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Abstract 

This thesis addresses contextual and ethical issues in the predictive 

process monitoring framework and several related issues. Regarding 

contextual issues, even though the importance of case, process, social and 

external contextual factors in the predictive business process monitoring 

framework has been acknowledged, few studies have incorporated these 

into the framework or measured their impact. Regarding ethical issues, we 

examine how human agents make decisions with the assistance of process 

monitoring tools and provide recommendation to facilitate the design of 

tools which enables a user to recognise the presence of algorithmic 

discrimination in the predictions provided. 

First, a systematic literature review is undertaken to identify existing 

studies which adopt a clustering-based remaining-time predictive process 

monitoring approach, and a comparative analysis is performed to compare 

and benchmark the output of the identified studies using 5 real-life event 

logs. This curates the studies which have adopted this important family of 

predictive process monitoring approaches but also facilitates comparison 

as the various studies utilised different datasets, parameters, and 

evaluation measures. 

Subsequently, the next two chapter investigate the impact of social and 

spatial contextual factors in the predictive process monitoring framework. 

Social factors encompass the way humans and automated agents interact 

within a particular organisation to execute process-related activities. The 

impact of social contextual features in the predictive process monitoring 

framework is investigated utilising a survival analysis approach. The 

proposed approach is benchmarked against existing approaches using five 

real-life event logs and outperforms these approaches. Spatial context (a 

type of external context) is also shown to improve the predictive power of 

business process monitoring models. 
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The penultimate chapter examines the nature of the relationship between 

workload (a process contextual factor) and stress (a social contextual 

factor) by utilising a simulation-based approach to investigate the diffusion 

of workload-induced stress in the workplace. 

In conclusion, the thesis examines how users utilise predictive process 

monitoring (and AI) tools to make decisions. Whilst these tools have 

delivered real benefits in terms of improved service quality and reduction 

in processing time, among others, they have also raised issues which have 

real-world ethical implications such as recommending different credit 

outcomes for individuals who have an identical financial profile but 

different characteristics (e.g., gender, race). This chapter amalgamates the 

literature in the fields of ethical decision making and explainable AI and 

proposes, but does not attempt to validate empirically, propositions and 

belief statements based on the synthesis of the existing literature, 

observation, logic, and empirical analogy. 
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CHAPTER ONE 
 
 

1 INTRODUCTION 
 

1.1 Motivation 
 

Predictive process monitoring (PPM) has gained traction as a research 

field over the last decade, as evidenced by the steady increase in the 

number of related papers. (See Figure 1.1). 

 
 
 
 
Figure 1.1 –Predictive Process Monitoring Papers by Publication Year 
 
It is also an important topic from a practitioner perspective. For example, 

Johnston (2004) proposed four determinants of service excellence. It could 

be argued that two of these four – ‘delivering the promise’ and ‘dealing well 

with problems and queries’ are related to accurate remaining time 

prediction. It is common to provide customers with an estimate of the 

average time to complete a case combined with a margin of error (van 

Dongen, Crooy and van der Aalst, 2008). However, the path taken by the 

case may lead to it deviating from the average (e.g., because of rework loops 
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or exception processing), rendering the estimate inaccurate. The service 

excellence determinant around ‘dealing well with problems and queries’ 

suggests that even when problems occur with service provision, providing 

accurate estimates regarding process completion time is positively 

correlated to increasing customer satisfaction. 

Accurate process remaining-time prediction is also an essential enabler for 

production    planning (e.g., Just-In-Time production), resource planning (e.g., 

to determine when to hire resources to support the process), amongst 

others. 

 
Effectively predicting process outcomes in operational business 

management is important for Customer Relationship Management (e.g., ‘will 

this customer’s order be completed on time?’), Enterprise Resource 

Planning (e.g., ‘what level of resourcing will be required to manage running 

cases/process instances?’) and Operational Process Improvement (e.g., 

‘what are the common attributes of cases that consistently complete late?’), 

among others. Grogori et al (2004) propose a link between customer 

attraction and retention and “highly consistent and predictable quality” of 

process execution. Various approaches have been proposed to tackle this 

problem (see Panagos and Rabinovich, 1996; Eder et al, 1999; van Dongen, 

Crooy and van der Aalst, 2008). However, all these approaches have 

limitations particularly with regards to prediction accuracy. 

The widespread adoption of Process-Aware Information Systems (PAIS) 

which “record information about …processes in event logs” has provided “a 

means to support, control and monitor operational business processes” 

(Metzger et al, 2015). The availability of event log data, amongst others, has 

enabled the development of new and novel approaches to tackle the 

predictive process monitoring problems (see Evermann, Rehse & Fettke, 

2017; Mehdiyev, Evermann & Fettke, 2017). 

 

This thesis addresses contextual and ethical issues with predictive process 
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monitoring. To illustrate how the issue of context is related to quality of 

prediction: in attempting to predict how long it would take to walk to a 

specified destination, we could collate data on the time it has taken other 

persons who have travelled that route to make the same journey by foot. 

However, that approach fails to consider other factors that might influence 

the journey time (e.g., difference in crowd density, road conditions, 

weather, etc at different points in time). We incorporate spatial and social 

context into the predictive process monitoring  workflow with a view to 

increasing its predictive power. In addition, we also utilise workload 

(process context) to predict stress (social context) to discover the 

relationship between these contextual factors 

 

With regards to ethical issues, one of the obstacles to the adoption of 

predictive process monitoring tools for operational support, is a lack of 

understanding of the factors that influenced the prediction. This is 

particularly the case when users are making decisions which may 

potentially cause harm or distress (e.g., rejecting a loan application) based 

on the prediction provided by the PPM tool.  We propose a model 

describing how human agents utilise predictive process monitoring (and 

more generally, AI) tools to make decisions and make recommendations to 

assist them more easily identify where algorithmic discrimination may be 

present. 

 
1.2 Background 

 
We begin this section by addressing the positioning, purpose, and 

requirements of prediction in BPM. 

 
Regarding positioning, Van der Aalst (2016:31) proposes a BPM lifecycle 

with four continuous phases (see Figure 1.2). Any process starts in the 

design phase, followed by implementation and configuration of the designed 

process. The implemented process is monitored and adjusted incrementally 
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as required. However, if the process significantly fails to meet its critical 

requirements, it is often necessary to diagnose the root cause of problems 

and redesign the process. The literature positions prediction in the design 

phase (see Panagos and Rabinovich, 1996; Eder et al, 1999) and the 

enactment/monitoring phase (see Reijers, 2007; van Dongen, Crooy and 

van der Aalst, 2008) of the lifecycle. 

 
 

Figure 1.2 – BPM Lifecycle (Source: Van der Aalst, 2016:31) 
 

The literature base also appears to indicate that the purpose of prediction 

differs depending on the phase in the lifecycle where it is made. For example, 

Van der Aalst (2013) posits that prediction at the enactment/monitoring 

phase is useful for operational decision making (“solving the concrete 

problem at hand”) as opposed to an “abstract future problem” which is often 

the focus of design time prediction. A similar distinction is made between 

design and run time prediction by Reijers (2007). This explains why we 

adopt the phrase “predictive process monitoring”, as it indicates the 

purpose and phase of the prediction we will be investigating. This paper 

outlines four requirements that an effective operational process predictive 

model must satisfy – accuracy, nearly instantaneous results, ease to use, 

non- interference with the efficient operation of the BPMS. Accuracy is 

suggested as the most important requirement based on earlier research 

undertaken by   Yokum and Armstrong (see Yokum and Armstrong, 1995). 
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Di Francescomarino et al (2018) presents a comprehensive survey of the 

predictive process monitoring research field. They categorise approaches 

by the prediction target and the type of algorithm used for prediction. 

In terms of prediction target, the authors identified three main categories 

of prediction target namely: numeric or continuous targets (e.g., remaining 

time, cost), categorical targets (e.g., risk class, outcome of a case) and 

activity sequence (e.g., next activity in a trace). In terms of types of 

algorithms utilised, two main groups of approaches were identified, 

namely: those that rely on an explicit model (e.g., annotated transition 

systems) and those that leverage machine learning and statistical 

techniques (e.g., regression and classification models, etc). 

 In the first half of the thesis (chapters 2-4), we focus on using a variety of 

machine learning techniques to predict the remaining time for an inflight 

trace. As mentioned in section 1.1, accurately predicting the remaining 

time for process instance is extremely valuable for customer relationship 

management (e.g., notifying a customer when their case is likely to 

complete), Just-In-Time production (e.g., to facilitate timely ordering and 

delivery of required components and services), etc. Though most of the 

approaches we propose can be easily adapted to predict other numeric or 

categorical targets, we chose to focus on a single target (. i.e., remaining 

time) for the sake on parsimony in evaluating the results of our 

experiments. For example, including outcome-based prediction in our 

evaluation would have required adopting a different set of metrics for 

evaluating the results (e.g., AUC, ROC).  

We aim to improve current approaches by addressing the issue of lack of 

context in the predictive process monitoring workflow. Van der Aalst 

(2016: 318) identifies four pertinent contextual types: 

 
Case context – These are the properties or attributes of case. In this 

research study, example of these would include request type (i.e., internal 
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vs external), request category (e.g., parking/recreation services, etc). It is 

common for enhanced due diligence to be applied for certain cases e.g., 

additional approval required for high-risk cases or amounts above a 

specified threshold. Using case context to stratify cases on this basis will 

improve the predictive power of the model. This is the easiest service type 

to incorporate into the process model as the case attributes are often 

contained in the event log. Using tools such as decision trees, it is relatively 

straightforward to find out if there is a relationship between a response 

variable (e.g., completion time) and a particular case attribute. van der 

Aalst et al (2007) uses the case perspective to explore whether there is a 

relationship between the length of time it takes to settle an invoice and the 

invoice amount. However, it could be argued that the same result could also 

be answered using traditional data mining approaches i.e., process mining 

is superfluous. 

 
Process context – This considers similar cases that may be competing for 

same resources. Schellekens (2009) showed that case interaction and the 

availability of resources are significant factors to consider when predicting 

completion time for cases. Another key process contextual factor that 

should be considered for prediction purposes is the current backlog (or 

workload). 

 
Social context - This encompasses the way human resources collaborate in 

an organisation to work on the process of interest. As event logs often 

capture the details of the resource completing an activity, process mining is 

suited to organisational/social analysis and there has been some research 

focus on this area. For example, Nakatumba & van der Aalst (2009) 

investigated Yerkes-Dodson law of arousal to discover the point where the 

performance of a worker under time pressure (stress) degrades. van der 

Aalst et al (2007) derived the relationship between workers from the 

frequency by which they pass work to each other. Some process mining 

tools (e.g., PRoM) include the capability to perform Social Network 



7  

Analysis with a view to discovering interaction patterns amongst workers, 

evaluating   the role of an individual in social network (e.g., centrality 

scores), etc. However, we were unable to locate evidence of research that 

directly explored the impact of social context (e.g., subcontracting) on 

prediction and where it has been touched on (e.g., see van der Aalst et al, 

2007), the analysis has been tangential. 

External context – This refers to factors in the wider ecosystem that 

impacts the process. In the case of this study, that will likely include factors 

such as the weather, legislation, location, etc. This is likely to be the most 

difficult context type to incorporate into the predictive model as the data is 

likely to be located outside the system. In addition, the cause-effect chain 

between external context and process outcome is likely to be difficult to 

establish as a certain factor can mediate, moderate, or mitigate another. For 

example, departmental budget reduction (external context) may impact 

staffing levels (process context) irrespective of service demand. Finally, a 

certain external context factor may not be constant over the lifecycle of a 

process instance (e.g., heavy snowfall might lead to a spike in demand for 

certain services; however, by the time these cases are completed, this 

external contextual factor may no longer apply) 

 In chapter 2, we focus on an important subset of remaining-time 

approaches i.e., clustering-based approaches. These are a highly 

interpretable class of approaches that group or bucket identical traces in 

the training set and build predictive models for each cluster. The clustering 

and training of these traces are often done during an offline phase. 

Subsequently in the online phase, an inflight trace is assigned to an 

appropriate cluster and the predictive model for that cluster is used to 

predict the remaining time for that trace. As we will discuss in chapter 6, 

interpretability is essential for engendering trust in predictive process 

models, hence we chose to focus on this subset of approaches as opposed 

to recent approaches (e.g., neural networks) which have gained in 

popularity recently but are not as interpretable. 
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In chapter 5, we introduce a new prediction target for the predictive 

workflow: workload-induced stress. As we show in that chapter, the 

literature indicates that increasing workload is a causal factor for stress in 

the workplace. The processing speed for activities provides an indicator 

when workload-induced stress is at its peak. We also examine the concept 

of emotional contagion – the phenomena of having one person’s emotions 

trigger emotions and related behaviours in others – based on interactions 

between them. As all the required data (. i.e., workload, processing speed, 

duration of interaction, etc) can be derived from an event log, we are able 

to model the effect of workload (process context) on stress (social context). 

This enables us to better understand the relationship between these 

contextual factors but also adds a new prediction target to the predictive 

process mining knowledge base.     

 

Finally in chapter 6, we examine ethical issues regarding the use by human 

agents of predictive process monitoring tools to make decisions. This 

primarily applies to outcome-based approaches where a user is influenced 

by the prediction provided by the tool e.g., decides to reject a loan 

application due to a prediction that the applicant is highly likely to default. 

However, where the predictive model is trained on biased data (e.g., data 

that captures historic discrimination based on features such as race, 

gender, etc), it’s predictions may reflect those biases. Even when these 

features are removed, the predictive model can still infer these features. 

We develop a model that describes how human agents make ethical 

decisions   when using predictive process monitoring (and AI) tools and 

make recommendations to design tools that assist the user determine 

whether algorithmic discrimination is present in the prediction. 

 
1.3 Aims and Objectives 

 
This research project aims to produce several context-aware predictive 

process monitoring models. As previously mentioned, the context in which 
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an operational business process is executed has been acknowledged as 

having a significant effect on the predictive power of a predictive process 

model. Numerous studies have attempted to incorporate contextual 

factors into the process monitoring workflow (see Senderovich et 

al,2017;2019; Denisov, Fahland and Van der Aalst, 2019). However, we are 

not aware of any studies that assess the relative importance of these 

factors. This study will aim to address that gap by proposing novel 

techniques to incorporate relevant contextual factors into the predictive 

process monitoring workflow. In addition, it will examine the effect that 

certain contextual factors, have on the predictive power of the model. 

Closely related to the aims above is the nature of the relationship between 

contextual types. This research will aim to shed some light on the nature 

of the relationship between process and social context. 

 
Finally, we aim to uncover the manner human agents use the predictions 

generated by predictive process monitoring and other Artificial 

Intelligence (AI) workflows. We focus on the ethical issues that may arise 

from these and make recommendations for designing tools that aid 

human agents to detect algorithmic bias and thus make ethical decisions. 

 
Specifically, the following Research Questions will be addressed: 

Chapter 2: 

Given an event log of post-mortem data, what are the current 

clustering- based remaining-time predictive process mining 

approaches? 

 
How have these approaches been evaluated in the existing literature? 

What is the relative performance of these approaches? 

Answering these questions is important as it will provide a 
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benchmark of existing clustering-based remaining time approaches 

which will assist researchers and practitioners to select which are 

likely to perform best for their predictive process monitoring 

workflows. 

 

Chapter 3: 

 
What is the relationship between social contextual factors and process 

completion time? 

 
How does the survival analysis predictive process monitoring approach 

compare with existing approaches? 

 

The answer to the first question above is vital for determining how to 

manipulate social contextual factors, specifically group centrality 

measures for the performers who execute a process instance, to ensure 

desired process outcomes are delivered.  With regards to the second 

question, if it is proved that survival analysis predictive process 

monitoring approach compares favourably with other approaches, it 

advances the state of the art as it provides an approach that can include 

incomplete (censored) traces in training predictive models. This is 

essential as some event logs contain a significant proportion of 

incomplete traces e.g., in cloud systems where many virtual machines 

have very long lifetimes. Without an approach such as the survival 

analysis approach, these traces cannot be used to train the model and 

will have to be filtered out.   

 
Chapter 4: 

 
Do spatial features contribute to the predictive power of remaining-time 

predictive approaches vis-à-vis other features? 
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How does spatial-based remaining-time predictive process monitoring 

approaches compare with existing approaches? 

 

To enable both questions above to be answered, a technique will need 

to be developed to incorporate spatial context into an event log to 

create a spatial event log. This opens opportunities beyond predictive 

process monitoring as it enables a new field of spatial process mining 

e.g., spatial conformance checking which includes spatial features in 

checking conformance to the specified process, spatial prescriptive 

process mining which provides recommendations to process 

performers based on location, amongst others. Subsequently, the 

findings from exploring both questions will provide an understanding 

of the extent to which spatial features improve the power of the 

predictive process monitoring model. 

 
Chapter 5: 

 
Does the relationship between workload and processing speed exhibit a 

quadratic relationship as proposed by the Yerkes-Dodson law? 

 
If so, when does this relationship hold and when not? 

 
Do network simulation approaches facilitate the discovery of successful 

interventions to mitigate the diffusion of workload-induced stress? 

 

The answers to these questions advance the state of the art in several 

significant ways. Firstly, it provides new empirical evidence for the 

validity (or otherwise) of the Yerkes Dodson law, a law which was first 

proposed decades ago (Hebb, 1955). In addition, it sheds light on 

scenarios where the law holds and those where it doesn’t. Finally, the 
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findings enable the prediction of a workload-induced stress – a new 

and important target for predictive process monitoring workflows. 

 
Chapter 6: 

 
How do human agents make ethical decisions when using PPM (and more 

generally, AI) tools? 

 
How can PPM tools be designed which assist human agents make ethical 

decisions? 

 

Finally, the answers to the questions addressed in this chapter advance 

the understanding of the cognitive and affective processes users navigate 

as they make decisions with predictive process monitoring tools. The 

understanding acquired can subsequently serve as input into the design 

of predictive tools which make it easier for users to detect the presence of 

algorithmic discrimination and hence, make more ethical decisions. 

 
1.4 Contributions 

 
The systematic literature review contributed to the knowledge base by 

identifying existing clustering-based remaining-time predictive 

monitoring approaches (for the first time in the PPM literature base) and     

proposing a taxonomy for classifying these approaches. It also described a 

novel approach describing the implementation and execution of a 

systematic pre-review map (SPRM) step designed to ensure that a 

systematic literature review is not duplicative. Whilst this step has been 

proposed (see Brereton et al, 2007), we were unable to locate any studies 

that had implemented it. 

 
Following on from the literature review, a further contribution to 

knowledge was made by our pioneering evaluation of the effect of the 
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clustering approach on the performance of the predictive model.  

 
Next, the novel aggregation encoding technique described in Chapter 3 

enables us to incorporate social contextual factors into the predictive 

process monitoring framework and uncover relationships between these 

factors and remaining time. Besides, the survival analysis approach 

proposed in this chapter accommodates censoring in event data.  Whilst 

this approach has been used many other fields (e.g., healthcare, marketing, 

credit risk analysis, etc), it is the first time it has been utilised in the 

predictive process monitoring workflow.   

 
The innovative approach proposed in Chapter 4 facilitates the addition of 

spatial context into event logs to create spatial event logs.  We also 

proposed a novel approach for encoding both the training and testing data 

which is a key enabler for utilising spatial context in the predictive process 

monitoring workflow. Finally, we demonstrate (for the first time in the 

PPM literature base)  that spatial features improve the predictive power of 

the model and that spatial ensemble approaches yielded the best result for 

processes that are likely to exhibit spatial point processes. Based on this we 

make a strong case for the inclusion of spatial context in event logs, which 

is not currently typically collected. 

 
In Chapter 5 we apply existing techniques (e.g., GAMs) in a novel way to 

uncover the nature of the relationship between workload (a key workplace 

stressor) and productivity from a couple of real-world event log. We 

identified the factors which drive this relationship (aka the Yerkes–

Dodson law). 

 
In the second part of that chapter, we utilised a simulation-based approach 

in an innovative manner  to investigate the diffusion of workload-induced 

stress in the workplace. We found that in terms of stress management 
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intervention, increasing the recovery rate yields better results vis-à-vis 

increasing the resilience of the workforce to stress. 

In the penultimate chapter, we develop a new model of ethical decision 

making with AI Augmentation (. i.e., AI workflows with a human agent in 

the loop) that synthesises the fields of ethical decision making and 

Explainable AI (XAI). We propose nine belief statements based on the 

synthesis of the existing literature, observation, logic and empirical 

analogy which facilitate the design of AI tools which support ethical 

decision making. 

 
 

1.5 Thesis Overview 
 

The remainder of this thesis is organised as follows: 

 
Chapter 2 provides the findings from a systematic literature review of 

remaining-time predictive process monitoring and a comparative analysis 

of an important subset of these: clustering-based approaches. Chapters 3 

and 4 subsequently presents the results of an investigation of the impact of 

social and external contextual factors on the predictive process monitoring 

workflow. Subsequently, in Chapter 5 we explore the relationship between 

workload (a process contextual factor) and stress (a social contextual 

factor). The penultimate chapter contains an exploration of how human 

agents utilise the output from the various predictive workflows and ethical 

issues that might arise. Finally, Chapter 7 details the conclusions and 

proposed future research. 

Figure 1.3 shows the relationship between the various chapters of the 

thesis in a diagrammatic format. 
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Figure 1.3 - Relationship between thesis chapters
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CHAPTER TWO 

 
2 COMPARATIVE ANALYSIS OF CLUSTERING-BASED 

REMAINING-TIME PREDICTIVE PROCESS MONITORING 

APPROACHES 

2.1 Synopsis 
 

Predictive process monitoring aims to accurately predict a variable of 

interest (e.g., remaining time) or the future state of the process instance 

(e.g., outcome or next step). Various studies have been explored to develop 

models with higher predictive power. However, comparing the various 

studies is difficult as different datasets, parameters and evaluation 

measures have been used. This chapter seeks to address this problem with 

a focus on studies that adopt a clustering-based approach to predict the 

remaining time to the end of the process instance. 

A systematic literature review is undertaken to identify existing studies 

which adopt a clustering-based remaining-time predictive process 

monitoring approach, and a comparative analysis is performed to compare 

and benchmark the output of the identified studies using 5 real-life event 

logs 

This chapter formed the basis of a journal paper accepted for publication in 

the International Journal of Business Process Integration and Management 

2.2 Introduction 
 

A critical step in the predictive process monitoring workflow is ‘bucketing’ 

(see Figure 2.1) which assigns the traces in an event log into buckets and 

trains a predictive model for each bucket. A common approach that has been 

utilised for this step is the ‘cluster bucketing’ approach, where traces are 

assigned to buckets based on a clustering algorithm (see Teinemaa et al., 

https://www.inderscience.com/jhome.php?jcode=ijbpim
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2017; Verenich et al., 2018). However, as yet, there has been no published 

attempt to evaluate the effect of the clustering approach on the performance 

of the predictive model. This study aims to close the gap by (i) undertaking 

a systematic literature review to identify existing clustering-based 

remaining-time predictive process monitoring approaches (ii) detailing 

how these approaches have been evaluated and (iii) performing a 

comparative analysis to compare and benchmark these approaches. 

Besides, it contributes to the systematic literature review methodology by 

describing the implementation and execution of a systematic pre-review 

mapping (SPRM) step designed to ensure that a systematic literature 

review is not duplicative. 

 

 
 
 

Figure 2.1 – Predictive Process Mining Monitoring Workflow 
 

The remainder of the paper is structured as follows: Section 2.3 details 

preceding papers which have provided the motivation and methodological 

basis for this study. Section 2.4 defines key terms which will be built on 

throughout the paper. Section 2.5 describes the search methodology, 

including the inclusion/exclusion criteria. Section 2.6 details the clustering- 

based remaining-time predictive process mining approaches identified. 

Section 2.7 outlines the results of the comparative analysis. The penultimate 

section describes the threats to the validity of the study whilst the final 

section summarises the findings and proposes further research areas for 

extending these. 
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2.3 Related Works 
 

In terms of predictive process monitoring, Teinemaa et al. (2017) provided 

the main inspiration for this review. That study performed a systematic 

literature review of outcome-oriented predictive process monitoring 

approaches, including a comparative experimental evaluation. It followed 

the methodology proposed by Kitchenham (2004) and demonstrated the 

practical application of the procedure. However, the focus of that paper was 

on evaluating outcome-based predictive monitoring approaches. A similar 

paper (see Verenich et al., 2018) undertook a similar study with a focus on 

remaining-time predictive approaches. That study performed a cross- 

platform analysis across all remaining-time predictive monitoring 

approaches (e.g., it only implemented a single clustering-based approach) 

whilst this study focuses on all existing clustering-based approaches. In 

other words, whilst that study has a broader focus, this one has a deeper and 

narrower focus. 

Marquez-Chamorro, Resinas & Ruiz-Corts (2017) provided an overview of 

predictive process monitoring approaches. The scope of their review 

included all prediction targets (remaining-time, outcome-oriented and 

next- step) and proposed a taxonomy for these approaches. However, their 

paper does not perform a comparative analysis of these approaches. 

Metzger et al. (2015) detailed an exhaustive review of predictive process 

mining approaches. However, the focus of this review is deadline violation 

(a sub- set of outcome-based prediction) as opposed to remaining-time 

prediction. Taleb (2017) also reviewed various predictive process mining 

approaches (outcome-based, next step and remaining time). Whilst it does 

not explicitly state the study’s inclusion/exclusion criteria and its search 

strategy does not appear exhaustive (e.g., it only mentions three remaining 

time-based approaches), the main contribution it makes is the 

implementation of a web- based tool to compare different approaches 
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2.4 Background 
 

2.4.1 Definitions 
 

Several key terms to be built on throughout this review are formally defined. 

 
Definition 2.1 Event. Let ε represent the event universe and Τ the time 

domain, A represent the set of activities and P represent the set of 

performers (i.e., individuals and teams). 

 
An event e is a tuple (#case_identifier(e), #activity(e), #start_time(e), 

#completion_time(e), #attribute1(e)..#attributen(e)). The elements of the 

tuple represent the attributes associated with the event. Though an event is 

minimally defined by the triplet ((#case_identifier(e), #activity(e), 

#completion_time(e)), it is common and desirable to have additional 

attributes such as #performer(e) indicating the performer associated with 

the event and #trans(e) indicating the transaction type associated with the 

event, amongst others. For each of these attributes, there is a function which 

assigns the attribute to the event .e.g. attrstart_time ∈ ε → T assigning a start 

time to the event, attrcompletion_time ∈ ε → T assigning a completion time to the 

event, attractivity∈ ε → T assigning an activity label to the event and 

attrperformer ∈ ε ↛ P, a partial function assigning a performer (or resource) 

to events. Note that attrperformer is a partial function as some events may not 

be associated with any performers. 

 
An event is often identified by the activity label (#activity(e)) which 

describes the work performed on a process instance (or case) that 

transforms input(s) to output(s). 

 
Definition 2.2 Terminal activities. Let Z ⊆ 𝐴𝐴 represent the set of valid 

terminal activity labels. 

 
en is a valid terminal event if #activity_label(en) ∈ Z . This event indicates a 

‘clean’ completion of the process instance. Otherwise, the process instance 
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is still in-flight or abandoned. 

 
Definition 2.3 Trace. Let ε* represent the set of all finite sequences over ε. 

A trace is a (time-increasing) sequence of events, σ ∈ ε∗ such that each 

event appears only once. i.e. for 1 ≤ i < j ≤ |σ|: σi ≠ σj and 𝜎𝜎𝜎𝑖𝑖 ≤ 𝜎𝜎𝜎j 

 
A partial trace (σp) has a non-valid terminal event as the final event (𝑒𝑒𝑛𝑛). It 

indicates an in-flight (pre-mortem) process instance. 

 
A full trace (σf) ends with a terminal event (𝑒𝑒𝑛𝑛). It details the journey 

through the value chain that the process instance followed and indicates a 

completed (post-mortem) process instance. 

Definition 2.4 Event log. An event log is a set of traces (full and partial) L ⊆ 

𝐶𝐶 for a particular process such that each event appears at least once in the 

log.  

 
Definition 2.5 Remaining time. Let σf represent a full trace, τ.en represent 

the completion time associated with the terminal event, 

#completion_time(en), and t represents the prediction point. For t < τ.en ,the 

remaining time τrem = τ.en - t . It indicates the remaining time to completion 

of case/process instance. Note that predicting at or after the completion 

time (i.e. t ≥ τ.en) is pointless. 

 
Definition 2.6 Elapsed time. Let σf represent a full trace, τ.e1 represent the 

start time associated with the start event, #start_time(e1), and t represents 

the prediction point. For t > τ.e1 , the elapsed time τela = t - τ.e1. It indicates 

the elapsed time from the start of case/process instance to the prediction 

time. 

 
Definition 2.7 Cycle time. Let σf represent a full trace, τ.e1 represent the start 

time associated with the start event, #start_time(e1) and τ.en represent the 

completion time associated with the terminal event, #completion_time(en), 
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The trace cycle time τcyc = 𝜏𝜏. 𝑒𝑒𝑛𝑛 − 𝜏𝜏. 𝑒𝑒1. It indicates the time taken to 

complete the process instance from start to finish. 

 
To illustrate the terms above, consider a process for reporting and 

remediating defects to public goods, e.g., potholes, streetlight outages, etc. 

An event in this process would be any from the valid set: {‘Create Service 

Request', ‘Initial Review', ‘Assign Service Request', ‘Assign Crew', ‘Contact 

Citizen', 'Put Service Request On Hold', ‘Close Service Request'}. Each of 

these will be associated with a start and end time as well as the resource 

who performed the activity amongst others. An example of a full trace for a 

process instance would be {‘Create Service Request', ‘Review', ‘Assign 

Service Request', ‘Assign Crew', ‘Contact Citizen', ‘Close Service Request'}. 

Note that ‘Create Service Request' and ‘Close Service Request' are the start 

and terminal events, respectively. An example of a partial trace for a process 

instance would be {‘Create Service Request', ‘Initial View', ‘Assign Service 

Request'}. Note the absence of a valid terminal event indicating that the 

process is in-flight. 

2.5 Search Methodology 
 
 

This systematic review adopts a combination of the procedure proposed 

by Kitchenham (2004) and the enhanced procedure (see Brereton et al, 

2007). If a recommended step in the procedure is omitted, justification will 

be provided for the omission. 

2.5.1 Specify Research Questions 
 

Given the stated scope of the review, the following research questions are 

proposed: 

RQ1: Given an event log of post-mortem data, what are the current 

clustering-based remaining-time predictive process mining approaches? 

RQ2: How have these approaches been evaluated in the existing literature? 
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RQ3: What is the relative performance of these approaches? 
 

Brereton et al (2007) recommends completing a systematic pre-review map 

early in the process. It recommends that this step is performed rapidly for a 

large number of studies to determine whether or not previous reviews have 

adequately answered the proposed review question; in essence to confirm 

that the proposed systematic literature review is not duplicative. Besides, it 

should provide valuable insight into methodologies, tools and techniques 

researchers addressing similar questions have utilised. Finally, it 

recommends that the research questions are revisited at the conclusion to 

consider whether they require revision. 

 
 

Figure 2.2 - Systematic Pre-Review Mapping (SPRM) Process 
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Figure 2.2 diagrammatically details the Systematic Pre-Review Mapping 

(subsequently referred to as SPRM) process that was followed to determine 

the degree of overlap between existing studies and this review. Executing 

the search strategy (see Section 2.5.2) returned a set of papers which formed 

the input for the SPRM sub-process. Each paper in this list was assessed (by 

reviewing the title and abstract) to determine whether it was a systematic 

literature review (SLR) or included a significant literature review element. 

If it was determined that it did, the full article was reviewed to determine 

the inclusion and exclusion criteria (explicitly stated or implied). If no more 

than one inclusion criteria were identical, the paper was adjudged to be a 

‘minor overlap’. Where more than one inclusion criteria were identical, the 

paper was assessed as a ‘major overlap’. These studies were critically 

examined to ensure that this review does not duplicate their scope and adds 

a significant contribution to knowledge. Besides, these studies were 

reviewed for methodological tips and hints that could potentially be 

leveraged in this study. Where all the inclusion and exclusion criteria 

identical, then the systematic literature review is deemed to have an 

identical scope and is highly likely to be duplicative. 

Twenty-four papers were identified as SLRs or including a significant 

literature reviews element. Of these, five were adjudged to have an overlap, 

though none were identical in scope (see http://bit.ly/RelatedPapers for the 

list of overlap papers, inclusion/exclusion criteria and justification). 

However, as the write-up for the review report was being finalised, a paper 

with an identical scope that had been recently submitted but not yet 

published was identified (see Verenich et al., 2018) 

The review questions were revisited as suggested after completion of the 

SPRM. However, the decision was taken not to amend them as they were 

deemed to adequately capture the scope of the study. 

 

http://bit.ly/RelatedPapers


24  

2.5.2 Identify Relevant Research 
 

Though Brereton et al (2007) recommends searching through different 

electronic sources, the decision was made to use Google Scholar as the sole 

search tool as it aggregates papers from multiple databases “in all fields of 

research… all countries, and overall time periods” provided they meet 

essential inclusion criteria (see Teinemaa et al.,2017; Google Scholar Help, 

n.d.). The main advantage of using Google Scholar is that its search results 

include the grey literature, i.e., work in progress and unpublished papers. 

This decision is supported by Gusenbauer (2019) which compared twelve of 

the most commonly used academic search engines and bibliographic 

databases (ASEBDs) and concluded that "Google Scholar...is currently the 

most comprehensive academic search engine". Other studies show Google 

Scholar performs as well or outperforms popular academic search engines 

(see Anders & Evans, 2010; Freeman et al., 2009; Gehanno, Rollin & 

Darmoni, 2013). 

The initial search results returned papers from leading Computing Science 

databases such as Springer (269), IEEEXplore (115) and ACM (27) amongst 

others. 

A complex boolean search string was constructed as follows: “business 

process prediction” “business process” AND “prediction OR remaining time” 

OR “predictive process monitoring” OR “predictive business process 

monitoring” OR “business process prediction”. The decision was taken not 

to include “clustering” in the keywords to obtain an exhaustive list of 

predictive processing mining approaches which could be narrowed down to 

include the clustering-based approaches 

This phrase was iteratively developed and settled on as it captured an 

adequate number of relevant in-scope papers 

2.5.3 Study Retrieval 
 

The initial search was executed in January 2018 and returned a total of 989 
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papers. A further search was executed on October 2019 to identify any 

papers which may have been subsequently published. This last search 

returned   28 papers resulting in a cumulative total of 1,017 papers 

(see http://bit.ly/FullSearchResults for the full list of papers). An adequacy 

check was performed to confirm that the primary papers that the study 

authors were aware of were captured by the search. Besides, a sample of the 

papers retrieved was checked against in-scope papers in literature reviews 

with some degree of overlap 

 
As discussed in Section 2.5.1 , the initial step after executing the search was 

to complete the SPRM.  After removing the twenty-six literature review 

papers and twenty-three duplicates, the remaining 968 were reviewed as 

subsequently described. 

 
2.5.4 Study Selection 

 
Each of the 968 papers was reviewed based on the title and abstract against 

the study inclusion and exclusion criteria. 117 papers were adjudged in- 

scope based on this assessment. Full copies of these papers were obtained. 

A more detailed review of incorporating the conclusion was performed to 

identify potential primary papers. As a result of the detailed review, twenty- 

seven papers were identified as potential primary papers. A further review 

of these papers against the inclusion and exclusion criteria identified five 

primary papers (see http://bit.ly/PrimaryPaperSelection for selection 

justification). 

Inclusion Criteria 
 

 Clustering-Based Bucketing Approach 
 

 Remaining Time Prediction in the context of operational business 

processes 

 
 

http://bit.ly/FullSearchResults
http://bit.ly/PrimaryPaperSelection
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Exclusion Criteria 
 

 Not remaining time prediction 
 

 Not a clustering-based approach 
 

 Not take event log as input 
 

 Not propose a clustering-based remaining time predictive process 

monitoring approach 

 Not in English 
 

The justification for the selection of these criteria is self-evident based on 

the stated scope of the study. However, it is worth mentioning an inclusion 

criterion that was considered but rejected. Teinemaa et al. (2017) and 

Marquez-Chamorro, Resinas & Ruiz-Corts (2017) both included a citation 

threshold of 5 (or more) as an inclusion criterion. However, given that most 

of the papers in scope were completed in the last year or so, a significant risk 

exists that valuable paper may be excluded because of this threshold. 

Marquez-Chamorro, Resinas & Ruiz-Corts (2017) attempted to address this 

risk by relaxing this constraint for papers published between 2015 and 

2017; however, we took a decision not to include a citation threshold to 

eliminate this risk 

2.5.5 Select Primary Studies 
 

Kitchenham (2004) recommends classifying papers into primary and 

secondary papers. Individual studies which “contribute” to the review are 

classified as primary, whilst other literature or systematic reviews are 

deemed secondary studies. Teinemaa et al. (2017) on the other hand, 

applied the concept of primary and subsumed studies where “a study is 

considered subsumed if there exists a more recent and/or more extensive 

version of the study from the same authors, does not propose a substantial 

improvement / modification over a method that is documented in an earlier 

paper by other authors, or the main contribution of the paper is a case study 
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or a tool implementation, rather than the predictive process monitoring 

method itself” 

We decided to adopt the same approach as Kitchenham (2004) as there 

were several challenges with implementing the approach adopted in 

Teinemaa et al. (2017). For example, the judgment as to whether a paper’s 

contribution was a ‘substantial improvement/modification’ over an existing 

method is subjective and difficult to assess. Hence all 5 papers were retained 

and analysed. Figure 2.3 shows a PRISMA Flow Diagram which depicts the 

flow of information through the different phases of the systematic literature 

review. 
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Figure 2.3 – PRISMA Flow Diagram 
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2.5.6 Extract Required Data 

For all 5 primary papers, the following data fields were extracted: 

• ID (Concatenation of Primary author and publication year) 

• Full author list 
• Journal name 

• Publication year 

• Encoding 

• Abstraction 

• Required Input 

• Process Awareness (Y/N) 

• Method 

• Implementation (Y/N) 

See http://bit.ly/PrimaryPapers for the data collected on each paper in 

scope 

2.5.7 Synthesis data 
 

Kitchenham (2004) recommends meta-analysis on the extracted data 

utilising, amongst others, statistical methods. One of the critical problems 

with conducting this analysis as highlighted by Marquez-Chamorro, Resinas 

& Ruiz-Corts (2017), is the difficulty in comparing the performance of 

various predictive monitoring approaches as this depends on the data used, 

input features of algorithms, amongst others. Teinemaa et al. (2017) also 

calls out this problem and addresses it by implementing an evaluation tool 

against which it benchmarks eleven outcome-based prediction approaches. 

A similar tool for evaluating remaining-time clustering-based approaches 

was implemented in R. The results of the evaluation are detailed in Section 

2.7.2. 

2.5.8 Assess Study Quality 
 

Kitchenham (2004) also recommends assessing study quality (i.e., threats 

to validity). This is a two-step sub-process which involves developing 

http://bit.ly/PrimaryPapers
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suitable quality criteria and subsequently applying these to each primary 

paper. The main area of validity of crucial concern is external validity (or 

generalisability) which assesses how well the results of a study can be 

generalised. In this setting, it measures how well the predictive model will 

work on different data sets. As this assessment is best done experimentally, 

the external validity of papers in scope will be assessed and published in 

Section 2.9. 

Whilst it is possible (and desirable) to assess representation (or internal) 

validity (“the extent to which the research methodology, design, methods 

and techniques used to collect data actually measure what they are 

supposed to” (see Wallace, Jankowicz. & O’Farrell, 2016), by evaluating 

criteria such as the number of data sets utilised, the nature of the data 

(synthetic or real), sample size and whether data quality checks/cleansing 

performed, etc., most of the papers in scope do not report this information 

making it difficult to assess quality using these criteria. 

Section 2.9 discusses threats to the predictive process modelling validity in 

additional detail. 

2.6 Discussion 
 

As earlier mentioned in Section 2.5.4, the systematic review revealed five 

clustering-based remaining time predictive process monitoring papers in 

scope. Table 2.1 provides a list of the five approaches, which are 

subsequently described. 

An examination of the five papers reveals four clustering approaches 

utilised: centroid-based, hierarchical, distribution-based and association 

rules (see Table 2.1) 

 

 

 



31  

 

Table 2.1 - List of the clustering-based remaining time predictive process 

monitoring approaches 

Clustering 

Approach 

 
Short Title 

 
Reference 

 
 

 context-aware Folino, 

Guarascio & 

Pontieri (2012) 

Centroid-based   
 low-level logs Folino, 

Guarascio & 

Pontieri (2014a) 

Hierarchical fix-time Folino, 

Guarascio & 

Pontieri (2014b) 

Distribution- 

based 

cloud-based Cesario et al. 

(2016) 

Association 

Rules 

data-driven Bevacqua et al. 

(2014) 
 
 
 

Two papers, Folino, Guarascio & Pontieri (2012) and Folino, Guarascio & 

Pontieri (2014a) adopt the centroid-based approach. 

Folino, Guarascio & Pontieri (2012) was the pioneering study in clustering- 

based predictive process monitoring. It adopts an approach which assigns 

traces into clusters based on internal and external contextual factors; 

prediction functions are then built for each cluster using regression models. 
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The resulting predictive models could adapt to context changes. However, 

the approach omitted certain contextual factors (e.g., environmental 

factors) nor did it deal with concurrent behaviour effectively. 

Folino, Guarascio & Pontieri (2014a) constructs a PPM in 3 steps. Firstly, 

events are classified, assigning low-level events to event classes (activity 

type). Secondly, a trace classification function is applied to the event classes 

to distinguish process variants. Finally, a state-aware model predicts the 

remaining time for each process variant. This approach addresses the issue 

of overfitting models common to low-level event logs. 

Folino, Guarascio & Pontieri (2014b) utilises a hierarchical clustering 

approach. It implements a fix-time prediction model (FTPM) which 

enhances the semi-structured event logs into a process-oriented view via a 

“series of modular and flexible data transformations”. The traces in the 

refined event log are subsequently clustered, and a regression model 

applied to each cluster. Whilst this approach enables predictive models to 

be built from semi-structured event logs, it does not contribute a novel 

clustering-based predictive process monitoring approach. 

In the approach proposed by Cesario et al. (2016) which adopts a 

distribution-based clustering method, traces are clustered utilising a 

probabilistic clustering algorithm. A non-parametric regression function is 

applied to each cluster to predict the remaining time of process instance. 

This approach offers the advantage of scaling well over large logs to reduce 

the risk of obtaining “lowly accurate cluster predictors”. On the other hand, 

the approximate computation of trace clusters for efficiency reasons results 

in lower quality clusters. 

Finally, Bevacqua et al. (2014) utilises the association rules approach, 

which is not considered a 'traditional' clustering approach to identify 

patterns in the event log. It builds a PPM (predictive process model) using a 

two-phase approach. The first phase involves computing the structural 

patterns in the log, which summarize the behaviours of traces in log utilising 
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suitable pattern mining techniques such as association rules mining. In the 

second phase, these patterns are clustered, and a suitable regression 

method is applied to each cluster to predict the remaining time. The main 

advantage proffered by this approach is the elimination of the “burden of 

explicitly setting the abstraction level”. 

2.7 Benchmark 
 

2.7.1 Data Sets 
 

Five real-life event logs from the Business Process Intelligence Challenge 
(BPIC) were used for the experiments. The logs were from a variety of 
domains covering diverse processes. To manage memory requirements, a 
subset of each event log (except for BPIC 2012 where the entire log was 
used) was selected for the analysis. The number of events ranged from 
252190 to 335526. See Table 2.2 for a summary of the logs used for the 
experiments. 

As it lacked any numeric case variables (or features), BPIC 2014 was 
enhanced to pull in additional features from a supplementary log. Besides, 
basic feature engineering was performed to add required features such as 
trace length, elapsed time & remaining time to each log. 

Table 2.2 – Event Log Overview 
 

 
BPIC 2012 BPIC 2014 BPIC 2017 BPIC 2018 BPIC 2019 

# of events 262200 252190 281281 253071 335526 

# of cases 13087 23308 15755 4381 15269 

# of traces 3792 11180 3858 3390 4909 

# of distinct 

activities 

 
36 

 
38 

 
25 

 
155 

 
39 
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Mean trace 

length 

(days) 

 
 

20.04 

 
 

10.82 

 
 

17.85 

 
 

57.77 

 
 

21.97 

Mean 

throughput 

time (days) 

 
 

8.62 

 
 

7.13 

 
 

21.96 

 
 

333.63 

 
 

92.24 

Throughput 

time - SD 

(days) 

 
 

12.13 

 
 

23.13 

 
 

12.94 

 
 

156.32 

 
 

161.28 

 
Domain 

Financial 

services 

Financial 

services 

Financial 

services 

Public 

Admin 

Manufactu 

ring 

 
Process 

Loan 

Application 

IT Service 

Management 

Loan 

Application 

 
Payments 

 
P2P 

 
 
 

2.7.2 Experimental Setup 
 

Four of the five approaches were implemented in R. Folino, Guarascio & 

Pontieri (2014b) was not implemented as the approach is primarily 

concerned with transforming semi-structured event logs before modelling, 

which was not a requirement for any of the logs used for the experiment. 

 
For the centroid- and distribution-based clustering algorithms, for each 

event log, the numeric case variable with the highest relative importance for 

predicting the remaining time and the Elapsed Time were used as the basis 

for clustering. The approach for selecting the numeric case variable borrows 

from the “wrapper approach” for feature selection (see Alelyani, Tang & Liu, 

2013). For the association rule method, the cumulative activity variable was 

used as the clustering variable. 
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Each event log was split into test and training sets (80:20 split, respectively). 

The training set was used to build regression models for each cluster using 

the Random Forest algorithm which is suited to natively handle both feature 

interactions and non-linear relationships (see Boulesteix et al., 2018) 

 
As with the methodology used in Verenich et al., 2018, the training & test set 

were not temporally disjoint 

 
2.7.3 Accuracy 

 
A survey of remaining-time predictive process monitoring approaches (i.e., 

including non-clustering-based approaches) revealed a variety of measures 

that assesses how accurate or effective the approach performed compared 

to specific benchmarks. Table 2.3 shows the distribution of the assessment 

measures utilised by the papers. 

 
Table 2.3 – Accuracy Assessment Measures 

 

Assessment Measure Count of papers 

RSME/MAE 5 

MAE only 4 

MAPE/RMSPE 3 

RMSE/MAE/ MAPE 3 

MAE/MSE/RMSE 2 

RMSE only 2 

MAE/RSME 1 

MSE only 1 
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The most common assessment measure is RSME (Root Mean Square 

Error), which is the squared difference between the actual time and the 

predicted value. 

Let yi  be the actual completion time, 𝑦𝑦�𝑖𝑖 be the predicted completion time, and 

N be the number of cases. The RSME is defined as 
 

𝑅𝑅𝑆𝑆𝑆𝑆𝐸𝐸 =  1   ∑𝑁𝑁   (𝑦𝑦i − 𝑦𝑦�𝑖𝑖)2 (2.1) 
𝑁𝑁 𝑖𝑖=1   

 
The RMSE quantifies the error in the time units of the original 

measurements. As the RSME is susceptible to outliers, it is common to also 

report the MAE (Mean Absolute Error), which is known to be more robust 

(see Senderovich et al, 2017). 

 

Another popular measure in the literature MAPE would be skewed towards 

the end of a case where remaining time tends towards zero (see Teinemaa 

et al, 2018). As such, the decision was taken to use MAE as the sole measure 

of accuracy. This mirrors the evaluation approach adopted in similar studies 

(see Senderovich et al, 2017; Teinemaa et al, 2018). We adopt this evaluation 

approach through this research project. 

 

 The Mean Absolute Error (MAE) i s defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
 

𝑁𝑁 
𝑛𝑛 
𝑖𝑖=0 |𝑦𝑦𝑖𝑖 −𝑦𝑦�𝑖𝑖 | (2.2) 

 

 

∑ 
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2.7.4 Earliness 

 
Unlike the approach used by Teinemaa et al (2018), we used all the trace 

length for training the prediction models. As the log was truncated, the issue 

raised with regards to lengthy training time did not arise. The potential risk 

of model bias was mitigated by building multiple models (one for each 

cluster) with each cluster contained a mixture of traces of different lengths. 

However, as done by Teinemaa et al (2018), we measured both dimensions 

of accuracy & earliness 

2.7.5 Hyperparameter Optimisation 
 

In order to achieve the best performance from both the clustering and 

regression models, the relevant model hyperparameters were tuned. 

For the centroid-based clustering methods, the numbers of clusters, k, was 

estimated empirically from each dataset using the elbow method (see Xiong, 

& Li, 2013). For distribution-based clustering, the clustering model, which 

minimized the Bayesian information criterion (BIC), was selected. 

 
For the Random Forest regression model, the training data was split into 

multiple train-validate pairs and iterated over each fold & mtry parameter. 

The value of mtry , which yielded the lowest MAE, was determined and used 

to build the model for the training set. This approach enabled multiple 

iterations of model performance for the training dataset and cater to the 

natural variation in data (see Dua & Chowriappa, 2012). 

 
2.8 Results 

 
Table 2.4 details the global MAE and Standard Deviation (SD) for each 

dataset/algorithm pair. Figure 2.4 displays the average ranking of each 

algorithm over the datasets with associated error bars calculated as the 

standard deviation of the rankings. Over the 5 datasets, data-driven 

performs best followed by context-aware with cloud-based & low-level logs 

tied in joint 4th (though cloud-based has a greater error). It is also worth 
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noting that data-driven also has the second lowest error. 

Table 2.4 - Global MAE ± SD 
 

 BPIC 2012 BPIC 2014 BPIC 2017 BPIC 2018 BPIC 2019 

context-aware 5.71 ± 0.98 6.45 ± 7.99 4.33 ± 0.21 79.7 ± 53.1 27.5 ± 0.82 

low-level logs 6.92 ± 1.13 6.86 ± 13.7 4.37 ± 0.43 69.5 ± 71.5 34.7 ± 23.7 

cloud-based 9.59 ± 1.95 7.8 ± 3.2 4.52 ± 0.79 52.7 ± 31.5 47 ± 15.9 

data-driven 5.54 ± 1.79 4.46 ± 1.18 3.87 ± 0.70 54.5 ± 1.55 29.4 ± 9.27 

 

 

Figure 2.4 - Average Algorithm Ranking with associated error bars. 
 

Figures 2.5 shows the aggregated error values obtained by dividing the 

Global MAE and SD by the average throughput time for each event log. 

Normalising these values enables them to be directly comparable (see 

Verenich et al.,2018). data-driven has the lowest normalised MAE (39%), 

which varies between 0.16 & 0.64. The next best performing algorithm 

(context-aware) has a normalised MAE of 46% with a range of 0.19 & 0.92. 

 
This confirms the better performance of the data-driven algorithm. It is the 
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only algorithm that clustered traces based on activities (similar to state- 

based clustering), and this appears to indicate that this approach yields 

better results than clustering based on some other features in the dataset. 

 
The non-parametric Friedman test was performed on the ranked data to 

determine whether there was a significant difference between the 

algorithms. The conclusion was that there was insufficient evidence to reject 

the null hypothesis at 95% confidence level. 

 

(a) 

 
 
 
 
 
 
 

(b) 
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Figure 2.5– Average Normalised MAE (a) and standard deviation(b) 
 

With regards to earliness, Figure 2.6 displays the average MAE for each 

trace length up to trace length, l=50. The plot does not show a significant 

decrease in average MAE as the trace length increases. This is confirmed by 

the weak positive Pearson product-moment correlation coefficient (r= 

0.03) between these variables. This weak positive correlation appears to 

be consistent across algorithms though context-aware does display a weak 

negative correlation (see Table 2.5) 

 
Table 2.5 - Pearson product-moment correlation coefficient between trace 

length and MAE 

context-aware low-level logs cloud-based data-driven 

-0.043 0.084 0.057 0.009 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6 – Average MAE per Trace length 
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2.9 Threats to Validity 
 

As mentioned earlier in Section 2.5.8, external validity (or generalisability) 

assesses how well the results of a study can be generalised. In this setting, it 

measures how well the predictive model will work on different data sets. A 

threat to the validity of the study exists as the various algorithms were 

executed on a limited number of datasets. As such, different datasets may 

produce different results. However, efforts were made to mitigate this by 

maintaining consistency across the datasets used across algorithms. 

Besides, the software framework implemented to run the various 

experiments is available on request. 

 
The threat to representation validity was addressed by leveraging the 

methodology used by existing studies (e.g., Teinemaa et al, 2018) and 

thoroughly describing the data and experimental setup for evaluation by the 

research community. A different dimension of this threat was that, as only 

clustering algorithms that were implemented in existing papers were 

implemented, the results were non-exhaustive. In other words, a clustering 

algorithm that was not implemented (e.g., density-based clustering) may 

produce better results 

 
The final threat is the potential for selection bias in literature and 

subjectivity in applying the inclusion and exclusion criteria. This threat was 

mitigated by carefully following the methodology proposed by Brereton et 

al. (2007) and Kitchenham (2004) (see Section 2.5) and fully documenting 

the approach. Besides, the initial literature base is made available for review 

and assessment 

 
2.10 Summary 

 
This study has reviewed the predictive process mining literature to 

identify existing clustering-based remaining-time predictive process 
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mining approaches. It identified five approaches and performed a 

comparative analysis to compare and benchmark four of these approaches. 

It found that that the approach that clustered traces based on activities 

yielded the best result. 

 

We conclude this chapter by reflecting on the research choices we made on 

the selection of accuracy measures and exclusion criteria, among others. 

For example, we excluded outcome-based clustering approaches to keep 

the scope of the study manageable. In our opinion, this was the right choice 

as including outcome-based approaches in the assessment would have 

resulted in a less focused study and required the adoption of a mixture of 

remaining time and outcome-based accuracy measures (e.g., AUC, ROC, 

etc). However, we acknowledge that outcome-based predictive process 

monitoring studies have proposed several interesting clustering 

approaches. For example, the clustering approach proposed by Di 

Francescomarino et al (2015) clusters traces based on the string-edit 

distance between traces and subsequently predicts the outcome based on 

the payload of the last event in the trace. Such an approach could have 

been easily adapted to remaining-time predictions and in our opinion 

would likely have performed comparably with the best performing 

algorithm in our study (i.e., data driven) as they both cluster utilising the 

control flow perspective.  

 

In terms of selecting remaining time accuracy measures, we chose MAE 

and rejected both RMSE and MAPE for the reasons outlined in Section 

2.7.3.  However, it may be argued that reliance on a single measure can 

miss important features and a single measure may not be appropriate in 

every context.  For example, the RMSE may be more affected by outliers, 

but where data is very skewed a method with a lower RMSE will do a 

better job of minimising large errors in the tail. Thus, it may be argued that 

additional measures should be utilised to address these scenarios. 
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However, we believe that given the nature of the datasets in our study and 

the weaknesses inherent in both RMSE and MAPE, utilising only the MAE 

as we have done, was the correct choice. 

In the following chapter, we will examine the impact of social contextual 

factors on the accuracy of remaining-time predictive process monitoring. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
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CHAPTER THREE 

 
3 INVESTIGATING SOCIAL CONTEXTUAL FACTORS IN 

REMAINING-TIME PREDICTIVE PROCESS MONITORING – 

A SURVIVAL ANALYSIS APPROACH 

3.1 Synopsis 
 

Though social contextual factors are widely acknowledged to impact the 

way cases are handled, as yet there have been no studies which have 

investigated the impact of social contextual features in the predictive 

process monitoring framework. These factors encompass the way humans 

and automated agents interact within a particular organisation to execute 

process-related activities. This chapter seeks to address this problem by 

investigating the impact of social contextual features in the predictive 

process monitoring framework utilising a survival analysis approach. 

 
We propose an approach to censor an event log and build a survival function 

utilising the Weibull model, which enables us to explore the impact of social 

contextual factors as covariates. Besides, we propose an approach to predict 

the remaining time of an in-flight process instance by using the survival 

function to estimate the throughput time for each trace, which is then used 

with the elapsed time to predict the remaining time for the trace. The 

proposed approach is benchmarked against existing approaches using five 

real-life event logs and outperforms these approaches 

 
This chapter formed the basis of a journal paper published in Algorithms 

 

3.2 Introduction 
 

Earlier in Section 1.2, we highlighted the importance of contextual factors 

in predictive process monitoring and identified four pertinent contextual 

types, namely: case, process, social and external context 

https://www.mdpi.com/1999-4893/13/11/267/htm
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Figure 3.1 shows the relationship between the various contextual types. 
 

 
 

Figure 3.1 - Contextual Factors and Relationship (Adapted from van der 

Aalst, 2016:319) 

 
To highlight the importance of social contextual factors, van der Aalst 

(2016:320) argues that “activities are executed by people that operate in a 

social network. Friction between individuals may delay process instance, 

and the speed at which people work may vary.” It further adds that “process 

mining techniques tend to neglect the social context even though it is clear 

that this context directly impacts the way cases are handled”. The same 

argument could be made about process monitoring. This study aims to 

address that gap by empirically investigating the impact of social contextual 

factors in the predictive process monitoring workflow. 

 
To date, numerous approaches have been used to predict process remaining 

time, including Deep Learning (see Tax et al, 2017), Annotated Transition 

Systems (see Rogge-Solti & Weske, 2013) and Queuing Theory (see 

Bevacqua et al., 2014), among others. This study uses the survival analysis 

approach, also referred to as “time-to-event” analysis. This approach dates 

back to work by John Graunt published in his 1662 book ‘Natural and 

Political Observations upon the Bill of Mortality’ which suggested that the 

case context

process context

e.g. # of cases in progress

social context

e.g. social network

external context

e.g. climate, weather

e.g. order type
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time of death should be considered an event that deserved systematic study 

(Akritas, 2004). While the majority of applications of the approach have 

been in the healthcare research field, by replacing the event of “death” with 

other events, the approach has been successfully applied in others fields 

such as Human Resources Management to determine the time-to-employee- 

attrition (see Somers, 1996), Marketing to model time-to-customer-churn 

(see Larivière & Van den Poel, 2004) and Credit Risk Management to 

determine the time-to-default (see Dirick, Claeskens & Baesens, 2017) 

However, as yet, time-to-event methods have not been utilised in predictive 

process monitoring. This study intends to address that gap by proposing an 

approach that uses survival analysis to predict the remaining time for 

process instances from several event logs. The primary advantage survival 

analysis offers over other approaches is that it can deal well with censored 

observations, i.e., observations where time to the event of interest is 

unavailable. This contrasts with standard regression approaches which tend 

to produce results that are neither accurate nor reliable if a high percentage 

of cases are incomplete. Besides, survival analysis approaches can handle 

covariates well. We propose a method for censoring event log for use in 

survival analysis by treating the completion of a process instance as the 

event of interest. 

 
The remainder of the chapter is structured as follows: Section 3.3 details 

preceding studies which have provided the motivation and methodological 

basis for this study. Section 3.4 defines vital terms built on throughout the 

paper. Section 3.5 describes the proposed approach, while Section 3.6 

details the evaluation results. The penultimate section describes the 

threats to the validity of the study while the final section summarises the 

findings. 
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3.3 Related Work 
 

A review of the literature reveals three primary predictive process 

monitoring approaches: Model-based approaches (see Rogge-Solti & 

Weske, 2013; Verenich et al., 2017), sequence-to-feature encoding (STEP) 

approaches (see Cesario et al., 2016; Folino, Guarascio & Pontieri, 2012; 

Senderovich et al., 2017) and simulation-based approaches (see Rozinat et 

al.,2009; Veldhoen, 2011). 

 
STEP approaches encode event log into feature-outcome pairs using a 

variety of techniques such as last state, aggregation, index-based or tensor 

encoding (see Senderovich et al., 2017; Verenich et al., 2017). However, it is 

worth mentioning a subset of STEP approaches that have become popular 

in recent years. i.e., neural-network-based approaches (see Tax et al, 2017; 

Breuker et al, 2016; Evermann, Rehse, and Fettke, 2017; Pasquadibisceglie 

et al, 2019). These state-of-the-art models make it relatively easy to include 

additional features into the prediction model. While most of these 

approaches focus on the next activity as the prediction target, the approach 

proposed by Tax et al, 2017 utilises an LSTM (a particular type of a 

Recurrent Neural Network) to iteratively predict the remaining activities till 

case completion and associated timestamps. This enables estimation of the 

remaining-time of the process instance. 

 
With regards to social contextual factors, van der Aalst, Reijers & Song 

(2005) proposed an approach for discovering social networks from an 

event log and several metrics based on potential causality, joint 

cases/activities and special event types. They also apply these concepts to 

a real-life event log. In Song & van der Aalst (2008), the authors build on 

these and extend the approach to discover organisational models from 

event logs. In Nakatumba & van der Aalst (2009), the authors explored the 

relationship between the effect of workload and service time utilising 

regression analysis on historical event log data. In Everett & Borgatti (1999),  
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the authors extend the standard network centrality measures (degree, 

closeness and betweenness centrality) which had hitherto been applied to 

individuals to groups and classes as well. 

 
With regards to survival analysis, Zhang & Thomas (2012) compares 

approaches that utilise linear regression and survival analysis to model loan 

recovery rate and amounts. The authors propose an approach to determine 

the optimal quantile for taking a point estimate from the survival curve. In 

Dirick, Claeskens & Baesens (2017), the authors extend that approach to 

predict the time-to-default for credit data sets from Belgian and UK financial 

institutions. 

 
In this chapter, we utilise the STEP approach, together with a survival 

analysis technique to build a predictive process monitoring framework 

utilising the Weibull model. 

 
3.4 Background 

 
3.4.1 Definitions 

 
3.4.1.1 Event, Traces and Event Logs 

 
Several key terms to be built on throughout this chapter are formally 

defined. We build on the definitions from Chapter 2 (see 2.4.1) and adopt 

the standard notation defined in van der Aalst (2016:131) 

 
Definition 3.1 Censored traces. Let C represent the set of all possible 

traces, Z ⊆ 𝐴𝐴 represent the set of valid terminal activity labels and 

#censored(σ) represent a binary variable indicating whether a trace is 

censored or not respectively. A function attrcensored∈ C → {1,0} which 

assigns the appropriate value to a trace is defined as follows: 

#censored(σi) = �
1, #activity_label(e𝑛𝑛) ∈ 𝑍𝑍
0,  #activity_label(e𝑛𝑛) ∉ 𝑍𝑍                     (3.1)
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3.4.1.2 Survival Functions and Social Networks 
 

Definition 3.2 Survival Function. Let L represent an event log with a set of 

trace cycle times {τcyc.1…. τcyc.n}, a trace σi ∈ 𝐿𝐿 with cycle time τi.cyc and a 

random time, tr, the survival function S(t) = P (τi.cyc > tr). It gives the 

probability that the random time, tr exceeds the trace cycle time 

 
Weibull Model: Let T=t denote the time-to-completion of a trace 𝜎𝜎i, f(t) the 

probability density function of T, the probability density function of the 

Weibull model is given by 

 
f(t) = 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼−1 𝑒𝑒−𝜆𝜆𝜆𝜆𝛼𝛼 (3.2) 

 
where 𝜆𝜆 > 0 represents the trace completion rate parameter, and 𝛼𝛼 > 0 

represents the scale or shape parameter 

 
Definition 3.3 Handover of work. Let P represent the set of performers, E 

represents a set of directed edges and 𝜙𝜙: 𝐸𝐸 → 𝑉𝑉2 represent an incidence 

function mapping edges to vertices. 

 
A handover-of-work graph is a directed multigraph permitting loops G =(P, 

E,𝜙𝜙). For our study, the incidence function maps the handover of work 

from one performer to another. A handover of work from performer a to 

performer b occurs if there are subsequent events (ei and ei+1) and a 

completes #activity(ei), while b completes #activity(ei+1). Note that the 

incidence function permits a performer to hand over work to themself. i.e. 

complete #activity (ei) and (ei+1) 

 
Definition 3.4 Group Centrality Measures. Let L represent an event log, P 

represents the set of performers and G represent a handover of work 

graph derived from the log. For a trace σi ∈ 𝐿𝐿, X= {# performer (e1)…..# 

performer (en)}. This denotes the subset of performers who completed the 

activities in a trace. 
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Group Degree Centrality: The Group Degree Centrality of X is defined as 

follows: 

 
GD(X) = |𝑣𝑣: (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸 ⋀ 𝑢𝑢 ∈ 𝑋𝑋 ⋀𝑣𝑣 ∉ 𝑃𝑃|, 𝑋𝑋 ⊆ 𝑃𝑃 (3.3) 

 
If the group is defined as the subset of performers who worked on the trace, 

the group degree centrality specifies the number of non-group members 

that are connected to group members. 

 
Group Between Centrality: Let gu,v represent the number of geodesics 

connecting vertices u to v and gu,v(X) represent the number of geodesics 

between u and v passing through some vertex of X. The group betweenness 

centrality of X is defined as follows: 

 
GB(X) = ∑ 𝑔𝑔𝑢𝑢,𝜈𝜈(𝑋𝑋), u,v ∉ 𝑋𝑋 (3.4) 

{𝑢𝑢<𝑣𝑣} 𝑔𝑔𝑢𝑢,𝜈𝜈 

 

This measure shows “the proportion of geodesics connecting pairs of non- 

group members that pass through the group” (see Everett & Borgatti, 1999). 

 
Group Closeness Centrality: The Group Closeness Centrality is defined as 

follows: 
 

GC(X) = |𝑃𝑃∖𝑋𝑋| 
∑𝑣𝑣∈𝑃𝑃\𝑋𝑋 𝑑𝑑𝑑𝑑,𝑣𝑣 

, 𝑋𝑋 ⊆ 𝑃𝑃 (3.5) 

 

where 𝑑𝑑𝑑𝑑𝑣𝑣 denotes the distance between X and a vertex v defined as 𝑑𝑑𝑑𝑑𝑣𝑣 = 

𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢 ∈𝑋𝑋 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢,𝑣𝑣 where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢,𝑣𝑣 is the shortest path between u and v. This 

measures how close group members are to other non-group members 

 
Group Eigenvector Centrality: Let X* represent a super vertex such 

N(X*)=N(x1)ꓴN(x2)…ꓴN(xn) where N() denotes the neighbourhood of the 

vertex and xi denotes the members of the set X. The group eigenvector 

centrality is defined as follows: 
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GE(X*) = 1 ∑ 𝑥𝑥 (3.6) 
𝜆𝜆 𝑗𝑗∈𝑚𝑚(𝑖𝑖) 

 
where M (i) is a set of neighbours of X* and λ is a constant 

 
This is a measure of how connected the members of the group are to 

influential vertices outside the group. 

 
To illustrate the terms above, we extend the example from Section 2.4.1 

considering a process for reporting and remediating defects to public goods, 

e.g., potholes, streetlight outages. The set of valid activity labels is as follows: 

{‘Create Service Request’, ‘Initial Review’, ‘Assign Service Request’, ‘Assign 

Crew’, ‘Contact Citizen’, ‘Put Service Request On Hold’, ‘Close Service 

Request’}. The set of valid terminal activity labels for the process consists of 

the sole activity: {‘Close Service Request’}. An example of a full trace for a 

process instance would be {‘Create Service Request’, ‘Review’, ‘Assign 

Service Request’, ‘Assign Crew’, ‘Contact Citizen’, ‘Close Service Request’}. 

This case would be considered ‘non-censored’ as the terminal event for the 

case was recorded in the event log. An example of a partial trace for a 

process instance would be {‘Create Service Request’, ‘Initial View’, ‘Assign 

Service Request’}. This case would be considered ‘censored’ as the terminal 

event is missing from the trace. Note that, while this case is censored 

because it is in-flight, the same is true of cases that are abandoned, cancelled, 

withdrawn or fail to complete for any reason. 

 

Figure 3.2 – Group Centrality Measures 

𝑗𝑗 
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To illustrate the group centrality measures, consider the handover-of-

work graph depicted in Figure 3.2. The shaded performers (Resource3,4,5 

and 6) represent the group of performers (hereafter referred to as the 

group) that executed activities on a selected trace σ, whilst the non-shaded 

performers did not work on the case.  

 

The group degree centrality for the group is two as there are two non-

group performers (Resource2 & 7) connected to the group. Note that, 

though there are two edges between Resource2 and the group, multiple 

edges are counted once. 

 

As mentioned in Definition 3.4, the group betweenness centrality 

measures the proportion of geodesics connecting pairs of non-group 

members that pass through the group. The binary matrix in Table 3.1 

displays 1 where the geodesic between the pair of non-group members 

passes through the group and 0 where it doesn’t.   

 
Table 3.1 – Geodesics passing through group of trace performers 

 
 Resource1 Resource2 Resource7 Resource8 
Resource1 - 0 1 1 
Resource2 0 - 1 1 
Resource7 1 1 - 0 
Resource8 1 1 0 - 
 
The group betweenness centrality measure for the trace is 0.66 (8/12). 
 

The group closeness centrality for the trace is 6, i.e., the sum of distances 

from the group to all non-group performers.  Table 3.1 displays these 

distances. Note that, whilst there are different options for calculating these 

distances (e.g., minimum, maximum or mean distance), we utilise the 

minimum distance for our calculation. 
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Table 3.2 – Distance to Group of Non-Performers 
 

Non-Group 
Performer 

Distance to 
Group 

Resource1 2 
Resource2 1 
Resource7 1 
Resource8 2 
Σ Distance 6 

 
To calculate the group eigenvector centrality, we treat the group as a large 

pseudonode, produce an adjacency matrix (see Table 3.3) and find the 

eigenvalues from which we calculate the eigenvector centrality.  

 

Table 3.3 – Adjacency Matrix for Performers 
 
  
 
 
 
 
 
 
The set of calculated eigenvectors are {√5−1

2
,-1, −√5−1

2
, √5∓1

2
,1}, giving an 

eigenvector value of 1 for the group. 

 
3.5 Approach 

 
3.5.1 Overview 

 
Figure 3.3 provides an overview of the proposed approach used in building 

and evaluating the predictive model (see Section 3.5.3). The initial step is 

the determination of the set of terminal activity labels which indicate the 

‘successful’ completion of a trace. This set serves as input into the censoring 

function, which outputs a log where each trace is deemed censored or 

 Resource1 Resource2 Resource7 Resource8 Group 
Resource1 0 1 0 0 0 
Resource2 1 0 0 0 1 
Resource7 0 0 0 1 1 
Resource8 0 1 1 0 0 
Group 0 0 1 0 0 
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otherwise. We subsequently encode the log traces and build a survival 

model using the censored log. We recommend that these steps are 

performed offline to improve runtime performance. 

 
Subsequently, in the offline phase, the remaining time for in-flight cases are 

predicted using the survival model. 
 
 

 
 

Figure 3.3 - Overview of the proposed approach 
 

3.5.2 Pre-Processing 
 

To determine the set of terminal activity labels, we examined the process 

description and trace attributes of the respective datasets. However, in 

practice, this should be determined in conjunction with process subject 

matter experts. We utilised a function which examines whether the activity 

label associated with the terminal event for each trace, en (see Definition 2.2) 

is present within the set of terminal activity labels. If it is not, the trace is 

considered censored; otherwise, it is. 

Censored event log

Encode tracesTraining
data

Build survival
function

Encode trace
Compute the

remaining time

Determine set
of terminal
activities

Execute
censoring
function

Test
data

Predictive Monitoring: Training Phase

Predictive Monitoring: Test Phase

Online Phase

Offline Phase
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3.5.3 Predictive Monitoring 
 

The approach consists of two phases: offline and online (see Figure 3.3). In 

the offline phase, the traces in the event log are encoded. We utilise a novel 

encoding approach, where we compute the grouped centrality measures for 

each trace (see Definition 3.4) using all the performers (#performer(e1)…. # 

performer(en)) associated with that trace as well as the start and end event 

activity labels. While we adopt that approach to explore the impact of social 

contextual factors on process cycle time, we acknowledge that other 

encoding approaches, such as index-based encoding which is “lossless” 

(Verenich et al.,2017), could also be equally adopted. Our approach is in 

effect a combination of aggregation and last state encoding (Verenich et 

al.,2018) where the aggregation function computes the group degree 

(g_deg), betweenness(g_bet), closeness (g_clo) and eigenvalue (g_eig) 

centrality for each trace based on the set of performers who executed the 

events in that trace. This approach enables us to treat the performers who 

execute the activities in a trace as a team and builds on the approach in “the 

team effectiveness literature where researchers have used several internal 

team composition variables to predict performance” (Everett & Borgatti, 

1999). Formally, given a trace σi = {e1…en} σ ∈ ε∗ executed by a set of 

performers P, σi is transformed into a feature set {GC(σi), #activity(e1), 

#activity(en), #censored(σi)} → τrem (σi) where GC(σi) = { e'1…e’n} ∈ ε∗ 

where, for 1≤ i ≤ n, e’1 = ei  ⊙ (GCP,u) with u = {g_deg e’ ⋴ prefix (e) ⊕ {e} e(P), 

g_bet e’ ⋴ prefix (e) ⊕ {e} e(P), g_clo e’ ⋴ prefix (e) ⊕ {e} e(P), g_eig e’ ⋴ prefix (e) ⊕ {e} e(P)} 

(De Leoni,xxx) 

Table 3.4 displays the encoding for a couple of illustrative traces as 

described in section 3.4 

 

 



56  

Table 3.4 – Illustrative Trace Encoding 

 

 

 

W

e

  

We utilise the parametric Weibull model to build the survival model. Even 

though it requires that certain assumptions regarding the distribution of 

the process cycle time are satisfied, this method offers several unique 

benefits in that it is “simultaneously both proportional and accelerated so 

that both relative event rates and relative extension in” process cycle “time 

can be estimated” (see Carroll, 2003) 

 
In the online phase, the in-flight traces are encoded utilising the same 

approach as in the online phase. The survival model built in the offline phase 

is used to estimate the total cycle time for the trace, and the remaining time 

for the trace is computed by subtracting the elapsed time from the estimated 

cycle time. 

 

group 
degree 

group 
betweenness 

group 
closeness 

group 
eigenvector 

event_1 event_n censored remaining 
time 
(days) 

σm 2 0.66 6 1 Create 
Service 

Request’ 

Contact 
Citizen’ 

0 6.35 

. 
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. 
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. 
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. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
σn 1 0.1 3 0.4 Create 

Service 
Request’ 

Initial 
View’ 

1 5.73 
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Input: An event log L over some trace universe σ with the associated 
feature elapsed time τela, cycle time τcyc, a target measure remaining 
time τrem, a set of terminal activity labels (T), an estimation quantile q 
and a survival analysis (SURV) method 

 
Output: A Survival Analysis predictive model (SA-PM) for L 

 
Method: Perform the following steps: 

i. Associate a binary variable #censored(σ) with each trace σ ϵ L using 
#activity(en), T (see definition 3) 

ii. Encode each trace using a suitable encoding function 
iii. Induce a survival function sa-pm out of L using method SURV 

{#censored(σi), # cycle time(σi) …..# attributen(σi)} as input value 
iv. Let σ1… σn denote each trace 
v. For each σi do 

a. Estimate the cycle time τi.cyc_pred for each trace from sa-pm 
utilising q 

b. Estimate the remaining time for each trace τi.rem_pred 

τi.cyc_pred - τela 

: 

vi. 
vii. 

End 
Return c {τrem_pred1……. τrem_predn } 

Algorithm 3.1 details the survival analysis predictive modelling algorithm 

 
Algorithm 3.1 - Survival Algorithm 

 

3.6 Evaluation 
 

In this section, we perform two sets of experiments to address the research 

questions of interest in this study. In the first set of experiments, we evaluate 

the impact of social contextual features on the cycle time of process traces. 

In the second set of experiments, we evaluate the proposed survival analysis 

predictive monitoring approach against similar predictive monitoring 

approaches. Specifically, we seek to address the following research 

questions: 

 
RQ4: What is the relationship between social contextual factors and process 

completion time? 
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RQ5: How does the survival analysis predictive process monitoring 

approach compare with existing approaches? 

 
3.6.1 Datasets 

 
Five real-life event logs from the Business Process Intelligence Challenge 

(BPIC) were used for the experiments as follows: BPIC 12 (van Dongen, 

2012), BPIC 14 (van Dongen, 2014), BPIC 15(3) (van Dongen, 2015), BPIC 

17 (van Dongen, 2017) and BPIC 18 (van Dongen & Borchert, 2018). The 

logs were from a variety of domains covering diverse processes. To manage 

memory requirements, a subset of each event log (except for BPIC 12 and 

15(3) where the entire log was used) was selected for the analysis. The 

event logs were selected on the basis that information about the performer 

(i.e. the individual resource or team) that executed each event (#performer 

(e)) is present in the log. This enabled us to create the social networks 

required to address the research questions. For example, BPIC 20 (van 

Dongen, 2020) is not considered suitable as the performer attribute is 

abstracted to a high-level role (e.g., Staff member). Besides, basic feature 

engineering was performed to add required features such as elapsed time 

and remaining time to each log. 

 
See Table 3.5 for a summary of the logs used for the experiments. 

 
It is worth highlighting that unlike the other logs, BPIC 14 had resources 

information at the team levels, so the handover of work was computed at a 

team rather than at an individual level. 
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Table 3.5 - Event Log Overview 
 

 BPIC 18 BPIC 17 BPIC 15(3) BPIC 14 BPIC 12 

# of events 267830 233928 59681 277577 262200 

# of cases 3285 9453 1409 13985 13087 

# of traces 3277 5211 1350 13942 4366 

# of distinct 

activities 

 
141 

 
26 

 
277 

 
39 

 
24 

Mean trace 

length 

 
81.53 

 
24.75 

 
42.36 

 
19.85 

 
20.04 

Mean 

throughput 

time (days) 

 

580.63 

 

24.11 

 

62.23 

 

12.93 

 

8.62 

Throughput 

time SD 

(days) 

 

580.62 

 

14.893 

 

97.64 

 

27.94 

 

12.13 

Domain Public Admin Financial 
services Public Admin Financial 

services 
Financial 
services 

 
 

3.6.2 Experimental Setup 
 

As input into both sets of experiments, we created a social network from the 

handover of work from one performer to the next in each trace. We 

subsequently created an adjacency matrix and computed four grouped 

centrality measures – degree, betweenness, eigenvalue and closeness based 

on the approach recommended in Everett & Borgatti (1999). In the initial 

sets of experiments, we performed some exploratory analysis by assigning 

each trace to a cluster using its four grouped centrality score. Before 
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clustering the grouped centrality scores using a centroid-based clustering 

method (k-means), we empirically estimated the optimal numbers of 

clusters, k, from each dataset using the elbow method. We subsequently 

computed a survival curve for each cluster to visually determine how the 

grouped centrality scores impact the process cycle time. We subsequently 

created a case network to determine the relationship between these factors 

and case cycle times. We concluded by exploring the relationship between 

each group centrality measure and the cycle time. 

 
For the second set of experiments, we implemented a survival analysis 

predictive monitoring approach named survival in R (as described in section 

3.4) which enables evaluation of this approach vis-à-vis similar existing 

approaches. The code and data for the experiments are located in the GitHub 

repository: https://github.com/etioro/SocialNetworks.git. With regards to 

selecting the set of approaches to evaluate against, we considered only 

testing against the set of clustering-based approaches identified in chapter 

2. However, we realised that this would limit the generalisability of the 

results as clustering-based approaches represent a subset of predictive 

process monitoring approaches. As such, we decided to widen the set of 

approaches included in the evaluation set. We evaluated the survival 

analysis approach against two clustering-based remaining-time approaches 

identified in the literature (see Cesario et al., 2016 and Folino, Guarascio & 

Pontieri, 2012) and a couple of methods which used a zero prefix-

bucketing combined with a gradient boosting machine (gbm) and 

multilayer perceptron (mlp) neural network regressors respectively to 

predict the remaining time for each trace (Verenich et al., 2018). The same 

set of features were used to build all and evaluate all the models in the 

experiment. 

 
We encoded the traces as described in section 3.4. Though this encoding 

is ‘lossy’, we adopt this approach as it enables us to capture the social 

contextual factors associated with each trace and adequately address the 

https://github.com/etioro/SocialNetworks.git
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research questions. 

 
We split each event log into test and training sets (75:25 split, respectively),   

used the training set to build the survival function and the test set for making 

remaining-time predictions which are subsequently evaluated. As the 

survival curve gives a distribution of cycle time estimates, it was necessary 

to determine an optimal quantile for estimating the cycle time. We explored 

the approach suggested by Dirick, Claeskens & Baesens (2017) and Zhang & 

Thomas (2012) for selecting this quantile. This entails fitting a survival 

curve to the training set and determining which quantile minimised the MAE 

and RSME. This quantile is used to estimate the cycle time in the test set. 

However, we found that compared to the median, this method performed 

poorly; hence we used the median as the optimal quantile for estimating the 

cycle time. 

 
As with the methodology used in Verenich et al. (2018), the training & test 

set were not temporally disjoint. 

 
As discussed in Section 2.7.3, we chose to utilise the Mean Absolute Error 

(MAE) to evaluate the accuracy as other measures such as the Root Mean 

Square Error (RSME) are susceptible to outliers and Mean Percentage Error 

(MAPE) would be skewed towards the end of a case where remaining time 

tends towards zero. We filter the test set to use only non-censored traces to 

evaluate the MAE, as these are completed traces, whereas censored traces 

were abandoned or in-flight as at the time of log extraction. 

 
3.7 Results 

 
In the first set of experiments, to explore which of the group centrality 

factors have the most impact on the cycle, we created a network that visually 

illustrates the effect high and low values of the grouped centrality measures 

on case cycle times (see Figures 3.4 a,b,c and d below). Each node represents 

a case, with cases which share common performers connected and the edges 
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weighted by the number of shared performers. The size of the nodes is 

proportional to the relevant grouped centrality measure. The network 

appears to show an inverse relationship between cycle time and group 

degree and eigenvector centrality while the opposite is the case with the 

group closeness and betweenness centrality measures 

  
(a) (b) 

  
(c) (d) 

 
 

Figure 3.4 (a) BPIC 14 Group Between Centrality Graph; (b) BPIC 14 Group 

Closeness Centrality Graph; (c) BPIC 14 Group Degree Centrality Graph; (d) 

BPIC 14 Group Eigenvalue Centrality Graph. 
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We explore these apparent relationships between the group centrality 

measures and trace cycle times further. Table 3.6 shows the Spearman Rank 

Correlation between each group centrality measure and the trace cycle time 

(with all the values statistically significant at the 95% confidence level in 

bold font). This test was selected to determine the strength and direction of 

the monotonic relationship between these measures. The group closeness 

centrality is the most strongly correlated measure to the trace cycle time, 

followed by the group eigenvector centrality. The group betweenness and 

closeness centrality were generally positively correlated while the group 

eigenvector centrality was generally negatively correlated. 

We delve into the team effectiveness literature to sheds some light on these 

results. As Everett & Borgatti (1999) posits, “maintaining strong ties with 

people outside the team is an important determinant of team success”. We 

argue that these results may have implications for team setup as they shed 

light on the nature of these “ties”. For example, many organisations create 

specialised cells or SWAT teams to handle certain types of cases e.g., 

complex cases. As a result, these teams could become isolated from other 

process performers which increases their probability of “failing” (see 

Ancona, 1990). The results would seem to imply that connecting the teams 

to other influential performers in the organisation (high eigenvector 

centrality) will result in shorter cycle times, perhaps because of the ability of 

these performers to resolve issues relatively quickly. This would suggest 

that where such cells exist, it would be desirable to work cases with 

performers outside their cell periodically. Intuitively this will increase the 

sharing of knowledge and experience across the organisation. 

 
On the other hand, lower group betweenness across groups appears linked 

to lower cycle times. This measure is a proxy for how much the group is 

becoming a bottleneck across the organisation; perhaps because the 

performers are perceived as possessing certain desirable traits, e.g., 

viewed as experts or dependable. Lower group closeness centrality (a 

measure of the distance of the group to other performers) is also 
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correlated with lower processing time as it indicates greater connectedness 

between performers. 

Table 3.6 - Spearman Rank Correlation between group centrality measure 

and trace cycle time 

 GB GC GE GD 

BPIC 18 -0.058 -0.014 0.248 0.107 

BPIC 17 0.063 0.176 0.063 0.093 

BPIC 15(3) 0.289 0.414 -0.208 -0.045 

BPIC 14 0.078 0.119 -0.183 -0.171 

BPIC 12 0.877 0.848 -0.475 -0.003 
 
 

 
 

Progressing to the second set of experiments, Table 3.7 details the Global 

MAE and Standard Deviation (SD) for each dataset/algorithm pair. The 

performance of the algorithms is visualised in Figure 3.5, which displays 

the average ranking of each algorithm over the datasets with associated 

error bars, calculated as the standard deviation of the rankings. Over the 

five datasets, the survival analysis approach outperforms all the other 

approaches and has the lowest error. 
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Table 3.7 - Global Mean Average Error ± Standard Deviation 
 
 
 

  

Survival 

 

MLP 

 

GBM 

Cloud- 

based 

Context- 

aware 

 

BPIC 18 

166.27 ± 

46.6 

187.37±190. 

62 

76.09 ± 

84.18 

217.27±162. 

30 

212.34±124. 

37 

 

BPIC 17 

11.158 ± 

2.03 

12.11 ± 

12.67 

10.83 ± 9.54 12.18 ± 

11.53 

12.77 ± 

11.23 

 

BPIC 15(3) 

23.91 ± 6.12 27.88 ± 

40.91 

29.07±33.63 42.26 ± 

52.27 

57.12 ± 

59.31 

 

BPIC 14 

19.19 ± 11.6 20.78 ± 

41.39 

23.79 ± 

36.37 

26.03 ± 

27.99 

25.53 ± 

31.84 

BPIC 12 5.83 ± 1.95 8.24 ± 8.72 5.59 ± 5.27 9.55 ± 8.49 9.86 ± 9.12 
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Figure 3.5 - Average Algorithm Ranking with associated error bars. 
 

Figures 3.6 and 3.7 show the aggregated error values obtained by dividing 

the Global MAE and SD by the average throughput time for each event log. 

Normalising these values enables them to be directly comparable (see 

Verenich et al., 2018). The survival approach has the lowest normalised 

mean and median MAE (0.659 and 0.463, respectively) further confirmation 

of its superior performance. 

 
As recommended by Demsar (2006), the non-parametric Friedman test was 

performed on the ranked data to determine whether there was a significant 

difference between the algorithms. The test results indicate a statistically 

significant difference between the various algorithms at the 95% confidence 

level (p=0.008687). To determine which algorithms differ from the other, 

we utilise the Quade post-hoc test to perform a pairwise comparison 
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between the various algorithms. Table 3.8 shows the results of the pairwise 

comparisons (with all the values statistically significant at the 95% 

confidence level in bold font). The results indicate that the survival methods 

significantly outperformed all the existing methods except for gbm (see 

results in bold). To determine the explanation for this, we observe that event 

logs typically contain a portion of incomplete traces which are filtered out 

by existing approaches as they do not contribute any information towards 

accurately predicting the remaining time of the trace. Intuition supports this 

approach as we cannot determine whether an incomplete trace will finish in 

the next hour, day, or year. 

 
Verenich et al (2018) provides a detailed discussion of generative and 

discriminative approaches for process monitoring. Discriminative 

approaches infer a conditional probability P(Y|X) from the training data set 

where X = (𝜎𝜎1, 𝜎𝜎2….𝜎𝜎𝑛𝑛} denotes the set of feature variables and Y={ τrem_pred1, 

τrem_pred2….. τrem_predn} represents the prediction target. The resulting 

probability distribution is used to make predictions for the test set. 

However, when there is a significant proportion of incomplete traces in the 

training data, this approach is not useful as the target (Y). i.e., the 

remaining time for the trace, is unknown. This is the reason why these 

traces are typically removed from the training set. However, generative 

approaches, such as the survival analysis approach proposed, calculate a 

joint distribution P(X,Y) which is then utilised to derive the conditional 

probability P(Y|X). This approach can generate synthetic values of X by 

sampling from the joint distribution. As a result, this approach performs 

better when an event log has a significant proportion of incomplete trace. 

 
In our experimental data, the percentage of incomplete traces ranged from 

39% (BPIC 14) to 69% (BPIC 12). However, the survival analysis approach 

enables us to “account for [incomplete traces (i.e., censored data)] in the 

analysis” as this approach can extract information from them (Linden & 

Yarnold, 2017). This is the main advantage of the approach we propose as 
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it delivers better accuracy for event logs with a significant proportion of 

incomplete traces 

 
Table 3.8 - Pairwise comparisons using posthoc-Quade test 

 

  

Survival 

 

MLP 

 

GBM 

Cloud- 

based 

MLP 0.04173    

GBM 0.75592 0.07598   

Cloud- 

based 

 

0.00042 

 

0.04173 

 

0.00082 

 

Context- 

aware 

0.00082 0.07598 0.00159 0.75592 

 
 



69  

 

Figure 3.6 - Average Normalised MAE 
 

 

Figure 3.7 - Average Normalised Standard Deviation 
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To explore the effect of the proportion of incomplete traces on performance, 

we perform an additional set of experiment utilising a subset of data from a 

couple of event logs (BPIC12 and BPIC18), selected as they are on opposite 

spectrums of event log complexity (see van der Aalst, 2016:366). Keeping 

the size of the event log constant, we incrementally increase the percentage 

of incomplete traces in the log in steps of 20%, starting from 0% through to 

100% (the baseline). We subsequently calculate the normalised MAE for 

each log using the proposed survival approach. Figures 3.8 and 3.9 display 

the plots of the normalised MAE by the proportion of incomplete traces in 

the event log. As expected, both plots indicate a dramatic improvement in 

performance as the proportion of complete traces in the log increases. 

However, we observe that this improvement begins to level off once the 

proportion of complete traces exceeds c.60 %, after which the gain is less 

significant. 

 
 

Figure 3.8 - BPIC 12 - Normalised MAE by proportion of incomplete traces 
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Figure 3.9 - BPIC 18 - Normalised MAE by proportion of incomplete traces 

 
To test this effect, we utilise the non-parametric Kruskal Wallis to determine 

whether there is a significant difference in the MAE for each log. As expected, 

there is a significant difference in the MAE for both logs (For BPIC 12, p = 

3.282e-09; for BPIC 18, p < 2.2e-16). We subsequently run pairwise 

comparisons using Wilcoxon rank-sum test to determine which proportions 

differ significantly from the baseline (i.e. the log with 100% complete traces) 

 
Table 3.9 shows the results of the pairwise comparisons against the 

baseline 
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Table 3.9 - Pairwise Comparisons against the baseline using Wilcoxon 

rank-sum test 

 
% of Complete Traces in Event Log 

 0% 20% 40% 60% 80% 

BPIC12 1.2 x10-7 0.0003 0.1158 0.0737 0.0909 

BPIC18 <2x10-16 <2x10-16 <2x10-16 2.5 x10-16 6x10-12 
 
 
 
 

For BPIC 12, we notice that there is a significant difference until the point at 

which there is 40% incomplete traces (see results in bold). However, with 

BPIC 18, we notice that there is a significant difference between the MAE for 

all logs with incomplete traces against the baseline. To understand the 

results, we consider the event logs metrics (see Table 3.5). We observe that, 

despite having roughly the same number of events, BPIC 18 is more complex 

than BPIC 12 particularly in terms of mean trace length (x4) and the number 

of distinct activities (x6). We postulate that for complex event logs, our 

approach delivers a significant difference compared to the baseline, even 

when there is a high proportion of complete traces. However, for simpler 

logs, the difference is less pronounced, levelling out when there the 

proportion of complete cases approaches c.40%. 
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3.8 Threats to Validity 
 

We encoded the traces using an aggregation encoding technique to enable 

us to address the research question regarding which social contextual 

factors were the most important. However, we acknowledge that this 

encoding technique is quite lossy, which may adversely impact prediction 

accuracy. As such, we would recommend combining this with other 

encoding approaches for real-life use. 

 
The final threat to validity is related to the choice of grouped centrality 

measures selected as social contextual. We selected the most widely used 

centrality measures in the literature (see van der Aalst, Reijers & Song, 2005; 

Everett & Borgatti, 1999). We, however, acknowledge that there are 

additional grouped centrality measures that we could have included (e.g., 

diffusion and fragmentation centrality) which may have shed further 

insight. We intend to explore the impact of these in future research studies 

 
3.9 Summary 

 
This chapter has proposed an approach to censor an event log to facilitate 

its use for building a survival function. We explored the impact of social 

contextual factors as covariates in the survival function. We found that 

group betweenness and closeness centrality were generally positively 

correlated with process cycle time while the group eigenvector centrality 

was generally negatively correlated. We also found that survival analysis 

approaches perform comparably with start-of-the-art predictive process 

monitoring techniques. 

 

We conclude the chapter by briefly reflecting on the research choices made 

and the potential implications on the outcomes. We posit that different 

choices may likely have resulted in different outcomes. For example, we 

chose an aggregation and last state encoding technique to encode the 

traces. Whilst this approach was chosen as it captured the social 
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relationships between the performers who were involved in executing a 

trace, we acknowledged that it was quite lossy compared to other encoding 

techniques such as index encoding.  We believe a lossless encoding 

technique would have greater predictive power, though in this instance, it 

would not have enabled us to answer our proposed research questions. In 

real-world settings, a combination of our proposed aggregation techniques 

and lossless encoding techniques would achieve the twin objectives of 

incorporating the social context and maintaining predictive power as we as 

preserving as much information as possible in the encoded trace. 

In a similar vein, we could have chosen the semi-parametric Cox model for 

performing survival analysis. This model differs from the fully parametric 

Weibull model (which we utilised) in that it is less strict in its assumptions 

of the time-to-event outcomes. This can be useful in certain scenarios and 

is a reason why the Cox model remains popular. Whether the less strict 

assumptions of the Cox model would result in comparable outcomes as our 

proposed predictive process monitoring workflow remains to be seen.  

We conclude the reflection by highlighting several unanswered questions 

raised by our research findings. Firstly, there has been an increase in the 

number of automated agents in the workforce executing certain activities 

in the process and passing the work on to a human agent.  Does the 

presence of an automated agent in the set of performers result in different 

group centrality measures?  If so, what are the implications of this? In 

addition, non-group performers who interact with the group of performers 

may possess different sets of feature values (e.g., workload). What effect 

does this have on the performers?  Addressing these questions potentially 

forms a basis for further research. 

 
In the following chapter, we will examine the impact of spatial contextual 

factors (a type of external context) on the accuracy of remaining-time 

predictive process monitoring. 
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CHAPTER FOUR 

 
4 INCORPORATING SPATIAL CONTEXT INTO REMAINING- 

TIME PREDICTIVE PROCESS MONITORING 

4.1 Synopsis 
 

Though the location of events is a crucial explanatory variable in many 

business processes, as yet there have been no studies which have 

incorporated spatial context into the predictive process monitoring 

framework. This chapter seeks to address this problem by introducing the 

concept of a spatial event log which records location details at a trace or 

event level. 

 
The predictive utility of spatial contextual features is evaluated vis-à-vis 

other contextual features. An approach is proposed to predict the remaining 

time of an in-flight process instance by calculating the buffer distances 

between the location of events in a spatial event log to capture spatial 

proximity and connectedness. These distances are subsequently utilised to 

construct a regression model which is then used to predict the remaining 

time for events in the test dataset. The proposed approach is benchmarked 

against existing approaches using five real-life event logs and demonstrates 

that spatial features improve the predictive power of business process 

monitoring models. 

 
This study formed the basis of a journal paper accepted for presentation at 

the Symposium of Applied Computing 2021 (SAC '21). 

 
4.2 Introduction 

 
Earlier in Section 3.2, we discussed the relationship between the four 

contextual types. In this chapter we focus on spatial context (a subset of 

external context). 
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Van der Aalst (2016:320) makes the point that "although … external context 

can have a dramatic impact on the process being analysed; it is difficult to 

select the relevant variables." This chapter aims to address the problem of 

incorporating spatial context into the process monitoring workflow by 

introducing the idea of a spatial event log which includes the locations of 

process traces and events 

 

 
Figure 4.1 – Spatial Context Relationship with other Contextual Factors 

(Adapted from van der Aalst, 2016:320) 

 
Even though every event occurs at a location, event logs do not typically 

capture spatial data. As shown by Figure 4.1, this contextual type overlaps 

with the other context types. For example, relevant process legislation 

(external context) and the manner process performers interact (social 

context) are both a function of location. Incorporating the spatial context 

enables process analysts to determine whether processes outcomes exhibit 

spatial patterns. This is a question of interest particularly with distributed 

processes and one that has increased in salience with the COVID-19 

pandemic which has necessitated the distribution of process execution, for 

example, due to the requirement for process performers to work from home. 
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If it can be established that process outcomes display spatial pattern(s), 

location becomes a key explanatory variable. The concept of spatial 

autocorrelation, which attempts to "measure…simultaneously…the 

similarities in the location of spatial objects and their attributes", explains 

this relationship (Longley et al.,2015:34). Besides, incorporating the spatial 

dimension into event logs facilitates the discovery of the trajectory of 

process artefacts which could help detect motion waste. 

 
Furthermore, it would be possible to construct a de jure process model for 

different locations (e.g., because of legislative requirements) and check 

whether discovered processes (stratified by location) conform. However, 

for this paper, the focus will be on utilising the spatial context to improve 

the prediction of the remaining time of process instances. In addition to a 

contribution to the knowledge base by proposing a novel way to 

incorporate the spatial context into the predictive process monitoring 

workflow, we demonstrate by empirical evaluation, the importance of 

these contextual features. We show that our proposed approach performs 

comparably with start-of-the-art predictive process monitoring techniques. 

 
The remainder of the paper is structured as follows: Section 4.3 details 

preceding studies which have provided the motivation and methodological 

basis for this study. Section 4.4 defines vital terms built on throughout the 

paper. Section 4.5 describes the proposed approach, while Section 4.6 

details the evaluation results. The penultimate section describes the threats 

to the validity of the study while the final section summarises the findings 

and proposes further research areas for extending these. 

 
 

4.3 Related Works 
 

With regards to spatial analysis, Tobler (1970) proposed the first law of 

geography (a.k.a. Tobler's Law) which states that "all objects are related, but 
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nearer objects are more related than further objects". This law laid the 

foundation for spatial dependence and autocorrelation. Numerous studies 

have built on this foundation, and it is commonly accepted as a "reasonable 

regularity that generally holds true". Miller (2004) argues that rather than 

merely being a confounding factor, spatial autocorrelation "is information- 

bearing since it reveals the spatial association among geographic entities”. 

 
Hengl et al. (2018) proposes a framework for spatial prediction that utilises 

buffer distances from observation points as features to build a spatial 

machine learning model. Their approach offers advantages over traditional 

geostatistical techniques (e.g., kriging) because it makes "no rigid statistical 

assumptions about the distribution and stationarity of the target variable, it 

is more flexible towards incorporating, combining and extending covariates 

of different types, and it possibly yields more informative maps 

characterising the prediction error." 

 
In this paper, we utilise the STEP approach combined with the framework 

proposed by Hengl et al. (2018) to build a spatial predictive process 

monitoring framework. We adopt this combination as it enables us to 

encode the event log into spatial features-outcomes pairs to address the 

relevant research questions. Besides, this avoids issues with generalisation 

and the “curse of dimensionality” which are associated with some of the 

other techniques (Senderovich et al., 2017) 

 
 

4.4 Background 
 

4.4.1 Definitions 
 

Several key terms to be built on throughout this review are formally defined. 

We build on and extend the definitions from previous chapters. 
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4.4.1.1 Spatial Objects and Event Logs. 
 

Definition 4.1 (Point) Let R2 represent a two-dimensional Euclidean space. A 

point is a zero-dimensional geographical object used to indicate a spatial 

occurrence in R2. 

 
A point's coordinates can be specified as longitude, and latitude or Northing 

N and Easting E offsets relative to a specified origin, depending on the 

defined Coordinate Reference System (CRS - see Definition 4.4-iii) 

 
Definition 4.2 (Spatial Point Process) Let 𝑋𝑋 ⊆ R2 for some distance d. A 

spatial point process is a stochastic model for a random scattering of points 

on X for d which describe the occurrence over time of points {#location(x,y) 

(e1), #location(x,y)(e2)…#location(x,y)(en)} over time {#completion_time (e1), 

completion_time(e2)…#completion_time(en)} 

 
Definition 4.3 (Buffer Distances) Let #location(x,y)(ez) represent the location 

attribute for event Z, Dz = (d(#location(x,y)(e1), d(#location(x,y)(e2)… 

d(#location(x,y)(en)) represents the buffer distance between #location(x,y)(ez) 

and the other events. It captures the spatial relationship between the 

location of events in the log. 

 
Definition 4.4 (Spatial event log) A spatial event log is an event log where all 

events are associated with a location attribute (#location(x,y)(e)). For 

example, we could define a function attrlocation(x,y)∈ ε → 𝑃𝑃, to assign a location 

to each performer (or resource) who execute events. However, it could 

represent some other location that is meaningful to the process; e.g., for a 

process to report and track the resolution of a defect, the location could 

describe the location of the reported defect. We recommend providing the 

following attributes at the event log metadata level: 

 
i. Location scope attribute (#location_scope(L)) to indicate whether the 

scope of the location attribute is trace- or event-wide. 



80  

ii. Location function (#location_function(L)) to describe the nature of the 

location attribute in the log. 

iii. Coordinate Reference System (#CRS(L)) to indicate the Coordinate 

Reference System for the event location attribute 

To illustrate the terms above, we extend the exemplar process for reporting 

and remediating defects to public goods, e.g., potholes, streetlight outages. 

As earlier stated, an event in this process would be any from the valid set: 

{‘Create Service Request', 'Initial Review', 'Assign Service Request', 'Assign 

Crew', 'Contact Citizen', 'Put Service Request On Hold', 'Close Service 

Request'}. This event log could be transformed into a spatial event log by, 

for example, associating the location of the appropriate performer with each 

event (see Table 4.1). 

 
4.5 Approach 

 
4.5.1 Overview 

 
Figure 4.2 provides an overview of the proposed approach. The initial step 

is the creation of a spatial event log which associates the events in the log 

with the spatial context. Subsequently, we create measures of spatial 

proximity by calculating buffer distances for each point in the training data 

set to all the other points. These distances are used to build a spatial 

regression model. We improve runtime performance by performing these 

steps offline. 

 
Subsequently, in the online phase, the remaining time for test data are 

predicted using the regression models based on the location of the 

event/trace 



81  

 
 
 

Figure 4.2 - Overview of the proposed approach 
 

4.5.2 Spatial Event Log 

 
As earlier mentioned, Table 4.1 shows a spatial event log. Each row in the 

log denotes an event with Service Request ID representing 

#case_identifier(e), Activity representing #activity(e), and Completion Time 

representing #completion_time(e), these being the triplet that minimally 

defines an event (see Definition 2.1). Although event logs do not typically 

contain spatial information, an event log can be transformed into a spatial 

event log by associating the coordinates of a meaningful location to each 

event in the log. A location is considered meaningful if it facilitates the 

discovery of spatial patterns in the event log. A typical choice is the location 

for the performer associated with each event. 

 
Another example is the location of reported defects (coded as longitude and 

latitude) in a service management application. This approach is considered 

meaningful for these processes as the location of defects is expected to 

demonstrate evidence of a spatial point process. For example, for road 

defects, the spatial process will likely depend on the weather, maintenance 

schedule, organisational process, regulation, among others. 
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Table 4.1 - Spatial Event Log 
 
 
 

Service 

Request 

ID 

 
Service 

Category 

 

Longitude 

 

Latitude 

 

Activity 

 

Start Time 

 

End Time 

 

XY4567 

 

Roads 

 

51.3161 

 

0.06047 

Create 

Service 

Request 

 
22/10/2017 

18:34 

 
22/10/2017 

18:38 

 
XY4567 

 
Roads 

 
51.2425 

 
0.06132 

Accept 

Ownership 

25/10/2017 

10:16 

25/10/2017 

10:17 

 
XY4567 

 
Roads 

 
51.2557 

 
0.06156 

Assign 

Crew 

25/10/2017 

16:01 

25/10/2017 

16:22 

 
XY4567 

 
Roads 

 
51.2557 

 
0.06132 

Contact 

Citizen 

27/10/2017 

11:04 

27/10/2017 

11:09 

 

XY4567 

 

Roads 

 

51.2557 

 

0.06114 

Close 

Service 

Request 

 
27/10/2017 

11:45 

 
27/10/2017 

11:55 

 
 

 
 

4.5.3 Predictive Modelling 
 

The approach consists of two phases: offline (training) and online (testing). 

In the offline phase, the traces in the event log are encoded. In order to 



83  

achieve this chapter’s research objectives (see section 4.6), we require an 

encoding method which enables us to capture the spatial relationships 

present in the spatial event log.  As current predictive process monitoring 

encoding techniques are unable to facilitate this, we adopt a modification 

of the technique proposed by Hengl et al. (2018) as described below. 

Formally, for the training dataset, given a trace σi = {e1…en, 

#location(x,y)(e1)… #location(x,y)(en)} σ ∈ ε∗, σi is transformed into a feature 

set {d(#location(x,y)(en), (#location(x,y)(ei))… d(#location(x,y)(en), 

(#location(x,y)(ej)) } → τrem (σi) where d(#location(x,y)(en), (#location(x,y)(ei)) 

= √(#location(x)(en) - #location(x)(ei))2 + (#location(x)(en) - #location(x)(ei))2 

 
We subsequently utilised the framework proposed by Hengl et al. (2018) to 

build a Random Forest spatial predictive monitoring model as detailed 

below. 

 
We start by converting the event log into the spatial data frame to 

efficiently handle the spatial data. In the offline phase, we calculated the 

Euclidean buffer distances to all locations in the training dataset as 

geographical covariates by generating multiple gridded maps. Figure 4.3 

illustrates the calculation of the buffer distances for four events in the 

training dataset.  

 
Figure 4.3 – Calculation of buffer distances for training dataset 

The value of the target variable(s). i.e., remaining or cycle time, is then 

loc xy(e 1) d 12

d 23d 14

d 13 d 24

d 34

loc xy(e 2)

loc xy(e 3)loc xy(e 4)
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modelled as a function of the buffer distances. Table 4.2 illustrates the 

encoding of the events displayed in Figure 4.3 

Table 4.2 – Encoding for training dataset 

 

 

 

 

 

 

 

In the online phase, the in-flight traces are encoded utilising the location of 

the final event in the trace, #location(x,y)(en). The spatial model built in the 

training phase was used to estimate the remaining time directly for the 

event-level logs. However, for the trace-level log, the total cycle time for the 

trace was estimated and the remaining time for the trace is computed by 

subtracting the elapsed time from the estimated cycle time. Figure 4.4 

illustrates how the gridded map enables prediction of the remaining time 

using the location of the last event in the trace 

 
                         Figure 4.4 – Gridded Map Remaining Time Prediction 

 
e1 e2 e3 e4 Remaining 

Time 
(Hours) 

e1 0 304105.2 760768.06 1070880 839 
e2 304105.25 0 1070880 1296950.25 741 
e3 760768.06 1030456.2 0 387091.72 322 
e4 1070880 1296950.2 387091.72 0 0 
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Algorithm 4.1 details the spatial predictive modelling algorithm. 
 
Algorithm 4.1 - S-PM algorithm 

 
 

Input: An event log L over some trace universe σ with a location scope 
attribute #location_scope(L), an associated target measure remaining 
time τrem, time τela, cycle time τcyc, a spatial window B,a spatial overlay 
method O and a spatial regression method (REGR) method 

 
Output: A spatial predictive model (S-PM) model for L 

 
Method: Perform the following steps: 

 
i. Associate a point spatial object #location(x,y)(e) with each trace σ ϵ L (see 

definition 3.7) 
ii. Encode each trace using a suitable encoding function 

iii. For each #location(x,y)(ei), calculate Di =(d(#location(x,y)(e1), 
d(#location(x,y)(e2)…. d(#location(x,y)(en)) 

If attribute #location_scope(L) = ‘event’ 
iv. Overlay τrem over B using method O to return b 
v. Induce a regression model s-pm out of L using method REGR using 

{#location(x,y)(ei),{ Di … Dn}, b} as input value and τrem(σ) as target value 
vi. Estimate the remaining time for each trace τi.rem_pred : s-pm(σi) 

vii. End 
If attribute #location_scope(L) = ‘trace’, 
iv. Overlay τcyc over B using method O to return b 
v. Induce a regression model pst-pm out of L using method using 

{#location(x,y)(ei),{ Di … Dn}, b} as input value and τcyc (σ) as target value 
vi. Estimate the cycle time for each trace τi.cyc_pred : s-pm(σi) 

vii. For each σi do 
a. Estimate the remaining time for each trace τi.rem_pred : τi.cyc_pred - τela 

viii. End 
ix. Return c{τ1.rem_pred……. τn.rem_pred } 

 

4.6 Evaluation 
 

In this section, we detail our approach to evaluate the importance of spatial 

features in the predictive process monitoring workflow. We evaluated the 

proposed spatial predictive monitoring techniques against similar non- 

spatial predictive monitoring techniques. Specifically, we sought to address 

the following research questions: 
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RQ6. Do spatial features contribute to the predictive power of remaining- 

time predictive approaches vis-à-vis other features? 

 
RQ7. How does spatial-based remaining-time predictive process 

monitoring approaches compare with existing approaches? 

 
In the following section, we provide further details about the experimental 

setup and how we answer the research questions. 

 
4.6.1 Datasets 

 
We used five real-life events for our experiments (see Table 4.3). For four 

logs we enriched the event log with synthetic spatial data as follows: Traffic 

Fines (de Leoni & Mannhardt, 2015), BPI Challenge 2017 (van Dongen, 

2017), BPI Challenge 2019 (van Dongen, 2019), BPI Challenge 2020 (van 

Dongen, 2020). We simulated the synthetic data to reflect as faithfully as 

possible the spatial patterns we expect to be present in the process. For 

example, all the event locations were simulated within the territory of the 

country where the event log was generated. Besides for each event, we 

approximated the expected distribution. To illustrate, the expectation for 

the traffic fine event log is that such fines are predominantly issued in urban 

areas; hence we simulated a spatially clustered pattern for these events 

modelled with the Thomas spatial process. For these logs, the location for 

each event is the simulated location of the performer executing each event. 

We subsequently refer to these logs as the event-level logs. 

 
The fifth event log included real-life spatial data. This log is from a cloud- 

based request management platform currently used by public service 

providers (i.e., municipalities and regions) in Canada and the US. Citizens 

or service provider staff can raise service requests (i.e., requests for 

information or work to be carried out, application for permits, etc.) via an 

app on hand-held devices or through a web interface. Functionality exists 
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for the public service provider (typically a municipal agency) to manage 

these requests through to completion as well as a suite of supporting 

functionality, e.g., analytics, work management, etc. The scope of the 

locations in this log is at a trace level. i.e., every event has the same location 

 
Table 4.3 - Event Log Overview 
 

 Traffic 

Fines 

 

BPIC 17 

 

BPIC 19 

 

BPIC 20 

Road 

Defects 

# of events 149354 55358 140056 56437 9392 

# of cases 26633 3084 306 10500 1324 

# of traces 215 1126 305 99 413 

# of distinct 

activities 

 
11 

 
25 

 
34 

 
17 

 
29 

Mean trace 

length 

 
5.61 

 
17.95 

 
457.7 

 
5.37 

 
7.09 

Mean 

throughput 

time (days) 

 

528.96 

 

21.87 

 

156.78 

 

11.53 

 

82.3 

Throughput 

time SD 

(days) 

 

346.62 

 

12.94 

 

529.98 

 

17.02 

 

244.78 

 
Domain 

Public 

Admin 

Financial 

Services 

Manufact 

uring 

 
Education 

Public 

Admin 

Location 

Scope 

 
Event 

 
Event 

 
Event 

 
Event 

 
Trace 
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and the coordinates indicate the location of the reported defects; hence 

we hereafter refer to this as the trace-level log. We filter the log to 

extract defects related to road-related defects. However, we are unable to 

make the data available as doing so will create privacy concerns due to 

the location coordinates representing observed locations of real people. 

We considered robust anonymisation of the data; however, we 

concluded that doing so without loss of accuracy was not achievable 

 
We added additional features such as elapsed time, remaining time, the 

number of requests raised on the same day as the service request (a 

measure of workload) and a couple of temporal features to each log. 

 
 

4.6.2 Experimental Setup 
 

For the evaluation, we implemented a function named spatial in R for the 

spatial algorithm described in section 4.5.3, respectively. This 

implementation enables assessment of the importance of the spatial 

features by building a predictive model from these features and 

evaluating them vis-à-vis predictive models based on non-spatial 

features. With regards to selecting the approaches to evaluate against, 

we were conscious that, unlike we had done with previous approaches, 

we would be evaluating spatial encoding and features against non-spatial 

ones. As such we decided to evaluate  spatial approaches against a couple 

of non-spatial approaches which used a zero prefix-bucketing combined 

with a gradient boosting machine (gbm) and multilayer perceptron (mlp) 

neural network regressors respectively (as done in chapter 3) to predict 

the remaining time for each trace (see Verenich et al., 2019) to ensure 

consistency and parsimony. We blended each of these approaches with 

the spatial model using the arithmetic mean of the predictions to create a 

couple of ensemble models for evaluation purposes. To ensure 

completeness, we also create a blended ensemble of the non-spatial 
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models. This combination of approaches would enable us to determine 

the contribution of spatial context to the predictive power of the model. 

The code and data for the experiments are located here: 

https://github.com/etioro/SpatialProcessMonitoring. 

 

For the event-level logs, we encode the traces as described in Section 

4.5.3. However, for the trace-level log, as there is a single location for each 

case, we utilise the location and cycle time for completed traces to build 

the gridded map from the training data set. Thereafter, for each inflight 

trace from the test dataset, the cycle time for the trace was estimated  and 

the remaining time for the trace is computed by subtracting the elapsed 

time from the estimated cycle time. 

 
We split each event log into test and training sets. We further subdivided 

the training set, using only the spatial features for 200 data points to 

build the spatial model and the non-spatial features for the remaining 

data points to construct the non-spatial models. We subsequently used 

the test set for making remaining-time predictions which are then 

evaluated. 

 
As with the methodology used in (see Verenich et al., 2019), the training 

& test set were not temporally disjoint. 

 
As earlier indicated in Section 2.7.3, we chose to utilise the Mean 

Absolute Error (MAE) to evaluate the accuracy as other measures such as 

the Root Mean Square Error (RMSE) are susceptible to outliers and Mean 

Absolute Percentage Error (MAPE) would be skewed towards the end of a 

case where remaining time tends towards zero. 

 
To achieve the best performance from both the spatial and non-spatial 

models, we tuned the relevant model hyperparameters. For the spatial- 

based model, we utilise the techniques proposed in Hengl et al. (2018), 

https://github.com/etioro/SpatialProcessMonitoring
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while for the non-spatial methods, we use the tuning capabilities inbuilt 

into the caret package. 

 
4.7 Results 

 
Table 4.4 details the global MAE and Standard Deviation (SD) for each 

dataset/algorithm pair. The performance of the algorithms is visualised 

in Figure 4.5, which displays the average ranking of each algorithm over 

the datasets with associated error bars, calculated as the standard 

deviation of the rankings. Over the five datasets, the ensemble model 

gbm+spat performed best, though it had the third lowest error. In 

general, blending the spatial model with a non-spatial model improved 

the performance of the non-spatial model. This is explained by the fact 

that the spatial features explained as much as 30% of the dependent 

variable (i.e., remaining time) in the spatial models. It is also worth 

mentioning that the spatial model outperformed the ensemble non-

spatial models (i.e., gbm+mlp). This confirms the valuable contributions of 

the spatial features. However, it is also worth noting that whilst 

gbm+spat performed best overall, its performance varied across the 

datasets.  This appears to be related to the spatial variation in the event 

logs, with the algorithm performing better when there is more variation 

and worse when there is less. 
 

Table 4.4 - Global MAE ± SD 
 

 spatial mlp Gbm gbm+mlp gbm+spat mlp+spat 

Traffic 

Fines 

183.09 ± 

180.22 

276.86 ± 

173.20 

255.96 ± 

206.70 

259.97 ± 

115.24 

216.52 ± 

156.45 

224.38 ± 

151.92 

 
BPIC 17 

11.68 ± 

10.71 

14.62 ± 

8.93 

8.79 ± 

9.51 

11.44 ± 

8.05 

 
9.86 ± 9.72 

12.62 ± 

9.07 
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BPIC 19 

81.47 ± 

62.45 

156.13 

± 86.91 

69.29 ± 

57.87 

100.39 ± 

62.67 

60.92 ± 

40.08 

98.64 ± 

69.37 

 
BPIC 20 

6.12 ± 

22.95 

6.55 ± 

22.06 

4.61 ± 

21.94 

5.38 ± 

21.94 

4.98 ± 

21.94 

6.07 ± 

22.04 

Road 

Defects 

114.64 ± 

214.17 

109.06 ± 

224.99 

126.25 ± 

208.65 

113.36 ± 

208.77 

115.81 ± 

203.14 

111.21 ± 

219.17 
 
 
 
 
 

 
 
 

Figure 4.5 - Average Algorithm Ranking with associated error bars 
 

Figures 4.6 show the aggregated error values obtained by dividing the 

Global MAE and SD by the average throughput time for each event log. 

Normalising these values enables them to be directly comparable (see 

Verenich et al., 2019). gbm+spat has the lowest normalised median and 

mean MAE (0.43 and 0.62 respectively) 
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To determine which algorithms, differ from the others, we utilise the 

Quade post-hoc test to perform a pair-wise comparison between the 

various algorithms. Table 4.5 shows the results of the pair-wise 

comparisons (with the value(s) statistically significant at the 95% 

confidence level in bold font). For most of the pairs, there is insufficient 

evidence to reject the null hypothesis that they are significantly different. 

However, the results indicate that the gbm+spat method significantly 

outperforming the existing method(s) (see results in bold). 

 

Table 4.5 - Quade post-hoc test of approach rankings 
 

 spatial mlp mlp+spat gbm gbm+spat 

mlp 0.183     

mlp+spat 0.865 0.241    

gbm 0.61 0.072 0.498   

gbm+spat 0.399 0.036 0.313 0.734  

gbm+mlp 0.734 0.313 0.865 0.399 0.241 
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Figure 4.6(a) - Average Normalised MAE 
 
 
 

 
 
 

Figure 4.6(b) - Average Normalised Standard Deviation 
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4.8 Threats to Validity 
 

The main threat to validity was the absence of real-life spatial data at the 

desired level of granularity. For the four event-level logs for which 

spatial data was simulated, even though care was taken to reflect the 

spatial distribution of the process in the simulated data, the spatial effect 

is likely under-estimated vis-à-vis real-life spatial data. 

 
For the real-life spatial data, the available spatial data was at trace level. 

In other words, a single location (i.e., service request location) was 

associated with each completed trace. However, in reality, the location 

for events is typically dispersed, i.e., e1 may occur at location A, e2 at 

location B, etc. For example, a citizen may raise the service request at 

location A, reviewed by supervisor based in the field location (at location 

B) and assigned to a work crew based at location C. Lower granularity 

of locations at event level is expected to produce better results as these 

captures more of the spatial variation present in the data 

 
Another threat to validity is related to the real-life spatial data is geo- 

referencing uncertainty (Longley et al.,2015:81). For that dataset, the 

request creator may introduce uncertainty by specifying the incorrect 

location for the service request or by the service request submission 

platform. Hence a point may be incorrectly positioned. We assume that 

this uncertainty is minimal as the relevant public service provider was 

able to locate and complete all the service requests we selected for our 

experiment. 

 
Finally, we recognise that not all processes will possess a significant 

amount of spatial variation. For example, for centralised processes, the 

process performers may all be co-located. For these processes, spatial 

features are not likely to significantly contribute to the accurate 

prediction of the remaining time 
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4.9 Summary 
 

This study has proposed an approach to incorporate spatial context into 

event logs and performed a comparative analysis of spatial features 

against other contextual features. It found that spatial features improve 

the predictive power of the model and that spatial ensemble approaches 

yielded the best result for processes that are likely to exhibit spatial point 

processes. 

In conclusion, we reflect on the potential impact on our choice of research 

methods. Firstly, the encoding technique for the test trace utilises the 

location of the last event in the trace for predicting the remaining time. 

However, as a trace is a sequence of events, we acknowledge that, a 

technique that incorporates the location of all the events in the trace, is 

likely to have a higher predictive power. In other words, we believe that 

utilising the spatial 'path' or ‘trajectory’ the case takes through to 

completion as the basis of prediction would result in more accurate 

predictions. This is especially true where a trace has rework loops, where 

the rework is executed at the same location as the earlier event. However, 

we were unable to locate a suitable spatial algorithm that utilised the 

trajectory hence our choice for using the last event.  

Secondly, we separated the spatial from the non-spatial context in order 

to answer the research questions, i.e., determine the predictive power of 

spatial features. However, we recognise that, even when significant 

spatial variation exists in the event log, utilising only the spatial features 

is not likely to produce models with high predictive power. As such, in a 

real-world setting, we would expect both sets of features to be combined 

to increase the predictive power of the model.  

Finally, it is worth pointing out that we utilise different techniques to 

encode the training and test data sets.  As described in section 4.5.3, we 

utilised the buffer distance to every event in the training set to encode 

those traces and used the location of the last event in the trace for the test 

set. This difference is in our opinion necessary, and the right choice given 
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the unique characteristic of spatial features. However, we call out this 

difference as other predictive process monitoring approaches typically 

utilise the same technique for encoding both the training and test 

datasets. 

In the next chapter, rather than focus on the impact of contextual factors 

on remaining time prediction, we focus on the interplay between 

contextual factors. Specifically, we examine the relationship between 

workload (a type of process context) and stress (a type of social context). 
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CHAPTER FIVE 

 
5 INVESTIGATING THE DIFFUSION OF WORKLOAD- 

INDUCED STRESS - A SIMULATION APPROACH 

  
5.1 Synopsis 

 

As mentioned earlier, the target for a predictive process monitoring 

workflow is typically one of remaining time, outcome, or next step. Less 

frequently, cost, or other numeric process outcomes are predicted. 

However, we argue that the set of targets should be expanded to increase 

the scope and usefulness of predictive process monitoring workflows. In 

this chapter we attempt to predict a new target (stress - a social contextual 

factor) utilising workload (a process contextual factor). We thus add to the 

knowledge base by discovering the interaction between these process 

contextual factors. 

Work-induced stress is widely acknowledged as harming physical and 

psychosocial health and has been linked with adverse outcomes such as a 

decrease in productivity. Recently, workplace stressors have increased due 

to the Covid-19 pandemic. This chapter aims to contribute to the literature 

base in a couple of areas. 

 
First, it extends the current knowledge base by utilising Generative Additive 

Modelling (GAMs) to uncover the nature of the relationship between 

workload (a key workplace stressor) and productivity based on real-world 

event logs. Besides, it uses recursive partitioning modelling to shed light on 

the factors that drive the relationship between these variables.  

 
Secondly, it utilises a simulation-based approach to investigate the diffusion 

of workload-induced stress in the workplace. Simulation is a valuable tool 
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for exploring the effect of changes in a risk-free manner as it provides the 

ability to run multiple scenarios in a safe and virtual environment with a 

view to making recommendations to stakeholders. 

 
However, there are several recognised issues with traditional simulation 

approaches, such as inadequate resource modelling and the limited use of 

simulations for operational decision making. 

In this chapter, we propose an approach which extracts the required 

parameters from an event log and subsequently utilises them to initialise a 

workload-induced stress diffusion simulation model accurately. We also 

explore the effects of varying the parameters to control the spread of 

workload-induced stress within the network 

 
With suitable amendments, this approach can be extended to model the 

spread of disease (e.g., Covid-19), diffusion of ideas, among others, in the 

workplace. 

 
This chapter formed the basis of a journal paper published in Information 

 
5.2 Introduction 

 
Work-induced stress is defined as “the change in one’s physical or mental 

state in response to workplaces that pose an appraised challenge or threat 

to that employee” (see Colligan & Higgins, 2006). The impact of workplace 

stress includes “increased absenteeism, organizational dysfunction, and 

decreased work productivity” (Colligan & Higgins, 2006). Workplace stress 

has also been linked to higher levels of alcohol consumption during 

retirement (see Richman et al., 2006). A key stressor in the workplace is 

the workload and pace of work (Bickford, 2005). Numerous studies have 

explored the relationship between workload and productivity. For 

example, Hebb (1955) proposed a quadratic relationship between arousal 

(a proxy for workload-induced stress) and performance (see Figure 5.1). 

 

https://www.mdpi.com/2078-2489/12/1/11
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Other studies have built on and extended this relationship, referred to as 

the Yerkes-Dodson law. For example, Bertrand & Van Ooijen (2002) 

describe the widely accepted explanation of the relationship. The authors 

posit that when the workload is below the optimal level of arousal and 

performance, performers are not as alert and hence do not perform at the 

optimal level. However, as the workload increases, so does alertness until 

the optimum level of performance is reached. Any increase in workload 

past this point results in decreased performance as performers “need more 

time to process information, to take decisions and, due to the high level of 

arousal, might make more mistakes”. They argue for a “load-based work 

order release” system which feeds work into the system based on the 

existing workload on the shop floor and posit that this has a positive 

impact on increasing work order throughput times. Nakatumba & van der 

Aalst (2009) also explores this relationship utilising a Process Mining 

approach. Whilst that paper concluded that “the relationship described by 

the Yerkes Dodson law of arousal really exists”, the study stopped short of 

demonstrating the existence of the inverse U-shape relationship arguing 

that “more sophisticated…techniques” were required to confirm this. 

 
That gap is what the first half of this paper attempts to address. Utilising a 

couple of real-world event logs, we build Generative Additive Models 

(GAMs) to uncover the nature of the relationship between workload and 

productivity. GAMs enable us to fit non-linear relationships to the data of 

interest and are relatively interpretable. In addition, we build a couple of 

recursive partitioning models to shed light on the factors that drive the 

relationship between these variables. Thus, this study contributes to the 

literature by uncovering the nature of the relationship between these 

variables and the factors that drive them. 
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Figure 5.1 - Hebbian version of the Yerkes Dodson law (Source: Diamond et 

al., 2007) 

 
The value of simulation to rapidly explore the effect of changes in a  risk-free 

manner has long been understood. However, van der Aalst et al. (2008) 

highlights several issues with traditional simulation approaches. Apart 

from the limited use of “existing artifacts such as historical data and 

workflow schemas”, the modelling of process performers is inadequate (e.g., 

the incorrect assumption that performers work at a constant speed or the 

assumption that performers immediately work on incoming tasks when 

they are available). To address these issues, van der Aalst (2010) argues that 

“to adequately set these parameters and make sure that processes are 

modeled accurately…the information available in event logs” needs to be 

exploited utilising process mining techniques. van der Aalst et al. (2008) 

highlights four pertinent types of data, namely: event log which describes 

historical information about recorded events, process state which 

represents information attached to cases, process model which describes the 

sequencing and routing of activities and the resource model which conveys 

information about performers, roles, departments, etc. 

 
Extending the link earlier established between workload and stress, the 

principle of emotional contagion – the phenomena of having one person’s 

emotions trigger emotions and related behaviours in others – has long been 
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accepted (see Reik,1948; Jung, 1968). More recent studies in the field of 

neuroscience have established the neurological basis of these phenomena 

(Iacoboni et al., 2005; Rizzolatti, 2005). We posit that as co-workers interact 

as they execute common activities simultaneously, stressed workers “infect” 

non-stressed workers and thus diffuse stress across the workplace. 

 
To identify a suitable simulation model for the spread of workload-induced 

stress, we delve into the field of epidemiological research to examine models 

for exploring the transmission of infectious diseases. Jenness, Goodreau & 

Morris (2018) proposes a “general stochastic framework for modelling the 

spread of epidemics on networks”. This approach is an ideal choice for 

combining simulation with processing mining as there exist several studies 

which have successfully discovered social networks from event logs. For 

example, van der Aalst, Reijers & Song (2005) proposes an approach for 

discovering social networks from an event log and several metrics based on 

potential causality, joint cases/activities and special event types. They also 

apply these concepts to a real-life event log. In Song & van der Aalst (2008), 

the authors build on these and extend the approach to discover 

organisational models from event logs. 

 
In the second half of this study, we discover a social (co-worker) network 

from an event log and utilise the network properties to initiate a simulation 

model which explores the spread of workload-induced stress. We further 

contribute to the literature base by proposing a novel approach which 

investigates the diffusion of workload-induced stress utilising an 

epidemiological simulation model initialised with parameters extracted 

from an event log. Whilst the focus in this study is the diffusion of workload- 

induced stress, with suitable amendments, the model can also be used to 

explore the spread of disease (e.g., COVID-19) in the workplace or the 

diffusion of ideas, amongst others. 

 
The remainder of the chapter is structured as follows. Section 5.3 defines 
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vital terms built on throughout the paper and describes the proposed 

approach, while Section 5. 4 details the evaluation results of the proposed 

approach. The penultimate section describes the threats to the validity of 

the study, while the final section summarises the chapter. 

5.3 Background 
 

5.3.1 Definitions 
 

5.3.1.1 Processing Time, Speed and Workload 
 

Definition 5.1 Processing time. Let e represent an event, #start_time(e), the 

start time associated with the event and #completion_time(e) the 

completion time associated with the event. The processing time for e, 

 
τproc = #completion_time(e) - #start_time(e). It indicates the time taken to 

complete processing the event 

 
Definition 5.2 Workload. Let A represent the set of valid activity labels, W 

represent a time window with start, Wstart , end, Wend, and event log L. The 

workload function is defined as: 

 
workload(#activity(e), Wstart , Wend) → ℕ 

 
where ℕ is the set of natural numbers {0,1,2,3…}. This denotes the number 

of instances of a specific activity present in time window W 

 
We further define attrcompleted (𝑝𝑝, 𝑎𝑎) → ℕ ≤ workload for each 

performer/activity pair to indicate the number of events (with activity label 

a) the performer p completed in the given time window 

 
Definition 5.3 Average Processing Speed. Given a set of valid activity labels 

A, a time window W and a performer p, the processing speed is defined by: 
 

s =  𝛴𝛴 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: #start_time(𝑒𝑒𝑖𝑖) ⋀  #completion_time(𝑒𝑒𝑖𝑖)∈𝑊𝑊 
completed (p,a) 

 
(5.1) 
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This indicates the average processing speed for the performer/activity pair 

in the given time window 

5.3.1.2 Social Networks and Network Models 
 

Definition 5.4 Co-worker network. Let P represent the set of performers, E 

represents a set of undirected edges and 𝜙𝜙: 𝐸𝐸 → {𝑥𝑥, 𝑦𝑦: 𝑥𝑥, 𝑦𝑦 ∈ 𝑃𝑃 } represent 

an incidence function mapping edges to vertices defined as follows: 

(5.2) 

coworker (𝑥𝑥, 𝑦𝑦) =

⎩
⎪
⎨

⎪
⎧

1, if #activity_label(e𝑖𝑖) =  #activity_label(e𝑗𝑗) ⋀ 
    [#start_time(e𝑖𝑖), #completion_time(e𝑖𝑖)] ∩ [#start_time(e𝑗𝑗), #completion_time(e𝑗𝑗)] > 0

 
0,    Otherwise 

 

 
 
 

A co-worker graph is an undirected multigraph G = (P, E, 𝜙𝜙). For our study, 

the incidence function maps an edge when two performers are co-workers 

as well as the duration of each interaction. Two performer x and y are 

considered co-workers if x completes ei, y completes ej, with both events 

having identical activity labels and the processing time interval for both 

events overlap (see Figure 5.2). 

Definition 5.5 Network Model. Let G denote an undirected graph 

representing the co-worker network, P represent the set of performers. 

The partnership formation process for the network simulation model is 

defined by: 

 
logit [P(Gxy,t+1 = 1| Gxy,t = 0, Gc)] = θT δ(g+(z)) (5.3) 

+ 

 
where Gxy denotes the edge between vertices x,y ∈ 𝑃𝑃, P(G) denotes the 

probability distribution of the network, z denotes the observed network, Gc 

denotes the rest of the network, θ denotes the conditional log-odds of Gxy as 

a function of the number of configurations it creates and δ(g) denotes 



104  

change statistics that indicate how the count of configurations change when 

Gxy is toggled from 0 to 1. Note that Gxy is indexed by time and formation at 

time t+1 is conditional on Gxy existing by time t (see Jenness et al., 2018). 

 
The complimentary edge dissolution process is defined as follows: 

 
logit [P(Gxy,t+1 = 1| Gxy,t = 0, Gc)] = θT δ(g-(z)) (5.4) 

To illustrate the terms above, we again extend our exemplar process for 

reporting and remediating defects to public goods. A snippet of the event 

log is shown in Table 5.1. The set of valid activity labels is as follows: 

{‘Create Service Request’, ‘Initial Review’, ‘Assign Service Request’, ‘Assign 

Crew’, ‘Contact Citizen’, ‘Put Service Request On Hold’, ‘Close Service 

Request’}.  

Table 5.1 – Illustrative Event Log 
 
 

Service 
Request ID 

Activity Start Time End Time Performer 

XY4567 Create Service Request 22/10/2017 18:34 22/10/2017 18:38 Citizen1 
XY4567 Initial Review 25/10/2017 10:12 25/10/2017 10:14 Resource1 
XY4567 Accept Ownership 25/10/2017 10:16 25/10/2017 10:17 Resource1 
XY4567 Assign Service Request 25/10/2017 11:26 25/10/2017 11:29 Resource1 
XY4567 Assign Crew 25/10/2017 16:01 25/10/2017 16:22 Resource2 
XY4567 Contact Citizen 27/10/2017 11:04 27/10/2017 11:09 Resource2 
XY4567 Close Service Request 27/10/2017 11:45 27/10/2017 11:55 Resource2 
XY8910 Create Service Request 21/10/2017 15:12 22/10/2017 15:20 Citizen2 
XY8910 Accept Ownership 22/10/2017 11:22 25/10/2017 11:25 Resource3 
XY8910 Assign Crew 25/10/2017 16:12 25/10/2017 16:32 Resource4 
XY8910 Close Service Request 26/10/2017 12:23 26/10/2017 12:55 Resource4 

 
 

Figure 5.2 illustrates the concept of “co-workers” (see Definition 5.4). We 

observe that the processing time interval for #case_identifier (XY4567), 

#activity (Assign Crew) executed by Resource2 overlaps by 10 minutes with 

the processing time interval for #case_identifier (XY8910), #activity (Assign 

Crew) executed by Resource4 (see bold font). Thus, an edge is formed 

between Resource2 and Resource4 in the co-worker network, and the 
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duration of interaction (or exposure) is 10 minutes (see dashed lines). 
 
 

 
 

Figure 5.2 - Co-worker network 
 

5.4 Evaluation 
 

In this section, we describe the two sets of analyses performed to address 

the research questions of interest in this study. In the first set of analysis, we 

evaluate the relationship between the workload and processing speed to 

determine whether it displays a quadratic relationship (as predicted by the 

Yerke-Dodson law) and if so, under which conditions. In the second set of 

analysis, we simulate a network model to investigate the diffusion of 

workload-induced stress in a co-worker network. Specifically, we seek to 

address the following research questions: 

 
RQ8: Does the relationship between workload and processing speed exhibit 

a quadratic relationship as proposed by the Yerkes-Dodson law? 

 
RQ9: If so, when does this relationship hold and when not? 

 
RQ10: Do network simulation approaches facilitate the discovery of 

successful interventions to mitigate the diffusion of workload-induced 

stress? 

 
In the following section, we provide further details about the setup and how 

we answer the research questions. 
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5.4.1 Datasets 
 

Two real-life event logs from the Business Process Intelligence Challenge 

(BPIC) were used as follows: BPIC12(W) (van Dongen, 2012), BPIC17(W) 

(van Dongen, 2017). BPIC 12 contains event log data for a credit (i.e., 

personal loan or overdraft) application process at a Dutch financial 

institution. BPIC 17 contains data from the same process and institution, 

however from a different supporting system. These logs were selected as 

they contained a significant proportion of cases with both event start 

(#start_time(e)) and completion (#completion_time(e)) timestamps. This 

enabled us to calculate the processing speed for these events 

 
For the simulation exercise, we used a synthetic event log (FutureLearn, 

n.d.) which contains the details for a repair process. This log was selected as, 

not only did it contain data which enables calculation of processing speed, 

but also information about the performer role which was used in the 

initialisation of the network simulation model. 

 
See Table 5.2 for a summary of the logs used for the experiments. 

 
Table 5.2 - Event Log Overview 

 
 

 BPIC 17(W) BPIC 12(W) Repairs Log 

Number of events 768,823 170,107 15,486 

 
Number of cases 

 
31,509 

 
9,658 

 
1,104 

 
Number of traces 

 
10,701 

 
2,643 

 
80 
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Number of distinct 

activities 

 
8 

 
7 

 
8 

 
Mean trace length 

 
24.40 

 
17.61 

 
14.03 

 
Mean throughput time 

(days) 

 
21.89 

 
11.68 

 
0.05 

 
Throughput time SD 

(days) 

 
13.17 

 
12.79 

 
0.01 

 
Domain 

Financial 

services 

Financial 

services 

 
IT Support 

 
 

 

5.4.2 Experimental Setup 
 

To investigate the first two research questions, we implemented a function 

in R to calculate the daily workload and average processing speed for each 

performer (time window start =00:00:00; time window end=23:59:59). We 

selected this window for the sake of parsimony and due to the presence of 

activities in the log which complete late in the day (e.g., after 23:00). Hence, 

we decided not to filter the log to a typical workday (. i.e., 08:00 – 18:00) as 

the observed work pattern did not fit this. We considered calculating the 

daily workload and processing speed per performer better to capture the 

true nature of the demand on performers. However, we realised that the 

mean for different activities differed based on activity complexity, as such 

combining all the activities performers had completed each day was likely 

to distort the average processing speed. As such, we adopted the 

methodology used in Nakatumba & van der Aalst (2009) and calculated the 

total daily workload for each activity, the number of activities each 
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performer completed daily and the average processing speed per 

performer/activity. We also calculate the cumulative workload for each 

activity and the number of activities each performer completed over the 

event log. We subsequently fitted a Generalized Additive Model (GAM) to 

uncover the relationship between total daily workload and processing 

speed. We smooth the GAMs with the restricted maximum likelihood 

method as this is widely acknowledged as most likely to produce stable and 

reliable results. We create a GAM model for each performer/activity 

combination with the average processing speed as the dependent variable 

and the total daily workload as the independent variable. In addition, we 

extract relevant statistics from each model such as the expected degrees of 

freedom (edf) which indicates the complexity of the model’s smooth, and the 

p-value, amongst others. 

 
To answer the last research question, we created a social network from the 

co-worker network of performers in the Repairs event log. We subsequently 

extracted the following network properties from the co-worker network: 

the number of edges and vertices in the network, the number of stressed 

edges, the number of homogenous edges, the number of concurrent 

interactions and the mean duration of interactions. Each performer is 

assigned an appropriate state (stressed/not stressed) based on whether 

their daily workload completed falls within the final quartile. As earlier 

established, based on findings in the literature, we posit that a stressed 

performer (. i.e., infected) can spread stress through the co-worker network 

by “infecting” non-stressed performers via the process of emotional 

contagion. Borrowing from the field of epidemiology, we create a 

Susceptible-Infected-Susceptible (SIS) model to simulate the diffusion of 

stress across the worker network. We chose this model (as opposed to a 

Susceptible-Infected-Recovered (SIR) model which assumes immunity once 

recovered, for example) as a performer is again susceptible to workload- 

induced stress after recovery. The extracted co-worker network properties 
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were used to initiate the SIS model. We concluded by executing multiple 

runs of the simulation to determine the effect that varying the infection 

probability and recovery rate had on the number of performers who were 

stressed at the end of the simulation run. 

 
 

5.5 Results 
 

For the first set of results, to explore the relationship between workload 

and performance, we filter for the GAM models which are significant at the 

90% confidence level. Table 5.3 shows the distribution of the edf for the 

models. We observe that across both datasets, 43% of models have an edf 

of 1 indicating a linear relationship, 18% an edf of 2 indicating a quadratic 

relationship and 40% an edf greater than or equal to 3, indicating a more 

complex smooth (see Figures 5.3a-d for example plots). We note that there 

is partial support for the inverse U shape in the literature as even the more 

complex smooths ( i.e. edf ≥ 3) demonstrate this relationship. Note that the 

scale of the plots is shifted by the value of the intercept to aid 

interpretability. Hence, we can predict the output assuming other variables 

are held at their average value. For example, for plot 5.3b, the predicted 

productivity for User 11009 performing activity “W_Completeren 

aanvraag” at the daily workload of 300 cases is 10 activities per day. 

 
Table 5.3 - Distribution of Effective Degrees of Freedom (edf) for GAM 

Models 

 1 2 ≥ 3 

BPIC 12 (W) 44% 17% 39% 

BPIC 17 (W) 41% 18% 41% 
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(a) BPIC 17 User 53/ W_Validate application 
(edf=1) 

(b)BPIC 12 User 11009/W_Completeren 
aanvraag (edf=2) 

 
 
 

 

 
 
 

 

(c) BPIC 12 User 10972/W_Valideren 
aanvraag (edf=3) 

(d) BPIC 17 User 24/ W_Complete application 
(edf=4) 

 

Figure 5.3 - GAM Plots of workload against processing speed 
 

We explore further to uncover the factors which drive the nature of the 

relationship between the average processing speed and the daily workload. 

Borrowing from the approach adopted by Hunsicker et al. (2016), we build 

a couple of recursive partitioning (rpart) models from the GAM model data. 

The rounded edf for each model was selected as the classification target and 

the cumulative workload, activity label and average processing speed were 

the independent variables. Figures 5.4 and 5.5 shows the binary tree 
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representation of the model. We expanded the GAM models to include all 

those significant at the 80% confident level to broaden the dataset. 

 
We observe that for both datasets, the cumulative total workload or the 

cumulative number of cases completed by a performer were the factors that 

influenced whether the Yerkes Dodson law is obeyed. Examining the rules 

that determine the classification for both datasets, it appears that that the 

Yerkes Dodson law is obeyed when a threshold value is surpassed; 

otherwise, it is not. For the cumulative number of cases worked, the 

threshold value was the 28th percentile. Given that this attribute is a proxy 

for the individual experience of the performer, the results would seem to 

suggest that less experienced performers tend to obey the Yerkes Dodson 

law. The other attribute is a proxy for the collective experience of the 

performers. Given that the threshold value is 32nd percentile, the results 

would seem to suggest that a less experienced workforce tend to obey the 

Yerkes Dodson law. 

 
These finding potentially have theoretical and practical implications. From 

a theoretical perspective, it potentially sheds light on the conditions under 

which the Yerkes-Dodson law applies and adds to the empirical basis on 

which the law is built. From a practitioner perspective, the findings have 

implications on work design, for example, in the design and implementation 

of an effective load-based work order release system. However, we 

recommend further research is undertaken to validate this with additional 

datasets and to test the generalisability of these results. 
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Figure 5.4 - BPIC 12 - Classification tree indicating factors driving degree of 
non-linearity(edf) 

 

 
Figure 5.5 - BPIC 17 - Classification tree indicating factors driving degree of 

non-linearity(edf) 
 
 

For the second set of results, we examine the effect of varying the infection 

probability and recovery rate on the number of performers who are stressed 

(i.num) at the end of the simulation run (time step 500). Figure 5.6 shows 

the plot of incidence and recoveries for infection probability = 0.75 and 

recovery rate = 0.5. Table 5.4 shows the percentage of the workforce who 

are stressed at the end of the simulation run as the infection probability 

and recovery rate are varied. 
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Figure 5.6 - Stress Simulation Model – Incidence and recoveries 
 

Table 5.4 - Stress prevalence as a function of infection probability and 

recovery rate 

Infection Probability 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75 1 1 1 1 
Recovery Rate 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 

% stressed 
(at t = 500) 76 50 25 0 74 50 25 0 78 49 28 0 75 50 25 0 

 
We observe that the recovery rate has a more significant effect on reducing 

the prevalence of stress in the workplace, such that for all values of infection 

probability, at recovery rate=1, the prevalence of stress in the workplace is 

eliminated. From a policy perspective, this finding potentially has 

implications for the allocation of stress management and intervention 

resources. Whilst intuitive reasoning might indicate that allocating more 

resources to interventions designed to reduce the infection probability are 

best (e.g., by making the workforce more resilient to “infection” by 

stress), the results would appear to indicate that interventions designed to 

increase the recovery rate (e.g. by engaging in moderate exercise, 
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incorporating mindfulness techniques, etc) are more effective in reducing 

the prevalence of stress in the workplace (see Burton, Hoobler & 

Scheuer,2012; Tetrick & Winslow, 2015). 

 
It is worth noting that while, there is a third model parameter that can be 

varied (act rate which measures the mean number of interactions between 

co-workers), we chose not to vary this as we believe the adverse impact of 

reducing interaction (resulting in increased isolation and reduction in 

knowledge diffusion) outweighs any advantages gained by reducing stress 

prevalence 

 
 

5.6 Threats to Validity 
 

With regards to the first part of the study, we utilised two real-world 

datasets. These were the only real-world data that we were able to identify 

which contained the start and end timestamps for each activity, which was 

required to calculate the processing time. However, the relatively low 

number of datasets adversely impacts the ability to generalise these results. 

We would recommend repeating these experiments with additional real- 

world data set to validate the results further 

 
In addition, we highlight the propensity of GAMs and recursive partitioning 

models to overfit data as a limitation to these models as well as the added 

limitation that GAMs lose predictability when the independent variable is 

from a range outside of the observed data. 

 
For our simulation model, we utilised a constant quantile applied against 

the total completed caseload for each performer to determine the stress 

status for the sake of parsimony. However, based on the results on the first 

part of the study, we realise that the determination of the stress status of 



115  

each performer may differ (i.e. linear, quadratic,etc) with different inflection 

points. We do not believe this significantly affected the results of the 

simulation as we visually examined the GAM plots for the 

performer/activity pairs to determine the optimal value of the appropriate 

quantile. However, we recognise that dynamically determining the optimal 

value for each performer/activity pair would be best. 

 
Finally, our simulation model explored the effects of a single stressor (. i.e., 

workload) in isolation. We recognise that in the real-world, multiple 

stressors exist in the workplace and they are likely to be in play 

simultaneously (Bickford, 2005). Our model does not consider these non- 

workload stressors and the interrelationships between them which is likely 

to impact the performance of the simulation model in a real-world setting (a 

known limitation of simulation models). 

 
5.7 Summary 

 
This chapter has attempted to uncover the nature of the relationship 

between workload (a key workplace stressor) and productivity from a 

couple of real-world event log utilising GAMs. We further explored the 

factors which drive this relationship. Whilst we found partial evidence for 

this law in the event log, this was in the minority, with most of the 

relationships being linear. We also found that the cumulative total workload 

or the cumulative number of cases completed by a performer are factors that 

influence whether the Yerkes Dodson law is obeyed and that this happened 

when a threshold value was surpassed; otherwise, it is not. 

 
In the second part of the paper, we utilised a simulation-based approach to 

investigate the diffusion of workload-induced stress in the workplace. We 

found that in terms of stress management intervention, increasing the 
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recovery rate yields better results vis-à-vis reducing the exposure of the 

workforce to stress. 

As usual, we conclude with some reflections on some of our research 

choices and their implications. Firstly, we chose to calculate the total daily 

workload for each activity, the number of activities each performer 

completed daily and the average processing speed per performer/activity. 

This was a necessary choice as the activities in the event log had differing 

mean execution times due to varying complexity. However, we 

acknowledge that our approach does not capture the true nature of a 

performer’s workload as this typically comprises a mixture of different 

activities. This is an issue that will have to be addressed prior to utilising 

our approach in a real-world setting.  

 

Secondly, our findings raise further questions on why the level of 

experience impacts the Yerkes Dodson law. We also observed that there 

were different inflection points for each performer leading to the 

questions: Which factors impact the inflection point? Does the inflection 

point change over time? These unanswered questions potentially form the 

basis for future research. 

 

Thirdly, we chose not to vary act rate parameter (which measures the 

mean number of interactions between co-workers). Intuition would seem 

to suggest that this parameter would be positively correlated with the 

diffusion of stress; however, it is recommended that this hypothesis is 

tested. It is worth mentioning that the restriction imposed in certain 

jurisdictions due to the Covid pandemic (e.g., Work-From-Home directives) 

has reduced the number of interactions between co-workers.  

 

Finally, we conclude our reflection by observing that there are currently no 

benchmarks for our predictions, hence it is difficult to assess the validity of 

the results. It would be worth utilising mixed mode research methods (e.g., 
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ethnographic research, sensors such as smartwatches or trackers to collect 

physiological data from performers) which can be used to event log data 

with a view to assessing the validity of the results.  

 
In the next chapter, we consider the ethical dimensions of these predictive 

workflows. Often human agents use these to make decisions. However, there 

is a risk that any algorithmic bias present in the models might influence their 

decisions. We consider the ethical decision-making process when human 

agents use AI tools (including predictive process monitoring tools) to make 

decisions and discuss how to design tools which facilitate ethical decision-

making. 
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CHAPTER SIX 

 
6 AN EXPLORATION OF ETHICAL DECISION MAKING WITH 

AI AUGMENTATION 

6.1 Synopsis 
 

The predictive process models (PPMs) discussed thus far are designed to 

offer operation support to users in real world settings (Van der Aalst, 

2016:34). However, the fact that a PPM has been built and deployed does 

not necessarily translate to adoption by users. A significant barrier to 

adoption of PPM tools is a lack of understanding by users of the factors that 

drove the prediction. This is a problem mainly in outcome-based 

prediction but is also relevant for remaining-time prediction. As a result, 

there has recently been a focus on explainability in PPM (see Rizzi, Di 

Francescomarino & Maggi (2020); Galanti et al (2020); Pasquadibisceglie 

et al (2021)). As the issues addressed in this chapter applies not only to 

PPM but also to Artificial Intelligence (AI) tools in general, we will use the 

terms AI and PPM interchangeably.  

 

In recent years, the use of Artificial Intelligence agents to augment and 

enhance the operational decision-making of human agents has increased. 

This has delivered real benefits in terms of improved service quality, 

delivery of more personalised services, reduction in processing time and 

more efficient allocation of resources, amongst others. However, it has also 

raised issues which have real-world ethical implications such as predicting 

different credit outcomes for individuals who have an identical financial 

profile but different characteristics (e.g., gender, race). The popular press 

has highlighted several high-profile cases of algorithmic discrimination, 

and the issue has gained traction. 

 
While both the fields of ethical decision making (in a business context) and 
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Explainable AI (XAI) have been extensively researched, as yet we are not 

aware of any studies which have examined the process of ethical decision 

making with AI augmentation. We aim to address that gap with this study. 

We amalgamate the literature in both fields of research and propose, but 

not attempt to validate empirically, propositions and belief statements 

based on the synthesis of the existing literature, observation, logic and 

empirical analogy. We aim to test these propositions in future studies. 

 
  This chapter formed the basis of a journal paper published in Social Sciences 

 

6.2 Background 
 

The use of Artificial Intelligence (AI) agents has gained widespread attention 

in the last few years (Science and Technology Committee, 2018). As used in 

this paper, AI refers to “a set of statistical tools and algorithms that combine 

to form, in part intelligent software enabling computers to simulate 

elements of human behaviour such as learning, reasoning and classification” 

(Science and Technology Committee, 2018). These include the predictive 

process monitoring models we have discussed thus far, though it can be 

argued that the following discussion is more applicable to outcome-based 

prediction (as opposed to remaining-time prediction). 

 
One of the prominent uses of AI is to assist human stakeholders in decision 

making (Abdul, Vermeulen, Wang, Lim & Kankanhalli, 2018). This has been 

described as ‘AI augmentation’, as AI models are used to augment the 

judgement of human agents (S. Miller, 2018). As highlighted by the Academy 

of Medical Science (2017), AI augmentation has been used in healthcare to 

enable “clinicians work more efficiently and better handle complex 

information”. It has also been utilised in the criminal justice system to detect 

crime hotspots and decide whether a suspect could be eligible for deferred 

prosecution (Oxford Internet Institute,2017), and by financial services 

providers to determine the outcome of a credit application (Financial 

Service Consumer Panel, 2017), amongst others. AI augmentation has 

https://www.mdpi.com/2076-0760/10/2/57
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resulted in significant benefits including improved quality, more 

personalised service, reduced processing time, and more efficient allocation 

of resources. 

 
However, several issues have arisen that have raised a cause for concern. 

For example, several high-profile instances have been highlighted where 

similar individuals with identical financial data, but different gender have 

had different outcomes to credit applications (Peachey, 2019). Allegations 

that AI algorithms used in the criminal justice system discriminated against 

defendants based on race have also been raised (Maybin, 2016). This 

algorithmic bias is attributed to unrepresentative or insufficient training 

data, sophisticated pattern learning which can discover proxies for 

protected characteristics (e.g., gender, race, sexual orientation, and 

religious beliefs) -even when these are explicitly moved from the data, 

amongst others (see Bell, 2016; Murgia,2019). The issue has gained such 

attention that the UK Parliament Select Committee on Science and 

Technology commissioned an enquiry to investigate accountability and 

transparency in algorithmic decision making (see Science and Technology 

Committee, 2018) The IEEE Standards Association also introduced a global 

initiative for ethical considerations in the design of autonomous systems 

(see IEEE,2016). The Association for The Advancement of Artificial 

Intelligence (AAAI) in its code of conduct acknowledged that “the use of 

information and technology may cause new or enhance existing 

inequalities” and urges “AI professional...to avoid creating systems or 

technologies that disenfranchise or oppress people” (see AAAI, 2019). 

 
In terms of positioning this study, we briefly discuss related studies. The 

study by Paradice and Dejoie (1991) established that “the presence of a 

computer-based information system may influence ethical decision 

making”. However, we presume that given that this study predates the 

recent exponential growth in capability and ubiquity of AI tools, it does not 

address the peculiar challenges of AI tools in ethical decision making. 
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Johnson (2015) advances the topic to include artificial agents, highlighting 

the “push in the direction of programming artificial agents to be more 

ethical”. Martin (2019) extends the discussion further positing that 

algorithms are “not neutral but value-laden in that they…. reinforce or 

undercut ethical principles” and highlights that “algorithms are…an 

important part of a larger decision and influence the delegation of roles 

within an ethical decision”. Martin, Shilton and Smith (2019) argue that 

“ethical biases in technology might take the form of …biases or values 

accidentally or purposely built into a product’s design assumptions”. 

 
This paper aims to contribute to the literature base by synthesising the fields 

of ethical decision making and Explainable AI (XAI) and proposing, but not 

attempt to validate empirically, propositions, and belief statements that can 

be subsequently tested in future studies. These propositions are based on 

conclusions derived from the existing literature, observation, logic, and 

empirical analogy. The scope of the study is AI augmentation where an 

PPM tool makes a prediction to a user (who makes the final decision) as 

opposed to automation where autonomous machines make decisions 

previously entrusted to humans. 

 
A better understanding of how users navigate these ethical issues is of 

interest in evaluating decisions made by human agents using PPM models 

regardless of the degree of transparency of the model. Martin (2019) argues 

that “responsibility for…design decisions [which allow users to take 

responsibility for algorithmic decisions] is on knowledgeable and uniquely 

positioned developers”. By shedding light on how human agents make 

decisions with AI models, it would also assist developers with the design of 

explainable AI (XAI) systems that would assist human agents in identifying 

ethical issues and dealing with them appropriately. This will serve to 

improve AI augmentation, which will only increase as more AI tools are 

deployed in “the wild” (Rubeiro, Singh & Guestrin, 2016). 
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The issue is relevant and salient as it assists with answering questions about 

accountability. i.e., who is responsible when a human agent accepts an 

unethical prediction made by a PPM tool: Is it the human decision-maker 

or the AI agent? The UK Parliamentary Select Committee report 

recommends exploring “the scope for individuals” ... “where    appropriate, to 

seek redress for the impacts of such decisions”. Some experts are “wary of 

placing full responsibility on the user of an algorithm” (Klimov, 2019). That 

would suggest that a degree of responsibility (however small) rests with 

the user. Other experts suggest that “we may want to assign strict liability [ 

to the user of the algorithm] in certain settings” (see Weller, 2017). 

 
A couple of factors further compounds this issue: 

 
Human users tend to assign traits typically associated with other humans 

(e.g., intentionality, beliefs, desires) to AI tools (de Graaf & Malle, 2017). 

 
The acknowledgement that these models can process vast amounts of data 

effectively and discover interactions in the data far beyond a typical human’s 

comprehension (Amoore, 2017). 

 
The combination of these factors increases the likelihood that an unethical 

prediction by an AI model will be accepted as it is regarded as a trusted 

expert. 

 
The remainder of the paper is structured as follows: Section 6.3 defines 

vital terms built on throughout the paper. Section 6.4 discusses the basis 

for the findings and propositions from the literature synthesis while the 

final section summarises recommendations and proposes further research 

areas for extending these. 

 
6.3 Definitions 

 
6.3.1 Moral agent 
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A person who makes a moral decision regardless of how the issue is 

constructed (Sonenshein, 2007). In the context of this study, the moral 

agent is the stakeholder who decides with the aid of a PPM tool. For 

example, the Human Resources (HR) officer who determines that a job 

application should not proceed based on the prediction of a model. The 

moral agent is also referred to in this chapter as ‘the user’ of the PPM tool. 

 

6.3.2 Ethical decision 
 

Several studies have highlighted the lack of a widely accepted definition of 

ethical behaviour (see Cavanagh, Moberg & Velasquez, 1981; Bechamp & 

Bowie & Arnold, 2004). Rather than base our definition of an ethical decision 

on consensus (e.g., see Jones, 1991; Trevino, Weaver & Reynolds, 2006) we 

adopt definitions based on a priori principles, e.g., Kant’s (1785/1964) 

respect principle (see Tenbrunsel & Smith-Crowe, 2008). For example, it is 

unethical to disrespectfully discriminate against a person based on their 

ethnicity or gender, while the converse is also true. Smith-Crowe (2004) 

and Bowie (1999) provides further examples of how Kant’s principle is 

applied in business. 

 
Tenbrusel & Smith-Crowe (2008) argue that unethical decisions could be 

made intentionally or unintentionally (intended and unintended 

unethicality). We posit that the use of PPM models has the potential to 

significantly increase instances of unintended unethicality where a human 

agent accepts the prediction of a model without realising it may be flawed. 

 
6.3.3 Explainability 

 
The ability of a PPMmodel to summarise the reason for its behaviour or 

produce insights about the causes of its decisions. Explainable models are 

also described as “transparent” models. Closely associated with 

explainability is the quality of explanation, i.e., is the explanation “good” 

enough? Gilpin, Bau, Yuan, Bajwa, Specter and Kagal (2018) posit that the 
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quality of the explanation can be evaluated by its degree of interpretability 

and completeness. 

 
6.3.4 Explainer 

 
An agent who supplies an explanation for the recommendation made by 

itself or another PPM model. 

 

6.3.5 Explainee 
 

A person to whom an explanation is supplied, often in response to a request 

for an explanation. In this context, the explainee is usually the moral agent 

who makes the final decision based on the prediction provided by the PPM 

model. 

 
6.3.6 Interpretability 

 
The ability to describe what the PPM model did (or did not do) in a manner 

that is understandable to users. As users vary in their level of skills and 

expertise, interpretability requires the ability to describe in a flexible and 

versatile manner, tailored to the user’s particular mental model. Ribeiro, 

Singh & Guestrin (2016) make a connection between a user’s “trust” in the 

system and the likelihood of accepting the prediction of the model. They 

make a distinction between trusting a prediction and the model as a whole. 

Trust at both levels is predicated on how much the user understands the 

model’s behaviour. 

 
6.3.7 Completeness 

 
The ability to describe the operation of a PPM model accurately. An 

explanation is more complete if it allows the behaviour of the model to be 

anticipated in more situations (Gilpin et al.,2018). 

 
6.4 Literature Synthesis 
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We commence by examining rationalist (or reason-based) models of ethical 

decision. Numerous models have been proposed that view ethical decision 

making as a rational process (Ferrell & Gresham, 1985; Rest, 1986; Trevino, 

1986; Hunt & Vitell,1986). Perhaps the best-known of these models is that 

proposed by Rest (1986). This model argues that ethical decision-making 

progresses through a four-stage process from recognising a moral issue 

ending with engaging in moral behaviour. Jones (1991) extended this model 

further to develop an issue-contingent model which argued that the moral 

intensity of an issue influenced ethical decision making and behaviour. 

However, Sonenshein (2007) highlights four key limitations of rationalist 

models as follows: (i) they fail to adequately address the presence of 

equivocality (i.e., the existence of multiple interpretations) and uncertainty 

(i.e. lack of complete information) that are present in many real-world 

scenarios (ii) they presume that ethical behaviour is preceded by deliberate 

reasoning (iii) they fail to fully emphasize the construction of ethical issues 

and, (iv) they assume a strong causal link between moral reasoning and 

judgement. We recognise that we must build on a model that addresses 

these limitations. For example, due to varying degrees of transparency, 

equivocality and uncertainty are ubiquitous in decision-making making 

with PPM tools. Hence, we adopt the Sensemaking Intuition Model (see 

Sonenshein, 2007), which addresses these limitations, as the foundation on 

which we build our synthesis. 

 
However, we will first consider how a human user interacts with an 

explainable PPM agent to obtain explanations and subsequently arrive at a 

decision (ethical or otherwise - see Figure 6.1). The process commences 

when the user detects that a prediction it has received from the PPM agent 

is abnormal. The user subsequently evaluates the explanations (if any) 

provided by the explainer and selects a subset of it. Depending on how 

comprehensible or plausible the explanations are, the user may request 

clarification, which is in turn, evaluated. The user may conclude the 

explanation/clarification are plausible and accept the prediction or 
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conversely may conclude that the prediction provides evidence of 

algorithmic bias and reject the prediction. 

 

 
 
 
 

Figure 6.1 - The PPM explanation cycle 
 
 
 

Figure 6.2 maps the PPM explanation cycle to the various stages of the 

ethical decision-making model. Though this is not a precise mapping - for 

example, the user may request clarification after making an intuitive 

judgement - the mapping is useful for designing interventions that will 

increase the likelihood that a user will detect algorithmic discrimination 

and behave ethically. 

Explainee

PPM agent Explainer

1. Detect abnormal
prediction

2. Request Explanation

3. Generate
explanation

4. Evaluate
explanation

5. Request / Receive
Clarification(optional)

5. Evaluate
clarification
(optional)
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Figure 6.2 - Synthesised Model of Ethical Decision Making with AI 

Augmentation 

In the following section, we describe each part of the model in detail and 

describe how the explanation provided (or lack of such), impacts ethical 

decision making. 
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6.4.1 Issue Construction 
 

6.4.1.1 Expectations 
 

Sonenshein (2007) posits that the ethical decision-making process 

commences with issue construction where “individuals create their own 

meaning from a set of stimuli in the environment”. 

 
We argue that in the context of PPM tools augmenting human judgement, 

the issue construction process is influenced by the degree of transparency of 

the PPM model. Sonenshein argues that “individuals’ expectation affect 

how they construct meaning”. In the case of an opaque (or black box) 

model, whether the user recognises the prediction as “abnormal” will 

depend on the identification of a suitable “foil”. As established by several 

studies, people tend to request clarification about observations that they 

consider unusual or abnormal from their current perspective (see Hilton & 

Slugoski,1986; Hilton, 1996). Van Bouwel & Weber (2002) argue that 

establishing abnormality is often done using a contrastive case (also 

referred to as a foil). Of particular interest in this regard is what they label 

the O-contract of the form: why does object a have Property P, while object b 

has property Q. To be more precise; we consider the case where object a has 

Property P=X while an identical object b has Property P=Y.  To illustrate, 

consider two individuals, a and b, identical in all respects except for 

gender, who both submit a loan application around the same time. 

However, the model predicts that one individual will default, while the 

other will not. If the user is aware of the predicted outcomes in both cases, 

one of the cases will serve as a foil (or counterfactual). The user will utilise 

abductive reasoning to attempt to determine the cause of the observed 

prediction (See Peirce,1997). To accomplish this, the user will generate 

several hypotheses as to the likely causes of the prediction (one of which is 

likely to be that there is algorithmic discrimination at play), assess the 

plausibility of these hypotheses and select the “best” hypothesis. Harman 

(1965) describes this process as “inference to the best explanation”. If 
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algorithmic discrimination is thought to be the best hypothesis (regardless 

of whether or not it is the real cause), the user will construct the issue as 

ethical. However, there may not be a foil readily available, or the user may 

not be aware of it, in which case the user may not construct the issue as an 

ethical one. 

 
In the case of a PPM model with any degree of transparency, the trigger for 

detecting abnormality typically starts with a request for an explanation. 

Though Miller (2019) posits that curiosity is the primary reason an 

explanation is requested, we argue that in this context, an explanation is 

more likely to be requested for regulatory or customer relations 

management reasons i.e., to justify the decision made to a regulator or 

customer respectively. However, the issue construction process is 

dependent on how the system presents the reasons for the prediction, as 

well on how the user selects and evaluates the explanation. Though most 

transparent models present their explanation as causal chains or 

probabilistic models, Miller (2019) argues that “whilst a person could use a 

causal chain to obtain their own explanation “...” this does not constitute 

giving an explanation”. In terms of explanation evaluation, he argues that 

“whilst likely causes are good causes, they do not correlate with 

explanations people find useful”. He posits from his review of the literature 

that there are three criteria people find useful in evaluating explanations: 

simplicity, generality, and coherence. To illustrate this, consider the case of 

a user requesting an explanation for a prediction from an explainer such as 

LIME (Rubeiro, Singh & Guestrin, 2016). The user is presented with a list of 

features that contributed to the prediction in the order of magnitude of 

their contribution. The user subsequently assesses whether or not the 

features that drove the prediction are plausible based on their subject 

matter expertise. If some unexpected features are driving the prediction, 

the user may view this as an abnormal prediction. The user may search for 

a foil (i.e., a similar case), examine whether a similar prediction was made 

and whether similar unexpected features drove this. If the identical cases 
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have different outcomes, the user may be alerted to the existence of an 

ethical issue. 

 
Given the contrast between opaque and transparent models as described 

above, we argue that the more transparent a model is, the more likely it is 

that the agent will construct the issue as an ethical one. For example, if the 

user can understand which features made the most significant contribution 

to a prediction, they are more likely to detect if algorithmic discrimination 

exists (interpretability). By the same token, because a more complete 

explanation is likely to shed light on of the system’s behaviour, it is likely to 

make the user recognise the existence of ethical issues than a less complete 

system. 

 
Proposition 1: The more explainable a PPM model is, the more likely it is 

that the human agent will construct the issue as ethical as compared to less 

explainable models. 

 
We argue that the type and goal of the explanation requested also 

influences the issue construction process. Initially, the user may request an 

explanation for the abnormal prediction vis-a-vis the foil. However, where 

the issue is of high moral intensity (e.g., see Maybin, 2016) or there have 

been repeated instances of abnormal predictions, the user starts to question 

the credibility of the entire system. Rather than request an explanation for 

a specific prediction, they start to ask for explanations about the model itself 

and its learning configuration - a “global perspective” which explains the 

model (see Ribeiro, Singh & Guestrin,2016). This requires a “model of self” 

which approximates the original model and exists primarily for an 

explanation (see Miller, 2019). That paper highlights an example of such 

an explanatory modification of self from a study by Hayes & Shah (2017). 

 
Numerous studies have demonstrated that the user evaluates and selects a 

subset of explanations provided by the explainer as relevant based on 
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factors such as abnormality, the contrast between the fact (i.e., observed 

prediction) and the foil, and robustness, amongst others (see Miller, 2019). 

Also related to issue construction, the study by Kulesza, Stumpf, Burnett, 

Yang, Kwan and Wong (2013) explored the link between the soundness (or 

correctness) and completeness of the explanation. They recommended that 

while completeness was more critical than soundness; it was important not 

to overwhelm the user. Miller (2019) also argues that when the entire 

causal chain is presented to the user, there is a risk that the less relevant 

parts of the chain will dilute the crucial parts that are important to explain 

the prediction. This recommendation runs contrary to the intuitive view 

that more information is better than less. 

 
Proposition 2: The more interpretability (as opposed to complete) the 

supplied explanations are, the more likely it is that the human agent will 

correctly construct the issue as a moral one. 

 
6.4.1.2 Motivational drive 

 
Tenbrusel and Smith-Crowe (2008) argue that “biases, intuition and 

emotion .. must be considered” in the ethical decision-making process. This 

aligns with the position put forward by Sonenshein (2007) that “individuals 

see what they expect to see, but …also see what they want to see”. We 

consider the implications of these biases on ethical decision-making using 

PPM tools. 

Messick and Bazeman (1996) postulate that internal theories influence the 

way we make decisions. Strudler and Warren (2001) provide an example of 

one such bias (authority heuristics) which describes the trust we place in 

the expertise of authority figures which may be misplaced. As we argued 

earlier, humans tend to view AI models as authority figures. However, as 

highlighted earlier, the user is likely to bring biases into the evaluation of 

explanations provided based on their perceived intention of the explainer 

(see Dodd & Bradshaw, 1980). 
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Abnormality is a critical factor in ethical decision making as it triggers the 

request for an explanation regarding the basis for the model’s prediction. 

(Miller, 2019). However, what is viewed as abnormal is subject to cognitive 

biases held by the user. For example, Gilbert and Malone (1995) highlight 

correspondence bias due to which people tend to explain other people’s 

behaviour based on traits. In other words, a user may not view a model’s 

prediction as abnormal due to discriminatory tendencies they may 

harbour or may give higher weight to unimportant causal features that 

support biases. It is also possible that the user may select a conjunction of 

facts in the causal chain and assign them higher weighting that they 

deserve because it aligns with their preconceptions (see Tversky & 

Kahneman, 1983). 

 
Proposition 3: The more aligned a human agent’s biases are with the PPM 

model’s recommendations, the less likely they are to construct the issue as 

a moral one. 

 
6.4.1.3 Social anchors 

 
We posit that the existing “ethical infrastructure” in the organisation is 

another important factor that impacts the issue construction process when 

making decisions with AI tools. Ethical infrastructure refers to 
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“organisational climate, informal systems and formal systems relevant to 

ethics” (Tenbrunsel, Smith-Crowe & Umphress, 2003). Where the ethical 

infrastructure supports constructing moral issues regarding the existence of 

algorithmic discrimination, the user is likely to do so; otherwise, they will 

not. 

 
Sonenshein (2007) argues that “employee’s goals …will affect how they 

construct an issue”. They may view unethical behaviour as consistent with 

“rules of business” if it enables them to achieve their goals. This is consistent 

with results from Schweitzer, Ordonez and Douma (2004), which concludes 

that goal setting is negatively associated with ethical behaviour. This 

conclusion aligns with the findings by Hegarty and Sims (1978) and 

Tenbrunsel (1998), which discovered a positive correlation between 

incentives and unethical behaviour. In terms of decision making with PPM 

tools, this suggests that if an organisation sets goals that encourage specific 

outcomes based on PPM tools without taking appropriate action to manage 

undesirable side effects, users are less likely to construct ethical issues 

appropriately. 

 
Proposition 4: Users working with PPM models in organisations with 

more supportive ethical infrastructures are more likely to challenge the 

model’s recommendation compared to users in organisations with less 

supportive ethical infrastructures. 

 
6.4.1.4 Representation 

 
Sonenshein (2007) posits that the user’s representation – their “mental 

model…of how others see a situation” – is also an important moderator of 

issue construction. We argue that a significant “other” in decision making 

with PPM tools is the explainer which can shed light on the factors that 

drove the prediction made by the PPM agent. Sonenshein quotes a study by 

Weick and Roberts (1993), which found that people engage in 

representation through communication with others. This highlights the 
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need, not only for the user to be able to request an explanation, but also 

about the nature of the explanation provided. For example, though the 

explanation provided could include details such as the training data, 

optimisation cost function, hyperparameters, etc., these are not likely to be 

useful to the typical user. It is worth noting that the user is likely to be 

distrustful of the explanation offered. This conclusion is based on research 

which indicates that individuals tend to prejudge the intention of the 

explainer and filter out information that supports the prejudgement (see 

Dodd & Bradshaw, 1980). As a result, the user is likely to request 

clarification and additional explanation of any explanations provided. This 

supports the requirement for an explanation as dialogue, which facilitates 

challenges from the explainee (“I do not accept your explanation or parts of 

it”). 

 
The other form of representation that is relevant, is the opinion of other 

users of the PPM tool. Sonenshein (2007) refers to these as “social 

anchors…interlocutors who help an actor test his or her interpretation of 

social stimuli”. This suggests that the way a user constructs the ethical issue 

in isolation is likely to be different from the manner it will be constructed if 

done collaboratively with other users. In the latter scenario, additional users 

are likely to be able to provide additional examples of foils which will 

broaden the initial user’s frame of reference and enable them to construct 

the issue in a broader manner. 

 
Proposition 5: The more collaborative the issue construction process is, the 

more likely it is that the user will correctly construct an issue as ethical as 

compared to issue construction done in isolation. 
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6.4.2 Judgement 
 

6.4.2.1 User Attributes 
 

Sonenshein (2007) posits that the intuitive judgement stage directly follows 

the end of the issue construction stage with the user reaching a plausible 

interpretation. At this stage, the actor responds to the issue (as constructed 

in the initial stage) using intuition - an “automatic, affective reaction”. With 

regards to ethical decision making with PPM tools, the agent makes an 

intuitive judgement which rules the prediction as discriminatory or non- 

discriminatory. 

 
Sonenshein (2007) further argues that an individual’s level of experience is 

a key factor that influences their judgement, stating that “as individuals 

develop experience, they can internalise that experience into intuitions. 

Regarding ethical decision making with PPM tools, this implies that a less 

experienced user is likely to challenge the prediction of the PPM tool. They 

are likely to have less experience of abnormal predictions and as such are 

more likely to view the PPM tool as an expert, the converse of which is true of 

more experienced users. 

 
Also relevant at this stage is the work of Tenbrunsel and Smith-Crowe 

(2008). The authors introduce the concept of decision frames that 

illuminate the perspective of the decision-maker and is moderated by 

previous experience. For example, suppose the decision-maker primarily 

adopts a business or legal frame. In that case, they are less likely to judge a 

model’s prediction as discriminatory (even if there exists evidence to the 

contrary). Though Sonenshein suggests that individuals infrequently alter 

their initial judgement after it has been made, we argue that exposing the 

basis on which a PPMmodel made a prediction can shift the user’s decision 

frame such that what may have been perceived at the outset as a 

business/legal decision is transformed into an ethical one. We believe this is 

especially the case for more morally intense issues. e.g. if the PPM model 
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is  being used to determine the risk of reoffending for an offender (Maybin, 

2016). 

 
We argue that the degree of interpretability also influences the user’s 

judgement. For example, given an opaque model and the absence of a 

suitable foil, the user is unlikely to judge the model’s prediction as 

discriminatory. This is backed up by findings which relate the degree of 

perceived control over an event with attribution of responsibility (Fiske & 

Taylor,1991). In other words, a user deciding based on a prediction from a 

black box model is likely to attribute the decision to the model (“Computer 

says ‘No’”) as opposed to a prediction based on an interpretable model 

where the user is more likely to perceive that they have more control. 

 
Kelman and Hamilton (1989) argue that an individual’s propensity for 

challenging authority (i.e., the model’s prediction) depends on which is 

the more powerful of two opposing forces in tension - binding and 

opposing forces. Binding forces strengthen authority existing structures 

while opposing forces intensify resistance to authority. As earlier stated, 

human users tend to view the model as an ‘authority’ due to their data 

computation ability. We argue that interpretability is likely to heighten the 

opposing force and make the user more likely to challenge the prediction 

where it is abnormal. In addition, it will also make it easier for the user to 

justify their rationale for disregarding the model’s recommendation. 

 
Proposition 6: The more experienced a human agent is, the more likely they 

are to correctly judge a model’s prediction as discriminatory. 
 
 

6.4.2.2 Strength of Evidence 
 

In addition, we argue that for an explainable system, the strength of the 

evidence provided to support the explanation will influence the judgement 

the user reaches. Below we highlight a couple of factors in this regard. 
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Miller and Gunasegaram (1990) argue that the temporal distance of events 

is an important moderating factor, specifically that people tend to “undo” 

more recent events. As it pertains to ethical decision making with AI, this 

would suggest that the user is unlikely to recognise the foil as valid if it is 

sufficiently temporally distant. Even if the case currently being assessed and 

the identified foil have identical properties, the user is likely to intuitively 

feel that due to the passage of time, changes to legislation, policies, and 

procedures, etc., treating the case as identical is not feasible. As a result, they 

may not dismiss evidence that points towards algorithmic discrimination, 

even if the user has some suspicion about the unethicality of previous 

decisions. 

 
We posit that the use of probability in explanation, primarily when used to 

explain the causes of the prediction will increase the likelihood of correctly 

judging an algorithm’s prediction as discriminatory (see Josephson & 

Josephson, 1996). The study by Eynon, Hills and Stevens (1997) would also 

appear to indicate that where ethical training is available, especially when 

it is tailored to the use of AI tools, users are likely to correctly judge a 

model’s prediction as discriminatory. 

 
Proposition 7: The more substantial the evidence presented to support an 

explanation, the more likely it is that the human agent will correctly judge 

the model’s prediction as discriminatory as compared to weaker evidence. 
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6.4.2.3 Social pressures 
 

Regarding the influence of social pressure on forming ethical judgements, 

Sonenshein argues that “organizations strongly influence how their 

members behave and what they believe”. We posit that in terms of ethical 

decision making, a key influencing factor is the design of the AI tool and 

associated processes. Martin (2019) refers to these as “affordances – 

properties of technologies that make some actions easier than others”. The 

higher the technological hurdle the user must clear, the less likely they are 

to adjudge the model’s prediction as discriminatory. For example, if the 

user has to perform more operations (e.g., navigate to different screens, 

click multiple buttons, etc.) in order to reject the AI tool’s prediction and 

provide a significant amount of mandatory justification (vis-a-vis accepting 

the recommendation), then the design of the tool or process is likely to 

influence their judgement. This concept has been acknowledged in “Values 

in Design” (ViD) which describes the field of research that investigates how 

“individually and organizationally held values become translated into 

design features” (Martin, Shilton and Smith, 2019). 

 
Proposition 8: The more complicated the design of the tool and associated 

processes make it to judge the AI tool’s prediction as incorrect, the less 

likely it is that the human agent will do so. 

 
6.4.3 Explanation and justification 

 
Sonenshein (2007) posits that the judgement phase is followed by the 

explanation and justification phase, where the moral agent attempts to 

explain and justify their reaction to the constructed issue. We refer to this 

stage simply as the justification stage to avoid any confusion with the 

point(s) in the construction stage where the explainer provides an 

explanation for the prediction. Sonenshein (2007) further argues that moral 

agents “employ the rules of rational analysis” to “bolster their confidence 

in the decision” as well as that of others. This reinforces the 
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recommendation by Miller (2019) for the adoption of a conversational 

mode of explanation. The dialogue between the user and the explainer 

preserves an audit trail of the process by which the user constructed the 

issue and reached their judgement. Making this conversation readily 

available to the user for review also has the added advantage of highlighting 

inconsistencies in the issue construction process (e.g., implausible 

arguments). This highlights the requirement for social interaction between 

the explainee (i.e. the user) and the explainer. 

 
Proposition 9: The more conversational the dialogue between the 

explainer and the user, the better the quality of justification the human agent 

can provide for their judgement. 

 
6.5 Summary 

 
Based on the preceding, we conclude with several non-exhaustive 

recommendations to assist users in making more ethically sound decisions 

when using PPM tools. First, we recommend that the explanation provided 

by the explainer pre-empt the user’s request for an explanation for 

abnormal predictions and make that available. Though Hilton (1990) 

recommends providing a contrastive explanation vis-a-vis a ‘typical’ case, 

we suggest that the explainer should select an appropriate foil with identical 

properties and different predictions and explain why the predictions were 

different. The user should also have the ability to replace the system- 

selected foil with another they choose and request a contrastive 

explanation for this. Though Miller (2019) suggests that an unprompted 

explanation could prove superfluous and distracting over time, we 

recommend that these explanations could be presented as ‘hints’ where the 

details remain hidden, but which can be readily accessed as required by 

the user. We argue that if a user correctly constructs and judges an issue as 

ethical early on, they are more likely to engage in moral behaviour and as 
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such, investing in the design to highlight such issues is likely to drive desired 

behaviour. 

 
Secondly, we propose the provision of explanations at different levels to 

facilitate ethical decision making. Apart from the explanations for each 

prediction, the tool should be able to explain its model of self (see section 

6.4.1.1). Besides, the tool should also support the ability to request 

clarification on any section of the causal chain. 

 
Thirdly, based on the conversation model of explanation (see Hilton,1990), 

the explanation should be presented in a manner that follows the “basic 

rules of conversation”. This would include only presenting information 

relevant to the user based on their mental model (see also Jaspars & Hilton, 

1988), keeping track of which information has already been shared (based 

on the premise that once something has been learned, it should not need to 

be  explained again) and whether the user accepted it as credible or not, etc. 

It could also support presentation modes such as chatbots which facilitate 

conversational dialogue. 

 
Fourthly, we recommend providing the capability for the user to collaborate 

with other users of the tool in the decision-making process. The user could 

share details of the case and the model’s prediction with one or more users 

and request their opinion(s). This would help to widen the initial user’s 

frame of reference and could make them aware of more suitable foils. It 

would also assist in raising their experience level as the collective 

experience of all the collaborators will be utilised in the decision-making 

process. 

 
Finally, we recommend that the process for rejecting the PPM model’s 

prediction and highlighting the potential existence of ethical issues 



141  

should be streamlined as possible and should not be more complicated than 

the process for accepting the model’s prediction. This will increase the 

likelihood that the user will follow through on any moral intent they had 

previously established. 

 
In this paper, we have synthesised the literature on ethical decision making 

and explainable AI and proposed several testable belief statements. Though 

we do not present empirical evidence for these in this paper, we expect that 

these will be tested and empirically validated in future studies utilising a 

variety of appropriate methodologies. For example, there exist 

opportunities to utilise technology such as functional Magnetic Resonance 

Imaging (fMRI) to monitor the brain activity of users as they make decisions 

using AI tools, undertake a phenomenological study to gather rich data 

among real-life practitioners, amongst others. In future work, we intend to 

attempt to tackle a number of these opportunities. 

 
In the concluding chapter we summarise the key findings from the thesis 

and propose future work to build on the research we have done. 
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7 CONCLUSION AND FUTURE WORK 
 

7.1 Conclusion 
 

In this thesis we have discussed contextual and ethical issues with the 

predictive process monitoring framework and proposed ways to address 

these. 

 

We started by describing the motivation for the thesis, i.e., a dearth of 

research that assesses the relative importance of contextual factors in the 

predictive process monitoring workflow. We also mentioned our objective 

to shed light on the nature of the relationship between contextual types, 

specifically process and social context. Finally, we expressed our aim to 

uncover the manner human agents use the predictions generated by 

process monitoring and other Artificial Intelligence (AI) workflows. 

 

We subsequently detailed the findings of a systematic literature review we 

undertook to identify existing studies which adopted a clustering-based 

remaining-time predictive process monitoring approach and a comparative 

analysis to compare and benchmark the output of the identified studies 

using 5 real-life event logs. We identified five pertinent approaches and 

found that the approach that clustered traces based on activities (similar to 

state-based clustering) performed best (See Section 2.8). We also detailed 

the process for performing a Systematic Pre-Review Mapping (subsequently 

referred to as SPRM) process to determine the degree of overlap between 

existing studies and this review. Whilst the literature base recommends 

performing this process, we were unable to identify any papers in the 

computing science field which had implemented it. 

 

The findings from this chapter are important in providing guidance for 

researchers and practitioners for selecting a clustering approach for their 
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predictive process monitoring workflow. It may be argued that clustering-

based approaches are outdated and have been overshadowed by neural 

network-based approaches (which have become very popular in recent 

years). Whilst the latter make it relatively easy to include additional 

attributes into the prediction model and generally provide more accurate 

predictions, they are also less explainable and interpretable than 

clustering-based approaches. As highlighted in chapter 6, predictive 

models which are less explainable are generally less trusted. We argue that 

as it is essential that the predictive process monitoring tools deployed in 

real world setting are trusted, clustering-based approaches still have an 

important role to play in the family of approaches. 

 

However, accuracy is also an important feature to consider as an 

explainable model with poor accuracy will not be of much use to a user. 

Interestingly, the best performing algorithm (i.e., data driven) was based 

on association rule clustering which clustered traces based on the activities 

executed. This technique treats the set of activities as a “basket” and does 

not consider the order or sequence of the activities. In other words, 

σi={a,b} is equivalent to σj={b,a}. The same is true, though, of the frequency 

encoding technique required for the other approaches, which does not 

capture sequence information in the feature vector used for clustering. 

Saxena et al (2017) discussing choosing appropriate clustering techniques, 

argue that “no algorithm can be uniformly good under all circumstances…. 

each algorithm has its merit (strength) under some specific nature of data 

but fails on other type of data.” It appears that, for the encoded traces, the 

association rules technique does a better job of minimising the distance 

between traces in the same cluster and maximising the distance between 

clusters, hence grouping similar traces together and resulting in better 

accuracy. 

 

Subsequently, we investigated the impact of social contextual factors in the 
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predictive process monitoring framework and proposed a survival analysis 

approach for predictive process monitoring. We found that group 

betweenness and closeness centrality were generally positively correlated 

with process cycle time while the group eigenvector centrality was generally 

negatively correlated. We also found that survival analysis approach 

performed comparably with start-of-the-art predictive process monitoring 

techniques. 

 

The findings from this chapter have implication for team formation and 

management. Firstly, it invites a rethink of the definition of a team. 

Returning to the public service example we have utilised in earlier 

chapters, rather than simply adopting a functional perspective (e.g., Road 

Maintenance, Parks, etc), we adopt a case (or process instance) perspective 

and define our team as the group of performers involved in executing the 

activities on the case (including the citizen who raised the initial request). 

This will result in the creation of numerous temporary, transient teams 

working together to complete a particular case and which “disband” when 

the case completes. The concept of temporary teams is well established 

and is a mature field of research. For example, criminal investigations are 

often undertaken by temporary law enforcement teams set up with the 

sole aim of completing that investigation. However, unlike temporary law 

enforcement teams, with our approach, team members not typically 

preselected. Often the performer is selected just before the activity is due 

to be executed with availability of the performer being the key factor 

influencing selection. Our research findings would suggest that the 

performers for each case should be preassigned with the group centrality 

measure for the group of performers being the key factor for selection.  In 

other words, given a network of handover-of-work ties, how can we design 

a team to achieve the desired process outcome(s)?  

 

The main advantage of this approach is that it increases the likelihood that 
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the desired process outcomes will be achieved due to the intentionality of 

the team’s selection. On the other hand, we should bear in mind that, rather 

than being based on actual historic data, the handover-of-work graph is 

forward-looking as it is based on proposed (rather than actual) handovers 

of work. If a performer is unavailable because of sickness, resignation, etc, 

the proposed handover-of-work graph will have to be adjusted to reflect 

reality.  

 

It is also worth calling out that the ties between team member is not only 

weak but also temporal in nature as a performer is an “active” team 

member when they are working on the case but is inactive before and 

thereafter. Often a performer is a member of multiple teams at any point in 

time as they are working on multiple cases.  The implication of this is that 

there may be a requirement for a case manager role who manages the case 

teams in collaboration with functional managers. The case manager would 

be responsible for team formation based on group centrality measures. 

 

Geletkanycz and Hambrick (1997) posit that "strategic choices are affected 

by the external ties of top management team members" and "the 

informational and social influences arising from external interactions will 

be reflected in strategic profiles". By extension, we argue that the decision 

and choices performers make as they work on cases is likely to be affected 

by ties with non-group members. However, there is a recognition that our 

approach only recognises handover-of-work. There are other interactions 

between performers that are just as important but are not captured (e.g., 

watercooler chats, email exchanges, etc). We acknowledge this as a 

limitation, in that our approach only considers handover-of-work which is 

captured as digital traces in a Process-Aware-Information-System (PAIS) 

but not other interactions which may be just as important, but not 

captured or analysed. 
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Next, we explored the impact of spatial context (a type of external context) 

on the predictive process monitoring workflow. We introduce the concept 

of a spatial event log and propose an approach for incorporating the spatial 

context into the predictive workflow. We demonstrate that the spatial 

context improves the predictive power of business process monitoring 

models. 

 

In our opinion, the main challenge with the adoption of spatial context in 

the predictive process monitoring workflow is increasing the collection of 

real-world spatial data. The technology for collecting spatial data is readily 

available, as devices such as IoT sensors, RFID tags and location trackers, 

among others, have become more mainstream. The capacity to collect 

spatial data is ubiquitous as most basic smartphones are enabled to collect 

spatial data.  As a result, there may currently be suitable spatial data 

available which could be combined with existing event logs to create 

spatial event logs. However, incorporating spatial context into the process 

mining / monitoring workflow will require an appreciation by the process 

mining community (both academic and practitioners) of the utility of 

spatial data, not only for prediction, but for the other use cases mentioned 

in section 4.2.  We acknowledge that the utility of spatial features in 

isolation is limited; however, we believe that in conjunction with other 

features it can be transformational. 

 

As this section concludes the use of contextual features to predict 

remaining time, we acknowledge that we have studied contextual types in 

isolation. However, we realise that there are opportunities to study 

contextual types collectively, especially the interaction between them. To 

illustrate, if the location of process performers is recorded and one of them 

tests positive for Covid, it would be possible to determine which 

performers had been within a certain threshold distance (e.g., 2 m) of that 



147  

performer and require them to isolate, rather than require all performers 

to isolate (i.e., interaction between social and spatial context). In that 

scenario, it would also be possible to determine the availability of 

performers for working on inflight cases (i.e., process context). However, 

ethical factors should be taken into consideration in the collection and 

management of this data. 

 

We subsequently examined the nature of the relationship between 

workload (a process contextual factor) and stress (a social contextual 

factor). We found partial evidence for the Yerkes-Dodson law; however, 

this was in the minority in the event logs we examined, with the majority of 

the relationships being linear. We also found that the cumulative total 

workload or the cumulative number of cases completed by a performer are 

factors that influence whether the Yerkes Dodson law is obeyed and that 

this happened when a threshold value was surpassed; otherwise, it is not. 

Recently there has been an increased focus on mental well-being. Studies 

such as Williams, Michie & Pattani (1998) and Pines & Aronson (1988) 

highlight workload as a leading cause of stress in the workplace. Our 

findings suggest that in terms of stress management intervention, 

increasing the recovery rate yields better results vis-à-vis reducing the 

exposure of the workforce to stress. It is worth clarifying that this finding 

does not suggest that workplace stress prevention efforts should be 

eliminated or reduced. Rather, it recommends that in allocating resources, 

more resources should be allocated to stress recovery efforts than to 

prevention. However, we acknowledge that this finding may have ethical 

implications as it may be perceived as an increased acceptance or tolerance 

for workplace stress.   

 

Our findings also suggests the implementation of a sophisticated workload 

management system that monitors each performer’s workload and 

processing speed, detects their inflection point, and provides them the 
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right quantity of work to manage their stress level. However, the impact of 

holding back work on process & business outcomes should also be 

considered, especially in terms of increased delays and wait time. If the 

implementation of the proposed workload management system is proven 

to add delays to processing time, a trade-off may have to be struck between 

a healthier and more productive workforce, on the one hand, and accepting 

a certain amount of delay to processing time. 

 
Finally, we investigated ethical decision making with AI tools. We proposed 

a model of ethical decision making with AI augmentation and made a 

number of recommendations to enable the design of AI tools which facilitate 

ethical decision making. 

 

As the recommendations in this chapter are based on yet-to-be tested 

propositions, there is a need to test these with a view to validating them. 

We believe that there is scope to test these using multi-disciplinary 

approaches. For example, experiments could be designed utilising brain 

monitoring devices such as electroencephalography (EEG)) to measure 

brain activity and other parameters (such as where the gaze is focused) 

when a user is presented with a contrasting foil with a view to determining 

their thoughts and emotions as they cycle through issue construction, 

judgment, and justification. These experiments could provide very rich 

insight into the ethical decision-making process with PPM tools. 

 

However, once these propositions are validated, consideration should be 

given to developing and rolling out industry-wide frameworks based on 

them with a view to assisting users to identify algorithmic discrimination.  

As highlighted in section 6.2, there is an increasing acknowledgement by 

legislators, the academic and practitioner community, among others, of the 

harm caused by algorithmic discrimination, and this has resulted in 

focused attention to limit the harm. We argue that, in the same way that 

standards, frameworks and guiding principles, etc have been established to 
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facilitate good design in industries such as software and construction, 

similar scheme(s) could be set up to facilitate the design of PPM tools that 

adhere to these recommendations. This could be taken further and 

incorporate licensing or certification such as those utilised for building 

safety-critical systems (e.g., used in aircrafts or nuclear power plants). It 

could be argued that the latter position is extreme, however so is harm 

caused to a person given a more severe prison sentence or denied an 

urgently needed loan because a user acted on the incorrect prediction of a 

PPM tool. 

7.2 Future Work 
 

In this concluding section, we recommend future research that builds on 

and extends the work done in this research project. 

We propose a couple of areas for further research to extend the work 

done on the role of social context in predictive monitoring (Chapter 3). 

Firstly, as an increasing number of automated agents augment the human 

workforce, we believe there is value in exploring how social networks 

between these categories of workers differ and the implications of these. 

Secondly,   we propose an exploration of the effect the feature values of 

neighbouring nodes have on behaviour. For example, we could explore 

the temporal effect of a high workload on workers in an individual or 

group’s neighbourhood. This would enable a better understanding of 

workload distribution in the social network over time. 

With regards to the role of spatial context in predictive monitoring 

(Chapter 4), as mentioned in Section 4.2, incorporating the spatial context 

into the event log facilitates research opportunities which extend beyond 

predictive process monitoring. Referencing the refined process mining 

framework earlier mentioned (see Section 1.1), it 'opens the door' to 

performing spatial process discovery (process models by location) and 

conformance testing. For 'Recommend', it would be possible to incorporate 

spatial context into the recommendation (i.e., the model recommends a 
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user in location A performs activity X; however, suggests a user in location 

B performs activity Y). 

Besides, a spatio-temporal extension to Tobler's law is proposed as follows: 

"everything is related to everything else but near and recent things are more 

related than distant things" (Bennet & Vale, 2018). As a result, we expect 

that a spatio-temporal model will make a more significant contribution to 

remaining-time predictive monitoring. 

 
Finally, we utilised the Euclidean buffer distance as the geographic 

covariate in this study. In subsequent studies, we recommend investigating 

whether other distance measures (e.g., the sum of distances between ei and 

ei+1) will yield better results. 

Considering the relationship between workload and stress (Chapter 

5), we propose several areas for further exploration. Firstly, we 

recommend that the study is repeated with different datasets and 

methodologies with a view to replicating the results and 

triangulating the conclusions. This     would shed some more light on 

the generalisability of the results. 

 
Secondly, if the thresholds we identified are replicated in further studies, 

we propose an exploration of why the identified factors (cumulative total 

workload or the cumulative number of cases completed by a performer) 

impact the Yerkes Dodson law and why these thresholds occur where 

they do. 

 
Thirdly, we propose the development of more sophisticated stress 

simulation models. For example, if the GAM model indicates a non-linear 

relationship between the workload and productivity, the simulation model 

could dynamically determine the inflection point at which productivity 

reduces. In addition, the model could simulate the impact of the prevalence 

of stress on variables of interest (e.g., on overall and individual 

productivity). Additionally, the model could factor in additional stressors 
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such as the pace and variety of work and shift patterns – all of which can be 

derived from the event log – and model the interrelationships between 

them. Finally, we propose adding spatial context to the event log. This 

would enable us to calculate the distance between performers and better 

model the interaction between them. We can subsequently utilise these 

interactions to model the spread of information, disease, etc in the 

workplace. 

 
Finally, with regards to the examination of ethical decision-making using AI 

augmentation, we proposed several belief statements but did not present 

empirical evidence for these. We expect that these will be tested and 

empirically validated in future studies utilising a variety of appropriate 

methodologies. For example, there exist opportunities to utilise technology 

such as functional Magnetic Resonance Imaging (fMRI) to monitor the brain 

activity of users as they make decisions using AI tools, undertake a 

phenomenological study to gather rich data among real-life practitioners, 

amongst others. In future work, we intend to attempt to tackle a number of 

these opportunities. 
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8 GLOSSARY 
 

Term Definition 

 
BPM 

 
Business Process Management is the discipline that 

combines approaches for the design, execution, control, 

measurement and optimization of business processes. 

(Van der Aalst, 2016:44) 

 
BPMS 

 
Business Process Management System. A platform or 

system that facilitates management of business 

processes (see above) 

 
Case 

 
A process instance. For example, for the process 'Request 

Waste Collection' each individual requests corresponds 

to a case. (Van der Aalst, 2016:32) 

 
Data Mining 

 
The analysis of (often large) data sets to find 

unsuspected relationships and to summarize the data 

in novel ways that are both understandable and useful 

to the data owner (Van der Aalst, 2016:12) 

 
de jure model 

 
A normative model which specifies how things should be 

done or handled (Van der Aalst, 2016:303) 

 
de facto model 

 
A descriptive model whose goal is not to steer or control 

reality. Instead, de facto models aim to capture reality 

(Van der Aalst, 2016:303) 
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Event An activity (i.e., a well-defined step in the process) and is 

related to a particular case (i.e., a process instance) (Van 

der Aalst, 2016:32) 

 
LSS 

 
Lean Six Sigma is a methodology that combines ideas 

from lean manufacturing and Six Sigma to improve 

performance by systematically removing waste and 

reduce variation in process outcomes. (Van der Aalst, 

2016:46) 

 
Post-mortem 

 
Information about cases that have completed, i.e., these 

data can be used for process improvement and auditing, 

but not for influencing the cases they refer to. (Van der 

Aalst, 2016:302) 

 
Predictive 

power 

 
A measure of the ability of a model to correctly predict a 

variable of interest 

 
Pre-mortem 

 
Event data for cases that have not yet completed. As such 

information in the event log about this case (i.e., current 

data) can be exploited to ensure the correct or efficient 

handling of this case. (Van der Aalst, 2016:302) 

 
Process Aware’ 

Information 

System 

 
All software systems that support processes and not just 

isolated activities. There is a process notion present in 

the software (e.g., the completion of one activity triggers 

another activity) and that the information system is 

aware of the processes it supports (Van der Aalst, 

2016:27) 
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Process Model A description of the activities and ordering of these 

activities required to achieve process outcomes. The 

process model may also describe temporal properties, 

specify the creation and use of data and stipulate the 

way that resources interact with the process (Van der 

Aalst, 2016:26) 

 
Social Network 

Analysis 

 
The application of the broader network of network 

science to the study of human relationships and 

connections (Hansen, Shneiderman and Smith, 2011) 

 
Subcontracting 

 
A subset of Social Network Analysis concerned with the 

transfer of work. The main idea behind the 

subcontracting metric (which measures this concept) is 

to count the number of times individual j executed an 

activity in between two activities executed by 

individual i (Van der Aalst et al,2007) 

 
Transition 

System 

 
The most basic process modelling notation. A transition 

system consists of states and transitions. Each transition 

connects two states and is labelled with the name of an 

activity (Van der Aalst, 2016:58) 
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