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Abstract—Ultrasound imaging is a commonly used 
technology for visualising patient anatomy in real-time 
during diagnostic and therapeutic procedures. High 
operator dependency and low reproducibility make 
ultrasound imaging and interpretation challenging with a 
steep learning curve. Automatic image classification using 
deep learning has the potential to overcome some of these 
challenges by supporting ultrasound training in novices, as 
well as aiding ultrasound image interpretation in patient 
with complex pathology for more experienced 
practitioners. However, the use of deep learning methods 
requires a large amount of data in order to provide accurate 
results. Labelling large ultrasound datasets is a challenging 
task because labels are retrospectively assigned to 2D 
images without the 3D spatial context available in vivo or 
that would be inferred while visually tracking structures 
between frames during the procedure. In this work, we 
propose a multi-modal convolutional neural network (CNN) 
architecture that labels endoscopic ultrasound (EUS) 
images from raw verbal comments provided by a clinician 
during the procedure. We use a CNN composed of two 
branches, one for voice data and another for image data, 
which are joined to predict image labels from the spoken 
names of anatomical landmarks. The network was trained 
using recorded verbal comments from expert operators. 
Our results show a prediction accuracy of 76% at image 
level on a dataset with 5 different labels. We conclude that 
the addition of spoken commentaries can increase the 
performance of ultrasound image classification, and 
eliminate the burden of manually labelling large EUS 
datasets necessary for deep learning applications.  

 
Index Terms— Automatic labelling, classification, deep 

learning, ultrasound, voice.  

I. INTRODUCTION 

LTRASOUND (US) imaging is a safe, non-invasive and 

cost-effective technology for visualising patient anatomy 

in real-time. However, US scanning is highly operator-

dependent and images can be difficult to interpret, requiring 

extensive training with a long learning curve [1]. To address 

these challenges in US-guided procedures, several simulators 

have been proposed. However, even after completing the 
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recommended training, a clinician may find it difficult to 

perform the examination confidently [1]. In addition, outside of 

direct supervision by another clinician, ways of guiding 

inexperienced clinicians are scarce [2]. Therefore, with the 

ubiquitous use of US imaging, there is a need to develop tools 

that can assist clinicians during these procedures. 

The use of automatic image classification in real-time during 

an US procedure could potentially increase the confidence of a 

clinician by labelling images of anatomical landmarks of 

interest and, in turn, decrease the procedure time. In the 

literature, deep learning models have shown successful results 

in several visual recognition tasks on US images such as: 

classification [3]–[5], segmentation [6]–[9], object detection 

[10], [11] and plane detection [12]. However, a challenge in 

using deep learning-based methods for US is the acquisition of 

a sufficient number of labelled intraoperative data for training. 

In this regard, several approaches have been proposed when 

annotations are scarce or weak [13]. The acquisition of labelled 

data is especially difficult for procedures such as endoscopic 

ultrasound (EUS) because labelling anatomical landmarks in 

real-time is time-consuming and can be disruptive to the 

examination. Image labels annotated retrospectively, on the 

other hand, may be inaccurate as the 3D spatial and temporal 

context required to confidently localise the 2D images is often 

lost.  

Studies on speech recognition and natural language 

processing have shown that convolutional neural networks 

(CNNs) [14] and recurrent neural networks (RNNs) [15] can 

successfully transcribe voice to text. The use of text has been 

explored for US image captioning, either using medical reports 

[16], [17] or voice commentaries on a retrospective dataset [18]. 

In order to be less text-dependant, in the computer vision 

community, there is an interest in machine learning methods 

that learn directly from voice signals, rather than transcripts 

[19]–[23]. For example, Harwath et al.[20], proposed a novel 

multi-modal method for image retrieval that uses spoken 

captions on real images to assign a similarity score to each 

image, demonstrating the possibility to learn semantic 

correspondences from audio and image pairings. This approach 

is especially clinically relevant because trainees learning EUS 

are routinely asked to describe multiple anatomical landmarks 
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in US images during scans, while experienced clinicians also 

routinely explain the content of 2D images to trainees. 

Therefore, verbally describing US images during a procedure is 

a relatively simple and natural task for clinicians, whereas 

producing labels from these descriptions eliminates the greater 

challenge of reviewing long video sequences and identifying 

anatomical landmarks a posteriori. In ultrasound, Jianbo et al. 

[24] proposed a cross-modal contrastive learning to model the 

correspondence between video and voice. It is shown that this 

self-supervised approach can be used to extract meaningful 

representations and improve the performance of two sub-tasks 

in fetal ultrasound: standard plane detection and eye-gaze 

prediction 

To the best of our knowledge, the use of live voice 

commentaries for EUS identification of anatomical landmarks 

has not been investigated before. The aims of this work were to 

develop and evaluate a multi-modal neural network that learns 

simultaneously from US images and clinician voice 

commentaries given during EUS examinations, and to 

investigate the potential of using voice commentaries to label 

US images, thus reducing the burden of manual labelling.  We 

demonstrate that real-time noisy intraoperative voice 

commentaries can provide an easy way to obtain US labels, 

even when using a small dataset.  

II. METHODS 

A. Network Architecture 

To solve the labelling task, we propose to use a multi-modal 

approach to classify US images. Our network consists of two 

independent branches (one for image and one for voice) and a 

joint function (see Fig. 1). Each branch comprises one CNN 

with randomly initialised weights. The image branch takes a 

stack of consecutive US images as input, and the voice branch 

takes a voice signal converted to a spectrogram. The two 

branches are merged using the dot product. In all convolutions, 

we use a kernel size of 3 and a stride of 2 during max pooling. 

The problem is formalised as follows. Let 𝑉 denote the voice 

input space,  𝑈 the US image input space and 𝑆 the set of 

possible image labels, we train the network with a training set 

𝑇 =  {(𝑣𝑛 , 𝑢𝑛, 𝑠𝑛)}𝑛=1
𝑁 , where 𝑣𝑛  ∈  𝑉, 𝑢𝑛  ∈  𝑈, 𝑠𝑛  ∈  𝑆 and 

𝑁 the number of training samples. The model learns the 

mapping 𝑓 ∶ (𝑉, 𝑈 ) →  𝑆. In the following sections, details of 

the two branches and the joint function are given.  

 

1) Voice Branch 
The voice branch transforms the features from the voice input 

space 𝑉 into a latent space 𝑃. The input of this branch is a 

spectrogram generated from a 1 second audio sample taken at 

the time a landmark was mentioned by the clinician and 

synchronised with the image branch. Details on the data 

acquisition are given in Section III.A. This branch comprises 

six 1D convolutions in total, each followed by a batch 

normalisation and a ReLu activation.  

 

2) Image Branch 
The image branch transforms the features from the image 

input space 𝑈 into a latent space 𝑄. This branch is based on the 

Fig. 1. Overview of the proposed network architecture, comprising two branches: image branch (orange area) and voice branch (green area). The voice branch 

(PT) is joined with the image branch (Q) using the matrix product as a joint function (dot product) to obtain C. The image branch employs 2D convolutions 
(Conv2D) followed by a batch normalization (BatchNorm) and a ReLu activation (Relu), with 2D max pooling (MaxPool2D). The voice branch employs 1D 

convolutions (conv1D) followed by a batch normalization and a ReLu activation, with 1D max pooling (MaxPool1D). Global average pooling is denoted as GAP. 

The output of the network is a vector with the probabilities for each class (S). Ablation studies in which only one branch is used are shown with dotted arrows. 
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VGG16 network [25], a well-established architecture widely 

used for image-based processing in multi-branch models [19], 

[21]. The input of this branch is a collection of 25 US images, 

which corresponds to 1 second of imaging data, synchronised 

in time with the input of the voice branch (details described in 

Section III.A). The image branch model comprises 13 2D 

convolutions in total, but unlike VGG16, each convolution is 

followed by a batch normalization [26] and with no fully 

connected layer to keep the spatiotemporal coordinates of the 

feature map before joining with the voice branch.  

 

3) Joint Function and Decoder 
The voice and image latent features 𝑃 and 𝑄 are combined to 

predict the class labels 𝑆. The matrix product of 𝑄 and 𝑃𝑇  is 

used as a joint function, as it is a simple parameter-free operator 

that allows to capture the multivariate correlation between the 

two high-dimensional features, and is defined as: 

 

𝐶 =  𝑄𝑃𝑇  

𝐶𝑖,𝑗,𝑘 = ∑ 𝑄𝑖,𝑗,𝑟 × 𝑃𝑟,𝑘
𝑇  

𝑅

𝑟=1

 

   (1) 

 

Where 𝐶 is the combined map, 𝑖, 𝑗, 𝑘 and 𝑟 denote the 

spatiotemporal coordinates of the feature maps, and R is the 

number of channels (R=1024). 𝐶 represents the spatiotemporal 

relationship between the image and voice branches, and is 

followed by a 2D convolution and a global average pooling 

(GAP) to obtain the activations for each label. GAP was chosen 

instead of a fully-connected layer to reduce the number of 

parameters and avoid overfitting. As loss function, we use a 

standard weighted categorical cross-entropy loss on the softmax 

activations. The loss function is defined as: 

 

ℒ =  − 
1

𝑁
 ∑ ∑ 𝑤𝑘 × 𝑠𝑛

𝑘 × log(𝑓𝜃(𝑣𝑛 , 𝑢𝑛)𝑘)𝑁
𝑛=1

𝐾
𝑘=1 , 

(2) 

 

Where 𝑁 is the number of training samples, 𝐾 the number of 

labels (classes), 𝑤𝑘 the weight for class 𝑘, 𝑠𝑛
𝑘 the target label 

for the training example 𝑛 for class 𝑘 and 𝑓𝜃 is the trained model 

with weights 𝜃. 

B. Network Evaluation and Metrics 

To evaluate the performance of the network, a leave-one-

patient-out cross-validation strategy was employed where one 

patient was omitted from the training dataset and the network 

was trained and then tested on the omitted patient. A single 

vector combining the predicted labels for each fold is used to 

evaluate the performance of the models.  

We calculate the true positives (𝑇𝑃𝑖), the false positives (𝐹𝑃𝑖) 

and false negatives (𝐹𝑁𝑖) for each class, where 𝑖 indicates the 

class. We report the subset accuracy (
∑ 𝑇𝑃𝑖

𝑛
𝑖=1

𝑚
), which 

corresponds to the total number of correct predictions among 

all predictions, the averaged precision (
1

𝑛
 ∑

𝑇𝑃𝑖

(𝑇𝑃𝑖+𝐹𝑃𝑖)

𝑛
𝑖=1 ), recall 

(
1

𝑛
 ∑

𝑇𝑃𝑖

(𝑇𝑃𝑖+𝐹𝑁𝑖)

𝑛
𝑖=1 ) and F1-score (

1

𝑛
 ∑

2∗𝑟𝑒𝑐𝑎𝑙𝑙𝑖∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑟𝑒𝑐𝑎𝑙𝑙𝑖+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑛
𝑖=1 ), 

where 𝑚 is the number of samples and 𝑛 the number of labels 

(in our study, 𝑚 = 143 and 𝑛 = 5). In addition to these 

metrics, we also report the confusion matrix normalised by the 

ground truth class.  

To further investigate the accuracy uncertainty due to intra-

observer variability, we performed a bootstrap sampling 

analysis, with 100 subsets of 10 patients each, and we report the 

mean and standard deviation of the accuracies obtained. The 

accuracy can be used as an indication of how many images 

would need to be manually corrected after the labelling. Note 

that the clinical impact of this work compared to a manual 

approach would need further investigation in a future large-

scale study, and may vary between applications. 

III.  EXPERIMENTS 

A. Data 

EUS images and verbal comments from a clinician were 

acquired from 12 patients who underwent an EUS-guided 

examination to identify abnormalities in the pancreas at 

University College London Hospital (UCLH). Each procedure 

took between 11 and 29 minutes. The clinician was asked to 

comment on anatomical landmarks visible in the EUS field of 

view during the examination, following standards used when 

training a junior clinician and without disrupting routine 

clinical workflow. Anatomical landmarks varied considerably 

between patients and multiple landmarks were often present in 

the field of view. Where multiple landmarks were visible, the 

clinician mentioned only one – typically the landmark most 

relevant to the examination. We selected the 5 anatomical 

landmarks that had been identified in at least 7 different exams, 

namely: the pancreas, the portal vein, the pancreatic duct, the 

portal venous confluence (PVC), and the bile duct. A summary 

of the number of available labels for each patient and the study 

totals are shown in Table I. Each sample is a pair of 1 second of 

voice data and 25 consecutive US frames. Acquisition details 

are described in the next subsections. 

 

1) Acquisition of US Images 
US data were acquired from a Hitachi Preirus EUS console 

and a Pentax EG-3270UK (slim) or EG-3870UTK standard US 

video endoscopes, both linear and with a 7.5 MHz probe. 

Frames were recorded with a resolution of 720×480 pixels at an 

acquisition rate of 25 frames per second with a Elgato Video 

Capture card (Corsair GmbH, Germany). The images were 

cropped to 690×350 pixels for normalisation and to remove 

unnecessary background information such as time, data, gain, 

etc. The pixel size ranged from 0.09 to 0.21 mm on the x-axis 

and from 0.21 to 0.19 mm on the y-axis. 

 

2) Acquisition of Voice Commentaries 
At the same time as the US images were acquired, voice 

commentaries of a single gastroenterologist and/or registrar 

were recorded using an EVIDA digital voice recorder (EVIDA, 

China) with a sample rate of 48,000 Hz. Across all 12 patients, 

a total of 4 different clinicians were recorded (ranging from 

experienced consultant gastroenterologists to specialist 

registrars undergoing training).  
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3) Voice and US Data Synchronization and Processing 
Imaging data and voice data were synchronised using a 

reference timestamp. The audio samples where a clinician 

mentioned a label were manually identified and collated with 

the corresponding synchronised images. A total of 143 pairs of 

image and voice sets were identified, as summarised in Table I. 

An illustration of the voice sample durations is shown in Fig. 2. 

For normalisation, each voice sample was cropped or padded 

with zeros such that the final duration was 1 second and each 

set of images contained 25 frames. Each voice sample was 

converted to a spectrogram of size 1024×66 by computing a 

2046-point Short-time Fourier Transform (STFT) with a 

window length of 1200 frames (25 milliseconds) and a step of 

720 frames (40% overlap). 

B. Implementation Details 

The proposed model was implemented using Tensorflow 2.4. 

We trained the model on 200 epochs with a batch size of 8 and 

an Adam optimiser with a learning rate of 0.001 with the 

following class weights: pancreas = 2.6, portal vein = 1.7, 

pancreatic duct = 1.1, PVC = 1.7 and bile duct = 1.0. Each 

patient-fold was run on a GPU GeForce GTX 1080 for 

approximately 12 hours. 

 
Fig. 2. Histogram depicting the length of all voice samples (in seconds). The 

vertical dashed line indicates the 1 second threshold to which all network inputs 

were cropped or padded (for normalization purposes). 

C. Study Objectives 

Due to the limited number of patients, experiments were 

carefully designed to avoid overfitting and information 

bleeding [27], while maintaining a large enough dataset to 

evaluate the label prediction task using voice. Therefore, 

extensive fine-tuning of the proposed network was not adopted, 

and performance was evaluated using a leave-one-patient-out 

cross validation strategy. Rather than achieving optimum 

performance, which would be unfeasible with the current 

dataset, our experiments were intended to investigate the 

following hypotheses and research questions: 

 

1) Pre-trained weights 
This experiment aims to test if pre-trained weights for both 

voice and image improve the performance of the network. The 

adapted network architecture used in this experiment is shown 

in Fig. 3.  

 
Fig. 3. Network architecture using pre-trained weights for both image (blue) 

and voice (green) branches. Dotted arrows denote ablation studies when only 

one of the branches was used. Dotted rectangles denote layers with pre-trained 
weights.  

 

For the voice branch, we pre-trained a simple audio 

recognition model on a public dataset for singe-word command 

speech recognition [28]. This dataset is composed of 64,727 

one-second raw audio files, each containing a single command 

from a set of 30 commands (e.g., ‘go’, ‘left’). Each voice 

sample was converted to a spectrogram of size 374×129 by 

computing a STFT with a window length of 255 frames and a 

step of 128 frames. To train the model faster, the spectrogram 

is first resized (to 32x32 pixels) and then the input is normalised 

with a zero mean and standard deviation of one. We froze all 

pre-trained layers during training and we added a 2D 

convolution after the Dropout layer in order to join the voice 

branch with the image branch.  

For the image branch, we used a VGG16 [25] and a ResNet50 

[29], both trained on ImageNet [30]. We removed the top of the 

pre-trained network and we froze all layers. To join the image 

TABLE I 
SUMMARY OF THE DATA ACQUIRED FROM THE 12 PATIENTS. THE TABLE 

SHOWS THE NUMBER OF SAMPLES FOR EACH OF THE 5 ANATOMICAL 

LANDMARKS (PANCREAS, PORTAL VEIN, PANCREATIC DUCT (PD), PORTAL 

VENOUS CONFLUENCE (PVC) AND BILE DUCT) AND EACH PATIENT, INCLUDING 

A SUMMARY OF THE TOTAL NUMBER PER PATIENT AND LABEL. EACH SAMPLE IS 

A PAIR OF 1 SECOND OF VOICE DATA AND 25 US FRAMES 

  Patient 

Label Samples 1 2 3 4 5 6 7 8 9 10 11 12 

Pancreas 16 0 0 0 1 1 0 0 5 4 2 2 1 

Portal vein 24 0 1 1 1 1 0 0 8 5 0 6 1 

PD 38 1 11 0 2 5 4 0 5 2 3 2 3 

PVC 24 0 2 1 1 3 1 0 7 8 0 1 0 

Bile duct 41 1 4 2 3 8 2 1 2 10 3 5 0 

Total 

samples 
143 2 18 4 8 18 7 1 27 29 8 16 5 
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branch with the voice branch, we added a 2D convolutional 

network. 

To join the two branches, we used the same join function as 

the proposed model and added a 2D convolutional layer and a 

GAP to enable the comparison with the proposed model. We 

trained these models (VGG16 and ResNet50) on 200 epochs 

with a batch size of 8 and an Adam optimiser with a learning 

rate of 1e-5 and we used the same class weights and loss 

function. 

2) Voice-only and Image-only Models 
In order to understand the contribution of each branch, a 

feature ablation study was designed to quantitatively evaluate 

the importance of the voice and image branches when used 

alone (i.e. the labelling performance with no image or voice 

input). This is a challenging task to perform with the image-

only branch and our dataset, because images could contain 

multiple landmarks, but are only assigned the single most 

relevant label, as the clinician can only mention one landmark 

at a time. Therefore, the performance of this branch alone was 

expected to be low. We tested this approach using both the 

proposed architecture and the architecture with pre-trained 

weights. For both approaches, we kept the architecture fixed by 

skipping the multiplication between the image and voice 

branches as represented in Fig. 1 and Fig. 3. Table II shows the 

number of epochs and learning rate used for training the 

different models.  

 
TABLE II  

NUMBER OF EPOCHS AND LEARNING RATE (LR) IN THE ABLATION STUDY  

Model Epochs LR 

Voice-only not pretrained 200 1e-6 

Voice-only with pretrained weights 1000 1e-3 

Image-only not pretrained 80 1e-5 

Image-only with VGG16 with pret. weights 200 1e-5 

Image only with ResNet50 with pret. weights 200 1e-5 

 

3) Random Pairs of Image and Voice 
In this experiment, we investigated the effect of training the 

model using randomised matched pairs. In each epoch, we 

trained the model with a training set 𝑇 =  {(𝑣𝑖 , 𝑢𝑗, 𝑠𝑛)}
𝑛=1

𝑁
 such 

that the class 𝑠𝑖 = 𝑠𝑗 =  𝑠𝑛 , where 𝑣𝑖  ∈  𝑉, 𝑢𝑗  ∈  𝑈, 𝑠𝑛  ∈  𝑆. 

𝑁 is the number of training samples. A total of 3,631 random 

pairs were available with our dataset. 

 

4) Reduced Image Input 
In order to assess the impact due to potentially smaller input 

image size, we evaluated the model using 3 US frames as input 

(equivalent to 3 channels, as it is a widely used configuration in 

most VGG and ResNet50 architectures), randomly selected at 

each epoch from the 25 frames available for each sample.  

D. Class Activation Maps 

We are also interested in the visual explanation and spatial 

localisation of important regions in the US images that were 

used to predict the class.  

We used the Gradient-weighted Class Activation Mapping 

(Grad-CAM) to generate the class activation maps for each 

sample [31]. These maps provide an insight into the model 

interpretation by backpropagating the gradients from the last 

convolutional layer. In this work, we explore the importance of 

these techniques in clinical practice, using the proposed voice 

labelling models. In particular, we show that these model 

interpretations may be useful for safeguarding against potential 

misclassification in vivo, provide insight into regions that have 

been used for correct predictions, and suggest previously 

overlooked landmarks for guidance purposes. The latter two are 

valuable sources of information that can be incorporated into 

model training to combat practical limitations such as 

data availability. Perhaps more importantly, the class activation 

map analysis may also establish confidence that the proposed 

deep-learning models have learned relevant, application-

specific features; as opposed to arbitrary, unstructured regions 

commonly associated with overfitting in models.  

IV. RESULTS AND DISCUSSION 

The quantitative results obtained with the different models in 

terms of accuracy, precision, recall and F1-score are shown in 

Table III. The best performance was obtained with the model 

trained on both image and voice without using pre-trained 

weights. Although the models with pre-trained weights 

performed better in the ablation studies in which only one 

branch was used, this was not the case when both branches were 

used. We attribute this to the fact that the spatiotemporal 

 

TABLE III  
QUANTITATIVE RESULTS FOR THE DIFFERENT MODELS TESTED IN TERMS OF ACCURACY, PRECISION, RECALL AND F1-SCORE. 

Model Accuracy Precision Recall F1-score 

Proposed with image + voice (no pretrained weights) 0.76 0.74 0.74 0.74 

Proposed with VGG16 + pretrained weights 0.66 0.60 0.59 0.59 

Proposed with ResNet50 + pretrained weights 0.59 0.54 0.54 0.54 

Image branch only (not pretrained) 0.20 0.20 0.34 0.24 

Image branch only with VGG16 + pret. weights 0.28 0.24 0.24 0.23 

Image branch only with ResNet50 + pret. weights 0.31 0.26 0.26 0.26 

Voice branch only (not pretrained) 0.42 0.40 0.40 0.38 

Voice branch only pretrained 0.66 0.68 0.65 0.65 

Proposed with random pairs 0.70 0.67 0.67 0.67 

Proposed with reduced image input 0.66 0.63 0.63 0.62 
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correlation between image and voice is lost when training both 

branches independently.  

One of the challenges of our dataset is that several landmarks 

are situated near to each other and often appear simultaneously 

in the same image. The examining clinician may only mention 

one landmark of interest, or alternatively report multiple 

landmarks in succession while maintaining the same view. This 

was a common occurrence for pancreas, pancreatic duct and 

PVC images as shown in Fig. 4. The pancreatic duct is located 

within the pancreatic parenchyma and will always appear in 

images where the pancreatic head, body or tail are also visible. 

The pancreatic head and common bile duct were also 

susceptible, because the pancreatic head, duct and the ampulla 

are all in close proximity. This is supported by the lower 

accuracy obtained with the image-only ablation study, where 

the image branch was considered independently (accuracy of 

0.20 with no pre-trained weights and accuracy of 0.31 with 

ResNet50 and pre-trained weights), as most of the images 

contained multiple landmarks. Further investigation with an 

experienced clinician showed that some of the misclassified 

images were classified as one of the other landmarks seen in the 

image. For instance, in Fig. 4 we can see examples of images 

labelled as PVC but classified as pancreas or pancreatic duct, 

which are also visible on the images.  

 Considering a voice-only model, the accuracy was also lower 

(accuracy of 0.66 with pre-trained weights) compared to using 

both voice and image branches. The poor performance of this 

branch can be associated with the use of intraoperative voice 

recordings, as labels can be described differently due to the lack 

of a standard protocol when mentioning a label (e.g., pancreatic 

duct can be described as ‘pancreatic duct’ or ‘PD’). This could 

be further explored by including a protocol when a label is 

mentioned in the clinical workflow, however, one of the aims 

of this research is to integrate the proposed method in a natural 

manner, which includes no alteration of the current workflow. 

We also investigated if there is a correlation between the 

anatomical landmarks and the size of the zero-padding applied. 

We grouped the voice sample lengths by anatomical landmark 

(5 groups) and performed a one way ANOVA statistical test. 

The test showed significant differences between the mean voice 

sample lengths of the 5 groups (p-value < 0.01, α=0.05). To 

further understand if the model used the zero-padding to make 

a prediction, we looked at the CAMs generated with the voice-

only model. A visual inspection of the CAMs overlaid with the 

spectrograms showed that the model focuses on areas of the 

spectrogram where there is strong signal (e.g., voice or 

background noise) and not on the areas with no signal (e.g., 

black regions due to zero-padding), indicating that the zero-

padding was not used to make a prediction. The quantitative 

results obtained in the ablation study with the image-only and 

voice-only models confirm the importance of a multi-modal 

approach. 

The bootstrapping analysis on the proposed model, showed an 

accuracy of 0.76 with a standard deviation of 0.04. 

Results using random pairs of image and voice showed a 

slight decrease of all metrics (accuracy of 0.76 for paired image 

and voice and accuracy of 0.70 for random pairs of image and 

voice). This finding suggests that training the model with 

random pairs of image and voice may add data redundancy into 

the network. 

To investigate the effect of the number of images as input, as 

a potential strategy to reduce the size of the inputs, we evaluated 

the model with 3 ultrasound images as input. Results show that 

a reduced number of images may adversely affect the accuracy 

(0.76 versus 0.66, for the proposed model, and the model with 

reduced input, respectively). 

In Fig. 5 we show the confusion matrix obtained with the 

proposed model. We can observe that the PVC is the structure 

with a lower accuracy, as the model classified 17% of the 

images as pancreatic duct, and 12% of the images as bile duct 

(see Fig. 4 for visual examples).  

Fig. 4. Visual examples of cases of portal venous confluence (PVC)  which have been wrongly classified as pancreas or pancreatic duct (PD), which are also 
visible on the images. 
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Fig. 5. Confusion matrix obtained with the proposed method normalised by 

true label. The x-axis corresponds to the predicted labels and the y-axis to the 

ground truth label. Dark blue represents higher accuracy. The portal venous 
confluence is denoted as PVC. 

 

 Further qualitative analysis on the class activation maps 

showed that the model is capable of learning features from the 

US images focusing on anatomical structures. For instance, in 

Fig. 6 (top left) we can observe that the strongest signal is at the 

upper middle of the image, close to the ultrasound probe. 

However, despite the network focusing on the top of the image, 

the model was able to make the correct prediction using image 

information representing the PVC. In Fig. 6 (top right) the 

region defining the edge of portal vein activated a positive 

prediction of portal vein. These qualitative observations 

demonstrate anatomically meaningful feature representations 

learned by the networks as regions of interest directly relevant 

to the classification were extracted. This feature relevance is 

evidence that overfitting did not occur during training, despite 

the small data set used in our study. We also generated class 

activation maps when the wrong pair of image label and voice 

label was given. We observed that in some cases, the model was 

able to focus on different regions of the image depending of the 

voice label that was given. As an example, Fig. 7 (top) shows 

the map of an image that corresponds to the PVC when is paired 

with a voice label of bile duct (left) or portal vein (right). We 

can observe that the map focuses on similar regions but for bile 

duct is more intense that for portal vein. Fig. 7 (bottom) shows 

an example of an image corresponding to the pancreatic duct 

paired with voice labels of PVC and bile duct. While the voice 

label of PVC does not seem to use any region of the image to 

make the prediction, when the bile duct voice label is given, it 

uses the area of the pancreatic duct to make the prediction of 

bile duct. The two anatomical landmarks may look similar on 

the US images as both are ducts.  

The main limitation of this study was the small amount of 

labelled time-series data available, which is often a problem in 

ultrasound-based applications. Noisy predictions are an 

indication that the addition of data may further improve our 

results. Therefore, future work will focus on data acquisition to 

improve the performance of the model and novel methodology 

to identify and reduce the adverse impact of noisy labels 

generated for downstream tasks. With the current dataset, a 

division of the patient cases into a  training, validation and 

testing sets is challenging, as the distribution of the labels 

among the patients is varied (i.e., not all patients have all the 

labels and the number of labels is different for each set) as 

shown in Table I. Therefore, we decided against using a hold-

out dataset for validation. In future studies, we will also 

consider acquiring data from different environments to further 

investigate the effect of different parameters such as the 

Fig. 6. Visual  examples of class activation maps. The top row shows the map of correctly classified cases of portal venous confluence (PVC) and portal vein 

(PV). The bottom  row shows the map of incorrectly classified pancreas as PVC on the left, an pancreatic duct (PD) on the right. 
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window lengths and the use of Mel-Frequency Cepstral 

Coefficients (MFCCs) in the generation of the spectrograms. 

 

 
Fig. 7. Visual examples of class activation maps when the wrong pair of 

image label and voice label is given. The portal venous confluence is denoted 

as PVC, portal vein as PV and pancreatic duct as PD. 

 

Deep learning-based methods have been used previously to 

classify US images. For instance, Cheng et al. [5], used transfer 

learning to classify abdominal US images into 11 categories 

with high accuracy (77.9%) using a VGGNet approach. In this 

study, the ground truth classification was obtained from text 

annotations and reviewed by an experienced radiologist. 

Results were compared to a human classifier, in which a 

different radiologist spent approximately 12 hours 

retrospectively labelling a test set with 1,423 images using a 

custom graphical user interface. The accuracy obtained by the 

human classifier was 71.7%. In our study, we label 3,575 

images (143 sets of 25 frames each) with an accuracy of 76%. 

A direct comparison of the results is not possible, as we studied 

a different dataset and a different application. Even so, our 

results demonstrate the principle of using real-time voice 

commentary during image acquisition as an addition to the 

images themselves for EUS classification to substantially 

reduce labelling time and increase the accuracy and speed of 

structure by all levels of endosonographer. Using our approach, 

key images containing anatomical structures which are of 

interest to the clinician can be efficiently labelled (at the image 

level) and used to train classification models. Such a model 

would enhance classification of key structures so that 

pathological tissues can be detected rapidly and biopsied if 

necessary. If biopsy results were unexpected, labelled non- 

pathological structures could be efficiently located and 

reviewed in subsequent EUS scans. A clinical study to evaluate 

our approach is proposed for future work. 

V. CONCLUSION 

This study proposes a multi-modal learning method to 

automatically label EUS images during procedures in which 

manual labelling is considered a difficult task. Voice comments 

are given in real-time by a clinician during EUS procedures. 

Results show an improved efficiency when using voice over the 

use of images only. The impact of this work is expected to be 

considerable in both clinical and research environments in the 

long term, especially given difficulties in obtaining labelled US 

data for deep learning methods, currently considered a major 

bottleneck. Future work will focus on data gathering and in the 

next steps to fully automate the method proposed, for example, 

by using a speech recognition system to filter the labels of 

interest. 

Code will be available at: https://ebonmati.github.io/. 
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