl radicals holds great potential for degradation and 

detoxification of dye compounds and their biological transformation products such 

as aminobenzenes. Controlling the cathode half-cell potential to around 600 mV in 

two chamber MFCs would lead to the generation of H2O2 in the catholyte. When 

combined with a suitable source of Fe3+ in the catholyte, in-situ generation of the 

Fenton’s reagent at the cathode end of MFCs can be achieved for wastewater 

treatment purposes. Hence, more research into MFC/AOP integrated systems 

would be beneficial in view of developing bioelectrochemical systems that are 

capable of effectively dealing with colour industry wastewater. 

 

 

 

 

 



187 
 

9.4. Incorporating molecular and synthetic biology 

approaches for engineering microbes that are 

better capable of extracellular electron transfer 

Engineering microbes that are capable of efficient extracellular electron transfer is 

considered as an attractive and novel way of enhancing the performance of BES 

including MFCs. It could also be expected that employing such microbes with 

enhanced capabilities of extracellular electron transfer (EET) could also be 

beneficial in reductive degradation of various azo dye pollutants. In this view, the 

heterologous expression of proteins that are thought to be involved in external 

electron transfer in hosts such as Escherichia coli seems very attractive. 

Particularly, the membrane-bound cytochromes such as Mtr, Cym and Omc 

proteins that are demonstrated to be linked to extracellular electron transfer in 

hosts such as E.coli confers several benefits. Firstly, high rates of EET could be 

achieved when rapid growth rates of organisms such as E.coli are modified to 

express fully functional EET related proteins. Secondly, the heterologous 

expression of such proteins in hosts such as E.coli would be more convenient 

because a highly developed molecular toolkit is already available for genetically 

manipulating organisms such as E.coli. Hitherto, only a few reports of published 

work can be found relating to heterologous expression of EET proteins in E.coli. 

Many of the EET proteins that were heterologously expressed were S.oneidensis 

cytochromes such as MtrA (Pitts et al, 2003), CymA (Gescher et al, 2008) and 

OmcA (Donald et al, 2008). All of these EET genes that were heterologously 

expressed in E.coli were demonstrated to be functional and were shown to reduce 

electron acceptors such as Fe3+ and other insoluble electron acceptors such as 

poised electrodes. Hence, this suggests that heterologous expression of one or 
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several EET capable genes in hosts such as E.coli would be beneficial in 

improving electrochemical performance in BES including MFCs.  
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