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Abstract
Background: Ascaris lumbricoides exhibits density-dependent egg production, a process which has
a marked impact on both the transmission dynamics and the stability of the parasite population.
Evidence suggests that the egg production of female Ascaris is also associated with the size of the
worm. If worm size is mediated by density-dependent processes then the size of female worms may
have a causal impact upon patterns of Ascaris egg production.

Results: We analyse data collected from a cohort of human hosts, and demonstrate that the per
host mean weight (a proxy for size) of female Ascaris is dependent on the number of infecting
females (worm burden) following a pattern of initial facilitation followed by limitation. Applying a
negative binomial (NB) generalized linear model (GLM) and a zero-inflated negative binomial
(ZINB) model we confirm that the per host female mean weight is significantly associated with per
host egg production. Despite these associations, the mean weight of female Ascaris has little causal
impact on patterns of density-dependent egg output. The ZINB model is able to account for the
disproportionately large number of zero egg counts within the data and is shown to be a
consistently better fit than the NB model. The probability of observing a zero egg count is
demonstrated as being negatively associated with both female worm burden and female mean
weight.

Conclusion: The mean weight of female Ascaris is statistically significantly associated with egg
output, and follows a consistent pattern of facilitation preceding limitation with increasing female
worm burden. Despite these relationships, incorporation of female Ascaris mean weight into
models of egg output has little effect on patterns of density dependence. The ZINB model is a
superior fit to the data than the NB model and provides additional information regarding the
mechanisms that result in a zero egg count. The ZINB model is shown to be a useful tool for the
analysis of individual-based egg output data.
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Background
Density-dependent population processes can occur at
each stage of a parasite's lifecycle [1]. For the gastrointes-
tinal (GI) nematodes these include establishment within
the host, development and maturation time, adult sur-
vival, and female fecundity [2,3]. Density dependence has
important implications for both the stability [2] and
transmission dynamics [1,3,4] of helminth populations.
Incorporation of these processes into mathematical mod-
els as accurately as possible is vital for furthering our
understanding of important dynamical behaviour, such as
the rate of re-infection following chemotherapeutic inter-
vention and the spread of anthelmintic resistance [3-5].

In Ascaris lumbricoides infections of humans, density-
dependent egg production has been reported; the per cap-
ita egg output decreasing with increasing number of
worms per host (worm burden) [1,6]. Both the severity of
density dependence and the level of egg production
exhibit marked geographic variability [7]. This variability
has implications for the use of egg counts to estimate the
intensity of infection [7], and the applicability of trans-
mission models across geographical locations for decision
support in view of recent efforts to integrate the control of
neglected tropical diseases.

Density-dependent reductions in worm size may be an
important factor in Ascaris egg output. A positive correla-
tion between worm size and egg production is commonly
described in GI nematodes of ruminants (e.g. [8-13]) as
well as in Ascaris infections of humans [14,15]. A con-
straint in worm size at high worm burdens may have a
causal impact on patterns of density-dependent egg pro-
duction. Reductions in worm size at high burdens have
been described in both natural [12,16] and experimental
[17] systems of directly-transmitted helminths in non-
human mammals. There is conflicting evidence on the
relationship between size and worm burden in Ascaris
infections of humans. A number of studies have reported
no evidence for density-dependent constraints [18-21]
whereas the opposite has been described elsewhere [22].

Worm size and egg production may also interact with the
host's immune response. In lambs, acquired immune
responses to Teladorsagia (= Ostertagia) circumcincta infec-
tions are known to control the size of worms and reduce
their egg output [8,23-25]. Similar correlations between
the host immune response, worm size and egg output
have been described in human hookworm infections
[26]. Experimental infections of rats with Strongyloides ratti
have shown that worms are larger and sometimes more
fecund in immune-suppressed rats and smaller and some-
times less fecund in immunized animals when compared
to controls [27,28]. Furthermore, density-dependent

fecundity effects in this nematode species are known to
depend on the host immune response [29,30].

Despite a number of factors potentially influencing the
egg production of female Ascaris, this important demo-
graphic and fitness parameter is ubiquitously described in
terms of a single variable; the worm burden. This is largely
due to the inherent difficulties in applying suitable statis-
tical models to parasitological data [31,32]. Statistical
analyses tend to be complicated by the high degree of var-
iability in the egg output from a single host [33-36],
highly overdispersed distributions of worms and egg out-
put across a population of hosts [1,37], and the sensitivity
and quantitative reliability of the diagnostic technique
[35,36,38]. The estimated concentration of eggs may also
be biased by host factors such as the volume of faeces pro-
duced (e.g., estimates in children tend to be inflated rela-
tive to those in adults) [35]. Typically, density-dependent
reductions in egg output are presented in terms of female
worm fecundity, a composite parameter describing the per
capita egg production per unit time (eggs per gram of fae-
ces divided by the number of (female) worms per host).
Detection of density dependence has frequently been per-
formed by fitting a functional form to the relationship
between fecundity and worm burden. This method con-
travenes assumptions of statistical independence and may
introduce bias via inaccuracies in the estimation of worm
burden [39].

A number of studies have characterised density-depend-
ent patterns of Ascaris egg output by fitting statistical mod-
els to grouped mean egg output data (e.g. [7,19,34]). The
advantage of this method is that, assuming a large enough
sample size per group, the distribution of means can be
assumed to be normal, evoking the central limit theorem.
However, this complicates the investigation of other vari-
ables which may also be important determinants of egg
production. In addition, density-dependent Ascaris egg
output has been exclusively described using data collected
from populations at temporal equilibrium; consequently,
whether this phenomenon is static or temporally dynamic
is not known.

The analyses in this study are split into two parts. In the
first part we define and fit a statistical model to evaluate
the evidence for different forms of density dependence in
the per host mean weight (a proxy for size) of female
Ascaris. In the second, we explore the relationship
between the mean weight of female worms and per host
egg output using a multivariate modelling approach (con-
trolling for both female worm burden and host age). We
explore the suitability of two types of statistical model for
modelling these individual-based egg output data: a neg-
ative binomial (NB) generalized linear model (GLM) [40]
and a zero-inflated negative binomial (ZINB) model
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[41,42]. The latter is useful in modelling data with a high
proportion of zero counts [42-44] and has been applied to
GI nematode egg count data in two previous studies
[45,46]. Throughout this paper we define the net egg out-
put as the estimated concentration of eggs per gram of fae-
ces per host (regardless of whether they are or not
fertilised). Thus we distinguish between egg production
(fecundity) and fertility, whereby the latter measures the
number of fertilised and embryonated eggs that a female
worm produces (i.e. live offspring).

Methods
Study area and data collection
Data were collected from a poor urban suburb of Dhaka,
Bangladesh between 1988 and 1989 by Hall and col-
leagues [7,47,48]. Briefly, households were visited and all
their occupants invited to take part in the study with the
aim of recruiting as many individuals as possible. All par-
ticipants were asked to provide a faecal sample from
which the number of Ascaris lumbricoides eggs were
counted using a quantitative ether sedimentation tech-
nique [36] and the concentration of eggs per gram of fae-
ces (EPG) estimated. Pyrantel pamoate was administered
to each subject and their stools were collected for a period
of 48 hours post-treatment. The worms recovered (A. lum-
bricoides) from the faeces of each individual were sexed,
counted and weighed. Egg counts, treatment and worm
counts were repeated on two further occasions at six-
monthly intervals. Pyrantel pamoate paralyses adult
Ascaris allowing them to be expelled intact from the gut
[49] with a cure rate of approximately 88% [50]. Hence,
these data provide a reliable and accurate measure of the
number and weight of worms per host. The population of
worms recovered after the first round of chemotherapy is
termed the baseline population, after the 2nd round of
chemotherapy, the 1st re-infection population and after
the 3rd and final round, the 2nd re-infection population.
The pre-treatment egg counts are similarly referred to.

Sample size
To evaluate the evidence for different forms of density
dependence affecting the per host mean weight of female
Ascaris, analyses were performed on the data collected
from all individuals who were found to be infected with
at least one female worm. To explore the relationship

between the per host mean weight of female Ascaris and
the per host egg output, data were analysed from those
individuals who were found to be infected with at least
one female worm and from whom an estimate of egg out-
put had been made. Table 1 summarises the data (availa-
ble upon request to authors) used in these analyses.
Definitions and descriptions of all parameters and varia-
bles used throughout this paper are given in Table 2.

Per host female mean weight and worm burden

To explore the relationship between the mean weight of
female Ascaris in each host infra-population and the
female worm burden we define the following statistical
model. Let n be the number of female worms in a single
host. Given a host harbours n female worms, the weights
of the individual female worms are assumed to be inde-

pendent with true mean M and variance . We further

assume that M is a random variable with mean  and

variance . The observed per host average weight of a

female worm, W, has mean , variance 

and, for reasonably large n, will approximately follow a
normal distribution,

To model different types of density dependence we allow

 to be a function of the female worm burden, n, using

the following generalised equation,

This function can model three different possible relation-

ships between  and n. Model A:  can be a positive

constant for all , indicative of an

absence of density-dependent effects. Model B:  can

decline asymptotically with increasing

, representing negative or con-
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Table 1: Summary of data used in analyses

Population Hosts sampled Hosts lost to follow-up Hosts with a positive female worm 
count

Hosts with a positive female worm count 
and from whom egg output was estimated

age ≤ 12 age > 12 age ≤ 12 age > 12 age ≤ 12 age > 12 age ≤ 12 age > 12

Baseline 990 775 - - 834 639 834 639
1st re-infection 699 558 291 217 555 383 528 364
2nd re-infection 592 425 107 133 496 257 463 228
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Table 2: Definitions of variables and parameters

Type Symbol Definition/description Units

Random variables, observed values Λ, λ Per host net egg output eggs gram-1

W, w Per host mean weight of female Ascaris grams

n Per host female worm burden worms host-1

a Host age group (a = 0 for age ≤ 12, a = 1 for age > 12,)

Unobserved random variables M Per host unobserved true mean weight of female Ascaris grams

Unobserved values μW Expected value of the per host mean weight of female Ascaris grams

μΛ Expected value of the per host net egg output eggs gram-1

p The probability of observing a zero count from the Bernoulli process -

Estimated parameters Describe the form of density-dependence of the expected value
of the per host mean weight of female Ascaris in age group a -

Describe the relationship between the variance of the per host
mean weight of female Ascaris and the female worm burden -

λ1 Exponential of the intercept term of statistical models fitting
the expected value of the per host net egg output to data

-

β Describes the effect of host age category on the expected
value of the per host net egg output

-

c An inverse measure of the severity of density dependence (0 <c ≤ 1)
on the expected value of the per host net egg output

-

Describe the form of the relationship between the expected value
of the per host net egg output and female Ascaris mean weight -

Describe the age-dependent relationship between the logit of the probability
of observing a zero egg count, the natural logarithm of female worm burden and
the natural logarithm of the mean weight of female Ascaris

-

k Inverse measure of the degree of overdispersion in egg output data -

α α α αa a a a= { , , }1 2 3

σσ = { , }σ σ1
2

2
2

γ γ γ γ= { , , }1 2 3

δ δ δ δ δ= { , , , }0 1 2 3
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straining density dependence. Model C:  can initially

increase with increasing n followed by an asymptotic

decline  describing a pattern of

initial facilitation (positive density dependence) followed
by limitation (negative density dependence); for exam-
ples and further discussion of using forms of equation (2)
to describe density dependence in other host-parasite sys-
tems see [51,52]. Each of Models A-C is nested within the
following one allowing their respective fits to be com-
pared using the likelihood-ratio statistic (LRS) [53].
Under the null hypothesis the LRS follows a chi-square
distribution with degrees of freedom (d.f.) equal to the
difference in the number of parameters being estimated
[54]. Akaike's information criterion (AIC) [55] was also
calculated as an additional measure of goodness-of-fit.
Host age, a, was incorporated into the model as a two level

factor (a = 0 for children ≤12 years, a = 1 for teenagers and
adults > 12 years) to allow the parameters pertaining to

density dependence, , to vary between

age groups. The variance parameters, , were

considered independent of host age. Assuming the
observed per host mean female weight data to follow a
normal distribution of the form given in equation (1), a
log-likelihood function was derived and maximised using
the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno
(BFGS) [56-59] optimisation algorithm to obtain maxi-
mum likelihood estimates (MLEs) of the unknown

parameters (αa and σ). The BFGS algorithm was imple-

mented using the optim function in the R statistical pro-
gram (v.2.8.0) [60,61]. The best-fit form of equation (2)
was determined separately in each of the baseline, 1st and
2nd re-infection populations.

Per host female mean weight and net egg output
Model derivation
For A. lumbricoides, the relationship between the total net
egg output per host (denoted by the random variable Λ)
and the per host female worm burden, n, has been empir-
ically well described by a power function [7],

Here E represents the expected value, λ1 the number of
eggs per gram of faeces produced by a sole infecting
female and and c inverse measure of the severity of nega-
tive density dependence (for 0 <c ≤ 1), with c = 1 indicat-
ing proportionality or density independence. This model
is conveniently linearised by taking natural logarithms,

A null model was defined by extending this relationship
to include host age, a (where c is once again a two-level
factor), by adding a multiplicative factor, eβ [in equation
(3)], for teenagers and adults ≤12 years. Host age is a
potentially important confounding factor associated with
both the number of worms per host (the age-intensity
profile of Ascaris infection is typically convex, for exam-
ples see [6,48]), and the concentration of egg counts (egg
counts tend to be negatively related with the volume of
faeces produced resulting in overestimation in children
compared to adults [35]). Thus, the null model (denoted
Model 1) describing the relationship between net egg out-
put and female worm burden adjusting for host age was
defined as,

In order to extend Model 1 [equation (5)] to reflect the
potential dependence of per host net egg output on per
host female mean weight the following preliminary anal-
yses were performed to determine appropriate functional
forms to describe the relationship. Per host egg output
data were stratified by per host mean weight, taking the
arithmetic mean per stratum, and regressing these values
against polynomial functions (up to 3rd order) of the
mean of the per host mean weight of each stratum. Stra-
tum means were centred around their overall arithmetic
mean value in order to minimise multicollinearity [62]. A
problem of collinearity for non-centred polynomial terms
was indicated by high values (consistently greater than 10
[63]) of their variance inflation factors (VIFs) [64] and
high standard errors of their estimated coefficients. (We
centre the per host female mean weight in all subse-
quently described polynomial regression models to
ensure robust parameter estimation. We do not continue
to explicitly indicate this to maintain the clarity of the
mathematical notation.) Models were fitted using stand-
ard GLM procedures assuming the mean egg output per
stratum to be normally distributed with constant variance
[40] and implemented using the glm function in R
[60,61]. Models were compared using the LRS and AIC. In
the baseline, 1st and 2nd re-infection populations, the 3rd

order (cubic), 2nd order (quadratic) and 3rd order func-
tions were, respectively, indicated by both test statistics as
being the best fits (Figure 1, Table 3).

Using the 3rd order relationship, Model 1 [equation (5)]
was extended to define a full model describing the rela-
tionship between net egg output, female worm burden,
and worm weight adjusting for host age,

μW

( , , )α α α1 2 30 0 1> > >

α α α αa a a a= { , , }1 2 3

σσ = { , }σ σ1
2

2
2

E nc( ) .Λ Λ= =μ λ1
(3)

Ln Ln Ln( ) ( ) ( )μ λΛ = +1 c n (4)

Ln Ln Ln( ) ( ) ( )μ λ βΛ = + +1 c n a (5)
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Equation (6) is denoted Model 4. Models 2 and 3 are
defined as special cases of Model 4, modelling female
Ascaris mean weight as, respectively, 1st order

 and 2nd order

 polynomial functions (Table 4).

In these models the parameters pertaining to the mean

weight of female Ascaris per host  do not

have a direct biological interpretation although from the

unadjusted models (i.e. unadjusted for the effects of host
age and female worm burden) in each population (Figure
1), it is clear that the mean egg output tends to initially
rise with increasing female mean weight followed by a
decline. This functional relationship may be thought of as
empirically modelling the antagonistic effects of growth
and ageing on worm egg production.

Statistical modelling approach
In order to fit these linear models to the data it is necessary
to assume an appropriate probability distribution of the
per host net egg output, Λ. Count data are typically mod-
elled assuming either a Poisson or negative binomial dis-
tribution (NBD) [40,42]. Given the high level of

Ln Ln Ln( ) ( ) ( )μ λ β γ γ γΛ = + + + + +1 1 2
2

3
3c n a w w w

(6)

( , , )γ γ γ1 2 30 0 0> = =

( , , )γ γ γ1 2 30 0 0> > =

( { , , })γ γ γ γ= 1 2 3

Table 3: Models describing the egg output of Ascaris lumbricoides as polynomials of the mean weight of female worms

Population Model order polynomial Maximum log-likelihood LRS p-value AIC

Baseline 1st -10.68 - - 27.37
2nd 4.71 30.80 <0.0001 -1.43
3rd† 11.22 13.02 0.00031 -12.45

1st re-infection 1st -12.98 - - 31.97
2nd† 2.96 31.88 <0.0001 2.09
3rd 3.88 1.84 0.17 2.25

2nd re-infection 1st -12.14 - - 30.29
2nd 0.0043 24.30 <0.0001 7.99
3rd† 3.68 7.34 0.0067 2.65

Comparison of models describing the per host net egg output of Ascaris as polynomial functions of the per host mean weight of female worms. 
Analyses were performed on grouped mean data (see text) using standard GLM procedures. † denotes the best-fit model in each population.

The relationship between the per host net egg output and mean weight of female Ascaris lumbricoidesFigure 1
The relationship between the per host net egg output and mean weight of female Ascaris lumbricoides. The rela-
tionship between the per host net egg output and the (centred, see main text) mean weight of female Ascaris in the baseline 
(A), 1st (B) and 2nd (C) re-infection populations. Triangles represent grouped mean egg outputs stratified by female Ascaris mean 
weight. Solid lines and circles represent the fitted values of the best fit polynomial functions (as determined by the likelihood-
ratio statistic (LRS), see Table 3).
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overdispersion in the egg output data (variance-to-mean
ratio (VMR) = 4855, 4081 and 2726 in the baseline, 1st re-
infection and 2nd re-infection populations respectively;
see also Figure 2), the NBD is more appropriate than the
Poisson [42]. However, these data also comprise a high
proportion of zero counts which may not be adequately
captured by the NBD (zero inflation, Figure 2). For A. lum-
bricoides, a zero egg count represents either an infra-popu-
lation containing no sexually mature females or a false
negative [38], since even unfertilised females can pro-
duced (unfertilised) eggs. (In this study, fertilised eggs
were not distinguished from those unfertilised.) The dis-
tribution of Ascaris eggs in faecal samples from infected
individuals has been shown to be highly aggregated [65]
making false negatives more likely. Furthermore, the
probability of a false negative may be dependent on prop-
erties of the worm infra-population and the infected host.

Data that are zero inflated relative to the NBD may be bet-
ter described by a two-component mixture model which
defines the response variable as a mixture of a Bernoulli
and NBD (zero-inflated negative binomial, ZINB) [41-
44,66]. Such a distribution allows zero counts to arise
from two distinct mechanisms: a Bernoulli (binary) proc-
ess generating either a positive or zero count and a count
process (including the possibility of a zero count) [42].
Covariates of each process may or may not be the same
[44] affording flexibility to construct models with the
potential to explain a much higher degree of variability
than assuming a single distribution. In these analyses, we
fit the linear models derived in the previous section using
both a negative binomial and mixture model approach
and compare their respective fits.

Table 4: Equations for Models 1–4 and 1I-4I

Models Negative binomial count component Bernoulli component (zero-inflated "I" models only)

1,1I

2,2I

3,3I

4,4I

Ln( ) = Ln( Ln( ) +μ λ βΛ 1) + c n a

Ln( ) = Ln( Ln( ) +μ λ β γΛ 1 1) + c wn a +

Ln( ) = Ln( Ln( ) +μ λ β γ γΛ 1 1 2
2) + +c w wn a +

Ln( ) = Ln( Ln( ) +μ λ β γ γ γΛ 1 1 2
2

3
3) + + +c w w wn a +

Logit Ln Ln( ) ( ) ( )p a n w= + + +δ δ δ δ0 1 2 3

The distribution of per host egg outputFigure 2
The distribution of per host egg output. Histograms depicting the distribution of the per host egg output in the baseline 
(A), 1st (B) and 2nd (C) re-infection populations. The insets are histograms of the distribution between 0–100 eggs gram-1 high-
lighting the high proportion of zero counts.
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Negative binomial (NB) model
For the NBD the probability of observing an egg count λ
is,

where k is an inverse measure of the degree of overdisper-
sion [61] and Γ is the gamma function [Γ(x) = (x - 1)!]. For
a known value of k, equation (7) is of the form of the
exponential family of probability distributions [40,67].
The natural logarithm (the link function) of μΛ is linearly
related to the covariates described in the previous section
[equations (5) and (6)] and so, for a given value of k, the
parameters can be estimated within the GLM framework
[40]. Here, since k is unknown, we employ a frequently
used extension of the GLM methodology which allows
maximum likelihood estimates of both k and the
unknown linear parameters to be obtained [61,68]. The
glm.nb function from the MASS package in R [61] was
used to implement this technique and fit Models 1–4
(Table 4) to the data in each population. Models were
compared using the LRS and AIC to determine the best-fit.
We refer to these models as negative binomial or NB mod-
els.

Zero-inflated negative binomial (ZINB) model
For the zero-inflated negative binomial distribution the
probability of observing an egg count λ is,

Here p is the probability of observing a zero count origi-
nating from the Bernoulli process and [k/(μΛ + k)]k is the
probability of observing a zero count from the NBD. Just
as μΛ is linearly related to covariates via the logarithmic
link function, the logit function (ln[p/(1 - p)]) can be used
to linearise the relationship between p and potential cov-
ariates [40]. Univariate exploration of the data indicated a
negative linear relationship between logit(p) and the nat-
ural logarithm of stratified groups of the per host mean
weight of female Ascaris and the per host female worm
burden (Figures 3 and 4). Equation (9) is a model which
includes host age (a), the natural logarithm of the mean
weight of female Ascaris [ln(w)], and the natural loga-
rithm of the female worm burden [ln(n)] as covariates of
the probability of observing a zero count. This model was
fitted to the data in each population using standard GLM

procedures implemented in R using the glm function
[40,61].

These preliminary multivariate analyses confirmed ln(n)
and ln(w) to be statistically significantly and negatively
related to the probability of observing a zero count in each
population (Table 5). In the 2nd re-infection population
age was found to be positively associated with p (i.e. the
probability of observing a zero count is greater in teenag-
ers and adults than in children) (Table 5). The relation-
ship given in equation (9) was used to define the
Bernoulli component of the mixture model and extend
Models 1–4 into zero-inflated models (denoted by the let-
ter I, Models 1I-4I, Table 4). These models were fitted to
the data in each population using maximum likelihood
implemented using the zeroinfl function from the pscl
package (v.1.02) [68] in R (for further information on fit-
ting zero-inflated mixture models see [41,43,69]). The fit-
ted models were compared to one another using the LRS
to determine the best-fit and also to their corresponding
NB model (Models 1–4) using AIC. We refer to zero-
inflated models as ZINB.

Results
Per host female mean weight and worm burden
Comparisons of nested forms of equation (2) indicated a
pattern of facilitation followed by limitation in all popu-
lations (Table 6, Figure 5). The LRS and corresponding p-
values are unambiguous in the baseline and 1st re-infec-
tion populations (p-value < 0.0001), whereas the facilita-
tion preceding limitation pattern was only marginally
preferred over limitation alone in the 2nd re-infection pop-
ulation (p-value = 0.046). AIC supported facilitation pre-
ceding limitation in all populations. The pattern of
density dependence was similar in both age groups,
whereas teenagers and adults tended to harbour slightly
heavier worms (Figure 5).

Per host female mean weight and net egg output
The LRS and AIC indicated that incorporating the mean
weight of female Ascaris as a covariate improved the fit of
both the NB and ZINB models in all populations (Table
7). The best-fit functional form of the relationship
between the per host mean weight of female Ascaris and
the per host egg output (order of polynomial) varied
across populations and with the assumed probability
model (Table 8).

The ZINB model provided a consistently better fit to the
data than its non zero-inflated counterpart (Table 7, com-
paring AIC values) and was able to account for the high
proportion of zero counts within the data (Table 9). The
vast majority of these zero counts were described in the
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Bernoulli component of the ZINB model (Table 9); in all
populations the per host female worm burden and the per
host mean weight of female Ascaris were negatively associ-
ated with the probability of a zero egg count (Table 8, p-
value < 0.0001 for both covariates). In the 2nd re-infection
population there was also evidence that host age was pos-
itively associated with the probability of a zero count (p-
value = 0.0092 in the best-fit model, Model 2I, Table 8).

The parameter values estimated from the ZINB and NB
models are broadly similar (Table 8). The estimated value
of the overdispersion parameter k, tends to be higher in
the ZINB models (indicating reduced overdispersion)
since many of the zeros are accounted for in the Bernoulli

component of the model (Table 9). It is noteworthy that
the estimated values of parameter c (the inverse measure
of density dependence) tend to be lower in the ZINB mod-
els (indicative of more severe density dependence, Table
9).

Discussion
The major objectives of this study were twofold: Firstly, to
determine whether there is any evidence for density-
dependent processes affecting the per host mean weight of
female Ascaris lumbricoides. Secondly, to determine
whether per host female mean weight is associated with
per host egg output and what, if any, causal impact this
has on density-dependent egg production. We have

Relationship between the proportion of zero egg counts and female worm burdenFigure 3
Relationship between the proportion of zero egg counts and female worm burden. Top row: a scatter plot of the 
proportion of zero egg counts per stratum of female Ascaris worm burden in the baseline (A), 1st (B) and 2nd (C) re-infection 
populations. Bottom row: logit of the proportion of zero egg counts per stratum of the natural logarithm of female worm bur-
den in the baseline (D), 1st (E) and 2nd (F) re-infection populations showing approximately linear relationships.
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shown that the per host mean weight of female Ascaris fol-
lows a pattern of initial facilitation followed by limitation
with worm burden both at endemic equilibrium (baseline
population) and after 6 months re-infection (re-infection
populations). An association between the per host mean
weight of female Ascaris and the per host egg output is
demonstrated in the three analysed populations. The
functional form of this relationship is different across
populations and dependent on the assumed probability
model used to estimate the unknown parameters. How-
ever, comparing the zero-inflated negative binomial
(ZINB) models, which provide a better description of the
observed data, we see that at baseline egg output initially
rises with increasing per host female mean weight before
falling at very high weights, whilst in the re-infection pop-
ulations, egg output rises monotonically with increasing

weight. Despite these findings, per host female mean
weight has little discernable causal impact on the well-
characterised patterns of density-dependent egg produc-
tion in A. lumbricoides [6,7,70].

The convex pattern of facilitation preceding limitation has
been documented in one previous study of the GI-nema-
tode Heterakis gallinarum infecting the ring-necked pheas-
ant (Phasianus colchicus) [16]. Constraints on female
weight may be caused by intra-specific (exploitation)
competition for either nutrients or space or by host-medi-
ated effects; such as a non-protective immune response.
Limitation of size due to competition for nutrients is
unlikely since the total energy requirements of even a
heavy Ascaris infection is small relative to that of a human
host [71] although it may be possible in the severely

Relationship between the proportion of zero egg counts and the mean weight of female Ascaris lumbricoidesFigure 4
Relationship between the proportion of zero egg counts and the mean weight of female Ascaris lumbricoides. 
Top row: a scatter plot of the proportion of zero egg counts per stratum of female Ascaris mean weight in the baseline (A), 1st 

(B) and 2nd (C) re-infection populations. Bottom row: logit of the proportion of zero egg counts per stratum of the natural log-
arithm of female mean weight baseline (D), 1st (E) and 2nd (F) re-infection populations showing approximately linear relation-
ships.
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undernourished. Constraints mediated by the host
immune response are also dubitable since teenagers and
adults in all populations, who would have a greater
immunological experience of Ascaris antigens, on average
harboured heavier worms. Additionally, negative associa-
tions have been reported between various immunological
markers and the intensity of Ascaris infections [72] and re-
infections following chemotherapy [73], suggesting that
individuals with heavy worm burdens mount a weaker
rather than a stronger immune response. If worm burden
relates to the immune response in this manner and the
response affects the size of female worms, then the per
host mean weight of females would increase with per host
worm burden in a facilitative pattern. Immune responses
are known to limit worm size in experimental GI infec-
tions of rats with S. ratti [27,74] and sheep with T. circum-
cincta [24,25]. The data presented in this study are not
sufficient to distinguish between the various potential
causative mechanisms behind the observed density
dependence, however, we speculate that the facilitation is
immune mediated whereas the limitation is the result of
competition for space.

Two previous studies have described a positive relation-
ship between the size of female A. lumbricoides and egg
production. Sinniah and Subramaniam [14] dissected the
uteruses of females expelled from 50 schoolchildren and
showed a moderately positive linear relationship. Seo and
Chai [15] took a different approach, relating egg output
with female length from hosts harbouring a single female
or a male and female pair. Their results point to a more
parabolic shape to the relationship, with egg output
declining in very large (and presumably old) worms. This
is in accordance with the results of the present study in the
baseline population. Allometric relationships between
body size and egg output are a characteristic feature of par-
asitic nematode infections [75,76], so it is not surprising
that similar mechanisms operate in Ascaris infections of

humans. More interesting, however, is how this associa-
tion influences the host-parasite interaction and ensuing
population dynamics; do host responses limit the size of
worms? Are some hosts more efficient than others at
doing so? Such processes and heterogeneities are known
to occur in model non-human nematode systems
[8,27,28].

The degree of density-dependent egg output (described by
parameter c) remains approximately equal in the null and
best-fit models in each of the three populations (regard-
less of the probability model). This consistency shows
that the severity of density dependence is not greatly
altered by the effects of female weight. Thus, egg produc-
tion is limited directly by increasing female worm burden
and is not simply an artefact resulting from the density
dependence of female mean weight, i.e. the association
between egg output and female weight does not cause
density-dependent fecundity. It is noteworthy that no sta-
tistically significant density-dependent fecundity was
detected in the 1st re-infection population (c = 1.04, 95%
C.I. 0.97–1.11, Model 2I, Table 8). The severity of density-
dependent Ascaris fecundity is known to be weak in Bang-
ladesh relative to other geographical locations [7], and so
its detection is likely to be prone to type II statistical
errors.

The relationships between the per host net egg output and
the female mean weight varied between the baseline and
re-infection populations, with a significant decrease for
heavier worms present only at baseline (as indicated by
the cubic polynomial providing the best-fit functional
relationship, Model 4I). This is congruent with the biolog-
ical interpretation of this functional form representing a
decline in egg production in heavier (inferred older)
worms. This would be expected to be unimportant in the
populations after six months of re-infection since the life-
expectancy of Ascaris is estimated to range between 1 and
2 years [1,77].

An important result from this work is the evidence that the
per host net egg output tends to be higher in children than
adults in the baseline population (β = -0.28, p-value <
0.0001, Table 8). There is also marginal evidence for this
effect in the 2nd re-infection population (β = -0.19, p-value
= 0.015, Table 8). Egg concentration can be negatively
associated with the volume of faeces produced resulting in
overestimation of egg output in children compared to
adults [35]. However, given the unambiguous result in the
baseline population it is surprising that the effect is absent
and not more statistically significant in the 1st and 2nd re-
infection populations respectively. An alternative expla-
nation is that the decreased egg output in adults is due to
an acquired immune response. However, to reconcile this
with the results from the re-infection populations, the

Table 5: Parameter values estimated from the logistic model 
describing the probability of a zero egg count

Population δ0
(SE)

δ1
(SE)

δ2
(SE)

δ3
(SE)

Baseline 0.49*
(0.24)

-0.23
(0.27)

-1.77***
(0.18)

-1.01***
(0.14)

1st re-infection 0.91*
(0.43)

0.51
(0.40)

-2.63***
(0.36)

-2.00***
(0.33)

2nd re-infection 0.63
(0.41)

1.07**
(0.41)

-2.56***
(0.38)

-1.62***
(0.28)

Parameter values were estimated by fitting equation (9) to the egg 
count data encoded in a binary fashion (positive or zero) using 
standard GLM procedures. Parameters refer to the following 
covariates: δ1: host age, δ2: the natural logarithm of female worm 
burden and δ3: the natural logarithm of female mean weight. 
Parameters significantly different from 0: * p-value < 0.05, ** p-value < 
0.01, ***p-value < 0.001.
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Table 6: Comparison of models describing density dependence in the mean weight of female Ascaris lumbricoides

Population Model Model equation Model description Test LRS p-value AIC

Baseline A no density dependence - - - 4671.33

B limitation A vs. B 43.36 <0.0001 4631.97

C† facilitation preceding limitation B vs. C 38.05 <0.0001 4597.91

1st re-infection A no density dependence - - - 2314.29

B limitation A vs. B 18.98 <0.0001 2299.31

C† facilitation preceding limitation B vs. C 17.99 <0.0001 2285.32

2nd re-infection A no density dependence - - - 1976.29

B limitation A vs. B 12.36 0.0021 1967.93

C† facilitation preceding limitation B vs. C 6.18 0.046 1965.75

Comparison of the goodness-of-fit of special cases of the generalised equation [equation (2)] describing the relationship between the expected value of the per host mean weight of female Ascaris, 
μW, and the per host female worm burden, n, using a likelihood ratio test and AIC; p-values were calculated assuming that the LRS follows, under the null hypothesis, a chi-square distribution with 
1 d.f. † denotes the best-fit of each model type in each population.
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duration of immunological memory should be extremely
short and rely on constant exposure to established worms
(for transmission models incorporating the effect of
immunological memory in helminth infections see [78-
80]).

We have shown that a mixture of the negative binomial
and Bernoulli distributions (ZINB model) provides a
superior description of the distribution of egg output data
than a negative binomial (NB model) distribution alone.
Similar zero-inflated models have been used frequently in
the ecological literature where datasets with many zeros
are commonplace (for a review see [81]). In parasitologi-
cal research, we are aware of only two previous studies
that have used zero-inflated models to describe egg output
data [45,46]. An added advantage of using a zero-inflated
model is the insight which can be gained into the source
of zeros (egg counts). Here we show that the probability
of a zero count is negatively associated with both the per
host female worm burden and the per host female mean
weight. These associations suggest that the zero egg counts
are false negatives within the data, i.e. failing to detect
eggs in truly egg-contaminated faeces. We hypothesise
that the greater the total (net) egg production the lower
the probability that a sample is taken from a non-contam-
inated part of the collected faeces. Thus, since total egg
production is positively associated both with female
worm burden and female mean weight, the probability of
sampling from a non-contaminated part of the faeces
decreases with increasing female worm burdens and mean
weight. This effect will be exacerbated by the highly over-

dispersed distribution of A. lumbricoides eggs in faecal
samples [65].

The results presented in Table 9 suggest that a very small
fraction of the zeros in the data were generated from the
negative binomial count process. If we accept the explana-
tion that the vast majority of zeros are false negatives, it is
tempting to remove zero counts a priori in order to sim-
plify analyses aimed at detecting epidemiologically signif-
icant covariates (i.e. covariates that directly impact upon
the release of transmission stages). In taking such an
approach one must again choose an appropriate distribu-
tion with which to model the now zero truncated data.
Two suitable contenders are the log-normal and zero-
truncated negative binomial distributions. The advantage
of the former is that, via a logarithmic transformation,
ordinary least squares estimation procedures can be used.
For the latter, numerical maximisation of the appropriate
log-likelihood function is required [42,44]. Figure 6 com-
pares the results of fitting equation (5) (in which the
mean per host egg output is modelled as being dependent
on female worm burden and host age only) to the zero-
truncated baseline data using the two approaches. Clearly
the log-normal assumption provides an inadequate
description of the data due largely to the poor approxima-
tion of the variance-to-mean relationship, a key aspect in
accurate parameter estimation [40,82] (for details of the
variance-to-mean relationship for the log-normal and
zero-truncated negative binomial distributions see addi-
tional file 1 and [83]). Therefore, although removing
zeros from the data may be a reasonable approach, more

The best-fit relationship between the per host mean weight of female Ascaris lumbricoides and female worm burdenFigure 5
The best-fit relationship between the per host mean weight of female Ascaris lumbricoides and female worm 
burden. The best-fit functional relationships (as determined by the LRS, Table 6) between the per host mean weight of female 
Ascaris and the female worm burden in the baseline (A), 1st (B), and 2nd (C) re-infection populations. The solid red line is the 
best-fit to children (age ≤ 12 years) and the broken blue line to teenagers and adults (age > 12 years). The best-fit function is 
given by equation (2) and represents a pattern of initial facilitation followed by limitation. Circular and square data points are 
grouped means for children and teenagers and adults respectively. Error bars represent the standard error of the mean.
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Table 7: Comparison of models describing the per host net egg output

Population Model type Model Test LRS d.f. p-value AIC

Baseline Negative binomial 1 - - - - 24679.09
2 1 vs. 2 50.87 1 <0.0001 24630.21
3† 2 vs. 3 8.35 1 0.0039 24623.86
4 3 vs. 4 0.02 1 0.89 24625.84

Zero-inflated negative binomial 1I - - - - 23990.51
2I 1 vs. 2 26.89 1 <0.0001 23965.62
3I 2 vs. 3 0.41 1 0.52 23967.20
4I† 3 vs. 4 6.04 1 0.014 23963.17

2 vs. 4 6.45 2 0.049

1st re-infection Negative binomial 1 - - - - 14404.20
2 1 vs. 2 44.42 1 <0.0001 14361.78
3 2 vs. 3 4.06 1 0.044 14359.72
4† 3 vs. 4 4.50 1 0.025 14356.72

Zero-inflated negative binomial 1I - - - - 14043.52
2I† 1 vs. 2 24.52 1 <0.0001 14020.97
3I 2 vs. 3 0.25 1 0.62 14022.73
4I 3 vs. 4 0.68 1 0.41 14024.04

2nd re-infection Negative binomial 1 - - - - 11050.10
2 1 vs. 2 24.11 1 <0.0001 11027.99
3† 2 vs. 3 5.93 1 0.015 11024.06
4 3 vs. 4 1.72 1 0.19 11024.33

Zero-inflated negative binomial 1I - - - - 10715.26
2I† 1 vs. 2 7.24 1 0.0071 10710.02
3I 2 vs. 3 0.22 1 0.65 10711.81
4I 3 vs. 4 0.56 1 0.46 10713.26

The goodness-of-fit of all NB and ZINB models fitted to the data assessed by the LRS and AIC. † denotes the best-fit of each model type in each population. Model equations are given in Table 4.
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Table 8: Parameter estimates from the null and best-fit statistical models describing per host net egg output

Negative binomial count component parameters Bernoulli component parameters

Population Model ln(λ1)
(SE)

β
(SE)

c
(SE)

γ1
(SE)

γ2
(SE)

γ3
(SE)

k
(SE)

δ0
(SE)

δ1
(SE)

δ2
(SE)

δ3
(SE)

Baseline 1 (null) 5.98***
(0.081)

-0.14*
(0.068)

0.79***
(0.033)

- - - 0.61
(0.020)

- - - -

3 (best-fit) 6.18***
(0.096)

-0.29***
(0.069)

00.74***
(0.036)

0.20***
(0.026)

-0.046**
(0.015)

- 0.63
(0.021)

- - - -

1I (null) 6.25***
(0.066)

-0.20***
(0.053)

0.70***
(0.027)

- - - 1.08
(0.034)

0.49*
(0.24)

-0.23
(0.28)

-1.02***
(0.14)

-1.78***
(0.18)

4I (best-fit) 6.26***
(0.076)

-0.28***
(0.055)

0.70***
(0.027)

0.18***
(0.034)

-0.00062
(0.014)

-0.015*
(0.0060)

1.10
(0.034)

0.49*
(0.24)

-0.23
(0.28)

-1.01***
(0.14)

-1.78***
(0.18)

1st re-infection 1 (null) 5.08***
(0.089)

0.023
(0.078)

1.12***
(0.038)

- - - 0.82
(0.036)

- - - -

4 (best-fit) 5.17***
(0.099)

-0.051
(0.076)

1.11***
(0.039)

0.19**
(0.063)

-0.082**
(0.031)

0.039*
(0.017)

0.86
(0.038)

- - - -

1I (null) 5.31***
(0.081)

0.024
(0.065)

1.02***
(0.035)

- - - 1.28
(0.044)

0.91*
(0.44)

0.52
(0.40)

-2.00***
(0.33)

-2.65***
(0.37)

2I (best-fit) 5.28***
(0.080)

-0.027
(0.065)

1.04***
(0.034)

0.18***
(0.037)

- - 1.31
(0.04)

0.91*
(0.44)

0.51
(0.40)

-2.00***
(0.33)

-2.64***
(0.37)

2nd re-infection 1 (null) 5.71***
(0.10)

-0.17
(0.10)

0.81***
(0.047)

- - - 0.71
(0.035)

- - - -

3 (best-fit) 5.77***
(0.11)

-0.23*
(0.10)

0.82***
(0.049)

0.27***
(0.047)

-0.078*
(0.033)

- 0.74
(0.037)

- - - -

1I (null) 5.95***
(0.087)

-0.14
(0.077)

0.71***
(0.040)

- - - 1.23
(0.05)

0.63
(0.41)

1.07**
(0.41)

-1.62***
(0.29)

-2.56***
(0.39)

2I (best-fit) 5.92***
(0.086)

-0.19*
(0.079)

0.72***
(0.040)

0.11**
(0.042)

- - 1.24
(0.050)

0.63
(0.41)

1.07**
(0.41)

-1.63***
(0.29)

-2.56***
(0.39)

Estimated parameter values from the best-fit NB and ZINB models in each population. Parameters significantly different from 0: * p-value < 0.05, ** p-value < 0.01, ***p-value < 0.001. Model equations are given in Table 4.

Table 9: Observed and predicted percentage of zero counts from the NB and ZINB models

Population Observed percentage zero counts Predicted percentage zero counts

NB Model ZINB Model

Count component Bernoulli component

Baseline 7.12% 0.80% 0.039% 7.16%
1st re-infection 5.49% 0.36% 0.033% 5.47%
2nd re-infection 6.66% 0.58% 0.030% 6.64%
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Comparison of the fit of a log-normal and zero-truncated negative binomial modelFigure 6
Comparison of the fit of a log-normal and zero-truncated negative binomial model. A: The estimated variance-to-
mean relationship from the zero-truncated negative binomial model (black thick line) and the log-normal model (black thin 
line). B: The fitted zero-truncated (thick lines) and log-normal (thin lines) models to data from children (red solid line) and 
teenagers and adults (blue broken line) in the baseline population. In both figures red circles represent grouped mean data 
from children and blue squares from teenagers and adults (as defined in Figure 5). Details of the variance-to-mean relationship 
for the log-normal and zero-truncated negative binomial models are given in additional file 1.
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complex and non-standard statistical models are still
required for adequate parameter estimation [42].

Conclusion
In this study we have demonstrated that the mean weight
of female A. lumbricoides infecting a cohort of human
hosts follows a pattern of facilitation preceding limitation
with increasing worm burden. We verify that weight is
associated with net egg output but demonstrate that this
has little causal impact on patterns of density-dependent
egg production. We show that a zero-inflated negative
binomial (ZINB) probability distribution is superior to a
negative binomial distribution in modelling individual
egg output data.
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