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A R T I C L E  I N F O
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A B S T R A C T

Micronuclei (MN) are a nuclear abnormality that occurs when chromosome fragments or whole chromosomes 
are not properly segregated during mitosis and consequently are excluded from the main nuclei and wrapped 
within nuclear membrane to form small nuclei. This maldistribution of genetic material leads to abnormal 
cellular genomes which may increase risk of developmental defects, cancers, and accelerated aging. Despite the 
potential importance of MN as biomarkers of genotoxicity, very little was known about the optimal way to 
measure MN in humans, the normal ranges of values of MN in healthy humans and the prospective association of 
MN with developmental and degenerative diseases prior to the 1980’s. In the early 1980’s two important 
methods to measure MN in humans were developed namely, the cytokinesis-block MN (CBMN) assay using 
peripheral blood lymphocytes and the Buccal MN assay that measures MN in epithelial cells from the oral 
mucosa. These discoveries greatly increased interest to use MN assays in human studies. In 1997 the Human 
Micronucleus (HUMN) project was founded to initiate an international collaboration to (i) harmonise and 
standardise the techniques used to perform the lymphocyte CBMN assay and the Buccal MN assay; (ii) establish 
and collate databases of MN frequency in human populations world-wide which also captured demographic, 
lifestyle and environmental genotoxin exposure data and (iii) use these data to identify the most important 
variables affecting MN frequency and to also determine whether MN predict disease risk. In this paper we briefly 
describe the achievements of the HUMN project during the period from the date of its foundation on 9th 
September 1997 until its 26th Anniversary in 2023, which included more than 200 publications and 23 work-
shops world-wide.

1. Background and early history of MN assays

The fields of mutagenesis and carcinogenesis research in eukaryotic 
cells emerged from the early observations that certain chemicals and 
ionising radiation can induce chromosomal aberrations [1,2] and that 
cancer cells often exhibit a wide range of structural and numerical 
chromosomal abnormalities [3,4].

Micronuclei (MN) were reported in erythrocytes by Howell and Jolly 
decades before metaphase analysis of chromosome aberrations became 
established [5,6]. For this reason, it was not known at that time that MN 
in erythrocytes originated from chromosome fragments or whole chro-
mosomes that were not segregated properly to the daughter nuclei of 
their normoblast precursors during mitosis [7].

The first papers to report that MN were induced by chemical geno-
toxins and ionising radiation in rodent bone-marrow cells and 

peripheral blood erythrocytes and the adoption of this methodology for 
routine in vivo genotoxicity testing in rodents were reviewed compre-
hensively in a 1983 report by the U.S. Environmental Protection Agency 
Gene-Tox Program [8]. In humans, increased MN were first reported in 
peripheral blood lymphocytes and/or erythrocytes in subjects with 
folate and/or vitamin B12 deficiency, exposure to ionising radiation and 
treatment with cytotoxic drugs [8–12].

The use of peripheral blood lymphocytes is of great interest because 
they can be easily cultured and used to study the effects of various 
biological, chemical, radiological, nutritional and genetic factors on 
chromosome aberrations and MN formation in vivo, ex vivo and in vitro. 
The use of erythrocyte and lymphocyte MN assays in humans gradually 
increased; and MN assays in cells from easily accessible epithelial tis-
sues, such as buccal, nasal, cervical and urothelial cells started to be 
developed which enabled the possibility to compare MN frequencies 
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Fig. 1. Flow diagram of inter-relationship between endogenous/exogenous genotoxin, glycation and inflammation exposure and their sequential impact on 
micronucleus (MN) formation in tissues for which MN assays have been established (BUC MN, micronuclei in buccal cells; CDC MN, micronuclei in cervix derived 
cells; LYMN MN, micronuclei in lymphocytes; RBC MN, red blood cell micronuclei; UDC MN, micronuclei in urine derived cells). Other factors not shown in the 
diagram that influence MN formation include genetic susceptibility to genotoxin-induced micronuclei and the aggravating effect of deficiency in certain micro-
nutrients (e.g. folate, vitamin B-12 and zinc deficiency) that are required for DNA replication and repair and are known to increase MN formation when their supply is 
inadequate. Reproduced with permission from Elsevier from: Fig. 4 in Fenech M, Knasmueller S, Knudsen LE, Kirsch-Volders M, Deo P, Franzke B, Stopper H, 
Andreassi MG, Bolognesi C, Dhillon VS, Laffon B, Wagner KH, Bonassi S. "Micronuclei and Disease" special issue: Aims, scope, and synthesis of outcomes. Mutat Res 
Rev Mutat Res. 2021 Jul-Dec;788:108384. doi: 10.1016/j.mrrev.2021.108384. Epub 2021 Jun 5. PMID: 34893149.
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across multiple tissues. Fig. 1 illustrates the types of cells that can be 
used practically in human studies and their relationship with each other 
and exposure to genotoxins.

The wide-spread use of lymphocyte culture for metaphase analysis of 
chromosomes made it practical for laboratories to use this technology to 
also measure MN in lymphocytes. However, the accuracy of this 
approach was constrained by the large variability of MN frequencies 
which depended on the proportion of cells completing one nuclear di-
vision after exposure to a genotoxic insult. MN are mainly expressed in 
dividing cells during telophase in mitosis when lagging chromosomes or 
chromosome fragments are enveloped by membrane independent of the 
main daughter nuclei [Fig. 2]. It became evident that a method which 
clearly distinguished between non-divided cells and cells that completed 
one nuclear division was required so that MN could be scored specif-
ically in once-divided cells and thus prevent inaccurate MN measure-
ment caused by differences in cell division kinetics [13–15]. Several 
approaches were reported to achieve this, but the most efficient and 
reproducible method was proven to be the cytokinesis-block method 
developed by Fenech and Morley [13–15]. In this method cells in mitosis 
are blocked in the binucleated stage in telophase [Fig. 3A] by using 
cytochalasin-B, a fungal metabolite shown to inhibit the formation of the 
microfilament ring which is essential for cytokinesis [16,17]. This 
method, known as the cytokinesis-block micronucleus (CBMN) assay, 
was rapidly adopted by several laboratories world-wide making it 
practical to consider the possibility of international collaboration to 
address some important questions on the use of this assay as a biomarker 
of exposure to genotoxins and its biological significance in health and 
disease which are discussed below.

2. Founding of the HUMN project

Early studies showed that lymphocyte MN frequency measured using 
the CBMN assay was positively correlated with age and exposure to low 
dose X-rays, and higher in females relative to males, however, these 
results were restricted to a single laboratory in the early 1980’s [18–20]. 
Furthermore, at that time, although MN were reported to be increased in 
rodents exposed to genotoxic carcinogens in vivo [8] there were few in 
vivo studies in humans exposed to chemical genotoxins and some of 
these were done using methods that were not yet validated in laboratory 
inter-comparison studies or used cell types other than lymphocytes or 

performed the lymphocyte MN assay without using the 
cytokinesis-block technique [21–24]. In addition, there was a growing 
interest in determining whether cytogenetic biomarkers of DNA damage 
or genotoxic effect could predict risk of cancer and other age-related 
diseases in humans [25,26]. During this period, it also became 
increasingly evident that the CBMN assay could also be an effective tool 
for measuring chromosome malsegregation events and aneuploid nuclei 
if pan-centromeric or chromosome-specific probes were used to identify 
the distribution of chromosomes among the main nuclei and micro-
nuclei in binucleated cells [27–30] [Figs. 2,3]. This widespread interest 
in the lymphocyte CBMN assay was also reflected by development of 
promising approaches to automate the technique using image cytometry 
[31,32].

A chromosome segregation and aneuploidy conference in April 1995 
in Sorrento, Italy, organised by Angelo Abbondandolo and Baldev Vig 
[33], provided the spark for the initiation of the HUMN project when 
Michael Fenech enquired whether Angelo knew an epidemiologist who 
might be interested in working on an international project to address 
important questions relating to the effect of methodological, de-
mographic, lifestyle and environmental exposure variables affecting MN 
frequency and prospective association of this biomarker, measured 
using the lymphocyte CBMN assay, with cancer. Angelo suggested 
contacting Stefano Bonassi who enthusiastically accepted to join 
Michael in exploring this initiative. After more than one year of 
exchanging emails and numerous discussions Stefano and Michael 
agreed to call this project the Human Micronucleus (HUMN) Project to 
emphasise the focus on human studies.

The official founding of the HUMN project occurred at the 7th In-
ternational Conference on Environmental Mutagenesis occurred in 
Toulouse, France, on 9th September 1997 at a workshop titled “Meeting 
on the International Collaborative Project on Micronucleus Frequency in 
Human Populations” [http://www.iaemgs.org/Historical.asp]. The first 
HUMN project coordinating group consisted of Stefano Bonassi, Nina 
Holland, Errol Zeiger, Peter Chang and Michael Fenech bringing 
together expertise in epidemiology, MN assay using buccal epithelial 
cells, genotoxicity testing, human studies using the lymphocyte CBMN 
assay, and the biology of biomarkers scored in the lymphocyte CBMN 
assay.

The coordinating group determined that the initial goal should be a 
“manifesto” that explained the purpose of the HUMN project. It was 
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Fig. 2. Formation of micronuclei from lagging whole chromosomes or acentric chromosome fragments during anaphase and their presence in binucleated cells 
following cytokinesis blockade with cytochalasin-B in telophase. Centromeres are indicated by small yellow dots on chromosomes, micronuclei and on nuclei. 
Reproduced and adapted with permission from Elsevier from: Fig. 1 in Fenech M, Knasmueller S, Bolognesi C, Holland N, Bonassi S, Kirsch-Volders M. Micronuclei as 
biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutat Res Rev Mutat Res. 
2020 Oct-Dec;786:108342. doi: 10.1016/j.mrrev.2020.108342. Epub 2020 Oct 28. PMID: 33339572.
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agreed that a key objective of the HUMN project was to collect data on 
MN frequencies in different human populations using assays that are 
already widely used such as the lymphocyte CBMN assay and the Buccal 
MN assay [Figs. 3A and 3B].

Furthermore, data should then be used to:
(1) determine the extent of variation of ’normal’ MN values between 

laboratories and identify the dominant factors affecting baseline MN 
frequency,

(2) provide information on effect of assay protocol modifications on 
MN scoring,

(3) design and test improved MN assay protocols for use with 
different types of human cells,

(4) determine if MN frequency is a valid biomarker of ageing and 
diseases such as cancer.

This manifesto was published in 1999 [34], two years after the 
official foundation of the HUMN project. The achievements of the 

HUMN project from its foundation in 1997 until 2023 have been pub-
lished in peer-reviewed journals and are described briefly below. These 
achievements together with further details are presented in a more 
precise chronological order in Supplementary Table 1.

3. Achievements of the HUMN project with respect to the 
lymphocyte CBMN assay

During the initial period of 1997–2001 some notable achievements 
and advances were already emerging from the HUMN project group. 
1997 was particularly important because a study published in Lancet 
showed for the first time that the lymphocyte CBMN assay can be used 
successfully to measure increases in chromosomal damage in people 
exposed to chronic low-dose, low-dose-rate gamma-radiation due to 
contamination of steel rods with cobalt 60 used to build their apartments 
[35]. Another study on children exposed to the Chernobyl catastrophe 

Fig. 3. Photomicrographs of cells with micronuclei. [A] Cytokinesis-blocked binucleated lymphocyte with one micronucleus stained using Wright-Giemsa stain. [B] 
Buccal cell with one micronucleus stained with Feulgen and Light green. [C] Cytokinesis-blocked binucleated lymphocyte stained with DAPI containing one 
micronucleus that is centromere positive. DAPI staining and centromere probe staining are visualised using fluorescence microscopy. Photomicrograph [A] is 
reproduced with permission from Nature Publishing Group from: Fig. 3f in Fenech M. Cytokinesis-block micronucleus cytome assay. Nat Protoc. 2007;2 
(5):1084–104. doi: 10.1038/nprot.2007.77. PMID: 17546000. Photomicrograph [B] is reproduced with permission from Elsevier from: from Figure 12 A in Bolognesi 
C, Knasmueller S, Nersesyan A, Thomas P, Fenech M. The HUMNxl scoring criteria for different cell types and nuclear anomalies in the buccal micronucleus cytome 
assay - an update and expanded photogallery. Mutat Res. 2013 Oct-Dec;753(2):100–113. doi: 10.1016/j.mrrev.2013.07.002. Epub 2013 Aug 11. PMID: 23942275. 
Photomicrograph [C] is reproduced with permission from Elsevier from: Fig. 2B in Vral A, Fenech M, Thierens H. The micronucleus assay as a biological dosimeter of 
in vivo ionising radiation exposure. Mutagenesis. 2011 Jan;26(1):11–7. doi: 10.1093/mutage/geq078. PMID: 21164177.

LYMPHOCYTE
CYTOKINESIS-BLOCK

MICRONUCLEUS CYTOME ASSAY
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MICRONUCLEUS
CYTOME ASSAY

[A] [B]

Fig. 4. [A] Biomarkers and different cell types in the Lymphocyte Cytokinesis-Block Micronucleus Cytome Assay stained using Wright-Giemsa stain and viewed by 
transmitted light. {A} Binucleated (BN) cell with micronucleus (MN) and nucleoplasmic bridge (NPB); {B} BN cell with MN; BN cell with Nuclear buds (NBUD); {D} 
Mono-nuclear (MONO) cell with MN; {E} MONO cell with NBUD; {F} Apoptotic cell; {G} Necrotic cell; {H} MONO cell; {I} BN cell}; {J} Multinucleated cell. 
Photomicrographs in Fig. 4 [A] are reproduced with permission from Nature Publishing Group from: Fig. 3 in Fenech M. Cytokinesis-block micronucleus cytome 
assay. Nat Protoc. 2007;2(5):1084–104. doi: 10.1038/nprot.2007.77. PMID: 17546000. Fig. 4 [B] Biomarkers and different cell types in the Buccal Micronucleus 
Cytome Assay stained using Feulgen and Light Green and viewed by transmitted light or fluorescence with a far-red filter; (a) basal cell; (b) differentiated cell; (c) 
early differentiated cell with micronucleus (arrow); (d) late differentiated cell with micronucleus (arrow); (e) differentiated cell with nuclear bud (arrow); (f) 
binucleated cell; (g) condensed chromatin cell; (h) karyorrhectic cell; (i) pyknotic cell; (j) karyolytic cell. Upper panels light microscopy, lower panels fluorescence 
microscopy. Photomicrographs in Fig. 4 [B] are reproduced with permission from Nature Publishing Group from: Fig. 5 in Thomas P, Holland N, Bolognesi C, Kirsch- 
Volders M, Bonassi S, Zeiger E, Knasmueller S, Fenech M. Buccal micronucleus cytome assay. Nat Protoc. 2009;4(6):825–37. doi: 10.1038/nprot.2009.53. Epub 2009 
May 7. PMID: 19444240.
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showed that the lymphocyte CBMN assay could detect the genotoxic 
effects of radionuclide contamination and that the increase in MN fre-
quency was discernible both in mononucleated and binucleated cells 
[36]. Subsequently, a proposal was made that inclusion of MN in 
non-divided mononuclear lymphocytes and necrosis/apoptosis may 
provide a more comprehensive CBMN assay for biomonitoring purposes 
which led to the concept of the CBMN “cytome” (CBMNcyt) assay 
[37–39] and subsequently measurement of chromosome loss, chromo-
some non-disjunction, nuclear buds and nucleoplasmic bridges were 
also added to the cytome concept [Fig. 4 A] [40,41].

By 2000, data from nearly 700 subjects were contributed by 25 
laboratories from 16 countries. Differences were evident in methods 
used such as type of culture medium, concentration of cytochalasin-B, 
amount of foetal calf serum in culture medium, and in culture method 
used (isolated lymphocytes or whole blood cultures). Differences in MN 
scoring criteria were also apparent. Overall median MN frequency (and 
interquartile range) in nonexposed subjects was 6.5 (3− 12) per 1000 
binucleated (BN) cells. Age-related increase in MN frequency was 
evident in almost all laboratories. Effect of sex was also present, with 
females having 19 % (95 % CI: 14–24 %) higher level of MN incidence 
relative to males. Random-effects statistical models for correlated data, 
which included exposure to genotoxic factors, host factors, methods, and 
scoring criteria, explained 75 % of the total variance, with the largest 
contribution attributable to laboratory methods. These first results from 
the pooled data from laboratories using the lymphocyte CBMN assay 
were published in 2001 [42].

Because methodological parameters such as criteria for identifying 
BN cells and scoring MN within them accounted for 47 % of the vari-
ability in micronucleated (MNed) cell frequency it was decided to 
perform an inter-laboratory slide scoring study and to establish and 
publish a set of detailed scoring criteria for the lymphocyte CBMN 
cytome assay. Thirty-four laboratories participated in the scoring exer-
cise and all of them correctly ranked micronucleated (MNed) BN cell 
frequency in cells exposed to different gamma ray doses (0 Gy, 1 Gy, 
2 Gy) [43].

The detailed description of the scoring criteria together with multi-
ple photomicrographs for (i) classifying mononucleated, binucleated 
and multinucleated, as well as necrotic and apoptotic cells and (ii) 
identifying and distinguishing between MN, nucleoplasmic bridges 
(NPBs) and nuclear buds (NBUDS) within binucleated cells or MN and 
NBUDS in mononucleated cells in the CBMN cytome assay using isolated 
lymphocyte cultures was provided to all study participants and subse-
quently published [44].

A few years later a detailed protocol for the cytokinesis-block 
micronucleus cytome assay in peripheral blood lymphocytes was pub-
lished in Nature Protocols [41]. This protocol together with the scoring 
criteria manuscript provide the most detailed and comprehensive 
description of how to conduct the lymphocyte CBMN cytome assay [41, 
44].

Using the accumulated data from 5710 persons, the HUMN project 
investigated the relationship between MN frequency and smoking [45]. 
The results showed a U-shaped curve with significant MN increases in 
those smoking more than 30 cigarettes per day.

Another important variable that might affect MN frequency in lym-
phocytes is nutritional deficiency but evidence for this prior to or in 
1997 was mainly limited to studies relating to folate and/or vitamin B12 
deficiency [46–49]. The first study of the HUMN project addressing the 
effect of malnutrition across multiple micronutrients was published in 
2005 [50]. The study reported that low dietary intake of calcium, folate, 
nicotinic acid, vitamin E, retinol, beta-carotene and high intake of 
pantothenic acid, biotin and riboflavin are significantly associated with 
increased lymphocyte MN frequency.

Several other similar studies were reported in later years indicating 
the suitability of the lymphocyte CBMN assay to measure the genotoxic 
effects of micronutrient deficiency or excess [51–55]. In addition, 
several papers were published consequently to test whether 

supplementation with micronutrients or intervention by dietary pattern 
change altered MN frequency [56].

From the 1990’s onwards there was an increased interest on whether 
MN frequency in lymphocytes is affected by common polymorphisms in 
genes coding for enzymes involved in carcinogen metabolism, antioxi-
dant defense, B vitamin metabolism and DNA repair enzymes. The first 
paper on this topic was published by Carstensen et al. in 1993[57], and 
in 2006 a comprehensive systematic review was published on the effects 
of GSTM1 and GSTT1 polymorphisms on MN frequencies in human 
lymphocytes [58]. Another systematic review in 2008 investigated and 
reported on the effects of carriage of the hOGG1(326), XRCC1(399) and 
XRCC3(241) polymorphisms on MN frequencies in human lymphocytes 
in vivo [59]. This was followed by further numerous studies that also 
explored the interactive effects of enzymes involved in micronutrient 
metabolism such as the common C677T polymorphism in the MTHFR 
gene and the MTR (G80A) polymorphism both required for folate 
metabolism [60–79].

One of the major achievements of the HUMN project was to complete 
for the first time a prospective epidemiological study of 6718 subjects 
from of 10 countries, linking base-line lymphocyte MN with cancer 
incidence data. This study revealed that an increased MN frequency in 
peripheral blood lymphocytes predicts the risk of cancer in humans 
[80]. All cancer incidence was increased for subjects in the groups with 
medium (RR=1.84) and high MN frequency (RR=1.53). The same 
groups also showed a decreased cancer-free survival. The results from 
this study provided the initial evidence that MN frequency in peripheral 
blood lymphocytes (PBL) is a predictive biomarker of cancer risk in 
healthy subjects. This seminal study of lymphocyte MN and disease risk 
led to other prospective studies showing that lymphocyte MN frequency 
measured using the CBMN assay was also predictive, in other cohorts, of 
cancer risk and cardiovascular disease mortality in apparently healthy 
subjects, adverse cardiac events in patients with coronary artery disease, 
and also pregnancy complications such as pre-eclampsia and/or intra-
uterine growth restriction in women whose MN frequency was measured 
in early pregnancy at 18 weeks gestation [81–85].

4. Achievements of the HUMN project with respect to the buccal 
micronucleus assay

The buccal cell micronucleus (BUCMN) assay [Fig. 3B], first pro-
posed by Stich et al. [86,87], is a useful method to measure DNA damage 
in epithelial cells caused by environmental mutagens, adverse lifestyle 
habits, poor nutrition, and due to inherited defects in DNA repair. 
[88–92].

Following the success with the lymphocyte CBMNcyt projects, the 
HUMN project coordinating group put together a compelling case to 
harmonise and standardise the buccal MN cytome (BUCMNcyt) assay 
[Fig. 4B] which was published in 2007 [93–95].

The growing interest in using buccal cells led to increased diversity in 
the protocols used for sampling, staining of cells and for scoring MN and 
other nuclear anomalies [96–103]. To resolve these issues the HUMN 
project completed three reviews and one workshop that identified 
important knowledge gaps regarding the biology of MN expression in 
buccal cells and technological constraints of the assay that needed to be 
resolved. [103–106].

In the interim it was sensible to suggest that Feulgen/Fast green 
staining and the scoring criteria of Tolbert et al. [97] be approved as the 
basic method.

The HUMN project perspective, based on comprehensive review of 
the literature on the status and knowledge gaps of the micronucleus 
assay in human buccal cells as a tool for biomonitoring DNA damage was 
published in 2008 [105]. This report also included contributions from a 
workshop on the same topic held in Turkey [106]. This review covered 
important aspects about the current status such as (i) application in 
biomonitoring studies, (ii) methodology, including cell collection, 
staining, slide preparation and scoring criteria and (iii) study design. 
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With regards to important knowledge gaps the following were identi-
fied: (i) effect of cell division kinetics on MN frequency, (ii) biology of 
the formation of MN and other nuclear anomalies in buccal cells, (iii) 
demographic, lifestyle, environmental and genetic variables affecting 
buccal MN frequency, (iv) correlation of buccal MN frequency with MN 
in lymphocytes and other tissues and (v) association of buccal MN fre-
quency with aging and chronic diseases. It was agreed at the workshop 
in Turkey that three activities should be given priority, namely (a) a 
method for collection of databases, (b) writing of a protocol based on the 
most commonly used and best validated procedures and (c) an 
inter-laboratory slide-scoring exercise in this order.

In 2009 a survey was performed on the use of the BUCMNcyt assay 
[107]. The survey data were collected using a questionnaire regarding 
the methods used to perform the assay and type of epidemiological data 
that were collected. In total 43 laboratories completed the question-
naire. It was estimated that data from 15,103 subjects could be available 
for analysis. Inter-laboratory protocol differences were common sug-
gesting the need for method standardization. Furthermore, results of this 
survey also identified epidemiological variables (e.g. age, dietary habit, 
occupation) that affect buccal MN frequency.

A meta-analysis of 63 buccal MN studies identified the most impor-
tant confounding factors which increased MN frequency i.e. age, 
smoking and exposure to genotoxicants [103]. The paper also reported a 
significant positive correlation between MN frequency in buccal cells 
and lymphocytes and recommended scoring 4000 cells to achieve a 
robust MN frequency estimate.

Further analysis of the buccal MN data provided information on 
base-line frequencies of MN in healthy subjects which were reduced 
with higher fruit intake and increased in the elderly and various geno-
toxin exposure and disease states; MN levels were also higher if stains 
that are not DNA specific are used [108].

Another major achievement was the publication of a detailed 
BUCMNcyt assay protocol and scoring criteria [109,110]. These 
methods provided the basis for an inter-laboratory slide scoring exercise 
amongst three experienced laboratories which revealed good agreement 
for scoring MN in differentiated buccal cells [111]. A second slide 
scoring exercise amongst 14 less experienced laboratories also reported 
concordance in measurement of MN in differentiated buccal cells but 
greater variability with scoring other cytome biomarkers [112].

Clinical application of the BUCMNcyt assay was another aspect that 
was systematically reviewed. It is evident that MN incidence in buccal 
cells is markedly elevated in oral head and neck cancer cases and other 
cancers generally [113]. This association with cancer needs further 
validation in large prospective studies.

5. Other objectives and achievements

5.1. Radiation biodosimetry

Shortly after its creation it became evident that the lymphocyte 
CBMN assay had strong potential to become a reliable biodosimeter of 
exposure to ionsing radiation not only in the high dose range 
1.00–4.00 Gy) but also in the low dose range 0.05–0.50 Gy of acute or 
chronic ionising radiation exposure [35,114]. Because of the ease to 
score MN in cytokinesis-blocked binucleated cells relative to the con-
ventional metaphase analysis of chromosome aberrations, the CBMN 
assay was adopted by numerous radiation biodosimetry laboratories 
and, also, used to identify radiation sensitivity phenotype in human 
lymphocytes [115–118]. Furthermore, it was shown that it is also 
possible to use nucleoplasmic bridges (NPBs) to measure the radiation 
exposure dose [117,119,120]. The use of the lymphocyte CBMN assay 
for ionising radiation exposure biodosimetry, including triage bio-
dosimetry, has now been validated by a large number of laboratories in 
interlaboratory comparison studies [121–123] and endorsed by the In-
ternational Atomic Energy Agency and, furthermore, an ISO Standard on 
its application in the event of a radiation accident has been published 

[124,125]. MN studies with buccal cells were also frequently used to 
study the potential genotoxic and cytotoxic effect of electromagnetic 
radiation from mobile phones because of their proximity to the mobile 
phones when in use. The results of these investigations have been 
reviewed by Al-Serori et al. [126].

5.2. Chemical genotoxin exposure

It became evident early that the lymphocyte CBMN assay is sensitive 
in vitro to the genotoxic effects of a wide range of chemicals with 
different modes of actions, such as aneugens [127–129], radiomimetic 
agents [130], oxidants [131], methylating agents [132], DNA methylase 
inhibitors [133], nitrous oxide [134], heavy metals [135], advanced 
glycation end products [136], topoisomerase inhibitors [137]. 
Furthermore, numerous studies showed that in vivo exposure to geno-
toxicants caused MN formation in vivo and ex vivo in lymphocytes and in 
vivo in buccal cells [138–141]. The suitability of the lymphocyte CBMN 
assay to measure the DNA damaging effects of genotoxic chemicals has 
become widely recognised and led to the establishment of an OECD 
guideline on how to use the CBMN assay in peripheral blood lympho-
cytes and/or immortal lymphoblastoid cell lines for genotoxicity testing 
of chemicals [142]. It is important to note here that the lymphocyte 
CBMN assay and the buccal MN assay when used in cytome mode are in 
fact multi-endpoint assays that can also be used to measure other nu-
clear anomalies (such as NPBs and NBUDs) as well as apoptosis, necrosis 
and cytostatic effects [40,41,95,108,143]. Furthermore, molecular 
probes of the centromeres can also be used to distinguish between MN 
that contain chromosome fragments from MN that contain whole 
chromosomes [Fig. 3C] and, also, non-disjunction even in BN cells that 
do not contain MN [142–144].

In 2016 the HUMN project coordinated and published several review 
papers in a special issue on the use of the lymphocyte cytokinesis-block 
micronucleus (CBMN) assay to measure DNA damage induced in vivo in 
humans occupationally exposed to chemical genotoxins [145]. The pa-
pers reported progress and new research opportunities on a wide range 
of projects relating to this topic including, current knowledge of mo-
lecular mechanisms, systematic reviews and meta-analyses of epidemi-
ological studies and a synthesis of the data from all the reviewed studies 
[146]. These studies either used the lymphocyte CBMN assay on its own 
or in combination with MN assays in other tissues and/or other DNA 
damage assays. A typical example is the HBM4EU study of occupational 
exposure to hexavalent chromium where MN in lymphocytes as well as 
reticulocytes and DNA strand breaks measured by comet assay were 
significantly increased in exposed subjects [147].

5.3. Genotoxic effects of malnutrition

Dawson and Bury were the first to show that folate and/or vitamin 
B12 deficiency causes the formation of Howell-Jolly bodies in red blood 
cells (RBCs) which were in fact MN originating from chromosome ab-
errations produced in vivo in erythroblasts in the bone-marrow of their 
patients [148]. It was later realised that the MN in erythroblasts are 
retained within RBCs after expulsion of the main nuclei, resulting in the 
formation RBCs containing MN in the peripheral blood [149,150]. 
Furthermore, it was shown that scoring MN in RBCs could be a useful 
biomarker of DNA damage in humans exposed to genotoxic agents or 
due to folate deficiency if they had their spleen removed [149,150]. A 
few years later it was shown that MN are also formed in lymphocytes of 
folate and/or B12 deficient humans [151–153]. The advantage of using 
the lymphocyte CBMN assay is that peripheral blood lymphocytes can be 
cultured for several days [14–21 days] which enables the study of the 
genotoxic effects of chronic micronutrient deficiency or excess under 
controlled conditions. For example, it was possible to study in detail the 
genotoxic effects of folate deficiency and riboflavin excess in cells which 
had genetic defects in the MTHFR gene relative to those that were 
normal and determine the interactive effects of the two micronutrients 
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with each other and the MTHFR genotype [154]. Details of the meth-
odology of how to perform in vitro studies of the genomic effects of 
chronic micronutrient deficiency or excess using the CBMN assay were 
published by Bull et al. [155].

5.4. Automation

The acceptance of MN assays is assisted by the fact that MN are 
relatively easy to recognise and score in cells. However, two major 
challenges remain (i) the need to score 1000 or more cells for presence of 
MN depending on the required statistical power and (ii) the need to 
score MN exclusively in specific viable cells such as binucleated cells in 
the CBMN assay and differentiated mononuclear cells in the case of 
buccal cells. Furthermore, it is also desirable in the cytome mode of MN 
assays to also score other abnormal nuclear anomalies such NPBs and 
NBUDs and cells undergoing cell death such as necrosis and apoptosis in 
the case of the CBMN assay and cells with condensed chromatin, kar-
yorrhectic cells, pyknotic cells, karyolytic cells in the case of buccal cells. 
The HUMN project conducted a workshop on MN assay automation 
which proposed a standardised system of validation and calibration to 
enable more reliable comparison of data across laboratories and across 
platforms and identified important limitations and steps that need to be 
taken into account to enable the successful universal implementation of 
automated micronucleus assays by image cytometry [156]. Automated 
scoring of MN in BN cells on glass slides has been achieved by a few 
companies using different image recognition algorithms [157–160]. 
More recently success in automation of MN assays using image flow 
cytometry has been reported using standard algorithms or AI assisted 
algorithms that can identify mono-, bi- or multinucleated cells with or 
without MN [161–163]. Analysis of MN in reticulocytes (i.e. immature 
erythrocytes), performed by flow cytometry, provides the simplest 
choice for an automated MN assay [164–166]. However up to now it has 
been performed only by a few laboratories and more research is required 
to validate this system with respect to its correlation with MN in buccal 
cells and lymphocytes and its association with disease risk both 
cross-sectionally and prospectively.

5.5. In vitro MN assays

Although the HUMN project is aimed at determining MN frequency 
in human populations and its health consequences it is also important to 
develop and validate in vitro and ex vivo MN assays that test the likely 
causes of MN induction in vivo. In this regard the HUMN project has been 
influential by standardising the ex vivo and in vitro lymphocyte CBMN 
assay systems protocols [41,44] which is critical because lymphocytes 
are unique in that they can be used not only to measure MN in vivo but 
also ex vivo and in vitro, Furthermore, the lymphocyte assay system is 
ideal because it can be used not only to study acute or chronic exposures 
to genotoxicants but it can also generate dose-response curves for bio-
dosimetry, for example, in the case, of accidental exposure to ionising 
radiation [124,125]. In addition, assay systems with lymphocytes have 
also been developed to investigate the genotoxic effects of chronic 
exposure to micronutrient deficiency or excess [155] and also in-
teractions between chemical genotoxin exposure and micronutrient 
deficiency [167,168]. The multi-parameter properties of the lymphocyte 
CBMN cytome assay make it ideal for in vitro genotoxicity testing [40, 
41] and it is for this reason that it has been adopted in the OECD test 
guideline #487 [142].

5.6. MN assays in other tissues

The HUMN project focused on the lymphocyte CBMN assay and the 
Buccal MN assay because at the time of its foundation these were the 
best validated methods that could be readily used to study MN frequency 
in human populations. However, as indicated in Fig. 1, MN assays in 
cells from other easily accessible tissues such as red blood cells, and 

epithelial tissues, such as nasal, cervical and urothelial cells have also 
been used successfully in studies of environmental carcinogenesis 
enabling comparisons of MN frequencies across multiple tissues. How-
ever, standardised protocols of MN assays in these tissues and their 
validation via inter-laboratory performance comparisons and associa-
tion with occupational/environmental exposure to carcinogens and as-
sociation with disease risk have not yet been adequately performed. The 
current “state of the art” of some of these alternative MN assays has been 
reported in some of the reviews contributed in HUMN project coordi-
nated publications [169–172].

5.7. Mechanisms

An important aspect of the HUMN project was to synthesise current 
knowledge about the molecular mechanisms that lead to the formation 
of MN and other nuclear anomalies and their health consequences. 
These reviews were often published as part of special issues or books 
about MN in human cells. These reviews included mechanisms that lead 
to (i) MN formation following exposure to ionising radiation, chemical 
genotoxins, malnutrition, viral infection and (ii) the consequences 
including diseases caused by aneuploidy, diseases resulting from frag-
mentation of chromosomes trapped in MN leading to hypermutation of 
single chromosomes common in cancer and/or inflammation caused by 
leakage of DNA from MN into the cytoplasm via the cGAS-STING 
mechanism of the innate immune response [173–182]. An important 
aspect of this work is that a deeper understanding of the fate of MN in 
cells and that of cells that contain MN is necessary to fully appreciate the 
increasing relevance of MN as an indicator of cellular health [182,183].

5.8. Micronuclei and disease

The HUMN project produced a Special Issue (SI) on “Micronuclei and 
Disease” [184] to (i) Estimate level of evidence for the association of MN 
with likelihood of diseases in humans; (ii) Define mechanisms that may 
explain association of MN with each illness; and (iii) Identify knowledge 
gaps and research needed to translate use of MN assays into clinical 
practice. Majority of reviewed studies were case-control studies in which 
the ratio of mean MN frequency in disease cases relative to controls, i.e. 
the mean ratio (MR), was computed. The mean of these MR values, for 
lymphocyte MN and buccal cell MN in non-cancer diseases were 2.3 and 
3.6 respectively, and for cancers they were 1.7 and 2.6 respectively. The 
highest MR values were observed in studies of cancer cases in which MN 
were measured in the same tissue as the tumour (MR = 4.9–10.8). These 
data, together with results from prospective cohort studies (see Section 3
last paragraph), are helping to identify illnesses, such as lung cancer, in 
which MN assays can be justifiably utilised to better identify high risk 
patients and to prioritise them for preventative therapy [185–187]. MN 
are amongst several biomarkers that can be used to predict disease risk.

5.9. Global impact leading to interactions with other relevant research 
networks

The activities of the HUMN project were of great interest to other 
networks utilising cytogenetic DNA damage biomarkers in their research 
such as the International Atomic Energy Agency (IAEA), European Study 
Group on Cytogenetic Biomarkers and Health (ESCH), Environmental 
Cancer Risk, Nutrition and Individual Susceptibility (ECNIS), the Real-
izing the European Network of Biological Dosimetry Project (RENEB), 
European network of research on nutrigenomics (NUGO), a European 
project investigating the role of prenatal and early-life exposure to 
genotoxic chemicals present in food and the environment in the devel-
opment of childhood cancer (NewGeneris) and the Cytogenetic Bio-
markers and Human Cancer Risk (Cancer Risk Biomarkers) research 
consortium.
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5.10. Workshops/education

The HUMN project communicated its research plans and outcomes 
via workshops organised to coincide with conferences in the field of 
environmental mutagenesis such as: European Environmental Muta-
genesis & Genomics Society (EEMGS), Environmental Mutagen Society 
of India (EMSI), International Conference of Environmental Mutagens 
(ICEM), International Conference of Environmental Mutagens in human 
populations (ICEMHP), United Kingdom Environmental Mutagenesis 
Society (UKEMS). In total 23 HUMN workshops were organised and 
conducted successfully in 15 different countries. For more details about 
the workshops please refer to Supplementary Table 2.

5.11. Special issues, book, publications and citations

It was recognised early that MN assays could be applied in diverse 
fields. Efforts were made to capture this emerging knowledge in special 
issues of relevant journals focused on specific topics relevant to the 
different fields of their application. A total of three special issues (SI) and 
one book, together containing 104 papers, were published as described 
in Table 1 below:

As indicated in Supplementary Table 1, at least 220 papers were 
published, in peer-reviewed journals, by HUMN project participants 
related to the objectives of the HUMN project. At least four of these 
papers [41,44,80,176] have been cited more than 1000 times according 

to Google Scholar.

6. Lessons learnt and knowledge gaps that still need to be 
addressed

The success of the HUMN project was driven by the need for a 
relatively simple and robust cytogenetic method to measure DNA 
damage in humans that was practical and not too expensive to imple-
ment. The HUMN project facilitated this by developing practical pro-
tocols to measure MN in lymphocytes and buccal cells and then 
communicating these via the HUMN workshops. This enabled harmo-
nisation of the application of these methods internationally. Further-
more, the contribution of numerous laboratories of MN data from 
individuals unexposed or exposed to environmental mutagens or 
afflicted with different diseases enabled epidemiological studies that 
provided important insights on the cross-sectional and prospective as-
sociation of MN with environmental genotoxins exposure and disease 
risk. Furthermore, a large data base of “normal” base-line values has 
enabled the establishment of normal reference values of MN frequency 
observed in healthy people indicating an achievable lower level of DNA 
damage that may be required to minimise disease risk in human 
populations.

To maintain this momentum and improve the applicability of MN 
assays to human health promotion it is necessary to continue research 
enabling a better understanding of the molecular mechanisms under-
lying the biology and pathology of MN and other associated nuclear 
anomalies such as nucleoplasmic bridges and nuclear buds. In this re-
gard, it is desirable that these additional biomarkers that are available 
when using the MN assays in cytome mode are also scored. To enable 
this, advanced automated scoring system using artificial intelligence 
will need to be developed. Recent reports indicate that this approach is 
likely to be feasible (see Section 5.4).

The initiatives of the HUMN project have also led to the much greater 
appreciation of the interconnectedness of the various cytological nuclear 
anomalies (e,g, MN, NPB, NBUD), the strong correlations with each 
other under different genotoxic stresses and the mechanisms that 
explain their common origin from induced DNA lesions, DNA mis-repair 
and chromosome aberrations. This emphasises the importance of care-
fully studying the impact of genotoxic stressors, including malnutrition, 
not only at the molecular level but also at the cellular/nuclear level 
because ultimately the health of tissues and organs and the whole or-
ganism depends on cellular genome health. It is also for this reason that 
one of the outcomes of the HUMN project has been the Genome Health 
Clinic concept based on diagnosis and prevention of DNA damage and 
the concept that dietary recommendations for human health should also 
be based on DNA damage prevention [188,189].

The HUMN activities of standardising and validating lymphocyte MN 
methods resulted in their adoption world-wide and, importantly, also 
led to international regulations and guidelines for in vitro MN genotox-
icity testing of chemicals and for in vivo ionising radiation exposure bio- 
dosimetry. Further efforts are now required to establish regulatory 
guidelines on the use of erythrocyte, lymphocyte and buccal MN assays 
for measuring in vivo DNA damage caused by occupational, nutritional, 
lifestyle or environmental exposure to chemical genotoxins, both indi-
vidually and as complex mixtures.

Our experience in developing and sustaining the HUMN project over 
more than 25 years has reflected and verified important aspects of 
success including (i) The power of an idea whose time has come. (ii) The 
power of international collaboration. (iii) The Importance of under-
standing the biology of MN and other nuclear aberrations across 
different tissues. (iv) The importance of discovering and understanding 
the variables affecting MN frequency and (v) Commitment to achievable 
goals in the short and in the longer term. Figs. 5 and 6 illustrate the 
timeline of HUMN project achievements with the lymphocyte CBMN 
assay and the buccal MN technique.

Despite these efforts several knowledge gaps still need to be 

Table 1 
Special Issues and book published by HUMN project participants.

Title of SI or 
Book

Journal, 
Publishers

Date of 
publication, 
Volume, 
pages,

Editor/s No. of 
papers
*

SI: Micronuclei – 
Recent 
advances in 
their 
measurement, 
in 
understanding 
molecular 
mechanisms, 
and their 
association, 
with 
environment, 
genetics and 
disease

Mutagenesis, 
Oxford 
University 
Special 25th 
Anniversary 
Issue of 
Mutagenesis. 
Dedicated to 
James M 
Parry

January 
2011, Vol 26 
(1) Pages 
1− 247

M. Fenech 35

SI: In vivo 
chemical 
genotoxin 
exposure and 
DNA damage in 
humans 
measured using 
the lymphocyte 
cytokinesis- 
block 
micronucleus 
assay

Mutation 
Research 
(Reviews), 
Elsevier

Oct/Dec 
2016, Vol 770 
(Part A), 
Pages 1− 216,

S. 
Knasmueller, 
A. Nersesyan, 
M. Fenech

16

SI: Micronuclei 
and Disease

Mutation 
Research 
(Reviews in 
Mutation 
Research), 
Elsevier

2022 
Vol 789F1

S. Bonassi, K. 
H. Wagner, M. 
Fenech

15

Book: 
The 
Micronucleus 
Assay in 
Toxicology

Issues in 
Toxicology, 
The Royal 
Society of 
Chemistry

2019, Issues 
in Toxicology 
No.39 Pages 
1− 648

Siegfried 
Knasmueller 
and Michael 
Fenech

38

* References to papers in these special issues and book are in Supplementary 
Table 1.
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addressed such as (i) Are buccal MN predictive of disease risk? (ii) How 
can we translate the use of lymphocyte and buccal MN assays and the 
data they generate in the clinical setting and public health policy? (iv) 
Should MN assays be done not only in humans but also in sentinel 
species to enable a more biodiverse ecosystem approach for DNA 

damage biomonitoring? and (v) Is automated scoring of MN and other 
nuclear anomalies based on AI essential to facilitate MN data collection?

INVENTION OF LYMPHOCYTE CYTOKINESIS-BLOCK 
MICRONUCLEUS  (L-CBMN) ASSAY (Fenech and Morley 1985)

SEVERAL LABORATORIES WORLD-WIDE ADOPTED THE L-CBMN ASSAY TO MEASURE  BASE-LINE MN FREQUENCY  IN HUMAN POPULATIONS AND 33 
JOINED THE HUMN PROJECT

SEVERAL CASE-CONTROL AND PROSPECTIVE STUDIES AND META-ANALYSES WERE PERFORMED THAT VALIDATED THE USE OF L-CBMN ASSAY AS A 
BIOMARKER  OF HUMAN AGEING AND DISEASE. RESULTS FROM THE LARGEST PROSPECTIVE STUDY SHOWING THE MN FREQUENCY IN BN LYMPHOCYTES 

PREDICTS CANCER RISK WERE PUBLISHED IN 2007 (Bonassi et al   PMID: 16973674)

VALIDATION AND REGULATORY ENDORSEMENT OF THE L-CBMN ASSAY AS A BIODOSIMETER OF IONISING RADIATION EXPOSURE WAS ACHIEVED (ISO 
17099 STANDARD, AND IAEA INCLUSION OF L-CBMN ASSAY IN ITS BIODOSIMETRY MANUAL)

FOUNDING OF THE HUMN PROJECT TO HARMONISE AND VALIDATE THE USE OF MN ASSAYS,  VIA INTERNATIONAL COLLABORATION AND 
EDUCATION VIA WORSHOPS AND DETAILED ROBUST PROTOCOLS  

THE INCREASING USE OF THE L-CBMN ASSAY LED TO ITS EVOLUTION INTO A MULTI-ENDPOINT CYTOME BIOMARKER ASSAY 
MEASURING NOT ONLY MN BUT ALSO MN WITH/WITHOUT CENTROMERE, ANEUPLOIDY, NPB, NBUD, 
APOPTOSIS, NECROSIS, APOPTOSIS AND CELL DIVISION (see Nature Protocols 2007 PMID: 17546000)

MANY POPULATION STUDIES IN CHILDREN AND ADULTS WERE PERFORMED TO IDENTIFY IMPORTANT VARIABLES AFFECTINGLYMPHOCYTE MN 
FREQUENCY SUCH AS AGE, GENDER, MALNUTRITION, EXPOSURE TO ENVIRONMENTAL GENOTOXINS AND POLYMORPHISMS IN  GENES AFFECTING 

DNA REPLICATION  AND REPAIR

1985

1997

1997-
2007

1997-
2007

1997-
2023

1997-
2023

1997-
2023

USE OF THE L-CBMN ASSAY AS AN IN VITRO TEST FOR GENOTOXICITY TESTING WAS ENDORSED BY THE OECD (OECD TEST GUIDELINE 487).  
FURTHERMORE, SEVERAL HUMAN STUDIES HAVE CONSISTENTLY DEMONSTRATED THE SUITABILITY OF THE L-CBMN ASSAY TO MEASURE  

DNA DAMAGE INDUCED BY IN VIVO EXPOSURE TO CHEMICAL GENOTOXINS IN HUMANS. 

1997-
2023

TIME-LINE OF HUMN PROJECT ACHIEVEMENTS
WITH LYMPHOCYTE CBMN ASSAY

Fig. 5. Timeline of HUMN project achievements with lymphocyte CBMN assay.

INVENTION  OF BUCCAL MICRONUCLEUS ASSAY
S�ch et al 1982

A “STATE OF THE ART” SURVEY ON THE USE OF THE BUCCAL MICRONUCLEUS ASSAY 
WAS CONDUCTED AND PUBLISHED IN 2009

THREE INTERLABORATORY SLIDE SCORING EXERCISES WERE COMPLETED SUCCESSFULLY AND IDENTIFIED THE MOST ROBUST BIOMARKERS IN THE 
BUCCAL MN CYTOME ASSAY

THE ASSOCIATION OF BUCCAL MN FREQUENCY WITH DISEASE WAS INVESTIGATED IN A SERIES OF 
SYSTEMATIC REVIEWS AND META-ANALYSES  PUBLISHED IN A SPECIAL ISSUE ON THE TOPIC OF “MICRONUCLEI AND DISEASE” 

(Fenech et al 2021 PMID: 34893149 )

COMPLETED REVIEW OF BUCCAL MN ASSAY AIMED AT IDENTIFYING 
THE MOST IMPORTANT KNOWLEDGE GAPS AND THE KEY TECHNICAL 

ISSUES THAT NEEDED TO BE RESOLVED

A DETAILED PROTOCOL OF THE BUCCAL MICRONUCLEUS CYTOME ASSAY WAS PUBLISHED  IN NATURE PROTOCOLS 
(Thomas et al 2009  PMID: 19444240) 

A COMPREHENSIVE SET OF DETAILED SCORING CRITERIA  FOR THE NINE BIOMARKERS IN THE BUCCAL MICRONUCLEUS CYTOME ASSAY 
WERE PUBLISHED. (Bolognesi et al 2013, PMID: 23942275)

1982

2007/
2008

2009

2009

2013

2015,2017, 
2020

2021

TIME-LINE OF HUMN PROJECT ACHIEVEMENTS
WITH THE BUCCAL MN ASSAY

AS YSTEMATIC REVIEW OF 63 ELIGIBLE STUDIES, PUBLISHED IN 2009,  IDENTIFIED THE MOST 
IMPORTANT FACTORS AFFECTING BUCCAL MN FREQUENCY  AND DETERMINED THE CORRELATION 

BETWEEN MN FREQUENCY IN BUCCAL CELLS AND LYMPHOCYTES 
2009

Fig. 6. Timeline of HUMN project achievements with buccal MN assay.
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[70] F. Coppedè, F. Migheli, S. Bargagna, G. Siciliano, I. Antonucci, L. Stuppia, 
G. Palka, L. Migliore, Association of maternal polymorphisms in folate 
metabolizing genes with chromosome damage and risk of Down syndrome 
offspring, Neurosci. Lett. 449 (1) (2009 Jan 2) 15–19, https://doi.org/10.1016/j. 
neulet.2008.10.074. Epub 2008 Oct 25. PMID: 18983896.

[71] V. Dhillon, P. Thomas, M. Fenech, Effect of common polymorphisms in folate 
uptake and metabolism genes on frequency of micronucleated lymphocytes in a 
South Australian cohort, Mutat Res. 665 (1-2) (2009 Jun 1) 1–6, doi: 10.1016/j. 
mrfmmm.2009.02.007. Epub 2009 Feb 21. PMID: 19427504.

[72] A.L. Piskac-Collier, C. Monroy, M.S. Lopez, A. Cortes, C.J. Etzel, A.J. Greisinger, 
M.R. Spitz, R.A. El-Zein, Variants in folate pathway genes as modulators of 
genetic instability and lung cancer risk, Genes Chromosomes Cancer 50 (1) (2011 
Jan) 1–12, https://doi.org/10.1002/gcc.20826. PMID: 20842733.

[73] S. Dutta, J. Shaw, A. Chatterjee, K. Sarkar, R. Usha, A. Chatterjee, S. Sinha, 
K. Mukhopadhyay, Importance of gene variants and co-factors of folate metabolic 
pathway in the etiology of idiopathic intellectual disability, Nutr. Neurosci. 14 (5) 
(2011 Sep) 202–209, https://doi.org/10.1179/1476830511Y.0000000016. 
PMID: 22005284.

[74] X.Y. Wu, J. Ni, W.J. Xu, T. Zhou, X. Wang, Interactions between MTHFR C677T- 
A1298C variants and folic acid deficiency affect breast cancer risk in a Chinese 
population, Asian Pac. J. Cancer Prev. 13 (5) (2012) 2199–2206, https://doi.org/ 
10.7314/apjcp.2012.13.5.2199. PMID: 22901194.

[75] J. Ni, Z. Liang, T. Zhou, N. Cao, X. Xia, X. Wang, A decreased micronucleus 
frequency in human lymphocytes after folate and vitamin B12 intervention: a 
preliminary study in a Yunnan population, Int. J. Vitam. Nutr. Res 82 (6) (2012 
Dec) 374–382, https://doi.org/10.1024/0300-9831/a000134. PMID: 23823922.

[76] S.P. Fernandes, K. Kvitko, J. da Silva, P. Rohr, E. Bandinelli, V.F. Kahl, C. Mai, 
N. Brenner, F.R. da Silva, Influence of vitamin intake and MTHFR polymorphism 
on the levels of DNA damage in tobacco farmers, Int. J. Occup Environ. Health 23 
(4) (2017 Oct) 311–318, https://doi.org/10.1080/10773525.2018.1500796. 
Epub 2018 Jul 27. PMID: 30052162; PMCID: PMC6147114.

[77] M. Beranek, A. Malkova, Z. Fiala, J. Kremlacek, K. Hamakova, L. Zaloudkova, 
P. Borsky, T. Adamus, V. Palicka, L. Borska, Goeckerman therapy of psoriasis: 
genotoxicity, dietary micronutrients, homocysteine, and MTHFR gene 
polymorphisms, Int. J. Mol. Sci. 20 (8) (2019 Apr 17) 1908, https://doi.org/ 
10.3390/ijms20081908. PMID: 30999684; PMCID: PMC6514650.

[78] M. Xiang, Z. Wang, P. Zou, X. Ling, G. Zhang, Z. Zhou, J. Cao, L. Ao, Folate 
metabolism modifies chromosomal damage induced by 1,3-butadiene: results 
from a match-up study in China and in vitro experiments, Genes Environ. 43 (1) 
(2021 Oct 9) 44, https://doi.org/10.1186/s41021-021-00217-y. PMID: 
34627392; PMCID: PMC8501532.

[79] V.F.S. Kahl, V. Dhillon, M. Fenech, M.R. de Souza, F.N. da Silva, N.A.P. Marroni, 
E.A. Nunes, G. Cerchiaro, T. Pedron, B.L. Batista, M. Cappetta, W. Mártinez- 
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M. Seong, S. Sommer, T. Szatmári, A. Testa, A. Tichy, T.M. Tran, R. Wilkins, 
M. Port, M. Abend, A. Baeyens, RENEB inter-laboratory comparison 2021: the 
cytokinesis-block micronucleus assay, Radiat Res. 199 (6) (2023 Jun 1) 571–582, 
https://doi.org/10.1667/RADE-22-00201.1. PMID: 37057983.

[122] J.P. McNamee, F.N. Flegal, H.B. Greene, L. Marro, R.C. Wilkins, Validation of the 
cytokinesis-block micronucleus (CBMN) assay for use as a triage biological 
dosimetry tool, Radiat Prot Dosimetry 135 (4) (2009 Aug) 232–242, https://doi. 
org/10.1093/rpd/ncp119. PMID: 19628702.

[123] H. Romm, S. Barnard, H. Boulay-Greene, A. De Amicis, S. De Sanctis, M. Franco, 
F. Herodin, A. Jones, U. Kulka, F. Lista, P. Martigne, J. Moquet, U. Oestreicher, 
K. Rothkamm, H. Thierens, M. Valente, V. Vandersickel, A. Vral, H. Braselmann, 
V. Meineke, M. Abend, C. Beinke, Laboratory intercomparison of the cytokinesis- 
block micronucleus assay, Radiat Res. 180 (2) (2013 Aug) 120–128, https://doi. 
org/10.1667/RR3234.1. Epub 2013 Jul 17. PMID: 23862731.

[124] International Atomic Energy Agency, Cytogenetic dosimetry: applications in 
preparedness for and response to radiation emergencies, Printed by the IAEA in 
Vienna (2011).

[125] ISO 17099:2014(E). ISO/TC 85/SC 2/WG. Secretariat: AFNOR. Radiological 
protection — Performance criteria for laboratories using the cytokinesis-block 
micronucleus (CBMN) assay in peripheral blood lymphocytes for biological 
dosimetry. Date: 2014-07-11.

[126] H. Al-Serori, M. Kundi, A. Nersesyan, F. Ferk, S. Knasmueller, Electromagnetic 
fields and Micronuclei, in: S. Knasmueller, M. Fenech (Eds.), The Micronucleus 
Assay in Toxicology, Royal Society of Chemistry, Croydon U.K, 2019, 
pp. 387–402.

[127] E.J. Thomson, P.E. Perry, The identification of micronucleated chromosomes: a 
possible assay for aneuploidy, Mutagenesis 3 (5) (1988 Sep) 415–418, https:// 
doi.org/10.1093/mutage/3.5.415. PMID: 3148824.

[128] A.M. Lynch, J.M. Parry, The cytochalasin-B micronucleus/kinetochore assay in 
vitro: studies with 10 suspected aneugens, Mutat Resk 287 (1) (1993 May) 71–86, 
https://doi.org/10.1016/0027-5107(93)90146-7. PMID: 7683386.

[129] M. Kirsch-Volders, F. Pacchierotti, E.M. Parry, A. Russo, U. Eichenlaub-Ritter, I. 
D. Adler, Risks of aneuploidy induction from chemical exposure: twenty years of 
collaborative research in Europe from basic science to regulatory implications, 
Mutat. Res. Rev. Mutat. Res. 779 (2019) 126–147, https://doi.org/10.1016/j. 
mrrev.2018.11.002. Epub 2018 Dec 27. PMID: 31097149.

[130]] G.R. Hoffmann, J. Buccola, M.S. Merz, L.G. Littlefield, Structure-activity analysis 
of the potentiation by aminothiols of the chromosome-damaging effect of 
bleomycin in G0 human lymphocytes, Environ. Mol. Mutagen 37 (2) (2001) 
117–127, https://doi.org/10.1002/em.1019. PMID: 11246218.

[131]] K. Umegaki, M. Fenech, Cytokinesis-block micronucleus assay in WIL2-NS cells: 
a sensitive system to detect chromosomal damage induced by reactive oxygen 
species and activated human neutrophils, Mutagenesis 15 (3) (2000 May) 
261–269, https://doi.org/10.1093/mutage/15.3.261. PMID: 10792021.

[132]] G. Stephanou, D. Vlastos, D. Vlachodimitropoulos, N.A. Demopoulos, 
A comparative study on the effect of MNU on human lymphocyte cultures in 
vitro evaluated by O6-mdG formation, micronuclei and sister chromatid 
exchanges induction, Cancer Lett 109 (1-2) (1996 Dec 3) 109–114, https://doi. 
org/10.1016/s0304-3835(96)04432-1. PMID: 9020909.

[133]] C. Bull, G. Mayrhofer, M. Fenech, Exposure to hypomethylating 5-aza-2′- 
deoxycytidine (decitabine) causes rapid, severe DNA damage, telomere 
elongation and mitotic dysfunction in human WIL2-NS cells, Mutat Res. Genet. 
Toxicol. Environ. Mutagen 868-869 (2021) 503385, https://doi.org/10.1016/j. 
mrgentox.2021.503385. Epub 2021 Jul 15. PMID: 34454691.

[134] W.P. Chang, S. Lee, J. Tu, S. Hseu, Increased micronucleus formation in nurses 
with occupational nitrous oxide exposure in operating theaters, Environ. Mol. 
Mutagen 27 (2) (1996) 93–97, https://doi.org/10.1002/(SICI)1098-2280(1996) 
27:2<93::AID-EM3>3.0.CO;2-F.

[135]] A. Nersesyan, M. Kundi, M. Waldherr, T. Setayesh, M. Mǐsík, G. Wultsch, 
M. Filipic, G.R. Mazzaron Barcelos, S. Knasmueller, Results of micronucleus 
assays with individuals who are occupationally and environmentally exposed to 
mercury, lead and cadmium, Mutat. Res. Rev. Mutat. Res. 770 (Pt A) (2016) 
119–139, https://doi.org/10.1016/j.mrrev.2016.04.002. Epub 2016 Apr 6. 
PMID: 27894681.

[136]] P. Deo, C.L. McCullough, T. Almond, E.L. Jaunay, L. Donnellan, V.S. Dhillon, 
M. Fenech, Dietary sugars and related endogenous advanced glycation end- 
products increase chromosomal DNA damage in WIL2-NS cells, measured using 
cytokinesis-block micronucleus cytome assay, Mutagenesis 35 (2) (2020 Mar 27) 
169–177, https://doi.org/10.1093/mutage/geaa002. PMID: 31971590.

[137]] M.C. Vuong, L.S. Hasegawa, D.A. Eastmond, A comparative study of the 
cytotoxic and genotoxic effects of ICRF-154 and bimolane, two catalytic 
inhibitors of topoisomerase II, Mutat Res. 750 (1-2) (2013 Jan 20) 63–71, 
https://doi.org/10.1016/j.mrgentox.2012.09.005. Epub 2012 Sep 21. PMID: 
23000430.

[138]] A. Nersesyan, M. Fenech, C. Bolognesi, M. Mǐsík, T. Setayesh, G. Wultsch, 
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