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Abstract Cardiometabolic diseases are an increasing global health burden. While

socioeconomic, environmental, behavioural, and genetic risk factors have been identified, a better

understanding of the underlying mechanisms is required to develop more effective interventions.

Magnetic resonance imaging (MRI) has been used to assess organ health, but biobank-scale studies

are still in their infancy. Using over 38,000 abdominal MRI scans in the UK Biobank, we used deep

learning to quantify volume, fat, and iron in seven organs and tissues, and demonstrate that

imaging-derived phenotypes reflect health status. We show that these traits have a substantial

heritable component (8–44%) and identify 93 independent genome-wide significant associations,

including four associations with liver traits that have not previously been reported. Our work

demonstrates the tractability of deep learning to systematically quantify health parameters from

high-throughput MRI across a range of organs and tissues, and use the largest-ever study of its

kind to generate new insights into the genetic architecture of these traits.

Introduction
MRI is often regarded as the gold standard for the measurement of body composition in clinical

research, with measurements of visceral adipose tissue (VAT), liver, and pancreatic fat content having

an enormous impact on our understanding of conditions such as type-2 diabetes (T2D) and nonalco-

holic fatty liver disease (NAFLD) (Thomas et al., 2013). In parallel to these developments, biobank-

scale genome-wide association studies and epidemiological studies have elucidated the genetic

basis of many complex traits, and shed light on their role in disease. The recent augmentation of the

UK Biobank study with an imaging protocol has opened up many new avenues of research. In this

work, we develop automated methods to quantify abdominal organ traits, characterise their genetic

architecture, and explore their relationship to risk factors and disease outcomes.

The MRI protocol in the UKBB includes multiple tissues and organs with the potential for a wide

variety of clinically relevant variables. However, genetic studies utilising the UKBB MRI-derived fea-

tures have focused mainly on brain and cardiac traits (Elliott et al., 2018; Miller et al., 2016;

Pirruccello et al., 2020), with some limited studies focussed on liver iron (n = 8,289) and MRI-based

corrected T1 (n = 14,440) (Parisinos et al., 2020; Wilman et al., 2019). Thus, the full potential of

the UKBB abdominal MRI data has not been realised, in part due to the lack of suitable automated

methods to extract the variety and depth of relevant features from multiple organs in very large

cohorts.

To address this issue, we trained models using deep learning on expert manual annotations, fol-

lowing preprocessing and quality control, to automatically segment key organs from the UKBB MRI

data (Table 1 and Materials and methods). Additionally, we quantified fat and iron content where
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suitable acquisitions were available (Figure 1—figure supplement 1a, and Materials and methods).

In total, we defined 11 Image Derived Phenotypes (IDPs): volume of the liver, pancreas, kidneys,

spleen, lungs, VAT, and abdominal subcutaneous adipose tissue (ASAT), and fat and iron content of

the liver and pancreas. By linking these traits to measures of risk factors, genetic variation, and dis-

ease outcomes, we are able to better characterise their role in disease risk.

Results
Table 1 characterises the study population compared to the entire imaging cohort. We were able to

successfully extract IPDs from >99% of available scans for each modality (Table 1 and

Supplementary file 1b).

Characterisation of IDPs in the UK biobank population
Previous studies have derived measures of VAT and ASAT, liver fat and iron in the UK Biobank from

a subset of the scanned participants (McKay et al., 2018; West et al., 2016; Wilman et al., 2017).

Our IDPs show a correlation of 0.87 (liver iron) to 1.0 (fat volume) (Materials and methods; Figure 1—

figure supplement 1). The distribution of each organ-specific measure in the scanned population is

summarised in Figure 1E,F and G and Table 2.

All IDPs, except liver fat, showed a statistically significant association with age after adjusting for

imaging centre and date (Figure 1B), although the magnitudes of the changes are generally small

(e.g. �8.8 ml or �0.03 s.d./year for liver volume, �27.7 ml or �0.0067 s.d./year for ASAT, and 24.3

ml or 0.011 s.d./year for VAT). Liver, pancreas, kidney, spleen, and ASAT volumes decreased, while

VAT and lung volumes increased with age. Liver and pancreatic iron and pancreatic fat increase

slightly with age. Several IDPs (volumes of liver, kidney, lung, and pancreas, as well as liver fat and

iron) showed statistically significant evidence of heterogeneity in age-related changes between men

and women. We found excess liver iron (>1.8 mg/g) in 3.22% of men and 1.75% of women.

To explore diurnal variation, we investigated correlation between the imaging timestamp and

IDPs. We find a decrease in liver volume during the day, with volume at 12 noon being on average

112 ml smaller than volume at 8 am, and a return to almost the original volume by 8 pm. This has

previously been suggested in small ultrasound studies (n = 8) which indicated that liver volume is at

its smallest between 12 and 2 pm, attributed to changes in hydration and glycogen content

(Leung et al., 1986). We also observe smaller, but still statistically significant, associations between

time of day and liver and pancreas iron, as well as ASAT, VAT, kidney, and lung volume. Although

these changes appear to be physiological in nature, we are currently unable to rule out other poten-

tial sources of confounding, however unlikely (for example, different groups of participants being

more likely to attend the scanning appointment at different times of day).

Table 1. Study population characteristics.

Age, BMI, and height rows give mean and SD for each population.

UK biobank cohort (at time of
baseline visit)

Imaging cohort (at time of
imaging visit)

GWAS cohort (White British Ancestry and passing QC)

Organ volume
(DIXON)

Pancreas
volume

Pancreas fat
and iron

Liver fat and
iron

Number of
participants

502,520 38,881* 32,860 31,758 25,617 32,858

% Female 54.4 51.8 51.5 51.4 51.2 51.5

Age 56.5 (8.1) 63.7 (7.56) 63.9 (7.52) 63.8 (7.52) 64.2 (7.48) 63.9 (7.52)

BMI (kg/m2) 27.4 (4.8) 26.5 (4.39) 26.5 (4.37) 26.5 (4.34) 26.5 (4.31) 26.5 (4.36)

Height (cm) 168 (9.28) 169 (9.3) 169 (9.26) 169 (9.25) 169 (9.26) 169 (9.26)

% White British
Ancestry

81.5 81.5 100 100 100 100

*Number of imaging participants gives the number with at least one abdominal IDP successfully extracted.
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Figure 1. Visualisation of studied IDPs. (A) Example Dixon image before and after automated segmentation of ASAT, VAT, liver, lungs, left and right

kidneys, and spleen. (B) Relationship between IDPs and age and sex within the UKBB. Each trait is standardised within sex, so that the y axis represents

standard deviations, after adjustment for imaging centre and date. The trend is smoothed using a generalised additive model with smoothing splines

for visualisation purposes. (C) Relationship between IDPs and scan time and sex within the UKBB. Each trait is standardised within sex, so that the y axis

represents standard deviations, after adjustment for imaging centre and date. The trend is smoothed using a generalised additive model with

smoothing splines for visualisation purposes. (D) Correlation between IDPs. Lower right triangle: Unadjusted correlation (except for imaging centre and

Figure 1 continued on next page
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IDPs are associated with organ-specific disease outcomes
To assess which IDPs are associated with health-related outcomes, we defined a set of diseases

based on inpatient hospital episode statistics (Materials and methods), and assessed the association

between each IDP and disease diagnoses (Figure 2 and Supplementary file 1c). Although we were

not able to evaluate cause and effect, we found evidence that IDPs reflect organ function and health

from the association with disease outcomes.

Liver volume was significantly associated with chronic liver disease and cirrhosis (p=4.5e-06, beta

= 0.389) as well as T2D (p=1.3e-92, beta = 0.73) and hypertension (p=3.9e-17, beta = 0.18). Kidney

volume was associated with chronic kidney disease (CKD) (p=8.0e-23, beta = �1.0). Interestingly,

pancreas volume was associated more strongly with Type 1 diabetes (T1D) (p=4.9e-21, beta =

�0.77, approximate 95% confidence interval [�0.93,–0.608]), than T2D (p=1.1e-17, beta = �0.27,

approximate 95% confidence interval [�0.332,–0.208]). In contrast pancreatic fat showed a small

association with T2D (beta = 0.181, p=1.16e-07) and not with T1D (p=0.241). Lung volume was most

strongly associated with tobacco use (p=1.8e-46, beta = 0.50) and disorders relating to chronic air-

way obstruction (COPD) (p=3.6e-35, beta = 0.61), with larger lung volume corresponding to a

greater likelihood of respiratory disease diagnosis. Spleen volume was associated with myeloprolifer-

ative disease (p=2.2e-33, beta = 0.74), especially chronic lymphocytic leukaemia (p=9.9e-24, beta =

0.78). Liver fat was associated with T2D (p=1.4e-34, beta = 0.29). Liver iron was associated with T2D

(p=3.1e-19, beta = �0.43) and iron deficiency anaemia (p=5.3e-12, beta = �0.44) VAT was associ-

ated with a wide range of cardiometabolic outcomes including hypertension (p=1e-49, beta = 0.39),

T2D (p=8.1e-44, beta = 0.69), and lipid metabolism disorders (p=1.9e-33, beta = 0.42), while ASAT

was only associated with cholelithiasis and cholecystitis (p=1.3e-08, beta = 0.38). This association

remained statistically significant, after adjusting for VAT, counter to reports that only VAT is predic-

tive of gallstones (Radmard et al., 2015). Overall, this supports the key role of VAT and liver fat in

the development of metabolic syndrome.

Figure 1 continued

date). Upper left triangle: Correlation after adjustment for age, sex, height, and BMI. (E-G) Histograms showing the distribution of the eleven IDPs in

this study.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Correlation between multiple measurements of fat, iron and volume.

Figure supplement 2. IDPs plotted across imaging centre and across scan date.

Table 2. Mean and standard deviations for 11 IDPs in our study, and number of independent GWAS associations found at study-wide

significance (p<4.54e-9; see Materials and methods).

Trait Organ Combined Female Male # Study-wide significant GWAS hits

Volume (L) VAT 3.92 (2.3) 2.78 (1.6) 5.14 (2.3) 3

ASAT 8.16 (4.1) 9.57 (4.3) 6.64 (3.2) 1

Lungs 2.67 (0.73) 2.32 (0.53) 3.03 (0.75) 5

Spleen 0.17 (0.072) 0.14 (0.054) 0.2 (0.078) 29

Kidney 0.14 (0.03) 0.12 (0.023) 0.16 (0.028) 9

Pancreas 0.06 (0.018) 0.06 (0.016) 0.06 (0.019) 11

Liver 1.38 (0.3) 1.28 (0.25) 1.49 (0.3) 11

Fat (%) Pancreas 10.41 (7.9) 8.34 (6.7) 12.6 (8.5) 8

Liver 5.06 (5) 4.43 (4.7) 5.73 (5.2) 11

Iron (mg/g) Pancreas 0.77 (0.097) 0.8 (0.1) 0.75 (0.084) 0

Liver 1.22 (0.26) 1.2 (0.24) 1.24 (0.28) 6*

*Due to complex LD structure in this region, we were not able to finemap the HFE locus. We count two signals at this locus (rs1800562 and rs1799945).

Liu et al. eLife 2021;10:e65554. DOI: https://doi.org/10.7554/eLife.65554 4 of 30

Research article Genetics and Genomics Medicine

https://doi.org/10.7554/eLife.65554


Figure 2. Disease phenome-wide association study across all IDPs and 754 disease codes (PheCodes). The x-axis gives the effect size per standard

deviation, and the y-axis -log10(p-value). The top three associations for each phenotype are labelled. Horizontal lines at disease phenome-wide

significance (dotted line, p=6.63e-05) and study-wide significance (dashed line, p=6.03e-06) after Bonferroni correction. Note that the PheCodes are not

exclusive and have a hierarchical structure (for example, T1D and T2D are subtypes of Diabetes), so some diseases appear more than once in these

plots. LL: Leukocytic leukaemia. CLL: Chronic leukocytic leakaemia. T1D: Type 1 diabetes. T2D: Type 2 diabetes. CKD: Chronic kidney disease.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data for Figure 2 and Figure 2—figure supplement 1– 5, phenome-wide association study across all IDPs.

Figure 2 continued on next page
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IDPs are associated with organ-specific biomarkers, physiological measures,
and behavioural traits
To further explore the extent to which our IDPs reflect organ health, we assessed correlation

between the IDPs and 87 biomarkers from blood, serum, and urine, chosen to reflect a range of

health conditions (Materials and methods, Figure 2—figure supplement 1, Supplementary file 1d).

We also investigated associations between IDPs and 352 lifestyle and exposure factors, 844 self-

reported medical history factors, 500 physical and anthropometric measures, and 769 self-reported

diet and exercise measures (Figure 2—figure supplements 3–5, Supplementary file 1d).

Across multiple abdominal organs, we observed strong correlations between IDPs and bio-

markers reflective of organ function. For example, liver volume was associated with triglycerides

(p=1.19e-242, beta = 0.247) and sex hormone binding globulin (SHBG) (p=3.43e-210, beta =

�0.216). Kidney volume was associated with serum cystatin C (p<1e-300, beta = �0.534), serum cre-

atinine (p<1e-300, beta = �0.48), consistent with observations that smaller kidneys function less

effectively (Jovanović et al., 2013). Pancreas volume was associated with glycated haemoglobin

(HbA1c) (p=8.49e-28, beta = �0.0601), but the association with glucose was not statistically signifi-

cant after Bonferroni correction (p=8.13e-05). Spleen volume was associated with multiple haemato-

logical measurements, including reticulocyte count (p<1e-300, beta = 0.25), mean sphered cell

volume (p<1e-300, beta = �0.323), and platelet distribution width (p<1e-300, beta = 0.277).

Liver fat was associated with multiple liver function biomarkers including triglycerides (p=7.66e-

219, beta-0.177), SHBG (p=4.75e-189, beta = �0.156) alanine aminotransferase (p<1e-300, beta =

0.226), and gamma glutamyltransferase (p=1.63e-194, beta = 0.162). Consistent with disease out-

comes, which showed a correlation between hepatic iron, but not pancreatic iron, with iron defi-

ciency anaemia, liver iron levels were correlated with measures of iron in the blood (e.g. mean

corpuscular haemoglobin (MCH), p=1.71e-240, beta = 0.174), while pancreatic iron did not show

any such association (MCH p=0.218).

Consistent with previous reports (Harrison-Findik, 2007), we found that liver iron was associated

with lower alcohol consumption (p=3e-116, beta = �0.247) and higher intake of red meat (beef

intake p=1.61e-61, beta = 0.168; lamb/mutton intake p=7.13e-56, beta = 0.165). Liver iron was also

associated with suppressed T2* derived from neuroimaging in the same UKBB cohort (Elliott et al.,

2018), particularly in the putamen (left: p=1.53e-68, beta = �0.138; right: p=1.01e-69, beta =

�0.14). There were no such associations for pancreatic iron (left p=0.223; right p=0.194). Addition-

ally, we found that liver fat was associated with lower birth weight (p=1.76e-30, beta = �0.0849)

and comparative body size at age 10 (p=4.79e-76, beta = �0.22). Low birth weight has previously

been associated with severity of pediatric non-alcoholic steatohepatitis (NASH) (Bugianesi et al.,

2017), abnormal fat distribution (Parkinson et al., 2020), and liver fat levels in adults born prema-

turely (Thomas et al., 2011).

We found strong associations between increased lung volume and smoking status, tobacco smok-

ing, COPD and lung disorders, wheeze, diagnosis of asthma and treatment for asthma, a decreased

lung capacity as well as forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1)/FVC

ratio (Figure 2—figure supplement 5). This is perhaps surprising in light of the age-related

decreases in FEV1 and FVC; however, it has been shown that lung volume increases with both age

and as a consequence of obstructive pulmonary diseases (Lutfi, 2017). Although lung volume esti-

mated via MRI is not a widely used clinical measure, our data suggests it may be a biomarker of age-

ing-related respiratory complications.

Figure 2 continued

Figure supplement 1. Phenome-wide associations across all IDPs and 83 biomarkers.

Figure supplement 2. Phenome-wide associations across all IDPs and 199 lifestyle and history traits.

Figure supplement 3. Phenome-wide associations across all IDPs and 770 medical history traits.

Figure supplement 4. Phenome-wide associations across all IDPs and 444 traits measured in online follow-up.

Figure supplement 5. Phenome-wide associations across all IDPs and 335 physical measures.
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Genetic architecture of abdominal IDPs
To explore the genetic architecture of the IDPs, we performed a genome-wide association study

(GWAS) for each IDP of 9 million single-nucleotide polymorphisms (SNPs) in the approximately

30,000 individuals of white British ancestry (Bycroft et al., 2018; Materials and methods). We veri-

fied that the test statistics showed no overall inflation compared to the expectation by examining

the intercept of linkage disequilibrium (LD) score regression (LDSC) (Bulik-Sullivan et al., 2015b;

Supplementary file 1e). Utilising a generalised linear mixed model framework and SKAT-O test

implemented in SAIGE-GENE (Zhou et al., 2020), we performed gene-based exome-wide associa-

tion studies in the 11,134 participants with IDP and exome sequencing data. Test statistics were well

calibrated and we found no study-wide significant associations (Figure 3—figure supplement 1).

The number of individuals included in the analysis for each IDP is given in Table 1, together with the

number of study-wide significant independent signals for each IDP.

Organ volume, fat, and iron are heritable
For each IDP, we estimated SNP-heritability using the BOLT-REML model (Loh et al., 2015a; Materi-

als and methods). All IDPs showed a significant heritable component, indicating that genetic varia-

tion contributes substantially to the variation between individuals (Figure 3A). Heritability is largely

unaffected by the inclusion of height and BMI as additional covariates, indicating that it is not a func-

tion of overall body size.

Genetic correlation between abdominal IDPs
To understand the extent to which genetic variation explains the correlation between traits, we used

bivariate LD score regression (Bulik-Sullivan et al., 2015a) to estimate the genetic correlation

between all 55 IDP pairs, with and without including height and BMI as covariates (Materials and

methods). After Bonferroni correction, we found a statistically significant non-zero genetic correla-

tion between 22 of the 55 unadjusted IDP-pairs traits (Figure 3B and Supplementary file 1f), the

strongest (rg = 0.782, p=4.60e-137) between ASAT and VAT. There was substantial genetic correla-

tion between VAT and liver fat (rg = 0.58, p=3.7e-38) and between VAT and pancreas fat (rg =

0.569, p=2.79e-16). We found a negative genetic correlation between pancreas volume and fat (rg =

�0.45, p=2.1e-06), and between pancreas volume and iron (rg = �0.5, p=5.2e-05).

IDPs share a genetic basis with other physiological traits
To identify traits with a shared genetic basis, we estimated genetic correlation between IDPs and

282 complex traits with a heritable component (Materials and methods). A total of 650 IDP-trait pairs

showed evidence of nonzero genetic correlation; 347 of these involved with measures of size or

body composition (Supplementary file 1g and Figure 3—figure supplement 2). We found substan-

tial genetic correlation between ASAT volume and other measures of body fat, such as whole-body

fat mass (rg = 0.94, p=3.2e-143) and between VAT and conventional surrogate markers such as waist

circumference (rg = 0.75, p=1.6e-109). The strongest genetic correlation with lung volume was with

FVC (rg = 0.7, p=3.1e-71), with FEV and height also significant. We also found more modest genetic

correlation between organ volumes and biochemical measures, such as liver fat and ALT (rg = 0.5,

p=4.5e-23), kidney volume and serum creatinine (rg = �0.4, p=3.9e-22), and liver iron and erythro-

cyte distribution width (rg = �0.33, p=2.1e-14).

Heritability is enriched in organ-specific cell types
In order to identify tissues or cell types contributing to the heritability of each trait, we used strati-

fied LD score regression (Finucane et al., 2015) (Materials and methods). Liver fat showed evidence

for enrichment in hepatocytes (p=4.20e-6) and liver tissue (p=2.2e-5), and pancreatic fat showed evi-

dence for enrichment in pancreas tissue (smallest p=9.74e-5). Spleen volume showed enrichment in

spleen cells (p=7.39e-10) and immune cell types including T cells, B cells, and natural killer cells, and

neutrophils. VAT, ASAT, and lung volumes did not show evidence of significant heritability enrich-

ment in any tissue or cell types (Figure 3—figure supplements 3–5).

Liu et al. eLife 2021;10:e65554. DOI: https://doi.org/10.7554/eLife.65554 7 of 30

Research article Genetics and Genomics Medicine

https://doi.org/10.7554/eLife.65554


Figure 3. Genetic architecture of all IDPs. (A) Heritability (point estimate and 95% confidence interval) for each IDP estimated using the BOLT-REML

model. Y-axis: Adjusted for height and BMI. X-axis: Not adjusted for height and BMI. The three panels show volumes, fat, and iron respectively. (B)

Genetic correlation between IDPs estimated using bivariate LD score regression. The size of the points is given by -log10(p), where p is the p-value of

the genetic correlation between the traits. Upper left triangle: Adjusted for height and BMI. Lower right triangle: Not adjusted for height and BMI. (C)

Figure 3 continued on next page
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Genome-wide significant associations
For each locus containing at least one variant exceeding the study-wide significance threshold, we

used GCTA COJO (Yang et al., 2012) to identify likely independent signals, and map likely causal

variants (Materials and methods, Supplementary file 1h). To better understand the biology of each

signal, we explored traits likely to share the same underlying signal (colocalised signals) among 973

traits and 356 diseases measured in UKBB (Materials and methods, Supplementary file 1i), and

gene expression in 49 tissues (Materials and methods, Supplementary file 1j).

Liver IDPs recapitulate known biology and point to new genes of interest
The strongest association with liver volume (lead SNP rs4240624, p=2.1e-34, beta = �0.15), lies on

chromosome 8, 175 kb from the nearest protein-coding gene, PPP1R3B. PPP1R3B is expressed in

liver and skeletal muscle, and promotes hepatic glycogen biosynthesis (Mehta et al., 2017).

Although this variant has been associated with attenuated signal on hepatic computed tomography

(Stender et al., 2018); in our study, it was not associated with liver fat (p=0.007) or iron (p=0.001).

We also detected an association between liver volume and a missense SNPs in GCKR (rs1260326,

p=5.4e-19, beta = �0.061). This signal colocalised with T2D, hypercholesterolaemia and hyperlipi-

daemia, gout and gallstones, as well as other lipid and cardiovascular traits in the UKBB. This locus

has previously been associated with NAFLD (Kawaguchi et al., 2018) as well as multiple metabolic

traits including triglycerides, lipids, and C-reactive protein (Wojcik et al., 2019).

Of the eight study-wide independent signals associated with liver fat, three (rs58542926 in

TM6SF2 rs429358 in APOE; and rs738409 in PNPLA3) have previously been associated with NAFLD

(Kozlitina et al., 2014; Romeo et al., 2008; Speliotes et al., 2011), and were also reported in a

GWAS of liver fat in a subset of this cohort (Parisinos et al., 2020). The fourth SNP identified in that

study, rs1260326 in GCKR, did not reach our stringent threshold of study-wide significance threshold

(p=1.9e-8, beta = �0.044).

Two of the remaining five signals have previously been linked to liver disorders or lipid traits,

although not specifically to liver fat. A signal near TRIB1 (lead SNP rs112875651) colocalises with

hyperlipidaemia and atherosclerosis and has been linked to lipid levels in previous studies, and SNPs

in this gene have an established role in the development of NAFLD (Liu et al., 2019). A missense

SNP in TM6SF2 (lead SNP rs188247550) is also associated with hyperlipidaemia and has previously

been linked to alcohol-induced cirrhosis (Buch et al., 2015).

Three further signals have not previously been associated with any liver traits, although some

have been associated with other metabolic phenotypes. On chromosome 1, an SNP intronic to

MARC1 (lead SNP rs2642438) colocalises with cholesterol, LDL-cholesterol, and HDL-cholesterol lev-

els, with the risk allele for higher fat associated with higher LDL-cholesterol. While this variant has

not previously been associated with liver fat, missense and protein truncating variants in MARC1

have been associated with protection from all-cause cirrhosis, and also associated with liver fat and

circulating lipids (Emdin et al., 2020).

We found an association between intronic and GPAM, which encodes an enzyme responsible for

catalysis in phospholipid biosynthesis (lead SNP rs11446981). This signal colocalises aspartate amino-

transferase (AST), and HDL cholesterol levels in serum. GPAM knockout mice have reduced adiposity

and its inhibition reduces food intake and increases insulin sensitivity in diet-induced obesity

Figure 3 continued

Manhattan plots showing genome-wide signals for all IDPs for volume (top panel), fat (middle panel), and iron concentration (lower panel). Horizontal

lines at 5e-8 (blue dashed line, genome-wide significant association for a single trait) and 4.5e-9 (red dashed line, study-wide significant association).

P-values are capped at 10e-50 for ease of display. The genes with closest transcription start site are labelled.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Rare association studies in the subcohort with both exome sequence data and imaging-derived quantitative phenotypes.

Figure supplement 2. Genetic correlation between IDPs and complex traits.

Figure supplement 3. Heritability enrichment in tissues and cell types for annotations based on gene expression (see Materials and methods).

Figure supplement 4. Heritability enrichment in tissues and cell types for annotations based on chromatin accessibility (see Materials and methods).

Figure supplement 5. Heritability enrichment in tissues and cell types in immune cell types (see Materials and methods).

Figure supplement 6. QQ plots calculated based on a set approximately 500,000 LD-pruned, genotyped SNPs per trait.
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(Kuhajda et al., 2011). Our data suggests that this enzyme may play a role in the liver fat accumula-

tion in humans.

A region overlapping to MTTP with 67 variants in the 95% credible set was associated with liver

fat. Candidate gene studies have linked missense mutations in MTTP to NAFLD (Hsiao et al., 2015).

Rare nonsense mutations in this gene cause abetalipoproteinaemia, an inability to absorb and knock-

out studies in mice recapitulate this phenotype (Partin et al., 1974; Raabe et al., 1998). Inhibition

of MTTP is a treatment for familial hypercholesterolaemia and is associated with increased liver fat

(Cuchel et al., 2007).

We replicate previously reported associations with liver iron at HFE (rs1800562 and rs1799945)

and TMPRSS6 (Wilman et al., 2019), although we were unable to accurately finemap at the HLA

locus. We found evidence for two independent additional signals on chromosome 2 between

ASND1 and SLC40A1 (lead SNP rs7577758; conditional lead SNP rs115380467). SLC40A1 encodes

ferroportin, a protein essential for iron homeostasis (Donovan et al., 2005) that enables absorption

of dietary iron into the bloodstream. Mutations in SLC40A1 are associated with a form of haemo-

chromatosis known as African Iron Overload (Mayr et al., 2011). This finding is consistent with a

recent study which highlighted the role of hepcidin as a major regulator of hepatic iron storage

(Wilman et al., 2019).

Novel associations with pancreas IDPs
We identified 11 study-wide significant associations with pancreatic volume. None were coding or

colocalised with the expression of protein-coding genes. Two signals (rs72802342, nearest gene

CTRB2; rs744103, nearest gene ABO) colocalised with diabetic-related traits. This is consistent with

our findings that T1D was associated with smaller pancreatic volume.

We identified seven study-wide significant independent associations with pancreatic fat, with little

overlap with liver-specific fat loci. Surprisingly, we found little evidence that loci associated with pan-

creatic fat were associated with other metabolic diseases or traits, suggesting that it may have a

more limited direct role in the development of T2D than previously suggested (Taylor, 2008).

The top association for pancreatic fat (lead SNP rs10422861) was intronic to PEPD, and colocal-

ised with a signal for body and trunk fat percentage, leukocyte count, HDL-cholesterol, SHBG, total

protein, and triglycerides. PEPD codes for prolidase, an enzyme that degrades iminopeptides in

which a proline or hydroxyproline lies at the C-terminus, with a special role in collagen metabolism

(Kitchener and Grunden, 2012). There was an association at the ABO locus (lead SNP rs8176685)

for pancreatic fat; rs507666, which tags the A1 allele, lies in the 95% credible set at this locus. This

signal colocalises with lipid and cardiovascular traits and outcomes, and is consistent with previous

reports that blood group A is associated with lipid levels, cardiovascular outcomes (Zhang et al.,

2012) and increased risk of pancreatic cancer (Zhang et al., 2014).

An association with pancreatic fat (lead SNP rs7405380) colocalises with the expression of

CBFA2T3 in the pancreas. rs7405380 lies in a promoter flanking region which is active in pancreatic

tissue (ensemble regulatory region ENSR00000546057). CBFA2T3 belongs to a family of ubiquitously

expressed transcriptional repressors, highly expressed in the pancreas, about which little is known. A

recent study identified Cbfa2t3 as a target of Hes1, which plays a critical role in regulating pancre-

atic development (de Lichtenberg et al., 2018). This SNP was not associated with any metabolic

phenotypes.

We identified signals at a locus on chromosome 1 containing FAF1 and CDKN2C (lead SNP

rs775103516), and five other loci. In contrast to liver iron, where we identified strong signals at

regions associated with ferroportin and hepcidin loci, we found no study-wide significant associa-

tions with pancreatic iron.

Novel associations with other organ volume IDPs
A locus on chromosome 2 was associated with average kidney volume. This signal colocalises with

biomarkers of kidney function (cystatin C, creatinine, urate, and urea) and a SNP in the 95% credible

set, rs807624, has previously been reported as associated with Wilms tumor (Turnbull et al., 2012),

a pediatric kidney cancer rarely seen in patients over the age of five. However, this association raises

the possibility that this locus plays a broader role in kidney structure and function in an adult popula-

tion and warrants further study.
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We also found a significant association at the PDILT/UMOD locus (lead SNP rs77924615), that

colocalises with hypertension, cystatin C, creatine, and kidney and urinary calculus in the UKBB. This

locus has previously been associated with hypertension as well as estimated glomerular filtration

rate (eGFR) and CKD (Wuttke et al., 2019) in other studies, supporting our finding that kidney vol-

ume reflects overall kidney function.

The trait with the most associations was the spleen, with 25 independent signals, of which 18

colocalised with at least one haematological measurement. We identified one association with ASAT

volume (lead SNP rs1421085) at the well-known FTO locus which colocalised with many other body

composition traits. The association with VAT volume at this SNP (p=3e-8, beta = 0.037) was not

study-wide significant. We identified three additional signals associated with VAT volume.

rs559407214 (nearest gene CEBPA) is independent of the nearby pancreatic fat signal. rs73221948

lies 150 kb from the nearest protein coding gene. This signal colocalises with triglyceride levels and

HDL levels. This has previously been reported (Richardson et al., 2020), in addition to an association

with BMI-adjusted waist-hip circumference (Zhu et al., 2020) Finally, rs72276239 which is also associ-

ated with trunk fat percentage, diabetes-related traits, cardiovascular problems, and lipids, and has

previously been associated with waist-hip ratio (Kichaev et al., 2019).

Discussion
We have developed a pipeline to systematically quantify organ and tissue parameters from MRI

scans of over 38,000 participants in the UKBB imaging cohort, producing the largest sample size to

date of abdominal imaging-derived phenotypes (IDPs). The training of our segmentation pipeline

incorporated a broad range of data augmentation options, including smooth 3D geometric warps,

to achieve better data efficiency. This enabled us to achieve good segmentation performance (Jac-

card index >0.8) with a limited training dataset size of ~100 images. Since manual annotation of 3D

images is a labor-intensive process, automating this process has removed a substantial barrier to

large-scale studies of clinical images, and in turn facilitated new insights. The semantic segmentation

models are robust to several sources of visual heterogeneity arising from deformable tissues and

joints, and thus facilitate high-throughput analysis of MRI data.

The observed age-related decrease in organ volume (liver, pancreas, kidney, spleen) may reflect

the predicted organ atrophy associated with ageing, likely underpinned by mechanism(s) similar to

those reported for brain and skeletal muscle (Mitchell et al., 2012; Svennerholm et al., 1997). Indi-

vidual organs exhibited distinct patterns of atrophy, with liver and pancreas exhibiting the largest

reduction. The increase in VAT (but not ASAT) and lung volume with age may point at the overriding

impact of environmental factors upon these tissues. Given that VAT and ASAT are exposed to similar

exogenous factors, we hypothesise that the plasticity capacity of their adipocytes (hypertrophy and

hyperplasia), and therefore tissue lipolysis and inflammation, ectopic fat deposition and insulin sensi-

tivity, are differentially affected by the ageing process (Mancuso and Bouchard, 2019). Future stud-

ies which incorporate large-scale longitudinal imaging data will enable detailed interrogation of

these changes between individuals.

The liver plays a pivotal role in the regulation of iron homeostasis, with iron excess to require-

ments stored in hepatocytes (Anderson and Shah, 2013). Epidemiologic studies utilising indirect

methods based on serum markers (i.e. the ratio of serum transferrin receptor to serum ferritin)

describe an age-related increase in total body iron, declining at a very late age (Cook et al., 2003).

However, studies with direct measurements, although far more limited in scope and size, point

towards a linear relationship with age (Kühn et al., 2017; McKay et al., 2018; Nomura et al., 1988;

Schwenzer et al., 2008), similar to that observed in our study. The discrepancy between total and

organ-specific changes with age may relate to the complex relationship between liver iron storage

and circulating iron, which is known to be compromised by age related organ dysfunction and the

inflammasome (Anderson and Shah, 2013). Similar patterns for pancreatic iron were observed

(Schwenzer et al., 2008), again reflecting the overall iron homeostasis in the body.

Ectopic fat accumulation showed a more complex relationship with ageing. Although pancreatic

fat increased with age for both men and women (Schwenzer et al., 2008), liver fat increased only

up to approximately 60 years of age before plateauing in women and decreasing in men

(Kühn et al., 2017; Nomura et al., 1988). Previous studies have suggested a linear relationship

(Thomas et al., 2012; Wilman et al., 2017), but this may reflect the paucity of older participants
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(>60 years) in those cohorts, thus lacking the power to detect the true effects of age on liver fat.

Both liver fat and iron were associated with T2D, consistent with previous studies (McKay et al.,

2018). No association was observed between pancreatic fat or iron content with either T1D or T2D,

despite the observed association between pancreas volume and T1D. This is surprising given its pro-

posed causal role assigned to this fat depot in T2D (Taylor, 2013). Interestingly, although both liver

and pancreas volume decreased with age, pancreatic fat did not, in agreement with previous obser-

vations (Majumder et al., 2017). Additionally, there was considerably greater diurnal variation in

liver volume compared with the pancreas. These observations add credence to the growing evi-

dence of disparate mechanisms for the accumulation of fat in these organs (Hellerstein, 1999). Fur-

thermore, given the observed diurnal variation in organ volume, fat and iron content, coupled to the

known effects of feeding on the circadian clock on organ function (Kalhan and Ghosh, 2015), sched-

uling of MRI measurements of participants may be an important consideration in longitudinal

studies.

Most organ volumes were associated with disease, highlighting the potential medical relevance

of abdominal MRI-derived parameters. Associations with potential clinical relevance included kidney

volume with chronic kidney disease (Grantham et al., 2006), and lung volumes with chronic obstruc-

tive pulmonary disease, bronchitis, and respiratory disease. Liver volume was associated with chronic

liver disease (Lin et al., 1998) and cirrhosis (Hagan et al., 2014) as well as diabetes and hyperten-

sion. Although there is a strong correlation between liver volume and liver fat, liver volume is not

generally measured in relation to metabolic disease. Whilst spleen volumes can be enlarged in

response to a whole host of diseases such as infection, haematological, congestive, inflammatory,

and neoplastic (Pozo et al., 2009), we found spleen volume to be most strongly associated with leu-

kaemia. Although organ volume is not a widely-used measure for disease diagnosis, spleen volume

is a useful metric for predicting outcome and response to treatment (Shimomura et al., 2018), and

a robust automated measure of this IDP could be a powerful auxiliary clinical tool. Indeed, the asso-

ciations with deep-learning derived organ and tissue parameters may become increasingly medically

relevant in the future, as machine intelligence becomes more widely adopted as a component of

clinical care.

The strong association between VAT and development of metabolic dysfunction is well estab-

lished (Lee et al., 2018), and confirmed herein on a much larger cohort. No association between

ASAT and disease, apart from incidence of gallstones, were observed. The overall role of subcutane-

ous fat in disease development is still debated. Viewed as benign or neutral in terms of risk of meta-

bolic disease (Kuk et al., 2006), especially subcutaneous fat around the hips, ASAT does appear to

be associated with components of the metabolic syndrome, though not after correcting for VAT or

waist circumference (Elffers et al., 2017; Irlbeck et al., 2010). It has been suggested that subdivi-

sions of ASAT may convey different risks, with superficial ASAT conferring little or no risk compared

to deeper layers (Kelley et al., 2000). These conflicting results may reflect different approaches to

ASAT and VAT measurement (MRI vs indirect assessment), size and make-up of study cohorts.

Future studies within the UKBB and other biobanks will allow these relationships to be explored in

more depth.

Through GWAS, we identify a substantial heritable component to organ volume, fat and iron con-

tent, both before and after adjusting for body size. We demonstrate heritability enrichment in rele-

vant tissues and cell types (hepatocytes for liver fat, and pancreas for pancreatic fat), suggesting that

there may be specific mechanisms underpinning organ morphology and function that warrant further

investigation. For the traits that have been studied before in other cohorts, we replicate known asso-

ciations such as the PNPLA3, TM6SF2, and APOE loci with liver fat, and of the HFE and TMPRSS6

loci with liver iron. In addition, we identify several novel associations that may suggest mechanisms

for further study, including an association between GPAM and liver fat, PPP1R3B and liver volume

(but not liver fat), CB2FAT3 and pancreatic fat, and SLC40A1 and liver iron. Colocalisation analysis

with gene expression in specific tissues implicated CBFA2T3 in changes of pancreatic fat. We found

little overlap between the significant loci for VAT, ASAT, liver fat, and pancreatic fat, highlighting

the need to develop more refined definitions of adiposity to better understand the role it plays in

disease risk. Our gene-based burden test for rare exome variants was limited by the smaller sample

size available for this study. However, the substantial heritable component suggests that the planned

studies involving up to 100,000 scanned individuals, including whole exome and whole genome
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sequence data, will yield many further insights into the genetic basis of organ form, and its relation-

ship to function.

This study has some limitations. Although recruitment into the UK Biobank study finished in 2010,

scanning began in 2014. The median follow-up period from scanning is 2.5 years, limiting our power

to evaluate the prognostic value of IDPs, or to evaluate whether they are a cause or consequence of

the disease state. Since medical records will continue to be collected prospectively, we will be able

to assess this more systematically in future studies. Our genetic studies were limited to participants

of white British ancestry. While this did not greatly affect power due to the demographics of the

imaging cohort, future imaging studies which incorporate greater diversity of ancestry and environ-

mental exposure will facilitate fine-mapping as well as potentially elucidate new mechanisms

(Wojcik et al., 2019). Additionally, we did not explore in detail the relationship between either

ancestry or self-reported ethnicity, because of the limited sample size in the imaging cohort of non-

White-British participants. Future studies with other cohorts could explore this question. Finally,

while this study focussed on tractable measures derived from segmentation, we expect that future

studies will allow us to define more sophisticated traits derived from organ segmentations and will

give deeper insight into the relationship between organ form and function.

In conclusion, by systematically quantifying 11 IDPs covering several organs in the largest abdom-

inal imaging cohort to date, we have associated organ parameters with environmental exposures,

quantitative biomarkers, and clinical outcomes. In addition, we have characterised the genetic basis

of these imaging-derived phenotypes to recapitulate previously identified associations with clinical

endpoints, as well as uncover novel associations that may reflect new aspects of disease etiology or

organ physiology. These findings could ultimately give insight into causes of complex disease, and

potentially lead to new non-invasive diagnostic techniques. Moreover, the observations relating pan-

creatic volume to type-1 diabetes and liver volume with chronic liver disease along with gender dif-

ferences, genetic susceptibility and volumetric changes related to diurnal variation will be important

factors to consider for the growing field of personalised medicine. Deep-learning models trained on

imaging data thus enhance our understanding of abdominal organ health and disease, and may

guide strategies for personalised medicine or pave the way for new treatments in the future.

Materials and methods

Abdominal imaging data in UK biobank
All abdominal scans were performed using a Siemens Aera 1.5T scanner (Syngo MR D13) (Siemens,

Erlangen, Germany). We analysed four distinct groups of acquisitions: (1) the Dixon protocol with six

separate series covering 1.1 m of the participants (neck-to-knees), (2) a high-resolution T1-weighted

(T1w) 3D acquisition of the pancreas volume, (3a) a single-slice multi-echo acquisition sequence for

liver fat and iron, and (3b) a single-slice multi-echo acquisition sequence for pancreas fat and iron.

Additional details of the MRI protocol may be found elsewhere (Littlejohns et al., 2020). The proto-

col covers the neck-to-knee region, including organs such as the lungs outside the abdominal cavity.

For consistency with the UK Biobank terminology, we used the term ‘abdominal’ throughout the

text.

The UK Biobank has approval from the North West Multi-centre Research Ethics Committee

(MREC) to obtain and disseminate data and samples from the participants (http://www.ukbiobank.

ac.uk/ethics/), and these ethical regulations cover the work in this study. Written informed consent

was obtained from all participants.

Image preprocessing
Analysis was performed on all available datasets as of December 2019, with 38,971 MRI datasets

released by the UK Biobank, where a total of 100,000 datasets are the ultimate goal for the imaging

sub-study. We focus here on four separate acquisitions, with one sequence being applied twice

(once for the liver and once for the pancreas). The Dixon data were assembled into a single 3D vol-

ume for each participant using an automated fat-water swap detection and correction procedure.

No additional preprocessing was necessary for the T1w 3D data for the pancreas. Proton density fat

fraction (PDFF) and R2* were estimated from the single-slice multi-echo data for the liver and pan-

creas (Bydder et al., 2020b). The R2* values were converted into iron concentrations (McKay et al.,
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2018; Wood et al., 2005). More details on the preprocessing steps may be found in the Supple-

mentary Text.

Manual annotation of abdominal structures for model training data
For each organ, we defined a standard operating procedure and provided training to a team of

radiographers, utilising MITK, a free open-source software system for development of interactive

medical image processing software (mitk.org). All annotations were visually inspected at multiple

stages by experienced analysts before use in modelling.

Segmentation of organs, for volume assessment, from Dixon data
We re-purposed an updated 3D iteration of the U-net architecture (Ronneberger et al., 2015)

based on label-free segmentation from 3D microscopy (Ounkomol et al., 2018). Input voxels were

encoded into five channels: fat, water, in-phase, out-of-phase, and body mask. The body mask indi-

cated whether a given voxel was inside the body. To improve data efficiency, we pursued a multi-

task approach (Zhang and Yang, 2021) and implemented aggressive data augmentation. We anno-

tated multiple compartments and organs on the same individuals. Although not intrinsically novel,

we are the first to scale this application to a very large UKBB imaging cohort. All weights are avail-

able to download (https://github.com/calico/ukbb-mri-sseg). This is the first time that segmentations

for multiple major organs and compartments have been published on the UKBB dataset. Compari-

sons across datasets are also difficult because evaluation would be confounded by the specifics of

how individuals are chosen, the conventions of annotation, and specifics of data acquisition or

processing.

Abdominal subcutaneous adipose tissue (ASAT) and visceral adipose tissue
(VAT)
Two structures, the ‘body cavity’ and ‘abdominal cavity’, were segmented using neural-network

based methods from the Dixon segmentation to estimate ASAT and VAT. For estimation of VAT, the

abdominal cavity was used to isolate only tissue in the abdomen and pelvis. The fat channel was

thresholded, small holes filled, and segmentations of abdominal organs (e.g. liver, spleen, kidneys)

were removed to produce the final mask of VAT. For ASAT estimation, the body cavity was used to

exclude all tissue internal to the body. A bounding box was computed based on the abdominal cav-

ity, where the upper and lower bounds in the superior-inferior (z) direction were used to define the

limits of the ASAT compartment.

Segmentation of the liver, for fat and iron content assessment, from single-
slice data
To automatically segment livers on 2D liver acquisitions, we trained one 2D U-net model with stan-

dard data augmentations for IDEAL, and another model for GRE. During inference, we ensured high

specificity, at the cost of recall, by ablating the foreground mask by 25%. We made this trade-off

because it is critical to include only liver tissue in the downstream analysis. In addition we removed

voxels with R2* values outside the physiological range [18.78, 68.9] (McKay et al., 2018). Final val-

ues were not sensitive to this filter.

Pancreas segmentation from T1w MRI (volume) and extraction (fat and iron
content assessment), from single-slice data
We performed pancreas 3D segmentation on the high-resolution T1w 3D acquisition based on a

recent iteration of the U-net architecture used in label-free microscopy (Ounkomol et al., 2018),

using 123 manual annotations. Segmentation was not performed using the Dixon data since the pan-

creas has a complex morphology and benefited from improved contrast and resolution. The seg-

mented volume was resampled to extract an equivalent 2D mask for the single-slice data

(Basty et al., 2020).

Statistical analysis of IDPs
All statistical analyses were performed using R version 3.6.0.

Liu et al. eLife 2021;10:e65554. DOI: https://doi.org/10.7554/eLife.65554 14 of 30

Research article Genetics and Genomics Medicine

https://www.mitk.org/wiki/The_Medical_Imaging_Interaction_Toolkit_(MITK)
https://github.com/calico/ukbb-mri-sseg
https://doi.org/10.7554/eLife.65554


Comparison with previous studies
We compared the values extracted in our study with those from previous studies, available from the

following UK Biobank fields:

. VAT (Field 22407) and ASAT (Field 22408) (West et al., 2016)

. Liver fat (22400) and liver iron (22402) (Wilman et al., 2017)

Relationship between age, scan time, and IDPs
For fitting linear models, we used the R function ’lm’. For fitting smoothing splines, we used the

’splines’ package. To determine whether a coefficient was statistically significant in a set of models,

we adjusted the p-values for each coefficient using Bonferroni correction. We compared models

with and without scan time using ANOVA.

We looked for systematic differences between scanning centre, and trends by scan date (Fig-

ure 1—figure supplement 2). Because there were some minor differences unlikely to be of biologi-

cal interest, we included scanning centre and scan date as covariates in all subsequent analyses.

Disease phenome defined from hospital records
We used the R package PheWAS (Carroll et al., 2014) to combine ICD10 codes (Field 41270) into

distinct diseases or traits (PheCodes). The raw ICD10 codes were grouped into 1283 PheCodes; of

these, 754 PheCodes had at least 20 cases for all IDPs dataset allowing for a meaningful regression

model. For each IDP-PheCode pair, we performed a logistic regression adjusted for age, sex, height,

and BMI, and imaging centre and imaging date, scan time, and self-reported ethnicity.

We defined two Bonferroni-adjusted p-values: a single-trait value of 6.63e-5, and a study-wide

value of 6.03e-6. As many of the diagnoses are correlated, we expect this threshold to be

conservative.

Other traits
We used the R package PHESANT (Millard et al., 2018) to generate an initial list of variables

derived from raw data. We manually curated this list to remove variables related to procedural met-

rics (e.g. measurement date, time and duration; sample volume and quality), duplicates (e.g. data

collected separately on a small number of participants during the pilot phase), and raw measures

(e.g. individual components of the fluid intelligence score). This resulted in a total of 1824 traits. For

each trait, we performed a regression (linear regression for quantitative traits, and logistic regression

for binary traits) on the abdominal IDP, including imaging centre, imaging date, scan time, age, sex,

BMI, and height, and self-reported ethnicity as covariates.

We defined two Bonferroni-adjusted p-values: a single-trait value of 2.75e-5, and a study-wide

value of 2.49e-6. As many traits are correlated, we expect this threshold to be conservative.

Genetics
We follow the methods described in a previous study (Sethi et al., 2020).

Genome-wide association study
We used the UKBB imputed genotypes version 3 (Bycroft et al., 2018), excluding single nucleotide

polymorphisms (SNPs) with minor allele frequency <1% and imputation quality <0.9. We included

only participants who self-reported their ancestry as ‘White British’ and who clustered with this

group in a principal components analysis (Bycroft et al., 2018). We excluded participants exhibiting

sex chromosome aneuploidy, with a discrepancy between genetic and self-reported sex, heterozy-

gosity and missingness outliers, and genotype call rate outliers (Bycroft et al., 2018). We used

BOLT-LMM version 2.3.2 (Loh et al., 2015b) to conduct the genetic association study. To calculate

the genotype-relatedness matrix, we followed the recommendation of the BOLT-LMM authors and

used an LD-pruned (r2 <0.8) set of 574,316 SNPs extracted from the genotyped SNPs and a leave-

one-chromosome-out (LOCO) approach to test association with each SNP. We included age at imag-

ing visit, age squared, sex, imaging centre, scan date, scan time, and genotyping batch as fixed-

effect covariates, and genetic relatedness derived from genotyped SNPs as a random effect to con-

trol for population structure and relatedness. The genomic control parameter, computed from an
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LD-pruned set of genotyped SNPs ranged from 1.02 to 1.09 across eleven IDPs (Supplementary file

1k and Figure 3—figure supplement 6). We verified that the test statistics showed no overall infla-

tion compared to the expectation by examining the intercept of linkage disequilibrium (LD) score

regression (LDSC) (Bulik-Sullivan et al., 2015b; Supplementary file 1e), suggesting that the slightly

inflated GC parameter is likely due to the polygenicity of these traits, rather than residual confound-

ing. In addition to the commonly-used genome-wide significance threshold of p=5e-8, we defined

an additional study-wide significance threshold using Bonferroni correction for the number of traits,

p=5e-8/11 = 4.5e-9. For this analysis and all other analyses using LDSC, we followed the recommen-

dation of the developers and (i) removed variants with imputation quality (info) <0.9 because the

info value is correlated with the LD score and could introduce bias, (ii) excluded the major histocom-

patibility complex (MHC) region due to the complexity of LD structure at this locus

(GRCh37::6:28,477,797–33,448,354; see https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC),

and (ii) restricted to HapMap3 SNPs (Altshuler et al., 2010).

For each IDP, we performed a secondary analysis with height and BMI as additional covariates.

Exome-wide association study
Exome sequencing variant calls from the raw FE variant calling pipeline (Regier et al., 2018) were

downloaded from the UK Biobank website (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=23160).

QC was performed in PLINK v.1.90 using the following criteria: removal of samples with discordant

sex (no self-reported sex provided, ambiguous genetic sex, or discordance between genetic and

self-reported sex), sample-level missingness <0.02, European genetic ancestry as defined by the UK

Biobank (Bycroft et al., 2018). Variant annotation was performed using VEP v100, filtered for rare

(MAF <0.01) putative loss-of-function variants including predicted high-confidence loss-of-function

variants, predicted using the LOFTEE plugin (Karczewski et al., 2020). A total of 11,134 samples

and 11,939 genes were analysed in a generalised linear mixed model as implemented in SAIGE-

GENE (Zhou et al., 2020). A filtering step of at least five loss-of-function carriers per gene was

applied, resulting in 6745 genes. A kinship matrix was built in SAIGE off of a filtered set of array-gen-

otyped variants (r2 <0.2, MAF � 0.05, autosomal SNPs, exclusion of regions of long-range LD, HWE

p>1e-10 in European population). Outcome variables were inverse normal transformed and

regressed on gene carrier status, adjusted for genetic sex, age, age2, the first 10 principal compo-

nents of genetic ancestry, scaled scan date, scaled scan time, and study centre as fixed effects and

genetic relatedness as a random effects term.

Heritability estimation and enrichment
We estimated the heritability of each trait using restricted maximum likelihood as implemented in

BOLT version 2.3.2 (Loh, 2018).

To identify relevant tissues and cell types contributing to the heritability of IDPs, we used strati-

fied LD score regression (Finucane et al., 2018) to examine enrichment in regions of the genome

containing genes specific to particular tissues or cell types. We used three types of annotations to

define: (i) regions near genes specifically expressed in a particular tissue/cell type, (i) regions near

chromatin marks from cell lines and tissue biopsies of specific cell types, and (iii) genomic regions

near genes specific to cells from immune genes. For functional categories, we used the baseline v2.2

annotations provided by the developers (https://data.broadinstitute.org/alkesgroup/LDSCORE). Fol-

lowing the original developers of this method (Finucane et al., 2018), we calculated tissue-specific

enrichments using a model that includes the full baseline annotations as well as annotations derived

from (i) chromatin information from the NIH Roadmap Epigenomic (Kundaje et al., 2015) and

ENCODE (ENCODE Project Consortium, 2012) projects (including the EN-TEx data subset of

ENCODE which matches many of the GTEx tissues, but from different donors), (ii) tissue/cell-type-

specific expression markers from GTEx v6p (GTEx Consortium et al., 2017) and other datasets

(Fehrmann et al., 2015; Pers et al., 2015), and (iii) immune cell type expression markers from the

ImmGen Consortium (Heng et al., 2008). For each annotation set, we controlled for the number of

tests using the Storey and Tibshirani procedure (Storey and Tibshirani, 2003). Although heritability

is non-negative, the unbiased LDSC heritability estimate is unbounded; thus, it is possible for the

estimated heritability, and therefore enrichment, to be negative (e.g. if the true heritability is near

zero and/or the sampling error is large due to small sample sizes).
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To enable visualisation, we grouped tissue/cell types into systems (e.g. ‘blood or immune’, ‘cen-

tral nervous system’) as used in Finucane et al., 2018.

Genetic correlation
We computed genetic correlation between traits using bivariate LDSC (Bulik-Sullivan et al., 2015a).

Statistical fine-mapping
We performed approximate conditional analysis using genome-wide complex trait analysis (GCTA)

(Yang et al., 2012), considering all variants that passed quality control measures and were within

500 kb of a locus index variant. As a reference panel for LD calculations, we used genotypes from

5,000 UKBB participants (Bycroft et al., 2018) that were randomly selected after filtering for unre-

lated participants of white British ancestry. We excluded the major histocompatibility complex

(MHC) region due to the complexity of LD structure at this locus (GRCh37::6:28,477,797–

33,448,354; see https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC). For each locus, we consid-

ered variants with genome-wide evidence of association (Pjoint <10–8) to be conditionally indepen-

dent. We annotated each independent signal with the nearest known protein-coding gene using the

OpenTargets genetics resource (May 2019 version).

Construction of genetic credible sets
For each distinct signal, we calculated credible sets (Maller et al., 2012) with 95% probability of con-

taining at least one variant with a true effect size not equal to zero. We first computed the natural

log approximate Bayes factor (Wakefield, 2007) Lj, for the j-th variant within the fine-mapping

region:

Lj ¼ ln

ffiffiffiffiffiffiffiffiffi

Vj

Vjþ!

s !

! b2

2Vj Vjþ!

� �

where bj and Vj denote the estimated allelic effect (log odds ratio for case control studies) and

corresponding variance. The parameter w denotes the prior variance in allelic effects and is set to

(0.2)2 for case control studies (Wakefield, 2007) and (0.15s)2 for quantitative traits

(Giambartolomei et al., 2014), where s is the standard deviation of the phenotype estimated using

the variance of coefficients (Var(bj)), minor allele frequency (fj), and sample size (nj; see the sdY.est

function from the coloc R package):

2njfj 1� fj
� �

~s2
1

Var bj

� �� 1

Here, s2 is the coefficient of the regression, estimating s such that s¼
ffiffiffiffiffi

s2
p

.

We calculated the posterior probability, pj, that the j th variant is driving the association, given l

variants in the region, by:

pj ¼
1�gð ÞLj

l
Pl

k¼0
Lk

where g denotes the prior probability for no association at this locus and k indexes the variants in

the region (with k = 0 allowing for the possibility of no association in the region). We set g = 0.05 to

control for the expected false discovery rate of 5%, since we used a threshold of P marginal

<5�10�8 to identify loci for fine-mapping. To construct the credible set, we (i) sorted variants by

increasing Bayes factors (natural log scale), (ii) included variants until the cumulative sum of the pos-

terior probabilities was � 1�c, where c corresponds to the credible set cutoff of 0.95.

Colocalisation of independent signals
To identify other traits potentially sharing the same underlying causal variant, we downloaded a cat-

alog of summary statistics using the UK Biobank cohort from http://www.nealelab.is/uk-biobank

(Version 2). For disease phenotypes, we additionally downloaded summary statistics computed using

SAIGE (Zhou et al., 2018) from https://www.leelabsg.org/resources. After de-duplication, removal
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of biologically uninformative traits, and removal of traits with no genome-wide significant associa-

tions, we considered a total of 974 complex traits and, and 356 disease phenotypes. To identify

potentially causal genes at each locus, additionally explored expression QTL data from GTEx (ver-

sion 7, dbGaP accession number dbGaP accession number phs000424.v7.p2) to seek evidence for

colocalisation with expression in one of 49 tissues.

We performed colocalisation analysis using the coloc R package (Giambartolomei et al., 2014)

using default priors and all variants within 500 kb of the index variant of each signal. Following previ-

ous studies (Guo et al., 2015), we considered two genetic signals to have strong evidence of coloc-

alisation if PP3+PP4�0.99 and PP4/PP3 �5.

Identifying other associations with our lead signals
In addition to the colocalisation analysis with UK Biobank traits, order to identify GWAS signals

tagged by any of our associations from previous studies (not including the UK Biobank traits

described above), we queried the Open Targets Genetics Resource (Carvalho-Silva et al., 2019),

version 190505. We identified for studies where our lead variant was in LD (r > 0.7) with the lead

SNP of a published study. We also searched for our lead SNPs in the NHGRI-EBI GWAS catalog

(Buniello et al., 2019) in October 2020.

Code availability
MATLAB code to estimate the PDFF is available from Dr Mark Bydder at https://github.com/marc-

sous/pdff (Bydder, 2020a).

Code to preprocess the imaging data is available from https://github.com/recoh/pipeline

(Whitcher and Basty, 2021; copy archived at swh:1:rev:13dc77941cb2919417108637ea-

de6c8448374229). Fitted models and code to apply the models is available from https://github.

com/calico/ukbb-mri-sseg/ (Liu, 2021; copy archived at swh:1:rev:

4acdad6bf5e6cd08436d91ac6d4a494cf1365d98).

Acknowledgements
We thank Adam Baker, Garret Fitzgerald, Frank Li, Anil Raj, and Amoolya Singh for input on the

manuscript, and Leland Taylor for writing the genetic analysis pipeline used in this manuscript. We

thank Stefan Stender for feedback on a draft. We thank the Edward Janus (Reviewing Editor), Mat-

thias Barton (Senior Editor), Constantinos Parisinos (Reviewer) and one anonymous reviewer for their

feedback on the manuscript. The following individuals involved in review of your submission have

agreed to reveal their identity: Constantinos Parisinos This study was carried out using UK Biobank

Application number 44584, and we thank the participants in the UK Biobank imaging study. This

study was funded by Calico Life Sciences LLC.

Additional information

Competing interests

Yi Liu, Nick van Bruggen, Madeleine Cule: Employee, Calico Life Sciences LLC. This work was funded

by Calico Life Sciences LLC. Elena P Sorokin: Employee, Calico Life Sciences LLC.This work was

funded by Calico Life Sciences LLC. The other authors declare that no competing interests exist.

Funding

No external funding was received for this work.

Author contributions

Yi Liu, Software, Formal analysis, Investigation, Visualization, Methodology, Writing - original draft;

Nicolas Basty, Brandon Whitcher, Data curation, Software, Formal analysis, Investigation, Visualiza-

tion, Methodology, Writing - original draft, Writing - review and editing; Jimmy D Bell, Conceptuali-

zation, Resources, Supervision, Funding acquisition, Investigation, Project administration, Writing -

review and editing; Elena P Sorokin, Software, Formal analysis, Visualization, Methodology, Writing -

Liu et al. eLife 2021;10:e65554. DOI: https://doi.org/10.7554/eLife.65554 18 of 30

Research article Genetics and Genomics Medicine

https://github.com/marcsous/pdff
https://github.com/marcsous/pdff
https://github.com/recoh/pipeline
https://archive.softwareheritage.org/swh:1:dir:94ad50212b537bde4f6d2ed12fb81eae3e817164;origin=https://github.com/recoh/pipeline;visit=swh:1:snp:c2d43d8c628ba81d5b2ac522d09f3b50c032bc60;anchor=swh:1:rev:13dc77941cb2919417108637eade6c8448374229
https://archive.softwareheritage.org/swh:1:dir:94ad50212b537bde4f6d2ed12fb81eae3e817164;origin=https://github.com/recoh/pipeline;visit=swh:1:snp:c2d43d8c628ba81d5b2ac522d09f3b50c032bc60;anchor=swh:1:rev:13dc77941cb2919417108637eade6c8448374229
https://github.com/calico/ukbb-mri-sseg/
https://github.com/calico/ukbb-mri-sseg/
https://archive.softwareheritage.org/swh:1:dir:31c02628581a4187643f52821dbb2c0712adc89a;origin=https://github.com/calico/ukbb-mri-sseg/;visit=swh:1:snp:171132f095f211a38e034ecdc12eda62061df8e1;anchor=swh:1:rev:4acdad6bf5e6cd08436d91ac6d4a494cf1365d98
https://archive.softwareheritage.org/swh:1:dir:31c02628581a4187643f52821dbb2c0712adc89a;origin=https://github.com/calico/ukbb-mri-sseg/;visit=swh:1:snp:171132f095f211a38e034ecdc12eda62061df8e1;anchor=swh:1:rev:4acdad6bf5e6cd08436d91ac6d4a494cf1365d98
https://doi.org/10.7554/eLife.65554


original draft, Writing - review and editing; Nick van Bruggen, Conceptualization, Resources, Super-

vision, Writing - review and editing; E Louise Thomas, Conceptualization, Data curation, Supervision,

Investigation, Methodology, Writing - original draft, Project administration, Writing - review and

editing; Madeleine Cule, Conceptualization, Data curation, Software, Formal analysis, Validation,

Investigation, Visualization, Methodology, Writing - original draft, Project administration, Writing -

review and editing

Author ORCIDs

Yi Liu https://orcid.org/0000-0003-2745-6940

Nicolas Basty http://orcid.org/0000-0002-1330-0913

Brandon Whitcher https://orcid.org/0000-0002-6452-2399

Jimmy D Bell https://orcid.org/0000-0003-3804-1281

Elena P Sorokin http://orcid.org/0000-0001-8957-8869

E Louise Thomas https://orcid.org/0000-0003-4235-4694

Madeleine Cule https://orcid.org/0000-0002-7400-5643

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.65554.sa1

Author response https://doi.org/10.7554/eLife.65554.sa2

Additional files
Supplementary files
. Supplementary file 1. (a) Segmentation performance metrics. (b) Numbers of participants at each

stage of the processing pipeline for different scan and data types. (c) Significant PheWAS associa-

tions. Only associations which are statistically significant after correction for multiple testing are

shown. (d) Significant PHESANT associations. Only associations which are statistically significant after

correction for multiple testing are shown. (e) LDSC intercept. (f) Genetic correlations between

abdominal IDPs. (g) Genetic correlation between abdominal IDPs and other heritable complex traits.

Only associations which are statistically significant after correction for multiple testing are shown. (h)

Genome-wide significant lead SNPs. Columns are as follows . trait: One of: volume, fat or iron .

organ: Organ . var_index Index variant (in the format chr:pos:ref:alt:build) (All index variants are

listed in GRCh37 coordinates) . rs_id: dbSNP ID . var_conditional: If a conditional signal, variants

conditioned on, in the same format as var_index . pv P-value . pp: Probability that the lead SNP is

the causal variant . beta: Effect size (in standard deviations) . closest_gene: Closest protein-coding

gene . closest_gene_dist: Distance to TSS of closest gene (i) Significant colocalisation with complex

trait GWAS signals. (j) Significant colocalisation with gene expression. (k) Genomic control parameter

for each trait computed using BOLT-LMM on an LD-pruned set of genotyped SNPs.

. Transparent reporting form

Data availability

Summary statistics from all genome-wide association studies described in this paper are available

from the NHGRI-EBI GWAS Catalog, accession numbers GCST90016666-GCST90016676, URL

http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90016001-GCST90017000/

GCST90016676/. All underlying data, and derived quantities, are available by application from the

UK Biobank at http://www.ukbiobank.ac.uk.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Cule M, Liu Y,
Basty N, Whitcher
B, Bell JD, Sorokin
EP, van Bruggen N,
Thomas EL

2021 Genetic architecture of 11 organ
traits derived from abdominal MRI
using deep learning

http://ftp.ebi.ac.uk/pub/
databases/gwas/sum-
mary_statistics/
GCST90016001-
GCST90017000/
GCST90016676/

NHGRI-EBI GWAS
Catalog, GCST900
16666-GCST90016676
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The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

The Genotype-
Tissue Expression
(GTEx) Project

2016 GTEx v7 https://storage.google-
apis.com/gtex_analysis_
v7/single_tissue_eqtl_
data/GTEx_Analysis_v7_
eQTL_all_associations.
tar.gz

GTEx v7, GTEx_
Analysis_v7_eQTL_
all_associations

Abbott L, Bryant S,
Churchhouse C,
Ganna A, Howrigan
D, Palmer D, Neale
B, Walters R, Carey
C, The Hail team,
Anttila V, Aragam
K, Baumann A,
Cole J, Daly MJ,
Damian R, Haas M,
Hirschhorn J, Jones
E, Munshi R, Rivas
M, Vedantam S

2018 Neale lab GWAS v2 http://www.nealelab.is/
uk-biobank/

Neale lab, GWAS
v2

Carvalho-Silva D,
Pierleoni A,
Pignatelli M, Ong
CK, Fumis L,
Karamanis N,
Carmona M,
Faulconbridge A,
Hercules A,
McAuley E,
Miranda A, Peat G,
Spitzer M, Barrett J,
Hulcoop DG, Papa
E, Koscielny G,
Dunham I

2018 OpenTargets Genetics https://genetics-docs.
opentargets.org/data-ac-
cess/data-download

OpenTargets
Genetics, 190505

Zhou W, Nielsen
JB, Fritsche LG,
Dey R, Gabrielsen
ME, Wolford BN,
LeFaive J,
VandeHaar P,
Gagliano SA,
Gifford A,
Bastarache LA, Wei
WQ, Denny JC, Lin
M, Hveem K, Kang
HM, Abecasis GR,
Willer CJ, Lee S

2018 Data from: Efficiently controlling for
case-control imbalance and sample
relatedness in large-scale genetic
association studies

ftp://share.sph.umich.
edu/UKBB_SAIGE_HRC/

SAIGE UK Biobank
GWAS, UKBB_SAIGE_
HRC
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Thomas EL, Parkinson JR, Frost GS, Goldstone AP, Doré CJ, McCarthy JP, Collins AL, Fitzpatrick JA, Durighel G,
Taylor-Robinson SD, Bell JD. 2012. The missing risk: mri and MRS phenotyping of abdominal adiposity and
ectopic fat. Obesity 20:76–87. DOI: https://doi.org/10.1038/oby.2011.142, PMID: 21660078

Thomas EL, Fitzpatrick J, Frost GS, Bell JD. 2013. Metabolic syndrome, overweight and fatty liver. In: Berdanier
C. D, Dwyer J. T, Heber D (Eds). Handbook of Nutrition and Food. 3rd edn. CRC Press. p. 763–768.

Turnbull C, Perdeaux ER, Pernet D, Naranjo A, Renwick A, Seal S, Munoz-Xicola RM, Hanks S, Slade I, Zachariou
A, Warren-Perry M, Ruark E, Gerrard M, Hale J, Hewitt M, Kohler J, Lane S, Levitt G, Madi M, Morland B, et al.
2012. A genome-wide association study identifies susceptibility loci for Wilms tumor. Nature Genetics 44:681–
684. DOI: https://doi.org/10.1038/ng.2251, PMID: 22544364

Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC. 2010. N4ITK: improved N3 Bias
correction. IEEE Transactions on Medical Imaging 29:1310–1320. DOI: https://doi.org/10.1109/TMI.2010.
2046908, PMID: 20378467

Wakefield J. 2007. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. The
American Journal of Human Genetics 81:208–227. DOI: https://doi.org/10.1086/519024, PMID: 17668372

West J, Dahlqvist Leinhard O, Romu T, Collins R, Garratt S, Bell JD, Borga M, Thomas L. 2016. Feasibility of MR-
Based body composition analysis in large scale population studies. PLOS ONE 11:e0163332. DOI: https://doi.
org/10.1371/journal.pone.0163332, PMID: 27662190

Whitcher B, Basty N. 2021. Image Processing and Quality Control for Abdominal MRI in the UK Biobank. Software
Heritage. swh:1:rev:13dc77941cb2919417108637eade6c8448374229. https://archive.softwareheritage.org/swh:1:
dir:94ad50212b537bde4f6d2ed12fb81eae3e817164;origin=https://github.com/recoh/pipeline;visit=swh:1:snp:
c2d43d8c628ba81d5b2ac522d09f3b50c032bc60;anchor=swh:1:rev:
13dc77941cb2919417108637eade6c8448374229

Wilman HR, Kelly M, Garratt S, Matthews PM, Milanesi M, Herlihy A, Gyngell M, Neubauer S, Bell JD, Banerjee
R, Thomas EL. 2017. Characterisation of liver fat in the UK biobank cohort. PLOS ONE 12:e0172921.
DOI: https://doi.org/10.1371/journal.pone.0172921, PMID: 28241076

Wilman HR, Parisinos CA, Atabaki-Pasdar N, Kelly M, Thomas EL, Neubauer S, Mahajan A, Hingorani AD, Patel
RS, Hemingway H, Franks PW, Bell JD, Banerjee R, Yaghootkar H, IMI DIRECT Consortium. 2019. Genetic
studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron
concentration. Journal of Hepatology 71:594–602. DOI: https://doi.org/10.1016/j.jhep.2019.05.032,
PMID: 31226389

Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR, Highland HM, Patel YM, Sorokin EP, Avery
CL, Belbin GM, Bien SA, Cheng I, Cullina S, Hodonsky CJ, Hu Y, Huckins LM, Jeff J, Justice AE, Kocarnik JM,
et al. 2019. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570:514–
518. DOI: https://doi.org/10.1038/s41586-019-1310-4, PMID: 31217584

Liu et al. eLife 2021;10:e65554. DOI: https://doi.org/10.7554/eLife.65554 25 of 30

Research article Genetics and Genomics Medicine

https://doi.org/10.1097/RLI.0b013e3181862413
http://www.ncbi.nlm.nih.gov/pubmed/19002057
https://doi.org/10.1101/2020.05.07.20094706
https://doi.org/10.1101/2020.05.07.20094706
https://doi.org/10.1007/s00277-018-3278-9
http://www.ncbi.nlm.nih.gov/pubmed/29455235
https://doi.org/10.1371/journal.pgen.1001324
http://www.ncbi.nlm.nih.gov/pubmed/21423719
https://doi.org/10.1002/hep.29751
http://www.ncbi.nlm.nih.gov/pubmed/29266543
http://www.ncbi.nlm.nih.gov/pubmed/29266543
https://doi.org/10.1073/pnas.1530509100
http://www.ncbi.nlm.nih.gov/pubmed/12883005
https://doi.org/10.1007/s004010050717
http://www.ncbi.nlm.nih.gov/pubmed/9341935
https://doi.org/10.1007/s00125-008-1116-7
http://www.ncbi.nlm.nih.gov/pubmed/18726585
https://doi.org/10.2337/dc12-1805
https://doi.org/10.2337/dc12-1805
http://www.ncbi.nlm.nih.gov/pubmed/23520370
https://doi.org/10.1203/PDR.0b013e31822d7860
http://www.ncbi.nlm.nih.gov/pubmed/21772225
https://doi.org/10.1038/oby.2011.142
http://www.ncbi.nlm.nih.gov/pubmed/21660078
https://doi.org/10.1038/ng.2251
http://www.ncbi.nlm.nih.gov/pubmed/22544364
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
http://www.ncbi.nlm.nih.gov/pubmed/20378467
https://doi.org/10.1086/519024
http://www.ncbi.nlm.nih.gov/pubmed/17668372
https://doi.org/10.1371/journal.pone.0163332
https://doi.org/10.1371/journal.pone.0163332
http://www.ncbi.nlm.nih.gov/pubmed/27662190
https://archive.softwareheritage.org/swh:1:dir:94ad50212b537bde4f6d2ed12fb81eae3e817164;origin=https://github.com/recoh/pipeline;visit=swh:1:snp:c2d43d8c628ba81d5b2ac522d09f3b50c032bc60;anchor=swh:1:rev:13dc77941cb2919417108637eade6c8448374229
https://archive.softwareheritage.org/swh:1:dir:94ad50212b537bde4f6d2ed12fb81eae3e817164;origin=https://github.com/recoh/pipeline;visit=swh:1:snp:c2d43d8c628ba81d5b2ac522d09f3b50c032bc60;anchor=swh:1:rev:13dc77941cb2919417108637eade6c8448374229
https://archive.softwareheritage.org/swh:1:dir:94ad50212b537bde4f6d2ed12fb81eae3e817164;origin=https://github.com/recoh/pipeline;visit=swh:1:snp:c2d43d8c628ba81d5b2ac522d09f3b50c032bc60;anchor=swh:1:rev:13dc77941cb2919417108637eade6c8448374229
https://archive.softwareheritage.org/swh:1:dir:94ad50212b537bde4f6d2ed12fb81eae3e817164;origin=https://github.com/recoh/pipeline;visit=swh:1:snp:c2d43d8c628ba81d5b2ac522d09f3b50c032bc60;anchor=swh:1:rev:13dc77941cb2919417108637eade6c8448374229
https://doi.org/10.1371/journal.pone.0172921
http://www.ncbi.nlm.nih.gov/pubmed/28241076
https://doi.org/10.1016/j.jhep.2019.05.032
http://www.ncbi.nlm.nih.gov/pubmed/31226389
https://doi.org/10.1038/s41586-019-1310-4
http://www.ncbi.nlm.nih.gov/pubmed/31217584
https://doi.org/10.7554/eLife.65554


Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, Coates TD. 2005. MRI R2 and R2* mapping
accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease
patients. Blood 106:1460–1465. DOI: https://doi.org/10.1182/blood-2004-10-3982, PMID: 15860670

Wuttke M, Li Y, Li M, Sieber KB, Feitosa MF, Gorski M, Tin A, Wang L, Chu AY, Hoppmann A, Kirsten H, Giri A,
Chai JF, Sveinbjornsson G, Tayo BO, Nutile T, Fuchsberger C, Marten J, Cocca M, Ghasemi S, et al. 2019. A
catalog of genetic loci associated with kidney function from analyses of a million individuals. Nature Genetics
51:957–972. DOI: https://doi.org/10.1038/s41588-019-0407-x, PMID: 31152163

Yang J, Ferreira T, Morris AP, Medland SE, Madden PA, Heath AC, Martin NG, Montgomery GW, Weedon MN,
Loos RJ, Frayling TM, McCarthy MI, Hirschhorn JN, Goddard ME, Visscher PM, Genetic Investigation of
ANthropometric Traits (GIANT) Consortium, DIAbetes Genetics Replication And Meta-analysis (DIAGRAM)
Consortium. 2012. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional
variants influencing complex traits. Nature Genetics 44:369–375. DOI: https://doi.org/10.1038/ng.2213,
PMID: 22426310

Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. 2008. Multiecho water-fat separation and
simultaneous R 2* estimation with multifrequency fat spectrum modeling . Magnetic Resonance in Medicine 60:
1122–1134. DOI: https://doi.org/10.1002/mrm.21737

Zhang H, Mooney CJ, Reilly MP. 2012. ABO blood groups and cardiovascular diseases. International Journal of
Vascular Medicine 2012:641917. DOI: https://doi.org/10.1155/2012/641917, PMID: 23133757

Zhang BL, He N, Huang YB, Song FJ, Chen KX. 2014. ABO blood groups and risk of Cancer: a systematic review
and meta-analysis. Asian Pacific Journal of Cancer Prevention 15:4643–4650. DOI: https://doi.org/10.7314/
APJCP.2014.15.11.4643, PMID: 24969898

Zhang Y, Yang Q. 2021. A survey on Multi-Task learning. IEEE Transactions on Knowledge and Data Engineering.
DOI: https://doi.org/10.1109/TKDE.2021.3070203

Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, LeFaive J, VandeHaar P, Gagliano SA,
Gifford A, Bastarache LA, Wei WQ, Denny JC, Lin M, Hveem K, Kang HM, Abecasis GR, Willer CJ, Lee S. 2018.
Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association
studies. Nature Genetics 50:1335–1341. DOI: https://doi.org/10.1038/s41588-018-0184-y, PMID: 30104761

Zhou W, Zhao Z, Nielsen JB, Fritsche LG, LeFaive J, Gagliano Taliun SA, Bi W, Gabrielsen ME, Daly MJ, Neale
BM, Hveem K, Abecasis GR, Willer CJ, Lee S. 2020. Scalable generalized linear mixed model for region-based
association tests in large biobanks and cohorts. Nature Genetics 52:634–639. DOI: https://doi.org/10.1038/
s41588-020-0621-6, PMID: 32424355

Zhu Z, Guo Y, Shi H, Liu C-L, Panganiban RA, Chung W, O’Connor LJ, Himes BE, Gazal S, Hasegawa K, Camargo
CA, Qi L, Moffatt MF, Hu FB, Lu Q, Cookson WOC, Liang L. 2020. Shared genetic and experimental links
between obesity-related traits and asthma subtypes in UK biobank. Journal of Allergy and Clinical Immunology
145:537–549. DOI: https://doi.org/10.1016/j.jaci.2019.09.035

Liu et al. eLife 2021;10:e65554. DOI: https://doi.org/10.7554/eLife.65554 26 of 30

Research article Genetics and Genomics Medicine

https://doi.org/10.1182/blood-2004-10-3982
http://www.ncbi.nlm.nih.gov/pubmed/15860670
https://doi.org/10.1038/s41588-019-0407-x
http://www.ncbi.nlm.nih.gov/pubmed/31152163
https://doi.org/10.1038/ng.2213
http://www.ncbi.nlm.nih.gov/pubmed/22426310
https://doi.org/10.1002/mrm.21737
https://doi.org/10.1155/2012/641917
http://www.ncbi.nlm.nih.gov/pubmed/23133757
https://doi.org/10.7314/APJCP.2014.15.11.4643
https://doi.org/10.7314/APJCP.2014.15.11.4643
http://www.ncbi.nlm.nih.gov/pubmed/24969898
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1038/s41588-018-0184-y
http://www.ncbi.nlm.nih.gov/pubmed/30104761
https://doi.org/10.1038/s41588-020-0621-6
https://doi.org/10.1038/s41588-020-0621-6
http://www.ncbi.nlm.nih.gov/pubmed/32424355
https://doi.org/10.1016/j.jaci.2019.09.035
https://doi.org/10.7554/eLife.65554


Appendix 1

Image preprocessing
Dixon pipeline

The Dixon sequence involved six overlapping series that were acquired using a common set of

parameters: TR = 6.67 ms, TE = 2.39/4.77 ms, FA = 10˚ and bandwidth = 440 Hz. The first series,

over the neck, consisted of 64 slices, voxel size 2.232 � 2.232�3.0 mm and 224 � 168 matrix; series

two to four (covering the chest, abdomen and pelvis) were acquired during 17 s expiration breath

holds with 44 slices, voxel size 2.232 � 2.232�4.5 mm and 224 � 174 matrix; series five, covering

the upper thighs, consisted of 72 slices, voxel size 2.232 � 2.232�3.5 mm and 224 � 162 matrix;

series six, covering the lower thighs and knees, consisted of 64 slices, voxel size 2.232 � 2.232�4

mm and 224 � 156 matrix.

The six separate series associated with the two-point Dixon acquisition were positioned automati-

cally after the initial location was selected by the radiographer (Littlejohns et al., 2020). Reconstruc-

tion of the fat and water channels from the two-point Dixon acquisition was performed on the

scanner console. Four sets of DICOM files were generated for each of the six series in the neck-to-

knee Dixon protocol: in-phase, opposed-phase, fat and water.

Bias-field correction (Tustison et al., 2010) was performed on the in-phase volume and the result-

ing bias field applied to the other channels (opposed-phase, fat, water) for each series. The series

were resampled to a single dimension and resolution to facilitate merging the six series into a single

three-dimensional volume (size = [224, 174, 370], voxel = 2.232 � 2.232 x 3.0 mm). To reduce the

effect of signal loss when blending the series, we identified the fixed set of slices that form an over-

lap (inferior-superior direction) between adjacent series and applied a nonlinear function to blend

the signal intensities on these regions of overlap. Slices in the interior of the volume were heavily

weighted and slices near the boundary were suppressed. We repeated the bias-field correction on

the blended in-phase volume and applied the estimated bias field to the other channels.

Fat-water swaps are a common issue in the reconstruction of Dixon acquisitions, where the fat

and water labels attributed to the reconstructed images are reversed for all voxels in the acquired

data series or cluster of voxels associated with separate anatomical structures (e.g., legs or arms).

Once corrected, the fat and water channels are consistent. We used a convolutional neural network

(CNN) model to detect swaps, with six individual models trained for each of the six acquired series.

Only fat-water swaps that involved the entire series or the left-right halves in the final two series

were considered. Partial fat-water swaps (e.g., the top of the liver) will be considered in future work.

Each model used a sequential architecture with six layers that assigned a label to each of the series

when given a central 2D slice from the series. Each convolution block (Cn) was made up of n convolu-

tions that were 3 � 3 spatial filters applied with stride of length two, followed by a leaky rectified lin-

ear unit (ReLU) activation with slope 0.2 and batch normalization. The final layer had stride of length

three and a sigmoid activation for binary classification of the input as either water or fat. The number

of convolution filters was doubled in each layer down the network as follows: C64 - C128 - C256 - C512

- C1024 - C1. The two models covering the bottom two series that include the legs checked the right

and left half of the input image separately to accommodate for the legs being separate structures

with increased likelihood of swaps. Each of the six series for 462 subjects were individually inspected

to ensure no swaps occurred and used to train the models. The ten central coronal slices of each

subject were selected by checking the image profile of the slice in each volume, where the largest

profile was assumed to be the centre of the body. Thus, a total of 4620 images were available for

training each of the networks. No additional data augmentation was performed. Each 2D slice was

normalized. The model was trained with a binary cross entropy loss function using the Adam opti-

mizer and a batch size of 100 until convergence, which was between 150 and 200 epochs depending

on the series. The models were validated on a separate set of 615 subjects, resulting in 4920 individ-

ual swap detection operations performed as every set of Dixon data is subject to eight classification

tests. The validation, via visual inspection of all the series and the swap detection results, revealed

only two instances of the second series (the chest) and one instance of the fifth series (one of the

two legs) were mislabelled out of the total 4920 checks performed. A single false positive, in the sec-

ond series, was observed.
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Anomaly detection of the final reconstructed volumes was performed to identify potential data

issues such as image artifacts, positioning errors or missing series. This was achieved checking the

dimensions of the final reconstructed volume and edge detection performed on the binary body

mask. To generate the body mask, we applied multiscale adaptive thresholding to the flattened in-

phase signal intensities, keeping only the largest connected component, then performed a binary

closing operation. The presence of sharp edges in the body mask highlighted discontinuities in the

data and was used as an indicator of data inconsistencies. We used Canny edge detection on a cen-

tral coronal slice and a sagittal slice of the body mask containing both background and subject

labels. In a normal subject, edge detection should not highlight anything other than the vertical con-

tour of the body from neck to knee. Presence of discontinuities or horizontal features in the body

mask were indicators of anomalies. Clusters of voxels in the edge image corresponding to horizontal

edges exceeding a threshold 10 voxels in the sagittal and coronal slice, or 25 in either slice, trig-

gered the anomaly detection. Those values were selected based on results of 1000 subjects. Field of

view errors in positioning the subject were identified if the head or chin were partly or fully visible,

or if the total volume did not match the standard 224 � 174�370 dimension of the correctly assem-

bled Dixon acquisition. Signal dropout artifacts were caused by metal objects such as knee or tooth

implants and identified when discontinuities appeared inside the body mask.

3D pancreas pipeline

A high-resolution T1w acquisition sequence for determining pancreas volume was acquired under a

single expiration breath hold with TR = 3.11 ms, TE = 1.15 ms, FA = 10˚, bandwidth = 650 Hz, voxel

size 1.1875 � 1.1875�1.6 mm and 320 � 260 matrix. Two versions were provided, with and without

normalization, from the scanner. Bias-field correction was performed to reduce signal inhomogenei-

ties in the normalized volume. No additional preprocessing was applied to the high-resolution 3D

T1w pancreas volumes.

Multiecho pipeline (Gradient Echo and IDEAL)

Two types of acquisitions were performed to quantify fat in the liver and pancreas:

1. A single-slice gradient echo acquisition sequence, for both the liver and pancreas, was
acquired using the common set of parameters: TR = 27 ms, TE = 2.38/4.76/7.15/9.53/11.91/
14.29/16.67/19.06/21.44/23.82 ms, FA = 20˚, bandwidth = 710 Hz, voxel size 2.5 � 2.5 � 6.0
mm and 160 � 160 matrix. This acquisition was stopped for the liver after the first 10,000 sub-
jects (approximately) and replaced by the IDEAL sequence, but was continued for the pancreas
for all subjects.

2. A single-slice IDEAL sequence (Reeder et al., 2005) for the liver used the following parame-
ters: TR = 14 ms, TE = 1.2/3.2/5.2/7.2/9.2/11.2 ms, FA = 5˚, bandwidth = 1565 Hz, voxel size
1.719 � 1.719�10.0 mm and 256 � 232 matrix.

We applied bias-field correction to each echo time separately to facilitate 2D segmentation. Soft-

ware (https://github.com/marcsous/pdff) available from Dr Mark Bydder (Bydder, 2020a), specifi-

cally the PRESCO (Phase Regularized Estimation using Smoothing and Constrained Optimization)

algorithm (Bydder et al., 2020b), was used to simultaneously estimate the proton density fat frac-

tion (PDFF, referred to as fat in results) and transverse relaxivity (R2*) values voxelwise from the sin-

gle-slice gradient echo (GRE) and IDEAL acquisitions. Essentially, a multi-peak spectrum was

constructed from the echo times in the acquisition protocol and used to perform nonlinear least

squares under multiple regularization constraints that extends the IDEAL (Iterative Decomposition of

Water and Fat with Echo Asymmetry and Least-Squares Estimation) algorithm (Reeder et al., 2005;

Yu et al., 2008).

For consistency with previous studies (McKay et al., 2018; Wood et al., 2005), we convert R2*

into iron concentration (mg/g) using the formula: iron concentration = 0.202 + 0.0254 x R2*.

Liver iron concentrations were not adjusted for the potential effects of hepatic cellular patholo-

gies (Li et al., 2018) but we would expect it to be minimal given the relatively low level of hepatocel-

lular clinical diagnosis in the UKBB cohort.
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To minimise error and confounding effects, we applied one voxel erosion to the 2D mask prior to

summarising fat and iron content. If the final size was <1% of the organ’s 3D volume, or <20 voxels,

we excluded the mask from analysis.

To account for systematic differences between the IDEAL and GRE acquisitions, we used the

acquisitions of 1487 subjects that both had GRE and IDEAL acquisitions to fit a linear model relating

these two measurements. If both acquisitions were available, we used the IDEAL measurement. For

those with only GRE, we used the following formulae:

PDFFIDEAL = 1.09 + 0.763 * PDFFGRE

IronIDEAL = 0.196 + 0.855 * IronGRE

Segmentation of organs, for volume assessment, from Dixon data

We re-purposed an updated 3D iteration of the U-net architecture (Ronneberger et al., 2015)

based on label-free segmentation from 3D microscopy (Ounkomol et al., 2018). In order to produce

sensible segmentations for QC purposes on minimal data, we made the following choices. Training

data is intrinsically scarce, and performance can always be improved with additional data. We pur-

sued a multi-task approach (Zhang and Yang, 2021) so as to improve data efficiency. The supervi-

sion loss consists of binary heads as opposed to multi-class classification because compartments can

overlap spatially. We annotated multiple compartments and organs on the same individuals.

Although not intrinsically novel, we are the first to scale this application to a very large UKBB imag-

ing cohort. All weights and pipelines and data augmentation details are available to download

(https://github.com/calico/ukbb-mri-sseg). This is the first time that segmentations for multiple major

organs and compartments have been published on the UKBB dataset. Comparisons across datasets

are also difficult because evaluation would be confounded by the specifics of how individuals are

chosen, the conventions of annotation, and specifics of data acquisition or processing.

Our implementation of U-net had 72 channels on the outside, and we capped the maximum num-

ber of channels in deeper layers of the network to 1152. We used concatenation on skip connec-

tions, and convolution-transposes when upsampling. A heavily-engineered system was used to

stream large datasets efficiently and perform data augmentation on demand. To address computa-

tional bottlenecks, we encoded the 3D multichannel images as urolled PNGs inside TFrecords. We

relied on TensorFlow best practices to parallelise and streamline random batching during training.

Data augmentation was performed on the fly on the GPU, and not pre-computed. We used a batch

size of six, and some customized engineering was needed to accommodate very large tensors and

total GPU memory use.

Input voxels were encoded into five channels: fat, water, in-phase, out-of-phase, and body mask.

The body mask indicated whether a given voxel was inside the body The neural network branched

into a different logit head for supervision on each organ. Supervision included the sum of Dice coef-

ficient (Milletari et al., 2016) and binary cross-entropy across all organs.

Inspection of validation loss curves indicated that use of batch normalization and data augmenta-

tion provided sufficient regularization. During training, the model utilised 80,000 96 � 96�96

patches as subsequently described, and the Adam optimizer learning rate was reduced from 1e-5 to

1e-7 following a quadratic decay. During inference, we used Otsu thresholding (Otsu, 1979) to

decode a binary decision for each voxel as to whether it was part of each given organ or not.

Data augmentation
Data augmentation included a 3D deformation to locally transform 3D data smoothly as a whole,

rather than by slice. We iteratively batched a small number of individual voxels, assigned random

Gaussian values and convolved noise with random width Gaussian filters. The summed result was

treated as a noise vector and added to the raw image dynamically. We also used a smooth elastic

warp to augment the data. This augmentation assigned a different smooth 3D optical flow offset to

each voxel in any spatial direction, which was effective since it could locally subsume a heteroge-

neous combination of commonly used spatial distortions. The same warping function was applied to

training masks to ensure that supervision was consistent with input data.

Each final voxel obtained its value from a location offset by an optical flow vector sampled from a

Gaussian process. To preserve visual details, voxels that were close together were sampled with

strongly correlated optical flow offsets, while pairs further away were less correlated. To reduce the

computational load in the optical flow sampling process, we cropped the image to a 174 � 174 �
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174 window and placed a 4 � 4 � 4 lattice of equispaced points centered inside it. These 64 lattice

points had fixed relative spatial positions. Based on pairwise distances, we created a (4 � 4 � 4)-by-

(4 � 4 � 4) covariance matrix to describe how correlated distortions should be in the warping. We

applied a Gaussian kernel with a width of 24 voxels. These 3 � 64 values were multiplied by a ran-

dom scaling chosen uniformly in [0, 4], treated as optical flow values and applied to the image in the

distortion along three spatial directions for each of the 64 lattice points. Next, we extrapolated opti-

cal flow values to each underlying voxel position with a polyharmonic spline, and applied the warp

by resampling the image at each voxel with its own floating point offsets in 3D. From the center of

the warped and resampled image, we cropped a 96 � 96 � 96 patch and used this as training data.

When interpolating supervision segmentation masks, we converted the masks to floating-point prob-

abilities and applied clipping heuristics after the warp and resampling to ensure that probabilities

were valid. Finally, we obtained volume measurements by thresholding the model output, removing

disconnected structures, and multiplying the number of mask voxels by the image resolution.

Quality control consisted of iterations of visual inspection of extreme volumes for each distinct

organ/structure, as well as spot checks of hundreds of random subjects. The training data was regu-

larly enriched to include problematic cases. We repeated this procedure and retrained the model

until results did not display outliers for extreme subjects nor any of the random spot checks. Perfor-

mance metrics are available in Supplementary file 1.

Segmentation of the liver, for fat and iron content assessment, from
single-slice data
We applied a standard 2D U-net to segment the IDEAL and GRE liver data, training one model for

each of the two liver acquisitions. We split 507 annotations of the IDEAL acquisition into a training

set of 456 training images and 51 validation images. Similarly, we split 373 annotations of the GRE

acquisition into 335 training images and 38 validation images. The unprocessed image data con-

sisted of complex numbers in six channels in IDEAL and 10 in GRE, resulting in input shapes of (256,

232, 18) for IDEAL and (160, 160, 30) for GRE. We encoded the complex number as a triplet: magni-

tude, sine and cosine of the angle. We applied mild data augmentation in the form of small rota-

tions, translations, zoom, shears, and flips. We used the Adam optimizer on 100 steps with batch

size 32 for each of the following learning rates in the schedule: [1e-4, 1e-5, 1e-5, 1e-6, 1e-7]. To

ensure high specificity at the cost of recall during inference (and thus ensure that our derived values

do not include non-liver tissue), we used Otsu to propose a threshold based on the voxelwise predic-

tion probabilities and adjusted the threshold to further ablate the 25% of the foreground.
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