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1. Introduction

Anx-A1, a 37 kDa member of the annexin super-family (13
proteins in mammals), and its N-terminal peptide N-acetyl2-26

[1,2], have been shown by us, and by other laboratories to possess
powerful anti-inflammatory actions in a wide variety of animal
models of acute [3–17] or chronic [18–20] inflammation.

The biologically active pool, in this context, is the extracellular
protein. Anx-A1 is both induced and secreted from cells under the
influence of GCs [21–24]. The release, as opposed to the induction,
of cytosolic Anx-A1 is increased by GCs acting in a receptor-
dependent, non-genomic manner. This GC-induced secretory
event is preceded by Ser27 phosphorylation apparently as a result
of PKC (Protein Kinase C; EC 2.7.11.13) activation [25–27]. Indeed,
the Anx-A1 Ser27–Ala27 mutant is not secreted from cells and has a

different intracellular distribution [28]. Once on the cell surface,
Anx-A1 can act in an autocrine (or paracrine) fashion to inhibit cell
activation probably by interaction with receptors of the FPR family,
specifically FPR-L1 (ALXR; [29–31]).

The ‘cromoglycate-like’ anti-allergic drugs (cromolyns) are a
group of compounds of which sodium cromoglycate and sodium
nedocromil are the exemplars. The family also embraces lodox-
amide, traxanol and amlexanox as well as some H1 antagonists
such as ketotifen, azelastine, pemirolast and olopatidine, many of
which appear to share a similar pharmacology (or exhibit cross-
tachyphylaxis) with cromoglycate [32].

Contemporary reviewers are unanimous in attributing the anti-
asthmatic activity of the cromoglycate-like drugs to their anti-
inflammatory properties (see Refs. [33–35]), although the exact
mechanism of action of this group of drugs has proved elusive.
Early experiments [36–40] led to the concept that these drugs
acted mainly on mast cells to suppress mediator release, but the
balance of evidence now suggests that this is unlikely to be their
only clinically significant action and that mast cells are not their
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A B S T R A C T

Using biochemical, epifluorescence and electron microscopic techniques in a U937 model system, we

investigated the effect of anti-allergic drugs di-sodium cromoglycate and sodium nedocromil on the

trafficking and release of the anti-inflammatory protein Annexin-A1 (Anx-A1) when this was triggered

by glucocorticoid (GC) treatment. GCs alone produced a rapid (within 5 min) concentration-dependent

activation of PKCa/b (Protein Kinase C; EC 2.7.11.13) and phosphorylation of Anx-A1 on Ser27. Both

phosphoproteins accumulated at the plasma membrane and Anx-A1 was subsequently externalised

thereby inhibiting thromboxane (Tx) B2 generation. When administered alone, cromoglycate or

nedocromil had little effect on this pathway however, in the presence of a fixed sub-maximal

concentration of GCs, increasing amounts of the cromoglycate-like drugs caused a striking

concentration-dependent enhancement of Anx-A1 and PKCa/b phosphorylation, membrane recruit-

ment and Anx-A1 release from cells resulting in greatly enhanced inhibition of TxB2 generation. GCs also

stimulated phosphatase accumulation at the plasma membrane of U937 cells. Both cromoglycate and

nedocromil inhibited this enzymatic activity as well as that of a highly purified PP2A phosphatase

preparation. We conclude that stimulation by the cromoglycate-like drugs of intracellular Anx-A1

trafficking and release (hence inhibition of eicosanoid release) is secondary to inhibition of a

phosphatase PP2A (phosphoprotein phosphatase; EC 3.1.3.16), which probably forms part of a control

loop to limit Anx-A1 release. These experiments provide a basis for a novel mechanism of action for the

cromolyns, a group of drugs that have long puzzled investigators.
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sole target. Of particular relevance to this study is the observation
that they can also suppress eicosanoid generation [41,42].

Here we report that the mechanism whereby the latter effect is
accomplished in differentiated U937 cells depends upon the
enhanced intracellular trafficking and release of Anx-A1, and that
these drugs synergise strongly with agents which activate PKC,
such as GCs, to bring about this effect. Our findings highlight a
novel mechanism of action for the cromolyns as well as providing a
compelling rationale for a combination anti-allergy therapy.

2. Materials and methods

2.1. U937 cell culture

U937 cells were obtained from the American Type Culture
Collection and cultured in RPMI 1640 supplemented with 10% FCS,
1% L-glutamine, 1% non-essential amino acids and 0.1% gentamicin
at 37 8C (Sigma–Aldrich, Poole, UK) in 5% CO2 atmosphere.
Proliferating monocytic cells were removed from the flask when
70–80% confluence was achieved, transferred to 12-well plates at a
density of 106 cells/well and pre-incubated with 10 ng/ml phorbol
12-myristate 13-acetate (PMA) for 24 h to promote monocytic
differentiation after that period they acquire sensitivity to GCs
[43].

For assessment of drug effects, GCs were tested alone or in
combination with the anti-allergic drugs for different times. Three
different procedures were used to prepare samples for analysis. To
analyse proteins of interest, U937 cells were normally lysed at the
end of the treatment period and the total protein content was used
for further analysis. To do this U937 cells in suspension following
drug treatment, were decanted into 1.5 ml Eppendorf tubes and
gently centrifuged (300 � g) for 5 min. The supernatant was
removed and the resultant pellet resuspended in 500 ml of lysis
buffer containing 1 mM EDTA (which removes Anx-A1 attached to
cell membranes), 200 mM NaCl, 20 mM Tris–HCl (pH 8.0), 1 mM
protease and 1 mM phosphatase inhibitors (equimolar mixture of
Na3VO4, b-glycerophosphate, NaF) and 0.1% Triton-X.

In some experiments, where we studied the differential
abundance of proteins in the cell cytosol and pellet, the cells
were first ruptured by freeze-thawing in liquid nitrogen 3–4 times
and the crude fractions separated by centrifugation at 13,000 � g

for 5 min. The supernatant and pellet fractions were then prepared
for analysis in lysis buffer as above prior to Western blotting.

To prepare U937 plasma membranes, cell organelles were
separated by ultra-centrifugation. Cells ruptured by sonication
were centrifuged at 300 � g for 5 min to remove coarse debris and
intact cells and the supernatant was removed and resuspended in
1 ml lysis buffer. An initial centrifugation at 13,000 � g separated
nuclei, mitochondria and other dense material. The supernatant
from this step was then resuspended in 0.5 ml lysis buffer and
centrifuged for 1 h at 100,000 � g. The resulting pellet was
resuspended in lysis buffer containing 0.1% Triton-X.

The cellular protein content of different fractions was analysed
to determine the total protein concentration using the BioRad
Protein Assay Method (Bio-Rad Laboratories, Hemel Hempstead,
UK) according to the manufacturer’s instructions.

2.2. Transfection of U937 cells with GFP–Anx-A1 construct and

fluorescence microscopy

U937 cells were stably transfected with a mouse Anx-A1 cDNA
open reading frame-GFP as previously reported [28]. Cells
transfected with EGFP ‘empty’ plasmid were used as controls.
Stably transfected clones were kept in culture for no longer than 20
passages.

For transfection, the cells were plated in 6-well plates at a
concentration of 106/well in DMEM. Transient transfection was
performed the following day, using a Dharmafect reagent 2
(Dharmacon-Perbio Science, Cramlington, UK), a liposoluble agent
that fuses with the membrane, according to the manufacturer’s
protocol. These cells grow in suspension and after a period of 2
weeks in G418 selection, cells were sorted by FACS to enrich the
GFP positive clones followed by a serial dilution in order to
facilitate a clonal expansion.

To visualise export of Anx-A1–GFP cells were stimulated with
GCs and/or cromoglycate-like drugs for 5–10 min, fixed in 4%
paraformaldehyde (PFA), and stained with red fluorescent Alexa
Fluor1 594 wheat germ agglutin (WGA: Image-ITTM live plasma
labelling kit, Molecular Probes, Leiden, The Netherlands) to visualise
the plasma membrane of live Anx-A1–GFP transfected cells.

The slides were mounted in Mowiol (Sigma–Aldrich, Poole,
Dorset, UK). Fluorescence micrographs were obtained with a
Cool-Snap-Pro colour camera (Media Cybernetics, Finchampstead,
Berkshire, UK) and image processing software (Image Pro Plus 4.5)
linked to a Nikon Eclipse E800 microscope. The filter used to detect
GFP-fluorescence was an excitation band-pass filter (450–
490 nM), a dichroic mirror (510 nM), and an emission band filter
(515–560 nM). Z-stack images at 0.5 mm separation were collected
on an inverted epifluorescence TE2000 U Nikon microscope, and
were subjected to nearest neighbour deconvolution using Openlab
5.5 software (Improvision, Coventry, UK).

2.3. Western blotting

The total cellular protein was determined and the supernatant
analysed by conventional Western blotting techniques. Immuno-
detection was accomplished using different antibodies recognizing
either the full-length Anx-A1 protein (polyclonal anti-Anx-A1
antibody; Invitrogen, Paisley, UK), Anx-A1 phosphorylated on Ser27

(polyclonal anti-Ser27–Anx-A1 antibody; Neosystem, Strasbourg,
France) and a-tubulin (monoclonal anti-a-tubulin; Sigma–
Aldrich, Poole, UK). A horseradish peroxidase-conjugated second-
ary antibody (Sigma–Aldrich, Poole, UK) detected bands related to
the proteins of interest and these were revealed using ECL reagents
and quantitated using the Image J densitometry program. All data
were normalised to a-tubulin and expressed as percentage of
control (differentiated cells stimulated with 10 ng/mL PMA for
24 h).

2.4. ELISA for Anx-A1

Anx-A1 protein levels in conditioned medium were determined
by ELISA as reported by Goulding et al. [21]. Briefly, 96-well flat-
bottomed ELISA plates (Greiner, Gloucestershire, UK) were coated
with 1 mg anti-Anx-A1 mAb 1B in bicarbonate buffer (pH 9.6) and
incubated overnight at 4 8C. After washing in the bicarbonate
buffer, potentially uncoated sites were blocked with 100 ml of PBS
containing 1% BSA for 1 h at room temperature. Sample aliquots
(100 ml) or Anx-A1 standard solutions (prepared in 0.1% Tween-20
in PBS; concentration ranging between 10 and 0.001 mg/ml) were
added for 1 h at 37 8C. After extensive washing in PBS/Tween-20,
100 ml of a polyclonal rabbit anti-human Anx-A1 serum (Zymed
cat no 71–3400, Invitrogen, Paisley, UK; diluted 1:1000 in PBS/
Tween-20) was added (1 h at 37 8C) before incubation with donkey
anti-rabbit IgG conjugated to alkaline phosphatase (1:1000;
Sigma–Aldrich, Poole, UK). The colour was developed by addition
of 100 ml p-nitrophenyl phosphate (pNPP) (Sigma–Aldrich, Poole,
UK; 1 mg/ml in bicarbonate buffer, pH 9.6). Absorbance was read at
405 nm (with a 620-nm reference filter) in a microplate reader
(TitertekTM, Vienna, Austria). Anx-A1 levels in the study samples
were read against the standard curve and expressed as ng/ml.
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2.5. Electron microscopy

After drug treatment as described above, U937 cells were fixed
with a mixture of freshly prepared 3% (w/v) paraformaldehyde and
0.5% (v/v) glutaraldehyde in PBS (pH 7.2) for 4 h at 4 8C, washed
briefly in PBS, and transferred to a solution of 2.3 M sucrose (in
PBS) at 4 8C overnight. The cyroprotected cells were slam-frozen
(Reichert MM80E; Leica, Milton Keynes, UK), freeze-substituted at
�80 8C in methanol for 48 h, and embedded at �20 8C in LRGold
acrylic resin (Agar Scientific, Stansted, UK) in a Reichert freeze-
substitution system. Ultrathin sections (50–80 nm) were prepared
using a Reichert Ultracut-S ultratome and incubated at room
temperature for 2 h with a well-characterised in-house polyclonal
sheep anti-Anx-A1 antibody (dilution 1:200) followed by a second
antibody labelled with immunogold (British Biocell, Cardiff, UK).
The serum and antiserum were diluted in 0.1 M phosphate buffer
containing 0.1% egg albumin. After immunolabelling, sections
were lightly counterstained with uranyl acetate and lead citrate
(British Biocell, Cardiff, UK) and examined with a JEOL 1010
transmission electron microscope (JEOL, Peabody, MA).

The number of cytoplasmic and membrane 15 nm gold particles
were counted in 30 cells and calculated as particles/mm2 by
dividing the total number of gold particles counted by the cell area.
For measurement of cell area micrographs of each cell were taken
at a magnification of 4000�. The cell areas were analysed from
scanned micrographs using Axiovision software, version 3.4 (Zeiss,
Hemel Hempstead, UK). In all cases the analyst was blind to the
sample code.

2.6. Measurement of TxB2 activity

Supernatants (2 ml) from individual samples were concen-
trated (10�) using Centricon centrifugal filter devices (Millipore,
Watford, UK) with Ultracel YM-10 membrane centrifuged at
5000 � g for 1 h. An enzyme immunoassay was established to
detect and quantify TxB2� released in the supernatant (Biotrak
Assay, Amersham, UK). The method was conducted following the
manufacturer protocols. A standard curve ranging from 0.5 to
64 pg/well was prepared using the reagent provided and the
optical density was then read at 450 nm in a microplate reader,
within 30 min.

2.7. PKC activity assay

The assay was performed using the PKC Kinase Activity Assay
Kit (Stressgen, Cambridge Bioscience, Cambridge, UK) as described
in the manufacturer’s protocol: each sample was loaded on to a
pre-coated plate with a substrate peptide for PKC and the reaction
initiated by adding ATP. The phosphospecific substrate antibody
(rabbit polyclonal) was added and detected by an HRP-conjugated
anti-rabbit IgG and the colour developed with a TMB substrate in
proportion to PKC phosphotransferase activity. The reaction was
stopped with 100 ml of 1 M H2SO4 and the colour was measured on
a microplate reader at 450 nm. The kinase activity in the cell lysate
was calculated as a ratio between the average of absorbance in
each sample (subtracted by the absorbance in the blank) and the
amount of protein loaded per assay. A recombinant active protein
kinase C was used as a positive control.

2.8. Phosphatase activity assay

To detect protein phosphatase (phosphoprotein phosphatase;
EC 3.1.3.16) activity in the samples, we used the colorimetric
Sensolyte pNPP Protein Phosphatase kit (ANASPEC, San Jose, CA,
USA). Membrane or recombinant PP2A samples were prepared
according to the protocols suggested by the manufacturer. The

colorimetric substrate p-nitrophenyl phosphate was used to assess
the activity of generic phosphatase activity in our samples, yielding
a yellow colour that can be quantified at 405 nm from which the
substrate hydrolysis calculated from the molar extinction coeffi-
cient supplied. For a kinetic reading, the absorbance was measured
every 5 min for 30 min. Samples containing drug alone without
enzyme were monitored to check that they had no influence on the
colour reaction.

2.9. Drugs and materials

The following chemicals (EDTA, glutaraldehyde, b-glyceropho-
sphate, H2SO4, methanol, NaCl, NaF, Na3VO4, paraformaldehyde,
PMA, sucrose, Tris–HCl and 0.1% Triton-X) and drugs (betametha-
sone, dexamethasone, hydrocortisone, 5-methylprednisolone and
prednisolone, PI3 kinase inhibitor (LY 294002), MAP kinase
inhibitor (PD98059), mifepristone (RU 486), okadaic acid and di-
sodium cromoglycate) were purchased from Sigma–Aldrich, Poole,
Dorset, UK. Highly purified (>90%) bovine PP2A 1800.0 U/mg was
obtained from Calbiochem (Merck Chemicals, Nottingham, UK).
Sodium nedocromil was a generous gift from Sanofi-Aventis.

All drugs were diluted in incubation medium immediately
before use to a final concentration that did not exceed 0.04% (w/v).

2.10. Data analysis

For electron microscopy, all values for immunogold particles
counted represent the mean � S.E.M.: n = 30 cells per group.
Preliminary analysis confirmed that the data were normally distrib-
uted. Subsequent analysis was undertaken by one-way analysis of
variance (ANOVA) with post hoc analysis performed using Scheffe’s
test.

Elsewhere, all data are presented as mean � S.E.M. and were
tested for normality prior to analysis. Statistical differences between
groups were established using one-way ANOVA followed by Bonferroni
post hoc test.

In all cases differences were considered significant if P < 0.05.

3. Results

3.1. GCs alone stimulate Anx-A1 phosphorylation through a PKCa/b-

dependent mechanism

GCs increase both the synthesis (genomic) as well as the release
(non-genomic) of Anx-A1 from cells. As most previous studies have
focussed upon the former we determined, in a series of pilot
studies, the time course of GC action on these separate processes in
U937 cells (data not shown). Treatment with 1 mM dexametha-
sone strongly stimulated the production of the Ser27 phosphory-
lated species within 5 min and this was sustained for up to 30 min.
There were no changes in the total mass of Anx-A1 protein in cells
prior to the 60 min time point after which steadily increasing
amounts accumulated during the following 24 h. We therefore
chose 5 min as the optimal time point for most of our subsequent
assays as strong non-genomic effects of the GC could be easily
observed without detectable genomic actions occurring. We tested
dexamethasone, hydrocortisone, prednisolone, methylpredniso-
lone and betamethasone in this system finding that all stimulated
Anx-A1 Ser27 phosphorylation in a qualitatively comparable
fashion, however prednisolone, methylprednisolone and beta-
methasone were not examined further in our assay systems.

We then established the concentration dependency of GC-
induced Anx-A1 phosphorylation in U937 cell lysates at 5 min.
Fig. 1A (upper panel) shows that increasing concentrations of
dexamethasone (0.02–5.0 nM) produced a corresponding aug-
mentation (�4-fold, by densitometry) of Anx-A1 Ser27 phosphor-
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ylation. We examined the concentration–response curves of
dexamethasone, prednisolone and hydrocortisone in detail and
determined the relative EC50 concentrations to be 0.2, 0.4 and 1 nM
respectively. In this paper we report data obtained mainly using
dexamethasone but we observed that hydrocortisone exhibited
qualitatively identical behaviour in terms of its interaction with
the cromolyns.

Previous studies have implicated the enzyme PKC in this GC-
induced phosphorylation of Anx-A1. We tested this in the present
system using a pan-specific anti-phospho PKC antibody, finding
that the abundance of phosphorylated PKC was increased in a
similar concentration-dependent fashion (>3-fold; Fig. 1A lower
panel) by these drugs to that of Ser27 phospho Anx-A1.

To confirm that the GC effect was dependent upon GR
occupation we tested the effect of the GR antagonist RU 486 on
the ability of dexamethasone to stimulate phosphorylation of Anx-
A1. Fig. 1B shows that 2 nM dexamethasone was unable to
stimulate Anx-A1 Ser27 production in the presence of 1 mM of this
drug (P < 0.01). It is noteworthy that the background Anx-A1
phosphorylation sometimes observed in untreated cells was itself
reduced by RU 486 (P < 0.05) perhaps implying that residual GCs in
the medium may drive a low level phosphorylation of the protein.

To determine if PKC was the sole kinase responsible for Anx-A1
phosphorylation in this system, we examined the effects of a panel
of inhibitors. Fig. 1C shows the effect of the PI3 kinase inhibitor

LY294002 (10 nM), a MAP kinase inhibitor PD98059 (5 mM) and an
inhibitor of PKC, PKC 19–31 (5 mM) on the phosphorylation
response. Only PKC 19–31 was able significantly (P < 0.001) to
reverse the dexamethasone-induced increase in Anx-A1 phos-
phorylation. The MW of the phosphorylated PKC enzyme detected
by Western blotting using the pan-specific PKC antibody was in the
range 76–82 kDa suggesting the relevant isoform was either PKC d
(78 kDa), PKC u (76 kDa) or PKCa/b (80–82 kDa). When we probed
our blots with a panel of isoform specific anti-phospho PKC
antisera, no PKC d (Ser643) or PKC u Thr538 was detectable. Some
PKC d Thr505 were detected but with a lower MW (78 kDa) than the
GC stimulated species seen in our blots. However, the specific anti-
phospho-PKCa/b Thr638/641 antibody showed good reactivity with
a band that increased with GC treatment over a period of 5–30 min
treatment (Fig. 1D). We therefore concluded that the main kinase
responsible for Anx-A1 phosphorylation in this system was almost
certainly PKCa/b.

3.2. Cromoglycate-like drugs synergise with GCs to stimulate Anx-A1

phosphorylation and release

We next assessed the effect of sodium cromoglycate and
nedocromil on Anx-A1 and PKCa/b phosphorylation in our U937
cell system. Fig. 2A shows that the administration of nedocromil
(0.02–5.0 nM) alone had a negligible or only a weak action on the

Fig. 1. Dexamethasone increases the phosphorylation of Anx-A1 and PKC in U937 cells within 5 min in a concentration-dependent fashion. (Panel A) In U937 cells, 5 min

treatment with dexamethasone in concentrations of 0.02–5.0 nM increases phosphorylation of Anx-A1 on Ser27 (upper panel) by �4-fold and, in parallel, PKCa/b
phosphorylation (lower panel) by�3-fold compared to untreated controls. Whole U937 cell lysates were prepared as detailed. Anx-A1 phosphorylation was detected using a

specific anti-Ser27 phospho Anx-A1 antibody as described. Total Anx-A1 (sometimes shown as a 33/37 kDa doublet) and PKC is shown for reference purposes. (Panel B) The

dexamethasone (2 nM) effect on Anx-A1 phosphorylation is dependent on GC receptor occupation since the co-administration of 1 mM RU 486, blocks this effect. Note that

the amount of phospho Anx-A1 is significantly less in samples treated with RU 486 alone than in vehicle treated samples, suggesting that some residual GCs may be present in

the culture media. *P < 0.05 relative to control values; §§P < 0.01 relative to dexamethasone alone. (Panel C) The action of common kinase inhibitors on Anx-A1

phosphorylation. Of these, only PKC 19–31 (5 mM), an inhibitor of PKC, was able to reduce phosphorylation of Anx-A1 when this was stimulated by 2 nM dexamethasone (D).

An inhibitor of PI3 kinase inhibitor LY294002 (LY: 10 nM) or a MAP kinase inhibitor PD98059 (PD: 5 mM) were inactive. Insert: a representative Western blot showing effect of

the different treatments on Ser27 phospho Anx-A1. ***P < 0.001 relative to dexamethasone alone. (Panel D) Analysis of the PKC isoform activated by GCs. Blots were probed

with anti-sera specific for each isoform. No signal was seen with antisera recognising PKC u (not shown). A faint signal was detected for PKC d Thr55 (78 kDa) but not for its

activated form, Ser643 (not shown). In contrast, activated PKCa/b Thr638/641 (81 kDa), showed a strong signal in response to dexamethasone treatment at 15–30 min. All

experiments were performed at least three times and the blots are representatives from one of these experiments. Densitometry was performed as described in the methods

and the optical density units normalised by comparison to a-tubulin. Data are expressed as mean � S.E.M. Statistical differences between groups were established using one-

way analysis of variance (ANOVA) followed by Bonferroni post hoc test.
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phosphorylation of Anx-A1 (<1.5-fold) or PKCa/b (1–2-fold) when
compared with dexamethasone (see Fig. 1A and B). Cromoglycate
alone (0.02–5.0 nM) was similarly only very weakly active in this
system (data not shown). Surprisingly however, in the presence of
a fixed concentration (2 nM) of a GC, these drugs exhibited a
further strong concentration-dependent increase in both Anx-A1
and PKCa/b phosphorylation (>3–4-fold; Fig. 2B) that exceeded
the maximum stimulation caused by the GCs alone. In this paper
we mainly report data obtained using nedocromil but we observed
that cromoglycate exhibited qualitatively the same effect in all our
assay systems.

3.3. Translocation of phosphorylated species

PKCa/b is enriched at the plasma membrane when activated
and Anx-A1 is likewise recruited to the membrane upon
phosphorylation at Ser27. Fig. 2C shows that in the presence of a
fixed concentration of dexamethasone, escalating concentrations
of nedocromil cause the translocation of Ser27 phospho Anx-A1
from the (13,000 � g) supernatant to the particulate fraction of the
U937 cells. We refined this analysis by using differential
centrifugation to prepare some 100,000 � g membranes from
cells treated with drug combinations. Fig. 2D shows that, relative
to either drug given alone, the combination of nedocromil and
dexamethasone increased (2-fold) the amount of activated
phospho PKCa/b in the membrane fraction as determined by
Western blotting and also increased (P < 0.05) the catalytic
activity of the enzyme in this compartment.

3.4. Cromoglycate-like drugs potentiate the action GCs

on eicosanoid release

The ability of GCs to arrest eicosanoid synthesis depends on the
release of Anx-A1 from target cells in many systems. As the
cromoglycate-like drugs are also reported to inhibit eicosanoid

formation, we next determined whether these drugs alone, or in
combination with GCs, enhanced Anx-A1 release thereby produ-
cing a concomitant decrease in the generation of TxB2, a prominent
eicosanoid spontaneously released from U937 cells.

Fig. 3A shows that whilst nedocromil (0.5 nM) alone had only a
small (<10%; NS) effect on TxB2 release it greatly potentiated
(P < 0.001) the inhibitory effect of 2 nM dexamethasone (P < 0.01)
alone. This correlated with a potentiation of Anx-A1 release into
the medium as assessed by the ELISA assay (P < 0.001).

Fig. 3B and C shows the concentration dependency of this effect.
In Fig. 3B, the maximum inhibition achieved by dexamethasone at
5 min (<20%: 0.2–20 nM) alone was evident at a concentration of
1 nM. When nedocromil (0.2–20 nM) was added to 2 nM
dexamethasone however, a concentration-dependent increase in
the inhibitory activity was observed which maximally inhibited
TxB2 release at concentrations of 20 nM nedocromil.

Fig. 3C shows that this is also true of Anx-A1 release. In the
presence of 2 nM dexamethasone, nedocromil (0.2–10.0 nM)
caused a concentration-dependent inhibition of TxB2 generation
that was correlated exactly with the increasing amounts (7–8-fold)
of Anx-A1 released onto the outside of the cell (see blot insert).

To confirm that the drug-induced inhibition of TxB2 was caused
entirely by increased Anx-A1 in this system we tested the effect of
a neutralising anti-Anx-A1 monoclonal (mab 1A) and isotype-
matched irrelevant monoclonal antibody. Fig. 3D shows that
addition of the mabs alone had no effect but that the neutralising,
but not the irrelevant monoclonal antibodies completely reversed
(P < 0.001) the inhibitory effect of the dexamethasone–nedocro-
mil combination on TxB2 release.

3.5. GCs and cromoglycate-like drugs promote intracellular trafficking

and membrane localisation of Anx-A1 in U937 cells

To investigate the effect of the drugs on the intracellular
movement of Anx-A1 at a fine level of detail, we utilised U937 cells

Fig. 2. Nedocromil potentiates the effect of dexamethasone on Anx-A1 and PKCa/b phosphorylation and protein translocation to the plasma membrane fraction. (Panel A)

Nedocromil itself, over a range of concentrations, has a negligible effect on the concentration of Ser27 phospho Anx-A1 in U937 cell lysates or PKCa/b phosphorylation when

compared to untreated samples. Total Anx-A1 (sometimes shown as a 33/37 kDa doublet) and PKC is shown for reference purposes. (Panel B) In the presence of 2 nM

dexamethasone, escalating concentrations (0.02–5.0 nM) of nedocromil potentiate (by a further 3–4-fold) the phosphorylation of both Anx-A1 and PKCa/b. Total Anx-A1

(sometimes shown as a 33/37 kDa doublet) and PKC is shown for reference purposes. (Panel C) In the presence of a fixed concentration of dexamethasone (2 nM), nedocromil

(0.02–2.0 nM) potentiates the translocation of Ser27 phospho Anx-A1 from the cytosol into the 13,000 � g particulate fraction of U937 cells. (Panel D) The membrane

accumulation of activated PKCa/b is promoted (>2-fold) by the combination of nedocromil (0.5 nM) and dexamethasone (2 nM; see blot insert) and this is reflected in an

increase in enzyme activity as measured in the 100,000 � g membrane fraction. *P < 0.05 relative to nedocromil of dexamethasone alone. All experiments were done at least

three times and the blots are representatives from one of these experiments. Densitometry was performed as described in the methods and the optical density units

normalised by comparison to a-tubulin. Data are expressed as mean � S.E.M. Statistical differences between groups were established using one-way analysis of variance

(ANOVA) followed by Bonferroni post hoc test.
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that had been transfected with an Anx-A1–GFP construct and
analysed the effects of drug treatment by confocal microscopy.

The Western blots in Fig. 4A shows that only GFP protein
(27 kDa) was seen in U937 cells transfected with the mock
plasmids E1, E2 and E3 whereas in U937 cells transfected with
Anx-A1–GFP constructs G1 and G2 a 64 kDa band corresponding to
the GFP–Anx-A1 conjugate was observed. Clones G1, G2, E1 and E3
were selected for this study (upper panel probed with anti-GFP and
lower with anti-Anx-A1 antibodies).

Fig. 4B shows an experiment where we used Anx-A1–GFP
transfected U937 cells in which the plasma membrane has been
stained with the red fluorescent Alexa Fluor1 594 wheat germ
agglutinin (WGA) labelling reagent that specifically stains
membrane phospholipids. The Anx-A1–GFP in vehicle treated
cells is localised in the cytoplasm (row a). Not much change is seen
with nedocromil (5 nM) treatment alone (row b), however,
treatment with dexamethasone (2 nM) alone induces some degree
of Anx-A1 redistribution, as shown by a partial co-localisation of
Anx-A1 with the membrane (row c, merged image). When
dexamethasone is combined with 5 nM nedocromil, however a
striking degree of co-localisation of Anx-A1 with the membrane is
observed (row d) and evidence of membrane ‘bubbling’ (possible
related to secretory activity) may be inferred from the presence of
GFP–Anx-A1 outside the cell membrane.

Although we observed that the non-genomic actions of these
drugs were evident at 5 min, we were curious about events that

might take place over a shorter time-span. To investigate this we
used a slightly different experimental design in which time-lapse
video-microscopy was used. GFP-tagged Anx-A1 transfected U937
cells were filmed for 3 min under various experimental conditions,
and the frames examined for changes that might reflect the release
of Anx-A1 in response to drugs.

Fig. 5 shows a panel of individual 6 frames taken at 30 s
intervals throughout these experiments during which drug (or
vehicle) treatments were administered. Treatment of cells with
vehicle or nedocromil (5 nM) alone (rows b and c) had little or no
discernable effect. Treatment with dexamethasone (2 nM) alone
produced some evidence of secretory activity at 60 s congruent
with our other data. However, when a combination of dexa-
methasone and 5 nM nedocromil was administered, the GFP-
tagged protein was released from focal sites on the membrane
within 30 s and release from multiple sites was very pronounced
within 3 min.

3.6. Electron microscopy studies

The experiments with the transfected U937 cells could be
compromised by the fact that Anx-A1 was conjugated to GFP and
therefore that its intracellular trafficking might be atypical. To
address this we used conventional electron microscopic and
immuno-chemistry techniques to follow the fate of Anx-A1 in
response to various drug treatments. Fig. 6A–D shows the results of

Fig. 3. Nedocromil potentiates dexamethasone inhibition of TxB2 release from U937 cells. (Panel A) Measurement of TxB2 generation (left hand Y-axis) and Anx-A1 (right hand

Y-axis) by ELISA assay in the medium of U937 cells after treatment with nedocromil (5 nM), dexamethasone (2 nM), or a combination of both. The varying inhibition of TxB2

release corresponds with the amount of Anx-A1 externalised. ***P < 0.001 relative to control values; §§§P < 0.001 relative to dexamethasone alone values. (Panel B)

Dexamethasone itself (0.2–20.0 nM) inhibits TxB2 release at 5 min (as assessed by ELISA assay) but does not produce a maximal effect. However, when nedocromil (0.05–

20 nM) is added to a maximally effective (2 nM) concentration of dexamethasone, a concentration-dependent potentiation of the inhibitory effect occurs with near maximal

inhibition achieved at 20 nM nedocromil. (Panel C) The inhibition of TxB2 release (as assessed by ELISA assay) by escalating concentrations of nedocromil (0.2–10 nM) in the

presence of a fixed concentration (2 nM) of dexamethasone is paralleled by increasing amounts of Anx-A1 externalised from U937 cells. Insert: representative Western blot in

which the total Anx-A1 in the medium was assessed. (Panel D) Reversal of the TxB2 inhibitory action of a combination of 2 nM dexamethasone with 0.5 nM nedocromil by a

mouse anti-Anx-A1 neutralising monoclonal antibody (mab 1A) but not by an irrelevant isotype matched monoclonal antibody. ***P < 0.001 relative to

dexamethasone + nedocromil values. All experiments were done at least three times and the blot is representatives from one of these experiments. Densitometry was

performed as described in the methods and the optical density units normalised by comparison to a-tubulin. Data are expressed as mean � S.E.M. Statistical differences

between groups were established using one-way analysis of variance (ANOVA) followed by Bonferroni post hoc test.
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this investigation together with a graphical analysis of the
quantitation of immunogold particles in Fig. 6E. In untreated
U937 cells immunogold labelled Anx-A1 was found predominantly
in the peri-nuclear region and the cytosol, often in combination
with vesicular structures (panel 6A) with little discernable at the
membrane. Nedocromil (5 nM) had little effect on this pattern of
distribution (panel 6B) but dexamethasone (2 nM; panel 6C) or
hydrocortisone (2 nM) promotes association of the protein with
the membrane (P < 0.01). In the presence of both GCs and
nedocromil however (panel 6D), there was a significant
(P < 0.01) increase of membrane-associated Anx-A1 and a
corresponding decrease in cytosolic and vesicular associated
material.

3.7. Cromoglycate-like drugs inhibit membrane phosphatase activity

All the data generated so far pointed to a mechanism whereby
Anx-A1, translocated to the membrane after phosphorylation on
Ser27 under the influence of activated PKCa/b, was released from
the cell to exert an extracellular inhibitory effect on eicosanoid
synthesis and that this process was somehow potentiated by the
cromoglycate-like drugs.

The catalytic activity of PKCa/b is limited by membrane
phosphatases, in particular PP2A, and we hypothesised that the
cromoglycate-like drugs inhibited the activity of these enzymes
thus prolonging the catalytic action of PKCa/b and indirectly
potentiating the generation and release of Ser27 phospho Anx-A1.
Since okadaic acid is a well-characterised inhibitor of PP2A (and
PP1 in higher concentrations), we investigated its action in the
U937 system. Fig. 7A shows that this inhibitor (1 mM) does indeed

(P < 0.001) share the ability of cromoglycate to potentiate Anx-A1
release in this system.

We next measured the net phosphatase activity in U937
100,000 � g membranes. In the experiment depicted in Fig. 7B, we
prepared 100,000 � g membranes from U937 dexamethasone-
treated cells (as described above) and then pre-incubated them for
5 min with either 5 nM nedocromil or 1 mM okadaic acid before
assessing their phosphatase activity at 10 min (the time point that
gave maximal readings in pilot studies; data not shown).
Strikingly, phosphatase activity was almost completely inhibited
in the presence of either nedocromil or okadaic acid.

Finally, we tested the effect of cromoglycate and nedocromil on
a highly purified PP2A preparation from bovine kidney. Fig. 7C
shows that both nedocromil and cromoglycate inhibited the
catalytic activity of this enzyme in a concentration-dependent
manner after pre-incubation with the phosphatase for 5 min with
IC50s of approximately 0.65 and�1.7 nM respectively. As expected,
okadaic acid was also strongly inhibitory (IC50� 1 mM).

4. Discussion

The Anx-A1 system in undifferentiated myelomonocytic U937
cells does not respond to glucocorticoids and it is necessary to pre-
treat the cells with low concentrations of PMA to render them
responsive [43]. Using this model system, we have studied the
rapid non-genomic effects of GCs on Anx-A1 intracellular
trafficking and export and investigated the eicosanoid inhibitory
mechanism of action of the cromoglycate-like drugs.

Concerning the former, we have confirmed and extended earlier
reports (e.g. Refs. [25,27]) that GCs exhibit two distinct actions on

Fig. 4. The effect of nedocromil and dexamethasone on the disposition of Anx-A1 in U937 cells transfected with an Anx-A1–GFP construct. (Panel A, upper figure) The Western

blot, probed with an anti-GFP antibody, shows that only GFP protein (27 kDa) was seen in U937 cells transfected with the mock plasmids E-1, E-2 and E-3 whereas in U937

cells transfected with Anx-A1–GFP constructs G-1 and G-2 a 64 kDa band corresponding to the GFP–Anx-A1 conjugate was observed. Clones G-1, G-2, E-1 and E-3 were used

for this study. (Lower figure) This blot shows the complementary experiment to that in panel A, where the samples were probed with the anti-Anx-A1 antibody. (Panel B) In

these experiments, the plasma membrane of U937 cells transfected with the Anx-A1–GFP construct, was stained red with Alexa Fluor� 594 WGA dye and the cells subjected

to various drug treatments protocols. The four columns represent the information from the two colour channels, the merged channel and a magnified (90�) section of the

membrane. (Row a) The situation when the transfected U937 cells are treated with vehicle alone. Anx-A1 is mainly contained within the cytoplasmic compartment and the

plasma membrane stains red. (Row b) There appears to be little evidence of co-localisation after treatment with 5 nM nedocromil alone. (Row c) Treatment with

dexamethasone alone 2 nM clearly promotes co-localisation of Anx-A1 and membrane phospholipids. (Row d) Treatment with dexamethasone and nedocromil in

combination leads to a striking co-localisation of Anx-A1 with the membrane and evidence of release of GFP-tagged protein into the external medium. Magnification 90�.

This figure is representative of three independent experiments.
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the synthesis and intracellular distribution of Anx-A1 with a rapid
non-genomic, receptor-dependent, action seen within 5 min of
treatment followed by a ‘slow’ genomic action of GCs with a much
longer latency, as judged by the increasing intracellular mass of
Anx-A1 seen at time points longer than 1 h. We have also
confirmed a mandatory role for Ser27 phosphorylation of Anx-A1
prior to membrane translocation and export and established that
the kinase most likely to drive this process is the PKCa/b isoform of
PKC.

GC effects in U937 cells were evident within minutes demon-
strating how rapidly these agents can act through the Anx-A1
system. Whilst the ‘classical’ genomic actions of GCs have been
considered to take hours to develop, there is increasing evidence in a
number of systems (e.g. Refs. [44–47]) that these rapid non-genomic
effects, including many which require GR ligation (e.g. Refs. [48,49])
are common, and may be crucial to the homeostatic or therapeutic
action of these drugs. Interestingly, we observed some ‘background’
Anx-A1 phosphorylation in our cultured U937 cells in the absence of
GC stimulation. At least part of this effect may have caused by
endogenous GCs in the culture media since it was reduced in the
presence of RU 486—and may have been reduced even further if
charcoal-stripped serum had been used. However, stimuli other
than GCs can also cause Anx-A1 phosphorylation [28], which often
appears in response to cellular ‘stress’. In vivo, where there is a
constant GC ‘tone’, one would anticipate some action of the
cromolyns without further stimulation.

Our novel finding that the cromoglycate-like drugs greatly
potentiated the effect of GCs on Anx-A1 release and eicosanoid
inhibition throws interesting light upon the way in which this anti-
inflammatory protein is externalised as well as providing the basis

for a novel mechanistic explanation for the eicosanoid inhibitory
activity of these anti-allergic drugs. According to this new
paradigm for cromolyn action, we propose that these drugs act
by potentiating the release of the anti-inflammatory protein Anx-
A1 from cells. They accomplish this by promoting phosphorylation
of Anx-A1 but only when this has been triggered by GCs or some
other stimulus such as cell activation. This is amply demonstrated
by the imaging techniques and the EM studies which are in
excellent agreement with the Western blotting and ELISA data
concerning the fate of Anx-A1 following treatment with these
drugs.

Anx-A1 is present in several subcellular compartments of cells
including the nucleus, the cytoplasm, the plasma and other
membranes as well as attached to the cytoskeleton [22,50,51]. It
has been repeatedly observed that ‘activation’ of macrophages and
other cells can lead to an accumulation of Anx-A1 at the plasma
membrane where it can (for example) block EGF [25] and LPS
induced ERK activation [52] and undoubtedly fulfil other
intracellular roles (e.g. Refs. [50,53,54]).

The actual mechanism of Anx-A1 secretion itself has not been
addressed in this paper and remains unclear. The protein does not
contain a canonical signal sequence and it is generally accepted
that secretion occurs through a non-classical pathway. There is
some evidence that the ABC transporter system could be involved
[55–57] but other potential mechanisms could include a ‘diffusion
controlled’ process facilitated by binding of the exported species to
extracellular proteoglycans as suggested for fibroblast growth
factor 2 [58]. A recent paper suggests that ceramide platforms in
cells may preferentially bind Anx-A1 and could be important for
externalisation [59].

Fig. 5. Time-lapse photography of U937 cells transfected with the Anx-A1–GFP construct after treatment with nedocromil and dexamethasone. Individual frames (6 frames,

30 s intervals) were taken from time-lapse video-microscopy of 3 min duration during which transfected U937 cells were exposed to different experimental treatments. (Row

a) Cells transfected with mock plasmid and vehicle only. (Row b) Cells transfected with Anx-A1–GFP plasmid and treated with vehicle alone. (Row c) Cells transfected with

Anx-A1–GFP plasmid and treated with nedocromil (5 nM) alone. (Row d) Cells transfected with Anx-A1–GFP plasmid and treated with dexamethasone (2 nM) alone. Note

evidence of some secretory activity in one frame at 60 s (arrowed). (Row e) Cells transfected with Anx-A1–GFP plasmid and treated with a combination of dexamethasone

(2 nM) and nedocromil (5 nM). Notice that the extrusion of GFP–Anx-A1 (arrowed) is seen within 30 s of drug administration and becomes extremely pronounced, at multiple

sites on the membrane, by 2 min. Magnification 90�. This figure is representative of three independent experiments.
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Whichever mechanism operates, phosphorylation of the
protein at Ser27 is clearly a crucial prelude to membrane
recruitment and subsequent export and so it is probable that
any stimulus that activates PKCa/b will lead to the marginalisation
and release of Anx-A1 from cells in which this signalling system is
supported. However, it is also evident that not all marginalised
Anx-A1 is immediately exported suggesting a further control over
this process acting at the level of the membrane itself.

Several authors have reported that GC receptor ligation
activates PKC thus promoting its translocation to the plasma
membrane (see Refs. [60–63]). Previous work from our group
suggests that in some systems, phosphatidylinositol 3-kinase may
play a key role [27] in activating PKC. PKC activity is ultimately

terminated by dephosphorylation at the membrane probably by
the Ser/Thr PP2A phosphatase [64] and ubiquitination. In many cell
types, including the macrophage, PKCa (and some other isoforms)
activate (and may associate with) PP2A (see review [65]). PKCa is
reciprocally controlled by the activity of the phosphatase, which
limits the catalytic action of the kinase by dephosphorylation [66–
70].

PP2A itself is a heterotrimeric enzyme comprising one each of
two variant catalytic and structural sub-units together with one (of
a family of about twenty) modulatory/targeting sub-unit. The
nature of the latter determines the targeting and substrate
specificity of the assembled enzyme complex. C-terminal carbox-
ymethylation of the catalytic sub-unit at Leu309 activates PP2A

Fig. 6. Electron microscopy of U937 cells after treatment with dexamethasone and/or nedocromil. (Panel A) Vehicle treatment. U937 cells treated with vehicle alone for 5 min

were fixed and processed as described in materials and methods. In this image (note a slightly lower power than the others to provide an overview of distribution)

immunogold labelled Anx-A1 (arrowed) was mainly to be found in the peri-nuclear region or in the cytoplasm apparently associated with vesicles (arrowed). Little was seen

on the plasma membrane. N; nucleus. Scale bar 0.5 mm. (Panel B) After exposure to 5 nM nedocromil alone, little change was seen in the distribution of immunogold labelled

Anx-A1 (arrowed) in the cells. The protein was once again found chiefly in the cytoplasm, mainly in conjunction with vesicles with only minimal membrane labelling. Scale

bar 0.1 mm. (Panel C) Dexamethasone (2 nM) treatment provoked some secretory activity with immunogold labelled Anx-A1 being identified on the plasma membrane as

well within cytosolic vesicles. Scale bar 0.1 mm. (Panel D) After simultaneous treatment with both 5 nM nedocromil and 2 nM dexamethasone, substantial amounts of

immunogold labelled Anx-A1 had translocated to the cell membrane. Scale bar 0.1 mm. (Panel E) Quantitation of immunogold labelled Anx-A1 by electron microscopy

showing the effect of combinations of 5 nM nedocromil and dexamethasone or hydrocortisone (2 nM) on the intracellular distribution of Anx-A1. Note the profound effect of

the combination of the two different types of drugs. Data is presented as mean � S.E.M. and are representative of three replicate experiments (n = 30 cells per group) all of which

were processed separately. Subsequent analysis was undertaken by one-way ANOVA with post hoc analysis performed using Scheffe’s test. **P < 0.01 membrane Anx-A1 increased

relative to control values. §P < 0.05, §§P < 0.02 Anx-A1 changed relative to control values.
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probably by facilitating the formation of trimeric complexes [71–
73]. At the membrane, the enzyme may be phosphorylated on
Tyr307 by receptor or other tyrosine kinase action [74] that may
inhibit the phosphatase. However, the significance of these post-
translational modifications to enzyme activity in vitro and in vivo is
not yet entirely clear [65].

The degree of Anx-A1 phosphorylation, and hence the amount
exported, will therefore depend upon the net catalytic activity of
the PKCa–PP2A complex which, in turn will result from the
reciprocal interactions between the two enzymes. The cumulative
evidence from biochemical, immunocytochemical and imaging
studies presented here all support the notion that whilst the
cromoglycate-like drugs alone have only weak activity they are
able greatly to accelerate the phosphorylation and release of Anx-
A1 when this is primed (in this case) by GCs, which promote PKC
activation and some degree of Anx-A1 phosphorylation and
membrane localisation. Our analysis points to a direct inhibitory
action of these drugs on PP2A enzyme activity as the most likely
explanation for this synergism although we cannot entirely rule
out the participation of PP1, another phosphatase, or the possibility
that which ever phosphatase is involved, it acts directly to
dephosphorylate Anx-A1 itself rather than PKC. Supporting the
notion that PP2A is the actual target however is our observation
that the PP2A inhibitor okadaic acid [75], which has been shown in
many systems to potentiate the effects of PKC mediated events,

mimics the effect of the cromoglycate-like drugs and promoted
GC-stimulated Anx-A1 export in our system.

Experiments using anti-Anx-A1 neutralising antibodies
[4,7,9,76–78], anti-sense RNA [79,80] or transgenic animals
[20,81–84] which over- or under-express the Anx-A1 gene, have
conclusively demonstrated that this protein is a key mediator of GC
action in the innate as well as the adaptive [85,86] immune system
as well as in other aspects of physiology [87,88] and cell biology
[89–91].

Although there are inflammatory models in which Anx-A1 is
not efficacious [5], our observation that cromoglycate drugs
promote Anx-A1 externalisation may explain several of their
disparate actions including their ability to inhibit leukocyte
activation [92], ‘priming’ or migration [93,94], mediator action
[95], macrophage activation [96], tachykinin action [97], eicosa-
noid [41,42] and cytokine release [98] as well as adhesion molecule
expression [99]. We can only conjecture as to whether our putative
mechanism of action accounts for the ability of the cromoglycate-
like drugs to inhibit the release of mast cell histamine but it is
certainly true that Anx-A1 has potent inhibitory effects on mast
cells [17] and that these cells are a prime site for synthesis of this
protein [100].

Whilst our hypothesis is novel, there have been several
previous attempts to link cromolyn action to activation of
signalling pathways and modification of potential down-stream

Fig. 7. The cromoglycate drugs inhibit PP2A phosphatase activity. (Panel A) Okadaic acid (1 mM) as well as cromoglycate (2 nM) potentiate the action of 2 nM dexamethasone

on Anx-A1 release from U937 cells as assessed by ELISA assay of the cell medium. ***P < 0.001, **P < 0.01 relative to control values; §§§P < 0.001, §§P < 0.01 relative to

dexamethasone only. (Panel B) Nedocromil (2 nM) and okadaic acid (1 mM) inhibit the enhanced phosphatase activity of 100,000 � g observed in membranes prepared from

dexamethasone-treated U937 cells. The drugs were pre-incubated with the membranes for 5 min before being added to the phosphatase assay plate and the hydrolysis

assessed after 10 min. ***P < 0.001, **P < 0.01 relative to treated values. (Panel C) Nedocromil and cromoglycate inhibit the activity of a highly purified bovine PP2A enzyme

in a concentration-dependent manner. The drugs were pre-incubated with the enzyme for 5 min before being added to the phosphatase assay plate and the hydrolysis

assessed after 10 min. The IC50 values are nedocromil 0.65 nM and cormoglycate 1.7 nM respectively. 1 mM okadaic acid, included as a positive control in this assay, inhibited

the reaction by >80%. Wells in which the drugs were incubated with the assay reagents alone indicated that they did not interfere with the development of the colour

reaction. All experiments were performed at least three times. Data are expressed as mean � S.E.M. Statistical differences between groups were established using one-way

analysis of variance (ANOVA) followed by Bonferroni post hoc test.
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molecular targets. Treatment of mast cells with cromoglycate
results in the phosphorylation of (at least) four intracellular
protein substrates including the erythrocyte band 4.1 group
protein moesin [101,102] and there have been scattered reports of
an interaction between cromoglycate and PKC stretching back over
some years (e.g. Refs. [103–105]). However, most researchers seem
to have considered that these drugs inhibit, rather than stimulate,
this enzyme, although differing experimental protocols and
crucially, timing, obscure clear interpretation of this issue.
Congruent with our findings there is a report that some biological
effects of methylprednisolone can be augmented using okadaic
acid, an inhibitor of PP2A [106].

There have also been previous reports [107,108] of a link
between the cromoglycate drugs and the annexin system in that
these drugs have an affinity for some S100 proteins that are
intracellular binding partners for members of the annexin family of
proteins. It is not clear if, or how these data relate to the current
findings.

One practical implication of this work arises from the
observation that GCs and cromoglycate-like drugs exhibit a strong
synergistic action that might be applicable to anti-inflammatory
therapy. The notion that these drugs can inhibit PP2A may also
suggest other uses for these agents in other conditions where PKC
activation plays a significant role.
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