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NSC  normal strength concrete  
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Tb 

  tension in the beam reinforcement (N) 



 

TBCJ  transfer beam column joints  
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  tension in the column rear reinforcement (N) 
Va strut formed to balance aggregate interlock in direction of shear crack (N) 
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crack (N) 
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Vdu dowel force (N) 
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crack (N)   
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Vs 

    struts formed to balance the tension in the stirrups (N) 
Vt    strut formed to balance  tension steel at the bottom (N) 
Vu  experimental ultimate shear force (N) 
Vw   strut formed to balance  web bar at the centre (N) 
V j beam column joint shear  (N)                              
Vjc joint shear force due to beam loading at failure (N) 
V jd Design value of jont shear force (N) 
Vje joint shear due to beam load (N) 
V jo uniaxial joint shear strength (N) 
V jv vertical joint shear force from the equilibrium of the stress resultants (N) 
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λ steel strength factor  = 1.25 
φ m,min minimum mandrel bent diameter for anchorage of the  beam bar (mm) 
φ  bar diameter when designing minimum mandrel bent diameter for anchorage 

(mm) 
σbe design bearing stress (N/mm2) 
ρl ratio of tension reinforcement (As/bd) 
ρ’ l ratio of compression reinforcement (A’s/bd) 
ρw ratio of web reinforcement (vertical stirrups) 
α is conservatively taken as 0.2 MPa0.5 and is dependent on factors depending on 

column load, concrete strength, stirrup index and joint aspect ratio 
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ABSTRACT 
 

The benefits of high strength concrete (HSC)  in the construction of multi-storey buildings 

are commonly acknowledged. Past researchers have investigated the suitability of design 

codes for the use of HSC [1-2].  However, there are concerns about the shear behaviour of 

HSC beams and BCJ used in the construction of these buildings. HSC beams have equal or 

less shear resistance compared to normal strength concrete (NSC) beams [1-3], and the 

brittleness of HSC  material could be unsuitable for BCJ as confinement stirrups may not 

be as effective as NSC  in the column due to a smaller Poisson’s ratio. 

This research investigates the behaviour of HSC beams, BCJ and transfer beam column 

joints (TBCJ), and develop appropriate design modifications to improve their shear 

capacity. 

HSC beams were strengthened with horizontal web bars (HWB), while TBCJ were 

strengthened with central vertical bars (CVB).    

Finite element (FE) models were developed for these structures and the numerical results 

were compared with those of the  published experimental results, concluding that  good 

agreement had been achieved.  Beam span/depth (a/d) ratio of 1.5≤a/d ≤3.02 and BCJ of 

beam to column depth ( db/dc ) ratio of 1.33 ≤ db/dc ≤3.1 were  analysed. The FE models 

were compared with published test results and further ones were developed to carry out 

various parametric investigations.    

Struts and ties were mechanically modelled for beams with HWB and for TBCJ with CVB 

are used to recommend design equation modifications for the design of HSC beams with 

HWB and TBCJ with CVB. 

It was found that HWB and CVB are effective in beams and BCJ only with HSC as they 

have little influence when they were used with NSC. Using HWB in HSC beams and CVB 

in HSC TBCJ improved the shear capacity of these structures by 130% and 31% 

respectively. 
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FIGURE 6.15: FLEXURAL MODE oF FAILURE FoR THE BEAM AT BCJ 3r2
FIGURE 6.16: PREDICTION OF FIRST CRACK USING TAYLOR'S RULE WITH DIFFERENT

EMPIRICAL RULES FOR RELATION BETWEEN TENSILE AND COMPRESSIVE STRENGTH
oF CONCRETE. 3ru
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FIGURE 6. I 8: RELATION BETWEEN Vu/Vm,c ( EQUATION 2- l ), Fc AND DEPTH OF BEAM D 3 I 9
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FIGURE 6.23: PARAMETRIC MODEL FOR BEAM BI WITH A STIRRUP NEAR SUPPORT OUTSIDE
SHEAR SPAN FAILED AT 540 KN COMPARED TO MODEL FOR BI MTHOUT THIS STIRRUP

OPENING CORNER REMOVED
FIGURE 6,21: AT FAILURE LOAD OF 118 KN WITH STIRRUP ruST ABOVE OPENING CORNER

REMOVED FROM MDEL OF BCJ4. ,
FIGURE 6,22: THE MAXIMUM COMPRESSIVE

WHICH FAILED AT 460 KN
FIGURE 6.24: PRINCIPAL STRAIN VECTOR AT I IO KN IN BCJ-C. WITH TOP LINK REMOVED

FROM BCJ-B.

I.IGURE 7-1: HALF OF BEAM BI WITH LARGE SUPPORT PLATE MTHOUT LINK IN 3D
MODELLED BY SYMMETRY

FIGURE 7-2: SECTIONS OF BI AND 82 WITH RESTRAINTS

FIGURE 6.25: COMPRESSION FAILURE ABOVE THE OPENING CORNER OF THE MODEL WITH
LINK REMOVED FROM THIS POINT 324

FIGURE 6.26: THE CRACKING ON THE BEAM AS THE AXIAL FORCE LED TO CRUSHING AND
ON THE COLUMN DUE TO THE LATERAL FORCE FROM THE BEAM, FOLLOWED WITH
CRUSHING OF CONCRETE IN THE COMPRESSIVE ZONE OF THE BEAM, AND FAILURE OF
THE COLUMN OR BEAM 325

FIGURE 6,27: COMPARISON OF SHEAR CRACKING LOAD AND FLEXURAL CRACKING LOAD
IN RELATION TO FAILURE LOAD. 326

FIGURE 6.28: A) ACI 3I8 [6-5], MARTI AND SARSAM'S PROPOSED STIRRUP DETAILING AT BCJ.
326FIGURE 6'29: COMPARE RESEARCH FOR RELATION SHEAR INDEX V STIRRUP INDEX , 333

FIGURE 6.30: COMPARISON OF PREDICTION OF JOrNT SHEAR OF pRoposED EQUATTON WrrHEC8' PROVISION TO ALLOW FOR STIRRUPS rN THE pRoposED EQUATTON rs NoTINCLUDED.

FIGURE 7.3: ELEVATION OF 82 WITH RESTRAINTS LINDER THE SMALL SUPPORT PLATE AND
LOAD APPLIED TO LOADING PLATE. CENTRE OF THE BEAM IS RESTRAINED IN X
DIRECTION TO SIMULATE SYMMETRY AROI.IND MID-SPAN SECTION. 35I

FIGURE 7.4: GEOMETRY, REINFORCEMENT AND LOADING FOR BEAMS 81 AND 82. ALL
DIMENSIONS ARE IN MM. NB: BI HAS LARGER SUPPORT PLATE CoMPARED To 82. 352

FIGURE 7.5: LOCATION OF STRAIN GAUGES IN BEAMS BI AND 82 PROVIDED ON THE
LONGITUDINAL BARS, FIXED IN PAIRS, ONE GAUGE ON TOP AND ANOTHER ON THEBOTTOM. 

352
FIGURE 7,6: CRACK PROPAGATION IN THE BEAM BI, EXPERIMENTALLY TESTED BY ORTIZ

IN RELATION TO THE ASSUMED DIAGONAL AND HORIZONTAL STRUTS AT 560 KN, 353
FIGURE 7.7: NUMERICAL REPRESENTATION OF BEAM BI AT 470 KN WITH SUDDEN AND

BRITTLE FAILURE OF THE CONCRETE AT HORIZONTAL STRUT SIMULATING THE
EXPERIMENTAL FAILURE. 353

FIGURE 7.8: CRACK PROPAGATION BEAM 82, EXPERIMENTALLY TESTED BY ORTIZ IN
RELATION TO THE ASSUMED DIAGONAL AND HORIZONTAL STRUT. FAILURE
OCCURRING AT DIAGONAL STRUT.

FIGURE 7.9: STRAIN IN THE LONGITUDINAL BAR AT FAILURE LOADS
FIGURE 7 .IO BEAM I : STRAIN IN THE MIDDLE oF SPAN AT SECTION 7
FIGURE 7.II: BEAM I - CONSIDERED STRUTS AND INSTRUMENTED SECTIONS
FIGURE 7 .12: EXPERIMENTAL STRAINS IN LONGITUDINAL TENSION REINFORCEMENT OF

BEAM 82
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FIGURE 7,13: ORTIZ BEAM 2- CONSIDERED STRUTS AND INSTRUMENTED SECTION 355
FIGURE 7,14: HALF OF BEAM BI W]TH LARGE SUPPORT PLATE WITHoUT LINK IN 3D

MODELLED BY SYMMETRY
FIGURE 7,15: SECTIONS OF 81 AND 82 WITH RESTRAINTS
FIGURE 7.16: AT 120 KN THE FIRST VERTICAL TENSION CRACK IN BEAM I

FIGURE 7 .17: AT 460 KN THE WIDTH OF THE ARCH INCREASES IN BEAM I

FIGURE 7.I8: AT 470 KN CRACKS EXTEND EVENTUALLY TRANSFORMING THE BEAM INTO A
TIED ARCH. COLLAPSE OCCURS AS A RESULT OF HORIZONTAL SPLITTING OF THE
COMPRESSIVE ZONE OF THE BEAM IN THE HOzuZONTAL COMPRESSION STRUT NEAR
LOADING PLATE.

FIGURE 7 ,19: AT 450 KN THE STRAIN IN XZ DIRECTION FULLY DEVELOPS.
FIGURE 7 .20: AT 460 KN VECTOR PLOT
FIGURE 7 .2t: AT 470 KN AFTER COMPRESSION FAILURE
FIGURE 7.22: AT 120 KN STRESSES IN XZ DIRECTION
FIGURE 7.23: AT 460 KN STRESS IN XZ.
FIGURE 7 .24: BEAM B 1, AT 460 KN. STRAIN IN TENSION BAR
FIGURE 7 .25: LOAD v DEFLECTION FoR B L FIRST CRACK AT 150 KN
FIGURE 7.26: STRAIN IN X DIRECTION AT MID-SECTION V DISTANCE FROM TENSION BAR

UPWARD
FIGURE 1.27: BEAM 82 AT I2O KN THE FIRST VERTICAL TENSION CRACK AT THE CENTRE

SPAN APPEARS. THIS INITIAL LOADING FOR THE FORMATION OF THE FIRST CRACK IS
HAND CALCULATED BY ELASTIC THEORY (APPENDIX A).
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FIGURE 7 .28 AT 320 KN WHEN THE CRACK HAS OPENED AND THEN CLOSED, THE CIRCLE

OUTLINE WILL HAVE AN X THROUGH IT. THE CIRCLE REPRESENTS THE SECOND
OPENING OF CRACKS IN THE INTEGRATION POINT, 363

FIGURE 7 .29: AT 440 KN LOADING, CRUSHING OF INTEGRATION POINTS MARKED BLUE, X IN
THE CIRCLE, AT THE CENTRE OF DIAGONAL STRUT INDICATE FAILURF IN SHEAR SPAN
STARTING NEAR NEUTRAL AXIS HEADING TOWARDS THE OUTER SIDE OF THELOADING PLATE WITH COMPRESSION CRACKS EXTENDING TINDPN IOENTNC PIETE.

J63FIGURE 7.30: NODAL STRAIN AT 120 KN IN XZ DIRECTION SHOWS COMPARATIVELY HIGHERSTRAINS IN THE SHEAR SPAN NEAR THE DIAGONAL STRUT REGION. 364FIGURE 7,31: STRAIN IN XZ DIRECTION AT 440 KN. THE ANGLE BETWEEN THE INCLINEDCOMPRESSION STRUTS COINCIDING WITH STRAIN LINE -4,IxTo., Ii Jo:9, FoR 82 WITHSUPPORT PLATE oF IOOMM LONG. 
rv L9 Lv 

365FIGURE 7 '32: STRESSES IN XZ DIRECTION AT 440 KN. MINUS SIGN INDICATES
COMPRESSION. MODEL FOR NONLINEAR STM BASED ON FE OF SHEAR STRESSDEVELOPMENT IN THE BEAM. vT vITLnI 

365FIGURE 7 '33:AT 160 KN PRINCIPAL TENSILE STRAIN VECTORS BEGIN TO DEFLECT AT AMODEST ANGLE IN THE SHEAR SPAN. 
V UU) 

366FIGURE 7 .34: AT 240 KN, PRINCIPAL TENSTLE STRAIN VECTORS DEFLECT AT 45". 366FIGURE 7 ,35: PRINCIPAL STRAIN VECTORS AT 440 KN SPREAD INTO THE DIAGONALCOMPRESSION STRUT, JUST BEFORE FAILURE 
\^'U UII 

366FIGURE 7 '36: THE CONCENTRATION OF STRESS VECTORS INDICATE THAT THE ANGLE OFTHE NON LINEAR DIAGONAL COMPRESSION STRUT IS GREATER WHEN THE SIZE OFTHESUPPORTPLATEISLARGER TII\ ff LIL 
366FIGURE 7 .37 THE STM IN NONLINEAR ANALYSIS OF STM IN BEAM B 1, BASED ON THEASSUMPTION THAT PRINCIPAL STRESS ARE DISTRIBUTED IN OVAL FORM. 367FIGURE 7 '38: BEAM 82 AT 440 KN LONG BAR LoADING STRAIN IN X DIRECTI.N AL'NG THETENSION BAR, THE TENSION CRACK AT THE CENTRE OF THE BEAM CONTRIBUTES TOTHE YIELDING oF TENSION STEEL ^\Lu uul TTVI v\- 
367FIGURE 7.39:380 KN STMTN IN MID SPAN SECTIoN ACRoSS THE DEPTH IN X DIRECTI.NBEFORE YIELDING OF THE TENSION STEEL. 

TTT II\ 
368FIGURE 7.40: AT 440 KN AT MID SPAN SECTION. 
368FIGURE ] .41: DEFLECTION AGAINST LOAD. AT 60 KN LOAD ON HALF THE BEAM,EQUIVALENT TO l20KN FULL LOAD ON BEAM 
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368
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FIGURE 7 .42: THE GRAPH SHOWS VALUES OF THE LOAD AGAINST THE STRAIN IN X
DIRECTION IN THE TENSION BARS AT THE CENTRE OF THE BEAMS FOR FE MODELS
AND THE STRAIN RECORDING FROM EXPERIMENTAL TEST FOR BEAMS B I AND 82,370

FIGURE 7 ,43 : THE PRINCIPAL STRAIN VECTORS GIVE AN INDICATIVE PROFILE OF THE
DIAGONAL AND HORIZONTAL COMPRESSION STRUTS AND THE TENSILE FORCES
ALONG THE STEEL TIE. THE ANGLE OF STRUT rS : TAN-r {D/ [3-5s0-(pl+ps)]] 372

FIGURE 7.44: LOAD PATH IS MINIMUM DISTANCE BETWEEN LOADING POINT AND SUPPORT
POINT OF INNER HALF OF LOADING PLATE TO OUTER PART OF SUPPORT PLATE. 372

FIGURE 7-45:FE BCJ MODEL OF ASPECT RATIO 1.33 377
FIGURE 7-46: REINFORCEMENT DETAILING OF EXPERIMENTALLY TESTED BCJ.I. 380
FIGURE 7-47: REINFORCEMENT IN THE CROSS SECTIONS FOR BEAMS AND COLUMN FOR

BCJ-I.
FIGURE 7.48:MAIN REINFORCEMENT IN THE COLUMN SECTION OF THE FE MODEL FOR BCJ-

A SHOWING 4 T2O BEAM BARS W[fH 6T16 FOR COLUMN REINFORCEMENT 381
FIGURE 7 -49: SIDE ELEVATION FOR THE CONCRETE ELEMENT AND THE REINFORCEMENT

CAGE FOR THE MODEL OF BCJ-A

381

381
FIGURE 7.50: BEAM CROSS SECTION SHOMNG THE CONCRETE ELEMENT AND THE

REINFORCEMENT CAGE FOR COLUMN JOINT BCJ.A 382
FIGURE 7-51: ELEVATION OF THE BCJ-A SHOWTNG STIRRUPS IN BEAM AND COLUMN. FOR

SECTIONS REFER TO FIGURE 7.50 FOR BEAM AND FIGURE 7.48 FOR COLUMN 382
FIGURE 7-52: TYPICAL ARRANGEMENT FOR STRAIN GAUGES ON REINFORCEMENT OF BCJ I

383
FIGURE 7-53: THE LONGITUDINAL STRAIN IN THE FRONT COLUMN BARS (FIGURE 8-9) FROM

THE NUMERICAL MODEL BCJ-A AT 73 KN (7MM DISPLACEMENT LOAD) COMPARED TO
EXPERIMENTAL TESTS FOR BCJ.I AT 75 KN LOADING 385

FIGURE 7.54: THE STRAIN GAUGE READING FOR THE REAR COLUMN REINFORCEMENTBARS. - 387FIGURE 7-55: STRAINS IN BEAM REINFORCEMENT RECORDED BY 'fHE STRAIN GAUGES(EXPERIMENTAL TEST) FOR SPECIMEN BCJ-I AT INCREMENTAL LOADS OF 40 KN TOI l0 KN. 
387

FIGURE 7.56: AXIAL STRAINS IN THE MAIN COLUMN BARS ALONG THE LENGTH OF THEBARS. MAXIMUM AXIAL STRAIN DEVELOPED IN THE FRONT AND REAR COMPAREWELL BETWEEN EXPERIMENTAL TEST (EXP) AND FE MODEL (FE) 388
FIGURE 7.57: EXPERIMENTAL STRAIN GAUGE READINGS ON HORIZONTAL PART OF THEBEAM REINFORCEMENT; MODEL BCJ.A IS DISPLACED 7MM AT 73 LOADING KN. THE

STRAINS ARE SHOWN AT LOCATIONS Al, Bt AND Cl (FIGURE 7-52). FE STRAINS WEREALSO PLOTTED FOR THE SAME BAR AND GOOD AGREEMENT AT THE POINT OF GAUGEMEASUREMENT (CIRCLED) 
389

FIGURE 7-58: MODEL BCJ-A, THE GRAPH SHOWS DISPLACEMENT CORRESPONDING TOLOADS. 
3 89

FIGURE 7-59: REINFORCEMENT DETAILING OF EXPERIMENTALLY TESTED BCJ-4. 390
FIGURE 7-60: COLUMN AND BEAM CROSS SECTIONS FOR EXPERIMENTAL TEST BCJ-4 3gI
FIGURE 7-61: DETAILS OF IDEALIZED FE MODEL, BCJ.B, REPRESENTING THE EXPERIMENTAL

MODEL BCJ-4. THE DIMENSIONS AND POSITION OF THE FOUR SHEAR LINKS
INVESTIGATED IN THE COLUMN ARE NUMBERED AS SHOWN. 3gI

FIGURE 7-62: CROSS SECTION B-B OF THE COLUMN FOR NUMERICAL MODEL OF BCJ-B .MAIN BEAM BARS (PURPLE), COLUMN REINFORCEMENT (BLACK), LINKS AND THE
8MM BAR TO HOLD THE LrNKS rN THE CAGE (RED). \ / 

3s2
FIGURE 7-63: ELEVATION VIEW OF THE NUMERICAL MODEL OF THE EXPERIMENTAL BCJ.B.

PURPLE BARS ARE THE MAIN BEAM REINFORCEMENT, BLACK ARE COLUMN
REINFORCEMENT, RED BARS ARE LINKS AND 8MM BAR AT THE BOTTOM WHICH
HOLDS THE LINKS IN PLACE. 

3g2
FIGURE 7-64: SECTION A-A OF THE NUMEzuCAL MODEL OF BEAM COLUMN CONNECTION

SHOWING THE CROSS SECTION OF THE BEAM AT BCJ FOR BCJ.B 3g2
FIGURE 7-65: SKETCH DRAWN FROM THE PHOTOGRAPH OF THE EXPEzuMENTAL CRACKS

FORMED ON BCJ.4 JUST BEFORE FAILURE AT I3O KN. 394
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FIGIiRE 7-66: AT FAILURE LOAD OF 138.3 KN, CRUSHED ELEMENTS (CIRCLES) DEVELOP IN
DIAGONAL DIRECTION AT BCJ RESULTING IN DIAGONAL SHEAR FAILURE OF BCJ-B.
THE LINES OF CRACKS ARE A DUPLICATE OF THE CRACK LINES FROM THE
EXPERIMENTAL TEST AT FAILURE. 395

FIGURE 7.67:COMPARISON OF STRAIN RECORDINGS FROM FE AND TESTS ALONG THE
FRONT AND REAR COLUMN BAR AT 55.6 KN. POSITION OF THE GAUGES ARE SHOWN
IN FIGURE 8-9, 396

FIGURE 7 -68 THE FE BEAM LOAD OF I 3 8 KN COMPARED TO EXPERIMENTAL BEAM LOAD OF
130 KN. 397

FIGURE 7-69: COMPARISON OF MAXIMUM STRAINS IN FRONT AND REAR COLUMN BARS
FOR BCJ-4 AND BCJ.B AT 55.6 KN. 397

FIGURE 7-70: LOAD APPLIED AT THE END OF THE BEAM, AGAINST DEFLECTION AT
LOADING POINT FOR BCJ.B NUMERICAL MODEL UP TO FAILURE AT 138.3 KN
LOADING 398

FIGURE 7 -7l: COMPARISON OF DEFLECTION TO CORRESPONDING LOAD FOR MODELS BCJ-A
AND BCJ.B 401

FIGURE 8. I : FOUR FE T BCJ MODELS WITH ASPECT RATIO 3.I 1 wERE MoDELLED FoR
PARAMETRIC INVESTIGATION. ....405

FIGURE 8.2: SIDE ELEVATION OF T-NSC1 & HSCI WITH COLUMN WIDTH oF 2OOMM AND
BEAM DEPTH OF 93OMM. DETAILING AND LOCATION OF THE COLUMN AND BEAM
STIRRUPS. COLUMN ELEMENT SIZES ARE SHOWN. (ALL DIMENSIONS ARE rN MM). ..4Ag

FIGURE 8.3: THE TOTAI, WIDTH OF TBCJ IS 2OOMM AND IS DIVIDED INTO SIX ELEMENTS .4IO
FIGURE 8.4: THE BEAM LENGTH (l300MM) PLUS COLUMN DEPTH (300MM) AT TBCJ TOTAL

I6OOMM AND DEPTH OF THE BEAM IS 930 MM THE DIVISION OF ELEMENTS
BETWEEN BEAM STIRRUPS , E.G 3-50 MEANS 3 ELEMENTS OF 5OMM WITHIN 15OMM

FIGURE 8.5: COLUMN SECTION AT T-NSCI & T-HSCI ( NO CVB) JUST ABOVE THE BEAM BAR
SHOWTNG 4T2O COLUMN REINFORCEMENTS AND 3 T23 BEAM BARS IN HORIZONTAL
VIEW. THE BEAM IS ANCHORED TO BCJ......... .........,.4I0

FIGURE 8.6: SPECIMENS T-NSC3 AND T-HSC3, IN ADDITION TO THE COLUMN AND BEAM
REINFORCEMENT, HAVE 2T-20 PLACED AT HALF THE DEPTH OF THE COLUMN AS CVB.
THE STRAIN IN THE ABOVE IDENTIFIED REINFORCEMENT IS ANALYSED IN DETAIL
AND GRAPHS ARE PRODUCED FOR THE VARIATION OF STRAIN ALONG THE SHOWN
REINFORCEMENT IN THE FOLLOWING SECTIONS. .................4I I

FIGURE 8.7: BEAM CROSS SECTION ..........r..,;. .......4t2
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FIGURE 8.9: COLUMN WITH 4TZ0 AND 2T20 CVB ...............4r2
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FIGURE 8.I I: IN T-NSCI THE FIRST CRACK APPEARS IN THE Two ELEMENTS IN THE

COLUMN ruST ABOVE THE OPENING CORNER. THE CIRCLE INDICATES THE CRACK
AND THE OCTAGON REPRESENTS CRASH .......... ...,,.414

FIGURE 8. 12: AT I40 KN CRACKS APPEAR NEAR THE OPENING CoRNER AND oN THE
coLUMN REAR OF THE CLOSTNG CORNER ...............4r4

FIGURE 8.13: COMPARING THE AMOLINT CRACKS PRODUCED ON T.NSC3 AND T-HSC3 AT 2OO

FIGURE 8.14: DISPLACEMENT OF END BEAM ....4r5
FIGURE 8.15:DEFLECTION COMPARISON ................415
FIGURE 8.16: KEY DIAGRAM FOR TBCJ SHOWING CRITICAL LOCATIONS OF MAXIMUM

STRAIN ON THE REINFORCEMENT .............416
FIGURE 8.17: TBCJ WITH POSITIONS OF STRAINS INVESTIGATED. THE STRAIN OF THE

BEAM L SHAPED BAR IS MEASURED AT A POINT 4OOMM AWAY FROM THE FACE OF
COLUMN. TBCJ LINK STRAINS INVESTIGATED FOR 3 LINKS AS SHOWN .,......,,417

FIGURE 8.I8: POSITION OF STRAIN MERGED IN Y DIRECTION ALONG THE CRITICAL PART OF
THE COLUMN BAR STARTING AT POINT O.O WHICH IS 2OOMM ABOVE THE TOP OF THE
BEAM rN FRONT COLUMN BAR (BEAM SrDE), ..........417
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FIGURE 8.19: COMPARISON OF STRAIN IN BEAM BAR.,...... ...........4rs
FIGURE 8.20: T-NSC3& HSC3 STRAIN AT 240 KN ......... .......41g
FIGURE 8.21: T-HSC3 UP TO 240 KN .......4tg
FIGURE 8.22: THE GRAPHS OBTAINED FROM TABLE 8.7 ON COMPARISON oF STRAIN

DEVELOPMENT ON BEAM BAR FOR TBCJ MADE WITH NSC AND HSC WITH OR
WITHOUT CVB AT MAXIMUM STRAIN LOCATIONS OF OPENING CORNER AND
ANCHORAGE. ....422

FIGURE 8.23: UPPER LINK STRAIN T-NSCI& HSC1 JUST BEFORE FAILURE OF T-NSCI AT

FIGURE 8.24: DEVELOPMENT OF STRAIN IN UPPER LINK OF T-HSCl UP TO FAILURE LOAD 260
KN. POSITION OF MAXIMUM STRAIN IS POINT B, FIGURE 8.16......... ,..427

FIGURE 8.25: COMPARISON OF STRAIN IN UPPER LINK OF T.NSC3 & T-HSC3 BEFORE
FAILURE OF T-NSC3 AT 250 KN. POSITION OF MAXIMUM STRAIN IS SHOWN AS POINT B
rN FIGURE 8.16. ....... ..........428

FIGURE 8.26: STRAIN IN THE UPPER LINK FOR T-HSC3 UP TO FAILURE LOAD OF 340 KN.
POSITION OF MAXIMUM STRAIN IS POINT B, FIGURE 8.I6......... ....,......42g

FIGIJRE 8.27: MAXIMUM STRAIN FLUCTUATION IN THE UPPER LINK FOR ALL TBCJ MODELS

FIGURE 8.28: COMPARISON OF STRAIN AT LOWER LINK FoR T.NSCI AND HScl ,.433
FIGURE 8.29: T-HSCI STRAIN AT 250,240 AND 220 KN IN LowER LINK ....434
FIGURE 8.30: T.NSC3 IN THE LOWER LINK LINTIL FAILURE LOAD OF T-NSC3. POSITION OF

MAXIMUM STRAIN IS POINT D............. ................ ........436
FIGURE 8.31: MAXIMUM STRAIN CoMpARTSoN FoR LowER STTRRUP .......437
FIGURE 8.32: COMPARISON OF STRAINS FOR CENTRE LINKS FOR T.NSCI &HSC1..................438
FIGURE 8.33: DISTANCE WHERE POINT OF MAXIMUM STRAIN DEVELOPS FOR T-HSCI AND T.

NSCI ON THE STIRRUP FROM THE INNER END TO ITS OUTER END........ ..,,,.,,,,,.43g
FIGURE 8.34: COMPARISON OF LONGITUDINAL STRAINS ON THE CENTRE LINK FOR T-NSCI.

T-HSCI, T.NSC3, AND T-HSC3. THESE GRAPHS COMPARE WELL WITH ANALOGOUS
BEAM SHOWN IN FIGURE 3.39 CHAPTER 3.............. ..441

FIGURE 8.35: COMPARISON OF STRAINS IN AXIAL DIRECTION IN THE CENTRE LINK FOR T-
NSC3 AND T-HSC3. ...........443

FIGURE 8.36: STRAIN IN 3 LINKS LOCATED AT THE CENTRE OF THE TBCJ.............. ..444
FIGURE 8.37: LONGITUDINAL STRAIN IN FRONT COLUMN BAR IN T-NSCIAND TBCJ. HSC1 UP
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FIGURE 8.4I: LONGITUDINAL STRAIN IN Y DIRECTION IN REAR COLUMN BAR IN T-NSCl

AND T-HSCI UP TO FAILURE OF T-NSCI AT 220 KN. MAXIMUM STRAIN IS POINT F.
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FIGURE 8.43: STRAIN IN THE REAR coLUMN BAR T-HSct AND T-HSC3.

HSCI AND HSC3 ,,.,,,.....,,454
FIGURE 8,44: AXIAL STRAIN IN THE REAR BAR OF THE MAIN COLUMN REINFORCEMENT ,.454
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                                                      Chapter 1 
                                                            Introduction 

1.1 Preface 

 

Failure of corner BCJ due to shear failure  in multi- storey reinforced concrete frames is a 

common occurrence when severe blast, impact or seismic loadings are applied to the frame, 

therefore,  international codes of practice recommend closely spaced confinement stirrups 

reinforcement at BCJ to resist large shear forces when exposed to severe lateral loading.  

The lower Poisson ratio of HSC means that confinement stirrups are less strained and are  

therefore less  effective in HSC compared to NSC. Also the face of cracks in HSC are 

smoother than in NSC because of aggregate fracture. Hence shear resisting mechanisms 

involving aggregate interlock are less in HSC than in NSC. In spite of the mentioned 

disadvantages, HSC has become a popular material for the construction of  high rise 

buildings in the industrialised world. 

The aim of this research is to introduce an alternative shear reinforcement made of CVB 

placed in HSC columns at BCJ to improve shear resistance and to avoid the need for  

excessive stirrups. Congestion of stirrups  can often leads to obstruction of the poker 

vibrator’s head and  full compaction of the column cover which leads to 'honey combing' 

in the cover and  therefore weaker concrete column sections.  

The presence of CVB in HSC columns reduces the lateral inter-storey drift  and therefore 

delays the collapse of the structure when lateral loading is applied to the RC frame  

providing additional time for occupants to leave the building.  

Lighter HSC columns produce  less gyration forces and smaller lateral drift  from severe 

lateral loading compared to the larger and heavier NSC columns. The use of HSC enables 

more economical  foundations and more floor space.  

1.2 Background 

Morsch truss analogy 

The idea of  dowel action  in tension  reinforcement influencing shear resistance in  

reinforced concrete was first recognised  by Morsch [1-4 ] at the beginning of the twentieth 

century.  The element shown in Figure 1-1 is assumed to be at the neutral axis of a 

concrete beam, and has shear stresses acting on faces AC and BD. 
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Figure 1-1: Acting shear stresses 
 

For equilibrium, complimentary shears of the same magnitude must act on faces AB and 

CD in such a direction as to prevent rotation of the element, Figure 1-1. The strength of 

materials theory shows that the effect of these stresses is to produce tensile and 

compressive forces acting on the diagonal planes BC and AD. These are the principal 

stresses, and are of the same magnitude as the original shear stresses. 

Application of this theory to concrete sections would therefore suggest that the presence of 

shear stresses in a concrete section causes tensile cracking in the concrete at an angle of 45◦ 

to the neutral axis . This is the basis of the Morsch truss analogy.  

The origin of shear cracking in beams was anticipated from the stress distribution shown in 

Figure 1-2(a).  When the longitudinal stresses are missing, the constant shear, τ =V/ bz, 

underneath the neutral axis gives rise to equal principal tensions and compressions, and the 

tensions cause diagonal cracks when they approach the tensile strength of concrete. 

Morsch understood that some of the transverse force could be carried by inclination of the 

main compression, while the ribs of concrete between flexural cracks would bend and 

produce dowel forces in the main steel, Figure 1-2(b).  

 

Figure 1-2: Stress distribution on the width and secondary effects 

Beams with stirrups are treated by truss analogy with the web compression at 45◦ to the 
longitudinal axis, Figure 1-3.  

b) Secondary affects 

arching and dowel 
a) Part of elevation and 

distribution of shear 
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Figure 1-3: Truss analogy with the web compression at 45◦ to the longitudinal axis 

In general, when considering shear reinforcement made of vertical links, the basic theory 

assumes that the reinforced section behaves in a fashion similar to that of a pin-jointed 

truss, with concrete taking the compressive forces and the reinforcement providing the 

tensile support, Figure 1-4. However, a 45° truss model produces a conservative solution 

as it makes no allowance for the effects of the uncracked concrete in the compression zone, 

aggregate interlock, or  dowel action from the longitudinal reinforcement.  It presumes that 

once the concrete has cracked as a result of the diagonal tension, no contribution can be 

expected from the concrete and all tensile and shear forces should be carried by the 

reinforcement. 

  

Figure 1-4:Members of a pin jointed  truss with concrete (---) compression and steel       

( __ ) tension.   α  = 45◦ 

Mechanism of shear transfer 

Shear failure of reinforced concrete, more properly called diagonal tension failure is 

difficult to predict accurately. In spite of a century of experimental research [1-4] and use 

of analytical Finite Element  software, it is not yet fully understood. Furthermore, if a beam 

or  BCJ without appropriately designed  shear reinforcement is overloaded to failure, shear 

collapse is expected to happen suddenly, with no advance warning of the failure.  

This sudden mode of shear failure is totally different from the mode of flexural failure,  

S 

45
◦
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which is, for a typically under reinforced beams, failure starts with gradual yielding of the 

flexural steel, together with  apparent cracking of the concrete and large sagging, giving 

abundant safety warning and providing the opportunity to retrofit the beam.. 

The four mechanisms of shear transfer are: shear stresses in uncracked concrete, interface 

shear transfer, often called "aggregate interlock" or "crack friction", the dowel action of the 

longitudinal reinforcing bars, and arch action. The 1998 ASCE-ACI Committee 445 

Report highlights a new mechanism, residual tensile stresses, which are transmitted 

directly across cracks. Opinions vary about the relative importance of each mechanism in 

the total shear resistance, resulting in different models for members without transverse 

reinforcement. 

Analogy of  short beams to BCJ 

Taylor [1-5] investigated the similarity of the shear behaviour of short beams with that of 

BCJ. He concluded that the relation between shear on a short beam and shear  in a BCJ 

zone is such that the shear span to effective depth ratio (a/d) in a short beam is analogous 

to the ratio of the beam lever arm to the column effective depth in a BCJ (zb/dc). 

Experimental tests  

The experimental research investigated was comprised of three series of tests: two short 

beams without stirrups [1-6], twelve beams of HSC and NSC with stirrups and HWB [1-8], 

and two BCJ [6]. The tests were carried out under static concentrated loads and were 

supplemented with a large number of strain measurements in reinforcement and concrete 

struts.  

 

1.3 Aims and Objectives 

Aim: 

To investigate the behaviour of monolithic beam to external column joints in reinforced 

concrete multi-storey building frames and the influence of CVB on the shear behaviour of  

joints.  

  

Objectives: 

1. to study the shear behaviour of HSC beams with HWB and  stirrups.  

2. to verify and validate FE modelling of the behaviour of HSC beams with HWB and  

shear stirrups 

3. to investigate the behaviour of BCJ and influence of  CVB on   shear  capacity. 
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4. to develop strut and tie model 

5. to develop modified design equation for HSC BCJ 

6. to verify and validate FE modelling for BCJ 

7. to carry out parametric investigation on factors influencing the behaviour of the joint. 

 

1.4 Present work 

This research is concerned with studying the  effects of CVB in HSC columns at external 

TBCJ. 

To carry out this investigation, FE models and  STM were developed to analyse the  

behaviour of the beams and TBCJ and to study the parameters influencing their behaviour  

in the following sequence:  

• Numerical modelling of  two NSC short beams [1-6] with different size support 

plates (a/d=1.5)   and three NSC and HSC beams [1-8]  with and without HWB (a/d=3.02) 

to verify and validate FE modelling of beam with experimental tests.  

• Numerical modelling of  two NSC BCJ  [1-6] with and without stirrups to verify 

and validate FE modelling of BCJ with experimental tests.  

• STM were developed for HSC beams with HWB of a/d=3.02 and  were extended to 

similar HSC TBCJ with CVB of  db/dc=3.11. 

• A FE parametric study  for four TBCJ of NSC and HSC,  with and without CVB, 

was completed.  

 

1.5 Research methodology 

To achieve the aims and objectives of the research programme, a number of different  

research methods were used. 

• Initially, a review was carried out to study related up to date research projects and  

published materials on the subject. The results of this are given in the literature review in 

Chapter 2 which facilitated  compilation of the objectives and the focus of the research 

direction. 

• A detailed review of the experimental work completed for testing to failure of 

beams of a/d=3.02 [1-8] and short beams a/d=1.5, and BCJ [1-6] are presented in order to 

verify and validate the FE numerical models with the experiments in relation to failure 

loads, displacements, crack propagation and strain in the location of interest. 
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• To develop STM for HSC beams with stirrups and  HWB of a/d=3.02, and after 

validating the predicted STM results with the experimental test results, the STM model for 

the beam was considered to be analogous to  HSC  TBCJ with CVB and stirrups  . 

• The data collected from past experiments on 56 BCJ specimens are used to 

investigate parameters effecting shear behaviour of BCJ. The data is used to examine the 

validity of existing design rules from codes and past researchers. The results obtained from 

this analysis are used to develop a design rule for HSC external BCJ with CVB.  

• FE parametric investigations were performed to explore the effect of CVB and 

HSC  on  the behaviour of TBCJ [1-7]. 

1.6 Thesis presentation 

Results of the research are presented in nine chapters as follows: 

Chapter 1 contains background information on the topic, aims and objectives and   

research methodology. 

Chapter 2 covers a general  literature review of the past research on shear behaviour in RC 

beams. Actions and parameters influencing shear behaviour are discussed with special 

attention given to the past research on the influence of dowel action and aggregate 

interlock on shear behaviour. International codes and their recommendations for shear 

design are discussed. 

Chapter 3 covers a detailed review of this writer’s experimental tests on12 beams of NSC 

and HSC with shear links and various shear spans and diameter size for HWB[1-8]. There 

is a detailed analysis and discussion  of the  shear behaviour of the tested NSC and HSC 

beams with comparison of shear resistance from dowel action in NSC and HSC beams.   

Chapter 4 begins with a literature review on nonlinear finite-element analysis of shear 

characteristics  of reinforced concrete beams. An introduction of the experimental work 

two short beams a/d=1.5 [1-6] was followed with  FE numerical modelling the beams, with 

different size support plates without links. Three beams with HWB in NSC and HSC with 

and without HWB of a/d=3.02 which were experimentally tested [1-8] were FE modelled. 

Results obtained from FE models for strains on the reinforcement are compared with those 

recorded from strain gauges [1-8]. 

Chapter 5 is a reviews of the principals  of STM and develops  STM for HSC beams  of 

a/d=3.02 with links and HWB, and a solution was  proposed for  all the tensile forces in the 
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reinforcement and compressive forces in concrete struts of  the beam  STM was 

investigated. This investigation was further extended for a similar  external HSC-TBCJ 

with CVB  of  db/dc=3.11 [1-9] . 
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Figure 1-5: Types of NSC and HSC beams with and without HWB analogous to NSC 
and HSC-BCJ with  and without CVB.  
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Chapter 6 the tests on BCJ are reviewed, and existing design rules for shear prediction of 

BCJ are discusses and a shear design rule is proposed by taking into consideration the 

improvement in joint shear resistance due to dowel action from  CVB performing jointly 

with the confinement stirrups to prevent BCJ failure under extreme loading which has been 

recorded.  

 

Chapter 7  is  a review of  experimental work  on BCJ of  aspect ratio 1.33 [1-6],  FE  

numerical modelling of two NSC-BCJ, with and without stirrups. The strain recordings of 

reinforcement  from the FE models are validated and verified with those of strain gauge 

readings from the experimental tests. 

 

Chapter 8 covers the FE  parametric investigation for four TBCJ, db/dc=3.11, of HSC and 

NSC with  stirrups, with and without  CVB. Detailed study of the strain development along 

the reinforcement for NSC and HSC with and without CVB under loading up to failure 

demonstrates the influence of CVB and HSC in  TBCJ.  

 

Chapter 9 is a summary and conclusion of the results by analytical modelling of shear 

behaviour in HWB and CVB, comparing results obtained from numerical modelling and 

STM with those from the experimental tests and making  suggestions for future research. 
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                                                   Chapter 2 

                                              Literature review  
 

2.1 Introduction  

 

This chapter starts with a short review of the history of shear with an emphasis on the most 

relevant early studies, experiments  and analysis of shear behaviour in beams. 

 

Available literature on different actions influencing the total shear strength are reviewed 

and the contribution of arching,  dowel action and aggregate interlock  towards shear 

resistance is discussed in  detail.   

 

International codes and their recommendations for shear design for beams with and 

without shear reinforcement are discussed. The design rules  for shear in codes of practice 

are, at present, based mainly on experimental tests on NSC. Tests providing the basic data 

for these equations were conducted on members whose concrete strengths were mostly 

below 40 MPa. To ensure the safety and serviceability of  HSC concrete, certain essentially 

empirical design procedures and equations based on the characteristics of concrete of  

lower strengths are reviewed.  

 

A review of  research on the adverse shear material property of HSC in particular when the 

aggregate is limestone is discussed and  remedial measures to overcome the undesirable 

shear behaviour of HSC are proposed with the  introduction of horizontal web bars (HWB) 

as shear reinforcement in the beam.  

 

2.2 Shear behaviour of reinforced concrete   

 
2.2.1 History of shear research 

 
The first concrete structure is the Pantheon in Rome, which has a dome of 43 m in 

diameter,  constructed during the 1st century AD. The dome  becomes thinner as it rises, 

with its coffers becoming smaller towards the top. It is of lightweight concrete of pumice 

stone. It  is an example of durable, high plasticity concrete. The gravitational load path is 

transferred  through the dome by  arching action to its supporting vaults.   

 

The Pantheon dome  has three layers of concrete of cement and  aggregate as follows:  
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lower ring (1)  brick fragments, middle ring (2)  blocks of  tufa and  brick  

fragments, and the top ring (3) is  pumice stone and blocks of  tufa. The dome is a perfect 

hemisphere.  The concrete for the  walls of the rotunda supporting the dome is made from 

tufa and travertine chippings and the foundation supporting the wall is of 4.5m thick 

concrete with travertine chippings[2-1], Figure 2.1. 

 

 

 

 

 

Figure 2.1: Section of Pantheon dome with 3  rings of  different density concrete, 
showing  the load path of the strut and tie  
 

The first patented applications of reinforced concrete appeared in France and England 

between 1850-1860, and the first method of  theoretical computation of slabs was devised 

by Koenen in Berlin in 1886 and Coignet and Tedasco in 1894. These theories assumed a 

linear variation of concrete stress with distance to neutral axis and the existence of an 

internal couple equilibrating the external loads. In 1897 Thullie, and two years later Ritter, 

advanced the ultimate strength theories based on non-linear stress distribution. 

 

Design for shear  in concrete beams by applying  the horizontal shear approach was 

adopted based on the theory of elasticity. It was assumed that failure would occur when 

shear becomes greater than the shear capacity of the concrete. In an elastic homogeneous 

beam the horizontal shear stress at a distance y from the neutral axis is: 

bI

yA
Vq n ⋅

⋅⋅=
−

    2-1 

where: 
 
V = shear force on the section. 

A
−
y  = first moment of area about the neutral axis of the part section between the extreme 

fibre and a line distance y from the neutral axis. 

I = moment of inertia of the entire section about the neutral axis. 

b = width of the cross-section at a distance y from the neutral axis . 

In the case of a rectangular section the equation defines a parabolic distribution of shear 

stress with its maximum value of 1.5V/bd at mid-height. 
 

3) Pumice stone  
and blocks of  tufa 

         2) Tufa and brick fragments  

         1)  Brick fragments only 

43.3 m 

21.65m 

Arched dome 

Tie  from friction at 
support bearing 
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2.2.2 Pioneering analysts in the first half of 20th century  

2.2.2.1 Ritter-Morsch analysis of shear 
 
In 1899, the Swiss researcher Ritter suggested the concept of diagonal tension but his 

findings were largely ignored and overshadowed  by  horizontal shear theory [2-2]. 

 

In 1902, Emil Morsch [2-3]  for  the first time  experimentally  tested reinforced concrete   

beams failing in shear in the laboratory.  In 1902, he published his tests of four reinforced  

concrete beams designed to study the action of vertical and inclined stirrups as well as 

bent-up bars. His paper indicated diagonal action as the cause of shear failures and 

introduced the truss analogy to describe the action of web reinforcement [2-3]. 

 

In 1902, Morsch analysed the shear stress distribution for a reinforced concrete beam 

containing flexural cracks. He predicted that shear stress would reach its maximum value 

at the neutral axis and would then remain constant from the neutral axis down to 

the flexural steel . The value of this maximum shear stress is: 

τ = V/bwZ 

where V is the total shear force  and bw  is the web width and Z the flexural lever arm. 

 

Morsch recognised that this was a simplification, as some of the transverse force could 

be resisted by an inclination in the main compression, which would cause the ribs of the 

concrete between flexural cracks to bend, producing dowel forces in the main steel. 

 

By the turn of the century, Ritter [2-2] introduced  the ‘Truss analogy’ for solving shear 

forces in beams, this analogy was further consolidated by Morsch [2-3].  

 

Sewell suggested in 1903 that experimental  tests demonstrated the creation of cracks 

along the lines of principal tensile stress and he called for a justifiable method to design  

stirrups to resist these principle stresses. Nevertheless, Thacher, in 1903, asserted that 

stirrups and bent-up bars in reinforced concrete beams were ‘utterly useless’. 

 

The newly proposed  'diagonal  tension' and the older approach of ‘horizontal shear' were 

the subjects of  debate mainly in Europe and to some extent in America for almost ten 

years until the 'Ritter-Morsch' approach  was finally accepted.  
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The traditional Ritter-Morsch proposal for distribution of shear stresses in beams without 

web reinforcement was derived as follows: 

 

AB and A'B' are two adjacent sections dl apart between which on the plane C-C' there act  

shearing stresses balancing the difference between the normal forces on AC and A'C', 

Figure 2.2(a) & (b).  

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 2.2: Traditional Ritter-Morsch shear theory:(a) Beam element of  length dl 
in the shear span, (b) Longitudinal flexural forces, (c) The shear stress distribution 
and (d) Shear and flexural forces acting on the section along a flexural crack 
 
                                                   Source: Morsch, E. 1908 [2-3]  

 

Considering forces in plane of C–C’ 
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Where V represents the applied shear force shown in Figure 2.2 (d). 
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dbx

vxV

−

−=τ        2-2 

The above equation demonstrates that where ν = x, the shearing stress is zero and it then 

increases towards neutral axis to: 

)
3

(
x

db

V
o

−
=τ         2-3 

It is assumed that no normal stress acts in the concrete below the neutral axis, the whole 

tensile force being taken by the reinforcement . With this assumption, the shearing stress τo 

is constant between the line OO’ and the reinforcement, Figure 2.2. It is then evident that 

the shearing stress τo balances the difference in the tensile stress between two adjacent 

sections of the reinforcement. 

Therefore it follows that: 

dTdlbo =⋅⋅τ                                                                                  (d) 

But 
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Substituting  (d) and (e) results in: 
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Which is identical to 
)

3
(

x
db

V
o

−
=τ         2-3                                                               

The value of  obτ. also represents the total effective adhesive (bond) stress on a unit length  

of the circumference of the steel, and consequently the adhesive stress τ1 is: 

τ1= b τo / total circumference of the reinforcement 
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The above derivation is reproduced from  the third edition (1908) of Professor Morsch's 

pioneering book 'Concrete-steel Construction'. In 1909 this book was translated into 

English and was published in London and New York. Its first German edition was in 1902. 

 

This derivation was based on zero longitudinal tensile stress in the tension zone, because of 

Morsch' s awareness of the existence of the flexural cracks, although he accepted a  

transverse uniform shear resistance in the tension zone. This, therefore, must mean that he 

was satisfied with the 'inevitable' availability of this resistance, τo , in the tension zone 

whether the section is taken between two adjacent cracks or at one of them, Figure 2.2d.  

2.2.2.2 Morsch’s concept of dowel action 
 

Morsch [2-3]  referred to the dowel action of the longitudinal reinforcement on many 

occasions. Although he did not mention the terms 'concrete teeth' and 'dowel action', his 

understanding  of these two important concepts can be recognized  from the following 

paragraphs which were written in his book [2-3]: 

 
“On the concrete of a rib between two cracks must act the difference ∆Z of the tensions in 

the steel at the two cracks, this difference being the total frictional resistance between steel 

and concrete of the corresponding length. Further, the concrete exerts bending stresses on 

the reinforcing rod, as shown in Figure 2.3 a  which counteract the deformation in the piece 

of concrete, which would be caused by ∆Z”. 

 
                     (a)                                                                               (b) 
 
Figure 2.3: (a) the cantilevered concrete teeth. (b) dowel action of the main 
reinforcement 
                                  Source: Redrawn from Morsch, E. 1909 [2-3] 
 
In another paragraph , he identified dowel action clearly and  associated it with the tensile 

strength of the concrete beneath the bar. He  proposed his concept as  follows: “The 

turning of the two parts of the beam resulting from the opening of the cracks will cause 

∆Z 
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reinforcement on the right end of the left hand part of the beam to press downward,     

Figure 2.3  b  ,  so that at that point in the steel a downward force will act which naturally 

can not be larger than the tensile strength between the concrete beneath the reinforcement 

and that in the rib above it”. 

 

Morsch tested 12 beams, out of which three beams had stirrups in one of the two shear 

spans only.  He  stated, in his description of the failure of one of the beams which had a 

single bent up bar in one span and stirrups on the other, that  “failure resulted from a 

widening of the diagonal cracks and downward pressure of the reinforcement near the 

supports”. Moreover, Morsch even emphasised the effect of the stirrups on this 

'downward pressure’ of the reinforcement in his studies of some other tests carried out by 

Carl von Bach and Otto Graf  in1907 [2-4]  on continuous rectangular and I-beams 

designed primarily for bond investigations. These tests were also fully discussed by 

Morsch who also stated that the “tensile strength of the stirrups prevented the downward 

pressure of the reinforcing rods near the supports after the appearance of diagonal cracks”. 

2.2.2.3    Other relevant research  
 

In America, in  1909, Talbot [2-5] presented a study of 188 beams. His main conclusions 

regarding beams without web reinforcement were that the nominal shear strength increases 

with cement content, age of concrete, amount of longitudinal reinforcement and decreasing 

span of beam for the same cross-section.  

 

 

Figure 2.4: An element of a reinforced beam between two adjacent shear cracks 
Reproduced from: Bjuggren, U. [2,6] 1948  

The beginning of  understanding of shear in beams without web reinforcement can be 

considered to be when  the Swedish engineer Ulf  Bjuggren [2-6],  in  1948, made a 

specu1ative reconsideration of Morsch's 'teeth', Figure 2.3 a,  and developed the concept 
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shown in Figure 2.4. His revised model resulted in an awareness of the likelihood of shear 

transfer across cracks. 

 

From, Figure 2.4, by taking moment about the centre of concrete in compression, he 

derived that the difference of tensile forces in the tension steel is: 

Z

eV
T

.=∆     2-4 

This force gives a bending moment on the concrete between the cracks. In a horizontal 

section at a vertical distance y from the reinforcement this bending moment , Mt is: 

Z

yeV
yTM t

⋅⋅=⋅∆=    2-5 

Section modulus is = 
6

2be
 

Corresponding to a flexural stress fct in the concrete: 

ebz

yV

eb

M
f t

ct ⋅⋅
⋅⋅

=
⋅
⋅

=
66

2
     2-6 

e

y
fct

τ⋅⋅= 6
    2-7 

Where τ represents the maximum intensity of vertical shearing stress for rectangular 

beams. 

 

At high steel stresses, when using steel  with good bond, e can be smaller than 100mm, and 

it is easily seen that these bending stresses can be many times the computed shearing 

stresses. The concrete should break if no other forces counteract the mentioned bending 

moment. Bjuggren carried out his logical argument that such forces can only appear in the 

shape of shearing stresses between adjacent crack surfaces and they will appear only if the 

cracks are sufficiently small. Then he summarised the conditions required for a cracked 

reinforced, concrete beam to act as a true beam, i.e. for the steel stresses to vary  

substantially with the bending moment: 

1. The bond between the steel and concrete shall be sufficient that the difference ∆T of the 

tensile forces can be transferred to the concrete. 

2. The cracks shall be narrow enough so that the required shearing stresses can be 

developed in the crack surfaces. 

 

By 1950, the number of tests on beams had  reached around 1,000. 
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2.2.3 Recent research on shear in beams 

 
This section is a review of general research on the understanding of shear in beams without  

stirrups.    

 

In 1962, Moe [2-7]  in a short discussion recalled attention to Bjuggren’s [2-6]  argument. 

Moe stated that in an arbitrarily chosen beam which was reported to have failed in inclined 

tension it was found that the vertical tensile stresses fct  exceeded the nominal shearing 

stresses τ = V/bz by more than 100% , even when Vr, Figure 2.5, was assumed to be as 

high as 72% of the shear force Vt assigned to the cracked zone proportion of the beam 

according to the classical theory. He concluded that according to the established formulae 

j
VdbVt

γγτ =⋅⋅⋅=  

it appears reasonable to assume that the amount of shear transmission across the bending 

cracks decreases gradually as the widths of the cracks increase. At the same time the 

shearing stresses in the compression zone increase, Figure 2.5 (c). At a certain value of the 

crack width, the stresses in the cantilever become high enough to cause failure.  

 

Figure 2.5 shows : a) The cantilever encastre near the neutral axis of the beam in the 

compression zone; b)  Shear stresses according to the classical theory; c) Moe’s suggested 

distribution of shear stresses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5: Suggested mechanism of inclined cracking in case of a/d>2.5  
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Moe’s model does not  give enough attention  to Bjuggren’s [2-6] first recommendation  

emphasing that bond between the steel and concrete should be sufficient that the difference 

∆T of the tensile forces can be transferred to the concrete.    

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6: Comb-like cracked beam 
 
 

In 1965, Lorentsen [2-8] proposed an analysis regarding the function of concrete teeth, 

Figure 2.6. By making the assumption that the teeth between cracks were infinitely narrow, 

he produced a function for dT/ds, the rate of change of tensile force along the beam, at 

which the teeth would fail.  

 

According to his theory the shear is carried partly by beam action, partly by arch action. 

The theory led to an equation in which the shear strength of beams without web 

reinforcement may be expressed as a function of the strength of the crack lamina, the shear 

span, and the flexural cracking moment. The lamina strength being the sum of two 

components, ka, the shear force carried by the reinforcement by dowel action and kb the 

force carried by the compression zone. Thus: k = ka + kb. He then carried out a limited 

series of dowel tests to determine ka and some splitting tests on, and analyses of, concrete 

plates to determine kb. In his theory, not only the interlock forces were ignored, but the 

bond equation also was not realistic, since too much arch action was assumed prior to  

diagonal cracking. 

 

In 1964, a similar presentation of a comb-like structure, Figure 2.6,  was presented by Kani 

[2-9] by  addressing the problem of the bending of the 'teeth' of the concrete between 

flexural cracks. The concrete between two adjacent flexural cracks was considered to be 

analogous to a tooth in a comb. 
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The concrete teeth were assumed to be free cantilevers fixed in the compression zone of 

the beams and loaded by the horizontal shear from bonded reinforcement. Although this 

theory did not cover most of the shear transfer mechanisms, it was probably the start of 

more rational approaches. 

His analysis was based on Bjuggren’s [2-6], 
ebz

yV

eb

M
f t

ct ⋅⋅
⋅⋅

=
⋅
⋅

=
66

2
     2-6 which with  

Kani's notation is:  

2
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M
f t ∆⋅

⋅∆⋅==        2-8 

where:  

S = The section modulus of a tooth  

∆T = The bond force as defined by Morsch, Figure 2.3 a. 

s = Crack height 

b = Beam width 

∆x = Crack spacing. 

f t’ = The tensile strength of concrete. 

From this formula, 

if    ∆T/∆x , the rate of change of the steel force along the beam is assumed to be T/a, 

where a is the shear span; a relationship for the ultimate moment for the beam may be 

derived: 

b
s

xf

a

T t ⋅∆⋅=
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'

     assuming that lever arm is 7d / 8 

d

a

s

x
db

f
M t ⋅∆⋅⋅= 2

'

..
8

7

6
               2-9                                

 
This analysis ignores shear transfer by aggregate  interlock and dowel action. Taylor [2-10]  

pointed out that “without the strengthening effect of the shear transferred across the cracks, 

Kani found that his theory would give good results only if very short teeth (very small S 

values) were used”. 

 

In 196, Fenwick and Paulay [2-11], working with 'tooth' models, pointed out the 

significance of the forces transferred across cracks in normal beams by crack friction. 

Taylor (1974)   [2-14], also evaluating Kani's model, found that for normal test beams the 

components of shear resistance were: compression zone shear (20-40%), crack friction (35-

50%) and dowel action (15-25%). 
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In 1975, based on extensive experimental work on interface shear, Hamadi [2-26] and  

Regan  [2-25] proposed an analysis of the tooth model. It was assumed that the cracks were 

vertical and that their spacing was equal to half the effective depth of a particular beam. 

Their analysis  will be discussed in detail in section. 2.2.7.5. 

 

In 1982, Schlaich [2-12] suggested a refined strut and tie model (STM) approach that 

includes concrete tension ties. In 1991, Reineck [2-13] showed that such truss models 

comply with the tooth model he had proposed. Taking all the shear transfer mechanisms 

into account, carrying out a full nonlinear calculation including compatibility. Reineck     

[2-13] derived an explicit formula for the ultimate shear force based on his mechanical 

model which matched with the results of the test as well as with those of many empirical 

formulas. 

 

In Chapter 5, the STM approach will be discussed and a a new model is developed  to 

demonstrate that in HSC beams with HWB, the dowel moment, deflects the inclined  

diagonal compression strut in the STM to develop a better arching action. 

 
With regards to Lorentsen [2-8] and Kani [2-9] neglecting the importance of the aggregate 

interlock and dowel action,  this writer’s experimental results in chapter 3, a graph in 

Figure 3-37 and  six graphs in Figure3-39,  demonstrate that strains in the links at the 

centre of shear span in HSC beams after the diagonal tension crack has widened and 

caused the stirrup resisting the crack opening  to exceed well over its yield, the dowel 

(HWB) and arching action due to presence of HWB in HSC beam provides the final  40% 

shear resistance, that is from 90 to 150 kN shear force.  

 
2.2.4 Influence of shear span to depth ratio (a/d) 

 
Beam behaviour in resisting shear can be classified in various ways. The most popular 

parameter used to define boundaries between modes of action is the ‘Shear span /effective 

depth’ or a/d  ratio, i.e. the distance from the support to the load over the effective depth.  

Beams are defined with a/d≤1  as deep,  1< a/d ≤2.5 as short and a/d > 2.5 as normal or 

slender. 

 

For  a /d >2.5 the tension steel ratio ρt   affects the shear behaviour as an increase of ρt  

means a reduction of the flexural crack width resulting in an increase in crack friction, and  
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also means a decrease in the length of the cracks which in turn increases the uncracked 

compression area resulting in a higher shear capacity.  

 

2.2.5 Actions influencing the total shear strength 

 
This section investigates the four mechanisms of shear transfer which are: shear stresses in 

uncracked concrete, aggregate interlock, the dowel action of the longitudinal reinforcing 

bars, and arch action.  These are the fundamental actions which influence the shear 

behaviour  of  the reinforced concrete elements. Proportion of shear resistance taken by 

each action is discussed in detail in this section.  

 

Fenwick and Paulay [2-11] carried out some displacement measurement on cracks in few  

beams. Some of these beams had preformed, smooth, diagonal cracks to avoid aggregate 

interlock forces and some had a cushion of foam rubber to eliminate dowel forces.  

 

They concluded that there are two ways in which shear displacement may occur. The first 

is by the rotation of the compression zone between adjacent concrete cantilevers. This 

requires curved cracks. The second way is by bending within the concrete cantilevers.  

 

Taylor [2-14] tested shear transfer by aggregate interlock (or surface shear) and by dowel 

action and derived load /displacement relationships from them. He then used these 

relationships, together with measurements of movements at cracks in beams, to assess the 

separate contributions to the total shear resistance. At stages close to shear cracking the 

proportions taken by the different actions are shown in Table 2.1. 

 

 % of total shear resistance provided by different 

action in NSC 

Fenwick 

& Paulay 

Taylor  

[2-14] 

Hamadi and Regan  

[2-25] 

Aggregate 

unchanged 

Aggregate 

unchanged 

Natural 

Gravel 

Expanded 

Clay 

Compression zone 20 20-40 37 40 

Aggregate interlock 60 35-50 44 26 

Dowel action 200 15-25 19 34 

 

Table 2.1: Fenwick  and Paulay [2-11],  Taylor [2-14], Hamadi and Regan [2-25]tests 
for separate contributions to the total shear resistance 
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Hamadi and Regan [2-25] reviewed Taylor's [2-14] above mentioned experiments with 14  

beams of dense and light aggregate concrete, and measured  aggregate interlock and  dowel 

action and derived load /displacement relationships from them. These relationships were 

then  used together with measurements of movements at cracks in beams to assess the 

separate contributions to the total shear resistance. Details of their approach are described 

in sections 2.2.7.5 and 2.2.8.2.  At stages close to shear cracking the proportions taken by 

the different actions  by Hamadi and Regan [2-25] correlated with Taylor's [2-14]  results 

and were found to be as shown in Table 2.1. 

 

The inclined cracking load is a function of the tensile strength fct. of the concrete. The 

stress  state in the web of the beam involves the biaxial principal tension and compression 

stresses. The flexural cracking that precedes the inclined cracking disrupts the elastic stress 

field such that inclined cracking occurs at principal tensile stress roughly at half of fct for 

theuncracked section in NSC.  

 

2.2.6 Shear resistance from arch action 

 
If, for some reason, the transfer of bond forces is entirely destroyed along the full length of 

a beam, it will either suddenly fail or transform almost immediately into an arch-dome 

only if a/d<1, Figure 2.1. Arch action means that the shearing resistance is provided by the 

inclined compressive thrust between load and support. In such a mechanism , usually when       

1<a/d < 2.5,   the main reinforcement acts as a simple tie.  

 

Arch or strut and tie action normally occurs in beams without stirrups when the shear 

span /effective depth ratio a/d <2.5. There is a load path direct to the support by a 

compression arch or strut held in equilibrium by a horizontal tension tie  formed by the 

longitudinal reinforcement. The loading capacity is decided by the concrete strut's 

compression strength, the strength of the tension ties or that of their connection, i.e. the 

main steel anchorage.  

 

There was some initial research on beams with stirrups by Oscar Faber [2-15] published in  

1924 which drew attention to the possibility of arch as opposed to truss action. However, 

the first major change of approach was in the work of Borishanski [2-16] who made tests 

in which shear reinforcement was omitted from limited lengths of shear spans and who 

derived an expression for the shear resistance of such zones. Borishanski’s work has been  
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very effective in Eastern Europe and is still the basis for Russian codes [2-17]. 

 

Generally, an increase in the compressive strength of the concrete means an increase in its 

tensile strength which in turns results in an increase in diagonal cracking strength. With a 

low a /d ratio the compression arch or strut is directly dependent on the compressive 

strength of the concrete. Therefore, assuming the tie is strong enough, an increase of the 

compressive strength results in a proportional increase of the shear capacity. 

 

Arch action is present in deep beams (a/d<1) from the start of loading.  In beams of                

1≤ a/d ≤ 2.5, the inclined crack is generally the result of  a flexural crack which suggests 

that  prior to the formation of the shear cracks, beam action predominates. In this kind of 

beam, a transformation to the arch action usually occurs at the later stages of loading.  

 

In section 3.2.12, it will be demonstrated that arching action fully develops in HSC with 

HWB of a/d=3.02, after stirrups pass their yield, whereas when HWB is absent in the same 

beam no arching action develops at all.  

 

2.2.7 Shear resistance from dowel action of  reinforcement 

 
The development of dowel action in beams  is a result of the longitudinal reinforcement  

taking some shear force in a crack, initiated by the vertical movement of two opposite 

crack surfaces. On the contact area of the concrete and the steel there are stresses that are 

perpendicular to the longitudinal reinforcement. Dowel failure occurs with the formation of 

a crack next to the steel bar and in the same direction as the bar.  

 

The shear force in the bar increases proportionally to the vertical crack displacement, 

therefore an appreciable dowel force develops only towards the ultimate load, when shear 

cracks are actually opening. 

 

In practice, dowel action occurs in reinforced concrete at both flexural and shear cracks  

and the forces against the cover are decisive for the failure of the dowel action. Dowel bars 

may also act against the core of concrete, resulting in a bending of the bar and local 

crushing of the concrete or, alternatively, may cause splitting in the plane of the bar if the 

cover is small. If the cover is large, failure occurs at the final stage of loading as a result of 

diagonal tension cracking of the inclined compression strut, Figure 3-15. 
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Figure 2.7: Dowel load in relation to the action against core concrete as compared to 
the cover 

Source: Baumann,T.,Rusch, H. [2-23] 1970 
 

The resistance of a dowel acting against the core concrete is greater than that of a dowel  

acting on the cover. Figure 2.7 shows the dowel load in relation to the action against the  

core concrete as compared to the cover.  

 

 The dowel action is primarily dependent on the tensile strength of the concrete. Therefore,  

an increase in tensile strength produces a proportional increase in the dowel capacity. 

 

In this section past research on the dowel action on the tension reinforcement is reviewed 

in detail and  past research on dowel action resulting from  horizontal web bars (HWB) of 

the beams is investigated and compared with this writers research. 

 

As discussed in section 2.2.2.2, it seems that Morsch was  the first to recognise the 

existence of dowel forces.  

2.2.7.1 Background to research  on dowel action 
 

In 1954, the Swedish researcher Forssell [2-18] was the first to make tests of dowel action 

in beams, Figure 2.8.  

 

 

 

 

 

 

 
Figure 2.8: Dowel action test set up by Forssell [2-18] and Lorentsen [2-19]   
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In 1956,  Jones [2-20] made tests to investigate dowel  forces in beams with stirrups. He 

tested three divided beams especially designed and instrumented to study dowel action. 

Dowel forces were computed from the flexural stresses observed in the longitudinal 

reinforcement and were evaluated to be 30 % of the applied transverse forces. 

 

 

 

 
 
 
 
 
 
Figure 2.9: Test set up by  Jones [2-20] to measure the dowel action 
 

Jones considered  the distribution of  shear in doubly reinforced concrete beams with 

inclined stirrups, and presented data from which he evaluated the proportions of the total 

shear carried by the concrete, the stirrup and the longitudinal steel. He concluded that  

longitudinal  steel functions as a dowel and contributes  substantially  to shear resistance at  

failure. 

 

Jones [2-20] concluded that for beams where the bars are relatively close to the concrete 

surface, dowel resistance depends on other factors such as bar size, amount of cover below 

the bars, beam depth, the net width of concrete at the level of the longitudinal steel,  

concrete tensile strength and  the moment of inertia of the structure (from the transformed 

section).  

 

In 1964,  Lorentsen [2-19],  tested two divided reinforced beams with set up test pieces 

similar to those used by Forssell [2-18],  

Figure 2.8.  

2.2.7.2 Krefeld  and Thurston’s  treatment of dowel action  
 
In 1966, Krefeld and Thurston [2-21] carried out nine tests on divided beams in which the 

tension zone was cast separately from the compressive zone, Figure 2.10. The dowel was 

tested by pulling the centre section of the beam downward, therefore the main steel was in 

Device to measure shear 
resistance in the 
compression zone 

Strain gauges 
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tension throughout the test. The dowel shear force and the tensile stress are related to each 

other by the geometry of the test specimen. 

Following  successful experimental tests on  7 beams, it was proposed that when the limit 

of  tensile strain in the concrete is reached, vertical flexural cracks form from the tension 

surface of the beam at intervals along the span according to the magnitude of the bending 

moment. The composite action is modified, a redistribution of stress starts at the cracked 

sections with increased stresses in the steel and concrete, and the rate of deflection of the 

beam increases.  

 

After the flexural cracks have extended upward a short distance above the longitudinal 

reinforcement, they become inclined at sections subjected to shear as well as bending. 

Since the tensile stresses in the concrete due to bending moments decrease approaching the 

neutral axis, the inclined extensions are due largely to the influence of shear producing 

diagonal tension. The progressive changes in the steel and concrete stresses as the inclined 

cracks extend upward constitute a second redistribution of stresses.  

 

 

 
Figure 2.10: Test arrangement and the test pieces used  by Krefeld  and Thurston    
[2-21], Baumann [2-24] and Taylor [2-22] 

Source: Redrawn from a sketch by Baumann, T, Rusch H. 1970 [2-23]   
 

Based on an  assumed inclined crack in a reinforced concrete beam  and the empirical data 

from a series of tests, the following  expression was derived: 

 
V 1 = C1√fc (d I b3)3/4         2-10 
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where C1 is a factor, involving unknown effects of combined stresses, and I is the moment  

of inertia of the structure  from the transformed section. This is the same form of equation  

as that derived by Jones [2-20] except that it is expressed in terms of  a √fc  and b whereas 

Jones used ft  (the ultimate tensile strength of the concrete) and b' (the net width of 

concrete at the level of the longitudinal steel). While this theoretical expression does not 

include the location of the crack as a variable, their test data  indicated that the value of V1  

decreases as the distance of the crack from the support  increases. 

2.2.7.3  Baumann’s treatment of dowel action  
 

In 1968, Baumann [2-24]  tested 31 beams of which  26  had  similar pieces to those used 

by Krefeld, Thurston [2-21] in 1966  and Taylor [2-22] in 1969. The arrangement and the 

test pieces are shown in  Figure 2.10. Their preferred arrangement was different from 

Forssell [2-18] and Lorentsen’s [2-19] tests which had  beams divided in  two sections, 

Figure 2.8. 

 
Loading was applied to a part of the tensile zone of a simply supported beam. The  

concrete of this part was divided from that of the rest of the beam by a preformed artificial 

crack. The only element transferring load between the two parts was the main  

reinforcement (the dowel).  

 

The effects of the following variables were studied:- 

1.Width of preformed crack 

2.Breadth of beam 

3.Depth of beam 

4.Thickness of bottom cover 

5.Distance from preformed crack to support 

6.Distance from preformed crack to a stirrup supporting the dowel 

7.Number of stirrups supporting dowel 

8.Diameter of main reinforcement 

9.Number of bars in main reinforcement 

10.Steel type (main reinforcement) 

11.Number of layers of main reinforcement 

12.Concrete strength 

 



___________________________________________________________________________
Motamed, J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’ 

 

44

The diameter of the stirrups supporting the dowel was also varied but this parameter was  

not treated systematically. Baumann presented his test results in the form of tables of shear 

(dowel) forces at where  cracking commenced along the line of the main steel in the outer 

(unloaded) part of the beam, and the vertical deflections ∆ corresponded to these cracking 

loads. 

 

At small dowel forces, the longitudinal reinforcement is considered to be suspended from 

the upper part of a beam by vertical tensile stresses in the concrete, Figure 2.11. When the 

maximum tensile stress reaches the tensile strength of concrete, the first horizontal dowel-

crack starts. The load, Vcr, at this stage is given by: 

 

Vcr= lz . bn . ft’                                                    

where 

lz   = length, shown in Figure 2.11 

bn  = net width of beam  = b - ∑φ  

φ    = bar diameter. 

 ft’  = tensile strength of concrete (axially) = 0.53 fcu
2/3   

fcu
 = cube crushing strength  (kgf/cm2). 

 

 

 

 

 

 

 

 

 

Figure 2.11: Stress distribution under dowel loads. 
 

The length lz,  Figure 2.11,  characterises the distribution of vertical tensile stresses in the 

concrete along the reinforcing bar. It is mainly influenced by the diameter of longitudinal 

reinforcement, the number of reinforcing layers and to a lesser extent by the concrete 

strength. They also stated that the cross-section of the beams, the concrete cover, the 

number of reinforcing bars in one layer and any stirrups did not influence lz in these tests. 
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Accordingly, they established the following empirical expression for one layer of 

longitudinal reinforcement in cm: 

3/1
3.14

cu

z
f

l
φ×=

           
Therefore: 

3/16.7 cuncr fbV ×××= φ    in  kgf 

In Newtons 
3/11.3 cuncr fbV ×××= φ   2-11 

 
For two layers of longitudinal reinforcement lz was given by: 
 
lz = 4 + 0.032Jv 
 
where Jv is the combined bending rigidity of the longitudinal bars and a part of the bottom 

cover, Figure 2.11. 

The load-displacement relationship before dowel cracking was given as: 

 

08.0
d

crd VV
∆

⋅=  

 
where ∆d is the dowel displacement at the dowel force Vd .  
 

Cracking behaviour was presented in the form of graphs of 'dowel force V deflection' for 

most of the beams. An example in Figure 2.13 shows overall characteristics for a beam 

with stirrups  and  Figure 2.14 shows a detail for low loads. 

 

All the results were tabulated, the post-cracking behaviour being given by the values of the 

dowel force corresponding to fixed increments of deflection. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.12: Stress due to dowel action 
Source: Redrawn from a sketch by Baumann, T, Rusch, H. 1970 [2-23] 
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In the early stages of loading, prior to dowel cracking, the load transferred by the dowel is  

supported by the concrete under bars which is in turn supported by vertical tension in the 

concrete above. Stresses due to dowel action are shown in Figure 2.12.  

 

The condition of equilibrium for dowel force where the main reinforcement is in single 

layers is: 

 
Dcr1 = Kbndb fcu

1/3     2-12 
 
where net breadth of the cross section (bn) is the beam breadth after deduction of diameter  

of dowel bars (db).  

V=K fct bnLc     2-13 
                                                                            

The general equation where the main reinforcement is in up to 2 layers is:  

 
Before dowel cracking occurs, the dowel deformation ∆ results initially from pressure  

caused by the bars to the concrete cover below. The tensile strain of the concrete above the 

dowel makes little contribution to ∆. 

∆ ≈ 0.08 mm  (D/Dcrack) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.13: A graph for a beam with and without  stirrups. Curve equation 
approximation ∆=γV2 

Source: Redrawn from a sketch by Baumann T, Rusch H, 1970 [2-23] 
 

After dowel cracking the dowel force Dcr can increase only when the longitudinal 

reinforcement is supported by a stirrup near the diagonal crack. In this case, at first loading  

   1                    2                    3                   

2 

3 Dowel load 
(Tons) 

      Vertical deflection across crack ∆ mm 

After cracking , with stirrups 
Baumann [2-23Error! Bookmark 
not defined.] 

After cracking without stirrups 
Baumann [2-23] 
 

∆ cr 

Vcr 

Vd 
Before cracking 
Taylor [2-22] 
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the relation between Dcr and  ∆ follows a parabola 

 
∆ (mm)= γDcr                              

where  γ= constant and is a factor of ( r 2/ Jv) 
 
r= distance from the crack to the first stirrup in mm. 

Jv =moment of inertia of dowel bars + concrete cover directly below bars. 

Also an expression was given for the load-displacement relationship after dowel cracking, 

Figure 2.13. It is dependent on the distance between the stirrup and the diagonal crack and 

also on Jv. 

Baumann investigated the accuracy of his equation for the dowel cracking loads of beams 

with single layer reinforcement to compare with his own test results and others reported by 

Krefeld and Thurston, Lorentsen, and Fenwick’s  tests in 1966 on 67 dowel specimens, 

where the steel was in compression which did not exactly represent the behaviour of dowel 

steel under  tension in beams.  

 

 
 
Figure 2.14: Detail for low loads 

Source: Redrawn from a sketch by BaumannT, Rusch H, 1970 [2-] 
 

2.2.7.4 Taylor’s tests on dowel action 
 

In 1969, based on his experimental results, Taylor[2-22]  proposed a load displacement 

relationship before cracking which is a curve compared with the straight line proposed by 

Baumann. The end co-ordinates of this curve are (Vcr, ∆cr). Taylor experimentally tested  

34  model beams of  scale 2:7  and 12 prototype beams. He investigated the following 

parameters: 
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1. Concrete tensile strength 

2. Net width bn 

3. Cover thickness 

4. Two layers of reinforcements 

5. Distance from the support 

The displacement ∆cr was evaluated to be 0.17mm, a figure derived from a survey of all his 

test data including both the models and the prototypes. A multiple regression analysis 

defined the dowel cracking load (kN) at this displacement (mm) as: 

 

2Vcr = 9.1 + 0.001 bn
2 ft’     2-14 

 
where: 
 
b = Net width (mm) 
 
 ft’= Concrete tensile strength, ( kN/mm2) 
 
 
The curve in the continuous line  in  Figure 2.13  was represented by the following 
equation: 
 

crdd VV ⋅∆⋅= 25.055.1    2-15 
 
Taylor's results were essentially identical to those obtained by Baumann when stirrups 

were present, Figure 2.13. He also concluded that, for the equivalent non-divided beams 

tested, the dowels carried between 9% and 20% of the total shear force on the section at 

failure. 

 

2.2.7.5   Hamadi and Regan’s research on dowel action 
 

In early seventies, Hamadi [2-25&26] tested divided-beam specimens of the type used in 

previous studies similar to Baumann's, with the difference that the load was applied via a 

steel plate passing through the opening, Figure 2.15, with the loaded section cast first and 

with the bars projecting from it as compared to Baumann's test set up shown in          

Figure 2.10.  

 

The simply supported beams were tested with load applied to the precast section via a steel 

plate passing through an opening below the in situ compression zone. Tests were made 
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with the gravel and expanded clay aggregate concrete for each of the bar arrangements 

used in the main tests. The ultimate loads are given in Table 2.2.  

The results of these tests and other published data on dowel strengths were compared with 

a slightly modified form of Baumann equation, for simplicity, called Baumann-Hamadi’s 

equation  for the dowel resistance of a single layer of bars: 

 

33
2' 12.4 cund fbV ⋅⋅⋅= φ    2-16                                                

 
in units of N and mm, where φ is the bar diameter and bn is the net breadth of the section at 

the level of the bars (= b - ∑φ). Analysis of these tests and that of Baumann-Hamadi gives 

the results in Table 2.2.  

 

In total 14 beams were tested, 400 x 100 mm in cross-section, and two continuous bars 

were used as flexural reinforcement. Variables were the type of aggregate, the percentage 

of main steel and the ‘shear-span/effective depth’ ratio.  

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.15: Beam arrangement with load applied via steel plate passing through 
opening 

Source: Hamadi Y.D and  Regan P.E, June 1980 [2-25] 
 

The 6 beams discussed are most related to this review because of their span to depth ratio 

(a/d)=3.4. The last column of Table 2.2 shows 128%, 119% and 108% improvement for 

calculated dowel resistance for bars T20, T16 and T12 respectively.  

The force-displacement relationship can be expressed as: 
2'

08.008.0
2 







−






= SS

V

V

d

d      2-17 

 

where s is the vertical displacement across the crack or beam division at the level of the 

dowel bars and is in mm. The expression is plotted in Figure 2.17. 
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 Beam 

 
Reinforcement 

fcu 
 

V’ d test   
 

V’ d Baumann-

Hamadi 
 

V’ d Baumann-

Hamadi 
    / Vd test 
 

 
Failure 
2Vu 

Number 
& 
diameter 

100A
s /      
bd 

N/mm2 
 

kN 
 

kN 
 

 
kN 

 
GD-1 2Y20 1.70 35.0 6.00 5.96 0.99 89.0 
GD-2 2Y16 1.08 58.0 7.00 6.89 0.98 89.5 
GD-3 2Y12 0.60 34.3 5.60 5.33 0.95 75.4 

LD-1 2Y20 1.70 23.6 5.00 5.23 1.04 50.0 
LD-2 2Y16 1.08 24.4 4.75 5.16 1.09 42.5 
LD-3 2Y12 0.60 25.1 4.65 4.81 1.03 30.0 

 
Table 2.2: Beam with  span to depth ratio a/d=3.4 . G and L series were made of light 
and gravel aggregates. Baumann-Hamadi’s equation predicts the experimental 
failure within the standard deviation of  0.03  

Source: Hamadi Y.D and  Regan P.E, June 1980 [2-25] 

 

bd

As100
 x1 (mm) x2 (mm) y (mm) 

y

yo  

1.70 790 800 240 0.54 
1.08 815 870 255 0.57 
0.60 610 635 190 0.58 

 
Table 2.3: Position of a crack in position shown in Figure 2.19  

Source: Hamadi, Y.D and  Regan, P.E, June 1980 [2-25] 

 

 

a) Forces involved in       b) Local equilibrium 
over-all equilibrium         determining shear  
                                         stress distribution 

 

 

Figure 2.16: Shear resistance of a horizontal 
compression zone showing forces in over-all 
and local equilibrium 

Figure 2.17: Comparison between the 
experimental dowel-force V 
displacement relationship  

Source: Hamadi, Y.D and  Regan, P.E, June 1980 [2-25] 
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Taking  moment about A from  Figure 2.16: 

C

M

Z

Vx
V tooth

c +=
3

2
     2-18 

Mesurements recorded in conjunction with the force-displacement relationships obtained 

from the push-off and divided-beam specimens (equations 2.26 and 2.16) to evaluate the 

shear carried by interlock and dowel forces at cracks Vg and Vd. The total shear in the 

compression zone was then found as  

Vc = V - Vg - Vd. 

The value of Vc thus obtained was always greater than the classical Morsch value of  

2Vx / 3z. This is consistent with the equilibrium of the element of Figure 2.16 (a), where 

the moment Mtooth arises because the shears across the cracks do not fully balance the 

moment Vcl/z due to the bond force. The vertical stresses from the tooth moment cause the 

deflection of the thrust line. 

 

Figure 2.18 : Shear stress distribution of a horizontal compression of the tooth shown 
in Figure 2.16 

Source: Hamadi Y.D and  Regan P.E, June 1980 [2-25] 
 

The local equilibrium of elements such as that in Figure 2.16 (b) determines the variation 

of shear stresses over the depth of the compression zone. If the distributions of longitudinal 

stresses are linear, as shown, that of the shear is necessarily parabolic. The compression 

zone shear distributions of Figure 2.18, and in other figures produced  from other beams 

which they had tested, are parabolas drawn to coincide with the classical shear value at the 

neutral axis, as this was consistent with the distribution of shear across cracks. 

 

Figure 2.23 shows the structure of a shear span with flexural cracks. The elements of 

concrete between cracks are subjected to bond forces near their lower ends and are fixed to 

the compression zone above. The moments of the bond forces are resisted partly by 

couples between the vertical interlock and dowel forces at the cracks and partly by flexure 

of the elements or teeth. 
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The flexure of the teeth produces vertical tensile stresses and strains at the level of their 

attachment in the compression zone, and it seems that inclined cracking is generally the 

result of a combination of this tension and the shear in a tooth. The failure criterion is thus 

somewhat complex, but over a wide range it is a reasonable approximation to express it 

solely in terms of the tensile stress or strain. 

 

The loading of a tooth may be divided into two component systems. The first comprises a 

part of the bond forces together with the interlock and dowel forces and produces shear 

deformations but no vertical strains. The second is the remainder of the bond force and the 

moment at the head of the tooth. 

 
             

              Cross of demec points 

 

 

V (kN) 

 

                                     Displacement (mm) 

Figure 2.19: Position of a crack for data 
shown in Table 2.3  

Figure 2.20: Development of the crack 
displacement in the gravel concrete beams 
for beam listed in Table 2.2 
 

 

Source: Hamadi, Y.D and  Regan, P.E, June 1980 [2-25] 

 

For the second component, the tooth acts as a cantilever and the loading can be 

approximated to a uniform shear F/bc, where F is the bond force and c the tooth width or 

crack spacing. The longitudinal deflection of the extreme fibres at the loaded end of 

such a cantilever is given by elastic theory as: 








 +−=
6

)25.11(3

2

2 νl

EI

Fc
u    2-19 

where l is the span (height of tooth from steel level to top of crack), v is Poisson's ratio and 

EI is the rigidity of the tooth. 
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The extreme fibre longitudinal strain at the encastre end is 

EI

Flc

2
=ε    2-20  

 
Substituting between these two expressions to remove F, we get 
 








 +−=
6

)25.11(3 2 νε l
u     2-21  

 

The corresponding crack width can be evaluated as follows. For a point-loaded shear span, 

the strain in the main steel at a distance x from a support is 

zEA

Vx

ss
sx =ε         2-22                                                                            

 
If the stiffening effect of the concrete between cracks is ignored, the total elongation of the 

steel in the shear span is thus 

zE
dx

s

a

xx
s

2

0 A

Va

2

1 ⋅=∫ ε        2-23 

It has been observed that the distribution of crack widths along a shear span, in which 

diagonal cracking can occur, does not follow the external moment diagram, and it seems 

reasonable to work simply in terms of an average crack width: 

zE
a

s
cr

sA

Vac

2

1 ⋅=        2-24 

 
Taking moments about point A in Figure 2.21 with ∆Т=Vc/z gives 

6
)(

2bc
cVVl

z

Vc t
dg

σ
++=     2-25 

The measurements of vertical displacements at the level of the main steel indicated values 

of about 0.08 mm at failure in all cases. In view of equation 
2'

08.008.0
2 







−






= SS

V

V

d

d      

2-17, the dowel force at inclined cracking can thus be taken as V’d according to equation  

33
2' 12.4 cund fbV ⋅⋅⋅= φ

   2-16  

 

Similarly, with the criterion of failure taken as one of a limiting vertical tension, σt  can be 

equated to the tensile strength of the concrete. 
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Figure 2.21: The concrete cantilever equilibrium 
conditions. (a) The concrete cantilever, which is 
fixed in the compression zone, and the forces 
associated with it (b) Distributions of internal 
bending stresses created at section I-I of (a) 

Figure 2.22: Distribution of shear 
transfers tress due to aggregate 
interlock. 

Source: Hamadi Y.D and  Regan P.E, June 1980 [2-25] 

 
To evaluate the interlock component Vg,  from comparison of shear stress distribution at 

the crack section of the tested beams can be idealized to that of Figure 2.22, the value at 

the top being a consequence of  Figure 2.16. 
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where s is the vertical displacement across the crack at the level of the steel. Since one 

crack surface moves up and the other moves down, the displacement is twice the end 

movement of the cantilever tooth (s =2u), whilst from the tests λ is approximately constant 

at 0.4, making 
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Substituting for u from equation  






 +−=
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u     2-21 and for from equation 
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and considering ultimate conditions, we get: 
 

(a) (b) 
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Equation 
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                                                                                                                             2-29 
 
where Vu is in kN if Ee and Es are in kN/mm2, fcu is in N/mm2 and all dimensions are in 

mm. Some of the terms in this equation can be given conventional approximate values:  

8

7d
z ≈  

8

5d
l ≈  

6' 10120 −×≈tε  

 
And   2.0≈ν  
 
Study of a considerable number of crack patterns suggests that for major cracks c may be 

taken as d/2. 

Finally, Ec can be estimated as cuc fE ⋅= 5.4 for dense concrete [2-27] and for Leca 

aggregate this writer proposes cuc fE ⋅= 15.2 for concretes in the range of                          

fcu = 20 - 25 N/mm2.  
 

Substituting , the above equation can be re-expressed as: 

[ ]2112
1 qqq

bd

Vu ++=       2-30 

Where  [ ]dcEq τ+×= −5
1 1075.1  

                   
bd

A

bd

A

a

d
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100100
104.67 7

2 ×××= −
 

        and  

bd

Vd
d

'

=τ      ( '
dV from 

33
2' 12.4 cund fbV ⋅⋅⋅= φ

   2-16) 

All units in N and mm 

Hamadi and Regan’s [2-25] compare their proposed equations, [ ]2112
1 qqq

bd

Vu ++=       

2-30, with their own test results, Figure 2.24,  and others, Figure 2.25, reported in the 
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literature [2-28,2-29, 2-30, 2-31, 2-32, 2-33, 2-34, 2-35 and 2-36]. The beams included had 

the following in common: 

(1) the ratio a/d was not less than 3.0; 

(2) the cube strength of the concrete was not less than 20 N/mm2; 

(3) the diameter of the main steel was not less than 10mm; 

(4) the main steel was in a single layer; 

(5) with the exception of the present tests, all the concretes had natural dense aggregates. 

 

Although, on the whole, good correspondence is apparent, Figure 2.24 shows somewhat 

better agreement with the equation than Figure 2.25. The reason is probably that the beams 

in the former had only two main bars, as in virtually all dowel tests, whereas those in the 

second Figure had more bars. 

 

Their more detailed analysis of the test results provided further information on the 

behaviour of concrete members in shear. Their analysis presented appeared to be a 

relatively successful attempt to make direct numerical use of the increasing knowledge of 

interlock and dowel actions. However, Baumann-Hamadi’s [2-25] equation is proportional 

to the power of 3
2   diameter of the longitudinal dowel  bar  and contribution from  

increasing the number  of dowel bars is not included in their design rule.  

 
From this writer’s  experimental work,  Baumann-Motamed’s equation will be introduced 

in chapter 3, section 3.9 which is directly proportional to the diameter of the longitudinal 

dowel  bar, similar to Baumann’s  original equation, but in addition, a proportionality to 

the power of 4
1 for the number of bars is introduced. This writer’s revised equation will 

provide 12% improvement in accuracy of prediction compared to Hamadi and Regan’s [2-

25]. 

 

Two conclusions directly from the results of the their experimental work were; Firstly the 

shear strength of a lightweight-aggregate member made with Leca aggregate without shear 

reinforcement can be as low as about 50% of the strength of an equivalent member in 

dense concrete with the same cube strength. They concluded that the relative reduction in 

strength depends upon the type of aggregate, and CP110 [2-37]  approach, using a general 

20% reduction for all lightweight aggregates, is undesirable. Secondly the tests of pre-

cracked shear spans show that vertical displacements and thus interlock forces are 
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developed even at vertical cracks and the actions are not reliant upon the cracks being 

curved as has been assumed in some previous work. 

  

 

(a) Typical cracked shear span of a beam subjected to bending and shear 

 

(b) Equilibrium conditions of a portion of the above shear span, between sections 1 
and 2 

Figure 2.23: Shear span with flexural cracks. 
 

 

  

Figure 2.24: Comparison between test 
results and proposed equation. Beams 
with two bars of main steel in one layer. 

Figure 2.25: Comparison between test 
results and proposed equation. Beams 
with other than two bars in one layer of 
main steel. 

Source: Hamadi, Y.D and  Regan, P.E, June 1980 [2-25] 
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2.2.7.6 Houde and  Mirza’s  investigation of inclined cracks  
 
In 1974, Houde and Mirza [2-38]  proposed a theoretical solution of the shear strength of 

reinforced concrete beams which involved numerical procedures using  a finite element 

approach by applying successive approximation  taking into account the non-linear 

behaviour of the concrete and its progressive cracking.  

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.26comparison on the relation of crack shear  stiffness initial crack width in 
different  studies 
                         Adopted and converted units from Buyukozturk [2-39] 

 

They presented a finite element idealisation of a beam which was divided into a finite 

number of discrete elements rigidly connected at the nodes except at the steel-concrete 

interface and along an assumed main inclined crack path in the shear span where spring 

assemblies were introduced to correspond to aggregate interlock, dowel action and bond of 

the main steel. Stiffnesses for these were calculated experimentally, and by using their 

proposed equation for the aggregate interlock. The response of concrete was assumed to be 

linear in tension and nonlinear in compression. 

 

The finite element technique provided a wide range of information in its output. Although 

50 
 
 
40 
 
 
25 
 
 
20 
 
 
10 
 
 
0 

Houde 

Fenwick 
 Loeber 

Jimenez et al 

Stiffness 
KN-1

 

  0.10            0.25               0.38                 0.5                 0.64              0.76 
                                     Initial crack width (mm) 



___________________________________________________________________________
Motamed, J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’ 

 

59

Houde and Mirza's [2-38] model was an idealisation, their inclusion of the different 

resisting mechanisms must have promoted their output. The most important weakness in 

this model is that the aggregate interlock was introduced along a pre-defined path 

corresponding to the diagonal crack frequently observed in failures. It is, therefore, hard to 

imagine that appreciable interlock forces would be possible along such flat cracks as the 

shear displacement along them must be  small in comparison with the normal 

displacements. These cracks only occur at failure, therefore, no information was provided 

on crack formations from other load increments.   

 

Buyukozturk [2-39] showed the comparison on the relation of crack shear  stiffness initial 

crack width in different  studies by Houde and Mirza [2-38], Fenwick, Loeber and Jimenez 

et al.  

 

2.2.7.7 Chana’s study  on the role and importance of dowel action 
 
Chana [2-40] experimented on the role and importance of dowel action. In his investigation 

of the mechanism of shear failure of reinforced concrete beams, crack widths at critical 

locations in the shear span were monitored. Chana’s [2-40] tests demonstrate that at peak 

load, the diagonal crack width varies from zero at the tip of the crack to 0.25mm at the 

level of the main steel, while the dowel crack is 0.08 mm. The displacements at which the 

dowel splits as measured by other researchers were: 0.17mm by Taylor, 0.06mm by 

Fenwick, 0.02mm by Houde and Mirza and 0.08mm by Baumann and Rusch. In Chana’s 

research , the dowel forces which are represented by gauge recording on links are 

responsible for 47%  of the total shear force. 

 

In his investigation of the mechanism of shear failure of reinforced concrete beams, crack 

widths at critical locations in the shear span were monitored. This was done continuously 

by means of a high speed tape recorder in conjunction with electrical demountable strain 

transducers and related to the load history approaching failure. 

 

It was shown that beam failure is preceded by splitting at the level of the steel; this is 

identified to be the primary cause of shear failure for slender beams. The cracks formed as 

a result of the above tests are shown at three successive stages, Figure 2.27 (a), (b) and (c). 

The internal force system after the formation of diagonal cracks is shown in Figure 2.27(d). 
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The shear force is shown to be resisted by the compression zone, aggregate interlock and to 

some extent by dowel action of the main steel. As the shear force is increased, the diagonal 

crack opens up, giving rise to tensions in the surrounding concrete and an increase in the 

dowel force. This, in turn, produces splitting cracks in the concrete along the line of the  

reinforcement with an associated loss of bond. 

 

 
Figure 2.27: Crack formation and forces at crack section 

Source: Reproduced from sketch by Chana, Dec 1987 [2-40] 
 

The second stage of redistribution of stresses starts at the onset of dowel cracking. 

Due to loss of dowel stiffness, the rotation of the two beam segments is hindered (to a 

lesser extent) by the dowel action of the tension steel. Once dowel cracking has started, the 

rate of opening of the dowel crack increases steadily.  

 

Average diagonal and dowel crack width at peak load were derived from the trace records  

for the beam on which the portal gauges were accurately positioned as shown in  

Figure 2.27(c). Peak load is attained when either or both of mechanisms of aggregate 

interlock or dowel action reach their limiting value. 

 

Tests demonstrate that at peak load the diagonal crack width varies from zero at the tip of 

the crack to 0.25mm at the level of the main steel, while the dowel crack is 0.08mm. 

Chana’s analysis of the forces at the cracked section, Figure 2.27d, does not take the 

presence of moment in the compression zone into account. This moment resists opening of 

the two beam segments and results in less dowel crack opening  compared to a complete 
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precast concrete set-up of experimental beams such as Baumann’s. However, the dowel 

crack which  measured 0.08mm is the same  as Baumann’s figure.  

2.2.7.8 Desai’s research on  horizontal web bars   
 

Desai's [2-41] research explores the possibility of using horizontal bars in the web to 

increase shear resistance. He proposes that longitudinal bars placed towards the centre of a 

beam or a slab perform two functions: 

1. As reinforcement improving the resistance of the surrounding concrete to the 

progress of a shear crack into the compression block. 

2. As a dowel, resisting rotation about the tip of the crack. 

Desai points out the benefit of using horizontal web steel to offset some proportion of links 

in order to ease congestion  and improve detailing of reinforcement. He suggests that fire 

resistance of a beam or slab is improved when central bars with larger cover are used 

instead of links which are placed close to the surface of the concrete. 

Tests were carried out on 200 x 300 mm simply supported beams loaded at midspan. 

Specimens with span 1 of 1400 mm, Table 2.4 and Table 2.5,were tested at the BCA 

Laboratory and those with span of 2100 mm were carried out by Vollum R. L at  the 

Imperial College,Table 2.6.  

Desai adopts the BS8110 [2-42] expressions for a design rule, section for the contribution 

of the central steel. 

Error! Reference source not found.V Rk=VRk.c +  ρw fy bd                2-31 

This gives Desai’s expression  Vd= VRk+ Vb  

where Vb is the contribution of a central bar to Vd.  

 

The details of specimen types were chosen to represent various percentages of tension 

reinforcement: 1.2% (2T20), 1.8% (3T20) and 2.8% (3T25). 1400 mm and 2100 mm spans 

were chosen to have variation in the shear span ratio of 2.6 for 1400 mm span and 4.0 for 

2100 mm span. For all specimen types, the top steel was 2T12. 

 
Based on a test programme of the beams with 6mm links at 200 mm centres, a design rule 

is proposed suggesting that there appears to be a limit to the maximum contribution of a 

central bar. Up to this limit the contribution of a central bar to ultimate shear resistance is 

taken to be directly proportional to the contribution of the concrete to shear resistance,  

Figure 2.28.  

Vb= 0.4 VRk,c.ρb       2-32 
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where  ρb  is the percentage (100Ab/bd) of central web steel and Vrk,c is the shear resistance 

of a similar beam without horizontal web steel. 

The contribution of links to the ultimate shear resistance of the section is given by the 

BS8110 rule, excluding the partial factor γm. 

V l= Aswd fyv/ s     2-33 
 

where Asw is the cross-sectional area of a link, s is the spacing of links and  fyv is the yield 

stress for the link. 

 
Figure 2.28: Test specimen, with 3T20 tension bars and 2T12 compression 
reinforcement  

Source: Redrawn from Desai,  S.,  June 1995 [2-41] 
 

 
Vd= VRk,c (1+0.4 ρb) + Vl          2-34 
 

The geometry and cross-section of the beams are shown in Figure 2.28. Test specimen, 

have 3T20 tension bars and 2T12 compression reinforcement with the central load applied 

over a 75 mm wide plate and support plates 75mm wide, over roller bearing. The beam in 

Table 2.4, had stirrups. The contribution of links to ultimate shear resistance Vl is 34.5 kN 

for all the beams. 

 

Desai’s expression for shear resistance appears to be empirical . From the tests on NSC it 

seems likely that the main effect produced by HWB is an additional dowel action of about 

30%. It is difficult to follow the reason why the ratio of main reinforcement affects the 

contribution of the horizontal web bars (HWB), and  also why there is an upper limit to 

dowel action. 
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Beam Centre 
Steel 

ρb fcu  
 N/mm2 

V fu 
 kN 

Vcu 
 kN 

V lu 
kN 

Vbu  
kN 

 Vdu 
kN 

V fu                 
Vdu 

C1  0 32 119 61 34.5  95.5 1.25 
C1a  0 32 128 61 34.5  95.5 1.34 
D1 2T10 0.29 32 132 61 34.5 7 102.5 1.29 
D1a 2T10 0.29 32 141 61 34.5 7 102.5 1.38 
D2 1Y16 0.38 28 146 58 34.5 9 101.5 1.44 
D2a 1Y16 0.38 28 154 58 34.5 9 101.5 1.52 
D3 1Y20 0.59 26 130 57 34.5 14 105.5 1.23 
D3a 1Y20 0.59 26 130 57 34.5 14 105.5 1.27 
D4 1Y23 0.93 26 134 57 34.5 21 112.5 1.19 
D4a 1Y25 0.93 26 133 57 34.5 21 112.5 1.18 

 
Table 2.4: 1400mm span beams with the bottom steel of 3T20 and top steel of 2T12, 
and  6mm links at 200 mm centres  

Source: Table from  Desai, S. June 1995 [2-41] 
 
 

Specimen Tension 
steel 

Centre 
  steel 

ρb fcu 

N/mm
2 

VFU 

kN 

VCU 

kN 
VFU /VCU 

 
AI 2T20 _ 0 28 55 51 1.08 
Ala 2T20 _   63  1.24 
A2 2T20 2Y8 0.19 36 67 55.4 1.21 
B1 3T20 _ 0 27 58 57.6 1.01 
Bla 3T20 _   60  1.04 
B2 3T20 2T10 0.29 27 65 57.6 1.13 
B2a 3T20    68  1.18 
B3 3T20 1T16 0.38 28 81 58.3 1.39 
B3a 3T20    88  1.51 
B4 3T20 1T20 0.59 33 101 61.6 1.64 
B4a 3T20    110  1.78 
B5 3T20 1T25 0.93 33 90 61.6 1.46 
B5a 3T20    96  1.56 
El 3T25 _ 0 28 72 67.3 1 .07 
Ela 3T25 _   75  1.11 
E2 3T25 2T10 0.30 34 80 71.9 1.11 
E2a 3125    92  1.28 
E3 3T25 2T12 0.43 34 90 71.9 1.25 
E3a 3T25    84  1.17 
E4 3T25 1T16 0.38 35 75 72.6 1.03 
E4a 3125    88  1.21 

 
 

Table 2.5: 1400mm span beams without stirrups. NB: The test on specimen A2a was 
abandoned due to faulty application of the test loads 

 
Source: Table from  Desai, S. June 1995 [2-41] 

.  
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Specimen Tension 

steel 

Centre 

steel 

ρb fcu 

N/mm
2
 

VFU 

kN 

VCU 

kN 
VFU /VCU 

 

F1 3T20 _ 0 43 69 67.3 1.03 
F1a     75  1.11 
F2 3T20 1T12 0.21 44 80 67.8 1.18 
F2a     82  1.21 
F3 3T20 1T16 0.38 46 76 68.8 1.10 
F3a     82  1.19 
F4 3T20 1T20 0.59 44 86 67.8 1.27 
F4a     79  1.17 
F5 3T20 1T25 0.93 43 82 67.3 1.22 
F5a     80  1.19 

 

Table 2.6: Vollum’s  tests at Imperial College for 2100mm span beams without 
stirrups 

 
Source: Table from  Desai, S. June 1995 [2-41] 

 

2.2.8 Shear resistance from aggregate interlock 

 
The term' aggregate interlock' is used to refer to the action by which shear forces are 

transmitted across the rough surfaces of cracks in concrete. Aggregate interlock is also 

called “interface shear transfer”,  "crack friction", or “surface shear”.  The possible 

importance of such an action in beams subjected to shear was understood earlier by 

Bjuggren   [2-43]. Research by Fenwick [ 2-11] , Taylor [2-50], Hamadi [2-26], this writer 

[2-47], Albajar [2-44] and others has demonstrated that the effects of this action is 

considerable and has done much to clarify the patterns of deformation and internal stresses 

in cracked members.  

2.2.8.1 Walraven's model  
 

Walraven's [2-52] research on force transfer shows the influence of the maximum size of 

the aggregate, especially where cracks are relatively wide. 

 

Walraven  made numerous tests and developed a model that considered the probability that 

aggregate particles, idealised as spheres, would project from the crack interface. As slips 

develop, the matrix phase deforms plastically, coming into contact with projecting 

aggregates. The stresses in the contact zones are comprised of a constant pressure, σp and a 

constant shear, µ σp .The geometry of the crack surface is described statistically in terms of 

the aggregate content of the mix and the probabilities of particles projecting out at different 

degrees. 



___________________________________________________________________________
Motamed, J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’ 

 

65

 

Figure 2.29: Walraven's model of crack friction 

Source: Walraven [2-52] 1979 

 

As the size or diameter of the coarse aggregate increases, the roughness of the crack  

surfaces increases, allowing higher shear stresses to be transferred across cracks. 

 
Walraven [2-52] concluded that shear transfer in the interface was due primarily to  

'aggregate interlock', and hence caused by those aggregates that protruded from the crack 

surface and provided resistance against slip. However, as cracks go through the aggregate 

in lightweight and high-strength concrete yet still have the ability to transfer shear, he 

considered the term 'friction' to be more appropriate andconcluded that the four basic 

parameters involved are the crack interface shear stress, normal stress, crack width, and 

crack slip.  

2.2.8.2 Hamadi and Regan’s research on  lightweight and dense concrete 
 
Hamadi and Regan[2-25] investigated the influences of different types of aggregate  by 

applying push-off tests to gravel concrete, expanded slate concrete, and expanded clay 

concrete. The effect of the reduction in aggregate interlock due to aggregate fracture was 

studied.  

 

Three types of test were made. Push-off specimens and divided beams were used to find  

load deformation characteristics for aggregate interlock and dowel actions. The aggregates  

used were natural gravel and sand, expanded slate (Solite) and expanded clay (Leca). Leca 

coarse and fine aggregates were used  and no natural sand was included in the lightweight 

mixes. Only one mix was used for each aggregate and the mixes were designed to give 

reasonably similar cube strengths. 

 

The push-off tests were made on blocks which were pre-cracked along their shear planes.  
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The cracking was produced by line loads applied through round bars resting in V-grooves 

in opposite faces of the specimens. Total separation at this stage was prevented 

by external bolts. 

 

After cracking, the specimen was installed in the shear-test rig (Figure 2.30) and the bolts 

were removed, leaving the shear plane almost free from normal stresses. The area of the 

shear plane was 350 x 120mm and there was no reinforcement across it. Nominal 

reinforcement was provided in the remainder of the specimen. 

 

With both lightweight aggregates, tensile failures occurred in the particles, eliminating  

much of the surface irregularity although random over-all undulations remained. At a 

smaller scale, there was a difference between the slate and clay aggregates, the fracture 

surfaces through the former being rough but through the latter almost plane. Similar 

characteristics were observed in the failure cracks of the beams described below.  

 

Figure 2.31 shows the principal data from these tests as a graph of secant interlock stiffness 

Eg (= shear stress/shear displacement = τg / S ) versus crack width. The figure includes the 

results of eleven tests – six with gravel and five with expanded  clay (Leca) aggregate. 

The stiffnesses obtained with the slate aggregate were only marginally lower than those for 

the gravel. 

 

The results of these tests can be interpreted approximately in terms of the very simple 

expression   

cra

k
E =     2-35 

 
where acr is the crack width at the stage in question and k is a dimensional constant having 

the following values: 

k = 1.2 N/mm2 for gravel concrete; 

k = 1.1 N/mm2 for expanded slate concrete; 

k = 0.4 N/mm2 for expanded clay concrete. 
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1: End supports (steel channels) 8: Timber supports 
2: Hollow ram jack 9: Rods tightened to the vertical channels by nuts. 
3: Plate  The lower rod passes through the timber support (8) 
4: Load-cell (25 kN capacity) 10: Horizontal plain bar fixed to the channel to hold  
5: Rollers the assembly (2, 3 and 4) 
6: Demec crosses 11: Laboratory floor 
 
Figure 2.30: Push-off specimen (700 x 300 x 150 mm) to be tested 

Source: Hamadi and Regan [2-25] 1980 

 

The data here are all for concretes with cube strengths of 25-30 N/mm2, but it is unlikely 

that variations of cube strength would have much effect upon interlock at low normal 

stresses, where the phenomenon is essentially a function of crack geometry and frictional 

effects. Even at higher stresses, tests by Fenwick [2-11] showed that, with a crack width of 

0.2 mm, for a large range of shear stresses the displacements were increased by only about 

20% as the cube strength varied from 56 to 33 N/mm2. 

The results in Figure 2.31 are of limited scope and are scattered within themselves.  

The form of equation  

cra

k
E =     2-35 

however, is consistent with more numerous data from tests [2-26] of specimens with 

reinforcement or external compression across the shear plane.  

 

2.2.8.3 Aggregate interlock in high strength concrete 
 

In spite of all its economical advantages, the main weakness of HSC is its brittle behaviour 

and reduced  shear resistance due to aggregate interlock. 
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Figure 2.31 :Relationship between aggregate interlock stiffness Eg and crack width acr  
Source: Hamadi and Regan [2-25] 1980 

Both cement paste and natural aggregates are brittle materials. The NSC concrete made up 

of  more ductile cement matrix  materials has an obvious improved  ductility  behaviour 

compared to HSC as a result of the difference in rigidity that normally exists between the 

two types of NSC and HSC  cement pastes with the aggregate. This difference will result 

in stress concentrations in the contact zones. Consequently, at a certain overall stress level, 

a distributed micro crack pattern will begin to form.  

 

As the overall stress increases, an increasing part of the applied energy will be consumed 

as the crack pattern develops and at higher stress, the stress-strain curve tends to deviate 

from the linear-elastic course. As the ultimate stress level is reached, the newly developed  

micro crack pattern  causes an abrupt failure. In HSC the failure is more abrupt, Figure 

2.32. HSC has reduced  ductility. The embrittlement of the HSC increases with strength. In 

HSC, when the maximum stress is reached a sharp reduction in stresses is measured.  

 

Aggregate interlock is the result of the roughness of cracks in concrete. This roughness 

occurs  when the aggregate in the concrete is stronger than the cement matrix as is the case 

with  NSC. However, when the cement matrix  is strong as in HSC, aggregate interlock 
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becomes relatively a less significant factor [2-45, 46&47] . In NSC where cracks travel 

around the unbroken aggregates that are clamped in the cement matrix, the  aggregates 

produce a very rough surface that can transfer shear stresses and displacement along the 

shear interface develops this 'friction'. In NSC fracture travels along the grain surface but  in 

HSC the fracture passes through the grain, Figure 2.33. 

 

 

 

               NSC                       HSC                         

Figure 2.32: Principal stress-strain 
curves for cement paste, aggregates 
and concrete in compression 

Figure 2.33: Aggregate interlock resulting 
from the roughness of cracks in concrete  

Source: Mathias, B. - 2008 [2-48] 

 

Crack friction depends on the aggregate strength and size as well as the difference of 

strength between the aggregate and the cement matrix. When cracks travel through the 

aggregate which normally occurs in HSC or in lightweight NSC, the roughness of the 

concrete is reduced which reduces the crack friction capacity.  

2.2.8.4 Regan et al’s  research on high strength concrete 
 
Regan et al [2-45] analysed  test results from a number of experiments on HSC beams  

made  with limestone aggregate. It was found that  the shear strengths of members without 

shear reinforcement are often below characteristic resistances calculated according to EC 2 

[2-49] and other up-to-date guidelines. A considerable percentage  of the experimental 

strengths were found to  be below design resistance, which was greatest where HSC beams 

had relatively large effective depths. 

 

The same trend seems to occur to a lesser degree in other aggregates. Members with shear 

reinforcement are also likely to be affected but not as much as that of those without.  

In reinforced concrete members without shear reinforcement, shear resistance  is mainly  

affected by the transfer of shear forces across cracks, in which a large part of the applied  

HSC 

NSC 

Stress MPa 

Strain 

Concrete 

Aggregate 

Cement paste 
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shear is carried across flexural cracks. The force transfer across early 45°cracks develops a 

resistance greater than those anticipated for 45° truss models for elements with shear steel. 

 

The magnitude of the shear transferred across a crack depends on the roughness of the 

crack surfaces and the widths of the cracks. In typical element design equations, the second 

influence is treated by depth or size factors.  

 

Regan et al [2-45]  reviewed differences in the behaviour of dense concrete made with 

different aggregates and discussed research completed by Taylor [2-50] , KaWar [2-51], 

Walraven [2-52]  , Al-Hussaini and this writer [2-46 & 2-47] on aggregate interlock and 

referred to this writer’s tests, Table 3.5, in which the shear transfer strength of specimens 

made with limestone aggregate failed to increase with increasing concrete strength and 

produced the graph shown in Figure 2.34.  

 

  

Limestone aggregate Gravel aggregate 

Figure 2.34: Relation between Vu/VRk and concrete strength( fc ) and beam depth (d)                 

 

Source: Regan et al [2-45], 2005 

 

Figure 2.34 provides a three dimensional graph of the influences of concrete strength and  

beam depth on Vu/VRk,c calculated with no restrictions on fcu  to EC2 [2-49]. Regan et al [2-

45] outline that “The graphs  are somewhat subjective lower-bounds, where the inclined 

lines are sections through the solids of  Figure 2.34. Although empirically reasonable in the 

ranges of concrete strengths and member depths normally considered, however, the linear 

reductions of Vu/VRk,c are not physically possible as for very large members or very high 

concrete strengths because the  strengths tends to become zero”. 
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2.2.8.5 Albajar’s research on aggregate interlock 
 

Albajar’s [2-44] research included  a total of seven push-off tests, Figure 2.30. The 

specimens were cast in two groups; one group made with limestone aggregate concrete  

and another group made with normal gravel aggregate. The limestone aggregate fractured 

completely at the crack unlike the gravel, where the crack went round the aggregate.  

 
Push-off tests were carried out by using gravel and limestone aggregates which  showed 

that considerable shear stresses could be transmitted through the crack in the limestone 

specimens. This was surprising since the limestone aggregate had fractured completely at 

the crack in these specimens. In addition, the friction parameter μ estimated from linear 

regression of the experimental data according to the shear friction formula (τ = C+μσ), 

was very similar between the gravel and limestone push-off tests (μ ~ 1.0).  

 

Albajar [2-44]  concluded that his estimated value of the friction coefficient was 

considerably larger than those usually obtained experimentally for light-weight aggregate,  

(μ = 0.3), by Hamadi & Regan [2-25] or those recommended in EC2   [2-49] for very 

smooth surfaces (μ = 0.5). 

 

It is worth noting that  Hamadi & Regan [2-25] tested two types of  lightweight concrete 

which were   expanded clay aggregate ( LECA) and expanded slate (Solite). Their[2-25] 

research demonstrated the inherent shear weakness of LECA, with a dimension constant of 

k=Egacr, k=0.4 N/mm2, only had 50% of the shear resistance of normal strength concrete of  

similar crushing strength made with gravel aggregate whereas Solite had k=1.1 N/mm2 

which is close tothat of  gravel .  LECA is no longer used in reinforced concrete as the 

result of their research [2-25]  and is presently  used for thermal  insulation, light blocks, 

etc.  

 

After detailed investigation of several models, Albajar [2-44] chose Hamadi & Regan’s  

[2-25] model due to its simple formulation and the linear aggregate interlock relationship 

presented, for his analysis of shear cracks for the beam tests in the final chapters of his  

thesis.  
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The predictions of the shear stresses in the push-off tests using these two models seemed 

sensible for crack slips of up to around 1mm. This was acceptable for the analysis of 

cracks in beam tests, since the crack slips measured in this case were usually lower than 

0.5mm.  

 
2.2.9 Other factors influencing shear behaviour 

 
Factors such as overall depth and axial forces have some influence on the shear behaviour. 

A brief description of their influences is discussed in this section.  

2.2.9.1 Size of the beam 
 

An increase in the overall depth of a beam without stirrups results in a decrease in the  

shear at failure for the given concrete strength, tension reinforcement ratio and span to 

depth ratio. The width of an inclined crack depends on the product of the strain in the 

reinforcement crossing the crack and the spacing of the crack. With increasing beam depth, 

the crack spacing and the crack widths tend to increase. This leads to a reduction in the 

maximum shear stress that can be transferred across the crack by aggregate interlock.  

 

Kani raised the size effect subject in 1967, when he demonstrated that as the depth of 

the beam increases the shear stress at failure decreases. As the depth of the beam 

increases, the crack widths at points above the main reinforcement tend to increase. 

Some authors think that this leads to a reduction in the aggregate interlock across the 

crack, resulting in earlier inclined cracking. In 1999 Collins and Kuchma [ demonstrated 

that the size effect disappears when beams without stirrups contain well-distributed 

longitudinal reinforcement. This was partly due to research at the University of  

Westminster in 1996.  

2.2.9.2 Axial forces  
 
Axial compressive forces tend to increase the inclined cracking load. As the axial 

compressive force is increased , the start of formation of flexural cracking is delayed and 

cracks do not penetrate as far into the beam. Axial tensile forces tend to decrease  the 

inclined cracking because they increase the stresses and strains in the tension 

reinforcement. This causes an increase in the inclined crack width which results in a 

decrease in maximum shear stress that can be transmitted across the crack. This reduces 

shear failure load. The opposite is true for axial compressive forces. 
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2.3 Design Codes for beams without shear reinforcement 

 
For BS8110 [2-42] and EC 2 [2-49], the  following equations are the  two basic 

expressions for the characteristic shear resistances of slender rectangular members without 

shear reinforcement:  

 

The resistance of a rectangular reinforced concrete beam with shear reinforcement can be 

assessed by the BS8110 [3-Error! Bookmark not defined. ] equation,  with eliminating 

safety factors. 

 

Vdu  = 0.27(100 ρi.fcu)
1/3 (400/d)1/4 bd + ρw fy bd     2-36 

 
 
EC 2 [2-49]       
VRk,c = 0.18(100ρi.fc)

1/3 (1+√200/d)b.d      2-37  
 

both in N and mm units. 

Present UK recommendations, BS 8110 [2-42] restricts concrete strength  to 40N/mm2 on 

the value of fcu to be used in equation (2-21). The Concrete Society’s recommendations of 

1998 [2-53] had a  restriction on concrete strength  of 100N/mm2, but this has been 

reduced to 60N/mm2, by an amendment made in 2004 [2- 45], partly motivated by  this 

research work detailed in Table 3.5.  

 

The above two equations  differ slightly from one another, as the characteristic level the 

EC 2  resistances are a little above those from equation (2-21),  EC 2 applies a partial 

safety of 1.5 to obtain design resistances, whereas the BS 8110 factor is only 1.25. At 

design level, EC 2 shear resistances given by equation (2-32) are about 10% below those 

from  BS8110, equation (2-21), although the difference is, in result is reduced by the UK’s 

slightly higher load factors. 

 

The shear expression  in BS 5400 [2-54] is practically the same as that of BS 8110 [2-42] . 

The coefficient 0.18 in equation (2-32) is the recommended value, but it may be modified 

in National Annexes. In EC 2, there is a limit of fc ≤ 90N/mm2 [2- 45], however, the UK 

National Annex has given a limit of fc ≤ 50N/mm2.  
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However,  when related experimental work demonstrate  that a higher value fc can be 

safely used for the HSC, then use of higher strength concrete is permitted. This research 

experimentally demonstrates, Table 3-13, that shear resistance of HSC beams of a/d=3,   

 fc ≤ 90 N/mm2
, with HWB  can be safely  predicted when this writer’s proposed design 

rule to include dowel action for HWB is applied, section 3.9.  

 

In the ACI building code [2-55]  the expression which is typically used to estimate the 

nominal shear strength of  non-prestressed RC members without stirrups when considering 

shear failure for the practical range of reinforcement 0.0075 to 0.025 is: 

 

Vc= bwd(√f’ c/ 6)    2-38 
 

although this equation over-estimates the shear with a small percentage of tension steel. 

When the tension steel ratio is small, flexural cracks extend higher into beam and open 

wider, and an increase in crack width causes a decrease in the maximum component of 

dowel action from the tension reinforcement and the aggregate interlock. 

 

In using the expression in equation (2-3) to estimate the shear strength of members made 

from high-strength concrete, the term √f’ c is limited to a value of  8.30 MPa . 

 

2.4 Review  of Codes for shear reinforcement in beams 

 
The shear failure of a beam without stirrups is sudden and brittle, therefore codes 

recommend a minimum amount of stirrup reinforcement. The shear failure loads predicted 

by codes are widely different from one another.  

 

The treatments of members with shear reinforcement are different in BS 8110 and  

EC 2[2-45].  In BS 8110 the shear resistance is taken as the sum of VRk.c and the yield 

forces of (vertical) stirrups within a length equal to d: 

V Rk=VRk.c +  ρw fy bd                2-31 
 

VRk.c , the  calculated characteristic shear resistance of a member without shear 

reinforcement, can only be explained as a force transferred across cracks at approximately 

45°. ρw is the ratio of vertical stirrups, fy is  yield stress of reinforcement. 
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Both of these approaches rely upon the transfer of shear forces across well-formed cracks, 

and it is thus probable that the characteristics of the aggregate have an influence on 

behaviour and ultimate strength. The influence is probably less than that in members 

without shear reinforcement as the effective depth is a less relevant factor when shear 

reinforcement provides a control over crack widths. 

 
2.4.1 BS8110 approach for  shear  link design  

 
Although the truss analogy still forms the basis of the BS8110 [2-42] treatment of shear of 

reinforced concrete sections, it is now modified to the extent that the shear strength of the 

concrete is assumed to make some contribution to the overall strength of the section. 

  
Figure 2.35:Members of a pin jointed  truss with concrete (---) compression and steel     
( __ ) tension.  
 

The stirrups and the main reinforcement represent the tensile members of a truss, and the 

concrete acts as the compression members. Even assuming that the concrete has cracked in 

diagonal tension, the aggregate interlock  factors provide some shear resistance, vc in the 

concrete. At shear collapse, therefore, the external shear force on the section is resisted by 

forces in the shear reinforcement and the shear resistance of the cracked concrete so that, 

considering the vertical equilibrium of the section to the left of the diagonal tension crack 

X-X, Figure 2.35, 

 
vbd= [ (Asv fyv / γm ) . (d/sv ). cot α ] + vcbd     2-39 
           (1)                    (2)                    (3) 

where 

vbd = external shear 

expression (1) = force in one stirrup 

expression (2) =number of stirrups 

expression (3) = shear resistance of cracked concrete 

Note that the number of stirrups cut by the section line depends on the spacing of the 

S 
 

α 
◦ 

d 

X 

X 
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stirrups, the depth of the beam and the angle of the tension crack which, for design 

purposes, may be taken as being 45° (Figure 1-2).  

Rearranging   

vbd= [ (Asv fyv / γm ) . (d/sv ). cot α ] + vcbd      

and putting the partial safety factor for the shear reinforcement γm =1.15. 

gives 

Asv / sv = b(v-vc ) / 0.87 fyv         2-40 
 

Permitting the required area of vertical stirrups to be found. If bent-up bars are used then 

the procedure is as above except that, as vertical components of the forces in the bars are 

required, the angle of inclination of the bars is included in the basic equation.  

 

The angle of inclination should not be less than 45° and, as experimental evidence suggests  

that an inclined bar system is not efficient in resisting shear unless additional 

reinforcement in the form of stirrups is provided, it is now recommended that a maximum 

of 50 per cent of the shear reinforcement be in the form of bent-up bars, the remainder 

being vertical stirrups. 

 

0.5 vc and  (vc + 0.4)  N/mm2.  As with the designed shear reinforcement, the stirrup 

spacing is limited to a maximum of 0.75 d. 

    

Asv / sv = 0.4b / 0.87 fyv        2-41 
 

For a design shear stress greater than (vc + 0.4)  N/mm2, shear reinforcement should be  

provided to  

Asv / sv = b(v-vc )/ 0.87 fyv Asv / sv = b(v-vc ) / 0.87 fyv         2-40 

 

2.4.2 Shear design of links in Eurocode 2  

  
Eurocode 2 [2-49] recommends that  for members requiring shear reinforcement, their 

design is based on a truss model. For members with vertical shear reinforcement, the shear 

resistance VRd,s, should be taken to be the lesser of the following: 

 

VRd,s = ( Asw / s ) Z.  fywd cotӨ        2-42 
or 

VRd,max = α. bw . Z.v. fcd / (cot Ө + tanӨ)      2-43                            
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The recommended limiting values for cot Ө are given by the expression 

1≤ cot Ө ≤2.5 

where 

 Z = is the inner lever arm , its approximate value may be taken as 0.9d 

Asw is the cross-sectional area of the shear reinforcement, 

s is the spacing of the stirrups, 

fywd is the yield strength of  the shear reinforcement, 

v may be taken to be 0.6 for 60 MPa, and 0.9 for high-strength 

concrete beams, 

α = 1, for non-prestressed structures. 

 

2.4.3 Shear design of web reinforcement  in ACI code 318  

 
Section 11.4.1.2  of ACI code 318 [2-55] allows shear reinforcement for non-prestressed 

beams and a variety of shapes such as stirrups or ties, welded fabric, stirrups inclined at 45º 

and combination of spirals, circular  ties and hoops are acceptable. Section 11.4.6.1 of ACI 

code 318 requires a minimum amount of stirrup reinforcement to be provided if the applied 

shear force, Vu
, exceeds half of the factored inclined cracking shear, ǿ (0.5Vc) where 

ǿ=0.75 (ACI Code Section 9.3.2.3) is the strength-reduction factor .  

There are exceptions for certain types of beams where load redistributions can occur in the  

transverse direction or in  relation to size –effect  or beams with steel fibre –reinforced 

concrete. 

The minimum stirrup reinforcement requirement  (ACI Code Section 11.4.6.3) from ACI 

equation 11-13 is: 

Av,min = '

16

1
c

yt

w fs
f

b ×××     2-44                                

But not less than  

Av,min =
yt

w

f

sb

3

1
      2-45 

In seismic regions, web reinforcement is required in most beams, because Vc is taken equal 

to zero if earthquake-induced shear exceeds half the total shear. 

 

2.5 Conclusion 

 
A review of background to shear analysis and factors influencing shear resistance was 

discussed. Actions influencing the total shear strength was discussed and a detailed study 
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on past research on dowel action was performed. It was shown that Baumann’s and 

Hamadi-Regan’s proposals were a more rational approach for predicting the dowel forces 

compared to other researchers.  

 

Past research on aggregate interlock with various type of aggregate for light weight, 

normal weight concrete was investigated. This was further extended to discuss the 

performance of aggregate type in HSC.  

 

Guidance from international codes of practice for shear design and shear reinforcement in 

beams was investigated. 

 

From this study the main conclusion is as follows: 

 

• Shear performance of HSC beams made with limestone aggregate need further 

investigation due to reduced aggregate interlock action. In the next chapter the 

experimental testsbeams are experimentally tested to examine the aggregate 

interlock in the HSC beams of a/d=3 is described. 

 

• The dowel resistance of NSC and HSC beams with  HWB of a/d=3 will be 

experimentally tested in the next chapter  to developed an improved formulae to 

predict  dowel resistance.   Baumann’s and Hamadi-Regan  proposal for prediction 

of dowel action will be modified to a new empirical formulae for the prediction of 

dowel resistance of HWB  in the next chapter. 

 

• The proposed Baumann modified formulae will be added to BS8110 and other  

international code shear design formulae  to predict total  shear resistance including 

the contribution of HWB. The proposed design predictions will be compared with 

the beams tested by this writer as well numerous beams tested by other researchers. 
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3 Chapter 3 
        Experimental work 

3.1 Introduction 

The experimental tests by this writer on twelve beams are discussed, Table 3.4,  

strain gauge recordings on the reinforcement of the specimen are interpreted and the  

influence of HWB and its contribution to both NSC and HSC beams are explored.  

 

A  theoretical  mechanism of  internal shear forces by considering the  proportion of shear 

resistance taken by different actions in HSC with HWB based on reduced contribution of  

aggregate interlock and improved contribution of dowel action due to HWB is developed 

and internal shear forces are diagrammatically shown, Figure 3.39. 

This writer’s proposed design equation is applied to experimental tests completed by others 

and its accuracy of prediction of the shear resistance is compared with the design rules  

proposed by other researchers.  

 
Design rules proposed for predicting dowel action by other researchers are investigated and 

a new and improved design rule is proposed to take into account the number of dowel bars 

resisting shear forces. 

 

This writer’s proposed  design rule for the  prediction of the quantity of HWB that 

compensates for the inherent weakness in HSC is discussed in section 3.6, and its 

application within the existing  design rules for  current  codes of practice including 

BS8110 [3-9] , EC2 [3-10], CEB FIP90 [3-1] and ACI318 [3-2] for members with and  

without shear links is investigated.  

 

General theories for the analysis of beams subjected to bending and shear are reviewed and 

extended to develop a design rule for prediction of shear based on experimental  results 

with values calculated using semi-empirical formulae. 

 

3.2 This writer’s experimental tests on twelve beams 

 

Twelve HSC and NSC beams with links and varying amounts of horizontal web steel at the 

centre of the cross-section of the members were tested to shear failure. They were simply 

supported beams loaded with point loads and therefore subjected to bending and shear.  
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Figure 3.1: Reinforcement details and position of strain gauges for HSC and NSC test 
specimens.  
 

The parameters varied in the test series were: 

• Type of concrete (normal strength and high strength). 

• Compression steel. 

• Horizontal web steel. 

• Distribution and strength of vertical reinforcement ( beam NSCL was different). 

• Shear span (beam BJ2 was different). 
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The experiments were performed in order to study the effect of horizontal web 

reinforcement on the shear capacity of rectangular normal and high strength concrete 

beams with stirrups. In the next section tests of  four  identical NSC beams without stirrups 

with HWB, completed in the Construction Hall of the University of Westminster [3- 23] 

during the same period as this writer’s experiment, are discussed. 

 

The beams were intended to have practical dimensions, thus avoiding excessive size 

effects. Eight of the beams of HSC and NSC of a/d=3.02 with links and HWB were tested 

to failure in order to investigate  the dowel action contribution of the HWB to shear 

resistance of the beams.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 : Reinforcement details  for the HSC test specimen BJ-2 with point load in 
the mid-span, Shear span to depth ratio=4.15  
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3.2.1 Design of beams for shear failure 

 
From the proposed design equation  
 
Vdu  = 0.27(100 ρi.fcu)1/3 (400/d)1/4 bd + ρw fy bd + 1.64.bn.db.4√n. fcu1/3     3.13 

let us predict shear failure load  for the typical  beam shown with geometry and  

reinforcement  detailing in Figure 3.1 with stirrups and 20mm HWB, and. assume  

concrete strength of fcu= 40 MPa for NSC and fcu= 100 MPa for HSC  steel of       fy= 460 

MPa for tension as well as  compression and fy= 250 MPa for stirrups. 

 

Let us predict  shear resistance for beam of NSC with HWB of 25mm with stirrups as 

Vdu=   82.76 kN for NSC and and Vdu=  105.64 kN for HSC or totals loading of 165.5 for 

NSC and 211.3kN for HSC 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: Reinforcement details  for the NSC test specimen NSCL with link in the 
flexural span near supports. Shear span to depth ratio =3.02 
 

To ensure shear failure,  design the beam to have flexural resistance for 200kN loading for 

NSC. 
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From the condition of equilibrium for BS8110, clause 3.4.4.4, consider the  simplified 

stress block for concrete with rectangular section, Figure 3.4. 

Force from flexural steel 
 
T=0.87fyAs     3.1 
 
Concrete force is 
 
C=(0.67/1.5)fcub(0.9x)=0.402fcubx   3.2 
 
Equating forces to  find  x, and from z= d- 0.45x an expression for z in terms of As is 
obtained [3-3]: 
 
z =d(1-0.97fyAs/fcubd)       3.3 
 
Taking moments for the tensile force about the centre of compression 
 
M=0.87fyAsz.   3.4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4: Strain and stress distribution at failure for singly reinforced NSC beams  
 
From the above two equations  
 
z/d= [0.5 +√(0.25 -K/0.9)]  3.5 
 
where 
 
K=M / (bd2fcu)    3.6       
 
K=1.9 for beam in Figure 3.4 
 
Having calculated z we can now find the reinforcement required from equation 

M=0.87fyAsz.   3.4   
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Above equation can be rearranged as 

  
As=M/0.87fyz 
 
The upper limit for K  for singly reinforced sections is derived as follows: 
 
Taking moments for the compressive force about the centre of tension, we obtain 
 
M= (0.67/1.5)fcub(0.9x)z  3.7 
 
The area of reinforcement to balance the concrete force zbdfKC cu /2'=  

'2' 87.0/87.0 sycusy AfzbdfKAf +=   3.8       

Taking moment about the centre of tension reinforcement : 
 

)'(87.0/ '2' ddAfbdfKM sycu −=   3.9 

 
In NSC,  the total area of  tension steel required is 898mm2 or just under 3T20,  with 2T20  

compression steel. If  compression steel is not used the area of tension steel required would 

increase to 973 mm2, which would mean more than 3T20 tension which cannot be used 

because of the restriction to the width of the beam due to the cover size and spacing  

required. 

BS8110 limits concrete strength to 40 MPa, however,  for HSC beams, a similar approach 

is adopted by following EC2 [3-10] guidance. 

 
 
Figure 3.5: Strain and stress distribution at failure for doubly reinforced NSC beams  
 
 
3.2.2 Geometry of the beams 

 
The size and  length of the test specimens were chosen to make the beams fail in shear  and 

to ensure that the specimens were sufficiently large to simulate real structural elements.  
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All twelve  beams  were rectangular  in section with a breadth of  b=150mm, overall  

depth of 300mm, effective depth d=270mm,  and a length of 3000mm. The span was  

2200mm for all the beams, eleven of which had a shear span to depth ratio (a/d)=3.02, 

Figure 3.1 and Figure 3.3,  and BJ-2 was the only one with a/d=4.15, Figure 3.2. All the 

beams other than BJ-2 had two vertical point loads applied at 300mm from the mid-span. 

One vertical point load was applied to the centre of BJ-2. All the support and load plates 

were 20mm thick, extended throughout the breadth of the beam and were 100mm wide. 

The shear span of BJ-2 was 1100 mm whereas the rest of the beams had a shear span of 

800mm. 

 

3.2.3 Concrete 
 

Concrete density varies due to the type and content of aggregates.  The  NSC weighed      

2280 kg  and HSC  weighed 2477 kg per cubic metre. Furthermore, by reducing w/c ratio 

for HSC and introducing silica fume into the concrete as an addition or replacement to 

cement, permeability is reduced [3-4& 3-5] due to blocking of the capillaries by ultra-fine 

silica particles, therefore, leading to fewer voids in the dense concrete.  

 

Beam 

Splitting strength 

fsp (N/mm2) 

Cube strength 

fcu(N/mm2) 

Cylinder strength 

fc(N/mm2) 

NSCL 3.38 44.2 35.36 
NSC1 2.98 43.2 34.56 
NSC2 3.01 41.0 32.80 
NSC3 3.22 47.7 38.16 
NSC4 2.97 43.3 34.64 

 
Table 3.1: Results of control tests for the author's  NSC. See Figure 3.3,  
Table 3.4, for details of the beams.  
 

Beam            

Splitting strength 

fsp(N/mm2) 

Cube strength 

fcu(N/mm2) 

Cylinder strength 

fcu(N/mm2) 

BJ-2 6.26 118.1 94.48 
HSC1 4.34 112.5 90.00 
HSC2 5.20 109.3 87.44 
HSC3 4.21 109.0 87.20 
HSC4 4.34 112.5 90.00 

 
Table 3.2: Results of control tests for the author's HSC. The properties of beams 
HSC1-2 & HSC1-3 were assumed to be the same as HSC1. 
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The splitting tensile tests for the indirect tensile strength of this writer's concrete specimens  

were carried out in accordance with BS1881, Part 117/836. Two cylinders, 150××××300mm, 

were tested and the results given are the average for each beam specimen shown in  

Table 3.1 and 3-3. It is notable that a two fold increase in tensile strength has been  

achieved in HSC as compared with NSC. The results of indirect tensile strength as a 

function of cube strength from this writer's experimental relation for dense HSC and NSC 

as calculated  from Table 3.1 for indirect tensile strength fct is:  

fct =  0.47 √ fcu 

 

Description of constituent of concrete Normal Strength 

(kg) 

High Strength 

(kg) 

Cement 360 550 
Sand 660 560 
Gravel Aggregate  (0-10mm) 360 - 
Gravel Aggregate  (10-20mm) 720 - 
Limestone  (5-10mm) - 1140 
Water 180 160 
Superplasticiser - 12.1 
Silica fume - 55 

  
Table 3.3:The mix proportions by weight developed from volumetric equation  per 
cubic metre of concrete used for testing author's beams 
 

3.2.4 Reinforcement 

 
All the beams have 3T20 tension steel and the ratio was  ρ=2.33%.  Beams BJ-2, NSCL,  

NSC1, HSC1, HSC1-2 and HSC1-3 had no HWB, horizontal web bars, whereas the rest of 

the beams had two HWB at 100mm from the centre of the tension steel. The HSC beams 

other than BJ-2 have no compression steel, only 2R6 in shear span to hold the cage. The 

NSC beams and BJ-2 have 2T20. 

 

Shear links were R6 at 200mm centres in the shear spans for ten beams, except for NSCL  

which had 4R8 at 300mm.  Both NSC and HSC series beams were tested without and with 

horizontal web steel of 2T12, 2T20 and 2T25.  
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Figure 3.6: Stress v strain for 6mm mild steel which was tested in  the laboratory.  

Tests were carried out on three specimens representing the steel in the links, Figure 3.6, 

and the average value fyv was 250 N/mm2 according to BS4449 [3-7]. The reinforcement 

used for the top, bottom and horizontal web steel was high yield,  hot rolled deformed bars 

with a  guaranteed  yield value fyl of 460 N/mm2 according to BS4449 [3-7]. The beam 

notation, reinforcement  detailing,  concrete strengths fcu  and fsp and failure loads are given 

in Table 3-8.  

 

3.2.5 Test procedures 

 

All the beams were supported by a rocker bearing at one end and a roller bearing at the 

other end on two concrete blocks resting on the concrete slab floor. 

 

The loading was applied by a 1000 kN capacity hydraulic jack and except for BJ-2 was 

distributed to two load points by an RHS spreader supported on one roller and one rocker 

bearing. The jack was supported on a steel frame and controlled by an Amsler loading 

cabinet. 

 

3.2.6 Instrumentation 

 
At each load increment, the vertical deflection were recorded by the mechanical gauge 

positioned at  mid-span, Figure 3.7. An optical micrometer was used to measure the width 

of the shear cracks. The development of cracks were observed and recorded. Figure 3.8 to 

Figure 3.15. All the angles of the  cracks are the measured angle of the tangent to the 

inclined crack to longitudinal line along the axis of the centroid at half the depth of the 

beam. 
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Electrical strain gauges were placed in pairs on the links, the tension reinforcements and 

the horizontal web bars of 8 beams to measure the strain in the reinforcement, Figure 3.1. 

 

All horizontal web steel bars were strain gauged near the centre of  the shear span. Out of  

three tension steel bars in each beam, the central bar and one side bar were strain gauged.  

 

In HSC, at 180 kN, 2 - T25 HWB develop gradual strain until 220 kN and then strain 

rapidly at 220 kN  and  continue to 2400 EU, Figure 3.28. This is due to the stabilising 

arching effect of HWB, as the 2 - T25 have strain gauges at the centre of the diagonal strut. 

 

 
 

 

Figure 3.7: With beam NSC2, the opening and closing of cracks was investigated with 
crack monitoring binoculars.   
 
 
 

 
 
Figure 3.8: Normal Strength Beam (NSC1) with the angle of crack at about 35°°°°  
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Figure 3.9:Normal Strength Beam (NSC2) with the angle of crack at about 28°°°° 

 

 
 
Figure 3.10: Normal Strength Beam (NSC3) with the angle of crack at about 27°°°° 
 
 
 

 
1  

Figure 3.11:Normal Strength Beam (NSC4) with the angle of crack at about 27°°°° 
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Figure 3.12: High Strength Beam (HSC1) with angle of crack of about 50°°°° 
 

2  

 
 
Figure 3.13:High Strength Beam (HSC2) with the angle of crack at about 43°°°° 
 
 
 

 
 
Figure 3.14: High Strength Beam (HSC3) with the angle of crack at about 45°°°° 
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Figure 3.15: High Strength Beam (HSC4) with the angle of crack at about 42°°°° 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Table 3.4: Data for beams tested by this writer. All beams are of shear span to depth 
ratio of a/d=3.02 other than BJ-2 which has a/d= 4.15 
 

Beam 
No 

Top 
Steel 

Link Space 
(mm) 

Horizontal 
web bar 
(HWB) 

Cube 
Strength 

(fcu) 
N/mm2 

Splitting 
strength      

( fsp) 

N/mm2 

Ultimate 
load 
(2Vu)  
kN 

NSC1 2T20 2R6 200 0 43.2 2.98 160 
        

NSC2 2T20 2R6 200 2T12 41.0 3.01 203 
        

NSC3 2T20 2R6 200 2T20 47.7 3.22 200 
        

NSC4 2T20 2R6 200 2T25 43.3 2.97 210 
        

HSC1 2R6 2R6 200 0 109.0 4.21 140 
        

HSC1-2 2R6 2R6 200 0 101.2 - 143.3 
        

HSC1-3 2R6 2R6 200 0 106.6 - 160.0 
        

HSC2 2R6 2R6 200 2T12 109.3 5.20 265 
        

HSC3 2R6 2R6 200 2T20 112.5 4.34 280 
        

HSC4 2R6 2R6 200 2T25 112.5 4.34 300 
        

NSCL 2T20 2R8 300 0 44.2 3.06 250 
        

BJ-2 2T20 2R6 200 0 118.1 4.3 142 
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A summary of the test specimen details and results is given in Table 3-8. In the following 

 sections the discussion are presented in four following sub-sections: shear failure loads, 

crack propagation,  load-deflection behaviour, and load-strain behaviour. 

 

3.2.7 Shear failure of the beams 

 

The first HSC1 failure load of 130 kN (fcu = 109 N/mm2) appeared low, the second 

HSC1-2 failure load of 140 kN (fcu = 101.2 N/mm2) was also low and the third HSC1-3 

failure load of 160 kN (fcu=106.6 N/mm2) was  just under that of  NSC1. The average 

ultimate load carried by these three similar HSC1 beams was 143.3 kN(fcu=105.6 N/mm2) 

as compared to the  ultimate load of beam NSC1 which was 160 kN (fcu=43.2 N/mm2). 

The links were similar in all and none contained any horizontal web steel. NSC1 had 

1.55% of compression reinforcement which was not present in HSC1. 

The inclination of the critical shear crack was much steeper in HSC1 at about 50°,  

Figure 3.12, as compared with approximately 35° in NSC1, Figure 3.8. The surprising 

reduction of shear resistance with increasing concrete strength found for beams NSC1 and 

HSC1 was reversed when horizontal web steel was provided. With two 25mm HWB in 

both, the ultimate loads for HSC4 (fcu=112.5 N/mm2) and NSC4 (fcu=43.3 N/mm2) were 

300 KN and 210 kN respectively. 

The major increase of shear strength for the HSC beams occurred between HSC1 (no 

HWB) and HSC2 (2T12) with ultimate loads of 130 kN and 265 kN. The rises with 

increasing horizontal web steel were much more modest  - HSC3 (2T20) carried 280 kN 

and HSC4 (2T25) took 300kN.  

 
With ordinary concrete the influence of horizontal bars was modest: NSC1 (no web bars)-

160kN, NSC2 (2T12)-203kN, NSC3 (2T20)- 200kN and NSC4 (2T25)-210kN. The results 

for the four HSC beams with horizontal web steel demonstrated that no limit to 

improvement in shear resistance as the result of increasing the area of horizontal  web 

reinforcement was reached. When the diameter of the web bars was increased from 20 to 

25mm a further 7% improvement was recorded. The inherent weakness in shear behaviour 

of HSC was first noticed in  1986 [3-8]. The relationship of frictional resistance to concrete 

strength was rather uncertain until   around 1995 when it was demonstrated that the ratio of 

the ultimate shear to characteristic resistance for HSC beam , calculated by the BS 

equation without a limit on fcu  and ignoring the requirement on ρwfy, was as low as 0.69 
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when compared with an identical  NSC beam, or 31% lower, Table 3.4. This reduction in 

frictional resistance in HSC was later demonstrated to be as low as 35%, Table 3.5, and it 

was attributed to the material properties of aggregate. 

 

It has been demonstrated that overall reserve shear strength diminishes after diagonal 

tension cracking in HSC.  To compensate for  this reduced ductility and aggregate 

interlock and to improve shear strength after diagonal tension cracking  in the shear span,  

this thesis proposes HWB in beams and CVB in BCJ to  improve shear performance. It is 

demonstrated experimentally that HWB improve shear performance by 130%, Table 3.4,  

and in Chapter 7, by using a FE parametric model, it is demonstrated  that the  

contribution of CVB to HSC- TBCJ is 35%.  

 
3.2.8 Comparison of accuracy of BS8110  design rules for NSC and HSC beams 

In the existing formulae relating shear capacity to concrete properties, only concrete 

compression strength is considered since these are empirically derived from test data of 

NSC. The power to which fc is incorporated in expressions for Vc varies from 1/3 in 

BS81109 to 2/3 in Eurocode EC2 [3-10]. 

 
A group of tests detailed in Table 3.5, gives an indication of a potential problem with high 

strength limestone aggregate concrete. In considering these results, it should be observed 

that the amount of shear reinforcement used in the HSC beams was below the minima of 

both EC 2 and the Concrete Society recommendations, which are ρw fy ≥ 0.08 and     ρw fy 

≥  0.039 fcu
2/3 . Nonetheless, it is quite striking that the ratio of the ultimate shear to the 

characteristic resistance, calculated by the BS equation without a limit on fcu and ignoring 

the requirement on ρw fy, was as low as 0.69 with beam HSC1.  

 

The ultimate strengths of three of the four HSC beams were below both that of a reference 

beam  with gravel aggregate and a modest value fcu and the resistances were calculated 

ignoring the shear steel.  

 

Values of Vrkc and Vrk have been calculated ignoring limits on fcu and ρwfyw, since,  

 

fcu=100 N/mm2  to EC2 minimum ρwfyw =0.74 N/mm2 and to Concrete Society  minimum  

ρwfyw =0.84 N/mm2. All beams failed in shear. The aggregate was 20mm gravel in NSC-1  

and 10mm limestone in all other beams. B=150mm, d=265mm, h=300mm,  ρ1= 2.37%. 
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Comparing the mean shear failure load Vu of 71.7 kN  for  HSC1, HSC1-2 and HSC1-3 

with NSC1  which had a shear failure load Vu of 80 kN, it is concluded that on average 

HSC beams have 11.6% less shear  resistance compared to equivalent NSC beams.   

 

Beam  
No. 

ρi    % 

 

a/d 

 

fc 

(N/mm2) 

Vu 

(kN) 

Vrkc 

(kN) 

Vu/VRk,    

equ 2.9 

Vu/VRk,c 

equ 2.10 

NSC1 1.58 3.02 34.6 80 51.6 1.08 1.44 
HSC1-1 0.14 3.02 94 65 71.9 0.69 0.86 
HSC1-2 0.14 3.02 86.2 70 69.9 0.76 0.95 
HSC1-3 0.14 3.02 91.6 80 71.3 0.85 1.06 
BJ-2 1.58 4.15 103.1 71 74.2 0.74 0.90 

 

Table 3.5:Published tests by this writer with reference to BS8110 equations. Details of 
the beams are described in Table 3.4. 
 
The ratio of empirical values of ultimate shear resistance is compared to the predicted 

value  from BS8110 for beams without HWB. All beams have stirrups,   ρwfyw = 0.47 

N/mm2 or Vs=18.72 kN.  
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Figure 3.16: Comparison of accuracy of BS8110 design rule to experimental values 
 

                                      
3.2.9 Crack propagation 

 

At loads of 40 kN, small flexural cracks appeared in HSC beams at the bottom surface in  

the region of constant bending moment, whereas in NSC beams similar small flexural 

cracks appeared at 60kN. This could be due to the presence of compression steel in NSC 

which resulted in a reduction of deflection at mid span at early loading stage. 
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As the load was increased, new flexural cracks appeared in the shear spans spreading from 

the load application sections towards the supports. These cracks tended to become 

somewhat inclined. This was followed by the sudden occurrence of a wide shear crack in 

one of the shear spans, which lead to failure.  

 

A crack angle was defined as the angle between a tangent to the crack at the centre of the  

depth of the beam and its x-axis. The angle of the failure crack for the  beam HSC1,  

Figure 3.12, was around 50° compared to the 35° for the beam NSC1, Figure 3.8.  

Beams HSC2, HSC3, , and HSC4, had respective angles of cracks of about 43°, 45° and 

42°, and NSC2,  NSC3 and NSC4 with angles 28°, 27° and 27° respectively. HSC1, and 

NSC1, had dowel cracks at the level of the bottom steel. These cracks were formed at 

120kN (92% Vu) and 140kN(64% Vu).  NSC3 may possibly have had dowel cracks in 

mid-web formed at 170kN (85% Vu) and HSC4 did have a dowel crack at 230kN (77% 

Vu). HSC3 and NSC4 developed web dowel cracks at 270kN (96% Vu) and 200kN (95% 

Vu). Figure 3.8 to Figure 3.15.            

 

HWB resist initiation and  widening of crack width at mid depth in the shear span for HSC 

beams, due to the tensile strength of the concrete which is double of NSC.   

 

3.2.10 Deflection 

 
Mid-span deflections were measured by a single gauge mounted on the laboratory floor 

and include any settlements of the supports. The deflection of beam HSC1 was similar to 

that of NSC1, Figure 3.17. Both beams were without any horizontal web reinforcement. 

Initially, the deflection  of HSC1 is slightly higher than NSC1. The 1.55% of compression 

reinforcement, present in NSC1, reduced its deflection but the higher strength and elastic 

modulus of the concrete in HSC1 with no compression steel counter-weighed the 

compression steel in NSC1 .  

 

The deflection of beam NSC1 was greater than for NSC4 (2T25) at equal loads and 

NSC1’s deflection near failure was the greater,  Figure 3.18. The deflections of NSC2, 

NSC3 and NSC4 did not change by more than 15% as the area of horizontal web steel was 

increased in NSC beams. 
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The presence of 2T20 compression steel bars in NSC1 at initial stages of loading 

contributes to  reduced deflection of  NSC1 compared to HSC1. However, as load 

increases, the higher modulus of elasticity of HSC1 results in NSC1 deflecting more than 

HSC1. This is a beneficial  property for HSC when used in columns of tall buildings where 

less deflection due to lateral loading means less sway and inter-storey drift, Figure 3.17.  

  

Deflection of the beams reduces as the diameter of HWB in the beam increases,  

Figure 3.18. 

4  

 

 

In Chapter 6 the ability  of CVB to reduce side drift (deflection) of BCJ is considered 

beneficial, because the CVB would reduce lateral displacement or sway of the building,  

resulting in less side drift, therefore a reduced load on the  foundations and less damage to 

the cladding and the building from excessive  lateral loading. 

 

3.2.11 Load-strain behaviour 

 

A comparison can be made between strains in links  beams HSC4 and NSC4,  

Figure 3.19. Both beams had 2T25 horizontal web reinforcement. In beam NSC4, links 1, 

2 and 3 yielded at 200 kN, whereas in HSC4 link 3 yielded at 200 kN and links 1 and 2 

remain elastic. This shows that the  strain difference between HSC and NSC is relatively 

small at link 3, close to the support,  compared to the greater difference in yielding for link 
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Figure 3.17: Load-deflection at midspan 
for NSC1 (squares) and HSC1 (crosses) 
beams.  

Figure 3.18: Load-deflection at midspan 
for NSC, the presence of HWB reduces 
deflection  
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2 and significant difference for link 3. This indicates that HWB restrain width of the 

diagonal shear cracksBeam HSC4 continued to sustain load for an increment of 100 kN 

after links 2&3 yielded and an increment of 70 kN after link 1 yielded. The horizontal web 

reinforcement (2T25) of HSC4 yielded at 270 kN, Figure 3.20.  A possible explanation is 

that the horizontal web reinforcement in beam HSC4 was stabilising arching which 

resulted in yielding of the links and increased the forces in the main steel near supports. 

This tie effect of the tension steel continued until the tension reinforcement reached 90% of 

its yield strain at 300 kN when the beam failed, Figure 3.21.                                                                                                          

 

The difference between HSC and NSC beams is partly in terms of the loads at which  

stirrups yielded.  As Figure 3.19 shows, this difference for beam HSC4 compared to NSC4 

could amount to a maximum load difference of 70 kN.   

 

In beam HSC1, as Figure 3-28 shows, link 2 yielded at about 100kN and link 3 reached 

80% of its yield at 110kN. Shear failure occurred with a crack positioned between links 2 

and 3. When failure occurred,  link 1 had not yet reached 40% of its yield and the strain at 

mid-span of the tension steel had reached only 40% of its yield. 

 

The average strain in the centre of  tension bars for the beam HSC2 reaches  nearly 80% of 

its yield value, demonstrating that  this tension has developed as the result of STM action 

in the beam with the HWB stabilising arching  effect  added to the resistance of  the 

diagonal compression strut, Figure 3.26.  

 
Yield strain in tension bars for the beam HSC4, Figure 3.29, is higher than HSC2,  

Figure 3.26, demonstrating that  the larger diameter of HSC4 has produced a larger 

stabilizing arch effect. This tension has further developed as a result of STM action in the 

beam when the central dowel bar has improved the compressive strength of the diagonal 

strut, therefore giving higher shear resistance,  Figure 3.21. 

 

When no horizontal web reinforcement is present, tension reinforcement yield is about 

40% for both NSC and HSC beams, Figure 3.27 & Figure 3.25. 

 

The  dowel action on the T25 HWB in HSC4 is  visible in Figure 3.28 when the load 

exceeds 220 kN. The lower surface part takes the tension up to 350(UE) then as the top 

surface experiences sudden tension with an increase of 1000 (UE), the  bottom surface 
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simultaneously experiences a sudden bend  from tension of 350(UE) to compression of 650 

(UE). The beam is about to fail at 280 kN when this compressive force is released. 

 

Figure 3.20 shows that strain in links 1,2& 3 reaches  yield point at about 230kN loading 

but  the dowel action in the web bar creating stabilising arching action resists the shear 

forces for a further  70 kN loading until  loading reaches 300 kN, at which point the HWB 

(2T25) also   yield. Stirrups are mild steel. 

 

Figure 3.19 shows that at 200 kN loading all the  links for beam NSC4 yield and it fails at  

210 kN, whereas for beam HSC4 link 1 is only strained at less than 200 UE and link 2 is 

close to yield and will continue carrying loads up to 300 kN, as shown in Figure 3.20. 
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Figure 3.19: Comparison of strain in  
links for HSC 4 

Figure 3.20:In beam HSC4, strain in 
links 1,2& 3. 

 

Figure 3.21 shows the stabilising arching action causes tension bars to almost  yield. The 

HWB 3-T25 contributing to stabilising arching action also almost yield. 

  

In HSC4 beam, 2T25 web bars act as tie within compression strut, and provide a successful  

shear resisting model with links resisting vertical shear forces in tension while HWB acts 

as stabilising arch acting as tension tie to make the beam behave in a similar way to a  

short beam exposed to arch-like diagonal compression strut  and tension reinforcement 

nearly yielding in tension as the tie. 

5  
HSC1 at small load of 130 kN without presence of HWB its link 3 yields  suddenly after  

120 kN loading, Figure 3.22. Split in concrete  is sudden along the tension steel , diagonal 

tension cracks  travel at a steep angle directly to the top and failure occurs. At 130 kN links 

Yield 

       Yield 
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1 & 2 are strained to 700 UE and 400 UE and  link 3 yields and suddenly fails whereas for 

NSC1 , Figure 3.24, at 170 kN links 1 & 2 are strained only to 100 UE . 
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Figure 3.21: HSC4, strain in the centre 
of tension bars (3-T20)  
 

Figure 3.22: Strain in links 1, 2 and 3 for 
beam HSC1. 
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Figure 3.23: Strain in links 1, 2 and 3 for 
beam NSC1. 
 

Figure 3.24: Strain in links for beam 
HSC1 compared to HSC4 
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Figure 3.25: Strain at the centre of  tension bars for the beam HSC1. 
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Figure 3.23 shows strain in links 1, 2 and 3 for NSC1. Presence of aggregate interlock 

improves shear resistance in NSC1 as compared to HSC made with lime stone aggregate 

which has less aggregate interlock. Between  loading of 130 kN to 150 kN while strain in 

all the links remain within elastic range, aggregate interlock in NSC improves shear, 

whereas, in HSC1, Figure 3.24, the absence of aggregate interlock results in sudden failure 

of the beam at lower load compared to HSC1. 

 

Figure 3.24 shows the strain in links for beams HSC1 as compared to HSC4  which has 

2T25 HWB. HSC4 shear resistance is more than double that of HSC1 and all  its links fully 

yield. The sudden split along the tension bar at 130 kN (HSC1) results from   absence of 

aggregate interlock in concrete. In HSC4, 2T25 web bars contribute to stabilising arch  

action, therefore, transfer the shear resisting forces to  the 3T20 tension bars at the bottom 

making them almost yield. 

 

Strain is at the centre of  tension bars for the beam HSC1, Figure 3.25. As the result of the 

absence of HWB,  tensile strain does not reach  one third of steel yield value, therefore no 

stabilising arch effect takes place, and a STM is not developed. STM can be applicable  to  

HSC beams of shear span to depth ratio of 3 which have HWB as shear reinforcement,  

such as HSC2, HSC3 & HSC4.  

 

Average strain against  load  for HSC2 is at the centre of  tension bars for the beam, Figure 

3.26. The strain in the tension bar is nearly 80% of its yield value, demonstrating that  this 

tension has developed as the result of stabilising arch action in the beam due to 2 T20 

central web bars. The strain in the tension bars in HSC2 is double that of HSC1,  solely due 

to presence of 2 horizontal web bars.  

 

Average strain at the centre of  tension bars against load (kN) for  NSC1 is shown in Figure 

3.27.  In HSC4 with 2 T25-HWB, Figure 3.29, and HSC2 with 2 T12-HWB, Figure 3.26, 

the HWB result in tension bars reaching strain of  2400 UE which is double that of  NSC1 

of 1400 UE. NSC1 has 2 T20 compression bars, HSC4 and HSC2 have none.    

 

In HSC4, there is strain on the T25 HWB  when load exceeds 220 kN, Figure 3.28 the 

lower surface part  (blue triangles) takes tension up to 250(UE), the top surface (squares ) 

experiences tension up to 350(UE) with a sudden increase to 2000 (UE), and 

simultaneously the bottom surface experiences a sudden bend  from tension of 250(UE) to 
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compression of 850 (UE). The 2T25 behave like arches during loading from 200kN to 300 

kN with tensile strain on top of it and compressive strain at bottom. 

 

Beam HSC4, average strain in  bottom tension steel 3T20 bars reach  85%  of their yield as 

the beam fails in shear, Figure 3.29 .  
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Figure 3.26: Average Strain V Load (kN) 
for HSC2 at the centre of  tension bars 

Figure 3.27: NSC1, Average Strain at 
the centre of  tension bars V Load (kN) 
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Figure 3.28: In HSC4 beam, sudden 
change in strain on the T25 HWB   
when load exceeds 220 kN, 

Figure 3.29: Beam HSC4, average 
strain in  bottom tension steel 3T20 

 

3.2.12 Arching action in  HSC beams of a/d=3.02 with HWB   

 

Verification that HSC beams of a/d=3.02 with HWB  develop stabilising arching to form 

STM  is shown in this section, follwing which an analogy to HSC- BCJ with CVB  with 

aspect ratio=3 can be developed. 

       Yield 
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       Yield 
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It is demonstrated that HSC beams of a/d≤3 have sufficient plasticity for the tension bar to 

yield thereby developing  STM . 
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Figure 3.30: Micro-strain in tension        
bar (T20) and strain Wt on top of web   
bar (T25) for beam NSC4. 

Figure 3.31: Micro-strain in tension bar 
(T20) and strain Wt on top of web bar 
(T20) for beam NSC3 

 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250

Load (kN)

S
tr

ai
n Tension bar

Web bar

 
-500

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350

Load (kN)

S
tr

ai
n Tension bar

Web bar

 

Figure 3.32: Micro- strain in tension      
bar (T20) and strain Wt on top of  
web    bar (T12) for beam NSC2. 

Figure 3.33: Beam HSC4  with web  
bar T25 and tension reinforcement  
T20 yielding. 
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Figure 3.34: HSC3 with web bar T20  
and tension reinforcement T20 yielding. 

Figure 3.35: HSC2 with web bar T12  
and tension reinforcement T20 yielding. 

 

Past research [3-11& 3-23] has shown, however, that the HWB has little, if any, effect on 

the shear strength of NSC beams. This is due to the comparatively low crushing strength of 

NSC  which crushes before reaching sufficient plasticity  to bring the tension bar to yield. 
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This writer’s experimental work is in agreement with  past research [3-11& 23]  

demonstrating for NSC of a/d=3.05 with HWB,  Figure 3.30 to Figure 3.32, that the 

arching action does not develop enough to bring  HWB or tension bar  to yield.  

 

The reinforcement used had a yield strength of 460 MPa,  yielding beyond 2,300 micro-

strains. However, the experiment shows that  HSC beams of a/d=3.05 with HWB provide 

sufficient plasticity to bring  the tension bar to yield, Figure 3.33 to Figure 3.35. For details 

of the beams see Table 3.4. 

 

In  the NSC beams a/d=3.02,  due to comparatively  low crushing strength of concrete the 

tension steel or tie  does not reach its yield. The concrete strut crushes before tension 

reinforcement  yielded, Figure 3.30 to Figure 3.32. Therefore,  for NSC beams with a/d=3 

with HWB, STM is applicable for a/d≤2.5 and not for 2.5<a/d≤3. 

 

In beam NSC4, crack initiate as inclined tension cracks and at 160 kN  inclined web cracks 

rapidly develop up to 200 kN. Strain on the bottom face of web bar Wb increases 

corresponding to readings on top face Wt until 160 kN loading, after this load Wb remains  

constant, Figure 3.30. 

 
In beam NSC3, inclined web cracks develop at 170 kN. Strain on the bottom face of web 

bar Wb increase  corresponding to readings on top face Wt until 160 kN loading, after this 

load Wb remains  constant, Figure 3.31. 

 

In beam NSC2, strain on the bottom face of web bar Wb increase corresponding to readings 

on top face Wt until 130 kN loading, after this load Wb remains  constant, Figure 3.32. 
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Figure 3.36: Position of strain gauges on tension reinforcement (TENSION) and  on 
HWB  
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In beam HSC4, Strain Wt on top of web bar, shown as web bar, begins to yield at  225 kN 

when Strain on the bottom face of web bar Wb does not increase more than 300µ (not 

shown). The dowel action improves the arching and restricts opening of the inclined web 

crack. Inclined cracks develop between 200and 210 kN, with large increase of strain on top 

Wt. At 250 kN a sudden dowel crack near the web bar results in a drop in strain reading Wt 

on top, Figure 3.33. 

 

In beam HSC3, inclined cracks develop between 200 and 210 kN, with large increase of 

strain on top Wt , Strain on the bottom face of web bar Wb (not shown) does not increase 

more than 600µ when Wt yields at 210 kN. The dowel action improves the arching and 

restricts opening of the inclined web crack, Figure 3.34. 

 

In beam HSC2, inclined cracks developed between 200and 205 kN. Strain on the bottom 

face of web bar Wb,  does not increase more than 600µ when Wt yields at 205 kN. The 

dowel action improves the arching and restricts opening of the inclined web crack, Figure 

3.35.  

 

The tie action in the 3T20 tension bars develops close to yield. 2T25 web bars produce  

dowel resistance and stabilising arching affect which produce higher tensile strains in the 

3T20 tension bars. Comparatively in NSC4 at 210 kN , just before failure, the average of 

four strain readings  in the middle of tension bars reach 1742 UE which is 70% of strain in 

tension bars of HSC4 (Figure 3.29). 

 

3.2.13  Influence of dowel action on links at the centre of the shear span 

 
Strain fluctuation in the centre link for  beams NSC1, NSC3, HSC1 and HSC3 is shown in 

Figure 3.37 a& b.  Beam NSC3 has a rate of increase in strain  of 0.0042×10-3 per kN  up 

to  140 kN, followed by a rate of increase of 0.0243×10-3 per kN from 140 kN  to  160 kN 

and then at 0.16×10-3 per kN up to 6.77×10-3 strain. FE cannot model strains when element 

separation has occurred and strains have passed the yield point many times over.  

 

It was  recorded experimentally, Figure 3.37d,  that after HSC3 has passed its yield value 

of 1.3×10-3  several times over reaching 9.9×10-3  at 200 kN, at this stage a significant  

shear crack has made the centre link obsolete but the dowel action from HWB is the only  

means of resisting the  shear forces from 200 kN to 280 kN which demonstrates that only  
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dowel action from HWB was resisting the final 80kN (40%) loading. 
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c) Strains in NSC3 and HSC3  to 180 kN 
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Figure 3.37: Strains in the centre link for beams of a/d=3.02  
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Further research is needed to investigate whether  Finite Difference or Applied Element 

methods  which model element separation can simulate the experimental  beam HSC3, 

Figure 3.37d, which demonstrated the significant contribution (40% to load bearing 

capacity) from dowel action from CVB after element separation has occurred and centre 

link has passed its yield many times over and has become obsolete.  

For beam NSC3,  the presence of HWB does not make much difference in strain on the 

centre link until 120 kN, Figure 3.37 b, after which NSC1, which has no HWB, has a very 

high strain increase at 0.033×10-3  until its failure. The strain passes 9.3×10-3 (more than 

700% yield)  after 140 kN, and the dowel action from HWB resists shear until failure load 

of 170 kN.  

 

The experimental results for beams HSC1 and HSC3show that after 120 kN as the strain in 

centre link of HSC1 reaches 1.8×10-3 ,  138% of its yield value, the beam abruptly fails, 

whereas when HWB is present, the strain in centre link remains as little as 0.17×10-3, 

13 % of its yield value , up to 180 kN loading. However, due to the formation of large 

shear cracks the centre link reaches strain of 9.9×10-3 (760% of its yield) at 200 kN, but at 

this stage the HWB resists the shear forces for another 80kN or a further 40% increase in 

loading, Figure 3.37f. 

 

 

3.3 Comparison of span/depth ratio with the tested beams  

 

Figure 3.38 shows how the failure shear strength of a simply-supported reinforced concrete 

beam loaded with two-point loads changes as the shear span changes.  For these series of 

beams, tested by Kani [3-12], the ultimate shear strength was reduced by a factor of about 6 as 

the a/d ratio increased from 1 to 7. As the beams contained a large amount of longitudinal 

reinforcement, flexural failures at mid-span did not become critical until a shear span-to-depth 

ratio of about 7.  

 

This writer’s tested beams, in Table 3.4, are transposed and compared with Kani’s beams 

when considering relation between shear index (V/bdfc
' ) and shear span index (a/d).  When 

HWB is present in NSC beams a/d =3.02, the shear index (V/bdfc
'≈0.11) improves slightly 

compared to similar  NSC beams but without HWB (V/bdfc
'≈0.09), Figure 3.38. 

The observed shear strength  of the 3 beams of HSC without HWB of a/d =3.02  with 

(V/bdfc
'≈0.035) fall even  below the predicted value using sectional model, demonstrating 
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that for HSC without HWB of a/d =3.02, the arching action is absent and  the aggregate 

interlock is also low, [3-13].  

 

 

Figure 3.38: Predicted and observed strengths of a series of reinforced concrete 
beams tested by Kani (square) compared with ten beams tested by this writer (dotted 
lines) 

Source: Collins and Mitchell 1996 [3-31] 

 

From Figure 3.38 when comparing the experimental results of this writer’s ten beams with 

Kani’s prediction, it is demonstrated that Kani’s graph does not compare well regarding the 

behaviour of HSC beams with a/d=3.0. Kani’s prediction ignores the reduction of aggregate 

interlock in HSC and the significance of the contribution of dowel action from HWB in HSC 

for a/d≈3.02, Table 3.4,  transposes results for  6  beams of a/d=3.02, the only difference being 

the presence of two HWB in three of them. Shear index (V/bdfc
' ) is 0.035 for the three 

without and 0.11 for those with HWB, which is more than 310%  higher than shear index of 

those without HWB. HSC beams of a/d=3.02 with HWB have shear index (V/bdfc
' ) expected 

from shear span (a/d) of 1.5  according to Kani’s graph, Figure 3.38, or 100% discrepancy in  

prediction. 

 
The relative importance of the arch action is directly related to the shear span-to-depth 

Ratio. With an a/d ratio of less than 2.5, inclined crack develops and, after a redistribution of 

internal forces, are able to carry an additional load due in part to arch action. However, as 

shown in 3.2.12,  full strut and tie action develops in all beams of a/d=3.05 made of  HSC 

with HWB. 
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3.4 Mechanism of forces in  HSC beams with HWB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.39: Internal forces in a cracked HSC4 beam with stirrups and HWB. 

 

At loading  between  210 kN and 300 kN, across the line A-B-C after cracks are wide 

enough to make the stirrup strain several times its yield and become plastic, where Vs  

remains constant, the moment Mdw 
 from the HWB starts to resist the higher shear loads on 

its own, Figure 3.28.  In beam HSC4 which has two HWB of T-25, as the result of this 

moment the strain on the top surface of HWB is strained to 2,320 micro-strain,  just 

passing yield, whereas strain on the bottom surface is compressive and reaches 770 micro 

strain, Figure 3.28.  

 

The idealised model for the internal shear forces mechanism demonstrating the influence 

of HWB in HSC beam is shown in Figure 3.39, the forces transferring shear across an 

inclined crack act at an angle of 50º, Figure 3.12, compared to 35º for NSC, Figure 3.8, 

therefore the crack travels between stirrups if no HWB is present.  However, when HWB is 

present the angle of inclined crack reduces to 45º,  Figure 3.14. 

 

Considering the forces acting about the tension reinforcement, Mdw is the counter 

balancing moment which is the product of C1 and the lever arm la
.  HSC-4 produces a large 

force  C1  which in turn bends the two T-25  HWB to strain its top surface beyond yield, to 
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resist the external additional 90 kN loading. The beam fails at 300 kN, and the last 90 kN is 

due to HSC acting as C1. In NSC, C1 
 would have given up and crushed at a failure load of  

210 kN, Figure 3.11, Table 3.4. This moment Mdw
 from HWB acting  in HSC is responsible 

for deflecting the diagonal inclined compression strut.  

 

Figure 3.42: Shear stress distribution in a beam HSC3 with HWB exposed moment M 
from dowel action after inclined diagonal tension cracks are formed. N.B: Action of 
stirrups are not shown 
 

At loading  between  210 kN and 300 kN, across the line A-B-C, taking moment about C1  , 

a product of T2   and lever arm la  counter balance Mdw due to HWB, therefore, 3-T20 

tension bars in HSC4 are strained beyond their yield, Figure 3.21. This phenomena of 

strain beyond yield of T2  and deflection of  the diagonal inclined compression strut will be 

discussed in detail in Chapter 6 on STM. 

 

At the D-E-F line, at lower loading below 210 kN, considering the part  of the beam below 

the crack, total moments about the tension  reinforcement at E, resulting from Vd and Vdwy 

and  Vs and Tdw  must balance C’1, but at 210 kN, Figure 3.39, large dowel cracks on the 

tension bar and  inclined tension cracks appear, dowel action from tension bar (Vd) 

disappears and tensile strain in stirrup (Vs
 ) reaches several times its yield and  becomes 

plastic, therefore, Tdw×lb= C’1× la, Figure 3.37. As a result Tdw reaches yield. In Chapter 4, 

the FE modelling this action will be analysed  for the vector force Tdw in HSC3.          

 

Therefore,  forces  Vdw  from HWB remain to resist forces from the inclined diagonal 

compression strut, and reinforcement  tension resists the inclined diagonal strut produced 
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by  C’1 which  is HSC, but when C’1 
 reaches its maximum capacity , compression failure 

occurs, Figure 3.39.   

 

Horizontal forces on section ABDE are T1+ Tdw =C1+ C’1  and also  T1+ Tdw and C1+ C’1  

must balance the external moment at this section. Therefore,  strain in  T1 reaches 2600 

passing its yield strain of 2300 micro-strain, producing the tie action, Figure 3.21.  

 
In HSC as the crack opens in diagonal tension,  Vs  is strained to several times its 

maximum yield within  initial 60% loading. The dowel moment from  Mdw and Vdwx resists 

the final  40% of the loading  therefore the compression force C1 provides a substantial 

resistance. This horizontal compression force C1 is balanced with the the inclined diagonal 

compression strut C’1 which is balanced with the tension force in the flexural reinforcement 

T1 in an arch action.  

 
At loading  between  120 kN and 200 kN, the shear  transferred  across the line A-B-C by 

the shear in compression zone (Vcy) is about 20 to 25% smaller than in NSC because the 

vertical components of the shear transferred across the crack by interlock of the aggregate 

particles on the two faces of the crack (Vay) are about  20% less than NSC, Table 3.6, and 

the dowel action of the longitudinal tension reinforcement Vd takes  about 20% of the 

shear. Vs takes between 30-40% of the shear.  

 

3.5 Contribution of various actions to total shear in the tested beams 

 

This writer attempts to present an approximation to the  percentage proportion of shear 

resistance taken  by different actions in  HSC beams of a/d <3 with HWB as shown in 

Table 3.6. 

 

To this writer’s knowledge, past research has not investigated the percentage of total shear 

resistance provided by different action in HSC beams with and HWB. 

 

Comparing the proportion of different actions allocated by three groups of researchers, it 

can be  concluded that the experimental work by  Taylor [3-14] and Hamadi and Regan  

[3-15] were much more extensive than that of Fenwick and Paulay [3-16].  Taylor [3-14] 

and Hamadi and Regan [3-15]  findings agree with one another but are significantly 

different to those from  Fenwick and Paulay [3-16]. Hamadi and Regan’s [3-15]  guideline 

are concise and within the range of Taylor’s [3-14]. The aggregates used in this writer’s 
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experiment for NSC beams are the same as those used by Hamadi and Regan[3-15],     

Table 3.3. 

 

 % of total shear resistance provided by different action 

NSC 

Without 

HWB 

NSC 

With 

HWB 

HSC 

Limestone 

HSC 

Limestone 

With HWB 

Compression zone 37 32 39 21 

Aggregate interlock 44 38 39 21 

Dowel action, tension bar 19 17 22 12 

Dowel action from HWB 0 13 0 45 

 

Table 3.6: This writer’s tests evaluation of  separate contribution to the total shear 
resistance from experimental tests on 12 beams. Contribution of stirrups is about 
20% of the total shear resistance for all beams. 
 

From the above it is assumed it is justified for this writer  to take Hamadi and Regan’s [3-

15] results as to be correct for this writer’s  NSC beams without HWB. Following these 

results , this writer established data for NSC beam without HWB, and began a detailed 

investigation on the  mechanism of forces is performed in section 3.4, and is shown in  

Figure 3.39,  in order to develop proportions for HSC beams with and without HWB. 

 

From Table 3.4, comparing the failure load of HSC to NSC without HWB, a drop in shear 

resistance of 9.3% in shear due to limestone aggregate . This is also comparable to 

Albajar’s [3-17] push off tests on HSC  made with limestone aggregate. 

 

The experimental tests by this writer on twelve beams are discussed, Table 3.4,  

strain gauge recordings on the reinforcement of the specimen are interpreted and the  

influence of HWB and its contribution to both NSC and HSC beams are explored.  

 

A  theoretical  mechanism of  internal shear forces by considering the  proportion of shear 

resistance taken by different actions in HSC with HWB based on reduced contribution of  

aggregate interlock and improved contribution of dowel action due to HWB is developed 

and internal shear forces are diagrammatically shown, Figure 3.39. 

This writer’s proposed design equation is applied to experimental tests completed by others 

and its accuracy of prediction of the shear resistance is compared with the design rules  
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proposed by other researchers.  

 
Design rules proposed for predicting dowel action by other researchers are investigated and 

a new and improved design rule is proposed to take into account the number of dowel bars 

resisting shear forces. 

 

This writer’s proposed  design rule for the  prediction of the quantity of HWB that 

compensates for the inherent weakness in HSC is discussed in 3.6, and its application 

within the existing  design rules for  current  codes of practice including BS8110 [3-9] , 

EC2 [3-10], CEB FIP90 [3-18] and ACI318 [3-2] for members with and  without shear 

links is investigated.  

 

General theories for the analysis of beams subjected to bending and shear are reviewed and 

extended to develops a design rule for prediction of shear based on experimental  results 

with values calculated using semi-empirical formulae. 

 

3.6 This writer’s proposed design rule for dowel action 

 

In this section after reviewing the background of this writer’s proposed design rule an 

improved Baumann [3-19] modified rule is proposed. This rule will be referred to as 

Baumann-Motamed rule in order to simplify future references to  improved Baumann [3-

19] modified rule. 

 

When considering dowel action component, Vd, three  terms are to be understood in order 

to analyse this action which are : 

 

1. Dowel cracking force, Vd’ 

2. Dowel displacement at cracking, ∆d’ 

3. Dowel force-displacement (Vd/∆d) relationship up to dowel cracking. 

 

There is noticeable inconsistency in opinion amongst the researchers with regarding the 

above three terms. The range of suggested dowel cracking displacements, ∆d’, are from 

0.013 suggested by Houde and Mirza  [3-20] to 0.170 mm by Taylor [3-21] . However, 

from extensive experimental tests Baumann[3-19], Hamadi and Regan [3-15], and Chana 

[3-22] suggested  0.080mm as an average value for ∆d’ , which was based on comparatively 
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large number of experimental tests on divided beam specimens, and compares well with 

the values from the experimental data of the full scale divided beams of similar specimens 

tested at the University of Westminster by Hamadi and Regan [3-15].   

 

Also, the dowel force-displacement relationship, Vd/∆d , before cracking varies from 

straight lines of significantly  different slopes to a parabolic curve. For example, Taylor's 

parabola does not give agreement with the experimental data of the full-scale divided beam 

specimens tested by Hamadi and Regan [3-15]. Therefore, it was judged that Baumann- 

Rusch  [3-19]  and Hamadi – Regan [3-15] had the most reasonable approach for the 

purpose of this thesis. 

 

 
}  
 
 
 
 
 
 
 
 

 

 

 

 
 
Figure 3.43: Comparison between the reported dowel action tests on divided beams 
specimens by Hamadi and Regan   [3-15], Table2-2 ,  and comparing  Baumann’s 
dowel action formulae and Hamadi’s proposed formulae 
 

Baumann’s [3-19]  equation [Section: 2.2.7.3] for the cracking force Vcr was checked with 

the tests detailed in Figure 3.43.  Hamadi and Regan   [3-15] considered that the direct 

proportionality of Vcr with the bar diameter  φ  in Baumann’s [3-19] equation may be 

unrealistic as most past researchers had not even included φ   in their equation 

[Section;2.2.7.5]. He sensed a slight modification in this respect was necessary, and as a 

result  he suggested his equation.  

 

From  

 

Figure 3.43, it can be seen that Baumann’s proposed design rule is not safe for dense 

concrete with gravel or for LECA. However, from results produced in Table 2-2 
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[Section;2.2.7.5] , it may be concluded that Hamadi-Regan’s [3-15] formulae for modified 

Baumann’s equation, which will be called Baumann-Hamadi for convenience, is also not 

safe for dense concrete but gives a safe prediction for Leca. Therefore, there is an urgent 

need to propose a design formulae for modified Baumann’s equation which safe for dense 

concrete.  

 
A more accurate assessment can be obtained by considering the effect of the number of 

dowel bars. Baumann ’s  fundamental way to expose dowel cracking resistance (Dcr)  is as 

follows: 

Dcr= Tensile strength of the concrete × Net breadth of beam ×  Primary bearing length 

The primary bearing length Lc ', is correspondent to the following: 
 
  ≈  4√(Flexural stiffness of dowe1/ Modulus of support) 
 
when there are n dowels: 
 
Flexural stiffness of total dowel= n × stiffness of one bar 
 
The modulus of support in practice ought to be independent of the number of bars. 
 
This would suggest a change in Baumann's equation as follows: 
 

From  

Dcr1 = K.bn.db. fcu
1/3          2.11            

to  

Dcr1 = K.bn.db.
4√n. fcu

1/3              3.10                                                              
 
where db= diameter  of dowel bars  and bn = net breadth = (bn- db)  
 

One way of assessing the total shear resistance of a member with a single layer of 

horizontal web steel is to add its dowel resistance to the above VRk using Baumnann's  

dowel cracking expression with the condition of equilibrium for dowel force where the 

main reinforcement is in single layers is: 

 

In order to check if the movements of cracks were correct for the mobilisation of Dcr, 

reference was made to published measurements by  Baumann[3-19], Hamadi and Regan 

[3-15], and Chana [3-22] of vertical movements at flexural cracks that developed into shear 

cracks. It was clear that the movements are large enough for dowel resistance to be fully 

achieved as it is limited by the  tensile strength of the concrete, and a movement of about 

0.1mm can adequately mobilise it. 
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The general equation where the main reinforcement is in up to 2 layers is:  

V=K fct bnLc    3.11 
where 

bn = net breadth  

V=Dowel force 

fcu=Cube crushing strength of concrete of 200mm cubes in N/mm2 

Kfct  = Average vertical tensile stress in concrete at the level of the bars along the primary 

bearing length 

fct=Uniaxial tensile stress in concrete (may be taken as 0.245fcu
2/3  where both are 

in N/mm2) 

Lc=Primary bearing length of dowel. 

From the test results the following formulae for  Lc were determined: 

Where the main reinforcement is in one layer. 

Substituting for Lc and the tensile stress in the concrete 

fct = 0.24 fcu
2/3 

gives the dowel force causing cracking Vcr or Dcr
. 

Hence if Dcr is mobilised, the suggested formulation for the shear strength of the beam 

with stirrups and horizontal web reinforcement (HWR) to the revised proposed Baumann's 

is called Baumann-Motamed for convenience, which is; 

Dcr1 =1.64.bn.db.
4√n. fcu

1/3    3.12 
 

The resistance of a rectangular reinforced concrete beam with shear reinforcement can be 

assessed by the BS8110 [3-9] equation,  with eliminating safety factors. 

Vdu  = 0.27(100 ρi.fcu)
1/3 (400/d)1/4 bd + ρw fy bd     2.22 

 in N and mm units 

Vdu  = 0.27(100 ρi.fcu)
1/3 (400/d)1/4 bd + ρw fy bd + 1.64.bn.db

.4√n. fcu
1/3     3.13 

 
where Vdu is the proposed calculated  shear resistance of a member with stirrups and HWR. 

When considering two bars 

Dcr1 =1.95.bn.db. fcu
1/3   3.14             

 
The upper limit for db maximum steel percentage ρb= 2.2% 

 
3.7 Influence of stirrups on  dowel action resulting from HWB 

 
3.7.1 Beams of a/d=3.02 with HWB without shear stirrups  
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Hejazi[3-23]  tested four normal strength beams with 3T16 tension bars, with shear span to 

depth ratio of 3.02, without shear links. Three of the beams had HWB of 2T12, 2T20 and 

2T25. Test results were compared to the design  proposal of Desai and Baumann-Motamed 

for shear resistance of RC beams with web bars. This research concluded that horizontal  

web bars do not significantly improve shear performance of NSC beams.  

 

Four normal strength beams without links, with horizontal web steel were tested to failure.  

The geometry of the beams is shown in Figure 3.44, concrete type for beams and failure 

loads are shown in Table 3.7. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 3.44: Hejazi's  test arrangement for four beams of normal strength with 
different sizes of web steel. Geometry and reinforcement, excluding stirrups,  is the 
same as Figure 3.1  
 
 
 

Beam No BH1 BH2 BH3 BH4 
Fcu (N/mm2) 40.3 42.2 37.7 40 
Vtest (kN) 48.9 57.5 65 63.5 
Web steel  2T12 2T20 2T25 
Bau-Mot - 10.59 14.30 17.21 
Vtest / V des 1.01 0.96 0.87 0.66 
Vtest / V Bau-Mot 1.01 1.06 1.02 0.95 
ρb % 0 0.56 1.5 2.44 
Tension steel 3T16 3T16 3T16 3T16 

 
Table 3.7: Data for beams tested by Hejazi. All four beams are of shear span to depth 
ratio of a/d=3.02.  

Source: Table from Hejazi, J.,1997[3-23] 
 

This writer performed a comparative study of the failure loads on the four beams  Hejazi 

tested to failure with all parameters being the same but with stirrups.  In the  comparison 
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the only parameter other than presence of stirrups which differed was the strength of 

concrete,Table 3.4. It is shown that for  BH3 and NSC3 with HWB of 2T-20 their fcu 

differs by 27%,  and the difference in fcu in other matching beams is limited  

from 0.03% to 0.08%.  

 

A  comparison was made of experimental results for 8 identical NSC beams of which  four 

of the beams, NSC1 to NSC4,  have stirrups, Table 3-8 and Figure 3.1, and have 3 different 

sizes of  HWB, and four other identical beams, BH1 to BH4, which have no stirrups        

[3-23], Table 3.7 and Figure 3.44.   

 

In Table 3.7, tests results  are compared with Desai’s prediction, ,  compared to Baumann-

Motamed prediction, Section 3.6 

 

Baumann-Motamed’s design rule for shear prediction including the dowel action of the 

web bar remains conservative as the diameter of the web bar increases. 

 

Web steel NSC beams 2T12 2T20 2T25 Total 
Vtest / V Bau  (mot) With Link ( 1.21 1.08 1.15 3.44 
Vtest / V Bau (hej) No link 1.06 1.02 0.95 3.03 
ρb %  0.56 1.5 2.44  
Tension steel  3T16 3T16 3T16  

 
Table 3.8: Comparison of shear performance of HWB in NSC when links are present, 
Table 3.7, with those in Table 3.4 from this writer’s experimental tests. 
 

The above table shows that  Vtest / V Bau (Mot) is 14% larger than Vtest / V Bau  (Hej), indicating 

that this difference is due to presence of stirrups which were used in this writer’s tests on 

NSC as compared to Hejazi’s with no stirrups. This agrees with Baumann’s [3-19] 

experimental results shown in Figure 2-14. 

 

Desai underestimates the contribution of the dowel bar as its diameter increases, see  

Table 3.7, and does not directly include concrete strength as a determining factor in his 

design rule. 

 

3.8 The influence of stirrup on dowel action 

Test results were compared with the predicted values by Desai and Baumann-Motamed,  
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Figure 3.45. Desai’s design rule for shear prediction including the dowel action of the web 

bar becomes less conservative as the diameter of the web bar increases,Table 3.7.  
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Figure 3.45: Comparative accuracy of predictions by Baumann-Motamed and Desai 
according to Hejazi’s tests for normal strength  beams without link 
 
Chana’s research, [Section 2.2.7.7], concludes that the dowel forces which are represented 

by gauge recording on links in NSC are responsible for 47% of the total shear. His beams 

had no stirrups and, he seems to overestimate the dowel contribution of the flexural steel in 

NSC beams  because when considering the contribution of dowel action of HWB at half 

the depth of the NSC beam without stirrups, Hejazi’s experiments[3-23] shows an 

improvement of 30%, Table 3.7. When stirrup are presents,  the dowel resistance for NSC  

does not exceed more than 25%, Table 3.4,  although, when HSC is considered the 

contribution is between 42% to 50% depending on the diameter of the dowel bar.  

 

Tests by Baumann [3-19], Krefeld and Thurston [3-24],  Taylor[3-21], and Hamadi and  

Regan [3-15]  who completed their experiments in June 1980 are a useful guidance for 

exploring  dowel forces at flexural cracks but they do provide limited  information on  the 

complex performance of dowel forces at inclined cracks, where they are bearing on 

comparatively weaker wedges of concrete.  The beams tested are comparatively slender of  

a/d ≈3.5, therefore it is difficult to envisage that arch action develops in the beam. 

 

The above mentioned tests do not clearly explore the support stirrups have towards 

improving the  dowel action.  Baumann makes some effort to investigate  by changing the 

diameter of the stirrups supporting the dowels, but in his research this parameter was not 

treated systematically. 

 

The action from these wedges are assumed to be  transmitted into the main internal 

structural system to produce compression struts at  45º  for NSC as shown in Figure 3.46.  
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But the  true angle depends on the strength of the concrete as cracks for HSC occur at 

around 65º to horizontal.  

 

As shown with Hejazi's tests in Table 3.8, a maximum 33% increase in shear resistance  is 

recorded and this is the maximum improvement expected with NSC. However, in tests 

completed by this writer of HSC members with comparable  amounts of longitudinal web 

reinforcement in beams with stirrups, an improvement of 102% was recorded Table 3.4. 

 

 

Figure 3.46: The action from these wedges is assumed to be  transmitted into the 
main internal structural system to produce compression struts at  45º 

 

 

 
Hejazi  
[3-23] 

Beam No: BH1 BH2 BH3 BH4 
Fcu (N/mm2) 40.3 42.2 37.7 40 
Vhej (kN) 48.9 57.5 65 63.5 

 
Motamed 
[Table 
3.11] 

Beam No: NSC1 NSC2 NSC3 NSC4 
Fcu (N/mm2) 43.2 41 47.7 43.3 
Vt (kN) 80 101.5 100 105 
Vs (kN) 18.72 18.72 18.72 18.72 
Vt-Vs (kN) 61.28 82.78 81.28 86.28 

Both tests  HWB 0 2T-12 2T-20 2T-25 
 Vt - Vs - Vhej  (kN) 12.38 25.28 16.28 22.78 

Vstirrup support  for dowel (kN) 0 12.9 3.9 10.4 
 

Table 3.9: Calculation of average percentage of stirrup support for dowel  
 
 

Baumann's approach proposing dowel action from the web bar is related to the strength of  

concrete 3√fcu and gives a more realistic result compared to other  proposals.  

This additional internal structural system within the length of 0.5z can be assumed  to  

increase the STM action from the conventional a/z=2.5 to 3.  

 

Z/2 
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3.9 Comparison of accuracy of the proposed  equation with existing equations  

 
In the following section the accuracy of the   Baumann-Motamed equation will be 

compared with other proposed equations by other researchers or by  codes of practice by 

comparing the predicted failure loads from the equations  with the actual failure load  to 

available experimental tests.  

 

3.9.1 Comparison of Baumann, Baumannn-Hamadi and Baumann-Motamed 

equation 

The proposed equations by Baumann [3-19], Baumann-Hamadi [3-15] and Baumann-

Motamed  for dowel forces are compared to tested beams, see Table 3.10. 

 

 
Beam HWB 

(mm) 
fcu 

MPa 

Baumann-
Hamadi  

KN 

Baumann-
Motamed 

 KN 

Baumann 
 

kN 
NSC2 12 41 9.38 10.17 39.62 
NSC3 20 47.7 12.11 15.56 60.64 
NSC4 25 43 12.34 17.08 66.56 
HSC2 12 109 13.00 14.08 54.89 
HSC3 20 112.5 16.12 20.71 80.71 
HSC4 25 112.5 17.00 23.53 91.72 

 
Table 3.10: Dowel resistance predicted by equations from  Baumann , Baumann-
Hamadi and Baumann-Motamed compared to tested beams, Table 3.4 
 

The comparisons in Table 3.10 indicate that while the original Baumann equation appears 

to  overestimate the influence of dowel action from HWB, Baumann-Hamadi equation  

provides a safe prediction but does not take into consideration the changing number of 

dowel bars in one layer and also is not directly dependent on the diameter of the dowel bar, 

as originally proposed by Baumann.  

 

In Baumann-Hamadi’s equation, shear resistance from dowel action is proportional to the  

power of 3
2   of  the diameter of the longitudinal dowel  bar  and contribution from  

increasing the number  of dowel bars in one layer is not included in the rule.  
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This writer’s proposed equation provides the same degree of accuracy as Baumann-

Hamadi’s but considers the number of dowel bars in each layer and is directly proportional 

to the diameter of the dowel bar. 

 
 
Beam  NSC

1 
NSC
2 

NSC
3 

NSC
4 

HSC
1 

HSC
2 

HSC
3 

HSC
4 

Description 1 2 3 4 5 6 7 8 

fCU  N/mm2 43.2 41 47.7 43.3 109 109.3 113 112.5 

       VC   kN 55.6 55.2 58 55.6 76.4 76.5 77.2 77.2 

       VS   kN 18.72 18.7 18.72 18.72 18.72 18.72 18.7 18.72 

Web Steel 0 12 20 25 0 12 20 25 

Vdu Bau 0 39.6 60.6 66.6 0 54.9 80.7 91.7 

Vdu Bau-Ham 0 9.4 12.1 12.3 0 13 16.1 17 

Vdu Bau-Mota 0 10.2 15.6 17.1 0 14.1 20.7 23.5 

V Bau 74.32 114 137.3 140.9 95.12 150.1 177 187.6 

VBau-Hama 74.32 84.1 92.32 91.42 95.12 109.3 117 119.4 

VBau-Mota 74.32 84.1 92.32 91.42 95.12 109.3 117 119.4 

    Vt  (test) 80 102 100 105 65 132.5 140 150 

ρb% 0 0.5 1.4 2.2 0 0.5 1.4 2.2 

Vt/VBau 1.076 0.894 0.728 0.745 0.683 0.883 0.793 0.799 

Vt/VBau-Hama 1.076 1.207 1.083 1.149 0.683 1.212 1.200 1.256 

V /VBau-Mota 1.080 1.210 1.080 1.150 0.680 1.210 1.200 1.260 

 
Table 3.11: Predictions by Baumann, Baumann- Hamadi and Baumann-Motamed 
compared to tested results, Table 3.4. All shear forces (V) are in kN 
 

 

Following writer’s  experimental work, Table 3.4,  Baumann-Motamed’s equation is 

directly proportional to the diameter of the longitudinal dowel  bar, similar to Baumann’s  

original equation, but in addition, a proportionality to the power of 
4

1 for the number of 

bars is introduced and the empirical constant is accordingly adjusted.  

This writer’s revised equation gives similar accuracy of prediction to that of            

Baumann-Hamadi. 

 
3.9.2 Hamadi & Regan’s analysis of dowel action and aggregate interlock 

 

Hamadi and Regan’s [3-15] more detailed analysis of the test  results provided further 

information on the behaviour of concrete members in shear. Their  analysis appeared to be 
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a  successful attempt to make direct numerical use of the increasing knowledge of interlock 

and dowel actions. 

 

Applications of analytical procedure of prediction of shear forces proposed by  Hamadi-

Regan, from their equation 2-23 of section 2.2.7.5, with dowel action modified  by using  

Baumann-Motamed equation instead of Baumann-Hamadi equation for this writer’s tested 

beams are shown in Table 3.12. 

It can be demonstrated that safe and comparatively accurate predictions with 35% and 53% 

safety margin can be obtained when using the  analytical prediction  approach proposed by  

Hamadi-Regan [3-15]. 
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NSC1 43 29.508 0.696 0.004 31.03 34.5 0 65.53 80 1.22 

NSC2 41 28.814 0.684 0.004 30.64 34.5 10.21 75.35 101.5 1.35 

NSC3 47.7 31.079 0.722 0.004 31.89 34.5 15.6 81.99 100 1.22 

NSC4 43 29.508 0.696 0.004 31.03 34.5 17.1 82.63 105 1.27 

HSC1 109 46.981 0.975 0.007 39.80 34.5 0 74.30 74 1.00 

HSC2 109 46.981 0.975 0.007 39.80 34.5 14.1 88.40 132.5 1.50 

HSC3 112.5 47.730 0.986 0.007 40.15 34.5 20.7 95.35 140 1.47 

HSC4 112.5 47.730 0.986 0.007 40.15 34.5 23.5 98.15 150 1.53 

 
Table 3.12: Accuracy of  Hamadi-Regan’s [3-15] prediction with dowel action 
calculated by Baumann-Motamed equation for this writer’s tested beams

 
 

 
 
3.9.3 Comparison of accuracy of  Baumann-Motamed equation with Desai’s rule 

 
To improve assessment of shear resistance of beams with HWB, the test results  from the 

present experimental work were compared with the prediction of  Baumann-Motamed's 

modified  equation (3-13) and Desai's equations with the upper limit which are: 

 

As shown in Figure 3.47 for beams HSC 2 (no 6), HSC 3 (no 7) and HSC4 (no 8),  Desai's  

design rule does not express influence of HWB  in HSC as his prediction for shear 

resistance of HSC2 beam with HWB of 2T12 is the same as that for HSC4 beam with 
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HWB of 2T25. However, the proposed Baumann-Motamed rule allows for the 

improvement in shear resistance as HWB increases. 
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Figure 3.47:Comparison of Desai’s and Baumann-Motamed’s predictions of shear 
strength for beams tested by this writer. For beam numbering refer to Table 3.13 

 

Beam  NSC1 NSC2 NSC3 NSC4 HSC1 HSC2 HSC3 HSC4 

Description 1 2 3 4 5 6 7 8 

fCU  N/mm2 43.2 41 47.7 43.3 109 109.3 112.5 112.5 

       VC   kN 55.6 55.2 58 55.6 76.4 76.5 77.2 77.2 

        VS   kN 18.72 18.72 18.72 18.72 18.72 18.72 18.72 18.72 

Web Steel 0 12 20 25 0 12 20 25 

Vdu-Bau-Mot kN 0 10.2 15.6 17.1 0 14.1 20.7 23.5 

VBau-Mot kN 74.32 84.12 92.32 91.42 95.12 109.32 116.62 119.42 

    Vtest  kN 80 101.5 100 105 65 132.5 140 150 

Vtest /VBau-Mot 1.08 1.21 1.08 1.15 0.68 1.21 1.20 1.26 

ρb% 0 0.5 1.4 2.2 0 0.5 1.4 2.2 

VDes  kN 74.3 74.0 76.9 74.6 95.1 95.3 96.1 96.3 

Vtest / VDes 1.08 1.37 1.30 1.41 0.68 1.39 1.46 1.56 

Table 3.13: Ratio of empirical values of ultimate shear resistance compared to 
predicted value  from Baumann-Motamed’s and Desai’s equations for tested beams  
 

 

 

Beam NSC2 NSC3 NSC4 HSC2 HSC3 HSC4 Mean 
Vcu 55.2 58 55.6 76.5 77.2 77.2  

Vt 101.5 100 105 132.5 140 150  

Vs 34.5 34.5 34.5 34.5 34.5 34.5  

(Vt- Vs)/Vcu 1.21 1.13 1.27 1.28 1.37 1.50 1.29 
Table 3.14: Shear resistance increase compared to Vcu  (not including resistance from 
stirrups) due to presence of HWB 
 
It is difficult to follow why the ratio of main reinforcement  ought to affect the contribution 

of the web bar as proposed in  Desai's design rule  described in the literature review. In 



___________________________________________________________________________
Motamed, J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’ 

 

129

Desai’s design rule he restricts the upper limit for contribution of HWB to 0.4Vcu, whereas 

in the experimental  tests   of this writer’s beams the corresponding increase due to the 

presence of HWB was 0.5Vcu, for beam HSC4, Table 3.14, or 25% higher than Desai’s 

proposed upper limit for the contribution of HWB. 

 
 
3.9.4 European, American and Canadian codes with  Baumann-Motamed rule  

 

In this section the accuracy of prediction of  European [3-10],  American [3-2] and 

Canadian [3-32] codes guidance when  Baumann-Motamed rule is added to the guidance is 

investigated. 

 

In the ACI building code [3-2]  the expression for the shear prediction is : 

Vc= bwd(√f’ c/ 6). 

 

BEAM  h 

mm 

b 

mm 

d 

mm 
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NSC1 300 150 265 43.2 0 2.37 1.9 0 18.72 3.02 47.4 80 1.29 
NSC2 300 150 265 41 0.56 2.37 1.9 10.04 18.72 3.02 67.7 101.5 1.43 
NSC3 300 150 265 47.7 1.50 2.37 1.9 15.36 18.72 3.02 86.8 100 1.26 
NSC4 300 150 265 43.3 2.44 2.37 1.9 16.91 18.72 3.02 96.4 105 1.33 
NSCL 300 150 265 44.2 0 2.37 2.2 0 22.19 3.02 51 125 1.89 
HSC1 300 150 265 109 0 2.37 1.9 0 18.72 3.02 57.6 65 0.88 
HSC2 300 150 265 1093 056 237 19 1388 1872 302 851 1325 1.52 
HSC3 300 150 265 112.5 1.50 2.37 1.9 20.39 18.72 3.02 107 140 1.49 
HSC4 300 150 265 112.5 2.44 2.37 1.9 23.17 18.72 3.02 122 150 1.55 
HSC1-2 300 150 265 101.2 0 2.37 1.9 0 18.72 3.02 56.6 70 0.95 
HSC1-3 300 150 265 106.6 0 2.37 1.9 0 18.72 3.02 57.3 80 1.09 
BJ-2 300 150 265 118.1 0 2.37 1.9 0 18.72 4.15 58.6 71 0.97 

Table 3.15: Comparison of this writer’s experimental beams with  revised modified 
MACI design rule using Baumann-Motamed’s design formulae.  
 

ACI [3-2]  design guidelines appear to be generally unsafe when HSC beams with  a 

modest amount of tension reinforcement and links are considered. When considering a 

large percentage of longitudinal steel and regarding this writer’s experiments on beams 

with  HWB, ACI's [3-2]  predictions are reasonably safe. 

 

The EC2 [3-10], Figure 3.48, and CSA [ 3-32], Figure 3.49, design rules give a safe 

guideline when HSC beams with a modest amount of tension reinforcement and links are 

considered. However, with ACI [3-2] shown in Figure 3.48 out of all four HSC beams 
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without HWB including BJ2, HSC1, HSC1-2 and HSC1-3, only the HSC1-3 prediction are 

safe and higher than experimental failure. Considering the large percentage of longitudinal 

steel, and regarding the author's experiments on beams with HWB, EC2's predictions are 

conservative.  
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Figure 3.48:Comparative accuracy of EC2 and ACI predicting shear strength for 
beams tested by this writer. 
 
 
3.9.5 Collins and Kuchma  

 

Collins and Kuchma [3-25] concluded that the current ACI shear design procedures are not  

conservative if applied to large, lightly reinforced members because ACI procedures do not 

recognize that as the size of such members increases, the shear stress required to cause 

failure decreases. Their paper which was published in 1999  experimentally  evaluates the 

significant parameters which influence the magnitude of  size effect in shear.  

 

This paper also investigates the influence of  reinforcement positioned in layers, or HWB.  

However, the percentage of HWB steel or layered steel is relatively small, therefore their 

influence is not as clearly demonstrated as explained in this writer's research which was 

completed in 1997 [3-13]. 

 
It was found that the reduction in shear stress at failure was related more directly to the 

maximum spacing between the layers of longitudinal reinforcement rather than the overall 

member depth. HSC members displayed a more significant size effect in shear than NSC 

members. 

 

There is now substantial evidence from Kani [3-26], Bazanyt [3-27], Kuchma [3-28] and 

Shioya [3-29&30] that for members without stirrups the shear stress at failure decreases as 
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the member becomes larger and as the percentage of longitudinal reinforcement becomes 

lower.  
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NSC1 80 28.63 51.60 0.00 0.00 47.36 0 1.55 1.69 
NSC2 101.5 28.14 51.10 2.00 12.00 56.91 10.04 1.99 1.78 
NSC3 100 29.59 52.50 2.00 20.00 63.67 1536 1.90 1.57 
NSC4 105 28.66 51.40 200 25.00 64.29 16.91 2.04 1.63 
NSCL 125 28.85 51.04 0.00 0.00 51.04 0 2.45 2.45 
HSC1 65 38.86 57.58 0.00 0.00 57.58 0 1.13 1.13 
HSC2 132.5 38.90 57.62 2.00 12.00 71.50 13.88 2.30 1.85 
HSC3 70 39.27 57.99 2.00 20.00 78.38 20.39 2.41 1.79 
HSC4 75 39.27 57.99 2.00 25.00 81.16 23.17 2.59 1.85 

HSC1-2 70 37.92 56.64 0.00 0.00 56.64 0 1.24 1.24 
HSC1-3 80 38.58 57.30 0.00 0.00 57.30 0 1.40 1.40 

BJ-2 71 39.90 58.63 0.00 0.00 58.63 0 1.21 1.21 

Table 3.16: This writer’s experimental beams comparison with EC2 and revised 
modified EC2M design rule using Baumann-Motamed formulae. 
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Beam  
NSC1 300 150 265 43.2 0 2.37 1.9 250 18.72 3.02 80 62.09 1.288 
NSC2 300 150 265 41 0.56 2.37 1.9 250 18.72 3.02 101.5 60.97 1.665 
NSC3 300 150 265 47.7 1.50 2.37 1.9 250 18.72 3.02 100 64.29 1.555 
NSC4 300 150 265 43.3 2.44 2.37 1.9 250 1872 3.02 105 62.14 1.69 
NSCL 300 150 265 44.2 0 2.37 2.2 250 22.19 3.02 125 66.06 1.892 
HSC1 300 150 265 109 0 2.37 1.9 250 18.72 3.02 65 73.49 0.884 
HSC2 300 150 265 109.3 0.56 2.37 1.9 250 18.72 3.02 132.5 73.49 1.803 
HSC3 300 150 265 112.5 150 2.37 1.9 250 18.72 3.02 140 73.49 1.905 
HSC4 300 150 265 112.5 2.44 2.37 1.9 250 18.72 3.02 150 73.49 2.041 
HSC1-2 300 150 265 101.2 0 2.37 1.9 250 18.72 3.02 70 73.49 0.953 
HSC1-3 300 150 265 106.6 0 2.37 1.9 250 18.72 3.02 80 73.49 1.089 
BJ-2 300 150 265 118.1 0 2.37 1.9 250 18.72 4.15 71 73.49 0.966 

 
Table 3.17: This writer’s’ experimental beams comparison with ACI design rule 
 

Collins et al proposed shear design procedures [3-31]   based on the revised modified     

compression field theory, where the nominal shear strength of non pre-stressed reinforced 

concrete  members without stirrups is given as: 
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Vc= βbwdv√f’ c 

 

where dv is the flexural lever arm which can be taken as 0.9d, and β is a parameter that 

indicates the ability of the concrete section to transmit stresses across diagonal cracks.  

 

0

0.5

1

1.5

2

2.5

NSC1

NSC2
NSc3

NSC4

HSC1

HSC2

HSC3

HSC4

HSC1-
2

HSC1-3

Beam tested by the author
V

te
st

/ 
V

 c
sa

 

Figure 3.49:Comparative accuracy of Canadian CSA [3-32]  code with author’s test 
results  
 

The values of  β are derived from the revised modified compression field theory, where β  

is a function of a crack spacing parameter se and the strain in the flexural reinforcement 

εx. Charts are published in the paper for estimating the values of  β. The parameter se 

accounts for the influence of the crack spacing sx and the maximum aggregate size a 

which is taken as zero for HSC because of absence of aggregate interlock in the following: 

se= 35 sx /(a+16) this was revised modified in 2008[3-33] to se= 35 sx /(a+15)  

sx is taken as 0.9 d for members that have only concentrated reinforcement near the flexural 

tension face, or as the maximum distance between the layers of longitudinal reinforcement 

if the member contains intermediate layers of crack control reinforcement .  sx is taken as 0.9 

d for members that have only concentrated reinforcement near the flexural tension face, or 

as the maximum distance between the layers of longitudinal reinforcement if the member 

contains intermediate layers of crack control reinforcement.  

 

It is worth noting  from this author's experiments that HWB,  in addition  to being layers of crack 

control reinforcement, more importantly  stabilise the arching effect on the beam by contributing 

to diagonal compression strut action, therefore the STM action takes place in beams of  a/d=3  

with tension reinforcement almost reaching its yield.   

 

For  non-prestressed members with no axial load, the strain εx is given by 

εx=[ (M / dv) + 0.5VcotӨ]/ Es As  
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where, Ө is a function of  a crack spacing parameter se and the strain in the flexural  

reinforcement εx, and  As is the area of longitudinal reinforcement in the flexural tension half of  

the section. For determining εx, the moment at a distance of dv from the face of the support, or dv 

from the edge of the loading plate is used. 

 

 
Figure 3.50: Loading arrangement for Collins et al  beams 

 

To study the factors influencing the shear strength of large, lightly reinforced flexural 

members, 22 specimens  with a point load applied at mid-span of the beams were tested to 

failure.  

 

Thirteen of the beams had an overall depth of 1000 mm, four had 500 mm, four had         

250 mm, while one had 125 mm. The longitudinal reinforcement ratio varied from 1.19 % 

down to 0.50 % . All of the beams were made from concrete with a maximum aggregate 

size of 10 mm. 

 

The revised modified compression field theory predicts that the size effect in shear 

depends on the distance between the layers of reinforcement rather than on the overall 

depth of the beam. In HSC, cracks pass through the aggregate, resulting in crack surfaces 

that are relatively smooth and in cracks whose roughness is not influenced by the 

maximum aggregate size.  

 

To investigate the sensitivity of the failure shear to the bond characteristics of the flexural  

reinforcement, beam Bl00HE used epoxy coated reinforcement, beam Bl00L contained an 

array of three layers of small-diameter bars, and beam Bl00B had a bundle of large-

diameter bars. 

 

2700 2700 



___________________________________________________________________________
Motamed, J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’ 

 

134

The revised modified compression field theory design method assumes that if a member 

obtains at least the required minimum area of stirrups, the reduction in shear failure stress 

with increasing member size will become insignificant.  

 
 

Figure 3.51: Showing Sx and flexural lever arm dv = 0.9d  

 

All of the 22 beams tested in the series had a width of 300 mm. All the beams failed in  

shear prior to flexural yielding of the longitudinal reinforcement. For four of the beams, the 

shear span that failed first was reinforced with external clamps, and the beam was then 

retested. The results of all 26 tests, with the four retests being labelled R, are summarized 

in    Table 3.18. 

 

The proposed revised modified compression field design rule together with ACI prediction 

or Collins’ revised modified ACI rule does not seems conservative when designing beams 

with central web steel such as beam BHD100.  

 

The observed failure shear stresses for  20 beams that did not contain stirrups are shown in    

Table 3.18, and are compared to ten of this  author’s beams with links and six with HWB,  

Table 3.19. 

 

One inherent weakness in Collins’ modified compression field design rule is that this 

theory for reinforced concrete beams subjected to shear [3-34]  was developed on the 

assumption that the average stress-strain relationships for the reinforcement and for the 

concrete will be completely independent of each other. This assumption needs careful 

review as RC beams’ average stress/average strain relationship for reinforcement and for 

concrete  are dependent on one another.  

 

b

dv=0.9Sx 
S

d 

εx 

As> 0.003bwSx 
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It was further assumed that the average shear stress on the plane normal to the 

reinforcement resisted by the reinforcement is zero. However, the presence of dowel action 

in the form of shear stress on the plane normal to the reinforcement is demonstrated in 

earlier  

sections  and  in this writer’s tests, and its existence is generally accepted.  
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B100 1000 300 925 36.0 2800 1.01 — 2.92 225 0.135 278 1120 170 184 0.81 1..32 1.22 

Bl00-R 1000 300 925 36.0 2800 1.01 — 2.92 249 0.150 278 1120 170 184 0.90 1.46 1.35 

Bl00D 1000 300 925 56.0 3300 1.19 — 2.9 320 0.192 278 229 271 264 1.15 1.18 1..21 

Bl00H 1000 300 925 98.0 2800 1.01 — 2.92 193 0.084 384 1820 182 200 0.50 1.06 0.96 

B100HE 1000 300 925 98.0 2800 1.01 — 2.92 217 0.094 384 1820 182 200 0.56 1.19 1.08 

Bl100L 1000 soo 925 39.0 2800 1.01 — 2.92 223 0.129 289 1120 177 189 0.77 1.26 1.18 

Bl00LR 1000 300 925 39.0 2800 1.01 — 2.92 235 0.136 289 1120 177 189 0.81 1.33 1.24 

Bl100B 1000 300 925 39.0 2800 1.01 — 2.9 204 0.118 289 1120 177 189 0.71 1.15 1.08 

BNl00 1000 300 925 37.2 2100 0.76 — 2.9 192 0.113 282 1121 173 168 0.68 1.11 1.14 

BN50 500 300 450 37.2 1100 0.81 — 3.0 132 0.160 137 545 111 99 0.96 1.19 1.33 

BN25 250 300 225 37.2 600 0.89 — 3.00 73 0.177 69 273 65 58 1.06 1.12 1.25 

BN12 125 300 110 37.2 300 0.91 — 3.07 40 0.199 34 133 35 32 1.19 1.14 1.24 

BND 1000 300 925 37.2 2900 1.05 — 2.92 258 0.152 282 229 276 258 0.91 0.94 1.00 

BND50 500 300 450 37.2 1500 1.11 — 3.00 163 0.198 137 108 146 144 1.19 1.12 1.13 

BND25 250 300 225 37.2 884 1.31 — 3.00 112 0.272 69 54 76 82 1.63 1.48 1.36 

BHl00 1000 300 925 98.8 2100 0.76 — 2.92 193 0.084 384 1821 182 179 0.50 1.06 1.08 

BH50 500 300 450 98.8 1100 0.81 — 3.00 132 0.117 187 886 127 109 0.70 1.04 1.20 

BH25 250 300 225 . 98.8 600 0.89 — 300 85 0.151 93 443 80 66 0.91 1.06 1.28 

BHDl00 1000 300 925 98.8 2900 1.05 — 2.92 278 0.121 384 372 343 295 0.72 0.81 0.94 

BHD1 1000 300 925 98.8 2900 1.05 — 2.92 334 0.145 384 372 343 295 0.87 0.97 1.13 

BHD50 500 300 450 98.8 1500 1.11 — 3.00 193 0.172 187 175 189 167 1.03 1.O2 1.15 

BHD50 500 500 450 98.8 1500 1.11 — 300 205 0.183 187 175 189 167 1.10 1.O8 1.22 

BHD25 250 300 225 98.8 884 1.31 — 3.00 111 0.199 93 88 101 81 1.19 1. 10 1.37 

BRL100 1000 500 925 94.0 1400 0.50 — 2.92 163 0.071 384 1821 182 154 0.42 0.89 1.06 

BM100 1000 300 925 47.0 2100 0.76 0.40 2.92 342 0.180 429 1121 306 246 0.80 1.12 1.39 

BM100 1000 300 925 47.0 2900 1.05 0.40 2.92 461 0.242 429 229 422 392 1.08 1.09 1.18 

'M/Vd ratio given for maximum moment location.  

*Load at significant diagonal cracking, failure load — 93 kN.  

Note: Vmaci= modified ACI approach using Eq. (6) for Vr 

 

   Table 3.18: Collins'  experimental programme, results, and predictions  
Source: Extracted from the table in  Collins, M.P. et al [3-25] -1999 

 

Table 3.4 demonstrates that the shear resisted by the reinforcement in the form of dowel  

action , or shear in the plane normal to the axis of the bar  in high strength reinforced 

concrete beams, increases by more than 100%. 
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Collins et al [3-25] conclude that as the members become deeper, the shear stress at failure 

decreases. Members with distributed longitudinal reinforcement fail at higher shear 

stresses than members with concentrated reinforcement and in terms of the ratio of failure 

shear stress to √fc’ HSC beams fail at lower ratios than NSC beams.  

 

This writer’s experimental tests demonstrate, contrary to the above conclusion, that when  

reinforced concrete beams have a large percentage of  HWB, HSC  beams  fail at a higher 

ratio than NSC beams, as shown in Table 3.4.  

 

Collins’ specimens with percentage longitudinal reinforcement, or HWB, are identified as 

D in    Table 3.18. The percentage of tension reinforcement did not increase by more than 

40% for layered or HWB reinforcement, whereas this writer's experiment the HWB 

increased by 104% compared to the tension bar and therefore this influence was fully 

investigated. 

 

Collins et al [3-25] were concerned to note that 13 of the 20 beams failed at shears less 

than those predicted by the ACI Code equation, with four of these beams failing at less 

than 60 % of the ACI value and one beam, BRLl00, failing at 43 % of the ACI value. To 

emphasize the difference between what is predicted by the code and what was observed in 

the tests, the failure state of three beams are compared. 

 

Note that beam Bl00H, for which fc= 98 MPa, failed at a lower shear force than the 

identically reinforced beam Bl00, for which fc = 36 MPa. Bl00D was identical to Bl00, 

except that it contained a small amount of distributed reinforcement over the depth of the 

member. As a result, Bl00D had more closely spaced shear cracks and had a shear strength 

39 % higher than that of Bl00. In addition, Bl00D failed in a ductile manner while both 

Bl00 and Bl00H had sudden failures.  

 

Collins et al [3-25]  reconfirmed this writer’s tests results  on the contribution of  

HWB in HSC  with their test specimen BHD25 which was  made with HSC and HWB and 

had the highest  Vexp /Vaci of 1.19 compared to their other specimens,  demonstrating that 

the contribution of HWB in HSC is not fully utilised in ACI318 [3-2] 

 

Premature failure of a HSC beam  as compared to a corresponding NSC beam has also 

been recognised and  identified by the following group of  researchers  since 1984: 
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o Andrew G. Mphonde and Gregory C. Frantz 'Shear Tests of High- and Low-Strength 

Concrete Beams Without Stirrups' ACI Journal Proceedings, 1984 - ACI 

o Ashraf H. Elzanaty, Arthur H. Nilson, and Floyd O. Slate 'Shear Capacity of 

Reinforced Concrete Beams Using High-Strength Concrete' Journal ACI Proceedings, 

volume 83, issue 2 March 1, 1986 

o Shuaib H. Ahmad, A. R. Khaloo, and A. Poveda 'Shear Capacity of Reinforced High-

Strength Concrete Beams'. ACI Journal Proceedings.March 1, 1986 

o Mark K. Johnson and Julio A. Ramirez. 'Minimum Shear Reinforcement in Beams 

With Higher Strength Concrete' Structural Journal, vol 86 issue 4, pages 376-382, July 1, 

1989  

o Thorenfeldt E and Drangsholt, G. ‘Shear capacity of reinforced HSC beams.’ACI  

2nd International Symposium on HSC, ACI SP 121.8, 1990.pp.129-154 

o Roller J, J. and Russel H, G 'Shear Strength of High-Strength Concrete Beams With 

Web Reinforcement'. Structural Journal, vol 87, issue 2 p 191-198 

o Sarsam K. F, Al-Musawi J.M.S, ' Shear Design of High- and Normal Strength 

Concrete Beams' with Web Reinforcement ACI Structural Journal, 1992 

o Raghu S. P and Mendis P ‘Experimental Study on Shear Strength of High-Strength 

Concrete Beams’ Structural Journal July 1, 2000 

o Angelakos. D, Bentz E. C, and Collins M. P.'Effect of Concrete Strength and 

Minimum Stirrups on Shear Strength of Large Members' Structural Journal. vol 98, issue 

3, 1 May 2001  

o Cladera .A.,. Marí .A.R 'Experimental study on high-strength concrete beams failing 

in shear' Engineering Structures 27, 2005, 1519–1527   

 

3.9.6 Variation of failure shear stress ratio with beam depth  

 

Stabilising the arching  effect of horizontal web reinforcement HWR ( layered   

reinforcement) over the depth  in the HSC was demonstrated in this writer’s tests in 1997 

[3-13] .  

 

Collins [3-25] in 1999  concluded that  large, lightly reinforced concrete members that do 

not contain stirrups will fail in shear at loads considerably less than those predicted by the 

current ACI expressions. He conducted a series of tests with HWB and proposed an 

empirical  design approach. 
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The EC2 design rule complemented with the Baumann-Motamed’s revised modified 

design rule for dowel action give reasonable results for Collins’ [3-25] beams compared 

with Collins’ proposal which appears unsafe for shallow HSC beams of 500mm depth with 

layer (HWB) reinforcement.  
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NSC1 265 0.00 0.00 43.2 2.37 3.02 18.72 80 0.23 0.23 
NSC2 265 2.00 12.00 41 2.37 3.02 18.72 101.5 0.33 0.33 
NSC3 265 2.00 20.00 47.7 2.37 3.02 18.72 100 0.30 0.30 
NSC4 265 2.00 25.00 43.3 2.37 3.02 18.72 105 0.33 0.33 
HSC1 265 0.00 0.00 109 2.37 3.02 18.72 65 0.11 0.14 
HSC2 265 2.00 12.00 109.3 2.37 3.02 18.72 132.5 0.27 0.34 
HSC3 265 2.00 20.00 112.5 2.37 3.02 18.72 140 0.29 0.36 
HSC4 265 2.00 25.00 112.5 2.37 3.02 18.72 150 0.31 0.39 
HSC1-2 265 0.00 0.00 101.20 2.37 3.02 18.72 70 0.13 0.15 
HSC1-3 265 0.00 0.00 106.6 2.37 3.02 18.72 80 0.15 0.18 

 
Table 3.19: Variation of failure shear stress ratio at beam depth 265mm. 
 

 

 

Figure 3.52: Variation of failure shear stress ratio with beam depth, comparison  of 
author’s beams and Collins et al beams for √fc≤8.3 
 

Members 2000mm deep, made from 25 MPa concrete with 25mm maximum aggregate, or  

members l000mm deep, of 70MPa concrete with less than 1 % of flexural reinforcement 

may fail at less than 50 % of the predicted shear capacity. 
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Beam εx 
1/1000 

Se 
mm 

β Vdo
w 
kN 

V 
Con (kN) 

Vmcft 
Tot kN 

Vmmc
ft 
kN 

Vexp 
kN 

Vmcft 
/Vexp 

 
NSC1 1.45 2.43 0.14 0 37.27 55.99 55.99 80 1.43 
NSC2 1.59 97.2 0.14 12.7 38.7 56.01 70.49 101. 1.44 
NSC3 1.83 97.2 0.14 13.30 39.16 56.03 78.03 100 1.73 
NSC4 1.74 97.2 0.14 16.9 37.31 56.03 84.05 105 1.87 
HSC1 1.29 601 0.1  42.28 61.01 61.01 65 1.07 
HSC2 2.43 219 0.12 13.8k 50.81 69.53 82.78 132.5 1.91 
HSC3 2.49 219 0.12 203 51.55 70.27 95.82 140 1.99 
HSC4 2.42 219 0.12 23.17 51.55 70.27 105A 150 2.13 

HSC1-2 1.29 601 0.1. 0 40.74 59.46 59.46 70 1.18 
HSC1-3 1.29 601 0.1. 0 41.82 60.54 60.54 80 1.32 

 
Table 3.20:Author’s beams  experimental comparison with Collins’ MCFT design 
rule using Baumann-Motamed’s formula for the web bars. 
 

 

3.10 This writer’s prediction rule applied to  tests by others 

 
3.10.1 Desai’s tests 

As series of tests carried out by Desai [3-35] at BCA laboratory on beams with bottom 

steel of 3T20 and top steel of 2T12, span/depth ratio 2.59,  with 6mm diameter links at 200 

mm centres, Table 3.21  and without link shown in Table 3.22  

 

The tolerance for the proposed writer’s rule is 27% and safe for all beams whereas Desai’s 

is 31% for his beams tested of span/depth ratio 2.59 with stirrups.  

 

When investigating the safety of this writer’s prediction rule for beams tested in Table 

3.22, the average proposed  predictions are 1.03  for E2 type,  0.98 for B2 type, 1.02 for 

type E3 and 0.92 for type E4. In this writer’s opinion there may have been a  

possible anchorage failure at HWB level in beams tested in Table 3.22.  

 

The BS8110 clause 3.12.8.4 for design ultimate anchorage bar, fbu , derived from equation 

49 is  

fbu=β√fcu     3.15 

Value β depends on the type and diameter of the bar. For  E4 series with T16 bars of 

fy=460 N/mm2  and fcu=35 N/mm2  a minimum anchorage length of 1634×  or  544mm 
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length is required to provide fbu=2.9 N/mm2  ultimate anchorage bar stress to develop the 

tie action in the HWB and to resist the inclined diagonal compression forces resulting from  

 

presence of HWB.   
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C1 0  0 32 119 61 34.5 0 0 96 1.25 95.5 1.25 

C1a 0  0 32 128 61 34.5 0 0 96 1.34 95.5 1.34 

D1 2 10 0.3 32 132 61 34.5 7 11.15 103 1.29 106.6 1.24 

D1a 2 10 0.3 32 141 61 34.5 7 11.15 103 1.38 106.6 1.32 

D2 1 16 0.4 28 146 58 34.5 9 14.66 102 1.44 107.2 1.36 

D2a 1 16 0.4 28 154 58 34.5 9 14.66 102 1.52 107.2 1.44 

D3 1 20 0.6 26 130 57 34.5 14 17.49 106 1.23 109.0 1.19 

D3a 1 20 0.6 26 130 57 34.5 14 17.49 106 1.27 109.0 1.19 

D4 1 23 0.9 26 134 57 34.5 21 19.78 113 1.19 111.3 1.20 

D4a 1 25 0.9 26 133 57 34.5 21 21.26 113 1.18 112.8 1.18 

Average tolerance for all beams  1.31  1.27 
 

Table 3.21: Proposed prediction rule applied to shear failure of Desai’s [3-35] 
specimen 
 
 

In Chapter 5 it  will be demonstrated that presence of HWB improves arching action, by 

deflecting  the inclined diagonal compression strut at the HWB level, therefore increasing 

the tensile force in HWB at supports. Also absence of stirrups exaggerates arching action 

for the tested beams which are span/depth ratio 2.59.  

 

Similarly, for beam types B2, E2, and E3, minimum anchorage lengths of 

mm4001040 =× , mm3401034 =×  and mm4081234 =×  are required in order to transfer 

the force from the deflected inclined diagonal compression strut to the HWB at support 

level. 

 

When stirrups are present, part of the forces from the inclined diagonal strut  are carried by 

the stirrups therefore the strains at the support of the beam on  the HWB bars are reduced. 
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But, in the absence of stirrups these strains remain high. There are no given dimensions for 

the length of the end anchorage for specimens in Table 3.22. However, from the diagram 

and the pictures available, it can be deducted that the anchorage is only about 100mm 

rather than the required 544mm for development of the full ultimate anchorage forces in 

the bars.  
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A1 0 0 0 28 55 51 1.08 0.00 1.08 1.08 
Ala 0 0 0 28 63 51 1.24 0.00 1.24 1.24 
A2 2 8 0.2 36 67 55.4 1.21 9.67 1.03 1.18 
B1 0 0 0 27 58 57.6 1.01 0.00 1.01 1.01 
Bla 0 0 0 27 60 57.6 1.04 0.00 1.04 1.04 
B2 2 10 0.3 27 65 57.6 1.13 10.74 0.95 1.07 
B2a 2 10 0.3 27 68 57.6 1.18 10.74 1.00 1.12 
B3 1 16 0.4 28 81 58.3 1.39 14.95 1.11 1.33 
B3a 1 16 0.4 28 88 58.3 1.51 14.95 1.20 1.44 
B4 1 20 0.6 33 101 61.6 1.64 19.31 1.25 1.48 
B4a 1 20 0.6 33 110 61.6 1.78 19.31 1.36 1.60 
B5 1 25 0.9 33 90 61.6 1.46 23.47 1.06 1.15 
B5a 1 25 0.9 33 96 61.6 1.56 23.47 1.13 1.24 
El 1 0 0 28 72 67.3 1 .07 0.00 1.07 1.07 
Ela 1 0 0 28 75 67.3 1.11 0.00 1.11 1.11 
E2 2 10 0.3 34 80 71.9 1.11 11.60 0.96 1.05 
E2a 2 10 0.3 34 92 71.9 1.28 11.60 1.10 1.21 
E3 2 12 0.4 34 90 71.9 1.25 13.61 1.05 1.12 
E3a 2 12 0.4 34 84 71.9 1.17 13.61 0.98 1.06 
E4 1 16 0.4 35 75 72.6 1.03 16.10 0.85 0.99 
E4a 1 16 0.4 35 88 72.6 1.21 16.10 0.99 1.15 

Average ratio 1.27  1.07 1.18 
 

Table 3.22: Proposed prediction applied to Desai’s [3-35] beams without stirrups.  
NB: Test on specimen A2a was abandoned due to faulty application of the test loads. 
 

In this writer’s opinion, it could be possible that tests shown in Table 3.22 may have failed 

at bond anchorage of the horizontal web bar near support simultaneously  with shear 

failure, resulting in  lower shear failure load compared to the true shear failure  load which 

would have occurred if  sufficient bond anchorage had been provided for the HWB bars.  
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3.10.2 Vollum’s tests 

 
A series of tests were carried out by Vollum at the Imperial College laboratory on beams  

with the bottom steel of 3T20 and top steel of 2T12, with flexural  span 2100mm and 

span/depth ratio 3.17,  without link shown in Table 3.23. 
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F1 3T20 0 0 0 43 69 67.3 1.03 0.00 1.025 
F1a  0 0  43 75 67.3 1.11 0.00 1.114 
F2 3T20 1 12 0.21 44 80 67.8 1.18 12.90 0.991 
F2a  1 12  44 82 67.8 1.21 12.90 1.016 
F3 3T20 1 16 0.38 46 76 68.8 1.1 17.09 0.885 
F3a  1 16  46 82 68.8 1.19 17.09 0.955 
F4 3T20 1 20 0.59 44 86 67.8 1.27 20.59 0.973 
F4a  1 20  44 79 67.8 1.17 20.59 0.894 
F5 3T20 1 25 0.93 43 82 67.3 1.22 24.83 0.89 
F5a  1 25  43 80 67.3 1.19 24.83 0.868 

Table 3.23:Vollum’s [3-35] tests at Imperial College for 2100mm span beams without 
stirrups 

Source: Table from  Desai, S. June 1995 [3-35] 
 

Table 3.23 demonstrates  that dowel action does not develop in NSC beams of a/d=3.17 

with no shear stirrups, which may indicate that the upper limit for applying the proposed 

dowel formulae is for beams of  a/d=3.03. 

 
3.10.3 Collins’ tests  

 
Collin et al [3-25]  reported in their paper  that structures made from HSC are more 

sensitive to the size effect in shear . This was demonstrated by  experiments in which they 

considered the performance of layered crack control reinforcement and concluded that 

layer reinforcement or HWB influences the crack size in the shear diagonal cracks, and 

therefore improves the shear resistance of the beam. However, the experiment did not fully 

explore the stabilizing arching effect of  the layer reinforcement in HSC. 

In section 2.3.7 the strain fluctuation in the centre link of NSC1, NSC3, HSC1 and HSC3  
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are investigated in detail. This link is identified as number 2 in Figure 2.36  and since it is 

located in the middle of shear span, its strain fluctuations clearly demonstrate the 

contribution of HWB to resist shear forces. 
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B100D 1000 300 925 36 2100 9.8 19,6 1 32.87 0.008 1.15 
 

1.18 1..21 
 

1.73 

BND100 1000 300 925 37.2 2100 8 16 1 27.88 0.008 0.91 
 

0.94 
 

1.00 
 

1.42 

BND50 500 300 450 37.2 1100 5.7 11.4 1 20.55 0.008 1.19 
 

1.12 
 

1.13 
 

1.65 

BND25 250 300 225 37.2 600 4.8 9.6 1 17.53 0.009 1.63 
 

1.48 
 

1.36 
 

1.90 

BHD100 1000 300 925 98.8 2100 8 16 1 38.6 0.008 0.72 
 

0.81 
 

0.94 
 

1.10 

BHD50 500 300 450 98.8 1100 5.64 11.3 1 28.17 0.008 1.03 
 

1.02 
 

1.15 
 

1.42 

BHD25 250 300 225 98.8 600 4.8 9.6 1 24.26 0.009 1.19 
 

1. 10 
 

1.37 
 

1.36 

Table 3.24: Table of comparison for author’s design proposal with Collins’ modified 
compression and modified ACI proposals for beams tested by Collins. 

 
3.11 Summary and comments 

 

In general, tests on HSC beams proved that HWB located towards the centre of the beam  

improve the shear resistance significantly. The results for beam HSC4 compared with 

those for HSC1 proved there is an enhancement of shear resistance  of about 130% when 

horizontal web steel is provided. 

 
HWB can provide added ductility and resistance to accidental loading. In particular, for 

design purposes, when considering fire exposure, to have  their location protected by the 

surrounding concrete would be of some advantage.  

 

According to the  truss analysis  method which is the proposed  method  of BS8110,  

although maximum allowable spacing between links is 200mm and in the experiment 

spacing of  link for  beam NSCL was 300mm,  with  less shear links (ρw fy bd=31.4 kN)  

tyhan NSC1 (ρw fybd=34.5 kN) , with all other parameters identical, surprisingly NSCL  

has an improved shear resistance of 70% compared to NSC1. The behaviour of 

compression horizontal strut in STM can be influenced by the presence of confinement 
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links in the flexural span near loading point. This  phenomena is analysed in Chapter 6 in a 

parametric model.  

  

When Baumann-Motamed's equation for shear resistance of HWB  was applied to beams  

tested by Collins et al [3-25], the equation gave a satisfactory prediction when used in 

conjunction with shear design guidelines in  BS8110, EC2, ACI and CSA codes. 

 
 
3.12 Conclusion 

 
Experimental and theoretical studies have shown that HSC can be used economically for 

column members of the structures, but its shear performance and its brittle inductile 

material property need to be taken into consideration.  

 

Shear resistance of HSC is equal to and, in some cases, particularly with limestone 

aggregate,  less than NSC.  

 

The decrease in shear strength for HSC members with or  without shear reinforcement has 

resulted in  restrictions being imposed on the use of HSC in such codes  as the  Concrete 

Society is [3-36] and EC2-BS EN [3-10] which  limit fc and  fcu to 50 and 60 MPa 

respectively.  

 

The proposed design rule to predict the contribution of  HWB in resisting shear  provides a 

reliable approach  for shear design of HSC beams of a/d≤3. 

 

In section  3.2.12 it was demonstrated that arching action fully develops in HSC with 

HWB of a/3=3.02, 3.2.12whereas when HWB is absent in the same beam no arching action 

develop at all. In the following chapter, F.E approach is used  to analyse the forces and 

moments on the HWB   to demonstrate that dowel action on HWB results in  sufficient 

moment to produce full arching in the diagonal compression strut.  
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Chapter 4 

Finite Element Analysis of NSC and HSC Beams  

with Horizontal Web Bar  

4.1 Introduction 
 

Advances in computer technology have facilitated solving  engineering problems, however, 

can have the  unfortunate side-effect of downplaying the importance of sound engineering 

knowledge. Although vital to current design practice, computer use, if not subordinated to 

design experience and engineering judgement, would be a recipe for disaster. 

Different methods have been utilized to study the response of structural components. 

Experimental based testing has been widely used as a means to analyze individual elements, 

while experimental methods produce realistic and accurate results but they are costly and time 

consuming. There are presently several  user-friendly non linear FE software packages  

available for researchers and designers in order to predict shear behaviour of RC structures.  

 

To understand the capabilities of FE computer software, one must look to experimental data 

and simple analysis. Results obtained from a FE analysis packages are not reliable or useful 

unless the necessary steps are taken to understand what is happening within the model that is 

created using the software.  

 

Non linear  FE modelling of shear behaviour of brittle concrete structures involves processing  

large amount of constitutive models and parameters which are very complex to calibrate. 

Mesh properties, solver configurations or boundary conditions can also significantly influence 

the FE results. Executing the necessary checks along the way is the key to make sure that the 

output by the non linear FE software is valid.  

 

The FE models are developed using  ANSYS version 11 software package, which offers a 

large variety  of constitutive models for concrete and reinforcement. Smeared, discrete and 

combined cracking models in reinforced concrete are investigated  and the main features of the 

constitutive models are discussed.  The nonlinear FE models developed by this writer is 

verified and validated by his experiments on beams described  in this chapter and experiments 
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by others on short beams and BCJ in chapter 7 in order  to  validate proposed analytical 

methods for shear design. In Chapter 8 a non linear FE parametric investigation for TBCJ will 

be presented in order to validate the proposed design rule. 

 

In this chapter, a non-linear FE computer program, ANSYS, is used to idealise experimentally 

tested RC beams with shear span/depth ratio of a/d=3.02.  The results of the analysis are then 

compared with the experimental results to verify and validate the accuracy of the FE model.  

Furthermore, the FE model for HSC beams with HWB is used to develop and refine the 

nonlinear STM for the practical shear design and analysis in the HSC reinforced concrete 

beams with HWB and HSC beam column joints with CVB.  

It is encouraging to note that reasonable agreement between predictions of  the FE model of 

the experimental test data, covering a wide range such as variation  in shear span ratios,  

influence of size of support plates, percentage of  HWB reinforcement and concrete strength,   

has been found with no adjustments made to the theoretical model from problem to problem in 

order to make the theory match experiments. 

Nonlinear techniques were employed to select, analyse and verify processes of STM in the FE 

analysis in order to eliminate the limitations of the conventional STM relating to the behaviour 

of reinforced concrete beams. 

4.2 Objectives  
 

The purpose of this chapter is to demonstrate that by proper amalgamation  of the various first  

order factors it is possible to reliably predict the shear characteristics such as  load -deflection 

or strains in reinforcement to load and ultimate failure load of reinforced concrete beams. 

 

The objectives are achieved  as follows: 

  

1. To review FE material property  models proposed by others for concrete and steel 

properties for the reinforced concrete structure. 

2. To demonstrate that by proper amalgamation of the various first order factors it is 

possible to reliably predict the shear characteristics of reinforced concrete beams. 
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3. To FE model bond  represent  dowel action produced by  longitudinal reinforcement  

showing the location of the occurrence of the maximum dowel. It is notable, that in this 

research the concrete-steel interface is assumed to be fully bonded. Whereas, in practice full 

bond slippage occurs. However, this compromise enabled identifying the location of the 

maximum moment on the HWB, which is  the main objective for FE modeling in order to use 

the data for developing an STM while minimizing the possibility of early numerical 

instabilities associated with post-cracking behaviour. 

4. To develop correct coefficients for FE model to analyse HSC beams of a/d=3.02. 

5. To develop FE models to analyse nonlinearly NSC and HSC beams with HWB of 

a/d=3.02. 

6. To compare the results obtained by FE analysis with those of this writer’s experimental 

results from past research on beams of a/d=3.02. 

 

The results obtained from nonlinear FE  for HSC beam with HWB are later used  to develop 

STM for HSC beam column joints with CVB. 

 

The redistribution of internal forces due to material nonlinearity (concrete cracking, concrete 

softening and steel yielding) are allowed. The redistribution of internal stresses allows the 

reorientation of principal stresses, leading to a higher accuracy.  It should be noted that to 

allow for the redistribution of internal forces due to material nonlinearity, FE setting of 

tolerance for displacement is eventually  increased from 0.05  for convergence criteria.  

 

The material and geometric nonlinearity of conventional STM usually does not fully take into 

account the tensile contribution of concrete. In  nonlinear STM , the concrete tensile 

contribution could be either in plain concrete or reinforced concrete ties. Reinforced concrete 

ties are concrete ties that contain reinforcing bars inside, while plain concrete ties have no 

reinforcing bars. In plain concrete ties, after the concrete cracks, the tie strength drops very 

rapidly and becomes dependent mainly on the bridging tensile stress transferred across the 

crack surface, while in reinforced concrete ties the concrete between cracks still has the ability 

to contribute towards resisting tie deformations through the tension stiffening effect. 
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In FE analysis, geometrical nonlinearity is  introduced by updating the displacements at every 

iteration and by computing the strains based on the most updated displacements. The new 

position of the member is used to compute the elongation, hence the current strain. In 

nonlinear analysis of statically indeterminate STM, the absorbed energy in potential plastic 

hinges in reinforcement allows internal redistribution of stresses and hence enables the 

utilization of higher load carrying capacities. It is concluded that the nonlinear STM allows 

more economical design than the conventional STM and eliminates uncertainties related to FE 

prediction of shear performance of RC structures. 

 

It is notable that  there is a general scarcity of reported experimental data for HSC components. 

To this writer’s knowledge, no attempt has been made to apply FE and STM to the higher 

range of concrete strengths for beams with HWB as an additional  shear reinforcement.  

 

4.3 Review of  finite element research on  shear  in  RC beams 
 

Over the last three decades, there has been significant activity in the area of analysis of 

concrete structures by the finite element method. For the recently reported nonlinear FE 

models to be reliable, such techniques must be capable of predicting a number of different 

failure mechanisms and must be sufficiently discriminating so that the critical failure 

mechanism which would occur in the real structure is that which the analysis predicts [4-1].  

 

There have been numerous attempts  to amalgamate various factors incorporated into the 

various proposed models in order to achieve the required reliability. However, with regards to 

non-linear FE analysis of structural concrete, there are still  many remaining challenges  to 

solve. 

 

A set of 12 beams of real life scale RC beams were tested by Bresler and Scordelis [4-2]  to 

investigate the problem of brittle shear failure  with and without stirrups. Vidosa et al  [4-3] 

report that those 12 beams  have been used for more than half a dozen  FE studies to 

investigate the complexities involved with non-linear modelling of  brittle shear failure in RC 

beams. One example is a study  by Blaauwendraad and Zheng [4-4] emphasized that  at the 
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time of publication of their paper in 1992, there were major problems associated with the 

prediction of shear characteristics of simple RC beams when using numerical techniques. 

Seraj, S. M, Korsovos, M. D. and Pavlovic, M. N. A. [4-5] applied a three-dimensional FE 

model for structural concrete, based on brittle constitutive relationships at the material level to 

the analysis of reinforced concrete members. The generality of the 'constant-parameter' FE 

model, previously established for NSC, was extended to high-strength mixes. A high-strength 

rectangular member was also considered.  

The analysis of the various structural components was preceded by the modelling of a 

particular, normal-strength T-beam, which was studied by adopting a number of mesh 

discretizations in order to accomplish an economical solution without impairing the accuracy 

of the numerical predictions. What emerged from their investigation was that the existing FE 

model, applied in the past to NSC, is just as applicable to high-strength mixes. They 

recommended that the accuracy of FE material modelling could improve if the acceptable ratio 

of the model elements to aggregate size was kept to  about 3. Based on their research, this 

writer’s FE model  has maintained meshing of concrete elements dimension with the 

minimum size of 50mm for NSC and HSC which is made with aggregates of 25mm  and 

10mm. 

     

Kachlakev, et al [4-6]  studied concrete beam members with externally bonded carbon fibre 

reinforced polymer (CFRP) fabric. Symmetry allowed one quarter of the beam to be modelled.  

At planes of symmetry, the displacement in the direction perpendicular to the plane was set to 

zero. A single line support was utilized to allow rotation at the supports. Loads were placed at 

third points along the full beam on top of steel plates. The mesh was refined immediately 

beneath the load. Reduction of the dimensions of elements size to smaller than aggregate size 

may misrepresent  the properties of concrete [4-5].   

 

The property model Link 8  chosen for the reinforcement in the analysis [4-6] does not model 

traverse forces acting on the reinforcement which result in  bending or dowel action produced 

by the reinforcement. To improve modelling of the reinforcement , the  property model for 
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reinforcement applied for this writer’s FE numerical models is Beam 188 which models 

bending to model realistic representation of the  dowel action in the reinforcement.  

 

Zhang and Raoof [4-7]  numerically  modelled bond between steel and concrete and proposed 

an equation for tension stiffening in post cracking behaviour of the concrete . They proposed 

2- D  FE model  for concrete properties in the biaxial stress failure envelope  defined in three 

regions in the principal stress space, Figure 4.1, by amalgamation of  Kupfer and Gerstle’s 

[40-9] model under compression-compression and  Balakrishnan and Murray [4-10] model 

under compression-compression state of biaxial loading. 

 

Their model combines smear cracking with plasticity and propose  bonds in the steel concrete 

interface to be made of spring like  linkage element along the edge of the solid steel and 

concrete element in order to follow transition from zero slip to full-slip. Their model to 

represent bond slippage at steel concrete interface by introducing the linkage element along 

the edge of steel  consists of  two orthogonal springs connecting and transmitting  shear and 

normal forces  across two nodes with the stiffness in the two orthogonal directions assumed 

uncoupled , Figure 4.8. Their model is comparable to that of  Houde and Mirza’s [4-17]  

model which proposed tangential springs at crack and steel concrete interface, see section 

2.2.7.6. They  introduced a modified empirical  equation order for tension stiffening based on 

Bhide’s [4-8]  equation in order to calibrate their FE model with Bresler and Scordelis [4-2] 

experimental results.  

 

4.4 Material behaviour 
 
 
4.4.1 Failure surface of concrete  

 

Kupfer and Gerstle [4-9]  proposed that in a plane stress state, the biaxial stress failure  

envelope is defined in three regions in the principal stress space, Figure 4.1, tension-tension, 

tension-compression, compression-compression and under tension-tension state of principal 

stresses. Concrete cracking normal to the direction of a principal stress takes place when the 

magnitude of the principal stress exceeds concrete tensile strength, ft’.  
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Under compression-compression state of biaxial loading, the formulation originally proposed 

by Kupfer and Gerstle [4-9] is: 

2)1(

65.31

α
ασ

+
+−=cu  fc

’     4.1 

where 

fc
’= uniaxial compressive strength of concrete (always +ve)  

α = σ1 / σ2 ,  σ1 and σ2  are the principal stresses with σ1 being greater or equal to σ2 

 

In the tension-compression zone, a bilinear failure envelope, Balakrishnan and Murray [4-10],  

shown in Figure 4.1, proposed two distinctly different types (i.e.either tension or compression) 

of failure, under tension-compression state of biaxial loading, can take place depending on the 

value of the parameters αA and σA defined as  

 

'

'

34
23

c

t
A f

f−=α     4.2 

'' 85.05.0 ctA ff −=σ   4.3 
 
where ft’ = uniaxial tensile strength with ft’ and fc’ (always +ve). 
 
In the above two equations the parameters  αA and σA define the location of point A in Figure 

4.1. For a value of α=σ1/σ2 larger than αA, a crushing failure of concrete takes 

place when the principal stresses reach the failure envelope between points A and C. For 

values of α less than αA, tensile failure will occur for combinations of principal stresses  σ1 and 

σ2 exceeding the failure envelope between points A and B. It is notable  that in view of the 

very small magnitude of the angle θ in Figure 4.1, early divergence can take place for certain 

combinations of σ1 and σ2 in the near vicinity of point B.  

 

To avoid such potential problems, for values of the principal compressive (or tensile) stress 

2σ <ft
’ occurrence of the crack is assumed to be followed by gradual increases in the 

magnitude of the compressive (or tensile) stress parallel to the crack direction up to a limit of 

ft
’  as dictated by the ascending part of the stress-strain curve for biaxial loading to be 

discussed in the next section. This model combines smeared cracking with plasticity. 
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A 3-D  model  proposed by William and Warnke [4-11] is capable of predicting failure for 

concrete materials. Both cracking and crushing failure modes are accounted for. The two input 

strength parameters, i.e., ultimate uniaxial tensile and compressive strengths, are needed to 

define a failure surface for the concrete. Consequently, a criterion for failure of the concrete 

due to a multiaxial stress state can be calculated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1: Failure surface of concrete  in the two-dimensional principal stress plane 
 
 

A three-dimensional failure surface for concrete is shown in Figure 4.2. The most significant  

nonzero principal stresses are in the x and y directions, represented by σxp and σyp, respectively. 

Three failure surfaces are shown as projections on the σxp-σyp plane. 

 

The mode of failure is a function of the sign of σzp (principal stress in the z direction). For 

example, if σxp and σyp are both negative (compressive) and σzp is slightly positive (tensile), 

cracking would be predicted in a direction perpendicular to σzp. However, if σzp is zero or 

slightly negative, the material is assumed to crush [ANSYS v.11]. 

 

In a concrete element, cracking occurs when the principal tensile stress in any direction lies  

outside the failure surface. After cracking, the elastic modulus of the concrete element is set to 

zero in the direction parallel to the principal tensile stress direction. 
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Crushing occurs when all principal stresses are compressive and lie outside the failure surface; 

subsequently, the elastic modulus is set to zero in all directions, and the element effectively 

disappears. 

 

Figure 4.2: failure surface for concrete in 3-D, William and Warnke’s [4-11] model 
 
William and Warnke’s [4-11]  concrete material model predicts the failure of brittle materials. 

Both cracking and crushing failure modes are accounted for. this material model is accessed 

with the reinforced concrete element Solid 65 ( described in  section-----). 

The criterion for failure of concrete due to a multiaxial stress state can be expressed in the 

form: 

0≥− S
f

F

c

      4.4 

where: 

F = a function of the principal stress state (σxp, σ yp, σzp) 

S = failure surface expressed in terms of principal stresses and five input parameters ft, fc, fcb, 

f1, f2 and fc defined below 

σxp, σyp, σzp = principal stresses in principal directions 

If equation 0≥− S
f

F

c

      4.4 is satisfied, the material will crack or crush. 

A total of five input strength parameters are needed to define the failure surface as well as an 

ambient hydrostatic stress state are: 

ft Ultimate uniaxial tensile strength  

fc Ultimate uniaxial compressive strength  



__________________________________________________________________________ 
_Motamed, J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’                      

 
 

157

fcb Ultimate biaxial compressive strength  

f1 Ultimate compressive strength for a state of biaxial compression superimposed on 

hydrostatic stress state (ahσ  ) 

f2 Ultimate compressive strength for a state of uniaxial compression superimposed on 

hydrostatic stress state (ahσ ) 

a
hσ  hydrostatic stress state 

However, the failure surface can be specified with a minimum of two constants, ft and fc. The 

other three constants default to [4-11]: 

fcb =1.2 fc       4.5 

f1  =1.45 fc      4.6  

f2 = 1.725 fc  4.7 

However, these default values are valid only for stress states where the condition 

ch f⋅≤ 3σ     4.8 

σh=hydrostatic stress state = ( )zpypxp σσσ ++
3

1
       4.9 

is satisfied. Thus condition  ch f⋅≤ 3σ     4.8  applies to stress situations with a low 

hydrostatic stress component. All five failure parameters should be specified when a large 

hydrostatic stress component is expected. However,  if this condition is not satisfied and the 

default values shown in fcb =1.2 fc       4.5 through ch f⋅≤ 3σ     4.8 are assumed, the 

strength of the concrete material may be incorrectly evaluated. 

 

When the crushing capability is suppressed with fc = -1.0, the material cracks whenever a 

principal stress component exceeds ft. 

In the following chapters of this thesis, William and Warnke [4-11] model is adopted in 

ANSYS v.11 for the analysis of 3-D failure surface for concrete while the crushing capability 

is turned off and cracking of the concrete control the failure of the FE models. 

 

4.4.2 Stress-strain relationship up to failure 

  

Concrete is assumed isotropic up to failure either by crushing in compression or cracking in  
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tension. Development of a model for the behaviour of concrete is a challenging task. Concrete 

is a quasi-brittle material and has different behaviour in compression and tension. The tensile 

strength of NSC is approximately 8-15% of the compressive strength, shows a typical stress-

strain curve for NSC. 

 

The uniaxial stress-strain curve for compression originally proposed by Saenz [4-12], using 

the notation of reference [4-13], the concrete compressive stress, fc is given as: 
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where the various terms are defined in Figure 4.3 with f m = f cm for compressive loading as 

decided by the failure surface.  

 

Soltani [4-14] introduced an interesting  post cracking constitutive laws  and applications to 

nonlinear finite element analysis.  

 

Bangash’s  [4-15] stress-strain curve, when concrete is in compression, is linearly elastic up to 

about 30 percent of the maximum compressive strength. Above this point, the stress increases 

gradually up to the maximum compressive strength, fm
t. After this the curve descends into a 

softening region, and eventually crushing failure occurs at an ultimate strain ε1 . In tension, the 

stress-strain curve for concrete is approximately linearly elastic up to the maximum tensile 

strength. After this point, the concrete cracks and the strength decreases gradually to zero. 

Bangash’s  [4-15] Stress-strain curve for concrete is used in ANSYS v.11. 
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Figure 4.3: Stress-strain curve for concrete  
 

 

4.4.3 Experimental  measurement of the triaxial stress failure envelope 

 

The Triaxial stress testing machine, Figure 4.4 measures 3-D failure surface in principal stress.  

 

The Figure 4.4 shows stages of construction and  the important  components of the triaxial 

stress testing machine.  

 

Figure 4.4 shows: a) Installation stage for the triaxial testing equipment at the department of  

Civil & Structural Engineering of University of Sheffield . b) Installation completed ready for 

operation . c) Detailed drawing of the position of the frame in relation to the 3-D co-ordinates.   

d) Loading plates for positioning  the specimen. 

 

Figure 4.5 shows critical locations for measurement which are as follows: 

Path 0-7: arbitrary stress excursion which may be experienced by a material point in a 

structure. 

Point 7: stress probes for direct identification of the stiffness matrix. 

Grey zones ( at 0 and 7): extent of elastic nucleus. 
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c) 

 

b) 

d) 

 

 

 
5 a) 

Figure 4.4: Triaxial stress testing machine at University of Sheffield, Department of 
Structural Engineering.  
 

Point 8: direction of the normal to the yield surface and direction of a plastic strain rate during 

loading. 

Point 9: starting hydrostatic stress state for a number of test paths. 

Path 9-10:stair-step path parallel to σ1
 and σ2 principal directions. 

Path 9-11: proportional stress path with excursion parallel to hydrostatic axis. 
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Path 9-12: uniaxial stress paths in each of the three principal directions. 

Path 13: circular locus within a single deviatoric plane. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Critical locations for measurement of  3-D failure surface in principal stress 
space using triaxial stress testing machine 
 

 
4.3.4 Cracks models 

 
Considerable effort has been devoted in recent years to developing numerical methods and 

models to simulate the real behaviour of quasi-brittle material such as concrete. Traditionally, 

the numerical models are based on FE and are classified into two groups: “smeared” crack 

approach and “discrete” crack approach. In the smeared crack models the fracture or crack is 

represented as smeared over a finite area .  

 
The above two methods, are in general, used to model cracking in nonlinear FE of reinforced 
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concrete structures. In the smeared crack method, cracking is smeared within the element in 

contrast to the discrete approach where a gap is introduced into the mesh after cracking. The 

discrete crack approach is more accurate than the smeared crack formulation but it is  more 

complicated to implement in a FE model because  change of the nodal connectivity is required 

as soon as the crack forms and  the crack must follow the element edges. The smeared crack 

approach is an idealization that the cracked element is a band which  leads to “stress locking” 

effects near the crack.  

 

The general conclusion and recommendations for crack modelling with ANSYS drawn from 

the research published by a joint collaboration of Danish and Bulgarian universities based  on 

the numerical results [4-16} are as follows:  

Using 3D ANSYS modelling it is possible to properly simulate the nonlinear behaviour of R/C 

beams without shear reinforcement,  with a moderate shear span size  of a/d=3.  ANSYS 3D 

concrete element is a very good model concerning the flexural and shear crack development 

but poor concerning the crushing state. However this deficiency could be removed by 

employing a certain multilinear plasticity option available in ANSYS. 

The particular concrete FE does not consider one of the most important fracture mechanics 

parameter – the fracture energy G
F
., which means that in the case of a concrete beam with no 

reinforcement it would not be possible to reach a proper solution. 

The ANSYS smeared approach for beams with moderate shear span does not reproduce 

satisfactorily the softening due to big sliding emerging at the critical shear crack. That is likely 

to be more realistically achieved by  a 2D discrete crack approach. 

Further results and the parametric study, not given in the paper [4-16], suggest that  some 

correction factors are needed to adjust the values of material parameters available from the 

experiment in order to convert them to effective parameters related to the particular modeling.  

Therefore, much more research is needed in order to develop a similar simulation for R/C 

deeper beams and to suggest reliable methods for adjusting the experimental material data to 

effective parameter data suitable to particular finite element models.  

 
The above conclusion  suggested that a new 2D “discrete” crack model should be developed in  

order to handle the big amount of sliding attributed to the development of the critical crack. 

The ANSYS program with its nonlinear options and capabilities is employed again to achieve 
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this aim, by introducing the model shown in Figure 4.6 which  is similar to Houde and Mirza’s 

[4-17] original model which proposed tangential springs at crack and steel concrete interface, 

section 2.2.7.6. 

 

This research  group [4-18] developed numerical models for nonlinear analysis of structures 

made from quasi brittle concrete materials using the fracture mechanics approach and  

concluded that:  

 
o The present variant of the modelling is based on prescribing in advance discrete cracks 

and nonlinear translational springs at the crack interface, Figure 4.6. The discrete crack path is 

developed by the means of linear fracture mechanics and the results showed a good fit with the 

ones experimentally observed.  

o In general, this 2-D numerical simulation is capable of successfully simulating the real 

behaviour of RC beams for different values of a/d ratio.  

o The type of failure, the development of the critical shear crack, as well as the ultimate 

external load are captured well, but not the fitting with the experimental load-deflection curve 

within the full range of displacements. 

o The plasticity in reinforcement and concrete in the compression zone is reproduced with 

sufficient accuracy including the final failure phase of the simulation.  

o The main drawback of the suggested model is the way the constitutive data for the 

tangential springs is extracted. The existing and important relationship between the normal 

and tangential relative displacements is not modelled, therefore an important phenomena such 

as dilatation is not present in the model.  

 

A new and improved  constitutive mode, independent from those available in ANSYS, should 

be developed. Probably the new model should be based on the damage or softening plasticity 

theory. The relationship between normal and tangential stresses will be related through a 

“failure surface”, so it is natural to get the proper displacements relationship. Therefore, the 

dilatancy phenomena may be handled and controlled properly. 
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•  

Figure 4.6: The normal and tangential nonlinear springs  at the contact interfaces of the 
cracks to simulate the complex nonlinear processes which are happening in the cracks as 
the loading process is progressing. 
 

 

Sagaseta [4-19] and Vollum [4-20] suggest that  to implement the aggregate interlock 

phenomena into the calculations crack dilatancy models are used with constitutive laws that 

can be based on an empirical formulation proposed by Hamadi & Regan [4-21], obtained from 

experimental data from push-off tests whose stiffness parameter k was 5.4N/mm2 and 

2.7N/mm2 for natural gravel and expanded clay aggregates respectively. According to equation 

( s
w

k
cr ∆⋅

∆
=τ        4.12) the aggregate interlock stiffness depends only on the type of aggregate 

and crack width. Hamadi & Regan [4-21] used a shear friction type of formula ( µστ += cult        

4.13) to obtain the shear capacity (τult), in which the cohesion (c) and friction (µ) parameters 

need to be estimated, and τcr is the shear stress at  the crack. Although this approach is 

commonly used in design codes, the influence of the crack width is neglected. 

s
w

k
cr ∆⋅

∆
=τ        4.12 

µστ += cult        4.13 
 

Fanning [4-22] modelled the response of the reinforcement using both the discrete and  

smeared models for reinforced concrete beams. It was found that the best modelling strategy 

was to use the discrete model when modelling reinforcement. Another reason for not choosing 

the smeared model is that it assumes negligible contributions of aggregate interlock and 

dowel-action to shear capacity  at peak load. Smeared model was not chosen partly in view of 

these findings [4-3].  
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In this thesis, the discrete model is used for modelling  cracks in order to present the location 

of  maximum moment on the HWB  for further mechanical modelling with STM.  

 

4.3.5 FE modelling of steel reinforcement 

 

Tavarez [4-23] discusses the three existing techniques for modelling steel reinforcement in 

finite element models for reinforced concrete Figure 4.7, the discrete model, the embedded  

model, and the smeared model. 

 

The reinforcement in the discrete model (a) uses bar or beam elements that are connected to 

concrete mesh nodes. Therefore, the concrete and the reinforcement mesh share the same 

nodes and concrete occupies the same regions occupied by the reinforcement. A drawback to 

this model is that the concrete mesh is restricted by the location of the reinforcement and bond 

slippage between concrete and steel is not taken into account and the volume of the steel 

reinforcement is not deducted from the concrete volume.  

 

The embedded model (b) overcomes the concrete mesh restriction(s) because the stiffness of 

the reinforcing steel is evaluated separately from the concrete elements. The model is built in a 

way that keeps reinforcing steel displacements compatible with the surrounding concrete 

elements. When reinforcement is complex, this model is very advantageous. However, this 

model increases the number of nodes and degrees of freedom in the model, therefore, 

increasing the run time and computational costs. As a result, this model was abandoned.  

 

Reinforcement elements are assumed to be embedded in plane stress main elements. Extra 

attention regarding the normal and shear stiffness must be given if the reinforcement is 

embedded in interface elements. This situation arises at discrete cracks crossed by 

reinforcement bars. A number of phenomena related to dowel action and bond-slip effects take 

place at the crack where it is crossed by reinforcement as outlined by  Maekawa et al. [4-24]  

and Soltani et al. [4-25]. Bond stresses are decidedly influenced by deterioration of the 

concrete surrounding the reinforcement bar due to splitting and crushing of the concrete. In 

addition, if the reinforcement is at an angle to the shear plane, the deterioration length 

increases due to spalling of the concrete near the reinforcement bar at the crack  [4-25]. 
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Figure 4.7: Models for Reinforcement in Reinforced Concrete Tavarez : (a) discrete; (b) 
embedded; and (c) smeared 

Source: ANSYS 9: 2003 

 

4.3.6 Bond at concrete steel interface 

The present knowledge in structural analysis and numerical analysis is far ahead of the actual 

material characteristics. This is predominantly true for concrete materials and even more so for 

steel - concrete bond. Experiments attempting to determine '  bond stress-slip curves typically 

exhibit a large scatter of data  [4-26 ] and such curves are not applicable to displacements 

between steel and concrete transverse to the reinforcement which would,  then, require 

assignment of an arbitrary stiffness.  

A detailed modelling of the localised bond behaviour between steel and concrete with realistic 

modelling of concrete between discrete cracks is also burdened with difficulties. Despite all 

these difficulties, the condition of full bond between steel and concrete elements assumed in 

this thesis for FE analysis in this chapter and chapter 7 and 8. This condition of full bond 

significantly reduces the true moments on the surface of the HWB at steel concrete interface. 
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 If this full bond did not exist and bond slippage was allowed when the HWB yields at failure 

load, then much higher moments would have been recorded for the moments on the surface of 

the HWB, however, condition of full bond modelled results in producing much smaller 

moment at this interface for the HWB. 

On way of  improving the model is  by using  the fundamental idea for two dimensional 

modelling proposed is by introducing simple two-dimensional linkage elements  [4-26] [ 4-

27 ], Figure 4.8,  along the edges of the solid steel and concrete elements in order to follow the 

transition from no-slip to full-slip (and beyond) at the steel/concrete interfaces in, admittedly, 

an approximate fashion. This technique should provide a reasonable insight into the validity of 

the extensively adopted assumption of full-bond. 

 

 

 

 

 

 

 

 

4  
5  

Figure 4.8: Two dimensional  Link element  
Source from: Zhang and Raoof [4-7]   

The linkage element consists of two orthogonal springs which connect and transmit shear and 

normal forces between nodes i and j, Figure 4.8, with the stiffness in the two orthogonal 

directions assumed uncoupled, The spring element has no physical thickness in either 

tangential \or normal directions, and obviously this will lead to fictitious behaviour in the 

radial direction - i.e. for a compressive state of loading in the spring normal to the interface, 

the adjacent steel and concrete elements can interfere with associated changes in the relative 

position of two nodes, which are originally coincident. This interference may be reduced by  

Node i 

Node j 
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using a high value of the spring stiffness bearing in mind that if the spring is too stiff then 

numerical problems will result. In connection 

with the numerical analysis of grouted tubular joints, Elnashai [4-28] suggested values of the 

normal stiffnesses En = 1000 N/mm3 and Ent = 100N/mm3 in compression and tension, 

respectively. Such values of En and Ent calibrated well with the, then, available 

experimental data. Carroll  [4-29], on the other hand, concluded that the range of values 

assumed for the normal compressive stiffness in the case of grouted tubular joints may vary 

from at least 100 N/mm3 to 10,000 N/mm3 without significantly affecting the results. 

The Zhang and Raoof [4-7] carried out rather extensive numerical studies, based on a wide 

range of values of normal stiffnesses, on a number of reinforced concrete beams with full 

anchorage provided at the ends of the main reinforcing bars  [ 4-30]. These studies strongly 

suggested the relative insensitivity of the calculated ultimate load bearing capacity to the 

assumed values of the normal stiffness, although, their extremely high (or low, depending on 

the mesh) values were found to lead to numerical difficulties. 

Values of En = 10,000 N/mm3 and Ent = 1,000 N/mm3  in general, provide reasonable results 

and was chosen for all the subsequent numerical results presented. The load bearing capacity 

of the normal spring is, on the other hand, limited by its tensile and compressive strengths (fnt 

and fnc). In compression, the spring strength is taken to be equal to the cube crushing strength 

of concrete (fcu), while a value of 0.5(fcu)
0.5 has been used in tension [4-31].  

In the case of the tangential direction, a bilinear elasto-plastic stress-strain behaviour is 

assumed with the ultimate shear strength determined by Mohr-Columb criterion [4-32]- i.e.  

nγσττ += 0  

Where  = shear strength, σn = normal stress, γ = friction coefficient, and τ0= intrinsic shear 

strength which represents plain bond strength. It must be noted that the actual functional 

relating the normal and bond stresses is unlikely to be linear in practice. However, the 

assumption of a linear relationship should suffice until more detailed experimental information  
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is available. It is assumed that τ0= 1.12 N/mm2 [4-31] and   γ = 0.5. The tangential shear 

stiffness ES1 has been suggested to lie in the range    600 ≥ES1≥10N/mm3 [4-28]. Numerical 

results on reinforced concrete beams with the main reinforcing bars firmly hooked at the ends, 

however, suggest the rather insensitive 

 

 

 

 

 

 

a) Failure surface                     b) Normal σn - Sn relationship          c) Shear τ - Ss relation 

6  
Figure 4.9: relation between (τ) shear strength,  (σn) normal stress, and tangential 
stiffness in the link 

Source from: Zhang and Raoof [4-7]   

variations of the load-deflection and / or ultimate load bearing capacity of beams to the exact 

value chosen for ES1.  

 

4.3.7 Material properties for steel   

Properties, i.e., elastic modulus and yield stress, for the steel reinforcement used in this FEM 

study follow the design material properties used for the experimental investigation [4-33]. The 

steel for the FE models was assumed to be an elastic-perfectly plastic material and identical in 

tension and compression. 

 

Poisson’s ratio of 0.3 and elastic modulus, Es = 200,000 MPa was used for the steel 

reinforcement in this study [4-34].  Figure 4.10, shows the stress-strain relationship used in 

this study. Material properties for the steel reinforcement for all four models are as follows: 

 

Steel plates were added at support locations in the FE models to simulate the experiment and 

provide a more even stress distribution over the support areas. An elastic modulus equal to 
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200,000 MPa and Poisson’s ratio of 0.3 were used for the plates. The steel plates were 

assumed to be linear elastic materials. 

 

 

Figure 4.10: Stress-strain curve for steel reinforcement 
Source: Ansys 9: 2003 

 

4.4 Numerical modelling of the experimental tests 
 

The literature review suggests that use of a finite element package to model reinforced HSC 

beams is indeed feasible. ANSYS (Version 11) is chosen for this. Reinforced concrete beams 

of normal and high strength   with various types of reinforcement, using material property 

Beam 188,  modelled discretely will be developed with results compared to the experimental 

work. The load-strain  and load-deflection response, strain along reinforcement, post cracking 

and ultimate load of the experimental beam will be compared to the analytical predictions to 

calibrate the FE model for further use.  

 

The FE calibration study in this chapter includes modelling a concrete beam with the 

dimensions and properties of corresponding  beams experimentally tested by this writer listed 

in Table 3-1. 

 

To create the FE model, there are multiple tasks that have to be completed for the model to run 

properly which will be explained in the following sections.   
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4.4.1 Material  models   

 

The descriptions for each element type are laid out in the ANSYS element library [4- 37].  

An eight-node solid element, Solid65, was used to model the concrete. The solid element has 

eight nodes with three degrees of freedom at each node – translations in the nodal x, y, and z 

directions. The element is capable of plastic deformation, cracking in three orthogonal 

directions, and crushing. The geometry and node locations for this element type are shown in 

Figure 4.11. 

 

Figure 4.11: Solid 65 – 3-D reinforced concrete solid element and solid 45 element for 
loading and support plates.  This element has eight nodes with three degrees of freedom 
at each node. 

 

Figure 4.12: Beam  188 ( reinforcement) element is used to model steel reinforcement. 
This element is a 3-D spar element and it has two nodes with three degrees of freedom 

 

Source: ANSYS 9: 2003 
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Solid 45  element is well-suited for linear, large rotation, and/or large strain nonlinear 

applications, Figure 4.11. The cross sectional dimensions are scaled uniformly as a function of 

axial strain in nonlinear analysis such that the volume of the element is preserved.  

 

Transverse shear strain is constant through cross-section, i.e., cross sections remain plane and 

undistorted after deformation.  

 

Beam  188 element is used to model steel reinforcement. This element is a 3-D spar element 

and it has two nodes with three degrees of freedom. Figure 4.12 

4.4.2 Material model for the tested beams 

After introducing the Element Type, Solid 65 for concrete and Beam 188 for steel, the real 

constant for the two materials is introduced. 

Material Properties are identified by modelling such that: 

Material No 1 being concrete is modelled as structural-linear isotropic with E values 

dependent on whether it is high or normal strength. 

Nonlinear behaviour of concrete is modelled as structural-nonlinear, inelastic, non-metal 

plasticity and concrete. 

Material Model No 1 refers to the Solid 65 element. This element requires linear isotropic and 

multilinear isotropic material properties to properly model concrete. The multilinear isotropic 

material uses the Von Mises failure criteria along with the model [4-11] to define the failure of 

the concrete. EX is the modulus of elasticity of the concrete (E c), and PRXY is the Poisson’s 

ratio ( ν) which was assumed to be 0.2 for NSC and 0.24 for HSC. In the concrete  model  the 

descending branch is included. 

The data for material properties of concrete is mainly obtained from the extensive past 

research on HSC in the Construction Hall at the University of Westminster [4-35]. However, 

the values for indirect  tensile strength are chosen based on this writer’s proposed rule  

fct= 0.47√ fcu . 
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Parameters needed to define the material models can be found in Table 4-1. As seen in this 

table , there are multiple parts of the material model for each element. 

For the beams tested by this writer two different material properties for HSC and NSC are 

considered for the two different  yield strengths of the  longitudinal bars  and stirrups. In 

choosing beam sections for Beam 188, three different bar sections are considered, which are  

for longitudinal tension and compression (1), longitudinal web bars(2) and stirrups (3).  

In the past, to this writer's knowledge, when ANSYS was used by other researchers [4-6] for 

FE analysis of reinforced concrete structure, material property model Beam 188 had not been 

developed at the time so Link 8 was utilised which only takes axial force  to model the 

reinforcement. In this thesis, this writer  uses model Beam 188  successfully to model bending 

moment due to dowel moments resisted by  HWB and CVB in the reinforcement in the BCJ. 

Implementation of the material model in ANSYS requires that different constants be defined. 

These are:  

1. Shear transfer coefficients for an open crack 

2. Shear transfer coefficients for a closed crack 

3. Uniaxial tensile cracking stress 

4. Uniaxial crushing stress (positive) 

5. Biaxial crushing stress (positive) 

Shear transfer coefficients are factors applied to shear modulus in the direction of cracking. 

 

At the University of Westminster, extensive experimental work  on properties of HSC were 

completed and published, [2-36] from which  data for material properties of  NSC and HSC is 

provided for this chapter.  

Typical shear transfer coefficients range from 0.0 to 1.0, with 0.0 representing a smooth crack 

(complete loss of shear transfer) and 1.0 representing a rough crack (no loss of shear transfer). 

The shear transfer coefficients for open and closed cracks were determined using past research 

[4-6] as a basis. Convergence problems occurred when the shear transfer coefficient for the 

open crack dropped below 0.15 for HSC. The coefficient of friction enables  concrete between 

cracks to be able to contribute in resisting tie deformations through the tension stiffening  

effect. 
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Numerical 
Model 

Number 

Element 
Type 

Material Properties 

 

 

 

 

 

 

  1 

 

 

 

 

 

 

Solid 65 

Linear, Elastic, Isotropic  
EX (NSC)  27,237 MPa  
EX (HSC)  45,000 MPa  
PRXY(NSC) 0.2  
PRXY(HSC) 0.24  

Nonlinear, Inelastic, Rate independent,  
Isotropic hardening plasticity, Mises plasticity, 

Multilinear Isotropic 
 NSC Strain  Stress (MPa) 
Point 1 0.00036 9.8 
Point 2 0.0006 15.40 
Point 3 0.0013 27.52 
Point 4 0.0019 32.11 
Point 5 0.00243 33.10 
 
 HSC Strain  Stress (MPa) 
Point 1 0.00035 11.69 
Point 2 0.00242 85.05 
Point 3 0.00336 89.87 
 

Non linear, Inelastic, Non metal plasticity, Concrete 
Definition of 

Constant (Notes) 

NSC HSC 
 (a/d=3.02) (a/d=3.02) 

ShrCf-Op   (1)  0.3 0.15 
ShrCf-Cl    (2)  1 1 
UnTensSt   (3)  3.11 4.87 
UnCompSt (4)  -1 -1 

Table 4-1: Material Models no 1, Element type Solid 65 ( concrete) . FE concrete models 
allows for falling branch for NSC. 
 

Material model n0s 2 & 3 refer to the Beam 188 element which  is used for all the steel 

reinforcement in the beam and is assumed to be bilinear isotropic. Bilinear isotropic material 

is also based on the Von Mises failure criteria. The bilinear model requires the yield stress (f y), 

as well as the hardening modulus of the steel to be defined. The  yield stress was defined as 

shown in Table 4-2. 
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The Beam Section is chosen in the Common Section. In Beam tool, identities are chosen 

according to the diameter of bars used for the longitudinal, stirrup or web reinforcement. 

4.4.3 Modelling elements 

 

Numerical 
Model 

Number 

Elemet 
Type 

Material Properties 

 
 
 
2 
 
 
3 

 
 
 
 
 
Beam188 

Linear, Elastic, Isotropic  
EX (NSC)  200,000 MPa  
EX (HSC)  200,000 MPa  
PRXY 0.3  
   

Non linear, Inelastic, Rate independent, Isotropic 
hardening plasticity, Mises plasticity, Bilinear Isotropic 

Type  Reinforcement Yield Stress MPa 
Cold-drawn 
Mild 

Main  460 
Link 250 

Table 4-2: Material Models, Beam 188 
 
No mid-span deflection was recorded in the experimental work. However, strain in the  mid-

span on the tension reinforcement  in X direction was recorded. This writer therefore uses 

experimental results from those readings to calibrate the FE models.  

4.4.4 Meshing 

To obtain good results from the Solid 65 element, the use of a rectangular mesh is 

recommended. Therefore, the mesh was set up such that square or rectangular elements were 

created. The overall mesh size is recommended to be about three times the size of the 

aggregate, therefore, NSC with 25mm aggregate is allocated larger mesh than HSC with 

10mm maximum size aggregate. The meshing of the reinforcement is a special case compared 

to the volumes. However, the necessary mesh attributes as described above need to  

be set before each section of the reinforcement is created.  

Numerical Model Number Elemet Type Material Properties 
4 Solid 45 EX   200,000 MPa 

PRXY 0.3 
 
Table 4-3:  Material Models,  solid 45, for support and loading plates 
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4.4.5 Nonlinear  solving procedure 

A nonlinear  solving procedure in FE analysis is adopted using Newton –Ralphson’s model  in 

which a step-iterative procedure is followed until an acceptable convergence is obtained. The 

convergence criterion here is to minimize the unbalanced forces at the nodes. The essential 

steps in the analysis scheme are: 

1)    At the beginning of the analysis, the geometry, boundary conditions and the 

incremental load vector {f} are input to the solver. 

2)    The overall stiffness matrix [K] is calculated as a function of the initial stiffness of the 

constituent materials, i.e. stiffness at strain equals zero. 

3)    The system of equilibrium equations [K]{d}={f} is solved and the nodal displacement 

vector {d} is obtained. 

4)    Once the Nodal displacements are determined, the strain in each element is calculated 

from its end displacements, and consequently both the stress and the tangent stiffness can 

be calculated from the nonlinear constitutive laws of the constituent materials. 

5)    The force in each member is calculated by multiplying the stress by the cross-sectional 

area. 

6)    The Nodal force vector {f 1} that corresponds to the current displacement field {d} is 

then calculated. At each node, the Nodal forces are computed as the algebraic sum of the 

horizontal and vertical components of the forces in the element of  the truss members 

meeting at the node of concern. 

7)    The unbalanced Nodal force vector {∆f} is determined by subtracting the compatibility 

Nodal force vector {f l} from the load vector {f}. 

8)    The convergence is checked for the unbalanced Nodal force vector {∆f} and if the 

convergence criterion is not met, another iteration is carried out. 

9)    In the new iteration, the tangent stiffness matrix [K] is calculated based on the current 

displacement field of the nodes {d}, and the equilibrium equations are again solved to get 

the displacement field {∆d} that corresponds to the unbalanced Nodal force vector {∆f} as  
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[K]{ ∆d}={ ∆f}. 

10)  The deflection is then updated by summing up the displacement vectors {d} and {∆d}. 

11)  The unbalanced Nodal force vector {∆f} is determined again based on the most 

updated displacement vector {d} as explained above in steps 4, 5, 6 and 7. 

12)  The convergence is checked again for the unbalanced Nodal force vector {∆f} and if 

the convergence criterion is not met, another iteration is carried out, and so on until the 

proposed accuracy for the solution is obtained. When the convergence is fulfilled, the next 

load increment is analyzed and so on. 

 

Figure 4.13: Nonlinear solving procedure as explained in steps 1 to 13.  

 
13)   FE principal strain vector output diagram can be used to  determine the angle of  the 

modified  diagonal Strut to develop an alternative Strut-and-tie models. The nonlinear 

Strut-and-tie model NSTM  may then be used for calculating the optimized amount of  

reinforcement as compared to the amount calculated by the linear Strut-and-tie  STM.  

For the verification and validation of the proposed model, the model results are compared to 

the experimental results of simply supported two point loaded  short beams B1 and B2 of 

shear span to depth ratio (a/d)  of 1.5 which are tested experimentally as described in the 

following section.  
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4.4.6 Evolution of crack patterns 

 

In numerical  analysis, outputs, i.e. stresses and strains, are calculated at integration points of 

the concrete solid elements. Figure 4.14 shows integration points in a concrete solid element. 

A cracking sign represented by a circle appears when the principal tensile stress exceeds the 

ultimate tensile strength of the concrete. The cracking sign appears perpendicular to the 

direction of the principal stress. 

As shown in Figure 4.16(a), principal tensile stresses at the bottom of the beam at midspan 

occur mostly in the x direction (longitudinally). When the principal stresses exceed the 

ultimate tensile strength of the concrete, circles indicating cracking signs appear perpendicular 

to the principal stresses in the x direction. Therefore the cracking signs shown in the figure 

appear as vertical straight lines occurring at the integration points of the concrete solid 

elements. Hereafter, these will be referred to as flexural cracks.  

  

Figure 4.14: Integration points in 
concrete solid element  

Figure 4.15: Cracking sign 
 

Source: ANSYS Manual [4-37] 

Figure 4.16 shows the type of cracking signs observed for concrete elements underneath the 

loading locations. The different types of concrete failure that can occur are flexural cracks, 

compression failure (crushing), and diagonal tension cracks. Flexural cracks (a) form 

vertically up the beam. Compression failures (b) are shown as circles. Diagonal tension cracks 

(c) form diagonally up the beam towards the loading that is applied.  

For a concrete structure subjected to uniaxial compression, cracks propagate primarily parallel  
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to the direction of the applied compressive load, since the cracks result from tensile strains 

developed due to Poisson’s effect [4-38 &39].  

 

Similar behaviour is seen in the FE analysis. Loads in the z direction result in tensile 

strains in the y direction by Poisson’s effect. Thus, the circles appear perpendicular to the 

principal tensile strains in the y direction at integration points in the concrete elements near the 

loading location. These will be referred to as compressive cracks. Figure 4.16(c) shows 

cracking signs where both normal and shear stresses act on concrete elements.  

Tensile stresses generally develop in the x direction and shear stresses occur in the xz plane. 

Consequently, the direction of tensile principal stresses becomes inclined from the horizontal. 

Once the principal tensile stresses exceed the ultimate tensile strength of the concrete, inclined 

circles appearing as straight lines perpendicular to the directions of the principal stresses 

appear at integration points of the concrete elements. Hereafter, these will be referred to as 

diagonal tensile cracks. 

The ANSYS programme records a crack pattern at each applied load step.  Figure 4.16 shows 

the evolution of crack patterns for each beam. In general, flexural cracks occur early at mid-

span. When applied loads increase, vertical flexural cracks spread horizontally from the mid-

span to the support. At a higher applied load, diagonal tensile cracks appear. Increasing 

applied loads induces additional diagonal and flexural cracks. Finally, compressive cracks 

appear at nearly the last applied load steps. These appear underneath the loading location. 

The first crack at an integration point is outlined with a red circle, the second  with a green, 

and the third  with a blue. 

 

Symbols shown at the element centroid  are based on the status of all of the element's 

integration points. If any integration point in the element has crushed, the crushed 

(octahedron) symbol is shown. If any integration point has cracked or cracked and closed, the 

cracked symbol is shown at the element centroid.  

 

If at least five integration points have cracked and closed, the cracked and closed symbol is 

shown at the element centroid. Finally, if more than one integration point has cracked, the 
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circle outline at the element centroid shows the average orientation of all cracked planes for 

that element. Cracking signs represented by a circle appear when the  principal tensile stress 

exceeds the ultimate strength of  the concrete. 

 

Figure 4.16:  Typical cracking signs in FE models: a) Flexural cracks, 
6 b) Compressive cracks, c) Cracks which opened and closed  

 

4.5 Influence of HWB in beams of shear span/depth ratio of  3.02 
 

This section  discusses the validation and verification of FE analysis for  experimental tests on 

3 beams of HSC and NSC which are HSC1, NSC3 and HSC3. Details of these beams  are 

given in Figure 3-1 and Table 3-4 . These beams will be used  for the purpose of  validating 

and verifying  the influence of limestone aggregate in HSC1 and  the influence of dowel action 

from HWB on the  shear behaviour of  FE models beams NSC3 and HSC3. The data obtained 

will be  used in Chapter 7 for FE modelling and analysis of the corresponding  TBCJ. 

4.5.1 Aims and objectives of analysis of beams of shear span/depth ratio of  3.02 

 

Past research using  FE analysis of  shear tests as well as the behaviour of NSC with stirrups 

provides  data for FE analysis of NSC beams with stirrups in this chapter. No FE analysis will 

be carried out for beam NSC1 but information  available from past research [4-6] will be used 

in chapters 6 and 7 for current FE analysis of  BCJ and  TBCJ.  However, although past 

research included  FE analysis of the shear strength of HSC beams [4-40], the shear behaviour 

 c        b         a 
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of HSC beams made of limestone aggregate [4-41]  which behave differently from other types 

of aggregate in HSC has not been modelled or investigated by FE analysis. 

The four beams, NSC1, NSC3, HSC1 and HSC3 are of particular interest because they have 

shear span to depth ratio  (a/d) of 3.02 which are analogous to TBCJ of aspect ratio 3.1.  

The correct value for the coefficient of friction used in the FE analysis for open and closed 

cracks was chosen for the  FE models with their corresponding  experimental results for beams 

HSC1, NSC3 and HSC3. 

4.5.2 Verification and validation of FE models for beams of a/d=3.02  

           
Three RC beams which  were  experimentally tested by this writer and are directly related to 

the final objective of this thesis were FE modelled and results  were compared with the results 

obtained experimentally in order to verify and validate the idealisation of the FE model for 

NSC and HSC beams with and without HWB.  These beams are analogous to TBCJ with and 

without CVB, as will be discussed in Chapter 8.  

 

One of the objectives of this comparison  is to find out a realistic value for the “coefficient of  

friction”  used in the FE idealisation to model cracking in concrete. This parameter will be 

used for FE modelling of different material properties of NSC and HSC.  

This indicates that the FE model may predict greater failure load than the experimental model.  

However, the differences are greater in NSC and smaller in HSC, because the FE model 

assumes a rigid model and ignores material imperfections. Similarly HSC models are more 

rigid and experience less shrinkage than NSC models hence behave more like the FE model so 

have smaller differences with the numerical model.  

HSC has lower shrinkage because the water cement ratio (W/C) was 0.25 for HSC beam as 

compared to 0.6 for NSC. This significant reduction in W/C for HSC means much smaller 

shrinkage or micro cracking for HSC, also higher tensile strength for HSC means less slippage 

at bond between concrete and reinforcement. FE does not include micro-cracking or bond 

slippage effect so  models NSC as a stiffer structure compared to the experiment, whereas in 
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HSC because of lower micro-cracking and slippage,  the FE model gives a closer prediction to 

the experimental results. 

Section Experimental test FE analysis 
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Part Test ID 
Failure 

load (kN) 
Model ID 

Failure 
Load 
(kN) 

 

2A HSC1 140 FE-HSC1 155 15 11% 
2B NSC1 170 FE-NSC1 230 60 35% 
2C NSC3 200 FE-NSC3 240 40 20% 
2D HSC3 285 FE-HSC 290 5 2% 

7  
Table 4-4: Experimental tests, details in Table 2-4 and Figure 2-5, and their FE models 
 

The coefficient of shear friction for open cracks was taken as 0.15 for HSC compared to 0.3 

for NSC. The sudden premature failure of HSC beam was therefore successfully modelled by 

FE resulting in a close prediction of the experimental value. 

Experimental data on the analogous beams of  a/d=3.02  for beams  HSC1, NSC3 and HSC3 

are shown in Figure 3-1 and Table 3-4. Verification and validation of the FE models  is 

performed comparing the data obtained from strain gauges on tension steel, links and the 

measured deflection for  experimental tests HSC1 and NSC3 with FE models FE-HSC1 and  

FE-NSC3, Table 4-4.  

4.5.3 Numerical model for beam FE-NSC1  

 

In NSC1, at initial loading, maximum strain occurs at quarter of the length from the bottom, 

but when loading reaches 200 kN the maximum loading changes location to the centre of the 

link. However, the lower part of the link is generally more strained.  Whereas in link 2 from 

low loading, 120 kN, the maximum strain occurs at the centre and at 200 kN the strain is  

distributed almost evenly on both sides of the link. However, within 20 kN increase in loading, 

suddenly the maximum strain develops at three quarters of the length from the  bottom 

followed by that at a quarter of the length. The maximum strain occurs in link 2 followed by 

link 1, Figure 4.19. 
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Link 3 almost reaches  its yield at  220 kN loading. The maximum strain location  changes 

from  three quarters of length of stirrup from bottom to the centre point of the link  after 180 

kN loading.  From 180 kN to 220 kN loading increment, or 28% increase in loading,  the 

strain in the link is increased by 43%, Figure 4.20. 

The strain in the tension bar up to 220 kN has two sudden jumps in value due to development 

of cracks. However, if these maximum readings are ignored, the true  maximum strain would 

be the same as strain at 180 kN and 200 kN, indicating that  no increase in tie action occurs  

with increase in loading, Figure 4.21. 

 

 

 

Figure 4.17: Model for FE-NSC1 beam, showing constraints for symmetry and support 
 
 
 

 

Figure 4.18: Section beam model for FE-NSC1 beam, showing 3-T20 tension, 2T20 
compression and no horizontal web reinforcement, with 6mm links.  
 

Link 1 Link 2 Link 3 

2-T20 
Compression  

3-T20 Tension 

5R6-200 c-c 

230 
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Figure 4.19: NSC1, Link 1, left,  and Link 2, right,  up to  220 kN loading. 
 

The force from the inclined diagonal strut is lost as a result of the displacement produced from 

large shear cracks in the shear span at the link nearer to the loading plate. 

Figure 4.20: NSC1, Link 3 up to  220 kN, 
just before reaching yield at 220 kN.  

Figure 4.21: NSC1,Tension bar up to 220 
kN  
 

4.5.4 Numerical model for beam FE-HSC1  

 

The model for FE-HSC1 was developed by including two R-6 bars extending over the shear 

span, Figure 2-5. In the experiment, two lengths of R6 were placed in the shear span to hold 
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the stirrups and the cage in position, however, in the FE model of FE-HSC1 it is assumed that 

2-R6 are present   in the compression zone along the length of the beam.   

Since the compression zone of the beam is made of  HSC concrete of 110 MPa, the presence 

of 2-R6 mild steel of fy=240 MPa in the compression zone has an insignificant  influence on 

the shear  behaviour of the beam. 

The FE mesh adopted for  the volume of one half of the span for FE-HSC1 without 

reinforcement consists of 720 (ie. 30X6X4)  elements.  The supporting and loading plates each 

consist of eight elements. Each longitudinal reinforcement in tension  is  made  up of 30 

elements and  each stirrup consist of 12 elements.  

Links 1,2 and 3 are the inner links in the shear span with link 1 being nearest to the support 

plate.  

 

 

 

Figure 4.22: Elevation and section of FE-HSC1.  

  

The first crack in the  FE numerical model and the experimental test for beam FE-HSC1  

cracks at he same loading of 50 kN which causes a strain of  0.65×10-3, Figure 4.25,  

Link 2 

Loading plate 

Support plate 

     3-T20 

5-R6-200 C-C 

   Link 1 Link 3 

CL 
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compared to HSC3 where the unopened crack has produced a maximum  strain of  0.45×10-3.   

 

 

Figure 4.23: Principal strain vector development at first tensile crack formation at 40 
kN. 

8  

Figure 4.28 shows a more or less  linear relation until 100 kN. When cracks open after 100 

kN, sudden non-linearity occurs and deflection is increased non-linearly. The FE model  does 

not demonstrate this sudden nonlinearity due to opening of cracks, and  assumes that some 

contact between elements always exists and does not taken into account element separation 

which occurs after cracks. This results in 15% less deflection recorded than that of the 

experiment, Figure 4.28. 

 

Contour A B C D E E 
Strain  (10-3) -2.772 -2.456 -2.29 -0.90 -0.62 0.25 

 
Figure 4.24: Nodal strain development in X-Z direction at 150 kN load just before failure 
at 155 kN. 
 

In order to simulate the  opening of cracks and model element separation more accurately it is 

recommended there be further research using the Finite Difference or the Applied  Element 

method which simulate element separation. 
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Figure 4.25: Strain in tension bar in FE-
HSC1 at 50 kN with  first  tension crack 

Figure 4.26: Strain in tension bar in 
FE-HSC1at 120 kN  

 

Load 
(kN) 

Bottom1 

x10-3 
Top1 

x10-3 
Bottom2 

x10-3 
Top2 

x10-3 
Average  

x10-3 
Deflection 

mm 
0 0 0 0 0 0.0 0 

20 68.8 67.9 67.2 74.9 69.7 0.3 
40 267.0 235.3 232.9 246 245.3 1 
60 537.2 487 551.7 557.6 533.4 1.7 
80 774.2 701.7 803.5 825.9 776.3 2.5 

100 987.2 893.4 1027.8 1034.4 985.7 3.2 
120 1186.5 1074.6 1226.4 1230.8 1179.6 4.6 
130 1305.7 1127.7 1344.1 1371.3 1287.2 0 

0 317.2 281.6 314.9 337.4 312.8 0 
9  

Table 4-5: Experimental micro strain gauge reading for two T20 side tension bars 
(excluding the third bar placed in the  centre) on top and bottom,  and corresponding 
deflection in HSC1 

10  

4.5.4.1 Discussion on numerical model of FE-HSC1 
 

It was concluded that the failure load of 155 kN for  FE-HSC1 is 4.7% higher than the   

average failure load of 148 kN for 3 experimental  tests on HSC1, HSC1-2 and HSC1-3, Table 

3-1,  which  is the safety factor for the FE prediction.   This is due, as noted before, to the rigid 

FE model = 0.0012 

Exp test = 0.0013 

FE model = 0.00024 

Exp test = 0.00038 

First tension 
crack 
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idealisation of  the FE model.  It is assumed that the reinforcement and concrete are rigidly 

connected at the nodes and  the cracking are not smear cracks.   

Furthermore, the FE model assumes perfect bonding between aggregates and paste and no 

honey-combing  in concrete, leading to a more rigid FE model than  the experimental model.  

Another factor could be the  inherent weakness in aggregate interlock of limestone in HSC in 

the experimental test.However, when comparing deflection of the numerical model compared 

to the experimental test, Figure 4.28, just before failure, they are within 18% tolerance. 

Strain on the tension bar with FE strain on the tension bar in FE-HSC1 at 50 kN as the first 

closed tension cracks appear at  450mm  from the centre of the beam, compared with the strain 

at  mid-span for the  FE model which is 0.00024 and the experimental test is 0.00038, Figure 

4.25. 

At 120 kN,   when ignoring the sudden surge in strain in the model which is recording the 

strain due to large tension cracks  near mid span, Figure 4.27,  the strain reading  from the FE 

model is about 0.0012 which is close to the experimental results of 0.0013, within 8.3% 

tolerance. 

11  
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Figure 4.27: Strain development recorded 
experimentally and by FE model  along the 
tension reinforcement T20 of HSC1,120 KN 

12  

Figure 4.28: Comparison of deflection for 
FE model and experimental test for HSC1 
analysis 

FE model = 0.0012              
Exp test = 0.0013 Exp test= 4.6mm 

FE model= 3.9mm 
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It can be concluded that the shear  cracking  behaviour, strains in tension bar, deflection and 

the mode of failure of the experimentally tested beam HSC1 and those of an idealised FE 

model are quite satisfactory and the results developed by FE model, FE-HSC1, are within 5% 

of the experimental results.  

4.5.4.2 Crack  propagation in FE model FE-HSC1 
 

The model FE-HSC1  was step loaded  incrementally at 20 kN load steps until 140 kN, 

followed by step loads of 5 kN until failure load of 155 kN.  Flexural  cracks appear at  40 kN, 

Figure 4.29. At 90 kN inclined shear cracks appear, Figure 4.30. Cracks at 150 kN failure 

occur in the lower part of the beam, Figure 4.31.  The compression part of the beam continues 

to sustain shear load until 155 kN when failure occurs. A description of signs is given in 

Figure 4.16. 

 

Figure 4.29: At early loading of 40 kN, tension cracks appear in the flexural span.  

 

Figure 4.30: At 90 kN inclined shear cracks scatter in the shear span opening of the 
inclined crack within the shear span 

 

Figure 4.31: Cracks at 150 kN failure occur in the lower part of the beam  
13  

40 kN 
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14  
4.5.5 Numerical model for FE-NSC3 

 

In this section the numerical model for FE-NSC3, Figure 4.34,  which has HWB of 2-T12 is 

developed in order to validate and verify the influence of HWB in NSC beam of a/d=3.02.  

This numerical analysis is performed as an initial investigation of the performance of HWB.  

Mid-span deflection was recorded in the experimental work. Strains in the mid-span on the 

tension reinforcement  in X direction and in the  links were also recorded. The  available 

experimental results are used to verify and validate  model FE-NSC3. 

 

At ultimate loading,  the direction of principal vectors indicate the shear failure mode, Figure 

4.33. 

 

 

 

 

 
 

Figure 4.32: Elevation of beam FE-HSC3 

 

 

Figure 4.33: Direction of principal vectors just before failure at 180 kN in FE-NSC3 

 

 

Link 1 Link 2 Link 3 

Loading 

Support 
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Figure 4.34: The symmetrical beam model for FE-NSC3 beam showing the end restraint 
in X direction for  symmetry 
 

 

 

Figure 4.35: Section beam  FE-NSC3 Figure 4.36: Section of beam FE-HSC3  

4.5.5.1 Crack Propagation for Beam FE-NSC3 
 

The main stages of the progressive cracking process of the beam FE-NSC3 under increasing 

load and the element centroid cracks  are shown  at various loadings, Figure 4.37. 

The first crack recorded  experimentally was at 50 kN. The experimental loading for the first 

four load steps were at 20 kN each step.  
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Figure 4.37: Beam FE-NSC3 at 50 kN  loading when  first inclined cracks are formed. 
Element centroid cracks are  shown  at 50 and 180 kN. 

 

4.5.5.2 Strains in links of beam FE-NSC3 

At failure load, Link 1, 200mm away from the support in the shear span,  almost yields. In 

experiment, all strain gauges were fixed at the centre of link   at 115mm from the top, and the 

test showed   0.86 (≈9) micro strain compared with FE numerical  value of 1.36 (≈1.4) micro 

strain, Figure 4.38. 

The link in the middle of the shear span, link 2,  almost yields. In experiment the average  

strain at 115mm from top was 0.836 micro strain compared to the numerical  value of 0.78. 

The link 200 mm away from loading plate is hardly  strained. The average strain gauge 

reading at the middle of the stirrup in the experimental  test was 0.78×10-3, however, the 

numerical prediction at 115mm from top is 0.84×10-3. 

The strain gauge readings on either side of the length of  link 3 on the side of the beam where 

failure occurred were 0.428×10-3 and 0.484×10-3 or an average of 0.456×10-3 (Appendix C). 

This could be assumed to be due to error in the experimental work from fixing the gauge 5 or 

6 mm away from centre of the link. Based on that assumption the FE model reading of 

0.00041 compares well with experimental results, Figure 4.39. 

 

At 230 kN, just before failure, link 1 just reaches its yield whereas link 2 exceeds its yield by  

50 kN 

180 kN 
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21%. Increase of loading from 180 kN to 230 KN, or 28%, results in an increase in strain of  

40%. 

 

Figure 4.38: NSC3, strains in Link 1 and 2 at 180 kN  and 230kN loading along the 
stirrup 

 

in link 1 and 60 % in link 2. Link 1 has the maximum strain at centre of the link, whereas link 

2 has its maximum at three quarters of the length of the link from bottom, Figure 4.38. 

 

Figure 4.39: NSC3, Link 3 at 180 &230 
kN loading 

Figure 4.40: NSC3, Web bar at 180 &230 
kN loading  

 

Link 3 reaches its yield at 230 kN, for an increase in loading of 28%, and the maximum strain 

shifts to three quarters  of the length of the link from bottom, Figure 4.39. 

In spite of an increase in loading from 180 kN to 230 KN, or 28%, the maximum strain in the  
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HWB remains at 0.0006, indicating that HWB does not make any contribution during the final 

30% load, therefore, does not contribute in improving the shear resistance of the beam, Figure 

4.40.  

 

Figure 4.41: Tension bar at 180 kN and 230 kN  in beam NSC 

As loading increases by 28%, the strain on the tension bar is increased to 0.0019, or  26% , but  

remains 21% below its yield of  0.0023, Figure 4.41. 

The load -strain plots  at before failure for the  FE numerical model at 180 kN in links 1, 2, 

and 3 show good agreement with experimental tests of  beam NSC3 at 180 kN before failure 

at 200 kN. 

4.5.5.3 Shear stress in XZ in NSC3 

 

      Loading     
(kN) 
 

Tensile (-) shear stress  N/mm2 

120 180 230 

D 1.35 1.98 2.30 
E 0.01 0.02 0.03 

 
Figure 4.42: Shear stress in the shear span of beam NSC3 at  loading up to 230 kN before 
failure 
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4.5.5.4 Comparison of deflection from FE and experimental test for NSC3 
Direct displacement deflect meters were used to measure deflections for the experimental 

beams at mid-span at the centre of the bottom face of the beams. For the numerical model, 

deflections are measured at the same location as for the experimental beams. 

In the  linear range, the load deflection plot from the FE analysis is stiffer than the  

experimental results by approximately 38%. Other researchers using Ansys FE software [4-6] 

reached a similar conclusion. 

The numerical model showed slightly more stiffness than the experimental model both in 

linear and non linear ranges as shown in deflection plot, Figure 4.43. This is due to micro 

cracking of concrete during the shrinkage cycle and bond slippage between reinforcement and 

concrete, and large cracks developed near failure which are not included in the FE analysis.  

15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  

Table 4-6: Experimental  and numeric load-deflection  
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Figure 4.43: The load-deflection plots shows deflection of 5.9 mm for FE-NSC3 at 180 kN 
as compared to  experimental test deflection of NSC3 at 7.4 mm.  

Load (kN) Experimental 
NSC3 (mm) 

FE NSC3 
(mm) 

Differ % 

60 - 1.7   
100 3.2    
120 4.1 3.7 - 0.4 9.7% 
140 5.0 -   
160 5.9 -   
180 7.4 5.9 - 1.5 20% 
230 - 7.8    

Experimental 

FE numeric 

 

 

Cracks 
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4.5.5.5 Shear Strain XZ direction in beam NSC3 
28  

Figure 4.44 shows development of shear strain in XZ direction at three stages of loading from 

120 to 230 kN.  

29  

It is notable that as the result of presence of HWB, just before failure at 230 kN the diagonal 

strut slightly deflects to improve the arch action. 

 

 

 

 

 

 

 

 

 

 

Figure 4.44: Shear Strain XZ direction in beam NSC3 until 230 kN before failure. 

 
 

 

Load 
(kN) 

Shear strain in XZ  for NSC3 (N/mm2) 
A B C D E F 

120 1 0.9 0.7 0.5 0.3 0.1 
180 1.7 1.4 1.1 0.5 0.3 0.1 
230 2.4 2.0 1.6 1.2 0.8 0.4 

 

120 kN 

  

230 kN 
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4.5.5.6 Conclusion for model FE-NSC3 
 

The estimate from the numerical analysis for strains in the centre of the links at 180 kN are 

within 33% for link 1, 7.7% for link 2, and 12% for link 3.  

The deflection was  38% less for the numerical model than the experimental test  because the  

numerical model shows slightly more stiffness than the experimental model both in linear and 

non linear ranges.  The effects of bond slip  between concrete and steel reinforcement and 

micro cracks occurring in the actual beams were excluded  in the FE models, which resulted in  

higher stiffness for the numerical model.  

The FE model describes the shear behaviour of beam FE-NSC3 in a reasonable approximation. 

4.5.6 Numerical model for FE-HSC3  

 

Beam HSC3, Table 3-8, Figure 2-5, which was modelled as FE-HSC3 is analogous to            

T-HSC3 which will be discussed in Chapter 7. 

The significant improvement in shear resistance of HSC1 as a result of introducing 2-T20 will 

be modelled in this section. The failure load for FE-HSC3 is 290 kN.  

4.5.6.1 Crack propagation of the beam FE-HSC3 
 

Figure 4.45 shows the crack development in FE-HSC3 for up to 270 kN loading. The failure 

occurs at 280 kN. 

The  first inclined cracks in  FE-HSC3 opened at 50 kN, and at  240 kN reaches the loading 

plate before failure. At  270 kN, failure is about to happen as crushing occurs under the 

loading plate, shown with a crossed circle, Figure 4.45. 

At 180 kN, cracks in the shear span have extended just above half the depth, with the highest 

open crack  shown in circle occurring  in the third lower layer of  concrete elements from top 

surface in comparison to open cracks across the complete depth of  beam FE-NSC3, which has 

exactly the same reinforcement but with NSC. 
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Figure 4.45: Crack propagation in FE-HSC3 . 
. 

4.5.6.2 Strain in tension bar at first crack in FE-HSC3 
 

In beam FE-HSC3,  the first loading of 50 kN has caused a strain of  0.42×10-3 at the mid-span  

of the beam which is close to the experimental recording for HSC3 at 50 kN of 0.41×10-3. The 

tolerance between the model and the experimental test is 2.4%, Figure 4.46 and Appendix C. 

At 270 kN, at link 1 of FE-HSC3 (close to the support) the maximum strain is 1.89×10-3 and 

occurs at the centre of the link.  This can be compared with the experimental results for HSC3  

50 kN 

120 kN 

240 kN 

270 kN 
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Figure 4.46: FE-HSC3, Strain in X 
direction in tension bar at  50 kN 

Figure 4.47: Link 1 of FE-HSC3 at  
270 kN 

  

Figure 4.48: Link 2 of FE-HSC3, at 
the centre of shear span at 270 kN 

Figure 4.49: Link 3 close to loading plate 
at 270 kN at 270 kN 

  

Figure 4.50: HSC3, at 270 kN,   2T20 
HWB in x direction  reach 76% of 
their yield at mid-flexural span.  

Figure 4.51: Strain in X direction in 
tension bar of HSC3  at 270 kN, 0.00247 
compared to 0.0024 1 experimental  

FE model=1.90×10-3   

Exp test =1.40×10-3 

FE model=1.8×10-3   

Exp test =1.13×10-3 

FE model=0.00247 

Exp test = 0.00241 

FE model=0.00042 

Exp test=0.00041 

Crack

FE model=2.4×10-3   

Exp test =exceed yield                      
at 200 kN 

FE model = 0.00059 
Exp test   = 0.00058 
At 800 mm (mid-shear span) 

76% of  yield 

yield line 

yield line 

yield line 
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which is strained at 1.40×10-3 at the middle point of the link. However, at 270 kN, the 

maximum strain in FE-HSC3 is 2.34×10-3 in link 2, Figure 4.48, whereas experimental HSC3 

is strained well beyond yield point (14.7×10-3 )  at 200 kN  at  the middle point of the length of 

the link, Figure 2-36. The strain readings from the gauges demonstrates that in experiment 

after 200kN loading the middle stirrup has  yielded and a significant shear crack has 

developed, Figure 2-14, however, the beam continues to resist shear forces for a further 80 kN 

up to failure load of 280 kN. The extra 80 kN of shear loading before failure is resisted by the 

HWB.   

Link close to loading plate (link 3) reaches 75% of its yield. The presence of 2-T20 HWB 

delays this link from reaching its yield,  Figure 4.49. 

On the failing side of beam HSC3, the HWB strain recordings at 800 mm from centre are 

31049.1 −×  at bottom and 31024.3 −×  on top which is  20% higher than its yield value 

of 3107.2 −× . It is interesting to note that just before failure at the middle of shear span of beam 

NSC3 at 800mm away from mid-span of the beam the strain on the lower part of HWB,  T-20, 

is 31057.0 −× and on top is 31086.0 −× , Appendix C. 

There is a detailed analysis of moments produced on the HWB in Chapter 7 when the 

behaviour of dowel action for CVB which act similarly to HWB, is explained. 

4.5.6.3 Strains in XZ direction in model FE-HSC3 
 

The  deflected inclined diagonal strut is developed in FE-HSC3 at 270 kN loading. 

 

 

 

 
32  
33  

Figure 4.52: Strains in XZ direction in model FE-HSC3 at 270 kN 
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4.5.6.4 Displacement of FE-HSC3 
 

Deflection  increases linearly with load until 160 kN when a sudden increase in deflection  

occurs, due to cracking of the concrete beam.  After this cracking the rate of deflection   

slightly increases as shown in Figure 4.54.  

Small increase in loading from 270 to 285 kN or 15 kN results in 8% increase in deflection. 

This is less than 12.5mm deflection from experimental test at 250 kN loading, Appendix C. 

Deflection of FE model is 34% smaller  than corresponding experimental test for HSC3 

because FE  behaves stiffer because it does not model bond slippage of tension reinforcement 

or micro-cracking in the concrete due to shrinkage 

 

Load  

(kN) 

Vertical displacement (mm) 

A B C D E F G H I 

270 -7.6 -6.3 -4.9 -3.35 -2.13 -0.8 0.6 2.0 3.4 

285 -8.2 -6.7 -5.2 -3.7 -2.3 -0.8 0.7 2 3.6 

34  
Figure 4.53: Displacement of FE-HSC3 at 270 kN and 285 kN loading 

 
4.5.7 The coefficient of closed and open cracks for HSC without HWB 

Tolerances in convergence criteria should be carefully defined in a nonlinear analysis. With 

load adjustment, tolerances for both force and displacement criteria may need to be relaxed to 

avoid a diverged solution. After the load range that produces a diverged solution is revealed 

from a previous ANSYS trial run, either tolerance or load adjustments or both have to be made 

to prevail over the divergence problem at that loading level. In a nonlinear reinforced concrete 

analysis, the shear transfer coefficient must be assumed. 

Link 1 
Link 2 Link 3 
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Figure 4.54: Experimental deflection shows that experimental test, HSC3,  records 11mm 
displacement at 230 kN loading,  whereas FE-HSC3 records 8mm at 270 kN. 
 

For closed cracks, the coefficient is assumed to be less than  1.0, while for open cracks it 

should be in the range of 0.05 to 0.5 to prevent numerical difficulties [4-42] and [4-43]. In this 

thesis, for open cracks a value of 0.3 was used for NSC and 0.1 for HSC, and for closed cracks  

0.1 for both NSC and HSC,  which resulted in producing reasonably accurate predictions 

compared to the average results  obtained from  3 repeated experimental tests on HSC1 .  

However, the strain gauge recording  differences on the top of the HWB in HSC3 at 800mm is  

31088.1 −× indicating there a significant moment on this section of web bar due to dowel action.  

This moment is produced when concrete is HSC and when stirrups are present to support the 

HWB, Appendix C. 

The dowel action produced along 50mm length elements known as primary bearing length 

(PBL) by  HWB resists a moment of 82.72 kNmm at link 1 near the support and a moment of  

65.72 kNmm at link 3 near the loading point, Figure 4.56, compared to the maximum dowel 

action in NSC3 which reaches 37.56 kN at 230 kN  before failure load, Figure 4.57. 

 
4.5.8 Moment forces on HWB producing the dowel action 

 

FE-HSC3  has no compression steel, and its strain recordings  compare very well with the  

Crack 
development 

at 160 kN 
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strain gauge reading of HSC3  on the lower side of the HWB  of  
310579.0 −×  at a distance of 

800mm from the centre, Appendix C, , and compares  well with FE-HSC3 strain of 

310592.0 −× , Figure 4.50. 

 

 

Figure 4.55: Location of HWB investigated are identified on principal strain vector at 
low loading prior to appearance of first inclined crack. 
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Figure 4.56: Moments producing dowel action in HSC3 on HWB length from centre of 
support to centre of loading plate as shown in Figure 4.55 before failure at 270 kN. 
 

In general, FE models for HSC1, NSC3 and HSC3 predict reasonable results which compare 

well with  the experimental results.  Comparing the strains in the links, the tension in the main 

reinforcement and the deflection at the centre of the beam, it has been shown that the results 

are within 20% accuracy.   Furthermore, the crack development in the  FE model gives a 

reasonable indication of cracks developing in the experimental test.  

 

800 

Moments and dowel forces on this section of HWB is investigated 
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FE-
HSC3 

M y 

Nmm 
270 kN 

FE- 
NSC3 

M y 

Nmm 

220kN 
 1 0 -5477.7  8651.5  

2  
17 400 -29639 11212 

2 0 -20693 -8651.5 18 400 -5596.8 -11212 
 3 50 20693 -35588  19 450 -5596.8 31069 

4 50 -19467 35588 20 450 21004 -31069 
5 100 19467 -22615 21 500 -21004 1637.5 
6 100 -3513.8 22615 22 500 37422 -1637.5 
7 150 +3513.8 -32918 23 500 -37422 -2425.8 
8 150 -32371 32918 24 550 7045.7 11147 

1 9 200 35290 -17714  
3  

25 600 27691 1360.7 
10 200 47432 17714 26 600 -23955 -1360.7 

 11 250 -47432 -25040  27 650 -23955 1360.7 
12 250 8689.3 25040 28 650 -17007 -1360.7 
13 300 -8689.3 -126 29 700 17007 37117 
14 300 8447.2 126 30 700 -34685 -37117 
15 350 -8447.2 -1013.4 31 750 34685 8651.5 
16 350 30107 -8395.9 32 750 -3271.7 -8651.5 

35  
Table 4-7: Location of moment about y axis  producing the dowel force in z direction on 
the HWB from centre of support to centre of loading plate as shown in Figure 4.55. 
 
 
4.6 Conclusion on beams of a/d=3.02  
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Figure 4.57: Moments producing dowel action in NSC3 on HWB length from centre of 
support to centre of loading plate as shown in Figure 4.55 before failure at 230 kN. 

36  
However, the unique performance of HWB resisting the applied load at the highest 40% 

loading increment could not be clearly demonstrated when strain on the links was investigated.  
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HWB  displays a significant shear resistance when stirrups become totally redundant. In 

experimental testing of HSC3, Figure 3.39, this occurs at 200 kN and from that loading 

onwards the HWB resisted all  shear forces until 285 kN failure load.  

It has been demonstrated that for NSC3 (i.e. NSC1+HWB), the presence of HWB did not 

contribute to load capacity of the beam during the final 40 kN loading before failure, Figure 

4.40.  This may be due to the fact that stress distribution in the depth of the beam has changed 

after beam cracking.  

Figure 4.48 shows that FE-HSC3 has reached maximum strain of 0.0024 in centre link . 

However, in the experimental test for HSC3, Figure 3.39(f) ,  strain recording for the same 

point exceeds well beyond yield point (14.7×10-3 ) at 200 kN . This was similar  for other 

beams HSC2 and HSC4 which demonstrates that the middle stirrup becomes totally obsolete 

after 200 kN but load bearing capacity continues to 270 kN for HSC2 and 300 kN for HSC4, 

Appendix C. 

FE method does not simulate the model with actual elements separating. Therefore, after shear  

cracks occur, the actual opening of cracks is not taken into account, so the final deflection is 

after cracks have opened at 120 kN and for HSC1 the deflection at the centre of the beam is 

4.6 mm, Appendix C,  as compared to FE which is 3.9mm, Figure 4.28. 

The  2-T20 web bars in x direction  reach 76% of their yield at mid-span in HSC3 which has 

no compression steel. This reading compares very well with strain gauge reading of 

310579.0 −×  at a distance of 800mm, Figure 4.50, Appendix C.   
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5                                                  Chapter 5 
          

                      The Strut and Tie Model 
 

5.1 Introduction 

 
Until the early 1990’s, engineers assumed  that the need for mechanical models had passed 

with the development of FE analysis programs and second order frame analyses. However it 

became clear that the errors inherent in the blind acceptance of computer output as discussed 

by Yankelevsky[5-1] can be significantly reduced by statically checking the model. Complex 

computer codes  do not always predict adequately the response of complex engineering 

problems. Mechanical models are necessary to check the validity of  results. STM is the  

design approach recommended by many international codes enabling the designer to clearly 

visualise the load path within the structural system. 

 

This research  extends the  restriction of  aspect ratio on application of the STM  of beam- 

column joints for  HSC columns with CVB  with an aspect ratio of 3>hb/hc >2.5. In general, 

STM is applicable to BCJ with 2>hb/hc >1. In practice when aspect ratio is hb/hc <1,  the joint 

is likely to fail in flexure. When hb/hc >2,  it is recommended to use the variable truss method 

given in EC2 [5-18] which restricts the aspect ratio to 2.5.  

 

HSC columns and transfer beams with aspect ratio 3>hb/hc >2.5 are popular structural 

elements as described in Chapter 1. To this writer’s  knowledge, no other researcher has 

investigated the design  of STM for HSC BCJ with  CVB and aspect ratio 3>hb/hc >2.5. This 

research investigates the  presence of the strut in  HSC columns with CVB and transfer beam 

connections with aspect ratio 3>hb/hc >2.5, and after demonstrating that  STM develops in a 

HSC beam with stirrups and HWB with span depth ratio of 3.02 the analogy is extended to 

HSC-BCJ  with CVB with an aspect ratio of 3.  

 

5.2 Aims and objectives 

 
STM of reinforced concrete members are reviewed with the aim of improving  knowledge of  

the behaviour of  STM in HSC beams with a/d≤3 with stirrups and  HWB,  and HSC exterior 

BCJ with stirrups and CVB of aspect ratio≤3. 
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The approach adopted  includes an investigation into the background of   the development of  

STM, exploring past research,  code recommendations and STM design rules for structural 

discontinuities such as short beams and BCJ. The influence of HWB with stirrups in HSC 

beams of a/d=3  and TBCJ of aspect ratio 3  are introduced to develop STM of HSC beam 

with HWB and BCJ with CVB modelled in a new design approach. 

 
This literature review will focus on both recent contributions related to STM and  those past 

efforts most closely related to the present work. 

 

STM for HSC beams with HWB of a/d=3 is developed by applying  this writer’s proposed  

empirical design rule for prediction of dowel resistance from Chapter 2. The predicted force 

acts to counter balance the deflected strut in  STM.  

 

The FE results on  moments acting on HWB,  described in Chapter 3 are  converted to  dowel 

force acting on HWB. This  dowel force predicted by FE analysis is compared with 

predictions from empirical formulae for developing more accurate STM.  

 

5.3 Background to the development of STM 

 
The first mechanical model used to explain shear strength was the truss analogy  described in 

1899 and 1902, by the Swiss engineer Ritter and the German engineer Morsch  [5-2]. The idea 

of the STM came from their analogy for the shear design of B regions. This method employs 

the truss model as its design basis which  was used to idealize the flow of force in a cracked 

concrete beam.  

 

In parallel with the increasing availability of experimental results and the development of limit 

analysis in plasticity theory, the truss analogy method has been validated and improved 

considerably in the form of full member or sectional design procedures.  

 

In the 1970's Grob and Thurlimann [5-3]  in Switzerland suggested a generalised truss model  

with variable strut inclination, introducing limits for the strut angles, based upon kinematic 

considerations.  
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Applying plastic analysis,  Nielsen and his co-workers [5-4] in Denmark developed formulae 

for the stresses in reinforcement and in concrete struts. They presented a resolution for the 

strut angle when the shear resistance is determined by the simultaneous yield of stirrups and 

crushing of web concrete.  

 

 

 

 

 

 

 

 

 

Figure 5.1: A basic STM showing the load path of struts and ties and forces in the 
boundary conditions of a  BCJ with stirrups above and below the joint. 
 

 

The conventional method of dimensioning sections subjected to flexure, shear and axial load - 

the beam theory - treats the structure section by section. However, the truss and STM show 

that shear (and torsion) are resisted by diagonal compressive stress fields in the concrete and 

so influence not only the section itself but a certain region on either side of it. Any calculation 

made on the basis of section by section design should be regarded as giving average values 

representative for a region around that section.  

Therefore, the beam theory is suitable for the analysis of regular structure zones, i.e. zones  

with no geometric or static singularities, but not for the design of zones where 'average values' 

cannot be considered. 

 

The STM  developed by Marti [5-5] and Schlaich et al [5-6] promoted the use of  the truss 

model in D regions. In 1982 and 1987, Schlaich [5-6] presented the concept of dividing 

structures into B (beam) and D (discontinuity) regions in the reinforced concrete structure.  

This has allowed the development of mechanical models for widely varying ranges of shear 

behaviour. 

Strut 
Tie 

Node 
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5  

Figure 5.2 : Truss model combined with fan action 
 

This approach reflects the differentiation of conventional structural analysis applying the  

Bernoulli hypotheses of plane strain distribution (B regions) and the analysis of special 

regions (D regions) where the beam theory does not apply. 

 

STM has been developed to give general rules for the design of concrete structures, applicable 

to B and D regions, in a simple and practical way. However, in spite of recent developments in 

the STM, there are points that need more experimental evidence and more practical design 

proposals. 

 

Briefly, a structure is divided up into D regions that extend the depth of the member each way 

from a reaction or discontinuity. The D regions are isolated and the stresses on their 

boundaries are  resolved into a number of individual forces acting on the boundaries of a D 

region. STM are then used to design the D regions, Figure 5.3. 

 

Thurlimann and colleagues [5-3] in Switzerland and Nielsen and his co-workers [5-4] in  

Denmark during 1970's  analysed the shear and torsion problems more accurately through the  

theory of plasticity by using STM for the equilibrium solutions.  

 

In 1984, MacGregor [5-7] wrote that the most important advances in reinforced concrete 

design would be the extension of plasticity based design procedures to shear, torsion, bearing 
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stresses, and the design of structural discontinuities such as joints and corners, allowing a  

designer to follow the forces through a structure. 

 

5.3.1  Design background to STM 
 

STM is an alternative or a complementary approach to either FE modelling or empirical 

methods for the design of BCJ as well as for deep beams, corbels, pile caps and squat shear 

walls. STM  provides the structural analyst with some freedom of choice which can be used to 

make a cheaper, safer or optimised solution.  

 

Modelling therefore requires some design experience to make a valid comparison of this 

method with an overall statical system which has developed from an empirical approach or a 

FE approach.The modelling process also requires considerable knowledge of detailing and 

therefore of practicable reinforcement layout; on the other hand, it is exactly in this field 

where STM replaces experience and guesswork with a more systematic and comprehensive 

design. 

 

Before modelling of a D region begins, all the forces and reactions acting on the  D region 

must be evaluated. The forces or stresses in sections bounded by  D regions are taken from B 

region design. The elastic stress trajectories and distribution of elastic stresses within the  D 

region is studied by tracing the flow of forces through the structure, developing systematically 

the  ‘load path’  and the corresponding STM.  

 

The stress diagrams of all the forces applied to the D region boundaries are subdivided in such 

a way that their individual stress resultants on opposite sides of the D region correspond in 

magnitude and can be connected by streamlined ‘load paths’ which do not cross each other. 

After sketching the load paths smoothly curved and replacing them by polygons, and after 

understanding the load path, for higher accuracy these curves are developed from FE model 

and  further struts and  ties can be added for transverse equilibrium. 

 

Three main elements  considered for practical use in STM of reinforced concrete structures are:  



______________________________________________________________________________
Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 
 

215

the uniaxially stressed steel ties, the uniaxially stressed concrete struts and the nodal zones, 

Figure 5.1. Considering the steel ties there is a general agreement that at the ultimate limit 

state, the ties can be stressed to the design yield strength of the reinforcement at points of 

maximum stress while it is important to  clearly understand the mechanical effect of the 

longitudinal bars and stirrups in D regions.  

 

 
 
Figure 5.3: Structures are divided up into D regions that extend the depth of the member 
each way from a reaction or discontinuity and B regions, the parts of the structure 
between D regions. Isolated D regions are  near concentrated load and reactions.  
 

Some divergence exists on the stress limits and dimensions of the concrete struts and nodal 

zones. The role of the concrete tensile strength also needs attention [5-8]. To apply the general 

concepts of this method it is of paramount importance to have guidance on the shape and the 

strength of the struts and of the nodes of the trusses.  

 

Schlaich and his team suggested that the size of a D region can be estimated using Saint  
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Venant' s principle. The D regions are assumed to extend  roughly for a distance equal to the 

member's depth away from the discontinuous or disturbed section (zones with change in the 

geometry or under concentrated load or reaction). This principle is conceptual and not precise, 

however it serves as a quantitative guide in selecting the dimensions of the D region.  

 

D regions as also assumed to fill the overlapping region common to two members meeting at a 

joint. This definition is used in the traditional definition of a joint region. Prior to any cracking, 

an elastic stress field exists which can be quantified with an elastic analysis, as well as a FE 

analysis. Cracking disrupts this stress field causing a major reorientation of the internal forces.  

 

After cracking , the internal forces can be modelled with a STM consisting of concrete 

compression struts, steel tension ties, and joints referred to as nodal zones. If the compression 

struts are narrower at their ends than they are at mid-section, the struts may, in turn, crack 

longitudinally, leading to strut failure  if no shear reinforcement is present. Failure may also 

occur by crushing, yielding of the tension ties, failure of the bar anchorage, or failure of the 

nodal zones. As usual, failure initiated by yield of tension bar ties is  preferred because it  

could be more ductile.  

 

5.3.2 -    Design approach using STM 

Conditions required for STM  

 

The overall structural analysis and B regions' design provide the boundary forces for D 

regions. The D regions are then modelled by struts and ties following the internal load path, 

with the struts following the flow of the compressive stresses and the ties representing the 

reinforcement in tension.  

 

The struts and ties represent the stress fields by straight lines and the curvatures are 

concentrated in nodes, Figure 5.4. It must be pointed out that the STM of a D region does not 

have a unique solution. At the same time as giving some freedom of choice for the solution, 

some design experience is required to model the regions with practicable reinforcement layout 

and detailing.  
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Figure 5.4: The load path developed in a short beam 

 

STM is one of   the segments of the structure that satisfies the following criteria: 

a. it embodies a system of forces that is in equilibrium with a given set of loads; 

b. the factored-member forces at every section in the struts, ties, and nodal zones   do not 

exceed the corresponding design member strength for the same sections;  

c. the lower-bound theorem of plasticity which states that the capacity of a system of 

members, support and applied forces that satisfies both (a) and (b) is a lower bound on 

the strength of the actual structure; 

d. the structure must have sufficient ductility to make the transition from elastic 

behaviour to redistribute the factored internal forces into a set of forces that satisfy 

items (a) and (b). 

The combination of factored loads acting on the structure and the distribution of factored 

internal forces is lower-bound on the strength of the structure, provided that no element is 

loaded or deformed beyond its capacity. STM should be chosen so that the internal forces in 

the struts, ties, and nodal zones are somewhere between the elastic distribution and a fully 

plastic set of internal forces. 

5.3.3   Design process using STM 
 
The design process using STM involves five major steps described below: 
 
1) Define the boundaries of the D region and determine the boundary forces (the ultimate 

design forces) from the imposed local and sectional forces. 

 
Load 
path 
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2)Sketch the truss, determine the equivalent boundary forces, and solve for the truss member 

forces. 

3) Select reinforcing or prestressing steel to provide the necessary tie capacity and ensure that 

this reinforcement is properly anchored in the nodes. 

4) Evaluate the dimensions of the struts and nodes such that the capacity of all struts and 

nodes is sufficient to carry the truss member forces. 

5) Provide distributed reinforcement to ensure ductile behavior of the D region. 

 

Since equilibrium of the truss with the boundary forces must be satisfied (step 2) and stresses 

everywhere must be below the limits (steps 3 and 4), one can see that the STM is a lower-

bound (static or equilibrium) method of limit analysis.  

 

Equilibrium should be satisfied at all nodes of STM. As a statically admissible stress field,  

STM has to be in equilibrium externally with the applied loading and reactions (the boundary 

forces) and internally at each node. In addition, reinforcing or prestressing steel is selected to 

serve as the ties and the concrete as struts,  the effective width of each strut is selected, and the 

shape of each nodal zone is constructed such that the strength is sufficient. Therefore, only 

equilibrium and yield criterion need to be fulfilled for an admissible STM. The third 

requirement in solid mechanics framework, namely the strain compatibility, is not considered. 

 

As a result of these relaxed requirements, there is no unique STM for a given problem. In 

other words, more than one admissible STM may be developed for each load case as long as 

the selected truss is in equilibrium with the boundary forces and the stresses in the struts, ties, 

and nodes are within the acceptable limits.  

 

The lower-bound theorem guarantees that the capacity obtained from all statically admissible 

stress fields is lower than or equal to the actual collapse load. However, as a result of limited 

ductility in the structural concrete, there are only a small number of viable solutions for each 

design region. 
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5.3.4    Dimensioning of the Struts, Ties and Nodes 
 

Once the STM for a region is chosen, the forces of the struts and ties are calculated satisfying  

equilibrium between applied loads and inner forces. The next task is the dimensioning of the 

struts, ties and nodes. 

 

There is a general agreement about the dimensioning of the reinforcement ties. The 

reinforcement is considered stressed to the yield strength at the ultimate limit state. 

 

Following the flow of forces in STM in detail frequently shows that the equilibrium can only 

be satisfied if concrete tensile forces can be accepted in places where reinforcement cannot be 

provided and the tensile strength of concrete must be utilized.  However, it is more important 

to determine where the tensile strength of the concrete is utilised and then if possible to 

provide protection reinforcement, than to quantify the strength of the concrete ties.  Schlaich 

and his colleagues [5-38] pointed out that more research work remained to be done concerning 

dimensioning of the concrete ties and struts.  

 

 

 

Figure 5.5: Shows STM for a short beam 
with stirrup  
 

Figure 5.6: The compression stress fields 
are classified as 'prismatic' or 'parallel' 
stress fields(a), 'bottle-shaped'(b) and 'fan-
shaped' (c).  

 

The struts and nodes, representing compressed concrete zones, have different behaviour 

depending on the stress field and crack pattern. In the nodal zones the centre lines of the struts 

and ties and lines of action of any external loads (loads or reactions) must coincide, meaning 

that there are no moments in the nodes which  are classified as 'smeared' or 'continuous' where 

wide concrete stress fields join each other or meet well distributed reinforcing bars, and 

'singular' or 'concentrated' where concentrated forces (loads or reactions) are applied. 
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The compression stress fields are classified as 'fan-shaped', Figure 5.6(c), 'bottle-shaped' and 

'prismatic', Figure 5.6(b), or 'parallel' stress fields, Figure 5.6(a). The fan-shaped zone is an 

idealisation of a stress field with straight struts converging to a point with negligible curvature 

or transverse stresses. The bottle shape is an idealisation of a stress flow where the 

compression stresses spread developing transverse stresses. The prismatic or parallel stress 

field occurs when the compression stresses are parallel and do not develop transverse stresses. 

The parallel stress fields are characteristic in B regions, where the stress trajectories are 

smoother than in D regions. The fan and bottle shaped stress fields are frequently found in D 

regions where concentrated forces spread out, or  where geometric discontinuities  cause large 

changes in the stress fields. The bottle-shaped field is normally not used because of its 

complexity and its reliance on concrete tensile strength. Schlaich et al [5-9] suggest that 

compressive struts should be orientated to approximate the flow of stress obtained from an 

elastic analysis. It is proposed that the ultimate limit state and serviceability in the cracked 

state should use one and the same model. 

5.3.5 -  Design factors for STM 
Rogowsky and MacGregor[5-10] observed that if the chosen strut directions differed 

excessively from the elastic distribution, full redistribution might not occur and the strut could 

fail prematurely.  

 

The strength of the struts and nodes are dependent on the multiaxial state of stress and are 

generally represented by fc*= vfc   where v is called the efficiency or effectiveness factor and  

fc is the concrete compressive strength. 

 

Schlaich and Schafer [5-9] suggest that the average compressive stresses at the node 

boundaries should be limited to  fcd*≤1.1fcd   in nodes where only compression struts meet, 

creating a 2 or 3 dimensional state of compressive stresses; 

fcd*≤ 0.8 fcd   in nodes where tensile bars are anchored and allowance in strength must be 

made for bond action. 

 

For the strut stresses they suggest the following efficiency factors: 
 
fcd*≤1.0fcd   for undisturbed and uniaxial state of stress; 
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fcd*≤0.8fcd    for compression fields with cracks parallel to the compression stresses; 
 
fcd*≤ 0.6 fcd    for compression fields with skew cracks; 
 
where  fcd  is the concrete compressive design strength for uniaxial compression. The 

increased strength due to 2 or 3 dimensional states of compressive stresses may be 

considered if transverse compressive stresses are acting simultaneously. 

Nielsen and colleagues [5-4] have proposed a web effectiveness parameter dependent on the 

concrete strength: 

 
fc*= [0.7- (fc/200) ] fc        MPa 
 
Marti [5-5] recommended an effective concrete compressive strength fc equal to 0.6 fc. 

He suggested that if a refined assessment of fc*  is desired, it should be based on a 

consideration of the strains associated with the assumed stress field. 

 

Walraven and Lehwalter's [5-11] analysis showed that the capacity of the struts in short 

members without shear reinforcement strongly depends on the concrete quality, the width of 

the loading area and slenderness ratio a/d. They compared the capacity of the concrete struts, 

calculated for varying values of a/d and the ratio of loading plate width to effective depth, with 

the value 0.6 fc as recommended as a stress limit in design calculations. They concluded that 

0.6 fc is a more reliable lower limit. 

 

Collins and his co-workers [5-12] related the principal compressive stress in the concrete to 

both the principal compressive strain ε2 and the principal tensile strain ε1. 

fc2=  fc2max [2 (ε2/ εc’ ) - (ε2/ ε c’ )2]            5.1                      
 

where 
 
fc2max/ fc= 1/ [0.8- 0.34(ε1/ εc

’
)] ≤1.0        5.2         

 
with εc

’  the strain in concrete at peak compressive stress, usually considered equal to -0.002, 

fc2max = 1/ (0.8+170 ε1) fc ≤ 1.0 fc 
 

Placas and Regan [5-13] carried out an extensive test programme for the investigation of the 

shear resistance of reinforced concrete beams. They observed that in beams provided 
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with stirrups there were two primary modes of shear failure: shear compression involving a 

criterion of compression failure in the concrete and shearing failure involving mainly vertical 

displacements across shear cracks. In the latter case it was observed that the interlock forces 

tend to produce flatter cracks until an inclination of around 26° when vertical stirrups are used 

and around 18° when 45° inclined stirrups are provided.  

These values suggest the lower limits for the strut inclination. MacGregor [5-7] suggests that, 

in design, the value of θ should be in the range of 25° to 65°. Grob and Thurlimann [5-3] 

proposed limits for θ equal to 26.6° and 63.4°, whereas, instead of restricting  limits of θ, 

Collins and Mitchell [5-14]  related the strut angle to the concrete strength and the concrete 

strains.  

5.3.6 -  Load spreading angle 
 
Wight and MacGregor [5-35] recommend the load spreading angle is primarily a function of 

the ratio of the width of the loading plate, a, to that of the loaded member b.  

 

 Analysis [5-15] shows that the angle between the load and the inclined struts varies from 28° 

for a concentric load with a/b = 0.10, to 19° for a/b = 0.2, and down to about 12° for a/b = 0.5. 

As a result, the transverse tie in Figure 5.7 (b) would correspond to strut slopes from 1.9 to 1 

for a/b = 0.1, to 2.9 to 1 for a/b = 0.2, and to 4.7 to 1 for a/b = 0.5. Similar values are obtained 

for other cases of load spreading, such as concentrated loads acting near one edge of a member 

or multiple, concentrated loads. A strut slope of 2:1 (longitudinal to transverse), as 

recommended by the ACI Codes, is conservative for a wide range of cases.  

 

 
 
Figure 5.7: Spread of stresses in strut 
 

Wight and MacGregor [2008][5-35] 
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The STM model should represent a realistic flow of forces from the loads through the D 

region to the reactions. Frequently this can be determined by observation. From an elastic 

stress analysis , such as a FE analysis, it is possible to drive the stress trajectories in an 

uncracked D region, as shown in Figure 5.8 (a) for a deep beam. 

 
5.4 Review of design codes 

 
STM design provisions consist of rules for defining the dimensions and ultimate stress limits 

of struts and nodes as well as the requirements for the distribution and anchorage of 

reinforcement. Guidelines in Comité Euro-International du Béton [5-16 ], FIP Commission 3, 

Practical Design of Structural Concrete [5-17] and Eurocode EC2 [5-18] for design by the 

STM have been developed for European practice.  

 

Provisions for the STM have been incorporated in the Canadian Concrete Design Code [5-19] 

since 1984 and in the AASHTO LRFD[5-20] code since 1994. Another specific set of 

provisions has been developed to be included as an alternative design procedure in the 2002 

ACI code [5-21]. 

 

Author or  
Code 

Zutty 
[5-34] 

ACI-
ASCE 
[5-22] 

ACI- 
318 [5-

23] 

Taylor 
[5-3] 

BS8110 
[5-24] 

CAN 3 
[5-25] 

CEB-
FIP 90 
[5-16] 

 a/d Limit  2.5 2.0 2.2 2.0 2.0 3. 3 
6  

Table 5.1: Upper limit for a/d  recommendations by codes and researchers for the 
development of sufficient arching action for development of STM 
 

7  
Table 5.1 shows that the majority of codes and past research  recommend a/d≤2.5  in order to  

ensure the development of arch action. However, the Canadian code [5-25] recommends the 

angle of the strut θ≥ 15º and CEB-FIP MC90 [5-16]  limits the angle of the strut θ≥ 18.4º.    

 EC2 [5-18] proposal is based , with some variations, on the CEB-FIP MC90 [5-16]. 

5.4.1 -   CEB-FIP Model Code-90 [5-16]  
 
In this code,  discontinuity regions  are defined as the regions near concentrated loads if 
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 a < zcotӨ, where a is the shear span, z is the lever arm and Ө is the angle of the diagonal 

concrete strut to the chords, limited to 18.4◦
≤Ө≤45◦.  

 

If Ө= 18.4◦ is contemplated, the discontinuity regions are considered when a < 3 z. 

Considering z as approximately 0.9 d, the discontinuity regions occur at a < 2.7 d that is 

slightly higher than the shear span ratio adopted by other codes to define short beams. 

CEB-90 suggests, for short spans, the STM shown, Figure 5.9. 

 

 
 
Figure 5.8: Single span deep beam supporting concentrated load  

Source:  Schlaich, J and Weischede, D [1982][5-15] 
 

The CEB-FIP Model Code-90 [5-16] presents simplifications of the basic constitutive laws 

that are appropriate to use in STM. The design resistance of a zone under essentially uniaxial 

compression may be determined by means of a simplified uniform stress diagram over the full 

area of the strut considered. The average stresses recommended are as follows, with fck in MPa: 

for uncracked zones 

fcd1= 0.85(1-fck/250)  fcd      5.3   
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for cracked zones where the compressive resistance may be reduced by the effect of transverse 

tensile strains 

fcd2= 0.6(1-fck/250)   fcd       5.4 .  

The same concrete stress limits are considered for nodes - fcdl for nodes where only 

compression struts meet or where the angle between the compression and the tie is more than 

55°, and fcd2 for nodes where main tensile bars are anchored.  

 

The inclination of the struts in the web of a beam resisting shear and axial action effects is said 

to be chosen freely in the range of 18.4° to 45°. It is not very clear in the code but it seems to 

refer only to B regions as in fan shaped stress fields, or D regions in general, where the cracks 

form from low values of θ to an almost vertical direction. Based on truss models and the limit 

stresses fyd, fcdl and fcd2, CEB-90 presents equations to calculate the acting forces and the 

corresponding resisting forces in the ties and struts, according to the chosen angles of the 

concrete struts (θ) and of the transverse ties (α)- see CEB- 90 [5-16] - subsection 6.3.3.2. 

The discontinuity regions are subdivided in two different zones - the discontinuity 

region itself, named D2, and the nearby transition region between B and D2 regions, 

named Dl. CEB-90 suggests the calculation of forces in transition regions D1 should be made 

as in B regions. 

 
8  

Figure 5.9: CEB-FIP MC90 [5-9]  Standard Discontinuity Regions 
 

Source: CEB-FIP MC90 [5-9] 
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5.4.2 -   The Canadian Code [5-25] 
 
This code does not deal explicitly with 'short beams' but with discontinuity regions. 

Discontinuity regions in beams are defined as the regions near concentrated loads. 

The angle of the diagonal concrete strut to the chords is limited to 15◦≤Ө≤75◦.  

 

If Ө= 15◦ is contemplated, the discontinuity regions are considered when a< 2.8 z. 

z is approximately 0.9d, therefore, a/d<3.1 .  

 

The series of 11 beams tested by this writer  have  d=265mm and a=800mm  or a/d= 3.02 

which  lies within the allowable  limits specified by the Canadian code.  

 

In this chapter, the STM is used for shear analysis of this writer’s experimental HSC beam  

which has stirrups and HWB and is defined as HSC3 and the results of these STMs are 

compared with those of numerical FE models from Chapter 4.  

 

The Canadian Code [5-8] bases its recommendations on the equations derived by Vecchio and 

Collins [5-42] from tests of large scale panels subjected to uniform stress and strain fields. 

 

The diagonal crushing strength of the concrete, fc2max,may be computed as 

 

fc2max = fc λφc/ (0.8+170 ε1) ≤1.0 λφc fc     5.5 
 

where λ is a factor to account for low density concrete, φc  is the resistance factor for 

concrete and fc is the cylinder compressive strength of concrete.  

The effectiveness factor is a function of the transverse strain  ε1 which may be computed as 

 

ε1 = εx +[ (εx+0.002)/tan2θ]          5.6 
 

where εx  is the longitudinal strain at mid-depth of the member (positive when tensile). In lieu 

of determining εx its value may be taken as 0.002 and, in this case, ε1 is simply a function of 

the strut inclination θ . The angle θ may be chosen to have any value between 15° and 75°. 
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When a tension tie crosses a compressive strut the tensile strain ε1  can be related to the 

average tensile strain of the bar, εs , and the angle between the tie and the strut, αs,by 

 

ε1 = εs +[ (εs+0.002)/tan2 αs]           5.7 
 

The strain εs is suggested to be conservatively taken as fy/Es. 

The concrete compressive stresses in the nodal zones are limited to 

 

0.85φc fc   in nodal zones bounded by compressive struts and bearing areas; 

0.75 φc fc  in nodal zones anchoring only one tension tie; 

0.60 φc fc in nodal zones anchoring tension ties in more than one direction. 

 

The Canadian Code[5-8] guidance is comparatively complicated for design use since the  

transverse strain ε1 is not easy calculated and can not simply be presented as a function of εx 

and θ as explained above.  Also if the value of εx is taken as 0.002, this will result in ε1 

becoming a function of angle θ. It has been suggested that ε1 can be taken as a function of εs 

which is the average strain of the tie crossing the strut, and αs.  In discontinuous regions 

‘longitudinal strains’(εx) does not have a clear meaning.   

 

Although STM can be designed for HSC beams with HWB and stirrups for  a/d ≤3.1 to the  

Canadian code [5-25], for the above reasons it is recommended to use stress trajectories from 

FE analysis, as will be shown in section 5.6. 

5.4.3 -   ACI 318 Code [5-23] 2008 edition  
 
Currently the American Concrete Institute (ACI) introduces the STM as a design method for D 

region problems. The provisions consist of five sections and are presented in Appendix A, and 

summarized as follows: 

 

1. Rules in selecting STM 

STM representing idealized load-transfer mechanism in the D region under consideration is to 

be selected (A.2.1). The selected STM should consist of struts, ties, and nodes (A.2.1) and has 

to be in equilibrium with the forces acting on the D region (A.2.2). The finite dimensions of 
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STM components, representing the stress fields of struts, ties, and nodes, should be considered 

(A.2.3). Tie stress fields can cross strut stress fields (A.2.4). To avoid severe strain 

incompatibility between struts and ties, the angle between a strut and a tie framing into a node 

cannot be smaller than 25 degrees (A.2.5). 

 

2. Strength Requirements 

The STM components must have sufficient capacity to resist the force demand such that 

(A.2.6) 

φFn  ≥ Fu 

where: 

φ= strength reduction factor, 

Fn=nominal strength of strut, tie, or node, and 

Fu=factored force demand of the strut, tie, or node. 

a)  Strut Strength (ACI A.3) 

The nominal strength of a strut, Fns , is defined as 

Fns = fcu Ac     5.8 
where: 

fcu = effective compressive strength and 

Ac = cross sectional area at the end of the strut. 

The effective compressive strength,  fcu , is defined as 

fcu = 0.85βs fc’    5.9 
where: 

βs = 1.00  for prismatic struts in uncracked compression zones, 

βs = 0.40  for struts in tension members, 

βs = 0.75  if struts may be bottle shaped and crack control reinforcement is included, 

βs = 0.60  if struts may be bottle shaped and crack control reinforcement is not included,  and 

βs = 0.60  for all other cases. 

The crack control reinforcement requirement is 0.003≤ Σ ρvi, where ρvi is the steel ratio of the 

ith layer of reinforcement crossing the strut, and γi is the angle between the axis of the strut and 

the bars. 

 

b) Tie strength (ACI A.4) 

The nominal strength of a non-prestressed reinforcement tie, Fnt, is defined as 
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Fnt = fy As      5.10 
where: 

As=area of steel reinforcement and 

fy=yield strength of steel reinforcement. 

 

c) Node Strength (ACI A.5) 

The nominal strength of a nodal zone, Fnn , is defined as 

Fnn = fcu An      5.11 
where: 

fcu =effective compressive strength and 

An =area of a nodal zone face in which the force is framing, measured perpendicular to the 

direction of the force. 

The effective compressive strength, fcu, is defined as 

fcu =0.85βn fc’5.12 
where: 

βn = 1.00 if nodes are bounded by struts and/or bearing areas, 

βn = 0.80 if nodes anchor only one tie, and 

βn = 0.60 if nodes anchor more than one tie. 

 

3. Anchorage Requirements (ACI A.4.3) 

The tie reinforcement must be properly anchored in the nodal regions at the ends of the tie 

such that the corresponding tie force can be developed at the point where the centroid of the 

reinforcement in the tie leaves the extended nodal zone which is a region bounded by the 

intersection of the effective strut width and the effective tie width. 

 

4. Serviceability Requirements (ACI RA.2.1) 

Design based on STM should satisfy the serviceability requirements. Provisions in the body of 

the code can be applied. 

 

5.4.4 -   The Fédération Internationale du Béton FIP [5-26]  
 

Recommendations published in September 1999 are based on the CEB-FIP Model Code 1990  
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(MC 90) to which frequent reference is made in the right-hand margins throughout the 

document. They also refer to later CEB Manuals as well as further FIP publications. For all 

types of structural concrete using normal weight aggregates, plain or reinforced, pre-tensioned 

or post-tensioned tendons, or combinations of all these types of reinforcement, they explain 

member design and detailing by means of STM.  

 

Separate chapters deal with principles, material characteristics, technological details and 

durability requirements, strength of ties, struts and nodes of STM, ultimate limit state design, 

serviceability state design, and structural members. The former FIP Commission 3 wished this 

document to be of interest to consultants, contractors and authorities by enhancing the direct 

application of STM as a consistent design and detailing tool. 

5.4.5 -   Eurocode 2: Design of Concrete Structures [5-18] 
 

Design recommendation of Eurocode 2 for RC members is based on limiting the value of the 

angle θ of the inclined struts in a web as 5.2cot1 ≤≤ θ . 

For members with stirrups , the shear resistance, VRd is the smaller value of: 

θcot, ywd
sw

sRd Zf
S

A
V =              5.13 

and  

)tan/(cot1max, θθνα += cdwcwRd fzbV          5.14 

where  

Asw is the cross-sectional area of the shear reinforcement 

s     is the spacing of the stirrups 

fywd is the design yield strength of the shear reinforcement 

ν1     is a strength reduction factor for concrete cracked in shear 

αcw  is a coefficient taking account of the state of the stress in the compression 






 −=
250

16.01
ckfν          5.15 

with fck in MPa is recommended 

If the design stress of the shear reinforcement is below 80% of the characteristic yield stress 

fywk, ν1 is given as: 

ν1=6                 for   fck ≤ 60 MPa,   in this case fywd
 should be reduced to 0.8 fywd   
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The recommended value of αcw is as follows: 

αcw = 1                                  for non-prestressed structures 

αcw  = (1+σcp/fcd)                   for 0< σcp<0.25 fcd 

αcw  = 1.25                            for 0.25 fcd < σcp<0.5 fcd 

αcw  = 2.5(1- σcp/fcd)             for 0.5 fcd < σcp<1.0 fcd 

where 

σcp is the mean compressive stress, measured positive, in the concrete due to the design of 

axial force. This should be obtained by averaging it over the concrete section, taking account 

of the reinforcement. 

The value of σcp need not be calculated at a distance less than 0.5dcot θ from the edge of the 

support. 

The maximum effective cross-sectional area of the shear reinforcement , Asw,max,
 for cotθ=1 is 

given by: 

2
1max, cdcw

w

ywdsw f

sb

fA να
≤           5.16 

The additional tensile force, ∆Ftd, in the longitudinal reinforcement due to shear VED may be 

calculated from: 

∆Ftd=0.5 VED(cotθ)               5.17 
 

where (MED/Z) + ∆Ftd should be taken as not greater than MED, max/Z, where MED, max is the 

maximum moment along the beam. 

 

5.4.6 - Codes and past research guidance  on the inclination of struts 
 
When considering reduction factors for compressive struts, Nielson et al [5-Error! Bookmark 

not defined.] proposed a reduction factor of 0.45 to be taken for uncracked region of concrete 

of 50MPa instead of the factor of 0.6 which is the lower bound compressive strength 

recommended by most design codes. This difference in magnitude of the reduction factors 

suggests that further research for finding a more accurate value for reduction factors for HSC 

is needed.   
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Figure 5.10: CEB-FIP MC90 standard 
discontinuity region,  where 18.4º≤θ≤45º 
 

Figure 5.11: This writers’ proposed 
model  for HSC beams a/d≤3.02 with 
HWB and stirrups 18.4º≤θ≤45º 

 

 

Code or researcher Min 
θº 

Max   
θº 

Remarks 

CEB-FIP-MC90[5-16] 15.0 45.0 The upper limit is for  B region 
ACI-318-08 [5-23] 19.7 - General recommendation 
EC2 [5-18] 21.8 45.0 General recommendation 
CAN3-A23.3-M84[5-25] 15.0 75.0 General recommendation 
Placas and Regan[5-13] 26.7 - Slender beams with vertical stirrup 

18.3 - Slender beams with 45º inclined stirrup 
Rogowsky& MacGregor  
[5-10] 

25.0 65.0 General recommendation 

Grob and Thurlimann [5-3] 26.6 63.4 General recommendation 
Collins et al [5-27, 28] θ depends on concrete strength and strain 
Ortiz[5-42] Min θ=25º,  increase  in max θ favorable to the node 

resistance  
This researcher Min θ=18.5º, for HSC with  HWB and stirrup and 

increase  in max θ favorable to the node resistance 
9  

Table 5.2: Minimum and maximum recommendations for the strut inclination 
 

 

 

0.33Z< a <Z cotθ for HSC with HWB 

Z 

al /2 al /2 

a1 

Ft 

Fc 

0.5 Z< a <Z cotθ 
 

θ 

a 

 Ft 

F
Z 

al 

/2 
al /2 

a1 

Fc 

a 
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5.5 Literature review on short beams 

 
The shear resistance of beams subjected to concentrated loads varies considerably with the 

shear span/effective depth ratio (a/d). Regan [5-29] described  'short beams' as supported 

beams subjected to a concentrated load on top and supported underneath within a distance of 

less than 2.5 d (a/d < 2.5).  

 

Principal characteristics for short beams are: 

• Shear cracks are not the product of flexural cracks but form independently near  

mid -height. There is generally only one dominant shear crack. Transverse forces can 

be supported directly by arching action in the concrete without causing shear stresses 

in the concrete at the head of the shear crack. The support  at the bottom surface of the 

beam can restrain the concrete cover and considerable dowel action can develop. 

 

• The failure of short beams occurs when the compression zone is crushed over the  

inclined cracks. This failure mode is referred to as shear compression failure. The  

inclined crack can extend high into the beam, reaching the loading zone, and local 

crushing of the concrete is likely to occur as well as crushing of the strut itself, see 

Figure 6-10a.  

 

• The ability of short beams to carry load after the development of inclined cracks is due 

to the compressive resistance of the diagonal strut. In some cases the failure can occur 

when the inclined crack separates the strut into two parts, Figure 5.12b.   

 

• Bond failure as a consequence of dowel action is possible. For a/d ratios over  2.0 (low 

Ө) the dowel effect at the inner side of the support can originate a splitting crack that 

runs along the reinforcement leading to a loss of bond, Figure 5.12c. 

 

Kani [5-30, 31& 32] developed 'The Rational Theory of Diagonal Failure', based on a large 

number of test results. The graphs of test results he obtained presented two different functions 

intersecting at a/d = 2.5. Each function represented a different failure mechanism.  
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He considered the cracked beam as a 'comb-like' structure  increasing the loading of the tensile 

zone of the beam which is transformed into a series of vertical concrete teeth separated by 

cracks. He analysed the resistance of the beam considering the resistance of such concrete 

teeth. For a/d> 2.5 the diagonal failure occurred when the inclined cracks appeared as the 

capacity of the concrete teeth was reached.  

 
In beams with a/d < 2.5 Kani observed the formation of an internal arch from the loading point 

to the support. These beams developed inclined cracks but still were able to carry 

additional load by the strut running from the load to the support. 

 

Zsutty [5-33 &34] developed a combination of dimensional analysis and statistical 

regression analysis to provide an empirical basis for the separation of test beam 

behaviour into the arch action and the beam action of slender beams. With a large 

number of test data of reinforced concrete beams without shear reinforcement, he fixed 

the value of a/d = 2.5 as the means of separating the test beam results into arch action 

and beam action.  

 
 
Figure 5.12: Shear failure in short beams 

Source: Regan P.E, April 1971 
 

b 

a 

c 
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He also suggested that the extra strength of arch action was only a function of beam properties 

but also depends on the manner of load application and beam support, and said that an 

accurate representation of the top and bottom pressures due to load and support conditions 

might be the dimensions of the load and support blocks or plates and their position in the short 

beam shear span. 

 

Therefore, beams loaded on their top and supported at their bottom surfaces with a/d<2.5, 

where the arch action prevails, are called short beams .   

5.5.1 -  Influence of the width of the support plate on the node dimension  
 

With STM  the node dimensions can be decided in relation to the width of the support such as 

the  strut model proposed  by Ortiz for the short beam, Figure 5.13,  which takes β= 56.3◦ or = 

atan (1.5)   from experimental work.  

 

Reviewing  Ortiz’ idealised support, it appears that β is larger than Ө resulting in a wider strut 

than Wight's model, Figure 5.15. Ortiz considers frictional force on the reinforcement along 

the short distance of ‘C tan β’, Figure 5.13,  next to support plates to change the width of the 

strut. She assumes that tan β=1.5 and noted in  her final conclusion that this assumption was 

based on experimental values, but does not specify the experimental measurements details, 

whereas Wight's approach resolves the forces at the support with a simplified direct  struts.   

 

 

 
Figure 5.13: Idealised support node proposed by Ortiz [Error! Bookmark not defined.]  
 
 

          Ortiz’ proposed Model  

Ө 

Ps 

Ps + 2 c tan β 

C tan β 

Bond stress 

Pressure from the strut 
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5.6 STM of  beam due to arching 

The arching action is dependent on the shear span to depth (a/d) ratio, presence of stirrups , 

strength of  concrete and presence of HWB. In the following sections, the influence of these 

parameters on beams are discussed. 

5.6.1 -  Beams with a/d ratio smaller than 2.5 
 
When considering short beams of  1≤a/d≤2, a direct inclined strut from loading to support 

plate is formed and this is demonstrated  in an analysis of  the experiments on two beams  by 

Ortiz [5-42]  in Chapter 7, data from which  will be used for calibration of FE with STM 

models. STM models for beams of 1≤a/d≤1.5 are shown in Figure 5.14.  

 

When STM  is for 2≤a/d≤2.5 for beams with stirrups,  the inclined deflected strut forms 

similar to that in  Regan’s  model [5-42], Figure 5.16.  

 

 
 

Figure 5.14: STM proposal by Ortiz [5-42] and 
Wight [5-35] 
 

Figure 5.15: Width of inclined strut at 
node according to Wight's [5-35] 
proposal 

Adopted from Wight [5-35], 2009 
 
 

 
As suggested by Regan [5-29], the  principal characteristic of  short beams are shear cracks 

which are not the product of flexural cracks but form independently near mid-height. 

There is generally only one dominant shear crack. Transverse forces can be supported  
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directly by arching action in the concrete without causing shear stresses in the concrete at the 

head of the shear crack. The support  at the bottom surface of the beam can restrain the 

concrete cover and considerable dowel action can  develop. 

 
 

As suggested by Regan [5-29], the  principal characteristic of  short beams are shear cracks 

which are not the product of flexural cracks but form independently near mid-height. 

There is generally only one dominant shear crack. Transverse forces can be supported  

directly by arching action in the concrete without causing shear stresses in the concrete at the 

head of the shear crack. The support  at the bottom surface of the beam can restrain the 

concrete cover and considerable dowel action can  develop. 

 

 
 
Figure 5.16: Combination of arch and truss effects in a detailed model of short shear 
span beams with stirrups as suggested by Regan [5-36]. 

Source: Regan  [5-36] 
 
Figure 5.22 shows that HSC beams with stirrups and HWB of shear span to depth ratio 

(a/d=3.05) have crack formation as that described for short beams by Regan [5-29]  or beams 

of a/d≤2.5. However, the Canadian code [5-25], considers  short beams to be   a/d<3.05.  

 

5.6.2 -  Beams with the a/d = 3 with stirrups 

 

In the  STM approach for the cases when the beam is of HSC with stirrups and with HWB, the 

direction of the compression inclined strut developed in the beam 2.5 ≤ a/d≤3 is influenced by 

the presence of the HWB and this influence is also a function of the  compressive strength of 

the concrete.   
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Figure 5.17: Beam NSC1 with stirrup and without HWB after failure. 
 

When the beam is NSC1  of  a/d=3.02, with stirrups and without HWB, the strut and tie action 

does not develop, Figure 3-18 and Figure 5.17. The upper part of the crack develops at 150 kN 

before the failure load of 160 kN which  is due to the increased moment M  from the dowel 

force D,  activated at 140 kN  after the dowel crack formed along the reinforcement  .  

 

 

 
Figure 5.18: Beam HSC1 with stirrup and without HWB after failure 
 

In HSC structures,  shear cracking resistance will comparatively be low because of the 

weakness or the lack of aggregate interlock or aggregate type and for this reasons  the shear 

resistance capacity in HSC may be lower than that in NSC. 

 

For HSC1 of  a/d=3.02 the strut and tie action does not develop, Figure 3-12 and  

Figure 5.18. Just before the failure load 140 kN, at 130 kN the upper part and the lower part of 

the crack develops. The maximum moment is shifted to  0.44d from support compared to 

0.33a  in the case of NSC1. The maximum moment from dowel action occurs close to mid 

shear span therefore producing the final failure cracks at the top as well as the bottom.  
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5.6.3 -  HSC Beams with a/d ratio of 3 with stirrups and HWB 
 
In beam HSC4 of a/d=3.02 with 2T25 HWB, dowel resistance  depends on concrete strength.  

 

At an unknown location in the  shear span on  the HWB, where the maximum dowel moment 

develops from the dowel force Dhwb,  this moment   deflects the inclined strut,  which improves 

the arching action and results in yielding of tension reinforcement,  Figure 5.19.  

 

 

10  
Figure 5.19: Inclined compression forces deflect in HSC4 beams with HWB of a/d ≈3.02 . 
 

In beam HSC4, Figure 5.19, at  280 kN at the upper part of the crack and at 260 kN at the 

lower part of the inclined main cracks develop just before the failure load of 300 kN due to the 

moment Mhwb  which is produced by dowel force  Dhwb resulting in failure due to maximum 

moment after  arching action has taken place. 

 

At failure stage, presence of HWB produces many scattered  cracks parallel  or near  to the 

main crack close to failure loading, which results in more ductile and gradual failure  rather 

than sudden failure due to the formation of one main crack and the absence of HWB. When 

HWB is present, the energy from the increasing load is dispersed across the  shear span in the 

form of numerous cracks, Figures 3-9 to 3-11 and Figures 3-13 to 3-15. The ductile failure due 

to the  presence of HWB is in contrast with the  sudden failure due to rapid transfer of energy 

from increased loading into a single large crack  producing a brittle and sudden  failure when 

no HWB is present, Figures 3-8 and 3-12. 
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It should be noted that when HWB was introduced in the HSC beam the load bearing capacity  

nearly doubled and the cracks width was restrained, allowing the development of full arching 

capacity of the structural system. 

 

The action causing this deflection of the strut is demonstrated by investigating the strain gauge  

readings of the experimental results on top and bottom of the HWB within the shear span, near 

where the deflection of strut occurs, Figure 3.37, Appendix C.  

 

The  upper limit of a/d=3 may be increased for HSC beams with HWB, which has more effect 

on arching capacity than on shear cracking resistance. However, weak aggregate and/or weak 

aggregate interlock will significantly reduce the shear resistance capacity of HSC beams 

without HWB. 

 

 

Dowel forces are reasonably easy to visualize at flexural cracks, but very complex to  

picture when  they act on inclined cracks, Figure 5.20. It is difficult to propose actions by 

which they can be transmitted into the main internal structural system. Certain assumptions 

based on visualizing dowel actions on inclined cracks resembling  dowel action in flexural 

cracks need to be introduced. Also the complex interaction of the dowel action from the HWB, 

diagonal compression from HSC and the tensile force in the stirrup need to be simultaneously  

 

 

11  

Figure 5.20: Contrary to the simple 
picture of performance of dowel action 
on flexural cracks,  dowel forces are 
difficult to visualize at inclined cracks 
bearing on weak wedges of concrete 

Figure 5.21: It is complicated to clearly 
envisage the dowel action within the main 
internal structural system comprising of 
stirrups and HWB and its  transmission 
of  forces  on weak  wedges of concrete   

Z/2 Z/2 
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considered and visualized to understand their interactions, Figure 5.21. 

 
The improved shear performance of HSC beams with stirrups and HWB of a/d=3.02 is mainly 

due to dowel forces from the HWB where  they bear on strong wedges of concrete supported 

by the stirrups. The actions from these wedges are assumed to be  transmitted into the main 

internal structural system to deflect  the diagonal compression, Figure 5.21. This additional 

internal structural system within the length of 0.5z can be assumed  to increase the STM action 

from the conventional a/z=2.5 to 3.  

 

  

Figure 5.22: Beam HSC4 shows the characteristics identified by Regan [5-29] for short 
beams. 
  

When the ratio of stirrups is low a load greater than the shear cracking  load can often be 

resisted by a combination of arching effect and truss actions as long as a/d ≈3, Figure 5.19. 

The limit is not an exact one but tends to increase with increasing concrete strength, which has 

more effect on arching capacity than on shear cracking resistance. To propose a STM based on 

failure criteria is complex as STM is lower-bound plastic theory and does not have any 

compatibility condition.  

Independent near  mid-height dominant shear crack 

Development of large dowel action originating a splitting crack along the reinforcement 

Shear compression failure 
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Figure 5.23: Combination of arch and truss actions as long as a/d ≈3. Forces produced by 
HWB are not shown. 
 

HWB significantly affect the direction of the inclined compression strut in beams of a/d ≈3 

when the strength of concrete is high and stirrups are present, Figure 5.23.   

 

5.6.4 - Codes’   recommendation for upper limit of a/d  
 

It is notable that all the codes give the value θlim≤3, however, this research demonstrates that 

in HSC beams with shear reinforcement and HWB , if a simple truss model is used, θlim can be 

increased to 3.02.  This is larger than the upper limit recommendations in all the codes. CEB-

FIP90 [5-16]  gives the closest prediction; however, it should be amended to give provision for 

HSC beams with HWB.  

 

Code MC90 [5-16]  imposes an upper limit of a/d=3 for STM.  However, it will be 

demonstrated that for HSC beams with stirrups and HWB with a/d=3.02 the full STM action 

takes place with the yielding of the tension steel, Figures 3.24 to 3.26.  

 

This  upper limit of 3.02 is possible for HSC beams with stirrups and HWB, which has more 

effect on arch capacity than on shear cracking resistance. When beams are a/d=3, in the 

absence of HWB, the  weakness in  shear behaviour of HSC resulting from the absence of 

aggregate interlock and its low shear cracking resistance is apparent. However, many codes do 

not impose the necessary  restrictions for possible shear weakness when 2.5≤a/d ≤3.   

 

When HWB is introduced the shear cracking resistance significantly improves, the crack 

width is restrained and full arching capacity is developed. The proposed design rule for dowel 

action from Chapter 3  allows for prediction of the quantity of HWB in the beam (or CVB in  
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TBCJ) for shear reinforcement in HSC beams with HWB of a/d=3 or HSC- TBCJ with CV of  

aspect ratio ≈ 3. The proposed rule may be used with guidance from various codes to predict 

shear forces when HWB is present.  

5.6.5 - Location of the maximum moment due to dowel action from HWB 
 

Figure 5.24 shows a variation of the bending moment due to  dowel forces on the HWB in 

beam FE- HSC3 indicating the location of the  point of maximum moment  on the HWB. The 

quantitative  value of the moments and forces on the reinforcement, HWB, are unrealistically 

small because full bond at concrete-steel  interface is assumed rather than full slippage at the 

interface therefore the moment at the neutral axis of the RC beam is presented, Figure 5.24. 

However, the FE model provides  valuable information on the location of the maximum  

moment in the shear span at HWB level. This information is essential for developing STM for 

the beam.  

 

Future research may attempt to FE model the full slippage for the  bond at the concrete-steel 

interface by introducing links as suggested in chapter 4 in order to obtain realisti values for the 

moment acting on the HWB after crack formation. 
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Figure 5.24: Location of maximum bending moment on HWB in beam FE- HSC3  
 

 Link 2  

Distance from support (mm) 

Md = 35290 Nmm 

Md = -47432 Nmm 

F1 

F2 
237.2 mm 

F1 ≈ F2≈ 6620 N 
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Figure 5.25: Location of maximum moment  to deflect the inclined diagonal compression 
strut  
 

Considering the bending moment diagram produced from the FE model for HSC with HWB in 

Figure 5.24, the distance from support to point of contra-flexure  between the two largest  

moments acting  in opposite directions is 237.2 mm, which is the point where maximum 

dowel action occurs within the shear span a= 800mm,  and is close to 0.3a from support, 

Figure 5.27. 

 

Compare the quantity of the dowel moments of the FE and the mechanical model the results 

from proposed dowel prediction rule Table 3.11 are used. The moment produced (Mhwb)  is   

20.7 (kN) x 237mm= 4.9 x106 Nmm,  which is  the moment on the HWB when full slippage at 

steel concrete interface occurs after the inclined  crack is fully develops. The physical value 

for the moment from mechanical model is much higher than that provided by the  FE model, 

Figure 5.24. This is due to full bonds assumed for the concrete-steel interface when the FE 

was modelled, however, the location of maximum moment presented is considered to be 

reasonable and will be used for further analysis and STM.  

 

5.6.6 - Investigation of different load paths in STM  
 
One option for STM of beam HSC3 is shown in Figure 5.26. The total force in the main strut 

from support of loading point is Dwi  bearing θ to horizontal and its vertical component is Vwi,. 

The  force in the strut due to dowel action is  Ddow bearing η to horizontal and its vertical 

component at support at the support is Vdow. The  force in the strut due to stirrup is  DASV 

bearing γ to horizontal and its vertical component at support at the support is Vdow,  

Diagonal  
Compression strut Main cracks 

Dhwb 

Thwb 

   
Mhwb 

  237mm 



______________________________________________________________________________
Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 
 

245

 

 

 

 
 
 
 
 
 
 
Figure 5.26: STM of HSC beam with HWB of a/d=3. Main strut, 1-3, at angle of θ, strut 
due to  stirrups, 1-2,  at  angle of γ, strut due to dowel action from HWB, 1-5,  at angle of 
η.  
 
Another possible option for STM of HSC3 is shown in Figure 5.27, where  strut 1-2 represents 

the resultant  struts  for the main strut from loading to support point 1-3 (not shown) and strut 

balanced by the  stirrup (2-4). Considering resultant R representing  force from stirrups and the 

main diagonal strut, the STM is simplified as shown in Figure 5.27.  

 
Vu= Rsinβ+Ddow sinη   5.18 
 

 

 

 

 
 
 
 
 
 
 
Figure 5.27: STM of HSC beam with HWB of a/d=3, showing the resultant of the main 
strut and the strut from stirrup as single strut 1-2, at angle β. 
 

The third and most practical and  realistic option for presenting the load path and STM for the 

beam HSC3 with HWB and stirrups of a/d=3.02 is by FE and experimental approach. 

 

In FE approach,   principal stress concentration where trajectories are produced, and to   

transpose  the struts on  the maximum stress line recorded for the  concrete  and the ties on   
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where reinforcement is positioned produces a rational STM. 

 

In the experimental approach, maximum principal stresses produce tensile cracks, therefore 

transposing the main cracks for struts and the ties on  where reinforcement is positioned 

develops a reasonable STM , Figure 5.28.  

 

From above the data, the  STM was developed, Figure 5.29,  and  the magnitude and direction 

of the  internal forces inside the shear span of the beam is resolved. 

 

 
12  

Figure 5.28: location of the STM in relation to position of the cracks of beam HSC4 
13  
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14  
Figure 5.29: Position of the STM in relation to the  location of shear strain trajectories 
from FE analysis of beam HSC3 
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5.6.7 -  STM for beam HSC3 
 
Location of node 2 is at 400+237=637 where the force resulting from a strain of 0.00058 is 

72kN.  Similarly, the strain gauge reading recorded experimentally on the web bar at the 

middle of the shear span, or at 800mm from the end of the beam for HSC3 was 0.000579 on 

the bottom side of web bar and  0.00188 on the top side of the bar indicating the local  bending 

due to dowel action, Table 5.3, Appendix C.  

 

On the other shear span where the failure occurs, the strain on top reached 0.00338 which is 

well over the yielding point,  whereas  the strain below the bar is 0.00177 which is well under 

yielding point, again indicating bending of HWB due to dowel action, Appendix C.  

 

One simple approach is to apply the force predicted by the proposed empirical  equation as the 

dowel force and develop the corresponding STM for beam HSC3.  

Td= = 395.1 cubn fdb ×××  

bn = b-2db 

 

where  the breadth of the beam is b and db  is the diameter of the  HWB bars and  fcu is the 

cube strength of the concrete. 

From the above 

68.201122011095.1 3 =××=dT  kN 

 

STM member Strain gauge (10-3) FE strain(10-3) 

Web bar 0.579 0.610 
Stirrup Yield yield 

Tension bar Yields to 2.8 Yields to 3.6 
15  

Table 5.3: Strain in HWB of STM  compared to FE in beam HSC3 
 

To check if the movement of cracks was correct for the mobilization of dowel action force Td, 

reference was made to published  measurements of vertical movements at flexural cracks 

which developed into  shear cracks. It was clear that the movements are large enough for 

dowel resistance to be fully achieved as this movement is limited  by the tensile strength of the 
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concrete, and a movement of about 0.1mm can adequately mobilize it. The significant 

difference in strain gauge readings on top and bottom of the web bar in the shear span 

confirms this movement has taken place, Figure 3-37. 

 
Considering Tw is the  tension in  central bars, Figure 5.30, from the experimental  strain gauge 

reading, FE analysis at 270 kN, Figure 5.30, at a distance (L1-6 =237) 237+400= 637 mm from 

the end the strain gauge reading is shown to be 610 micro strain on 2T20 bars or tension of 

579.9 micro strain is shown on the strain gauge glued to the lower part of the web bar at 

800mm from the end which confirms tensile force of 72.5 kN. Therefore Tw= 72.5kN.  

 
Figure 5.30: FE analysis of strain in X direction on HWB in beam HSC3 at 270 kN 
failure load on node 2.  

16  

Transposition of the model shows the lines of struts are approximately corresponding to crack 

formations, Figure 5.28. 

 

Tty   is tension bars in beam which are 3T20 of  fyw=  460 kN at yielding. From experimental 

strain gauge reading, Figure 5.31, and  FE analysis, it is demonstrated that 3T20 tension bars 

yield at the centre of the beam,  as below: 

Tty =
2103460 ××× π =433.54 kN 

The  dowel action force calculated from Baumann’s modified equation  from the proposed 

design rule in  chapter 3 is: 

Td= = 395.1 cubn fdb ×××  

bn = b-2db 

 

 0.610 

       637 
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Figure 5.31: FE analysis of strain development on the longitudinal tension bars in beam 
HSC3 at 270 kN loading showing yielding of the tension steel at the centre of the beam  
 

where  the breadth of the beam or BCJ of concrete is b, db  is the diameter of the  HWB bars 

and fcu is the cube strength of the concrete. 

From the above 

68.201122011095.1 3 =××=dT  kN 

 

As recorded from the strain gauges in the experimental tests and FE analysis the tension bars 

and  stirrup in the middle of the shear span  yielded of fy= 250 MPa, we consider stress at 260 

MPa to represent full yielding 

Ts = 242260 ××× π = 26.12 kN 

 
Considering external forces: 

where  W = 135 kN, d=265, a= 800,  fyt = 460 MPa   and  fys=240 MPa 

recorded from strain gauges   

Tw = 72.5 kN             

 

The first step is to  evaluate the compressive force along the horizontal compression strut from 

the equilibrium of the external forces and moments. This is done by taking moment for 

external forces  : 
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dCaW
d

Tw ×=×+×
2

           5.19 

or    230800135115 ×=×+× CTw             

∑ = 0H         tyw TTC +=     or   54.433+= wTC    

From the above 2 equations 

23032.433135800115230 ×−×=− ww TT        5.20 

53.72=wT  kN 

506=C  kN 

Dowel action which takes place in the direction node  2 to 6 is explained and  discussed and 

shown in Figure 5.20.  

 

 

 

 

 

 

 

 

 

Figure 5.32: STM model of HSC beam with stirrup and HWB of a/d=3 analogous to 
HSC- BCJ with confinement bars and CVB with aspect ratio of 3 
 

Start by resolving forces at node 5 

58.0
400
230

tan ==γ              °= 9.29γ               

∑ = 0V                 12.26sin54 ==− sTF γ   kN         4.5254 =−F  kN 

∑ = 0H           0cos 6554 =+− −− TTF tyγ        89.38743.4532.43365 =−=−T  kN 

 
Resolve forces at node 6 

∑ = 0V     θsin68.20 63−== FTd  

∑ = 0H    616365 cos −−− =+− TFT θ  

 
To find angle θ from the geometry 

12.26
68.20

51

61
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62 ==
−

−

−

−

l
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12.26
68.20

400
115 61

53

== −

−

l

l
 

L3-5
 = 145.25mm,  L1-6

 =316.69mm & L5-6
 =83.41mm 

°== − 16.60)
31.83
25.145

(tan 1θ  

From  equilibrium at node 6 
84.2363 =−F kN 

T1-6=377.6 kN 
 
Resolve forces at node 1 

∑ = 0V                 0sin21 =−− WF α         

∑ = 0H         0cos 6121 =− −− TF α  

6.377
135

tan
61

==
−T

Wα     °= 67.19α  and 40121 =−F  kN 

 
Resolve forces at node 2 

∑ = 0V           ϕα sinsin 3221 −− =− FTF d      or 32.11468.20135sin32 =−=− ϕF  

∑ = 0H       53.72coscos 3221 −= −− ϕα FF     therefore       13.450cos32 =− ϕF      

13.450
32.114

tan =ϕ     °= 25.14ϕ   42.46432 =−F  kN 

 
Resolve forces at node 3 

∑ = 0V         βθϕ sinsin12.26sin 436332 −−− =+− FFF      therefore    

88.10816.60sin84.2312.2625.14sin42.464sin43 =°+−°=− βF     

∑ = 0H      βθϕ coscoscos 436332 −−− =+ FFF   

99.46116.60cos84.2325.14cos42.464cos43 =°+°=− βF  

99.461
88.108

tan =β     °= 26.13β      63.47343 =−F  kN 

 
Resolve forces at node 4 

∑ = 0V       135sinsin 5443 ==+ −− WFF γβ          therefore      13512.2688.108 =+    

∑ = 0H    506coscos 5443 ==+ −− CFF γβ      therefore    50643.4597.460 =+   

 
The forces in the  STM are in equilibrium internally as well as externally 

5.6.8 - Computing the strut and node dimensions for the STM 
 
For node 1 and prismatic compression strut 1-2, side elevation of which is shown in Figure 

5.15, the same bearing pressure is considered for each side of the node. This is a hydrostatic 

nodal zone because the in-plane stresses in the node are the same in all directions. 
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With STM, when the node dimensions can be decided in relation to the width of the  

support a strut-and- tie model can be easily developed. However, this is more complex with 

BCJ which does not have defined supports. As there is a tensile force from within tension 

reinforcement, the width of that side of the node is calculated from a hypothetical bearing 

plate on the end of the tie, which is assumed to exert a bearing pressure on the node equal to 

the compressive stress in the strut at that node. This is a C-C-T joint  because this node is 

compressed in two directions and is anchoring a tie in one direction where strain 

incompatibility resulting from tensile steel strain adjacent to the compressive concrete strain 

reduces the strength of the nodal zone, therefore a reduction factor βn will apply. 

The effective compression stress for node 1 is : 

The cylinder strength of the beam  90 MPa, from Table 17-1 of Appendix A of ACI318-08 [5-

23] then from ACI section A.5.2.2, '85.0 cnce ff β= where βn=0.80 

2.61908.085.0 =××=cef  MPa 

For tension reinforcement ACI section A3.3  βn=0.75 

38.579075.085.0 =××=cef  

Using 75.0=φ  to ACI Code section 9.3.2.6, the minimum  cross-section for the node with 
axial force of 135 kN is an area of: 
 

18.2941
2.6175.0

1000135 =
×
×

  mm2 

 
The width of the beam is 150 mm. Therefore, the width of strut 1-2 is 19.61 mm. 
 
Minimum dimension for node 1 
 
This will control the base dimension of node 1 because strut 1-2 is a prismatic strut that can be 

designed by using βs=1.0. Thus, the minimum base dimension of  node 1 and width of strut 1-

2 is : 

24.58
1502.6175.0

1000401
21 =

××
×=−w mm 

The support plate for the beams is less than 100mm so there is enough space for the node to fit 

on the plate. 

 



______________________________________________________________________________
Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 
 

253

At node 4 , ACI section A.5.2.1 in nodal zones bounded on all sides by struts and / or bearing 

areas,  for '85.0 cnce ff β=  recommends βs=1.0  

50.7690185.0 =××=cef MPa 

For node 4 subject to vertical load 

69.15
15050.7675.0

1000135 =
××

×=loadw mm 

 

For node 4 subject to horizontal compression 

79.58
15050.7675.0

1000506 =
××

×=compw mm 

The minimum height of node 1 is to be calculated  for tie in T1-6 

50.58
15038.5775.0

10006.377
61 =

××
×=−w  

Axial tension in T1-6= 377.6 kN 

Area As required  

1094
46075.0
10006.377

61 =
×
×=−sA mm2  > 3T20> 942 mm2 because tension bars yielded 1.16 fyt 

Concrete strut width for 2-3 

45.67
1502.6175.0

100042.464
32 =

××
×=−w mm 

Equivalent concrete strut tension in the HWB due to Tw 

24.11
15038.5775.0

100053.72 =
××

×=TWw mm 

 
 
 
 
 
 
 
 
 
Figure 5-33: Force and width of the strut and tension in tie at node 1, struts are resolved 
into a resultant  force to balance  ties 
 
 
 
 

401 kN 

19.67º 

3T20= 337.6 kN 
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Equivalent strut due to dowel action from HWB due to Tw 

2.3
15038.5775.0

100068.20
)62( =

××
×=−Tdw mm 

Strut due to diagonal compression resulting from dowel action 

46.3
1502.6175.0

100084.23
63 =

××
×=−w mm 

 

Equivalent strut due to tension in stirrup Ts 

05.4
15038.5775.0

100012.26
)53( =

××
×=−TSw mm 

Equivalent strut due to tension in stirrup T5-6 

09.60
15038.5775.0

100089.387
)65( =

××
×=−TSw mm 

Equivalent strut due to tension in stirrup Ty 

16.67
15038.5775.0

100054.433 =
××

×=tyw mm 

Maximum compression formed within the main strut along 3-4 

79.68
1502.6175.0

100063.473
43 =

××
×=−w mm 

 
Maximum compression strut formed due to stirrup 

61.7
1502.6175.0

10004.52
54 =

××
×=−w mm 

 
From  calculations in the previous section the strut and node dimensions for the STM are 

shown in Table 5-5, Table 5-4 and Figure 5-35 to Figure 5-34 

 

 
 

Strut 1-2 2-3 3-4 4-5 3-6 
Angle α φ β γ θ 

Degrees 19.67º 14.25º 13.26º 29.90º 60.16º 
 

Table 5-4: The angle each strut makes to horizontal 
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Member 
Vertical 

component 
force (kN) 

Horizontal 
component 
force (kN) 

Axial 
force  
(kN) 

Effective 
concrete 

strength fce 
(MPa) 

Minimum 
width of strut 
or nodal zone 

ws (mm) 
Node 1 135.0 0.0 135.0 61.2 19.6 
1-2 135.0 378.0 401.0 61.2 58.2 
Ts(1-6) 0.0 378.0 377.6 57.4 58.5 
2-3 114.0 450.0 464.4 61.2 67.5 
Td(2-6) 21.0 0.0 20.6 57.3 3.2 
Tw 0.0 72.0 72.5 57.4 11.2 
3-6 21.0 11.0 23.8 61.2 3.5 
3-4 109.0 461.0 473.6 61.2 68.8 
Ts(3-5) 26.0 0.0 26.1 57.4 4.1 
4-5 26.0 45.0 52.4 61.2 7.6 
Node 4 135.0 0.0 135.0 76.5 15.7 
Node 4 0.0 506.0 506.0 76.5 58.8 
Ts(5-6) 0.0 388.0 387.9 57.4 60.1 
Tty 0.0 433.0 433.5 57.4 67.2 
INS 2 149.0  445.6  469.9 61.2   68.3 
INS 3 134.8  461.7  481.0 61.2 69.9 
INS 4 135.1  506.3  524.0 61.2 76.1 

17  
18 Table 5-5: Calculation of the forces in the STM of beam HSC3 

 
 

19  
20  21  22  

Figure 5-34: Resolution of forces acting on nodal zone 4 showing the type and 
dimension of nodes and struts  

 
 
 
 
 

a) Four strut node 4 with replacing 
tension tie  

52.4 kN 

13.26º 

473.63 kN 

506 kN 

 

135 kN 

506 kN 

52.4 kN 

14.94º 

524 kN 

29.9º 

473.63 kN 

135 kN 

b) Force polygon for node 4 
   c) Nodal zone 4 consisting of two 
hydrostatic subnodes and an internal 
strut 

135 kN 
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14.94º 

524 kN 

506 kN 
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Figure 5-35: Resolution of forces acting 
on nodal zone 2 showing the type and 
dimension of nodes and struts 

Figure 5-36: Resolution of forces acting 
on nodal zone 3 showing the type and 
dimension of nodes and struts  

 
 

 

 

 

 

 

   c) Nodal zone 3 consisting of two hydrostatic        
subnodes and an internal strut 
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a) Four strut node 2  replacing tension ties with 
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   c) Nodal zone 2 consisting of two hydrostatic 
subnodes and an internal strut 

23.84 kN 
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481 kN 
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          a) Four strut node 3 replacing tension ties          
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From  dimensions for nodes and struts the STM was developed for beam HSC3, Figure 5-37 

 

23  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-37: STM for HSC beam with HWB of a/d=3.02 with stirrups. The sum of the 
shear transmitted is counter balanced by vertical components of  the deflected strut 
which has an improved arching action as well as the  stirrups.  
 

 

5.7 STM for BCJ 

5.7.1 -  STM for  TBCJ     
 
It should be noted that STM of beam HSC3 is analogous to that of TBCJ with an aspect ratio 

of 3.   

3==
c

b
h

h

d

a
            5.21 

 

where the applied support reaction on the beam, W, is analogous to tension in the beam bar at 

BCJ. Shear span, a, in beam is analogous to hb which is the beam depth at BCJ. Depth of beam, 

d, is analogous to hc which is the column depth at BCJ, as is the beam in Figure 5-37  to TBCJ, 

Figure 5-38. 
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24  

25  

Figure 5-38: The proposed analogy of   STM of HSC with HWB of a/d=3  to HSC-BCJ 
with apect ratio ≤3 with CVB.  
 
 
 
 
 
 
 

 
Figure 5-39: The STM for  HSC- BCJ with confinement steel and CVB analogous to 
HSC beam with stirrups and HWB 
 

Figure 5-39 shows the shear strain trajectory of  BCJ analogous to the beam shown in Figure 

5-33, where  similar  STM is applied to the TBCJ . 
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26  
 
Figure 5-40: Forces acting within the HSC- BCJ with CVB of  aspect ratio  3. It is 
assumed that forces shown as struts with dots and dashes are  included in horizontal and 
vertical components W and C.   
 
It is notable that for the purpose of showing the analogy in Figure 5-38 and Figure 5-39 the 

struts acting on the TBCJ  from beam and from the lower part of the column is not shown. 

However,  the presence of these two struts is shown  in Figure 5-40, which also provides an 

indication of the magnitude of the forces in the ties and the angles of the struts.  
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5.7.2 -   Review of STM for BCJ 
 
The model proposed by  Pauley [5-37] is shown in Figure 5.41. Intermediate column bars are 

proposed for the  model in order to equilibrate the vertical shear in the joint. No details such as  

the failure mechanisms, the geometry of the nodes and the cracked concrete strength were 

proposed for the model.  

 

In a report published in 1984, a thorough critical review on BCJ was provided  

by Pauley and Park [5-38] which assumed the existence of two shear-resisting mechanisms: 

one involving joint shear reinforcement and the other consisting of concrete struts. 

 

 

Figure 5.41 : The strut and tie  model proposed by  Paulay [5-38] 
27  

 

 
Figure 5.42: Vollum’s original 
strut and  tie model 

Source: Vollum R. L,  
Newman J.B, [5-39]-1999 

28 Figure 5.43: Vollum’s revised 
29 strut and tie model 

Source: Vollum R. L, 
Parker, D, [5-40]-2008 

30  
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The  STM developed  by Vollum and Newman [5-39] appeared to be more complicated.  

However, Vollum and Parker [5-40] revised strut and tie model  provides a comprehensive 

load path. 

 

Vollum presented STM for joints with and without shear reinforcement. Similar parameters 

used previously by Ortiz [5-42] for developing STM for BCJ were employed . 

 
Researcher 

Specimen 
Detail Fc 

MPa 
Actual  
Failure Mode 

Predicted 
Failure Mode Ppred/Pfail 

Scott & 
   Hamill [5-
43] 

C4ALN0 L Bar 42 P J 0.94 
C4ALN1 L Bar 46 J J 1.01 
C4ALN3 L Bar 42 J J 1.26 
C4ALN5 L Bar 50 JS B 1.20 
C4ALH0 L Bar 104 P B 1.50 
C4ALH1 L Bar 95 B B 1.43 
C4ALH3 L Bar 105 B B 1.41 
C4ALH5 L Bar 98 B B 1.29 
C6LN0 U Bar 51 J J 1.46 
C6LN1 U Bar 51 J J 1.63 
C6LN3 U Bar 49 JS B 1.62 
C6LN5 U Bar 37 JS B 1.25 
C6LH0 U Bar 101 J J 1.11 
C6LH1 U Bar 102 JS B 1.72 
C6LH3 U Bar 97 JS B 1.52 
C6LH5 U Bar 100 B B 1.23 

Parker & 
Bullman [5-
44] 

4a L Bar 39 C C 1.72 
4b L Bar 39 J J 1.51 
4c L Bar 37 J J 0.94 
4d L Bar 39 J J 1.41 
4e L Bar 40 J J 1.40 
4f L Bar 38 J J 0.93 
5a L Bar 42 C B 1.63 
5b L Bar 43 JS B 1.49 
5c L Bar 43 B B 1.44 
5d L Bar 43 C C 1.54 
5e L Bar 45 C C 1.28 
5f L Bar 43 C C 1.23 

 
Table 5.6: The predicted failure loads of Scott & Hamill's [5-43] and Parker & 
Bullman’s [5-44] tests from Ortiz design rule.  

 
Source: Tables adopted from Bakir  and Boduroglu [5-41]-2001 

 

Ortiz’ proposal [5-42] for a design rule for BCJ failure was investigated [5-41]  by predicting 

BCJ failure of  two high strength BCJ which Scott & Hamill [5-43] tested to joint shear failure. 

This has demonstrated that Ortiz’s design rule applied to the two HSC specimens (C6LH3 & 

C6LH1) to predict the joint shear failure  load of specimens which were 51% and 72% higher 

than those of the test  failure loads.  



______________________________________________________________________________
Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 
 

262

 

In general, Ortiz’ proposed designed rule was not conservative when applied to beams tested 

by Scott & Hamill [5-43] and Parker & Bullman [5-44], Table 5.6. The  abbreviations  used 

for the failure modes in the table  are: B: Beam failure, JS: Joint shear failure, P: Pullout of 

beam’s bar, C: Column failure. 

 

5.7.3 - Basic approach to STM of BCJ of aspect ratio<2 
 

 
Figure 5.44: Basic STM for BCJ  
 
STM are an idealization of the behaviour of cracked reinforced concrete. By reducing the 

continuum to a discrete STM, a simpler approach to concrete and reinforced concrete 

modelling is made possible. Since concrete structures bear the applied loads according to the 

way they are reinforced, an infinite number of STM are possible. All of them need to satisfy 

equilibrium and to respect yield criteria.  

 

Some STMs are unsuitable because they would require high plastic deformations and force 

redistributions which are incompatible with the limited deformation capacity of concrete. Also, 

choosing an adequate STM for the ultimate limit state does not  

necessarily lead to satisfactory behaviour at the serviceability limit state.  

 

Using  STM with a geometry that follows the elastic flow of the internal forces in the 

uncracked state leads to solutions that have a more satisfactory behaviour in service. This 

Ө 
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approach, however, is not always practical, because it would often require the reinforcement to 

be placed in diagonal directions with complex shapes.  

 

A basic STM mechanical model can provide a clear guideline on shear performance of 

discontinuous joints in RC structures. More refined models are being  evolved from STM  

in stress fields which is a positive step towards analysing more refined STM.  

 

 
Figure 5.45: STM in the joint region  forces in column bars in relation to beam bar 
 
 

To this writer's knowledge no attempt has so far been made to  propose a design method 

suitable for predicting joint shear of  external   transfer beams and  HSC columns. This chapter 

is an effort to explore existing design rules to predict the joint shear resistance of HSC BCJ.  

  

5.7.4 - Formation of cracks in HSC-BCJ of aspect ratio=3 with CVB 
 

A simplified proposed  design method  with stirrups and CVB is calculated as below based on 

modifying Ortiz’ [5-42] design method. 

The joint shear strength can be derived in terms of the node dimensions, Figure 5.47.  

vFD =βcos          5.22 

jVD =βsin       5.23 

where D is the total force in the diagonal strut, Fv is the vertical force due to the applied load 

on top and bottom of the joint and Vj  is the joint shear force.   

 Comparatively negligible 
forces  

T2 

900 

30

T

C

C T2=3T
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Then let    

wi  =  width of diagonal strut without considering the stirrup or the CVB 

D  =  Diagonal strut force at the joint just before cracking and it magnitude is  

wf
f

bkD ck
ck

c ⋅−⋅= )
250

1(    5.24 

 

 
Figure 5.46: Principal stresses before crack formation and direction of tensile and 
compressive forces after the cracks are formed in the BCJ. 

 
where bc  is the column breadth and w is the strut width 

where cγ is factor of safety for concrete which is given as 1.5,  fck is the characteristic 

compressive strength of cylinder strength of 28 days, k = 0.6 for concrete struts in cracked 

compression zones, k = 0.85 for compression –tension nodes with anchored ties in one 

direction and k = 0.75 for compression-tension nodes with anchored ties in more than one 

direction.  Hence, the diagonal strut force becomes 

wf
f

bD ck
ck

c ⋅−⋅= )
250

1(6.0   5.25      

Hence the diagonal width is 

ck
ck

c f
f

b

D
w

)
250

1(6.0 −
=                     5.26 

For any increase in diagonal force will be represented as 

wf
f

bD ck
ck

c δδ ⋅−⋅= )
250

1(6.0                 5.27 

s 

Ө

s 

Ө 

Before 
crack 

After 
crack 
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Similarly the increase in diagonal force width is 

ck
ck

c f
f

b

D
w

)
250

1(6.0 −
= δδ                5.28 

The total diagonal force including the increase in loading is 

( )wwf
f

bDD ck
ck

c δδ +⋅−⋅=+ )
250

1(6.0           5.29 

The stirrups and CVB increase the shear force by 
 

βδδ sin95.1 3 DfdbfAVTV cubnysvdsj =+=+=               5.30 

From equation (5-22) 

βδδ sinDV j =  

Substituting equation (5-24) gives 

βδδ sin)
250

1(6.0 ⋅






 ⋅−= wf
f

bV ck
ck

cj          5.31 

Re-arranging and substituting equation (5-28) 

ββ

δ
δ

sin)
250

1(6.0

95.1

sin)
250

1(6.0

3

⋅






 −

+
=

⋅






 −
=

ck
ck

c

cunnysv

ck
ck

c

j

f
f

b

fdbfA

f
f

b

V
w          5.32 

 

which is the increase in the diagonal strut width  

wi is the strut width when BCJ does not have any stirrups and its value is  

Wwi γ=  5.33 
where the value of  γ and β can be determined by  from FE models indicating the point of 

deflection of the diagonal  strut from moment concentration on HWB or CVB as suggested in 

Chapter 7 for TBCJ of HSC with CVB.  

 

W = hc cosβ + s sinβ  which is the maximum allowable width and γ is measured from the stress 

trajectories developed by FE model 

 

The total diagonal strut width is found by substituting equations equations 5-32 and 5.33 into 

the following,  

 

www i δ+=   5.34 
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Which gives 

β
γ

sin)
250

1(6.0

95.1 3

ck
ck

c

cubnysv

f
f

b

fdbfA
Ww

−

+
+=         5.35 

Substituting into equation (5-25 ) gives the magnitude of the diagonal strut force which is   



















−

+
+⋅⋅







 −=
β

γ
sin)

250
1(6.0

95.1

250
16.0

3

ck
ck

c

cubnysv
ck

ck
c

f
f

b

fdbfA
Wf

f
bD   5.36 

Substituting into equation (5-28), the total shear force in the joint is 

β
β

γ sin
sin)

250
1(6.0

95.1

250
16.0

3

⋅


















−

+
+⋅⋅







 −=
ck

ck
c

cubnysv
ck

ck
cj

f
f

b

fdbfA
Wf

f
bV     5.37 

Forces acting on the boundary of BCJ are investigated for failure analysis. It should be noted 

that the boundary regions are influenced by the joint and are typical transition zones, or D 

regions,  where the strain distribution across the section do not follow the Bernoulli theory, 

and other stress distributions are taken into consideration to provide equilibrium, Figure 5.48. 

 

Assuming that the depth of the beam chords is s, horizontal forces are Tbb, Rt, F and joint shear  

force Vjtest; and considering Ortiz models as presented above, the Vertical equilibrium is 

achieved from the following equation modifying Ortiz equations 

Fv = Fti + Fbi - Fcvt - Fcvb + Ccb - Vbe = Fte + Fbe + Cct               5.38                     
 
D cosβ + Vbe= Fti + Fbi - Fcvt - Fcvb + Ccb                     5.39 
 

where D is the total force in the diagonal strut, Fv is the vertical force introduced at each side 

of the joint and Vj is the joint shear force. 

 

The treatment of the top node in this model which assumes that the tensile force in the beam 

reinforcement is treated as if it were transferred into the rear face  of the column through  a 

rigid plate,  can lead to some controversy, as Hamil’s specimens CAPLN0 and C4ALN0 were 

identical except that the beam reinforcement was anchored with a plate bearing onto the back 

face of the column in specimen C4PLN0 and failed at 20% higher load than C4ALN0.  
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However, pull tests by Jirsa demonstrate that anchorage of the beam bar to  the rear face of the 

column through a rigid plate is almost identical to performance of L beam anchorage. 

 

 

Figure 5.47: Diagonal strut definition 
                       

 

5.7.5 - Performance of forces in BCJ reinforcement   
 
 

The tests by Jirsa and Marques [46], details shown in Figure 5.51, demonstrate that if the 

restraints are not provided by column stirrups, the concrete under the bend of the beam steel 

fails in bearing and spalls off the side of the joint. 

 

The loss of anchorage of the reinforcement, in particular in exterior connections, is 

undesirable because lateral shear can no longer be transmitted by the frame. Failure of the 

anchorage also causes a reduction in the energy-absorbing ability of the structural system. 

 

The stresses and slip measured at points along a hook at a bar stress of 1.25 fy in tests [5-45] 

with 90º,  and  180º ,  hooks of a 22.2mm diameter bar are shown in Figure 5.50 to Figure 5.53. 

The arrows show magnitude and direction of the slip at A, B, and C. For the 180º hook, the 

slip measured  at A was 1.75 times that measured at A in the 90º hook. 

W 

Wi 

s 

β 

δw 
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Figure 5.48: Simplified diagonal strut and boundary forces for aspect ratio= 3.  
 
  

Figure 5.49: Detail A  as in  
Figure 5.48,  D = compression force from 
diagonal strut, C= compressive force 
from column  and Ct= Concrete tensile 
force, T is tension on CVB 

Figure 5.50: Node  anchored by bent bar. 
As shown in Figure 5.52  [5-46] Jirsa 
assumed that when Tbb yields, Tbc is 
negligible. This was overruled by Ortiz 
[5-42] as shown in Table 5.7 

 

A 90º hook loaded in tension develops forces as shown in Figure 5.54. The stresses in the bar 

are resisted by the bond on the surface of the bar and by the bearing on the concrete inside the 

Node 3 at the bent 
bar Figure 5.50   
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The tensile force in the beam bar in BCJ is 
assumed to be transferred into the back of the 
column through a rigid plate, whereas , in 
practice the beam reinforcement is anchored with 
a U or L bar.  
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hook.  The hook moves inward, leaving a gap between it and the concrete outside the bend [5-

45]. As the compressive force inside the bend is not collinear with the applied tensile force, 

the bar tends to straighten out, producing compressive stresses on the outside of the tail. 

Marques and Jirsa’s concluded that  when Tbb yields, then Tbc is negligible was based on two 

specimens only, J7-90-15-1-H and J11-90-15-1-H.  They had 90º bend for the beam bar 

anchorage,  Figure 5.50, and that was disputed by research completed by Ortiz [5-42] as 

shown in Table 5.7.  

 

Ortiz [5-42] demonstrated that the tail stresses are 45% of the maximum stresses at the  

face of column.  When the stress at the column face  is  345 MPa, the tail stress is 210MPa.  

Table 5.7. This agrees with the none-linear FE analysis carried out in this research work and 

will be discussed further in Chapter 7 in the section discussing the strain on the beam bars. 

31  
Table 5.7 demonstrates the  improved performance of L-shaped anchorage as compared to U- 

shaped,  Figure 5.53 . This empirical design rule proposed in the next chapter will make  

provision  for this.  

 

Figure 5.51: Detail of tests by Jirsa and Marques [5-46] 

 

Similarly, it will be demonstrated in  Chapter 7  that FE models of BCJ tested by Ortiz [5-42] 

disagrees with the data provided by Marques and Jirsa [5-46] as in their specimen J7-90-15-1-

(d) One test 
With U anchorage 

(c) Four tests 

(b) Four tests 

(a) Ten tests 
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H a major part of the bar forces (76%) was anchored in the lead length before the start of the 

bends, Figure 5.52. Contrary to their finding, Ortiz [5-42] demonstrates, Table 5.7, that on 

average, the percentage of forces anchored are 1.5% in lead, 43% in bend and 45% in tail. 

 

 

 

Figure 5.52: Stresses and slip  - 90º standard 
hook at 1.25 fy 

Figure 5.53: Stresses and slip -180º 
standard hook at 1.25 fy 

 

Ortiz [5-42] makes a comparison study for the bearing stresses inside the bends for the seven 

BCJ tested to failure  from strain gauges readings positioned at the bend, with predictions from  

BS8110 [5-24] and CEB90 [5-16] for which factor α1 with a reduction factor of 0.7 was 

considered. 

 

It was concluded that BS8110 marginally underestimated bearing stresses for 2 out of 7 BCJ 

as no bearing failure was observed for those two specimens. All the bearing stresses were 

considerably higher than CEB 90[5-16] limits. 

 

Ortiz’s [5-42]  results indicate that BCJ5 which had no confinement steel  with  a smaller bend 

radius of 4d with axial column load of 300kN showed signs of spalling of the concrete cover 

from the region inside the bend, which was recorded on the surface strain as the cover spalled. 

Its bearing stress  was equal to the BS8110 [5-24]  prediction when excluding γm .  

 

BCJ7 loaded to the beam failure  had a larger bend radius (8d) and the same column axial load  

20.41
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but did not experience spalling of cover under the bend region. This writer is of the opinion 

that the reason  BCJ7 did not experience spalling of cover here is due to the  presence of 

4T10-100mm confinement steel with 2 stirrups within the bend compared with none in BCJ5, 

as Ortiz’ tests demonstrate that increase in radius bend beyond 4d does not influence the joint 

shear force. The stirrups confining the bend and  tail part of the rear reinforcement, Figure 

5.54, prevented formation of the bend and  tail gap which would have resulted in spalling the 

cover. 

 

Spec 
no 
BCJ- 

Stress 
at 
column 
face 

% of face force 
anchored in 

lead bend tail 

1 350 -5 43 62 
2 492 24 58 18 
 370 34 48 18 
3 415 -5 19 86 
4 580 19 24 57 
5 565 46 5 49 
6 493 5 69 26 
 447 5 40 55 
7 660 6 56 38 
 578 -6 65 41 

32  
Table 5.7: Ortiz’ [5-42] recordings of 
% of face force anchored in lead, 
bend and tail for the seven BCJ 
specimens  tested. 

 

 

Figure 5.54: Forces acting on 90º standard   
hook 

Source: Wight and  
MacGregor [5- 35] 

 

With the load path showing the stabilising arching effect from CVB to consolidate the forces  

on the beam bar corner of the BCJ, these forces are counter balanced by C and Cb, Figure 5.61 . 

CVB is considered as an independent anchorage node subjected to tensile force T4
 
, which  in 

this circumstance helps to develop the strut fully by improving the arching action and 

deflecting the main strut, Figure 5.61. 

 

In practice, it could be difficult to position stirrups at the depth of the joint. A practical 

alternative for external  BCJ with transverse beams is to use U bars ensuring that the legs of 

the U bars are perpendicular to the axis of the transverse beams encasing BCJ, however, for  

Lead  in length 

Tail 

Gap 



______________________________________________________________________________
Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 
 

272

corner columns in zones exposed to extreme loading conditions, L bar  connections are 

preferable to U. 

33  

The beam reinforcement should be bent down into the column with adequate radius  to avoid 

bearing failure and should be fully anchored in the column past the beginning of the bend with 

minimum length. Stirrups placed within the bend prevent spalling of the concrete at the cover. 

34  

It is often more convenient to anchor the beam reinforcement with U bars rather than L, 

however, it has been concluded [5-40] that joint shear strength of specimens with L bars is  

20% more than  those with U bars which have insufficient lap with the column bars, [5-40]. 

 

5.7.6 - HSC or NSC BCJ with aspect ratio<2 with CVB 
 

Rogowsky and MacGregor[5-10] have suggested that double strut action forms in deep beams, 

Figure 5.56. In this writer’s opinion, this may occur when a/d <2, the main diagonal action 

reaches the upper truss at mid depth and makes the reinforcement (HWB) in the upper truss 

act in tension, Figure 5.55.  

35  
However when the aspect ratio is low the main diagonal strut will be fully develop, therefore 

CVB can not make much  contribution to ultimate load capacity but still improves the ductility 

at .failure stage by producing larger number of smaller cracks  distributed across the joint 

 

It has been noted [5-47] that the influence of CVB to ultimate load capacity is very small 

when strength of the concrete is less that 50MPa and when aspect ratio is less than 2 the  main 

diagonal strut fully develops and dilutes any influence from CVB. However, as was shown in 

Chapter 3 for beams with HWB, in a similar way the presence of CVB can produce distributed 

smaller cracks parallel to the main crack, which would  dissipate the energy from ultimate 

loading, resulting in a ductile mode of failure rather than a brittle one when CVB is absent.  

 

This research demonstrates that the main diagonal compression strut will deflect due to 

thepresence of HWB when a/d=3.02. This is in contrast to the model proposed by Rogowsky 
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and MacGregor [5-10], Figure 5.55,  which is more suitable for NSC a/d≤2  or  in  shear walls 

or deep beams. 

 

  

Figure 5.55: The above model for STM 
was proposed by Rogowsky and 
MacGregor[5-10] for the HWB. 

Figure 5.56: STM with CVB for aspect 
ratio < 2 . The CVB does not make as  
much contribution when aspect ratio < 2 .   

 

 

 

 

Figure 5.57:The load path in BCJ with 
CVB  when aspect ratio is <2  

Figure 5.58: One possible STM for BCJ 
when aspect ratio is  <1.2 
 

5.7.7 - HSC or NSC BCJ with aspect ratio<3 with CVB 
 

Since St Venant's principle suggests that the localised effect of a disturbance dies out by about  
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one member depth from point of disturbance, it would be assumed that the member depth be 

considered as disturbed  and there would be a comparatively shallow column extending to the 

upper and lower part of the beam. Therefore, the Bernoulli hypothesis of plane strain 

distribution would be  valid at a third of the depth of the beam located at the  middle of the 

depth of the beam in BCJ, .  

 

The shear force at joint Vu (joint) at mid depth of the beam is resisted by the truss model from 

stirrups, Figure 5.61, and not by a single compression strut acting in diagonal direction as 

shown in Figure 5.56. This diagonal strut would have been resisting the shear force at the BCJ 

if the ratio of beam depth to column was less than 2. However, when this ratio is close to 3, 

the truss action under Bernoulli's principle would resist shear by stirrups.  

 

As demonstrated in the experimental work in Chapter 3,  HSC, in particular when it is made 

with limestone aggregate,  failed in shear with a steeper angle of shear failure of about 55◦, 

compared to NSC with an angle of about 45◦. Therefore, when the spacing between stirrups is 

less than two thirds of the depth of the HSC member, then the shear cracks will travel between 

stirrups and as a result the member fails from a smaller shear force than  in NSC. 

 

 
Figure 5.59: Free body diagram of the external BCJ with a transfer beam and a shallow 

column 

(a) Exterior BCJ (b) Top half of exterior joint 
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Past research has demonstrated that  change in the  strength  of concrete affects the monolithic 

property behaviour of the concrete in such way that if the difference in strength  at the 

concrete joint between two concrete batches increases by more than 25%, the concrete mass 

from the two batches would not be behaving as a monolithic material. This would be the case 

for structures made with HSC columns of 80 to 100 MPa and NSC beams of 40 MPa. This 

phenomenon contributes to the idea that BCJ made with HSC columns act independently from 

the NSC in the beam. This adds to the argument that the shear in a column at BCJ would 

behave similarly to that in a beam, Figure 5.60.  

 

 
 
Figure 5.60: Analogy between a BCJ made from a deep transfer beam and a shallow 
column and a beam of span to depth ratio of 3.  
 

The presence of cold joints between column and beam near BCJ had been of concern until the 

recent ACI recommendation that the shear behaviour of BCJ determines the position of the 

cold joint between beam and the column, Figure 5.20. 

 

The presence of CVB, Figure 5.61,  deflects inclined compression forces proportionally 

depending on the strength of the concrete in the joint and the diagonal  strut deflection 

throughout the depth of the joint to improve arching action. This is also due to the moment 

produced from dowel forces by CVB restricting propagation of flexural and inclined cracks. 
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Figure 5.61: STM with stirrups and CVB, aspect ratio=3.  

36  

5.8 Discussion  and conclusion on STM for beams and BCJ 

  

HWB can deflect the inclined compression forces within the shear span of the HSC  beam. 

When the concrete is of normal strength this deflection is not much and  as a result the 

inclined compression forces are not that high, the diagonal strut is not  wide  and strong 

enough to demand the tension steel to yield, therefore full STM action with yielding of tension 

steel does not take place which is the case with beams NSC2, NSC3 and NSC4.  

 

When the concrete is of high strength, and the HWB is present,  the diagonal strut is deflected 

enabling it to become wider and stronger within the upper half of the beam and therefore 

enabling the beam to take more compressive force in the form of arching action which in turn 

would demand further performance and dissipation of energy from the tension bar to balance 

this force, resulting in tension reinforcement  yielding. The action causing this deflection of 

the strut is demonstrated by investigating the strain gauge readings of the experimental results 

on top and bottom of the HWB within the shear span where the deflection of strut occurs.  

 

When a HWB was introduced the shear cracking resistance is improved and the main crack 

width restrained, allowing the development of full arching capacity of the structural system, 

simultaneously develop smaller cracks parallel to the main crack  due to presence of HWB 

which dissipate the energy from ultimate loading and produces a more ductile mode of failure. 

    T4 

  T1 

Cb 

800 

T C

T
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The  upper limit of a/d=3 may be increased for HSC beams with HWB, which has more effect 

on arching capacity than on shear cracking resistance. When beams are a/d=3, in the absence 

of HWB, the  weakness in  shear behaviour of HSC resulting from absence of aggregate 

interlock is apparent. However, when horizontal web reinforcement is introduced the shear 

cracking resistance is also improved and crack width is restrained,  allowing  development of 

full arching capacity of the structural  system.  

 

Dowel forces are reasonably easy to visualize at flexural cracks, but very complex to  

picture when  they act on inclined cracks. It is difficult to propose actions by which they  

can be transmitted into the main internal structural system. Certain assumptions based on 

visualizing dowel action on inclined cracks resembling  dowel action in flexural cracks were 

introduced. Also the complex interaction of the dowel action from the HWB, diagonal 

compression from HSC and tensile force in the stirrup needed to be simultaneously visualized.    

37  

When the ratio of web reinforcement is low a load greater than the shear cracking  load can 

often be resisted by a combination of arch and truss actions as long as a/d ≈3, Figure 5.23. The 

limit is not an exact one but tends to increase with increasing concrete strength, which has 

more effect on arch capacity than on shear cracking resistance. To propose a STM based on 

failure criteria is complex as STM is lower-bound plastic theory and does not have any 

compatibility condition. In HSC due to absence of aggregate interlock  shear, cracking 

resistance is comparatively low and may be less than NSC dependent on the type of the 

aggregate. 

 

This research demonstrates that  presence of the strut in the BCJ of  HSC columns with CVB 

and transfer beams with aspect ratio 3>hb/hc >2.5  solve the main problem in developing STM 

which is in determining the node dimensions for HSC-BCJ. CVB can deflect the inclined 

compression forces in beams of 2.5 ≤ hb/hc ≤3 which will result in a new node at B.  As the 

angle of the main diagonal strut α initially reduces to  φ and finally β, the strut becomes wider, 

Figure 5-62. In HSC this wider strut contributes to a noticeable improvement in arching action 

and in combination with improved dowel action of CVB due to higher strength of concrete, a 

further improvement in shear is noticed. 
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In beams with shear reinforcement, if a 

simple truss model is used, there is a 

division and contradiction amongst all the 

codes regarding the limit to the angle of 

compression strut to horizontal θlim (cot 

θlim=a/d).  

 

All the codes give θlim≤3, however, this 

research demonstrates that in HSC beams 

with shear reinforcement and HWB , if a 

simple truss model is used θlim can be 

increased to 3.02 which is larger than the 

upper limit all the codes have so far 

recommended. CEB-FIP90 gives the closest 

prediction, however, it should be amended 

to give provision for HSC beams with HWB 

and after introducing this structural system, 

θlim is recommended to  

increase from θlim≤3 to θlim≈3. 

 

 
Figure 5-62: STM of the 
proposed HSC- BCJ with 
stirrup and CVB of aspect 
ratio=3  

 
Placas and Regan [5-48] carried out an extensive test programme for the investigation  

of the shear resistance of reinforced concrete beams. They observed that in beams provided 

with stirrups there were two primary modes of shear failure: (1) shear compression involving a 

criterion of compression failure in the concrete,  and (2) shearing failure involving mainly 

vertical displacements across shear cracks. In the latter case it was observed that the interlock 

forces tend to produce flatter cracks until an inclination of about 26° when vertical stirrups are 

used, and about 18° when 45° inclined stirrups are provided [5-48]. MacGregor [5-7] suggests 

that, in design, the value of θ should be in the range of 25° to 65°. Grob and Thurlimann [5-3] 

proposed limits for θ equal to 26.6° and 63.4°.  

 

It was demonstrated that when designing HSC beams with stirrups and HWB  of a/d=3.02 the  
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lower  limits for strut inclination  θ can be 19.67º reducing to φ=14.25º and finally β=13.26º, 

which is  26% lower than  18°  suggested by Placas and Regan [5-48] ,  20% less than 

MacGregor’s [5-7] and 25% less than  Grob and Thurlimann’s [5-3] proposed lower limit.  

 

ACI Code, Appendix B [5-23]  makes  a conservative recommendation for the  slope of strut 

to be taken as 2:1 (longitudinal to transverse ). However, this research demonstrates that when 

HSC beams with HWB or BCJ with CVB are being considered, this ratio can be extended up 

to the value of  2.78 :1 as demonstrated, with the  lower  limits for strut inclination   being 

α=19.67º, reducing to φ=14.25º and finally β=13.26º for the specific cases, Figure 5-35  to 

Figure 5-34. 

 

This research demonstrates that the main diagonal compression  strut deflects due to the 

presence of  HWB in short beams contrary to the model proposed by Rogowsky and 

MacGregor  [5-10], Figure 5.55, although for reasons of simplifying design procedures in  

shear walls or deep beams their model may be considered as HWB do not seem to have a 

noticeable contribution when used with NSC. 

 

When considering  reduction factors for compressive struts, Nielson et al [5-4] proposed this  

factor to be taken as 0.45 for uncracked  region of concrete of 50MPa  compared to 0.6 which 

is the lower bound compressive strength recommendation of most codes. This difference 

suggests that further research for finding more accurate values for reduction factors for HSC is 

needed.   

 

The position of the  maximum  moment from dowel action was identified by FE modeling the 

moment produced from transverse loading  on the HWB. Concentration of  dowel action was 

demonstrated to occur at 0.3 of length of shear span (a)  from the support, Figure 5.30. The fan 

action produced by the dowel forces within the fan action produced by the stirrups in the HSC 

beam  resulted in significant improvement in shear performance.  

 

STM has been developed for HSC BCJ with CVB in the column and with the beam as transfer 

beams  with aspect ratio 3>hb/hc>2.5.  The STM was used to solve the main problem in the 

TBCJ and to determine the node dimensions for HSC-TBCJ. 



______________________________________________________________________________
Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 
 

280

 

The deflected strut developed in HSC is wider than that of NSC and this contributed in better 

arching action in the beam, which together with the dowel action of HWB or CVB will result 

in significant improvement in the shear capacity of the beam of a/d=0.3 or the TBCJ. 

 

It has been shown that the angle of the strut inclination developed in HSC beam (a/d=3) with 

stirrups and HWB is significantly smaller than the angle calculated by past research for NSC 

beams without HWB, Table 5.2. 

 

In section 5.7.5, Performance of forces in BCJ reinforcement, a detailed investigation of 

anchorage of beam bars in BCJ demonstrates the significant stress transfer to the tail of  the L 

bar, Table 5.7 and Figure 5.54. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



______________________________________________________________________________
Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 
 

281

5.9 References for Chapter 5 

                                                 
5-1 Yankelevsky, D. Z., ‘Engineering Models and Computer Codes’. Journal of Professional 
Issues in Engineering, ASCE, V.114, No.2, Apr. 1988, pp.218-230 

5-2 Morsch. E.: Der Eisenbetonau. 3rd ed (1908). Published in English as ‘Concrete-Steel 
construction’. New York, Engineering  News Publishing Co. 1909 
 

5-3 Grob, J., Thurlimann, B. — "Ultimate Strength and Design of Reinforced Concrete Beams 
under Bending and Shear", IABSE - International Association for Bridge and Structural Engineering, Vol. 
36-11, 1976,  pp. 105-120.  

5-4 Nielsen, M.P., Braestrup, M.W., Jensen, B.C., Bach, F. — "Concrete Plasticity -Beam 
Shear, Shear in Joints, Punching Shear", Danish Society for Structural Science and Engineering, 
Structural Research Laboratory, Technical University of Denmark, Special Publication, 1978. 

5-5 Marti, P., "Basic Tools of Reinforced Concrete Beam Design," ACI Journal, Proceedings, 
Vol. 82, No. 1, January-February 1985, pp. 45-56. 

5-6 Schlaich, J., Schäfer, K., and Jennewein, M., "Toward a Consistent Design of Structural 
Concrete," Journal of the Prestressed Concrete Institute, Vol. 32, No. 3, May-June 1987, pp. 
74-150. 

5-7 MacGregor, J.G. — "Challenges and Changes in the Design of Concrete Structures", 
Concrete International, Vol., No., Feb. 1984, pp. 48-52  

5-8 Streit, W., Feix, J., Kupfer, H. — "Transverse Tension Decisive for Compressive 
Resistance of Concrete Cover", IABSE Colloquium - Stuttgart 1991, Vol. 62, pp. 761-766. 

5-9 Schlaich, J., Schafer, K. — "Design and Detailing of Structural Concrete Using Strut-and-
tie Models", The Structural Engineer, Vol. 69, No. 6, March 1991, pp. 113-125. 

5-10 Rogowsky, D.M., MacGregor, J.G. — "Design of Reinforced Concrete Deep Beams", 
Concrete International - Design and Construction, Vol. 8, No. 8, August 1986, pp. 49-58. 

5-11 Walraven, J.C., Lehwalter, N. — "The Bearing Capacity of Concrete Compression Struts in 
Short Members and Deep Beams", Darmstadt Concrete Annual Journal on Concrete and Concrete 
Structures,  Vol. 3, 1988,  pp. 117-128.  

5-12 Vecchio, F.J., Collins, M.P. — "Stress Strain Characteristics of Reinforced Concrete 
in Pure Shear", Final Report, IABSE - Colloquium on Advanced Mechanics of Reinforced Concrete, 
Delft, 1981,  pp. 211-225. 

5-13 Placas, A., Regan, P.E. — "Shear Failure of Reinforced Concrete Beams", ACI Journal, 
Vol. 68, No. 10, October 1971, pp. 763-773. 



______________________________________________________________________________
Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 
 

282

                                                                                                                                                         

5-14 Collins, M.P., Mitchell, D. — "Shear and Torsion Design of Prestressed and Non-
Prestressed Concrete Beams", PCI Journal, Vol. 25, No. 5, Sept./Oct. 1980, pp. 32-100. 

5-15 Schlaich, J, Weischede, D - "Detailing of Concrete Structures (in German)",Bulletin 
d'information 150, Comite Euro-International du Beton, Paris, March 1982, 173 pages. 

5-16 Comité Euro-International du Béton, CEB-FIP Model Code 1990, Thomas Telford 
Services, Ltd., London, 1993, 437 pp. 

5-17 FIP Commission 3, Practical Design of Structural Concrete, Fédération Internationale de 
la Precontrainte, Laussane, Switzerland, September 1999, 114 pp. 

5-18 Eurocode 2: Design of concrete structures, Part 1-1, General rules and rules for buildings, 
BS EN 1992-1-1:2004, British Standards Institution, London, Dec 2004 
 

5-19 CSA Technical Committee A23.3, Design of Concrete Structures CSA A23.3-94, 
Canadian Standards Association, Rexdale, Ontario, December 1994, 199 pp. 

5-20 AASHTO LRFD Bridge Specifications, American Association of State Highway and 
Transportation Officials, 2nd ed., Washington, DC, 1998, 1116, pp 
 
 
5-22 ``ACI-ASCE Committee 426 – “Suggested Revision to shear Provisions for Building 
Code”, American Concrete Institute, Detroit, 1977,99 pp 
 
5-23 ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-08) 
and Commentary (ACI 318R-08), American Concrete Institute , Formington Hills, MI, 2008, 
465 pp 
 

5-24BS 8110: Structural Use of Concrete, Part 1.Code of practice for design and construction, 
British Standards Institution, London, 1985 
  
5-25 Canadian Standards Association – CAN3-A23.3-M84 – ‘Design of Concrete Structures 
for Buildings’, Concrete Design Hand book, Canadian Portland Cement Association, 1985 

5-26 FIP Report September 1999 ' Practical design of structural concrete' FIP Report 
September 1999, ISBN:978-1-874266-48-8 
 
5-27 Collins, M.P, “Towards a rational theory for RC members in shear”, ASCE Journal of the 
structural division, Vol. 104, No. ST4, April 1978, pp.649-666  
 
5-28 Collins, M.P, Mitchell, D. “A rational approach to shear-1984 Canadian Code 
Provision”, ACI Journal, Vol. 83, No. 6, Nov./Dec. 1986, pp. 925-933 
  



______________________________________________________________________________
Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 
 

283

                                                                                                                                                         

5-29 Regan, P.E. – ‘Shear in Reinforced Concrete – An Analytical Study’, Report to the 
Construction Industry Research and Information Association – CIRIA, April, 199pp 

5-30 Kani, G.N.J. — "Riddle of Shear Failure and its Solution", ACI Journal, Vol.61, No. 4, 
April 1964, pp. 441-467. 

5-31 Kani, G.N.J. — "Basic Facts Concerning Shear Failure", ACI Journal, Vol. 63, 
June 1966, pp. 675-692. 

5-32 Kani, G.N.J. — "Kani on Shear in Reinforced Concrete", Department of Civil Engineering 
- University of Toronto, Canada, 1979. 

5-33 Zsutty, T.C. — "Beam Shear Strength Prediction by Analysis of Existing Data", ACI Journal, Vol. 
65, Nov. 1968, pp. 943-951.  

5-34 Zsutty, T.C. — "Shear Strength Prediction for Separate Categories of Simple Beam Tests", ACI 
Journal, Vol. 68, No. 2, February 1971, pp. 138-143. 
 
5-35 Wight K.J, MacGregor J.G. 'Reinforced Concrete Mechanics & Design'. Pearson 
International Edition, fifth Edition 2009. 
 
5-36 Regan, P. E.  'Research on shear: a benefit to humanity or waste of time?'. The Structural 
Engineer/Volume 71/No 19/5 October 1993. 
 
5-37 Park, R. and Paulay, T. 'Reinforced Concrete Structures'  John Wiley and Sons: 1975, 
767 pp. 

5-38 Paulay, T. and Park, R., "Joints in Reinforced Concrete Earthquake Resistance", 
Research Report 849, University of Canterbury, Christchurch, 1984, 71 pp. 
 
5-39 Vollum R. L , Newman J.B., ‘Strut and tie  models for the analysis /design of external 
reinforced  concrete beam-column joints’. Magazine of Concrete Research,  1999, 51, No. 6, 
pp 415-425 
 
5-40 Vollum, R and Parker, D.  “External beam-column joints: design to Eurocode 2”, 
Magazine of Concrete Research, 2008, 60, No7, September , pp 511-521 
 
 
5-41 Bakir, P.G, Boduroglu, H..M. ‘The review of strut-and-tie models suggested for exterior 
beam column connections’. Transactions on the Built Environment, Vol 57, 2001 
 
5-42 Reys de Ortiz, I. ‘STM of reinforced concrete short beams and beam column joints’. PhD 
thesis, 1993, University of Westminster.   
  



______________________________________________________________________________
Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 
 

284

                                                                                                                                                         
5-43 Scott, R.H, Hamill, S.J. “Connection zone strain in reinforced concrete beam column 
connections”,  Proceedings of the 11th International Conference on Experimental Mechanics, 
Oxford, UK, 1998. pp. 65-69. 

5-44 Parker, D.E, Bullman, P.J.M. Shear strength within reinforced concrete beam column 
joints. The Structural Engineer 1997; 75(4):pp 53–7 
 
5-45 Marques J. L. G.,  Jirsa J. O., “A study of Hooked Bar Anchorages in Beam-Column 
Joints,”.ACI Journal, Proceeding s. Vol 72, No. 5, May 1975, pp. 198-209 
 
5-46  Jirsa, J.O., Marques, J. L. G., "A study of hooked bar anchorages in beam-column 
joints,” Austin, University of Texas at Austin, Department of Civil Engineering, July 1972. 
Final report project 33 
  
5-47 Atta, A.E. Taher, S.E.F, Khalil, A.H.A, El-Metwally S.E ‘ Behaviour of reinforced high-
strength concrete beam column joint. Part 1: Experimental investigation’. Structural 
Concrete.2003.4.No4 
 

48 Placas, A., Regan, P.E. — "Shear Failure of Reinforced Concrete Beams", ACI Journal, 
Vol. 68, No. 10, October 1971, pp. 763-773. 
 



_________________________________________________________________________________________________

Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 

 

285

 

6                                            Chapter 6 
 

             Influence of  Central Vertical Bar on Shear 

             Performance of  Beam Column Joint  

6.1 Introduction 
 

It has been recognised in industrialised  countries located  in seismic zones that BCJ can be 

critical regions in reinforced concrete frames and should be as strong  or stronger than the 

members framing into them, which is why joint shear design for BCJ has been the subject 

of numerous research projects over the past three decades. 

 

The shear design of BCJ is normally assessed in seismic  countries where reports following 

earthquakes have identified BCJ as a critical part of the reinforced concrete frame 

structure.  

 

Many tall reinforced concrete frames are built with transfer beams to provide clear spaces 

in their entrance halls. With the advantages of HSC, many  such buildings are made  with 

HSC columns. The external BCJ made up of transfer beam and HSC columns have a 

unique shear behaviour which, to this writer's knowledge, has not yet been investigated by 

any  other researchers. 

 

This chapter investigates the shear behaviour of external  HSC BCJ  with transfer beams 

exposed to monotonic loading. Transfer beams are comparatively deep and their beam to 

column  aspect ratio can be as high as three.  

 

This writer's experiments on 12 beams produced surprising results on the shear behaviour 

of HSC beams with and without HWB. The experiments demonstrated that the shear 

resistance of HSC beams with limestone aggregate could be less than that of NSC beams 

when shear span to depth ratio is three. However, the presence of HWB reverses the 

situation and significantly improves the shear resistance in HSC beams due to stabilising 

arching affect. 
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The analogy between the shear resistance in HSC beams with HWB of a/d≤3 subjected to 

the stabilising arching affect from dowel action and the joint shear resistance in HSC-BCJ 

with CVB for BCJ with aspect ratio 3≥ hb /hc≥2.5 is discussed in Chapter 1. 

In  Chapter 5 it was demonstrated that HSC beams of shear span a/d≤3 with HWB  

behave similarly to short beams of shear span  2≤a/d≤2.5 which are mainly dependent on 

arching affect for their shear resistance and since the shear behaviour of short beams is 

analogous to BCJ, similarly HSC beams of shear span a/d≤3 with HWB are analogous to 

HSC –BCJ with CVB and aspect ratio≤3. 

 

 
 

Figure 6.1: A multi storey building with 
transfer beams of  aspect ratio  3≥ hb /hc≥2.5 
 

Figure 6.2: External TBCJ at Brunswick building, 
Chicago, USA 

In this chapter, after an extensive literature review and analysis of past experimental work,  

an empirical design rule is developed to predict the joint shear resistance of  HSC-BCJ of 

joint aspect ratio≤3 with CVB. In addition, a design rule for predicting the amount of shear 

stirrup in BCJ is proposed. This will be presented in the following order: 

 

• Design approach for shear, anchorage, beam reinforcement and detailing of 

connection bars in BCJ. 

 

• Comparison of  Eurocode 2 [6-1] and ACI 318 [6-5] for the design of anchorage 

reinforcement, and of  Eurocode 8 [6-20] and ACI 352 [6-22] for design of joint shear in 

BCJ. 

 

Transfer Beam 
Cloumn Joint 
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• Investigation of Taylor’s [6-2] design rule  for crack formation in BCJ and 

choosing correct relation of tension to compression for concrete in this design rule. 

 

• Introduction to the behaviour of external TBCJ of HSC, and  the influence of dowel 

action from CVB on this type of joint 

 

• Proposal for a design rule applicable to BCJ in general and HSC transfer beam and 

column joints in particular when CVB are present. 

 

• Verification of the proposed design rule and comparison of its accuracy with rules 

from Eurocode 2 [6-1] and ACI 352 [6-22]. 

 

 

 

Figure 6.3: Internal forces on BCJ  
when no CVB is applied in NSC 
aspect ratio less than 2  

        Figure 6.4: External BCJ failure in the 
1985 Mexico earthquake. 

Source: Cheung, Pauly, Park [6-3] [1993] 

6.2 Design of reinforced concrete BCJ 
 
Design standards in the 1960s and earlier gave no attention to detailing BCJ of moment 

resisting reinforced concrete frames. With improvement in the detailing of the adjacent 

beams and columns, the consequence of the lack of attention to the shear strength of BCJ 
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has been demonstrated by the severe diagonal tension cracking in that region observed in 

many laboratory tests and structures during earthquakes.  

 

The consequence of the diagonal tension cracking is a significant increase in flexibility of  

the frame and joint shear failure that has often led to collapse or unrepairable damage to 

the structure, Figure 6.4. 

 

However, seismic design codes differ significantly in their design approaches to BCJ, and 

this remains probably the most controversial aspect of the seismic design of reinforced 

concrete moment resisting frames at present [6-4], hence there are considerable differences 

in design procedures for transverse reinforcement in BCJ in the various seismic codes of 

the world.  

 

In this chapter, the influence of various parameters on the joint shear from the past BCJ  

experiments is reviewed and the existing recommendations on the influence of various 

parameters on joint shear are discussed.  

 

Following a review of the EC8-NA [6-20] and ACI352 [22] design methods and the past 

experimental research on BCJ, an empirical design equation is proposed for the joint shear 

of BCJ introducing the shear resisting contribution of dowel action from the vertical bars 

located in the centre of the depth of the column at the joint. This predicted joint shear from 

the proposed design rule is compared with the guidelines from the  existing codes. 

A proposed design rule for joint shear  in relation to prediction of quantity of CVB in the 

column as shear reinforcement in HSC BCJ with large aspect ratio will be introduced. 

 

Finally, the joint shear contribution is investigated of  vertical reinforcement at half the 

column depth or in layers within the depth of the BCJ as additional reinforcement or part 

of  the column longitudinal reinforcement contribution to  the joint shear resistance Vc at 

the BCJ of  HSC columns and transfer beams.  

 

6.2.1 The loading of exterior joints 
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The behaviour of  BCJ can be explained by using a free body including the joint and 

extending between points of contra flexure at half storey height. Generally, the shear load 

input into an exterior BCJ is less than that encountered with interior joints since only one 

beam frames into the column, as shown in Figure 6.5,  from the internal stress resultants,  

Figure 6.3, it is evident that the horizontal shear force is: 

 

Vj = Cc + Cs - Vcol 6.1     
or, 

 

Vj = T - Vcol         6.2       

T =
Z

M
        6.3          

where, Vj is the joint shear, Cc is the concrete compressive force in the flexural 

compression zone, Cs is the compression force in the compression reinforcement, Vcol is the 

horizontal shear force across a column, T is tension force in tension reinforcement, M is the 

beam moment at the column face where beam connects to it, and Z is the flexural lever 

arm. Figure 6.5. 

 

Generally, the theoretical joint shear force  is dependent on the assumption used to 

calculate M 
 and Z. In this section M is taken as:   

M= P (L+d’)    not including the self weight of the beam. 

L= Distance from the load to the face of the column facing the beam. 

d’= The column cover and radius of the column reinforcement nearest to the beam.  

The tensile force in the beam reinforcement was calculated by section analysis assuming  

linear strain distribution. The stress block from EC2 [6-1] was used for concrete with the 

assumed maximum stress value of 0.8 fcu  at a compressive strain of 0.002. In the analysis 

of BCJ, the beam width is taken as the width of compressive stress block. 

 

The reinforcement elastic modulus was taken as 200GPa as an elastoplastic stress-strain  

response was assumed for it. No safety factor for the material was applied. 

 

The value of the tension force in the above is either fs As or λ fy As, depending on whether 

an elastic beam section or the critical section of a plastic hinge is being considered at the 

face of the column.  λ is the steel strength factor of 1.25. 
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From consideration of moment equilibrium with respect to point C, the average column 

shear may be calculated by 

 

'

2

cc

cn
col

PhM
V

ll +
⋅+⋅=   6.4        

where the magnitude of Mn depends on the value of beam tension force, T.  cl  and '
cl  are  

the column heights measured from the beam centreline. 

 

 

 

 

 

 

Figure 6.5: Forces  
acting on external  
BCJ 

 
 
 
 
 
 
 
 
 

 

Vj = T - Vcol       HV
h

LP col ×=+× )
2

(         T=
Z

M
=λ As fy            

Vj    joint shear                                   Vcol  horizontal shear force across the column  
P    beam load                                    T     tension force in tension reinforcement         
Z     flexural lever arm                       M     beam moment at the column face   
L     beam length                                 h     depth of column 
As      area of  beam steel                    fy     Steel yield stress  
λ      strength factor  = 1.25 
H     Height of column between points of inflection 

   

Furthermore, the vertical joint shear force from the equilibrium of the stress resultants i.e.,  

''"
scjv CCTV ++=  6.5      

or, 

bscjv VCCTV −++= ""'         6.6      

where 'T , "T  are tension forces in tension reinforcement, '
cC , "

cC  are the concrete 

compressive forces in the flexural compression zone, '
sC , "

sC  are compression forces in the 

h 
Vcol 

P 

(a) Exterior BCJ 

(b) Top half of exterior joint 
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compression reinforcement and bV  is the beam induced shear force at the face of the 

column, Figure 6.3. 

 

However, by taking into account the distance between the various stress resultants and the  

member dimensions, an approximation for the vertical joint shear force for most design  

situations is computed with adequate accuracy as 

 

j
c

b
jv V

h

h
V ⋅=   6.7       

ce

j
j hb

V
v =                     6.8 

where, hb is the depth of beam and hc is the overall depth of the column in the direction of 

the horizontal shear to be considered.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6: Notations used for the BCJ. L bar connections between beam and column 
improve joint shear by 10% to 20% [6-34]    .  
 

6.2.2 The design criteria of BCJ  
 

Eight  main concerns for the design of BCJ are as follows: 

1. The strength of joint should not be less than the maximum strength of the weakest 

member with which it connects. 

2. The strength capacity of a column should not be jeopardized by possible strength 

degradation within the joint or from anchorage failure. 

3. The joint should be considered as an integral part of the column.  

4. The joint reinforcement necessary to ensure satisfactory performance should not 

cause construction difficulties. 

P 

Vcol 

 

l'c/2 

 

lc/2 

Section A-A 
hc 

bc bb
 l /2  

Position of effective  
Stirrup 

Beam compression chord 

L  

Optional prop H 

 

d’  

hb d 

A A 

Vcol 

P 

L bar 

c 



_________________________________________________________________________________________________

Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 

 

292

5. Cold joints above and below the joint  must have the same strength capacity as the 

column and the joint. 

6. Connection bars between beam and column with regards to type whether L or U 

and radius of bend of the bar should be designed and detailed. The area of 

connection steel should not exceed 1.25fyAs of the steel required for the beam 

connection. 

7. The area of reinforcement required in the top of the beam should be based on the 

bending moment at the face of the column and it is not good practice to design the 

beam tension steel for the moments at the centre of the column. 

8. Design of large aspect ratio HSC-BCJ should satisfy the design proposal given in 

this chapter and should include CVB to ensure satisfactory joint shear resistance. 

 

6.2.3 General design Guidance from EC2 [6-1], EC8 [6-20] and ACI 318 [6-5]  
 

European Code EC2 [6-1] section 9.9 recommends that regions with discontinuity in 

geometry or action  (D regions) should normally be designed and detailed  with STM 

according to section 6.5 and detailed according to the rules given in Section 8. It 

recommends that the reinforcement , corresponding to the ties, should be fully anchored by 

an anchorage of lbd according to section 8.4. 

 

Annex J.2.2 recommends  a STM  for hc/hb <2/3 for a limited range of tanθ. The value of 

tanθ in a country may be found in its  National Annex . 

 

EC2 [6-1] has a conservative design rule to calculate the shear strength of columns and 

makes  recommendation to use a diagonal strut mechanism for shear design at 

discontinuities. 

 

European Code EC2 [6-1] allows use of concrete of up to 90MPa for BCJ. Both EC2 [6-1] 

and BS8110 [6-10] recommend standard methods to calculate the  shear strength of the 

column which is also applied as a means of calculating shear in BCJ if the structure is not 

subjected to seismic loading. 

 

EC8 [6-20] guidance for BCJ recognizes the importance of vertical bars between column 

corners at both depth and width of the BCJ but does not provide a  shear design rule for the 

bars between column corners within the depth of column. EC8 [6-20] design guidelines 
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does not allow for the contribution of the stirrups and connection reinforcement detailing 

to joint shear. 

 

The ACI 318 Code [6-5] covers BCJ design in several sections: 

1. ACI 318 Code [6-5],, Section 7.9, requires enclosure of splices of continuing bars and of 

the end anchorages of bars terminating in connections of primary framing members, such 

as beams and columns. 

2. ACI 318 Code [6-5], Section 11.10.2, requires a minimum amount of lateral  

reinforcement (ties or stirrups) in BCJ if the joints are not restrained on all four sides by 

beams or slabs of approximately equal depth. The amount required is the same as the 

minimum stirrup requirement for beams (ACI Equation (11-13)). 

3. ACI 318 Code [6-5], Section 12.12.1, requires negative-moment reinforcement in beams 

to be anchored in, or through, the supporting member by embedment length, hooks, or 

mechanical anchorage. 

4. ACI 318 Code [6-5], Section 12.11.2, requires that in frames forming the primary lateral 

load-resisting system, a portion of the positive-moment steel should be anchored in the 

joint to develop the yield strength, f y
' in tension at the face of the support. 

The above sections do not give specific guidance for design. Design guidelines can be 

obtained from [6-6], [6-7], [6-8], [6-9] and ACI-ASCE Committee 352 [6-22]. 

 

In the following sub-sections we study the existing design equations for external BCJ 

subjected to monotonic loading.  

 

6.2.4 Code design guidance for bent anchorages and bearing stress  
 

Bends are used to provide additional anchorage when there is insufficient straight length 

available to develop a bar. Most codes prescribe a minimum radius of bend. It is important 

to note that the actual minimum  size of the bend is frequently critical in detailing a 

structure. 

 

EC2 [6-1] recommends that the minimum diameter to which a bar is bent shall be such as 

to avoid bending cracks in the bar, and to avoid failure of the concrete inside the bend of 

the bar.  
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In order to avoid damage to the reinforcement the diameter to which the bar is bent 

(Mandrel diameter) should not be less thanφ m,min the value of which may be found in the 

National Annex in the country  of use. The recommended value is given in Table 6-1. 

 

The mandrel diameter needs to be checked with the following expression to avoid concrete  

failure if the bar is positioned at the plane of bend close to concrete face and there is a 

cross bar with a diameter≥ φ  inside the bend  

cdbbtm faF /))2/(1)/1((min, φφ +≥  

The value of fcd  should not exceed the value for concrete class C55/67 

 

Code Bar diameter Minimum mandrel 
diameter for bends, 
hooks, and loops 

EC 2 φ ≤16mm 4φ  
φ >16mm 7φ  

ACI 318 25.4mm≥φ ≥9.55mm 6φ  
35.81mm≥φ ≥28.65mm 8φ  

57.33mm≥φ ≥43mm 10φ  
 
Table 6.1: Minimum mandrel diameter to EC2 and [6-1] ACI 318 [6-5] 

 

BS-8110 [6-10] gives the following equation to calculate the design bearing stress: 

)/(21

2

b

cubt
be a

f

r

F

φφ
σ

+
≤=          6.9 

where  

Fbt    is the tensile force due to ultimate loads in a bar or group of bars in contact at the start 

of a bend 

r      is the internal radius of the bend 

φ      is the size of the bar 

ab    for a given bar is the centre to centre distance between bars perpendicular to the plane 

of the bend; for a bar adjacent to the face of the member, ab should be taken as the cover 

plus φ  .  

This equation includes an allowance for a partial safety factor γm= 1.5 for concrete 

strength.  

 

 CEB-90 [6-11] gives the following equation in order to avoid cracking or crushing under 

local compression. 
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cccccc f
A

A
ff 4

1

2* ≤=        6.10 

where 

fcc
*  is the bearing capacity of concrete under local compression 

fcc  is the compressive strength of concrete under uniaxial stress, where the reduction 

factors α1 and α2
 are also applicable 

A1 is the loaded area; A1= ǿπr/2 

A2 is the cross section of the surrounding concrete into which  the stress field develops 

A2 = (c+ǿ+e/2) πr/2 where c is the cover and e is the clear distance between the bars. The 

strength fcc
*  equals 1.24 α1fc or 1.24 α2fc 

 according to the region. Near failure the region 

inside the bend is cracked and the factor α2
 should apply as long as the bearing stresses 

occurs in the radial direction and the angle between the cracks and the compression field is 

variable.  

 

In ACI318 [6-5],  the design process described in Section 12.5.1 does not distinguish 

between 90º and 180º or between top and bottom bar bends. The development length of a 

bend, ldh, Figure 6.7, is calculated by using the following formulae: 

 

ldh = [(0.02ψe fy / λ√fc
’)]db  ×  ( applicable factor from ACI Code Section  12.5.3 varies      

from 0.7 to 1) 

ψe = 1.2 for epoxy coated bars  or wires  and 1.0 for galvanized and un-coated 

reinforcement, and λ is the lightweight aggregate factor  given  in ACI Code Section 8.6.1. 

Values of ldh 
 for uncoated bars in normal-weight concrete are given in Tables A-8 and A-

8M. 

 

The factors from ACI Code Section 12.5.3 account for the confinement  of the hook by 

over and stirrup. Confinement links reduce the possibility of the concrete between the hook 

and the concrete surface spalling off, resulting in premature failure of the hook. 

 

ACI Code Section 12.5.3(a) gives minimum dimensions for 90º and 180º hooks as follows: 

For 180º hooks on 35.8 mm and smaller bars with side cover normal to the plane of the 

hook, not less than 63.5 mm×0.7. For 90º hooks on 35.8 mm and smaller bars with  side 

cover normal to the plane of the hook, not less than 63.5 mm and cover on the bar 

extension (tail) beyond the hook not less than 50.8 mm×0.7.  
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The multipliers in ACI Code Section 12.5.3(b) and (c) reflect the confinement of the 

concrete outside the hook. 12.5.3(b) for 90º hooks on 35.8 mm and smaller bars that are 

enclosed within stirrups parallel to the bar being developed, spaced not greater than 3 

db
 along the length of the tail extension of the hook plus bend. 

 
 

5 Figure 6.7: Standard  90º hook 
– ACI Section 7.1 and 7.2.1 

   Figure 6.8: Confinement of hooks by 
stirrups with applicable factor from ACI  

 

6.3 Literature review  on shear behaviour in BCJ  
As will be shown in this literature review, there is little agreement over the parameters 

which influence  the shear behaviour of external BCJ  amongst the past researchers. 

 

6.3.1 Taylor’s prediction for the diagonal cracking 
 

Taylor [6-2] assumed that for external BCJ the philosophy of the column to be loaded with 

its working load and the beam to be loaded to ultimate is realistic, and this was used in his 

tests. He made a total of 26 tests on exterior BCJ of which  aspect ratio of 20 specimens 

were 1.4 and 1.25, Figure 6.9. All were subjected to monotonic loading. In these tests, 

apart from the first specimen, the beam-ends were horizontally propped so that the joint 

could continue to carry increasing moment after the failure of its opening  side. Nine of 

Taylor’s specimens failed in joint, Figure 6.9.  

 
Failure of a hook almost always involves crushing of the concrete inside the hook. If the 

hook is close to a side face, the crushing will extend to the surface of the concrete, 

removing the cover from that face. Rarely, the concrete outside the tail will crack, allowing 

the tail to straighten.  
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(including bend) 
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Tests on bars hooked around a corner bar have demonstrated that tensile stresses can   

 

develop  at a given end slip that are 10 to 30% larger than  if the hook does not contain a 

bar. 

 

The specimens were 3/4
th of a normal prototype size. The columns were instrumented with 

a series of points for a demountable mechanical Demec gauge close to the edge of the 

column. Three inclinometers were used, one on the beam, one on the column above and 

one below the joint to measure the rotations of the opening and closing corners separately.  

 

In Taylor's tests the detailing of the steel was in accordance with Code of Practice CP110 

[6-12] with the exception that the bearing stresses under the bends of the beam steel were 

not calculated. The bends were all with radius 3d. The beam bars were allowed to bend and 

run next to, and touching , the column bars to CP110. A link was provided in the column at 

the centre of the joint in all specimens, other than specimen B3/41/24 which had 3 links.  

 

Loading took place in two stages. Initially the column and beam were loaded to their 

working load of 240 kN, then while column load was kept constant the beams was loaded 

incrementally up to failure. After reaching the ultimate load, the beam test was continued 

by applying increments of displacement to the end of the beam and taking the load cell 

readings until the condition of the specimen in the rig appeared to be too dangerous to 

continue.  

 

The theoretical flexural moment (Mflex) for the beam section was calculated by using stress 

block proposed by Hognestad et al [13]and compared with the diagonal cracking moment 

(Md) and ultimate moment of the joint  (Mu) from the experiment. The moment equilibrium 

equation was checked from the experimental results by taking all the moments about the 

centre of the joint. 

 

The general pattern of crack development was such that the first cracks were flexural ones 

in the beam and appeared  at 84% of the test ultimate moment when the diagonal crack 

moment of the joint was reached. Failure of the joint occurred when the beam steel at the 

face of the column yielded. The column crushed  along a line parallel to the inclined crack 

as failure was reached. From the load-cell and the inclinometer readings it is possible to 
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calculate the moments carried  by the column above and below the joint as well as the 

rotations of the two halves of the joint.  

 

The tests were designed to investigate parameters including beam steel percentage, column 

ties within the joint, beam steel detail, column load and the beam thrust. The conclusion of 

Taylor's investigations are described and compared with conclusions from other   

researchers. 

 

   Figure 6.9:Geometry and position of test instruments in Taylor’s tests  
   (dimensions in mm) 

 

Taylor investigated the moment of the diagonal cracking of the joint  as a ratio of the 

theoretical flexural moment of the beam and concluded from his tests that the diagonal 

cracking at the working load is likely to occur  in joints when beam steel percentage is 

more than 2.0. Even though the widths of the diagonal cracks immediately after forming  

were not greater than the criteria given by CP110, he recommended to design these areas 

so that diagonal cracking is prohibited at the working load. 

 

Taylor developed an approximate theoretical approach to predict diagonal cracking  of the 

joint based on principal stress analysis. From his test results he concluded that diagonal 

cracking initiates from the centre point of the joint, and proposed an empirical formulae  to 
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predict the occurrence of the first  crack at the centre of the joint from a principal tensile 

stress analysis. 

 

Considering a uniform column stress due to the normal force, )/( cccc hbN ⋅=σ , a uniform 

stress due to the beam thrust, )/( bbbb hbN ⋅=σ , and a parabolic distribution of shear with a 

maximum stress cv⋅5.1 ; )/( ccc hbVv ⋅= , Taylor predicted the diagonal cracking from a  

principal tensile strength analysis.  As a result, the shear cracking stress is expressed as: 

 

tbtctcr fffv ⋅+⋅+⋅= σσ267.0    6.11    
 

where ft is the tensile strength of the concrete. 

 

However, after the analysis of the test data, the effect of the beam thrust was found to be 

small at cracking and was ignored.  Therefore, the equation adopted to give a lower bound 

to diagonal cracking shear stress is written as: 

 

tctcr ffv ⋅+⋅= σ267.0  6.12     
 

where )/( cccrcr hbVv ⋅=  and with Vcr equal to the beam bars’ force. 

Furthermore, Taylor [6-2] with Clark [6-14] formulated a BCJ failure analysis by analogy 

to the behaviour of short beams as shown in  Figure 1-5.  From the British code, BS-CP110 

[6-12], the ultimate shear stress of short beams was given as: 

a

d

v

v

c

u ⋅= 2
   6.13       

where vc is the concrete shear strength of a normal beam (table 5 of CP110).  By 

considering the above equation and making a variable change (zb = a) and (dc = d),  Taylor 

et al. established a lower bound solution for BCJ given by: 

a

d

v

v

c

u ⋅+= 2
3            6.14      

where zb is the lever arm of the beam at failure a is the shear span of short beams, dc is the 

effective depth of the column and d is the effective depth of the beam. 

 

Taylor et al did not present any recommendations for the calculation of joint stirrups, but 

suggested the limitation of the beam steel percentage as the most convenient way to  

guarantee the strength of the BCJ.  The limit of the steel ratio in the beam was given by: 
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where As is the area of the beam reinforcement, fy is the yield strength of the steel and β is a 

factor accounting for the redistribution of the bending moments from the beam (β = 1-ratio 

of distribution). The figure of 0.87 is based on the CP110 simplified stress block approach 

which recommends that for a singly reinforced beam the ultimate moment of resistance is 

Mu=0.87fyAsZ where As is the area of tension steel and Z is lever arm. 

 

Taylor suggested that the column section below the joint should be designed to carry at 

least 70% of the moment supplied by the beam, in order to ensure the ability for the 

column to resist the extra moment imposed on it by the beam thrust.  In addition, the 

column section above the joint should be designed to carry 50% of the beam moment. 

6.3.2 Analysis of the available test data 
 
Review and analysis of BCJ tests in experiments conducted by  Taylor [6-2] in 1976, 

Kordina [6-15] in 1984,  Sarsam [6-39] in 1985, Scott [6-16] in 1992, Ortiz [6-17] in 1993, 

Parker & Bullman [6-18] in 1994, Scott & Hamill [6-19] in 1998, Wilson [6-23] in 1998, 

and Vollum [6-35] in1999 are discussed in the analysis of available data in the following 

section. All these experiments were completed in the UK other than Kordina’s which was 

performed in Germany. 

 

Numerous  tests of BCJ under cyclic loading simulating earthquakes have been performed 

by other researchers. In this writer's opinion, such tests have so much joint reinforcement 

that they are of little use for static load analysis, therefore, in this analysis,  BCJ 

experiments exposed to incremental monotonic loading are investigated. 

 

There is a general lack of agreement over the variable parameters such as concrete 

strength, column loading, joint aspect ratio, joint stirrups, beam thrust, beam reinforcement 

and column vertical bars which influence the joint shear behaviour of  the external BCJ.  In 

this chapter each of  these parameters are investigated. 

 

EC 8-NA[6-20] and ACI-ASCE Committee 352 [6-22] codes give design methods suitable 

for external BCJ.  
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As shown in Figure 6.6, a brief review on the calculation of joint shear force is that  Vjh = 

T - Vcol, where V jh is the joint shear, Vcol is the horizontal shear force across the column 

and T is the  force in the tension reinforcement of the beam which is given by Tn =Mn/z, 

where M is the beam moment at the column face and  z is the flexural lever arm.   

 

The theoretical joint shear force is dependent on the assumptions used to calculate M and z.   

M is taken as shown in Figure 6.5, where L is the distance from the load P to the face of 

the column and d' is the distance from the face of the column to the centroid of the column 

reinforcement as shown in the Figure 6.6. 
 

The tensile force in the beam reinforcement is calculated by section analysis assuming that 

plane section remains plane. The rectangular-parabolic stress block defined in EC2 [6-1] is 

used for the concrete.  
 

The stress is assumed to reach a maximum value of 0.8fcu at a compressive strain of 0.002. 

The width of the compressive stress block is taken as the beam width in the analysis of the 

BCJ. An elasto-plastic stress-strain response is assumed for the reinforcement with an 

elastic modulus of 200 GPa. No material factors of safety are applied in the tables. The 

proposed design rule was developed  after  56 specimens were compared with results from 

shear index V j/bchcfc
2/3  and Vj/bchc√fc and  stirrup index Asjefy/bchcfc

2/3 from EC8-NA[6-20] 

for L and U beam connection bars.  

 

6.4 Effective joint width and influence of transverse beams 
 

The horizontal joint shear stress is defined as  vj = Vj/behc  where be is the effective joint 

width, taken as follows: 

if bb < bc, bc = least of 0.5(bb+bc) or bh+0.5hc    

if bb > bc, bc = least of bc+0.5hc or bb. 

 

There is general agreement that the effective joint width is less than the column width if 

the column is wider than the beam [6-25]. In this case, the effective joint width is 

commonly taken as the average of the beam and column widths for a symmetrical joint. 

 

No directly relevant test results related to a beam  wider than the column are available,  

However, past test results from cyclically loaded, external  BCJ with transverse beams can 

give some guidance [6-21]. 
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The available data shows that joint shear strength increases due to the presence of 

transverse beams, and this is dependent on  the loading on the transverse beams and their 

cross-sectional dimensions. The increase in joint shear strength is dependent on  both the 

effects of confinement and resistance of joint shear stresses by concrete within the 

transverse beams to either side of the column [6-21]. This latter effect corresponds to an 

increase in effective joint width and suggests that this is greater than the column width if 

the beam is wider than the column.  

 

No common agreement has been reached in various design code recommendations on 

either the definition of effective joint width, if the beam is wider than the column, or the 

effect of transverse beams. ACI/ASCE Committee 352 [6-22] limits the effective joint 

width to the column width, but increases the design joint shear strength of external BCJ by 

33% if transverse beams frame into each side of the joint, as long as certain dimensional 

restrictions are met.  

 

Contrary to ACI/ASCE Committee 352 [6-22], NZS 3101:1995[6-24] does not increase 

joint shear strength if transverse beams are provided, but allows the effective joint width to 

be taken as greater than the column width if the beam is wider than the column. In this 

case, the effective joint width is limited to the column width plus half the column depth, 

which is the same definition for EC8-NA [6-20] if the beam is wider than the column and 

this recommendation is applied for this chapter.  

 

A failure analysis was carried out to determine a relationship between concrete strength 

and joint shear strength for the specimens. The analysis showed that joint strength has a 

closer relation to  (fc')
2/3 rather than √fc'. Rigorous  analysis of past experiments 

demonstrates (see p-329) that for this reason EC8-NA [6-20] is a safer design guidance 

than ACI/ASCE Committee 352 [6-22]. According to the above discussion the influence of 

concrete strength on joint strength  is therefore taken  in this thesis as (fc')
2/3 rather than√fc'. 

compressive strength to develop the proposed design rule .The cylinder strength is taken as 

fc'=0.81fcu          6.16     

where fc' is tested on cylinder of 152x305 and fcu on cubes of 100x100 

fcu(150)= 0.95 fcu(100)         6.17 

where fcu(150) is tested on  cubes of 150x150 and  fcu(100) on cubes of 100x100 



_________________________________________________________________________________________________

Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 

 

303

6.5 Code design guidance for external BCJ 
 

The ACI Committee 352 [6-22] report on the design of reinforced  concrete BCJ divides 

into two groups depending on the deformations the joints are subjected to: 

a) Structures  not apt to be subjected to large inelastic deformations which do not need to 

be designed according to ACI, Chapter 21, are referred to as non-seismic structures. Such 

structures have Type-1 BCJ.  

b) Structures that must be able to accommodate large inelastic deformations and the result 

must satisfy ACI, Chapter 21, are referred to as seismic structures. Such structures have 

Type 2 BCJ. 

 

The existing design methods ACI-ASCE Committee 352 [6-22] and EC 8[6-20] give 

design recommendations suitable for monotonically loaded, external BCJ which are 

expressed as follows: 

ACI-ASCE Committee 352 [6-22] for joint shear of  BCJ without transverse beams 

recommends: 

V jd = 1 .058 behc √fc'            6.18                                                                                                             
  

EC 8-NA [6-20] Ductility Class Low DCL for joint shear recommends: 

V jd = 0.525 behc (fc')
2/3         6.19                                                                                                        

 

Two different material factors of safety are used in the equations. Both methods calculate 

the joint shear force on the basis that the beam tensile steel yields. EC 8 [6-20] assumes 

that only two-thirds of the area of beam reinforcement should be included in the 

calculation of shear force. EC 8 [6-20] states that the factor of 2/3 be introduced to account 

for the fact that part of the inclined bond forces flow sideways out of the joint core. 

Volumn [6-41] points out that this seems reasonable if transverse beams are provided, but 

is open to discussion for corner joints and cases where the beam is wider than the column.  

 

Both design codes specify minimum stirrup requirements, which are higher than the 

amount BS8110 recommends [6-10]. However, it will be shown that they do not make 

provision for joint strength to be increased by stirrups, even when joint strength is 

increased by stirrups, Figure 6.10 and 6-11. Neither of the equations predicts the agreed 

dependence of joint shear strength on joint aspect ratio.    
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From Figure 6.11, it is observed that when the stirrup index 0.2 ≤Asjefy/bchcfc
2/3≤0.4 the 

joint shear prediction is conservative. When stirrup index increases from 0.4 to 0.45, no 

increase in shear resistance is recorded. Therefore, this writer’s design rule for amount of 

Asjefy in the joint is limited to 0.2 ≤Asjefy/bchcfc
2/3≤0.4.   

6.6 Parameters that influence joint shear behaviour 
 

Tests on monotonically-loaded, external BCJ , performed by Taylor[6-2], Ortiz[6-17], 

Scott[6-16], Scott Hamill[6-19],  Parker & Bullman[6-18], Wilson [6-23], Vollum[6-35] 

and Kordina[6-15] are reviewed and influence of  various parameters on shear behaviour 

of BCJ is investigated .  
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Figure 6.10: Joint shear index at line 
V j/bchc√fc =1.058 ACI 352 [6-22]. Stirrup 
index Asjefy/bchcfc

1/2 slope 

 

Figure 6.11: Joint shear index 
V j/bchcfc

2/3 = 0.525V Stirrup index 
Asjefy/bchcfc

2/3 for EC8-NA [6-20]  

  

6.6.1 Relation of shear strength to concrete strength and shear index to stirrup 
index 
 

A failure analysis is carried out by this writer. This analysis shows that joint strength is 

closer to the (fc')
2/3 rule in EC8-NA [6-20] than  the √fc'.rule in ACI/ASCE Committee 352 

guidelines [6-22] . 

 
According to EC8 -NA [6-20] analysis, the average value of the  shear index of 56  BCJ 

tests is 0.525 , which was chosen as the empirical value for  joint shear design guidelines. 

All the specimen below the lines for shear index of 0.525  indicate the design guidelines 

over-estimate the joint shear, Figure 6.10. 
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The analyses of both ACI 352[6-22] and  EC8-NA [6-20] are shown in Figure 6.11 and 6-

12 which indicate that for all the results  below the horizontal  line  the codes overestimate 

the joint shear. 

 

Ignoring minimum reinforcement requirements, the number of safe predictions are 28 out  

of 56, or 50%, for EC8-NA [6-20],  Figure 6.11, whereas ACI 352[6-22] overestimates 

most of the specimens without confinement steel and the number of safe predictions are 23 

out of 56, or 41%, Figure 6.10. The slope indicates that improvement in joint shear is 

proportional to the increase in the area of confinement bars with the limit of  

Asjefy/bchcfc
2/3≤0.42 for EC8-NA [6-20] and  Asjefy/bchcfc

1/2  ≤0.8 for ACI 352[6-22]. Both 

codes overestimate the joint shear for most of the specimen without confinement steel.  

  

From failure analysis, it is shown that the experimental  joint shear strength is closer to the 

EC8-NA [6-20] prediction compared to that of ACI/ASCE Committee 352 [6-22].  

 

The influence of concrete strength on joint strength in this writer's proposed design rule is 

therefore taken as proportional to  (fc')2/3 with empirical figures for detailing of 

reinforcement connecting beam to column . 

 

The average value of 56  tests for  shear index = Vjd / (fc)
2/3 be.hc MPa1/3 is  0.525, which is 

the empirical value chosen for  EC8-NA [6-20] joint shear design guidelines.  

 

In 56  BCJ specimens experimentally tested to failure, when investigating Vj/bchcfc
2/3 

against Asjefy/bchcfc
2/3,  the mean value for L reinforcement detail is 0.54  and  for U is 0.49 

and  the mean value for all the tests is  0.525 which is taken as the empirical value for 

design equation EC8-NA [6-20]. 

 

Experiments  on monotonically-loaded, external BCJ were performed by Taylor[6-2], 

Kordina[6-15], Sarsam [6-39]. Scott[6-16], Ortiz[6-17], Parker & Bullman[6-18], Scott 

Hamill[6-19],  Wilson [6-23], and Vollum[6-35] and test data indicates that the existing 

design methods can be unsafe when applied to HSC BCJ. There is lack of agreement 

between EC8-NA [6-20] and ACI 352 [6-22] codes as well as with past researchers on the  

parameters that influence joint shear behaviour. 
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6.6.2 Main column vertical reinforcement in BCJ 

The New Zealand Code of Practice  [6-24] and Bertero [6-25] argued there is a positive 

contribution of vertical reinforcement to the joint shear whereas test experiments on joints 

without  vertical reinforcement by Park [6-26] and Lee et al [6-27] resulted in satisfactory  

performance  under severe seismic loading  which led to the assumption that additional 

vertical joint reinforcement does not contribute to shear resistance of the joint. 

The analysis of specimens 4a and 4d of Parker and Bullman [6-18] with identical 

parameters  except for their column longitudinal reinforcement ratios of 1.09%  for  4a 

compared to 4.38% for 4d, demonstrate that specimen 4a  failed due to  column failure at 

beam loading of 118 kN whereas specimen 4d failed at 150 kN beam loading.  In spite of a 

column reinforcement increase of 400%, a comparatively small load increase of 27% was 

achieved. 

 

Ortiz [6-17] increased column reinforcements, Table 6.2, of identical specimen BCJ1 and 

BCJ6 without shear stirrups. BCJ1 had the minimum recommended  radius of bend of 4d 

[6-12]. BCJ6 had a larger radius of bend of 130mm (8d) but in spite of increasing column 

reinforcement by 33% and 67%, no improvement in joint shear  shows that the ultimate 

joint moment increase for BJ6 compared to BCJ1 is only 1%. 

 

The experiments demonstrate that column reinforcement does not have a significant  

influence on joint shear, however, the joints that have low column longitudinal 

reinforcement ratios and column axial stresses are more likely to fail by column hinging. 

 

It should be noted that if column reinforcement is distributed in layers across the depth of 

the column as CVB their contribution to shear resistance is treated independently in this 

chapter. To this writer's knowledge, this influence has not been investigated in the past 

even though  intermediate column bars are recommended in EC8 [6-20] for ductility class 

DCM. Neither has there been any research with direct emphasis on the joint shear 

contribution of CVB in layers near the centre of the depth of the column in HSC BCJ. 

 

6.6.3 Influence of vertical reinforcement at the centre of the depth of column in BCJ 
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This section explores column reinforcement  distributed in layers across the depth of the 

column as CVB and their independent contribution to joint shear resistance. 

 

With regards to direct influence of  CVB on the joint shear, the most related research 

available is an experimental programme by  Atta, Taher, Khalil and El-Metwally [6-28 

&29] which included a comparative study of BCJ which had CVB at half depth as 

recommended by EC8 [6-20]. The results of these tests are shown in Table 6.3. 
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Comments 

BCJ1 2.01 118 141.6  1200 Radius of bend 65mm 
BCJ3 2.68 118 147.5  1250 Radius of bend 130mm 
BCJ6 3.35 115 143.8 300 1250 Radius of bend 130mm  

 
Table 6.2:  Influence of main column reinforcement on ultimate joint moment. 
Comparison of the significant  increase of 67% in column reinforcement of BCJ6 
compared to BCJ1, resulting in  less than 1% increase in ultimate  joint moment.  

 

The variables studied were the grade of concrete in beam and column joint (group G1), 

the shape and reinforcement ratio of stirrups in the joint (group G2), and reinforcement in 

beam, column and joint (group G3).  

 

This writer analysed a group of G3 specimens with concrete of cylinder strength of 65 

MPa, joint aspect ratio of 2 and column reinforcement distribution of 8 bars in specimen 

G3-F, 6 bars in specimen G3-E, and 4 bars in specimen G3-C, Figure 6.13. The higher 

strength and aspect ratio and presence of CVB resemblances  the behaviour of HSC-BCJ of 

aspect ratio=2  with CVB.  

 

Ten specimens of reinforced concrete BCJ were tested. Nominal yield stress of 

reinforcement was 360 and 240 MPa for main steel and stirrups. The mix proportions for 1 

m3 of concrete of cylinder strength 60-70 MPa tested at around 45 days consisted of 600 kg 

ordinary Portland cement, 1175 kg granite, 600 kg sand,   156 kg water and 12 kg super 

plastisizer or W/C=0.28. The normal-strength concrete mix had the same proportions but 

with a water/cement ratio of 0.5 and with no super plastisizer. The specimens were moist-

cured for 10 days. 
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An axial load of 400 kN was applied to the column and kept constant throughout the test.  

A hydraulic jack loaded the beams by applying upward load by increments of 10kN up to  

failure.  

 
G

ro
up

 

T
yp

e 

Concrete      fc 

(MPa) 
Beam bar 

C
ol

um
n 

 b
ar

s 

Jo
in

t s
tir

ru
p

 

F
ai

lu
re

 L
oa

d 
(k

N
) 

Lo
ad

 a
t J

oi
nt

 s
tir

ru
p 

yi
el

d 
(k

N
) 

 

B
ea

m
 

C
ol

um
n 

B
ot

to
m

 

T
op

 

I G1-A 67 67 3-T16 2-T10 4-T16 2-R8 128 92 
G1-B 36 36 3-T16 2-T10 4-T16 2-R8 100 61 
G1-C 33 65 3-T16 2-T10 4-T16 2-R8 118 73 

II G2-B 60 60 3-T16 2-T10 4-T16 - 103 - 
G2-C 65 65 3-T16 2-T10 4-T16 3-R8 127 96 

III G3-B 62 62 3-T16 2-T10 4-T16 1-T10 128 90 
G3-C 68 68 3-T16 2-T10 4-T16 2-R8 124 94 
G3-D 64 64 3-T16 2-T10 8-T16 5-R8 138 102 
G3-E 68 68 3-T16 3-T16 4-T16 2-R8 144 110 
G3-F 62 62 3-T16 2-T10 8-T16 2-R8 168 115 

 
Table 6.3: Description of reinforcement, concrete strength, failure, cracking and joint 
stirrup yield load for experimental tests.  
 

It can be noted that the beam reinforcement in the G3-F experiments was not sufficient for 

developing full joint shear failure. If beam reinforcement of 4-T16 instead of 3-T16 with 

bend radius of 4d were used, joint shear failure would have occurred at higher beam load 

for G3-F which had 8-T16 column reinforcement. This would have demonstrated the 

contribution of CVB to the joint shear. 

 

Specimen G3-F has 2-T16 located at half the depth of the column and has U joint 

connection detailing which has 10% less joint shear resistance than G3-E, with L 

connection, whereas the failure load for G3-F is 168 kN compared to 144 kN in G3-E, 

which is further demonstration that the presence of CVB produces higher joint shear 

resistance despite weaker connection detailing. 

 

Atta’s specimen G3-F fails from beam flexural failure at 168kN and specimen G3-E fails 

from joint shear at 144kN. This shows that the joint shear resistance would have been 

higher if premature flexural failure had not taken place.  
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There is insufficient information on the spacing and type of reinforcement used as shear 

stirrups in the beam, therefore since the available diagram did not provide dimensions of 

spacing, using scale rule measurement it was assumed that links of 8mm diameter of 240 

MPa nominal yield were spaced at 200mm.  

 

In conventional design methods, λ fyAs - Vcol is used to predict joint shear failure. 

Considering specimen G3-F with λ=1.2, fy=360 MPa, As= 602 mm2. When the plastic 

hinge is being considered, the predicted joint shear  failure is169.5 kN (260.4-91= 169.5 

kN) with 3-T16 tension bars in the beam. From Figure 6.14 it can be seen that the failure 

occurs in the beam at about 200mm away from opening corner of the joint, and as the load 

is applied from the bottom the beam failure appears.  

 

G3-E which failed in joint shear at 144 kN is identical to G3-F which had beam failure at 

168 kN, the only difference being that  G3-F has 2-T16 additional CVB which improve the 

beam load capacity by 17%. In addition, G3-E has L detailing rather than the U detailing of 

G3-F. The  L detailing improves joint shear by 13%, therefore the presence of additional 2-

T16 CVB in G3-F improves its joint shear by 17%+13%=30%. If G3-F had a larger 

quantity of tension steel in the beam and was designed to fail in joint shear, the beam load 

capacity would have further  increased and the contribution of CVB would have been 

demonstrated to be greater. 

 

Ten electrical resistance strain gauges were mounted on the reinforcement cage within the 

joint zone for each specimen. The position of  8 gauges are identified in the published 

paper although reading for gauges 5 to 8 are not provided.  

 

The presence of a CVB deflects inclined compression forces proportionally to the strength 

of the concrete in the joint and the strut providing the compression force becomes wider 

making an  effective compression strut throughout the depth of the joint. It is also due to 

dowel forces from CVB restricting propagation of flexural and inclined cracks. 

 

Parametric investigations by this writer into the influence of CVB and HSC in the 

parametric model of  BCJ-4 made of HSC with 2T12 CVB, Figure 6.12,  showed 43% 

improvement in load bearing capacity, 198.13 kN, compared to BCJ-4 with NSC and 

without CVB of 138 kN.  
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Figure 6.12:The meshed FE model of BCJ4 but of HSCwith 2T12 CVB . 
 

A detailed FE  parametric investigation on the influence of CVB and HSC will be carried 

out in Chapter 7.  

 

6.6.4 Cracking load prediction  
 

From diagonal cracking analysis for specimens in  the horizontal reaction at the column top  

support, Rt = Vcol was predicted conventionally by taking moment about the centre of the 

base of column, Figure 6.13.  

ccol
c HV

h
LP ×=+ )

2
(         6.20 

jhcoln VVT =−      6.21 

Considering BS8110  simplified stress block 

Tn= 0.87 fyAs     6.22 
=××××== 2)8(314.336087.087.0 syn AfT 188.8 kN 

The cracking analysis is checked to Taylor's approach, from equation in  section 6.3 

with )/( cccrcr hbVv ⋅=  and Vcr equal to the beam bars force 

νcr = 0.67 √(ft
2 + σc ft + σb ft) 

10
200200

400000 =
×

=cσ MPa 

where ft is the tensile strength of concrete, σb = Nb/(bchc), Nb which is  the horizontal thrust  

is zero,σc = N1/(bchc) and N1 is the vertical load on the column then  νcr = 0.67 √(ft
2 + σc ft). 

Results from   Taylor's design rule for prediction of the  first joint crack formation  with  

 2-T12 CVB 
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Taylor’s, CEB[6-11] and this writer’s proposed  equations for predicting tensile strength of 

concrete are shown in Table 6.4.  

 

 

  

. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 6.13: Geometry of beams tested by Atta et al [6-28]  

 

 

Figure 6.14: BCJ G3-F, which has 2-T16 CVB at the centre of depth of the column, 
had a failure in the beam at the flexural ultimate beam load of 168 kN .  
Source: Atta et al [6-28], 2003 
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The experimental tests  by Atta et al [6-28] indicate that the predicted values for this  first 

joint shear  crack, Table 6.4, for NSC are reasonably accurate, however, with HSC, 

Taylor’s design rule  over-estimates the joint shear strength by up to  57%, Figure 6.16. 

 

Taylor’s empirical design rule, ft =0.1fc , based on the 26 BCJ tests he conducted were of 

average concrete strength Fc= 37.27 MPa, as a result, for Atta et al’s NSC test number 2 

(G1-B) the  prediction value is 9% larger than the  experimental . However, for higher 

strength concrete of between Fc = 60 to 70 MPa the prediction is on average 57% higher.  

 

 

Figure 6.15: Flexural mode of failure for the beam at BCJ 
 

CEB’s recommendation (ft= 0.3 fc
2/3)  for tensile strength of concrete gives  predictions of 

average value with NSC at 3% higher strength than the experimental and for the average 

value with HSC the prediction is 32% higher than experimental values.  

 
This writer’s empirically calculated recommendation ft =0.47√ fc gives the closest of all 

three methods of  predictions of experimental value with NSC with 6% margin of safety 

and with HSC an  average prediction of 12% higher than experimental values. 

 

As demonstrated in Figure 6.16, this writer’s proposed empirically calculated relation  of     

ft =0.47√ fc
 gives the most realistic results. 

6.6.3 Joint aspect ratios 
 
Meinheit & Jirsa's [6-31] test results on cyclically loaded internal BCJ with joint aspect  

 

Tension crack at 
opening corner 

Tension cracks 

Compression 
crushing 
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1 G1-A 67 45 188.8 18.8 170.1 232.67 1.37 195.6 1.15 283.5 1.67 

2 G1-B 36 40 188.8 16.7 172.1 177.89 1.03 161.1 0.94 187.5 1.09 

3 G1-C 65 40 188.8 16.7 172.1 229.55 1.33 193.7 1.13 277.5 1.61 

4 G2-B 60 45 188.8 18.8 170.1 221.54 1.30 188.9 1.11 262.6 1.54 

5 G2-C 65 45 188.8 18.8 170.1 229.55 1.35 193.7 1.14 277.5 1.63 

6 G3-B 62 45 188.8 18.8 170.1 224.78 1.32 190.8 1.12 268.6 1.58 

7 G3-C 68 45 188.8 18.8 170.1 234.22 1.38 196.5 1.16 286.4 1.68 

8 G3-D 64 50 188.8 20.8 168 227.97 1.36 192.8 1.15 274.6 1.63 

9 G3-E 68 50 188.8 20.8 168 234.22 1.39 196.5 1.17 286.4 1.71 

10 G3-F 62 55 188.8 22.9 165.9 224.78 1.35 190.8 1.15 268.6 1.62 
Average value of ratio of prediction compared to  
experimental value 

1.32  1.12  1.57 

Table 6.4: Joint shear forces predicted cracking load comparing  Taylor’s, CEB and 
this writer’s prop osed method of calculating tensile strength of concrete in order to 
predict the first joint  crack from Taylor’s proposed method. 
 
ratios of 1 and l.4 agree with the EC 8 [6-20] and ACI/ASCE[6-22] Committee 352 

assumption that joint shear strength is independent of joint aspect ratio. However, design 

methods based on STM in ACI318 Appendix B [6-5] and Eurocode 2 [6-1] or Taylor's 

analogies with shear behaviour [6-2] conclude that shear forces in BCJ are dependent on 

beam column aspect ratio. Taylor restricts his analogy of beams to BCJ up to joint aspect 

ratio of 2. 

The joint shear design equations proposed by Sarsam [6-39] and Vollum [6-35] are also 

based on STM and are dependent on joint aspect ratio. STM have been proposed by Ortiz 

[6-17], Parker &Bullman [6-18], and Vollum [6-35] for the design of joints with and 

without stirrups. All their models predict that joint shear strength is dependent on aspect 

ratio.  

 

Therefore, joint shear design equations based on STM are limited to an aspect ratio of up 

to 2.5 and Vollum [6-35] recommends shear design for aspect ratio higher than 2.5 to be 

designed by use of the variable truss angle method for shear design recommendations in 
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EC2 [6-1]. This research, however,  attempts to demonstrate that the  use of  CVB in the 

joint produces a stabilising arching affect and develops double strut action which results in 

increasing the limit for  STM to the joint aspect ratio of 3. 
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Figure 6.16: Prediction of first crack using Taylor’s rule with different empirical 
rules for relation between tensile and compressive  strength of concrete. 

As noted earlier, this writer’s experiments on 12 beams demonstrated  a reduction of shear 

resistance in HSC compared to NSC in beams of shear span to depth ratio of 3. The 

situation was reversed  by introducing HWB in the beam due to the stabilising arching 

affect which results in the beam performing in a  similar way to short beams , considering 

Taylor's [6-2] analogy of beams shear behaviour to that of  BCJ. Although Taylor 

restricted his analogy to beam column aspect ratio≤2, the stabilising arching affect due to 

dowel action from CVB on HSC BCJ of higher aspect ratio with a CVB could make this 

analogy possible for joint aspect ratio ≤3. 

However, the shear resistance of HSC BCJ with aspect ratio of 3 and CVB could be 

analogous to HSC beams with HWB with a shear span to depth ratio of 3,  because the 

dowel action of the central bar develops a stabilizing arching affect. This may suggest  in 

the same manner that a HWB makes a contribution to the shear resistance of the HSC 

beam a/d=3, as CVB would also contribute to the joint shear of HSC BCJ of aspect ratio 

hb/hc=3.  

 

It is interesting to note that in Kordia's experiments, specimen RE10 and RE7 have  similar  
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Asjefy / (fc)
1/2 be.hc but  RE7 has 18%  higher shear index [Vjd / (fc)

1/2 be.hc ] because the 

joint aspect ratio of RE10 is 1.56 compared to RE7 with an aspect ratio of 1.4. 

 

Consideration of the inclined stress field model proposed by Scott et al [6-30] suggests that 

the maximum joint shear strength should be related to the joint aspect ratio.  

6.6.6 Beam thrust 
 

Taylor[6-2] applied beam thrust to his entire specimens except for specimen P1/41/24. 

When there is absence of beam thrust, the opening and closing moments are identical, 

however, when beam thrust is applied as failure of the opening corner occurred, the closing 

side was able to carry more moments until its strength was drained. As a result, in the 

absence of beam thrust, failure occurs as the opening corner  reaches its peak moment 

whereas when a prop is provided the opening corner is able to continue to carry moment, 

even down a falling branch while the moment in the closing side is increasing. 

 

In the presence of beam thrust, the beam moment is not carried by the column in equal 

proportions above and below the joint; the closing corner of the joint may be carrying as 

much as 75% of the beam moment when the joint fails. The column, in the case of the test 

with  beam thrust, was sharing the beam moment in the opening and closing sides in the 

proportions of 1:2 at failure. 

6.6.7 Column axial compression  

Meinheit et al[6-31] subjected BCJ  to deformation to establish basic shear behaviour. 

Specimens were designed using recommendations of ACI-ASCE Committee 352 [6-22] 

and were proportioned so that shear stress in the joint would determine the maximum loads 

rather than the yielding of flexural members. From analysis of the test data and mode of 

failure, design recommendations for basic joint shear strength were made with emphasis 

that column axial load does not contribute to shear resistance of the joint.  

Ortiz [6-17] tests on BCJ demonstrated that when 300 kN axial loads were applied to the 

column of the joint (BCJ6) without confinement reinforcement the joint shear was 315 kN 

compared to 322 kN of the same specimen without axial load (BCJ3). Her tests indicate 

that joint shear reduces by just 2% due to the  presence of axial load of 300 kN which may 

be interpreted as no improvement for increased axial loading. 
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Kordina [6-18] investigated the influence of column axial forces by increasing the axial 

column load on the joints in his two matching specimens but the one exposed to a higher 

axial load  had U connection bars and compared with the L connections on the joint with 

lower axial load,  the U connection has 10% less joint shear resistance. Kordia concluded 

that presence of column load did not contribute to joint shear resistance.  

Scott [6-16], investigated column axial loading  by increasing the loading from 50 kN to 

275 kN on each of his specimens. He concluded that column axial loading  does not 

contribute to joint shear resistance. Scott & Hamill [6-19], tested their specimens at 50 kN 

and 100 kN column axial loading. The comparison demonstrated that  the BCJ shear does 

not increase with increase in axial loading.  

Parker and Pullman [6-18], made an in depth investigation into the affect of axial load on  

joint shear for BCJ by testing 11 specimens exposed to zero, 300 kN and 600 kN axial 

loadings. They concluded that column axial force in the BCJ contributes to the joint  shear 

resistance and therefore proposed the following design rule for the joint shear V of a 

member without confinement links: 

 

V=(Ascfy + N) tanӨcrit        6.23 
 

where Asc is the total area of tension reinforcement on each face of the member and  Өcrit   

is the critical inclination of the compression strut relative to member axis. N is the axial 

column load. 

 

Vollum [6-35] investigated the  influence of column load on joint shear and observed that 

most other researchers had concluded joint shear strength does not increase  with column 

axial load. However, he proposed the following design rule: 

 
V j = Vc + (Asjefy - αbehc √fc')   6.24  
 

where α is conservatively taken as 0.2 MPa0.5 and is dependent on factors depending on 

concrete strength, joint aspect ratio  and column axial  load.  

A number of past researchers argued that increase in column axial force Nu  does improve 

the shear capacity of BCJ therefore it can be seen in terms of axial stress (Nu /Ag ) where 

Nu
 is the column load and Ag is the gross cross-sectional area of the column at the joint, 

and this is implemented in some international  codes of practice. 
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Researcher Influence of axial 
load on joint shear 

comment 

Meinheit No increase  Displacement loading 
Ortiz Minor increase 2% 300 kN load 
Kordina 10% increase  L bar compared to U 
Scott No increase 275 kN load 
Parker  and Pullman N tanӨcrit 600 kN load 
Vollum Included in α From other research 

 
Table 6.5: Research performed on the influence of axial load on joint shear 
 

6.6.8 Influence of compressive strength of concrete on shear resistance of BCJ 
 

The only HSC BCJ specimens with concrete of fc
'≥95 MPa  exposed to monotonic loading  

were the six with cylinder strength close to 100 MPa and joint aspect ratio of 1.4  tested by 

Scott & Hamill [6-19]. Their specimens C4ALHO of  HSC and C4ALNO of NSC with 

aspect ratio of 1.36  were investigated for the influence of concrete cylinder strength on the 

joint shear. These two specimens were chosen because their geometry and material 

properties other than strength of  concrete were the same. The column axial load and 

concrete were 100 kN and 104 MPa for C4ALH0 and 50 kN and 42 MPa for C4ALN0 and 

none had stirrups.  C4ALHO had 37% higher shear resistance compared to C4ALNO. The 

results demonstrated that for the low aspect ratio (1.36) the higher strength of concrete 

could improve the load bearing capacity of the compression strut and therefore have 

improved joint shear resistance.  

 

For 8 tests [6-19] of aspect ratio 1.4, 4 HSC and 4 NSC, it was noted that the average shear 

stress is 8.7 MPa  for HSC of  average fc=101.5 MPa and 6.2 MPa for NSC of fc=48.25 

demonstrating that an increase in concrete  strength of 110% results in an  increase in shear 

resistance of BCJ of  40%, or a ratio of 1: 2.75. When aspect ratio is increased [6-28] to 2, 

an increase in compressive strength of 86% results in 27% increase in shear resistance or a 

reduced ratio of 1:3.2.The difference in shear resistance is not proportionally high when 

considering the increased compressive strength of 24%,  ie. 110%-86%. 

 

As the joint aspect ratio increases to 2, the difference in joint shear performance of BCJ of  

G1-A and G1-B at 67MPa and 33MPa subjected to column axial loading of 400 kN, Table 

6.3, becomes comparatively smaller at failure loading of 128 kN and 100 kN, which is a 

28% increase. 
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 Researcher Aspect 
ratio 

fc (MPa) Nu kN % Increase 
in Shear 

C4ALHO Scott & 
Hamill's[6-19] 

1.36 104 100 37% 
C4ALNO 42 50 
G1-A Atta et al [6-28] 2.0 67 400 28% 
G1-B 33 400 

 
Table 6.6: Reduction of increase in joint shear with increase in aspect ratio 
 

Vollum produced a graph, Figure 6.17, showing that the relation between joint shear and 

cylinder concrete strength is 0.9√fc' and based on this relation he proposed his design rule:   

Vj = Vc + (Asjefy - αbehc √fc')   6.24 

 

It is of concern that as shown in Figure 6.18, the shear resistance of beams  tends to 

decrease as concrete strength and beam depth increase. The graph is restricted to d≤ 

100mm and  fcu≤ 100 MPa.  

 

 
Table 6.7: Demonstration of the potential problem with high strength limestone 
aggregate concrete. N.B: Equations 2 and 4 are discussed in chapter 2. 

 
Source: Regan, 2005, [6-32] 

 

Similarly, this writer's experimental tests demonstrated that when the amount of shear 

reinforcement used in the HSC beams of a/d= 3 was below the minima of both EC 2 and 

the Concrete Society recommendations, which are ρwfy ≥ 0.08and ρwfy ≥ 0.039, the 

ultimate shear to the characteristic resistance reduces significantly when calculated by the 

BS 8110 equation without a limit on fcu and ignoring the requirement on ρwfy which was as 
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low as 0.69 in one test. The ultimate strengths of three of the four HSC beams were below 

both that of a reference beam, with gravel aggregate, and normal value of fcu, Table 6.7. 

 

 

Figure 6.17: Vollum's graph indicating joint shear strength is proportional to the 
square root of the concrete cylinder strength  

Source:Vollum 1999, [6-33] 

 

 

 
Figure 6.18: Relation  between Vu/VRk,c ( equation 2-1), fc and  depth of beam d 

Adopted from Regan, 2005, [6-32] 
 

The comparison shows that as aspect ratio increases from 1.5 to 2 this does not improve 

the shear resistance at the same rate. If this increase had happened at the same rate, the 

shear resistance would have improved by 32% instead of 27% when aspect ratio increased 

to 2. Unfortunately, to this writer's knowledge,  there are no other tests for investigating the 

influence of  concrete strength on the shear resistance of BCJ in relation to increase in 

aspect ratio. 
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Therefore Vollum’s design rule is dependent on the strength of concrete although it 

imposes a limit on the maximum predictable shear based on BCJ7 of Ortiz’ beam which is 

1.33behc√fc. When designing for HSC-BCJ with large aspect ratio the equation may over- 

estimate the joint shear. 

 

This writer introduces a design rule that included shear improvement due to dowel action 

from CVB for HSC BCJ with large aspect ratio. As demonstrated, HSC beams with a/d=3 

with central web bars produce improved shear resistance  resulting from arching action 

which is analogous to HSC BCJ with large aspect ratio 3.  

6.6.9 Influence of beam tension reinforcement on joint shear 
 

ACI 318 [6-5] and EC8 -NA [6-20] calculate joint shear force on the basis that the beam  

tensile steel yields, but EC8-NA [6-20] assumes that only 2/3
rd of the area of beam 

reinforcement should be included in the calculation of shear force. EC8-NA [6-20] states 

that the factor of 2/3   is introduced to account for the fact that part of the inclined bond 

forces flow sideways out of the joint core. This is reasonable if transverse beams are 

provided, but needs further investigation for corner joints, [6-41. 

 

Taylor investigated the moment of the diagonal cracking of the joint  as a ratio of the 

theoretical flexural moment of the beam and concluded from his tests that the diagonal 

cracking at the working load is likely to occur  in joints when beam steel percentage of 

more than 2.0 is used. Although the widths of the diagonal cracks were not greater than the 

criteria given by CP110[6-12] immediately after they formed, he recommended to design 

these areas so that diagonal cracking is prohibited at the working load. 

 

Parker and Bullman’s [6-18] specimens 5f and 5b both had identical parameters except for 

beam reinforcement ratios. Beam 5f had a reinforcement ratio of 1.4% and 5b one of 0.9%, 

therefore an increase of 56% in beam reinforcement resulted in an increase of joint shear 

strength of 36%. 

 

Scott's [6-16] specimens C4AL and C1AL had similar concrete strength with only 3 MPa 

difference and the rest of the parameters were identical except for the beam reinforcement 

ratios. The joint shear strength of C4AL had a reinforcement ratio of 2.1% compared to 



_________________________________________________________________________________________________

Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 

 

321

that of C1AL which was 1.1%. This 91% increase in beam reinforcement resulted in an 

increase in joint shear of around 27%.  

 

Researcher BCJ  -  ρb% BCJ  -  ρb% Increase in ρb% Increase in shear 
Parker et al [6-
18] 

5b – 0.9% 5f – 1.4% 56% 36% 

Scott's [6-16] C1AL – 1.1% C4AL – 2.1% 91% 27 
 
Table 6.8: Influence of increase in beam reinforcement on joint shear of BCJ  
 

It is concluded that this  increase in reinforcement ratio in beams results in an  increase in 

BCJ shear resistance. However, this increase in joint shear  is not  as high as the increase in 

beam reinforcement. Further investigation is needed to explore the relation between  beam 

reinforcement percentage and compressive and tensile strength of concrete as well as to the 

joint shear stirrups. 

 

6.6.10 Influence of eccentricity on the joint shear 
 
Vollum and Newman [6-33] tested ten external  BCJ where one of the beams is eccentric 

to the column. The tests were designed to investigate the strength of the joints under 

combined loading and to develop a design rule to predict connection strength.  The effect 

of eccentricity and reinforcement detailing  on connection strength, cracking and 

deformation was also explored.  

 

The tests showed that such connections could be used in practice as long as the torsional 

capacity of the joint is not exceeded. However, BCJ failure can occur in five modes for 

such connections; 1, column flexure; 2, uniaxial joint shear; 3, torsion in  the concentric 

beam without yielding of its longitudinal steel; 4, biaxial joint shear; and 5 yield 

reinforcement. 

Failure modes 2 to 4 result in column failure and can be  prevented by making sure that the 

maximum possible torsional strength of concentric beams exceeds the applied torsion and 

the design action should lie within the lower bound to the biaxial joint shear strength given 

by 

1
22

≤






+








jo

je

jo

jc

V
V

V
V

               6.25 

where Vjo is the uniaxial joint shear strength,  Vjc is the joint shear force due to beam 

loading at failure and Vje is the joint shear due to beam load. 
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6.6.11 Influence of anchorage detailing on the joint shear   
 

Vollum [6-33] plotted a graph for tests completed by the past researchers to demonstrate 

the influence of joint stirrups on joint shear strength in relation to  L bars and U bars . 

 

He introduces [6-33] factor β in his design equation with β= 1 for connections with L  bars 

and 0.9 for connections with U bars. However, his more recent paper [6-34] recommends 

that his previous research [6-35] indicated that the joint shear strength of U bar was 20% 

less than that of similar specimens with L bars. 

 

It is worth noting that  in his tests Taylor concluded that his  3 specimens of U bars  

connections gave very similar results  to those of the tests with L bars anchorage.  As 

shown in Table 6.1 the radius of bend when larger than 3d (48mm)  makes a significant  

difference to joint shear when increased from 65mm to 130mm.  

 

From this writer’s detailed investigation of the 56 BCJ specimens it was concluded  that 

the  detailing of the anchorage of the beam bar to column using L bars performed 10% 

better in joint shear compared to U bars. 

 

6.6.12 Influence of joint stirrups 
 

It has been concluded by Ortiz [6-17] that stirrups are able to increase joint strength only if  

positioned above the flexural compressive zone of the incoming beam and below the main 

beam reinforcement within the upper 5/8 of the beam depth below the tensile reinforcement 

in the beam and she found the most efficient location for the stirrup to be above  the centre 

line of the beam, Figure 6.6.  

 

This conclusion follows the yielding of stirrups in Ortiz’ specimen BCJ4 [6-17] and then 

Vollum[6-35] considering the same region as the effective region for joint stirrups. This 

writer’s FE numerical model STM agrees with this approach. However, the parametric 

investigation , by this writer, demonstrates that the stirrup located 50 mm above the beam 

prevents buckling of the column front reinforcement and improves the joint load bearing 

capacity by 17%. 
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Also the parametric investigation on short beam B1analogous to BCJ, Figure 6.23, for 

beam with a stirrup near support in flexural span failed at 540 kN compared to model for 

B1 without this stirrup which failed at 460 kN, indicating that the presence of a link above 

opening corner of similar BCJ can improve load bearing capacity of the joint by 17%.  

 

 

 

This investigation was extended by parametrically modelling  BCJ-4 with removal of the 

stirrup  above opening corner. Comparing FE models, it was demonstrated  that removing 

the stirrup above opening corner reduces the load bearing capacity of the model from 138 

kN to 118 kN or results in 17% drop in load bearing capacity of the model BCJ-4, Figure 

 

 
 

Figure 6.19: Internal forces in joint 
allowing development of strut with an L 
bar anchorage 
 
 

Figure 6.20: Parametric investigation of FE 
model of BCJ4 with  the link above  opening 
corner removed 

 
 

 
 

Figure 6.21: At failure load of 118 kN 
with stirrup just above opening corner  
removed from mdel of BCJ4.  
 

Figure 6.22: The maximum compressive  
strain develops at the centre of the  diagonal 
compression strut in BCJ when stirrup is 
present above opening corner in FE model 
of BCJ4 

Link removed  
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6.20. Presence of the stirrup above the opening corner results in shear failure of the 

diagonal compression strut in the joint at 138 kN, Figure 6.22.  

 

Absence  of stirrups above the opening corner resulted in crushing of the concrete above 

opening corner at 118 kN,  Figure 6.21, Figure 6.25. Principal strain vector just before 

failure load at 110 kN loading shows the strain concentratation above the opening corner 

resulting in crushing of the concrete, Figure 6.24.  

 

Beeby and Fathibitaraf’s [6-36]  approach to the design of reinforced concrete frames was 

that the most significant effect of the membrane forces on the structural behaviour was the  

bending moment imposed on the columns.  

 

 
Figure 6.23: Parametric model for beam B1 with a stirrup near support outside shear 
span failed at 540 kN compared to model for B1 without this stirrup which failed at 
460 kN 
 
 

 
 

 

 
 

Figure 6.24: Principal strain vector at 
110 kN in BCJ-C. with top link  removed 
from BCJ-B. 

Figure 6.25: Compression failure above 
the opening corner of the model with link 
removed from this point 
 

 

Link removed 
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a) A reinforced concrete beam  after 
deformation under load 

b) Development of membrane forces in a 
frame 

 
Figure 6.26: the cracking on the beam as the axial force led to crushing and on the 
column due to the lateral force from the beam, followed with crushing of concrete in 
the compressive zone of the beam, and failure of the column or beam. 
 

Source: Beeby, A.W., and Fathibitaraf, F., [6-37] 1997 

At the Construction Hall of the  University of Westminster, Farjamand [6-38] 

experimentally tested 3 beams and 7  H frames  of  NSC to investigate compression 

membrane action effects in reinforced concrete frames. This phenomena explores the 

arching action of the beam along its diagonal compression strut  due to column restraints 

on the movement corresponding to the beam's deflection at the ends of the beam below its 

neutral axis. This force results in additional forces acting  on the column at BCJ near the 

soffit of the beam, therefore producing plastic hinges in the columns from extreme loading. 

 

The test specimens were devised to model an end span in a multi-panel reinforced concrete 

frame. From the experimental and analytical study of frames presented in the thesis, it can 

be concluded that the compressive membrane forces act on the beam within the frames, are 

more pronounced in higher stages of loading and are affected by stiffness of the columns. 

This writer’s investigation of H frames  loading at failure  shows that they are close to the   

loading recorded on the fully developed  shear diagonal crack at BCJ, with the exception of 

one H frame which has  axial load of 180 kN   applied to the columns. 

 

Crack investigations on columns and on BCJ  demonstrate that on average,  near ultimate 

load  flexural cracks do not propagate after 69% of ultimate loading whereas shear cracks 

at BCJ develop full diagonal cracks up to 91% and could have continued propagation to 

failure.   
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H Frame 1 2 3 4 6 7 Mean % of load 
Ultimate load (kN) 140 136 144 136 124 124 134  
BCJ shear crack  (kN) 132 128 132 124 100 116 122 91 
Column flexural crack (kN) 0 108 84 128 116 116 92 69 
 
Table 6.9: The flexural and shear cracking loads in relation to  the ultimate loads  
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Figure 6.27: Comparison of shear cracking load and flexural cracking load in relation 
to failure load. 
 

The stirrups are located above or below beam level where you have a cold joint. At the top 

of the column, 100 mm below soffit of the beam, the pour is stopped for the next pour 

including beams and at the bottom of the column, 100mm above the beam, the kicker 

concrete is placed for supporting the shuttering  for the above floor columns. Therefore,  

additional stirrups  within the distance of the depth of the column above and below the 

beam in  BCJ ensure the integrity of the concrete cold joints while requirements for 

discontinuity of the joint to St Venant’s rule is fulfilled. 

 

 

Figure 6.28: a) ACI 318 [6-5], Marti and Sarsam's proposed stirrup  detailing at BCJ.      
 b) This writer proposes detailing for external corner  BCJ for torsion stirrups only 
when the structure is exposed to extreme loading which produce torsion at the joints. 
 

Sarsam’s proposed 135º stirrups with legs extending a≥110mm [39] into the core of BCJ 

may obstruct the poker vibrator from compacting core of the concrete resulting in poor 

quality honey-combed concrete, Figure 6.28 a. 

     CVB 

a 
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The type of stirrup suggested would normally be used when element is subjected to torsion 

which may also be used to resist large shear load in the corner external BCJ to allow 

unobstructed access for the poker vibrator to achieve full compaction at the core of the 

BCJ, Figure 6.28 b. 

 

The extreme loading is produced due to torsion on the joint resulting from gyrational 

forces on the unsymmetrical structure. In practice, all buildings have either unsymmetrical 

plan or distribution of loading on the plan is uneven, therefore gyrational forces from 

extreme loading produce torsion in the corner BCJ.  

 

A detailed investigation  of the strain development in BCJ in the column above  the 

opening corner and below the closing corner is in Chapter seven of this thesis. 

 

Vollum [6-33] plotted a graph for tests completed by  past researchers .The influence of  

joint  stirrups on joint shear strength is shown for L bars and U bars, where the normalised 

joint shear strength Vjd / (fc)
1/2 be.hc MPa1/2 of the specimens is plotted against   stirrup 

index = Asjefy / (fc)
1/2 be.hc MPa1/2,   where Asje is the effective area of joint stirrups, defined 

as the area of stirrups placed within the upper 5/8 of the beam depth below the tensile 

reinforcement in the beam.  

 

Vollum's graph does not fully take aspect ratio into account. His lower limit for aspect  

ratio is achieved by restricting his design rule with the empirical value of 0.97(fc)
1/2 be.hc  

which is from tests by Wilson [6-23]. 

 

Taylor tested one specimen, B3/41/24, with additional joint reinforcement which did not 

show joint strength beyond  that achieved in his other tests which mostly had one stirrup at 

the centre. Taylor assumed that this was probably because the mode of the joint was firstly 

diagonal cracking and then crushing of the strut of concrete parallel to the diagonal cracks, 

Figure 6.19. The failure mode is similar to the diagonal compression failure of short beams 

over-reinforced in shear, then additional  reinforcement in column links beyond one link in 

the centre of the joint is not likely to enhance the strength of the joint, only to increase its 

ductility by holding the concrete and stopping it from bursting.  
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Taylor assumed  that the reason that additional linking reinforcement is provided in joints 

of structures subjected to earthquake loading is  because the binding steel holds the joint 

together and enhances the strength of the second and subsequent load cycles, rather than to 

give more strength in the first cycle. 

 

The definition of Asje for the effective area of joint stirrups generally varies depending on 

the researcher. As an example, this writer for his proposed design rule defines Asje as the 

area of stirrups placed within the length of (2hc + hb) in the column at equal distance from  

the centre of beam in BCJ. 

 

The equation  (Vj = Vc + Asjefy) overestimates the contribution of the stirrups indicating as 

extremely low value for Vc. This was also demonstrated by Meinheit & Jirsa [6-31] from 

their experiment on cyclically loaded BCJ. This equation is not conservative at high stirrup 

indices because joint shear failure occurs before yielding of stirrups. 

 

The graphs show that joint shear strength is increased by stirrups only if the stirrup index 

exceeds a critical minimum value of about 0.2% which is the amount recommended by 

BS8110 [6-10]. Figure 6.10 and Figure 6.11. 

 

This writer investigated the yielding of the stirrups of BCJ4  of Ortiz in which the two 

stirrups  within the upper 5/8
th of the beam depth below the tensile reinforcement in the 

beam,  yield. However, from FE models and investigation of the BCJ specimen, on the 

frames discussed in this section, it is concluded that within the discontinuous region of 

BCJ , Figure 4-1, which extends from the depth of the column (hc) below soffit to above 

the top of the beam in BCJ, to confine the diagonal compression struts. 

6.7  Comparison of experimental test data with the code guidance 
 
In this section, the experimental data from 56 specimens tested by a group of researchers 

are compared with   prediction from code guidance. 

6.7.1 Comparison of EC8 [6-20]  with tests 
 

EC8-NA [6-20] gives design recommendations for monotonically loaded, external BCJ  

expressed as follows: 

Vjd = 0.525 (fc)
2/3 be.hc        6.26 
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For EC -NA [6-20] ductility class low (DCL) . 

 

Material factor of safety is included. EC8 calculates the joint shear force on the basis that 

the beam tensile steel yields. From Table 6-11 the empirical value of 0.525 was determined 

from the mean of the experiments. 

 

EC8 -NA [6-20] design methods specify minimum stirrup requirements  greater than those 

of BS 8110 [6-10]. EC 8-NA [6-20]  and ACI/ASCE Committee 352 [6-19] do not take 

into consideration dependence of joint shear strength on joint aspect ratio. 

 

In the  graphs  Shear index = Vjd / (fc)
2/3 be.hc MPa1/3

   is plotted against   Stirrup index = 

Asjefy / (fc)
2/3 be.hc MPa1/3

 ,  Figure 6.29.  The graphs demonstrate the stirrups  contribution 

to joint shear. 

 

The average of 56  tests gives a shear index of 0.525 which was chosen as the empirical 

value for  EC8 -NA [6-20] joint shear design guideline. All the specimens below this line 

demonstrate that the EC8 NA [6-20] design guide overestimates the joint shear . Ignoring 

minimum reinforcement requirements, the safe predictions are 28 out of 56, or 50%.  

 

Ortiz’ results are close to  the EC8-NA [6-20] design rule. The aspect ratio is 1.33 and 

cylinder  concrete strength is between 33 and 38 MPa .Tests demonstrate that the joint 

shear index increases linearly with the increase in the amount of stirrups, Figure 6.29: 

Compare research for  relation Shear index V Stirrup index.Figure 6.29. Kordia’s 

experiment demonstrates  an improvement in shear index with an  increase in stirrup index 

and safe prediction to the EC8-NA [6-20] guideline. Tests demonstrate that above shear 

index 0.5(fc)
2/3 be.hc increases linearly with the increase in amount of stirrups. The 

specimens were of aspect ratio of 1.4 to 2. The specimen RE2 with fc= 25MPa and aspect 

ratio of 2 had no  confinement steel, and specimen RE4 with aspect ratio of 1.5 with 

minimum confinement steel had the  lowest joint shear, Figure 6.29. 

 

Taylor’s specimen B3/41/24, in spite of a significant increase in stirrup index and shear 

index, has not increased compared to other specimens with less than half the stirrup index. 

The experimental results are safe to the  EC8-NA [6-20]  design guidelines. The tests were 

performed on NSC with aspect ratio of 1.43, Figure 6.29. 
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Scott’s experiments  had a small variation in stirrup index, therefore do offer clear 

evidence on the  influence of aspect ratio. Six of the experimental results below the dotted 

line are unsafe to the EC8-NA [6-20]  design guideline. The specimens C7 and C9 with 

aspect ratio of 2  and lowest beam reinforcement of 1.4% had the lowest joint shear. All 

the specimens had a similar quantity of  confinement steel. The specimen C4AL with the 

smallest aspect ratio of 1.4 with maximum confinement and beam steel had the highest 

joint shear. Figure 6.29.  

 

The graphs in Figure 6.29 demonstrate that EC8 overestimates the joint shear design of 

HSC BCJ. C4ALH0 has a shear index of 0.4, or 31% overestimation. The aspect ratio for 

all  BCJ is 1.4. The predicted shear index to EC8-NA[6-20] is  low  for HSC-BCJ.  

 

All specimens were of aspect ratio of 1.4.  HSC beams C4ALH0 (L, 104 MPa, ), C6LH0 

(U-101 MPa), C6LH1(U-102 MPa)  and C6LH3 (U- 97 MPa)  had joint shear indices of 

0.4, 0.37, 0.37 and 0.43. The identical normal strength specimens C4ALN0 (L-42 MPa), 

C6LN1(U-51 MPa), C6LN0 (U-51Mpa) and C6LN3 had joint shear indices of 0.51, 0.40, 

0.46 and 0.50 demonstrating that EC8-NA[6-20] design rule over estimates joint shear by 

19% for HSC compared to NSC, Figure 6.29. The numbering at the end of BCJ name 

indicates the number of stirrups and the numbering after the first letter indicates the type of 

anchorage, i.e: 6 means U and 4 is L. 

 

Parker's and Bullman’s [6-18] test had failing at the bearing plate therefore a very low 

shear index.  4a, 5a, 5d and 5e had column flexural failure, and are not included. Most of 

the experimental results, other than 5f, which had a stirrup index of 0.3, had low joint 

shear. 

 

Minimum stirrups were used in Vollum's two specimens. Both Sarsam's and Wilson’s  

specimen had no confinement steel, Wilson’s joint aspect ratio is 1 compared to Sarsam's 

of 1.5. Wilson's low aspect ratio improves its joint shear comparable to EC8-NA [6-20] 

recommendation with minimum stirrups. 

 

EC8-NA [6-20] does not take into consideration the joint shear contribution of the stirrups 

or different detailing L and U for the beam bar connections.  
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There is a need for a new design rule which takes into consideration the importance of 

CVB,  joint stirrups, detailing the beam bar connections, joint aspect ratio and the strength 

of concrete.  

6.7.2 Comparison of ACI Committee 352  with  tests  
 
The shaded area of Figure 6.5 represents the upper half of the external joint regions in BCJ 

in reinforced concrete frames. (b) shows free body diagrams of the portions of the joints 

above the neutral axes of the beam entering the beam-column joint and (a) shows the 

horizontal shear at the mid-height of the joint given by: 

 
Vu, joint = T – Vcol     6.27                                                                             
 

where the joint shear is equal to the nominal force in the top steel in the joint, minus the 

shear in the columns due to sway. The column shears, Vcol, can be obtained from a frame 

analysis; for most practical cases, they are estimated from the free-body diagram, where 

points of contra flexure are assumed at the mid height of each story. The force Tn is the 

tension in the reinforcement in the beam at its nominal capacity. Thus, 

T = αAsfy        6.28 
The factor α is intended to account for the fact that the actual yield strength of a bar is 

larger than the specified strength in most cases. It is taken to be at least 1.0 for Type-l 

frames, where only limited ductility is required, and at least 1.25 for Type-2 frames, which 

require considerable ductility. 

 

The ACI Committee 352 [6-22] design procedure for Type-l (no seismic) joints consists of 

three main stages: 

 

1. To provide confinement to the joint region by means of beams framing into the 

sides of the joint or by a combination of the confinement, from the column bars and from 

the ties in the joint region. The confinement allows the compression diagonal to form 

within the joint and intercepts the inclined cracks. For the joint to be properly confined, the 

beam steel must be inside the column steel. 

2. To limit the shear in the joint. 

3. To limit the bar size in the beams to a size that can be developed in the joint. 

 

For best joint behaviour, the longitudinal column reinforcement should be uniformly 
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distributed around the perimeter of the column core. For Type-l joints, ACI Committee 352 

[6-22] recommends that at least two layers of transverse reinforcement (ties) be provided 

between the top and the bottom levels of the longitudinal reinforcement in the deepest 

beam framing into the joint. The vertical centre to centre spacing of the transverse 

reinforcement should not exceed 12 in (304mm) in frames resisting gravity loads and 

should not exceed 6 in (152.4 mm) in frames resisting non seismic lateral loads. In non 

seismic regions, the transverse reinforcement can be closed ties, formed either by U-shaped 

ties and cap ties or by U-shaped ties lap spliced within the joint. 

 

The ACI Committee 352 [6-22] design procedure still applies the 45◦ truss analogy. This 

calls for caution for HSC-BCJ because the diagonal crack is steeper in HSC due to absence 

of aggregate interlock. 

Kordia’s [6-15] specimens had an aspect ratio of 1.4 to 2. The specimen RE2 with aspect 

ratio of 2 without confinement steel and specimen RE4 with aspect ratio of 1.5 with 

minimum confinement steel of stirrup index 0.19 had lower joint shear than predicted by 

ACI 352[6-22]. However, the rest of the specimens with a stirrup index higher than 0.25 

had a predicted shear index higher than ACI 352[6-22]. Figure 6.10. 

 

When comparing Taylor’s [6-14] experimental results for joint shear with  ACI 352 

prediction, specimen B3/41/24 with a large amount of confinement steel has  stirrup index 

of 0.75 and a  shear index of 0.73 compared to specimen A3/41/24  with a stirrup index of 

0.34 and a  shear index of 0.72. Specimens C3/41/24 and C3/41/137 have shear indices of 

0.94 and 0.88, which fail below  ACI 352[6-22] prediction. These two specimens have U 

connections to beam reinforcement. All specimens were of aspect ratio of 1.43.  

 

Scott’s [6-16]  specimens C7 and C9 with aspect ratio of 2 had the lowest beam 

reinforcement, 1.4%,  and as a result had the lowest joint shear. The specimen C4AL with 

the smallest aspect ratio of 1.4 with maximum confinement and beam steel had the highest 

joint shear. Only specimens of aspect ratio of 1.4, with the largest beam reinforcement of 

2.1%, had a joint shear index higher than that predicted by ACI 352[6-22] because it does 

not include aspect ratio in its design rule. 
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Figure 6.29: Compare research for  
relation Shear index V Stirrup index. 
 
NB: 
Shear index = Vjd / (fc)

2/3 be.hc MPa1/3
     

Stirrup index = Asjefy / (fc)
2/3 be.hc MPa1/3 

Vollum (0.13, 0.11), Wilson (0.54) Sarsam 0.375 

 

 

Scott and  Hamill’s [6-19]  specimens included HSC and NSC material but all other 

properties and amount of beam, column  reinforcement were the same. All HSC joints 

failed at lower joint shear than predicted by ACI 252. All specimens had an aspect ratio of 

1.4. HSC beams C4ALH0 (104 MPa) with L detailing, C6LH0 (101 MPa), C6LH1(102 

EC8 EC8 

EC8 
EC8 

EC8 

EC8 

EC8 
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MPa) and C6LH3 (97 MPa) with U detailing had joint shear indices of 0.89, 0.81, 0.82 and 

0.94. The identical normal strength specimens C4ALN0, C6LN0, C6LN1 and C6LN3 had 

joint shear indices of 0.96, 0.78, 0.89 and 0.96  demonstrating that the ACI 352[6-22] 

design rule overestimates by 4% for HSC compared to NSC. 

 

Specimen EX2 tested by Sarsam [6-39] had the lowest joint shear index of 0.7. Neither 

Sarsam nor Wilson [6-23] used joint stirrups,  and their joint aspect ratio was 1.5 and 1. 

This difference in aspect ratio could be the main reason for a 35% increase in joint shear 

index for the two specimens. ACI 352[6-22] design rule does not consider joint aspect 

ratio. 

 

6.8 Design equations proposed by other researchers 
 
In this section we review empirical design equations proposed by other researchers for the 

prediction of joint shear strength for exterior BCJ subjected to monotonic loading.   

 

6.8.1 Design equation of Sarsam and Phillips [6-39]  
 
Their design equation for monotonically loaded exterior BCJ consists essentially of two 

parts. The first is similar to the proposal by Zsutty [6-40] for the ultimate shear strength of 

beams with low a/d ratio (≤2.5). Instead of d/ a, the column/beam effective depth ratio, 

dc/db, is used to obtain a formula with a built-in strength reduction for design purposes. The 

second part is the multiplier (1+0.29 Nu/Ag)
0.5 , which accounts for the column 

compression proposed in the superseded version (July1976) of ACI 352[6-5]. 

 

Vcol = 5.08(fcuρc)
0.33(dc/db)

1.33 (1+0.29Nu/Ag)
 0.5 bcdc               6.29 

 

where Vcol is the column shear force at the column-joint interface (N); fcu is the concrete 

cube strength (MPa); ρc is the column longitudinal reinforcement ratio ρc=Aso / bcdc 

where Aso is the area of the layer of steel furthest from the maximum compression face in a 

column (mm2); Ag is the gross cross-sectional area of the column at the joint (mm2); Nu is 

the axial column load (N); dc is the effective depth of the layer of steel furthest away from 

the maximum compression face in a column (mm); db is the effective depth of beam 

tension reinforcement (mm); dc is the width of column section at the joint (mm). 
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The shear force resisted by the links is calculated in a similar manner to the New Zealand 

approach [6-24] as: 

Vsd = 0.87Ajsfyv           6.30 
Vud =Vcd +Vsd             6.31 
 

where Ajs is the total area of horizontal link reinforcement crossing the diagonal plane from  

corner to corner of the joint between the beam compression and tension reinforcement 

(mm2); fyv is the tensile strength of the link reinforcement (MPa); Vsd is the design link 

shear force resistance (N); Vcd is the design shear force resistance of concrete in a joint 

(N); Vud is the design ultimate shear capacity of joint (N). All the joint stirrups are 

considered to be effective in increasing the joint shear capacity. 

 

Sarsam and Phillip's [6-39] equation ignores  the effect of detailing of beam anchorage and 

their proposal is dependent on the  axial load on columns which has been demonstrated to 

have no influence. Sarsam applies the New Zealand approach [6-24] as Vsd = 0.87Ajsfyv 

which gives too much weight to stirrup contribution to joint shear while reducing the 

significance of the contribution of the concrete. 

 

Sarsam's design rule depending on concrete contribution of (fcu)
0.33 underestimates the 

contribution of concrete to joint shear. As demonstrated, Figure 6.19, the closest estimate 

to contribution of NSC joint shear is (fc)
2/3. 

6.8.2 Design equation of Vollum  and Newman [6-41] 
 
Vollum and Newman [6-33] completed extensive investigation on past research and as a 

result proposed their design recommendations for exterior BCJ as follows: 

V j = Vc + (Asjefy - αbehc √fc')             6.32    
 

Vc = 0.642β (1+0.555(2-hb/hc))behc√fc'                6.33 
 

The maximum joint shear strength should be limited to: 

V j< 0.97behc√fc'(1+0.555(2-hb/hc)) < 1.33 behc√fc' 

Their design rule depends on √fc gives reasonable predictions, this writer’s proposed 

equation depends on   (fc)
2/3, Figure 6.11 compared to Figure 6.10, which also gives a 

closer estimate of the joint shear of the specimen of  NSC and HSC to predicted joint 

shear.  
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The maximum joint shear is limited to 1.33 behc√fc' . Their empirical figure is based on the 

results obtained from specimen BCJ7 by Ortiz where maximum joint shear was achieved 

with maximum amount of links. However, if √fc' with HSC in large aspect ratio is applied 

this 1.33 behc√fc' will overestimate the joint shear. 

 

Their maximum joint shear is also required to be less than 0.97behc√fc'(1+0.555(2-hb/hc)). 

This empirical number 0.97behc√fc', is based on Wilson's [6-23] test with a very low aspect 

ratio of 1, which would result in an underestimation of joint shear if HSC is used as  the 

compression strut in short aspect ratio would fully develop. 

 

Vollum [6-35] reached the  conclusion that axial load has insignificant influence on joint  

shear. His recommendations  are limited to BCJ of aspect ratio 2.5, and he recommends 

designers to refer to the variable truss approach recommended by EC2 [6-1] for designing 

BCJ of aspect ratio≥2.5.  

 

However, in the last chapter it was  demonstrated that STM was developed for HSC beams 

with HWB of a/d=3 which is analogous to HSC  BCJ of aspect ratio 3 with CVB, 

therefore,  STM was developed for the TBCJ.  

6.8.3 Design equations of Ortiz [6-17]  and Parker &Bullman [6-18] 
 

Ortiz developed a method for predicting the shear strength of the column in a reinforced 

concrete BCJ. The method was assessed using the results of seven tests  on beam column 

specimens of which three have shear stirrups. 

 

Parker &Bullman [6-18] developed a method for predicting the shear strength of the 

column in a reinforced concrete BCJ. The method was assessed using the results of tests on 

12 beam column specimens.  

 

Both methods overestimate the influence of joint stirrups on joint shear strength because 

they calculate joint strength using  the following equation: 

 

V j=Vc +Asjefy 
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where Vc
 is the joint shear strength without stirrups and Asjefy is the effective capacity of 

joint stirrups. This common assumption overestimates the contribution of joint stirrups and 

undervalues the contribution  of the concrete. Neither  recommend an upper limit  for 

Asjefy. 

6.9 This writer's proposed design equation  
 

Both design codes ACI 352[6-22] and EC8-NA[6-20] specify minimum stirrup 

requirements.  The BS 8 110 [6-10] recommendation for minimum reinforcement at 

spacing 12 times the diameter of the column reinforcement is the lowest requirement when 

compared with  ACI352[6-22]   and EC8-NA [6-20] recommendations and there is no 

provision made for joint strength to be increased by stirrups in the codes mentioned.  

 

The design recommendations of ACI352[6-22] and EC 8-NA[6-20] fail to predict the 

observed dependence of joint shear strength on joint aspect ratio, the influence of HSC and 

detailing of the reinforcement of anchorage of the beam reinforcement to column. In 

addition, the recommended amount of  stirrups is not enough to provide sufficient  joint 

shear strength when shear forces are high. 

 

Sarsam and Phillips’ [6-39]    equation ignores  the effect of detailing of beam anchorage 

and puts too much emphasis on axial load on the column, and joint shear being  

proportional to fcu
1/3is an underestimation of the  contribution of concrete to joint shear.   

 

A comparison of joint shear dependence on concrete was examined for fcu
1/2.and fcu

2/3.  

Looking at the  convergence of the experimental results without shear stirrups when joint 

shear is designed by considering contribution of concrete to be fcu
2/3, the values of shear 

index are over a range of 0.25 to 0.55, or a tolerance of 0.3, Figure 6.11,  whereas this  

increases over a range of 0.45 to 1.05, or tolerance of 0.6 when considering concrete 

contribution of fcu
1/2, Figure 6.10,  therefore it can be assumed that with the contribution of 

concrete to be fcu
2/3 it is within smaller tolerance and is more accurate.  

 

Vollum and Newman's [6-34] design rule has joint shear directly proportional to the 

contribution of concrete fcu
1/2 .Vollum and Newman refer designers to the  EC2[6-1] 

variable truss angle method when joint aspect ratio is larger than 2.5. When the  EC2[6-1] 

design rule was used for  shear design of HSC beams of a/d=3 which is analogous to aspect 
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ratio of 3, although the amount of shear reinforcement used in the beams was below 

minima of EC2[6-1] recommendation ρwfy≥ 0.08, the ultimate shear to the characteristic 

resistance was as low as 0.86, Table 6.7. 

 

As joint aspect ratio  exceeds 2.5 in cases of transfer beams, the shear resistance of HSC 

particularly with limestone aggregate may become similar or less than NSC, therefore the 

existing proposals prove unsafe for transfer beams with HSC columns, Figure 6.18.  

 

Therefore, there is a need for design equation for TBCJ which includes the shear 

contribution of CVB. A suitable design rule for transfer beams when  joint aspect ratio  

exceeding 2.5 with CVB is introduced in Chapter 7. However, for conventional BCJ with 

aspect ratio less than 2.5 the following proposed equation provide the most accurate 

prediction as shown in Table 6-11 and Figure 6.30. 

 

From equation this writer’s derived equation for a beam in section 3.5, equation 3.12,    

1.64 bn db fcu
1/3(n)1/4,  is proposed for the analogous BCJ, which is 

 

Vdu =1.64 hc db fcu
1/3(n)1/4 =1.64 (be-ndb) db fcu

1/3 (n)1/4          6.34 
 

V jd = Vc+1.64 hc db fcu
1/3 (n)1/4 +(Asjefy – 0.1behcfc

2/3)           6.35      
 

where 0  ≤Asjefy / (fc)
2/3 be.hc- 0.1behcfc

2/3≤0.2bchcfc
2/3             

 

V jd=γ(fc)
2/3 be.hc+1.64 hc db fcu

1/3(n)1/4 +(Asjefy – 0.1behcfc
2/3)          6.36                                           

 

whereL bar γ =0.54 or U bar γ =0.49   

 

Limits on each parts of the equation based on Table 2-7 is as follow: 

 

V jd=γ(fc)
2/3 be.hc+1.64 hc db fcu

1/3(n)1/4 +(Asjefy – 0.1behcfc
2/3)  < 0.35bchcfc

2/3 

0  ≤ (Asjefy – 0.1behcfc
2/3)  < 0.15bchcfc

2/3                                              

0  ≤1.64 (be-ndb) db fcu
1/3 (n)1/4 ≤ ηbchcfc

2/3     where   η=0.05 for HSC and  η=0.02 for NSC      

 

where          

V jd total joint shear resistance 

hc is the section depth of the column (mm) 
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fc' is the concrete cylinder strength (MPa);  

be is the average of the beam and column widths (mm)  
 

The proposed design rule is based on refining the  EC8 design rule by using γ factor for  

beam detailing and the dowel action from the central bar within the depth of the column. 

 

The reason (fc)
2/3 be.hc was taken for concrete contribution is as a result of  comparison 

with the ACI 352 recommendation for  (fc)
2/3 be.hc . The accuracy of EC8 for predictions 

compared to experiments was 50% , whereas ACI352 was 41%, Figure 6.10. 

Vc is from the strut action in concrete depending on the beam reinforcement detailing,   

 

Vc=0.54fc
2/3behc          6.37 

 

for L detailing  and  

 

Vc = 0.49 fc
2/3behc           6.38 

 

for U detailing.  

 

This writer's also recommends that guidance on the minimum stirrup guidance  in EC8 for 

DCM (Ductility class medium) [6-42] needs to be compared and taken into account when 

designing to   recommendations in EC8-NA[6-20]DCL (Ductility class low) [6-20]. 

 

When fc>50 MPa then Vdu
 needs to be taken into account and CVB of Adu> 1% should be 

utilised to maximise the joint shear contribution of dowel action in  HSC BCJ. This figure 

is demonstrated to be effective in this writer's experimental tests on HSC beams with 

HWB. 

Using Baumann's dowel cracking expression,   

The dowel force causing cracking  is: 

Vdu =Dcr = 1.64 hcdb fcu
1/3(n)1/4 

or for two CVB at mid depth of the column 

 

Vdu =Dcr = 1.95 hcdb fcu
1/3            6.39 
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Researcher 

Identity 

Hc 

mm 

L 

mm 

hc  

mm 

dc  

mm 

bc  

mm 

hb  

mm 

db 

mm 

bb 

mm 

ρb 

Beam 

Vollum 
[6-41] 

EBCJ6 2000 450 200 167 200 300 257 200 0.008 
EBCJ8 2000 450 200 167 200 300 257 200 0.012 

Wilson[5.23] J1 3000 850 300 269 154 300 257 154 0.017 
 
 
 
Scott 
&Hamill 
 [6-19] 

C4ALN 1700 750 150 117 150 210 177 110 0.021 
C4ALN 1700 750 150 117 150 210 177 110 0.021 
C4ALN 1700 750 150 117 150 210 177 110 0.021 
C4ALN 1700 750 150 117 150 210 177 110 0.021 
C4ALH 1700 750 150 117 150 210 177 110 0.021 
C6LN0 1700 750 150 117 150 210 177 110 0.021 
C6LN1 1700 750 150 117 150 210 177 110 0.021 
C6LN3 1700 750 150 117 150 210 177 110 0.021 
C6LN5 1700 750 150 117 150 210 177 110 0.021 
C6LH0 1700 750 150 117 150 210 177 110 0.021 
C6LH1 1700 750 150 117 150 210 177 110 0.021 
C6LH3 1700 750 150 117 150 210 177 110 0.021 

 
Parker & 
Bullman 
[6-18] 

4b 2000 850 300 245 300 500 445 250 0.009 
4c 2000 850 300 245 300 500 445 250 0.009 
4d 2000 850 300 245 300 500 445 250 0.009 
4e 2000 850 300 245 300 500 445 250 0.009 
4f 2000 850 300 245 300 500 445 250 0.009 
5b 2000 850 300 245 300 500 445 250 0.009 
5f 2000 850 300 245 300 500 445 250 0.014 

 
 
Ortiz     
[6-17] 

BCJ1 2000 1050 300 267 200 400 367 200 0.011 
BCJ2 2000 1100 300 267 200 400 367 200 0.011 
BCJ3 2000 1100 300 267 200 400 367 200 0.011 
BCJ4 2000 1100 300 267 200 400 367 200 0.011 
BCJ5 2000 1100 300 267 200 400 367 200 0.011 
BCJ6 2000 1100 300 267 200 400 367 200 0.011 
BCJ7 2000 1100 300 267 200 400 367 200 0.011 

 
 
 
Scott 
 [6-16] 

CIAL 1700 750 150 117 150 210 179 110 0.011 
C4 1700 750 150 117 150 210 177 110 0.021 
C4A 1700 750 150 117 150 210 177 110 0.021 
C4AL 1700 750 150 117 150 210 177 110 0.021 
C7 1700 750 150 117 150 300 267 110 0.014 
C3L 1700 750 150 117 150 210 177 110 0.021 
C6 1700 750 150 117 150 210 177 110 0.021 
C6L 1700 750 150 117 150 210 177 110 0.021 
C9 1700 750 150 117 150 300 267 110 0.014 

Sarsam[5.39] EX2 1536 1422 204 172 157 305 272 152 0.010 
 
 
Kordia 
[6-15] 

RE2 3000 1000 200 167 200 400 365 200 0.009 
RE3 3000 1000 200 167 200 400 265 200 0.018 
RE4 3000 1000 200 167 200 400 265 200 0.012 
RE6 3000 1000 200 167 200 400 265 200 0.012 
RE7 3000 975 230 217 230 350 315 230 0.013 
RE8 3000 975 230 217 230 350 315 230 0.013 
RE9 3000 975 230 217 230 350 315 230 0.013 
RE10 3000 975 230 217 230 350 355 230 0.012 

 
 
 
Taylor [6-2] 

P1/41/2 1290 470 140 110 140 200 170 100 0.024 
P2/41/2 1290 470 140 110 140 200 170 100 0.024 
P2/41/2 1290 470 140 110 140 200 170 100 0.024 
A3/41/2 1290 470 140 110 140 200 170 100 0.024 
D3/41/2 1290 470 140 110 140 200 170 100 0.024 
B3/41/2 1290 470 140 110 140 200 170 100 0.024 
C3/41/2 1290 470 140 110 140 200 170 100 0.024 
C3/41/1 1290 470 140 110 140 200 173 100 0.024 
C3/41/2 1290 470 140 110 140 200 170 100 0.024 

Table 6-10: Geometry and beam reinforcement for BCJ. 
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Researcher Specimen 

 

Detail Fc 
MPa 

Asjefy/bchcfc
2/3 

MPa
1/3 

Vj/bchcfc
2/3 

MPa
1/3 

Vjcal/Vjec8 

 

Vjcal/Vjpropose 

 

Vollum        
[6-41] 

EBCJ6 U Bar 26 0.13 0.57 1.08 1.2 
EBCJ8 U Bar 33 0.11 0.54 1.03 1.1 

Wilson[5.23] J1 L Bar 32 0.00 0.54 1.03 1.0 
 

 

 

Scott & 

   Hamill  

[6-19] 

C4ALN0 L Bar 42 0.00 0.51 0.97 0.9 
C4ALN1 L Bar 46 0.10 0.61 1.16 1.1 
C4ALN3 L Bar 42 0.23 0.69 1.31 1.3 
C4ALN5 L Bar 50 0.32 0.65 1.23 1.2 
C4ALH0 L Bar 104 0.00 0.40 0.77 0.7 
C6LN0 U Bar 51 0.00 0.40 0.76 0.8 
C6LN1 U Bar 51 0.10 0.46 0.87 0.9 
C6LN3 U Bar 49 0.20 0.50 0.94 1.0 
C6LN5 U Bar 37 0.40 0.73 1.38 1.5 
C6LH0 U Bar 101 0.00 0.37 0.70 0.8 
C6LH1 U Bar 102 0.06 0.37 0.71 0.8 
C6LH3 U Bar 97 0.13 0.43 0.82 0.9 

 

Parker & 

Bullman     

[6-18] 

4b L Bar 39 0.00 0.25 0.47 0.5 
4c L Bar 37 0.00 0.32 0.61 0.6 
4d L Bar 39 0.00 0.27 0.52 0.5 
4e L Bar 40 0.00 0.28 0.54 0.5 
4f L Bar 38 0.00 0.34 0.65 0.6 
5b L Bar 43 0.21 0.35 0.67 0.7 
5f L Bar 43 0.31 0.56 1.08 1.0 

 

Ortiz           

[6-17] 

BCJ1 L Bar 34 0.00 0.51 0.96 0.94 
BCJ2 L Bar 38 0.09 0.52 1.00 0.97 
BCJ3 L Bar 33 0.00 0.55 1.04 1.01 
BCJ4 L Bar 34 0.18 0.59 1.12 1.09 
BCJ5 L Bar 38 0.00 0.48 0.91 0.89 
BCJ6 L Bar 35 0.00 0.51 0.97 0.94 
BCJ7 L Bar 35 0.40 0.73 1.38 1.35 

 

 

Scott   [6-16] 

CIAL L Bar 33 0.13 0.48 0.91 0.9 
C4 L Bar 41 0.11 0.58 1.10 1.1 
C4A L Bar 44 0.11 0.59 1.13 1.1 
C4AL L Bar 36 0.12 0.62 1.18 1.1 
C7 L Bar 35 0.12 0.43 0.81 0.8 
C3L U Bar 35 0.12 0.45 0.85 0.9 
C6 U Bar 40 0.11 0.43 0.82 0.9 
C6L U Bar 46 0.10 0.47 0.89 1.0 
C9 U Bar 36 0.12 0.36 0.69 0.7 

Sarsam[5.39] EX2 L Bar 52 0.00 0.37 0.70 0.7 
 

 

Kordina 

[6-15] 

RE2 L Bar 25 0.00 0.54 1.04 1.01 
RE3 L Bar 40 0.14 0.66 1.25 1.22 
RE4 L Bar 32 0.11 0.50 0.96 0.93 
RE6 L Bar 32 0.21 0.66 1.26 1.22 
RE7 L Bar 26 0.25 0.75 1.43 1.39 
RE8 L Bar 28 0.24 0.65 1.24 1.13 
RE9 U Bar 28 0.23 0.68 1.30 1.39 
RE10 U Bar 24 0.26 0.61 1.15 1.24 

 

 

Taylor 

 [6-2]  

P1/41/24 L Bar 33 0.17 0.61 1.17 1.13 
P2/41/24 L Bar 29 0.19 0.68 1.30 1.26 
P2/41/24A L Bar 47 0.14 0.64 1.22 1.18 
A3/41/24 L Bar 27 0.19 0.72 1.37 1.33 
D3/41/24 L Bar 53 0.12 0.62 1.18 1.15 
B3/41/24 L Bar 22 0.44 0.73 1.40 1.36 
C3/41/24BY L Bar 32 0.17 0.52 0.99 1.1 
C3/41/13Y U Bar 28 0.19 0.50 0.95 1.0 
C3/41/24Y U Bar 60 0.11 0.51 0.97 1.0 

 
Table 6-11: Comparison of accuracy of proposed design rule and EC8 [20]  for all  the BCJ 
excluding provision for stirrups.  
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The above equation was applied to 56 laboratory  BCJ  specimens monotonically  loaded 

to failure. As Table 6-11 shows, the results from this  proposed design rule are compared to 

those from EC8-NA [6-20] , and a slight improvement in safety of 0.04% is recorded due 

to the replacement of the general figure of 0.525 with the more relevant figures of 0.54 for 

L detailing and 0.49 for U detailing of the beam bar.  

 

A comparison of the predictions of the proposed design rule without including provision 

for stirrups, with the  EC8-NA rule demonstrated in graphs in Figure 6.30, show that for 

the  56 specimen tested, EC8 only gives a more economical and safer prediction for 12, or 

21% of the specimens. The proposed design rule offers a safer and more economical 

design rule for 44 specimens, or 79%, of the tests.  

 

1. The graph shows a comparison of the proposed design rule’s joint shear  prediction 

to EC8 when no shear stirrups are used in the specimen.. The proposed design rule 

offers higher accuracy. 

 
2. When minimum reinforcement is  applied, if the  average is considered  for all 

specimens, Vjcal/V jpropose =1 and Vjcal/V jec8=0.98 which indicates that  the proposed 

rule is safe but EC8-NA [6-20]  is slightly unsafe. However, if only the NSC 

specimen is considered Vjcal/V jpropose =1 and Vjcal/V jec8=1, indicating both rules are 

equally safe. When  HSC samples  are considered, Vjcal/V jpropose =0.85 and 

V jcal/V jec8=0.77, indicating that the proposed rule is 8% safer than EC8-NA [6-20]. 

 
3. For all specimens with Asjefy/ bchcfc

2/3 ≤0.1,  the average value for normal strength  
V jcal/V jpropose =0.79 and Vjcal/V jec8=0.8.  For HSC Vjcal/V jpropose =0.8 and Vjcal/V jec8 

=0.75 .  
 

4. All specimens with Asjefy/ bchcfc
2/3 = 0.2 are predicted safely to EC8 

recommendations for DCM rather than EC8 -NA [6-20] for DCL.  

 

The minimum amount of stirrups EC8-NA [6-20] recommended for ductility class DCL is 

not sufficient to provide a safe prediction for non-seismic regions. From the tests, it is  

demonstrated that  for BCJ1, BCJ5, BCJ6, C6LN0 and  C4ALN0 which are NSC the EC8-

NA [6-20] design prediction  is unsafe at 76% to 97% compared to the experimental 

results.  
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6.10 Conclusion and the proposed design rule for BCJ 
 

A design method has been developed, based on statistical data of 56 published test results, 

to calculate the shear resistance in HSC and NSC BCJ, Figure 6.30.   

   

The proposed equation is a function of aspect ratio and the magnitude of shear force in  

BCJ and lower-bound theorem of plasticity are maintained.   

 
The results given by the proposed design equation are closer to  79% of the total actual 

experimental data while only 21% of the predictions  by EC8-NA[6-20] are closer to the 

actual experimental results. 
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Figure 6.30: Comparison of prediction of joint shear of proposed equation with EC8. 
Provision to allow for stirrups in the proposed equation is not included. 

 

An investigation of  past experiments for specimens with  monotonic loading indicates the  

design guidelines from  EC8-NA[6-20] for DCL need to be refined for this equation for L 

and U connection bars while including a provision for the shear contribution of stirrups. 



_________________________________________________________________________________________________

Motamed J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 

 

344

The proposed design rule  accounts for the shear contribution of CVB, the detailing of 

anchorage reinforcement as well as the confinement stirrups leading to a more accurate 

prediction. 

 

As there are considerable differences in design procedures for transverse reinforcement in 

BCJ in the codes, a design rule for  shear reinforcement as an alternative to the minimum 

transverse reinforcement proposed by EC8-NA[6-20] for DCL is needed. This thesis  

proposes such a design rule to filling this void, while giving special attention to  shear 

contribution of CVB in HSC-BCJ with large aspect ratio.  

 

When considering BCJ without shear reinforcement, the proposed design rule from EC8 

NA[6-20] for DCL are unsafe. Therefore, adherence to provide stirrups to 

recommendations of EC8 [6-20] for DCM is recommended. When the quantity of stirrup 

reinforcement is compliant to requirements of EC8 [6-42] for DCM, a safe and optimised 

prediction is achieved. 

 

To this writer's knowledge, no experimental tests  on HSC-BCJ of aspect ratio>2 have 

taken place. The performance of HSC- TBCJ of aspect ratio>2.5 needs to be 

experimentally tested . Therefore, use of the proposed design rule to supplement  CVB in 

addition to recommendations for stirrups from EC8 [6-20] for DCM  offers a reasonable 

prediction for joint  performance when designing  HSC-BCJ with aspect ratio>2.5. 

 

The proposed design rule is based on practical detailing approach at BCJ to maximise 

shear resistance while introducing an easier method of construction by minimising 

congestion of the stirrups in the column at TBCJ .  

 

Presence of CVB contributes to producing many smaller thiner cracks parallel to the main 

crack at ultimate load before failure, these smaller cracks dissipate the energy from 

ultimate load  by producing many distributed cracks across the joint, resulting in a ductile 

and eventual failure.. When CVB is absent the main crack at the ultimate load would be 

suddenly formed which would be comparatively  thicker and  would result into sudden 

failure of the joint in a less ductile manner compared to when CVB is present. 

 

Both design codes ACI 352 and EC8-NA specify minimum shear stirrup requirements, 

however, they do not give provision for the joint strength to be increased by the stirrups.  
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The design recommendations of these codes fail to predict the observed dependence of 

joint shear strength on the joint aspect ratio, as well as the influence of HSC and detailing 

of the anchorage on the behaviour of BCJ.  In addition, they do not provide any 

recommendation if the amount of stirrups is not adequate in order to provide sufficient 

shear strength at BCJ when the shear forces are high. 

 

As noted above,  HSC beams may be weaker in shear than NSC beams when span depth 

ratio is 3. It can also be deduced that HSC-BCJ will be weaker than NSC-BCJ when the 

joint aspect ratio exceeds 2.5. 

 

The traditional approach to predict joint shear strength is as follows: 

shear strength is given by 

V j = Vc + Asjefy                                       

where V is the joint shear strength without stirrups and Asjefy is the yield capacity of the 

effective joint stirrups. From investigation into the performance of stirrups  in experimental 

tests [6-17] for specimen   BCJ4, it was shown that with stirrup index= Asjefy / (fc)
2/3 be.hc= 

0.2 MPa1/3 two stirrups above the flexural compressive zone of the incoming beam and 

below the main reinforcement within the upper 5/8  yielded, however, when stirrup index 

was increased to 0.4  non of the stirrups yielded.  

Based on experiment results shown in Figure 6.29, this writer’s proposed equation for the  

stirrup is Asjefy – 0.1bchcfc
2/3  within the joint which  is  restricted to   0.2  ≤Asjefy /  

(fc)
2/3 be.hc ≤0.4 based on past experiments, Figure 6.29. The factor 0.1bchcfc

2/3 depends on 

concrete strength and joint aspect ratio.  

 

Experimental tests by this writer on  12 beams demonstrated that for  the design of  HSC  

beams with a/d=3, HWB produced superior shear capacity due to the development of 

dowel action which in turn enhanced the stabilising arching affect in the beams. 

Using Baumann's modified dowel cracking expression, the dowel force causing cracking  

is:  
 

Vdu =Dcr = 1.64 hcdb fcu
1/3(n)1/4         (for n number of bar in the beam)                              

Vdu =Dcr = 1.95 hcdb fcu
1/3      (for n = 2 i.e. bar at mid-depth, BCJ with HWB)                             

 

where db= diameter of the dowel bars and n is number of bars, Vdu = dowel force, and 

 fcu= cube crushing strength of concrete of 150 mm cubes in N/mm2. 
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The stabilising arching effect in the HSC beam of a/d = 3 with HWB makes the beam  

perform like a short beam 2≤a/d≤3 and is analogous to HSC - BCJ with aspect ratio of 3 

with CVB. 

 

For BCJ with CVB and stirrups in HSC column, the shear resistance is 

V j = Vc + Vdu + (Asjefy – 0.1bchcfc
2/3)        where     0.2  ≤Asjefy / (fc)

2/3 be.hc ≤0.4              

Vc= γ(fc)
2/3 be.hc         is joint shear resistance due to  concrete                                                

where γ = 0.54 or 0.49 for L-bar,  or U-bar for  beam connection   

 

In section  2.4.6 of Chapter 2, the spacing between links of 400(fcu)
-0.16  mm was 

demonstrated to be reasonable for beams of a/d=3.02 in order to allow for the change in the 

angle of shear crack which is dependent on the  strength of concrete,  for the purpose of 

calculating the spacing of stirrups. This limit for spacing of stirrups is proposed for 

analogous BCJ.  

 

As the next chapter demonstrates, the diagonal compression strut in the  TBCJ strains the 

stirrups along the mid-length through which the strut passes. Struts located below the 

neutral axis of the beam in TBCJ are mainly strained within the half depth of the column 

close to the beam and struts located above the neutral axis of the beam in BCJ are mainly 

strained within the half depth of the column away from  the beam. Placing stirrups in such 

aconfiguration can improve the robustness of the structure.  
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Chapter 7 
Validation  of FE analysis of   

Short beams and Beam Column Joint  
 

7.1 Introduction  

 

STM models and empirical shear design methods for beams and BCJ were discussed in  

Chapters 5 and 6.  In this chapter the behaviour of short beams and BCJ experimentally 

tested [7-1] will be investigated numerically by using a nonlinear FE computer programme 

in order to develop accurate models to compare with two short beams and two BCJ 

specimens tested  in the Construction Hall at the University of Westminster.   

 

Developing an accurate FE model is  essential for investigating  the various factors and 

parameters which influence the behaviour of BCJ and transfer beam column joint (TBCJ).   

 

7.2 Aims and objectives  

 

The aim of this chapter is to verify and validate the FE models for  short beams and BCJ 

specimens with experimental tests [7-1] in order to use this data to carry out numerical 

parametric  investigations of factors affecting the behaviour of TBCJ and in particular  to 

investigate the influence of CVB on TBCJ in Chapter 8. 

 

7.3 Methodology 

 

This chapter is divided into two parts: the first to develop accurate FE models of the 

experimental tests in order to analyse and investigate the behaviour of short beams and 

analogous  BCJ; the second to validate the accuracy of the developed FE models in order 

to continue FE parametric investigation for TBCJ in the next chapter. 

 

7.4 Calibration of short beams without stirrups 

 
Object of this section is to verify and validate FE modelling of the shear behaviour of 

beams with shear span/depth ratio of 1.5 by comparing the results with those obtained from 

experiments. 

 

Initially, two reinforced concrete short beams B1 and B2 with a/d=1.5 with flexural  
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reinforcement and without stirrups were FE modelled and analyzed to failure and their 

analytical results were compared with those of experimental results obtained by Ortiz [7-

1], which are used to calibrate the parameters  for later analyses.  The only difference 

between B1 and B2 is the length of the steel plate at the support.  The lengths for B1 and 

B2 are 240 mm and 140 mm respectively, Figure 7.5. 

 

Based on the results obtained from the calibrated FE models the deflections, stresses and 

cracking of the beams were analyzed at different key points along the lengths of the beams.  

The FE analytical results as well as the parametric investigation were discussed and 

conclusions regarding the shear behaviour of HSC beam with HWB are reached and 

recommendations for further research are made. 

7.4.1  FE approach the beams B1 and B2 
 

General information regarding FE approach to predict shear in short beams including  

material behaviour and material models  for concrete and steel, crack modelling and other 

fundamental information  are discussed in details in sections 4.1 to 4.4 of chapter 4.  

 

The FE mesh adopted for one half of the span for beams B1 and B2 without shear links consisted 

of 450 elements (30× 5×3) above the reinforcement and 150 elements (50×3) for the cover.  

 

 1  
Figure 7-1: Half of Beam B1 with large support plate 
without  link in 3D modelled  by symmetry 

Figure 7-2: Sections of B1 
and B2 with  restraints  

 

The initial cracking of beam B1 in the FE model corresponds to a load of 120 kN that 

creates stress just beyond the modulus of rupture of the NSC  of 4.9 MPA. ( Appendix A). 

 The experimental work completed by Ortiz [7-1] on two NSC short beams will be 

considered to develop, calibrate and verify similar nonlinear FE models for these beams.  
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Figure 7.3: Elevation of B2 with restraints under the small support plate and load 
applied to loading plate. Centre of the beam is restrained in X direction to simulate 
symmetry around mid-span section.  
 

Experimental strains  in the tension steel were recorded by using strain gauges in order to 

obtain qualitative information on the struts and ties formed up to failure load the 

experimentally tested B1 and B2 failed at 560 kN and 440 kN. 

 

The dimensions of the beams and detailing of the tension reinforcement provide sufficient 

anchorage length for the reinforcements by extending beyond support points. The 

geometry of beams B1 and B2 as well as their reinforcement is shown in Figure 7.4.  

Beams were 3000mm long  with supports located 750mm from each end of the beam 

allowing a simply supported span of 1500mm.  Flexural steel reinforcements were 

designed to BS4449 with yield stress of steel (fy) of 500 MPa using 2-T25 bars with a 

section area of 982 mm2.  The percentage of tension steel is 1.8% and no shear 

reinforcement was used. Cover for the rebar was 25 mm and the shear span/depth ratio is 

1.52 for both B1 and B2.  

 

The 28 days compressive cylinder strength of concrete for beam B1 and B2 is fc =51 MPa, 

and fc =36 MPa respectively.  

 

No mid-span deflection was recorded in the experimental work, however, FE numerical 

models prediction of mid-span deflection just before failure is found to be 3.7mm for beam 

B1 and 3.5mm for beam B2.  This means that the effect of the 42% reduction in the size of 

the steel plate at the support has resulted in only 5% reduction in the vertical deflection at 

the mid-span.  

 

However, the size of the steel plate  influences  the width of the main strut at the support, 

as restraining the concrete cover develops dowel action  depending on the size of the 

support plate which in turn increases the width of the diagonal compression strut.  
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2   
 
Figure 7.4: Geometry, reinforcement and loading for beams B1 and B2. All 
dimensions are in mm. NB: B1 has larger support plate compared to B2. 

 
 

 

Figure 7.5:  Location of strain gauges in beams B1 and B2 provided on  the 
longitudinal bars, fixed in pairs, one gauge on top and another on the bottom.  

3 Source:  Reys de Ortiz, June 1993 [7-1] 

4  

Beam Width 
b   mm 

Depth 
d   mm 

Cover c   
mm 

Shear 
span  a    
mm 

a/d Pl   
mm 

Ps  
mm 

ρ      
% 

B1 150 363 37 550 1.52 100 200 1.80 

B2 150 363 37 550 1.52 100 100 1.80 
 
Table 7-1: Dimensions  and  reinforcement ratio of Ortiz’s beam B2. All data apply to 
B1 other than support plate  (Ps  ) which is 200 mm for B1 instead of 100mm.  
 

Source: Table reproduced from Reys de Ortiz, June 1993 [7-1] 

7.4.2 Experimental beam B1 
 
This beam failed when the reinforcement yielded near the support. As presented,  strain  

measurements in the reinforcement showed values higher than the yielding point. From the 

middle of the span to the left hand support, the diagonal crack  reached the horizontal strut 

provoking local crushing.  
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Cracks reached the region under the loading plates and the horizontal strut. At 470 kN 

(shear force of 235 kN) the right hand horizontal strut crushed from the outer side of the 

loading plate to the shear crack at the lower side of the diagonal strut. The original crack 

opened wide near the support. Some crushing of the concrete in the horizontal strut was 

observed. 

 

The sudden change in strain is not shown in the graphs obtained from the experiment  

because of the complexity of instrumentation and the cost involved. However,  the FE  

method can be used to predict such detailed information.  

 

 

Figure 7.6: Crack propagation in the beam B1, experimentally tested by 
Ortiz in relation to the assumed diagonal and horizontal struts at 560 
kN.  

Source:Ortiz. 1993 [7-1] 

5  
Figure 7.7: Numerical representation of beam B1 at 470 kN with  sudden and brittle 
failure of the concrete at horizontal strut simulating the experimental failure. 
 
 

7.4.3 Experimental beam B2  
It is notable that the reinforcement at this failure load, by FE analysis, reaches 78% of its 

yield, whereas in the experiment the yield recorded by use of strain gauges is at 87% of the 

yield. ANSYS predicts this failure load at 100% of the experimental values, i.e. failure 

load 460kN.  

The following conclusions can be made based on the evaluation of the analyses of the 

calibration of reinforced  concrete beams: 
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• Strain in steel at the centre line along with initial and progressive cracking of the 

FE model compare well to hand calculations as shown in the Appendix A,  when 

the first crack appears.  

• The experimental strain in x-direction (εxx) on the tension reinforcement at the mid-

span of the beams will be used to calibrate the FE models. 

 

Figure 7.8: Crack propagation beam B2, experimentally tested by Ortiz in relation to 
the assumed diagonal and horizontal Strut. Failure occurring at diagonal Strut.  
 

Source: Ortiz.1993 [7-1] 

 

Figure 7.11: Beam 1 - Considered struts and instrumented sections 

 

Figure 7.9: Strain in the longitudinal bar at 
failure loads 

Figure 7.10: Beam 1: Strain in the middle 
of span at section 7 
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Figure 7.12: Experimental strains in longitudinal tension reinforcement of beam B2  

 

Figure 7.13: Ortiz Beam 2- Considered Struts and Instrumented Section 

Source: Ortiz I. R.1993 [7-1] 

 

Type of Beam Failure Load P (kN) Shear Force V (kN) 
 

Experimental B1 560 280 
Experimental B2 440 220 
FE Model B1 470 235 
FE Model B2 440 220 

 
Table 7-2 : Failure load P and ultimate shear force  
 
 

 FE idealisation of the experimental beams, B1 & B2 

 
In this section material and element modelling , meshing and evolution of crack patterns 

for FE analysis of the beams B1 and B2 is discussed. 

 

7.4.4 FE  modelling and calibration for beams B1 and B2  
 
The behaviour of   two   RC beams  with similar geometry, reinforcement and loading plate  
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under comparable incremental loadings with span/depth ratio 1.52 is  studied. The support 

plates for B1  were 200mm wide  compared to those for  B2 which was 100mm wide.  

In this section crack propagation, shear strains, shear stresses, principal strain vectors,  

strain and stresses along the tension reinforcement in X direction, and strain across the 

cross section of the beam  for FE model of B1 and B2 is investigated and the results are 

compared with the experimental test results for the corresponding beams. 

7.4.4.1 FE meshing for model B1 

In this section plots of  FE results for beam B1 are analysed and compared. The FE mesh 

adopted for one half of the span for beams B1 and B2 without shear links consisted of  

450 elements (30× 5×3) above the reinforcement and 150 elements (50×3) for the cover.  

 

 6  
Figure 7.14: Half of Beam B1 with large support plate 
without  link in 3D modelled  by symmetry 

Figure 7.15: Sections of 
B1 and B2 with  restraints  

 

7.4.4.2 Crack propagation for beam B1 

In this section crack propagation of  beam B1 with an increase in incremental loading up to 

failure stage is investigated. 

The main stages of the progressive cracking process for beam B1 under increasing load are 

shown in Figure 7.16 to Figure 7.18. Such a cracking process is typical for  crack 

formation and extension which eventually transform  the short beams into STM. In short 

beams, collapse always occurs as a result of failure of the arch, which is preceded by near-

horizontal splitting of the compressive zone of the beam. 

At  120 kN the first  vertical tension crack at the centre span appears,  Figure 7.16. The 

strain in tension bar resulting from this initial loading for the formation of the  first crack 

compares well  with hand calculation by elastic theory (Appendix A), Table 7-5 and Table 

7-6, Figure 7.42. 
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At 270 kN, integration points   in the form of 45○ diagonal cracks gradually rise in the 

shear span . At 360 kN, integration points are inclined in the shear span to form into an 

arch. If the point has opened and then closed, the red circle outline will have an X through 

it. At 410 kN integration points  spread wider on top, and compression cracks appear in the 

elements under the loading plate.  

  

Figure 7.16: At  120 kN the first  vertical 
tension crack in beam 1 

Figure 7.17: At 460 kN the width of the 
arch increases in beam 1 

 

At 460 kN, the width of the arch increases further at higher levels near the loading plate 

with integration points in the form of  short lines sloping at 450 kN which  travel through 

the complete ellipse of the diagonal strut and spread toward the horizontal strut in the form 

of compression cracks under the loading plates, Figure 7.17. 

 

  
Figure 7.18: At  470 kN cracks extend eventually transforming the beam into a tied arch. 
Collapse  occurs as a result of horizontal splitting of the compressive zone of the beam in 
the horizontal compression strut near loading plate.  
 

7.4.4.3 Strain in XZ direction in beam B1 

In this section shear strain in XZ direction is investigated at incremental loading to failure. 

At failure stage further details of stress behaviour  are investigated in X and Z directions. 

In this section shear stress in XZ direction is investigated at incremental loading to failure, 

the base of the strut is on the inner half of  the support plate towards the mid span in the 

bottom and almost outside of the loading plate in the shear span on top, Figure 7.19. This 

demonstrates a larger angle of diagonal strut to horizontal in the FE model as compared to  

CL CL 

CL 
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Ortiz’s STM which has its diagonal strut  extending from centre of the support plate to the 

centre of loading plate.  

 

Contour B C D E F G H I 
Strain  ×10-3 -4.1 -3.4 -2.6- -1.8 -1.1 -0.3 0.4 1.2 

 
Figure 7.19: At 450 kN the strain in XZ direction fully develops. 
 
Maximum tension appears near the centre of tension steel where cracks appear, and 

maximum compression occurs in the middle of the diagonal strut. The angle between the 

inclined compression struts coinciding with strain line  -4.1×10-3 is 15◦ 28’ for B1 with 

support plate of 200mm long. This is a smaller angle than in B2, with 100mm long support 

plate. This indicates B1, therefore has higher shear resistance, Figure 7.19. 

7.4.4.4  Principal strain vector plot for beam B1 

Development of the principal strains in relation to an increase in incremental loadings  are 

recorded. At120 kN vector plot tensile strains develop at the bottom in the centre. At 200 

kN vector plot principal, strains deflect at 45◦ angle in the shear span. At 270 kN  there are 

much higher principal tensile strains at the bottom compared to the  top, therefore the beam 

continues to deflect. At 460 kN, Figure 7.20 full inclined diagonal compression strut 

develops. At 470 kN failure occurs with horizontal and inclined tensile stress producing 

compression at right angle which causes crushing near loading plate. 

  

Figure 7.20: At 460 kN vector plot Figure 7.21: At 470 kN after 
compression failure 

            θ  
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7.4.4.5 Strain and stresses along the tension  bar in beam B1 

The strain along the longitudinal tension bar at incremental loading  is recorded from the 

FE model of the beam, and a graph comparable to the experimental graph shown in Figure 

7.9 was produced. These strains from the experimental and FE models are compared in the 

graph shown in Figure 7.42. 

At 460 kN stress in XZ, the diagonal strut becomes wider on top as Ortiz’ model indicates, 

and becomes narrower near the support plate. By geometric scaling, it is shown that the 

angle of Strut is  = tan-1(0.6) as compared to Ortiz’ proposal of tan-1(0.55),  Figure 7.23. 

At 460 kN vector plot, horizontal compressive principal  strains  on top are more or less of 

the same magnitude of tensile principal  strains at the bottom. This indicates that this over-

reinforced beam does not allow further development of principal strains in the bottom and  

the energy is therefore transferred to the top with stress build up from this strain exceeding 

the level of allowable concrete stress, Figure 7.20.  

 

At 470 kN after compression failure, energy is  transferred to the top with stress build up 

from the strain exceeding the allowable concrete stress, therefore crushing below top 

surface level from dilation of concrete results in tension vectors forming the compression 

failure near the loading point, Figure 7.21. 

There are several possible explanations for what causes the FE models to have higher 

stiffness than the experimental test, as follows: 

Micro cracks 

Shrinkage of the concrete during curing and handling of the beam cause micro cracks  in 

the concrete during curing and  experimental, which make  the experimental beam less stiff 

compared to FE which does not model  micro cracks.  

 

Bonds 

It is assumed that there is perfect bond between the concrete and steel reinforcement  in the 

FE model, however,  bond slip occurs and  the composite action between the concrete and 

steel reinforcing is reduced. The overall stiffness of the experimental beams is expected to 

be lower than for the FE models. 
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Figure 7.22: At 120 kN  stresses in XZ 
direction 

Figure 7.23: At 460 kN stress in XZ. 

Load 
(kN) 

Stress MPa 

 A B C D E F G H I 

120 -5.07 -3.81 -2.55 -1.30 -0.04 1.22 2.48 3.74 4.99 

460 -22.1 -16.7 -11.3 -5.90 -0.49 4.93 10.3 15.7 21.2 

 
Table 7-3:   Stresses in XZ direction in the form of ellipse in compression  in the 
middle of the diagonal strut at the shear span.   

 
Element separation 

At later stage of loading when cracks are wide, elements separation occurs after which the 

FE strains recorded  are significantly less that the experimental results as FE does not 

simulate element separation and behaves like rubber rather than brittle non-homogenous 

concrete.  

 

Maximum Load (kN) 120 240 320 380 400 460 

FE  numeric Strain ×10-3 0.4 0.99 1.73 1.92 2.46 2.62 

Experimental Strain ×10-3 0.40 0.97 1.30 1.60 1.73 2.0 
 
Table 7-4: Maximum strain recorded at the centre of longitudinal bar at various 
loads.  
 
 

7.4.4.6 Strain in cross-section at mid-span for beam B1 

The strain in the middle section in X direction at incremental loading  is recorded from the 

FE model of the beam, and a graph comparable to the experimental graph is produced. 

At 120 kN, the strains are small across the whole section and evenly distributed across the 

section, apart from the centre of the span at the bottom of the steel and concrete where the 

first crack of only 100mm length  develops. At 320 kN loading with a significant tension 

crack of about 100mm deep, the tensile strain remains more or less the same along that 

depth, however tensile strain  significantly drops above the closed end of the crack.  
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At 400 kN, both tensile stresses in the steel and compressive stresses in the concrete are 

well below the material strengths. At this loading the neutral axis is at mid depth of the 

beam. 

At 460 kN strain in tension bar  at 1050mm from end, mid shear span, rises to 1.940 ×10-3 

as the shear crack has opened, Figure 7.24,  exhibiting  a drop in  the  strain. This  strain 

change happens because of the  presence of  cracks which form next to the loading plate 

just before compression failure. The tension crack at centre of span has widened with a 

jump in strain due to horizontal strut  compression failure. 

7.4.4.7  Deformation of beam B1 with Loading 
 
The failure of the horizontal strut  in FE model B1 results from splitting of the compressive 

zone and  can occur only as a result of the development of tensile stresses induced by 

volume expansion of the concrete in regions subjected to large compressive stresses. 

The tension crack at the centre widens significantly within its 73mm depth at the bottom. 

The neutral depth is between 73mm to 219mm from the bar.  The compression on the 

concrete is at 50mm from  the top. The compression from concrete acts at 268 mm from 

the bar, Figure 7.26a.  

 

At 460 kN load, the tension steel has just began to yield whereas the compressive strain in 

the concrete on top near the loading plate at 1.31 micro strain is close to the cylinder 

crushing strength of  1.48 micro strain of the concrete, Figure 7.26b . However, the failure 

of  the horizontal compression strut is due to dilation of the concrete next to the loading  

plate which results in principal  tension strain vectors causing  cracks  and failure in the 

horizontal strut, Figure 7.21. 

When the maximum  load  exceeds 460 kN, the compression failure results, Figure 7.25, 

tensile crack formations between 120 kN and 160 kN result in fluctuations in 

displacements. 

7.4.5 FE analysis for model B2 

In this section plots of  FE results for beam B2 are analysed and compared with the 

experimental test. 

Strain in tension bar, deflection at mid-span, and strain in horizontal  direction across the 

mid-span section are investigated. 
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Figure 7.24:  Beam B1, at 460 kN. Strain 
in tension bar 

Figure 7.25:  Load V deflection for B1. 
First crack at 150 kN 
 
 

 
a) Strain at section in X direction,  240 
kN 

b) Strain at section  in X direction 460 
kN  

 
Figure 7.26: Strain in X direction at mid-section v distance from tension bar upward 
 

7.4.5.1 Crack propagation for beam B2 
 
The main stages of the progressive cracking process that  beam B2 undergoes under 

increasing load are shown. Such a cracking process is typical for  crack formation and 

extension which eventually transform  the short beams into a tied arch. In short beams 

collapse always occurs as a result of failure of the arch, which is preceded by near-

horizontal splitting of the compressive zone of the beam.  

 

At  160 kN, vertical cracks extend towards  the supports and  turn inclined in the shear  

Tension crack 

Neutral zone 

Concrete 
compression 

yield 

yield 

460 kN 

150 kN 
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span. At 200 kN, the first  diagonal tension cracks in the form of 45○  lines appear rising in 

the shear span. 

At 360 kN loading the distribution of cracks happens within  a wider diagonal strut 

compared  to beam B1.  

When there is a sudden change in strain in the shear span, severe cracking inevitably 

occurs. The location and the crack width obtained from the FE model confirms this. This 

sudden change in strain is not shown in the graph obtained from the experiment because of 

the complexity of instrumentation and the cost involve. However, the FE method can be 

used to predict such detailed information. 

 

  

Figure 7.27:  Beam B2 at  120 kN the first  
vertical tension crack at the centre span 
appears. This initial loading for the 
formation of the  first crack is hand 
calculated by elastic theory (Appendix A). 

Figure 7.28: At 320 kN when the crack 
has opened  and then closed, the circle 
outline will have an X through it. The 
circle represents the second  opening of 
cracks in the integration point. 

 

 

 

 

Figure 7.29: At 440 kN loading, crushing of integration points marked blue, X in the 
circle, at the centre of diagonal strut indicate failure in shear span starting near 
neutral axis heading towards the outer side of  the loading plate with compression 
cracks extending  under loading plate. 
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7.4.5.2 Nodal strain  and stresses  in XZ direction for beam B2 
 

Nodal strain in XZ direction shows the gradual development of the diagonal compression 

Strut.  

 

Comparing the  angle of crack of B2 and B1,  there are larger tension tie forces  in  B2 as 

the angle of  compression struts to the tie is 79◦ 59’ as compared to  B1 which is 82◦ 16’, 

therefore higher force on the tie at half the depth results in reaching tensile strength of 

concrete sooner, producing shear cracks and  lower shear resistance. Figure 7.31. 

 

 

Contour A B C D E 

Strain×10-4 -1.0 -0.7 -0.4 0.1 0.4 
 
Figure 7.30: Nodal strain at  120 kN in XZ direction shows comparatively higher 
strains in the shear span near the diagonal Strut region. 
 
 
 
 
 

 

Contour A B C D E F G H 
Strain×10-3 -5.2 -4.5 -3.8 -3.1 -2.3 -1.6 -0.9 -0.2 

 
Figure 7.31: Strain  in XZ direction  at 440 kN. The angle between the inclined 
compression struts coinciding with strain line  -4.1×10-3 is 20◦ 9’ for B2 with support 
plate of 100mm long.  

       θ 
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7  

 

 
 
 
 
Figure 7.32: Stresses in XZ direction at 440 kN.  Minus sign indicates compression. 
Model for nonlinear  STM based on FE of shear  stress development in the beam. 

 

7.4.5.3 Principal strain vectors at incremental loadings for beam B2 
 

At 120 kN principal strain vectors are tensile and horizontal, concentrated near the tension 

bar at the centre of the beam.  

 
 
 

Figure 7.33:At 160 kN principal tensile 
strain vectors begin to deflect at a modest 
angle in the shear span. 
 
 

Figure 7.34: At 240 kN, principal tensile 
strain vectors deflect at 45◦.  

  

Contour D E 
Stress Mpa -5.63 -0.57 

Strut 
 tie 
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8  
 
Figure 7.35: Principal strain vectors at 440 kN spread into the diagonal compression 
Strut, just before failure.  
 
 
 

 

Figure 7.36: The concentration of  stress vectors indicate that the angle of the non 
linear diagonal compression Strut  is greater when the size of the support plate is 
larger.  
 
 
 
 
 
  

 

Figure 7.37: The STM  in nonlinear analysis of STM in beam B1, based on the 
assumption that principal stress are distributed in oval form. 

compression Tension 
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7.4.5.4 Strain in X direction in the tension reinforcement in beam B2 
 

 

Figure 7.38: Beam B2 at 440 kN long bar loading strain in X direction along the 
tension bar. The tension crack at the centre of the beam contributes to the yielding of  
tension steel 

 

7.4.5.5  Strain in X direction mid span section in beam B2 
 
Graphically, from strain concentration,  the dimensions of  diagonal compression strut and 

horizontal compression strut when the tension bar has yielded can be estimated. The width 

of the diagonal compression strut is 225 cos 45◦ and the width of horizontal compression 

strut is 80mm, Figure 7.35.  

 

Figure 7.39: 380 kN  strain in mid span 
section across the depth in X direction  
before yielding of the tension steel.  

Figure 7.40: At 440 kN at mid span  
section. 

 

yield 

yield 
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At 440 kN at mid span  section, the tension steel just begins to yield. The compression on 

top is about 33 N/mm2   less than  limit of 41 N/mm2, Figure 7.40. 

7.4.5.6 Load v deflection relation for beam B2 
 

 

Figure 7.41: Deflection against load. At 60 kN load on half the beam, equivalent to 
120kN full load on beam  
 

There is a sudden increase in deflection of  0.3mm at 120 kN caused by the formation of 

the first cracks. Deflection at first crack is 0.3mm which is comparable to linear stress 

calculations, Appendix A.  

The final deflection of B2 is 3.2mm which is similar to  that of B1, Figure 7.25. The first 

crack in B1 develops at 150 kN compared to that of B2 which occurs at 120 kN. This could 

possibly be partly due to larger support plate in B1. 

Deflection for beams B1 and B2 were not recorded in the experimental tests. 

7.4.6 Comparison of numerical models B1 and B2 

The numerical models for beams B1 and B2 simulate the experimental model  reasonably 

accurately with a factor of safety of 1.2.  

In  both beams, FE model prediction is closer at lower load, however, as loading increases 

the prediction becomes more conservative, Figure 7.42. 

 

3 mm 

120 kN 430 kN 
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 Strain×10-3 
Load(kN) 
 

FE B1 
 

Exp B1 
 240 0.993 0.970 

320 1.731 1.360 
400 2.463 1.727 
460 2.625  
480  2.065 
520  2.250 
560  2.460 

 Strain×10-3 
Load(kN) 
 

FE B2 
 

Exp B2 
 120 0.411 0.335 

240 0.993 0.940 
300  1.23660 
380 1.960 1.630 
400 2.310  
420  1840 
440 2.625 1970 

 

Table 7-5: The loads and  strains 
recorded by experiment and FE 
modelling for beam B1  
 

Table 7-6: The loads and  strains recorded by 
experiment and FE modelling for beam B2 with 
small support plates 
 

 

7.4.6.1 Progressive cracks in beams of shear span/ depth ratio of 1.5 

The stages of the progressive cracking as incremental loading increases for the two RC beams 

are plotted. Such a cracking propagation is quite typical for all RC structural beams 

investigated where crack formation and extension eventually transform the beam into a tied 

arch. Collapse always occurred as a result of failure of the arch, which was preceded by near-

horizontal splitting of the compressive zone of the beam with B1 actually failing from 

horizontal compression failure, Figure 7.7.  

Such a mode of failure is compatible with the failure mechanism proposing that splitting of the 

compressive zone can occur only as a result of the development of tensile stresses induced by 

volume expansion of the concrete in regions subjected to large compressive stresses. This failure 

mechanism implies that structural behaviour is independent of the strength characteristics of 

concrete in compression;  hence, a failure criteria describing the conditions for failure under 

combined compression-tension should, in practice, be sufficient for the  purpose of analysis.  

 

The main stages of the progressive cracking process that beam B1 undergoes under 

increasing load are shown in  Figure 7.18 for beam  B1, and in Figure 7.27 for beam B2. 

The failure of the horizontal strut  in FE Model B1 results from the  splitting of the 

compressive zone and can occur only as a result of the development of tensile stresses 

induced by volume expansion of the concrete in regions subjected to large compressive 

stresses. 
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Figure 7.42: The graph shows values of the load against the strain in X direction in 
the tension bars at the centre of the beams for FE models and the strain  recording 
from experimental test  for beams B1 and B2. 
 

Beam B1’s shear failure load at 470 kN is 7% greater than beam B2 which failed at 440 

kN. The only difference between these two beams is the larger support plate of 200mm  for 

beam B1 compared to that of 100mm for beam B2. This shows that dowel action at the 

support  can restrain the concrete cover where a considerable dowel action develops, 

therefore delaying failure. This is demonstrated in the larger principal inclined vectors near  

the support for beam B1 in Figure 7.44 than those for beam B2 in Figure 7.43. 

 

This tied arch response of an RC short beam also lends support to the compressive force  

path (CFP) concept, which hypothesizes that the causes of beam failure are associated with 

the development of tensile stresses in the region of the path along which the compressive 

force is transmitted to the supports and not, as is widely considered, with the stress 

conditions in the region below the neutral axis [7-2]. 

 

On the basis of this hypothesis, the absence of shear reinforcement in the case of short 

beams subjected to two-point loads should cause eventual collapse as a result of the failure 

of the compressive zone in the middle span and in the region adjacent to the load point. 

This mode of failure is accurately predicted by the programme, as can be seen in FE model 

failure of  beam B1, which shows the collapse condition of a short beam without shear 

reinforcement , after the formation of the last crack just inside the middle span as shown in 

Figure 7.18. 

   FE  
model  

Exp test 

Beam B2 

F
E 

Exp 

Beam B1 
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Ortiz’[7-1] STM for the short RC beams without shear reinforcement subjected to two-point 

loading is developed by  considering crushing mode of failure when the applied load increases to 

the level at which the diagonal crack that forms within the shear span at an earlier load stage 

penetrates into the compressive region towards the loading point. 

However, such a crushing mode of failure in the region of the loading point is unlikely 

since the multi-axial compressive state of stress that exists there will cause a local increase 

of concrete strength [7-3] Instead, it is proposed that the diagonal crack will branch almost 

horizontally toward the compressive zone of the middle span of the beam in order to by-

pass this high-strength region, Figure 7.44. 

 

The path of crack branching should be that of a compressive stress trajectory which, as indicated 

by the change in the direction of the CFP, is characterized (for local equilibrium purposes) by 

the presence of a resultant compressive force where, bearing in mind the deflected shape of the 

beam before failure, the load path is the minimum distance between the loading and support 

points of the inner half of the loading plate to the outer part of the support plate. This could 

also be an additional reason for the delay in failure of B1 compared to B2  when the support 

plate is larger which increases the angle of the CFP.  

 

The corrected STM can be developed from the FE model showing the strain path between 

loading and supporting points. The implication of this proposal failure mechanism is that the 

angle Ө proposed by Ortiz as the angle of diagonal strut to the horizontal should be increased  in 

order to simulate the correct STM. 

 

 

Figure 7.43 : The principal strain vectors give an indicative profile of the diagonal 
and horizontal compression struts and the tensile forces along the steel tie. The angle 
of strut is = tan-1 {d ⁄ [3-550-(PL+PS)]} 
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Figure 7.44: Load path is minimum distance between loading point and support point 
of inner half of loading plate to outer part of support plate.  
 

This does not happen in B1 experimental or FE model, although the longitudinal bar  near 

the support yields  at 0.0027 with the failure in experiment, Figure 7.9, but the actual 

maximum  tensile strain  of 0.0026 just yields in the tension bar at mid span,  Figure 7.24. 

It should be noted that the predicted values of both the maximum load and maximum strain in 

the longitudinal bars should be considered as lower-bound values since any triaxial compressive 

stress conditions that may develop when the ultimate-strength capacity is approached cannot fully be 

allowed for by the plane-stress analysis employed. However, since such triaxial stress conditions 

are set up only once the collapse load is practically attained, they should affect only the plastic 

or near-plastic deformational behaviour rather than the strength characteristics of a beam. 

Nevertheless, the predicted strain in X direction in the centre of longitudinal bar in Ortiz’ [7-1]  

model is still useful for the purpose of comparison. 

7.4.6.2 Bond and anchorage in beams of shear span/ depth ratio of 1.5 

The influence of the bond stresses over the supports is considered, and nodes and struts are  

defined. FE models are developed  and the analysis of  their behaviour is compared to that  

of the struts analysed by Ortiz. The FE modelling was compared with the experimental 

results. 

 

The test data exhibited in Figure 7.24 and Figure 7.38 show that at high loads the stress in 

the longitudinal bars is practically constant over the clear span and reduces drastically just 

over the support plates. Table 7-7 presents the bond stresses obtained on the basis of the 

difference of the bar stresses between the two strain gauged sections nearest to the edges of 

the plates. These values are compared with  the British Standard and the CEB-90 [7-4] 

recommendations , excluding the safety factors. 
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The design ultimate anchorage bond stress , fbu recommended by BS8110 [7-5] section 

3.12.8.4, is fbu=β√fcu . 

where β is a coefficient related to the type of reinforcement and includes a partial safety 

factor, γm, of 1.4. For beams with minimum stirrups β = 0.50 for deformed bars, but for 

beams without shear reinforcement BS recommends β = 0.28. 

The design value of bond stress, fbd, given by CEB, Section 6.9.3, is: 

fbd= η1 η2 η3 fctd         7.1 
 

where 

η1 considers the type of reinforcement   η1 = 2.25 for ribbed bars, 

η2 considers the position of the bar during concreting  η2 = 1.0 for bottom bars, η3 considers the 

bar diameter   η3 = 1.0 for    Φ ≤32 mm, fctd is the design value for concrete tensile strength. 

fc    is cylinder concrete crushing strength 

Disregarding the safety factors and taking  fctd=0.30fc
2/3 , 

fbu=0.675fc
2/3         7.2        

 

From Section 6.9.5 of  CEB the effect of confinement by the concrete cover (coefficient α3) 

and the effect of the transverse pressure (coefficient α5 ) are taken into account and the bond 

strength is considered as: 

fbu(p) = 0.30fc
2/3 ⁄ (α 3α5)            7.3 

α 3= 1 - 0.15 {(cd - Φ)  ⁄ Φ  }          7.4 

 0.7 <  α 3<1.0, with cd = lesser of minimum 

cover and half clear spacing of bars,  

α5= 1- 0.04σp      7.5 

0.7 < α5 <1.0, with α5 the pressure transverse to the plane of the bars,  and 0.7≤ α 3α5≤1.0 

Comparing the ultimate anchorage bond stress of the British Standard and CEB-90  

recommendations, there seem to be considerable discrepancies, but the British Standard 

guidance uses a low value for the coefficient β (related to the type of reinforcement) when 

the beam does not have stirrups. In addition, it probably leans on the safe side for the 

bottom bars as no account is taken of the difference between top and bottom bars. CEB 

does consider the good bond conditions of the bottom bars. 

 

From Table 7-7, it can be seen that the reinforcement developed anchorage bond stresses 

far larger than the limit values given by the British Standard and also above those of the 

CEB if the influence of transverse pressure is ignored, but less than or equal to the CEB 
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values when the transverse pressure is considered. Only beam B2, at the right hand side 

support, presented a maximum bond stress and horizontal cracking over the support when 

the shear loading was 10% smaller than that at failure, but even beyond this loading, the 

anchorage was still reliable. 

 

 fbu(N/mm2) 
Beam type Experiment  FE model BS8110  CEB-80 
B1       10.3 9.3 3.1 9.3 
B2       10.2 7.4 2.6 7.4 

 
Table 7-7: Bond stresses over the supports - Anchorage bond stresses - Comparison with 
codes . The transverse pressures used in the CEB equation for σp are calculated as        
σp =R  ⁄ (bl1) where R is the reaction and l1  is the distance between the gauges 
 

In the FE model the reinforcement developed anchorage  bond stress 20% less than the 

experimental value which is comparable to the CEB-90 prediction and far more optimistic 

than the  BS8110 prediction. 

Referring to graphs in Figure 7.38,  for longitudinal tension steel, produced by FE model, it 

is shown that reinforcement strain continued to  decrease rapidly beyond the support plate, 

suggesting that the transverse pressure improved the bond beyond the support plate. This 

was also confirmed experimentally as recorded by the gauge placed beyond the plate.  

7.4.7 Discussions on FE models of  beams B1, B2 

Numerical models for B1 and B2 were developed to  predict the dowel action produced by 

tension reinforcement as a result of  pressure from the larger support plate. The FE models  

for the beams were successfully verified and validated.  

According to CEB-90 [7-4] recommendations, the shear failure prediction  with diagonal Struts 

considered as uncracked zones is 564 kN for B1 and 424kN for B2, and  510  kN for B1 and 296  

kN for B2 when considering diagonal struts as cracked zones. 

The CEB-90 recommendation for uncracked zones predicts yielding of tension reinforcement. The 

experimental graph produced indicates yielding of the reinforcement for B1. Yielding in tension 

reinforcement occurred in both FE models B1 and B2.  

 

Beam B1’s larger support plate contributed to higher dowel resistance at the support and 

therefore higher shear resistance of the beam. The numerical model recognised this dowel 
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action and predicted an improvement of only 6.8%, whereas in experiment the larger 

support plate contributed an additional 17%  to shear  resistance. 

A number of secondary cracks occur in the shear span as shear cracks propagate. These cracks 

probably occur due to the shear retention factor (SRF).  

 

Although it appears that no relevant shear strains should take place within the flexural span, the 

presence of even  small SRF stiffens  such Gauss points and, therefore, attracts stresses that 

gradually build up and exceed the failure stress envelope in tension. However, such occurrences take 

place just before failure and hence have a negligible effect on load prediction. 

For B2 at 500 kN,  it should be noted that cracking affects suddenly the region where the 

compressive-force path changes direction, compared to the predicted crack pattern at 320 kN.  

Diagonal cracks initialise and subsequently propagate towards the loading point. When divergence 

of the iterative procedure takes place at total load, multiple cracking occurs in the region of support. 

7.4.8 Conclusion on FE Models for beams B1 and B2  
 
The load-strain plots for selected locations from the FE analysis show fair agreement with 

the test data. For the load-tensile strain plots for the main steel reinforcing at midspan, the 

strains from the FE analysis and the experimental data correlate well in the linear range, 

and the trends in the nonlinear range are generally comparable.  

• The general behaviour of the FE models represented by the load-strain plots at 

midspan shows good agreement with the test data from the full-scale beam tests. 

However, the FE models show slightly more stiffness than the test data in both the 

linear and nonlinear ranges. The effects of bond slip (between the concrete and 

steel reinforcing) and microcracks occurring in the actual beams were excluded in 

the FE models, contributing to the higher stiffness of the FE models. 

• The final loads from the FE analyses are 15% lower than those from the 

experimental results which is probably due in part the effects of the dowel action of 

the tension reinforcement resulting from a larger support plate being ignored, and 

using assumed materials properties values instead of measured values. 

•  The crack patterns at the final loads from the FE models correspond well with the  

observed failure modes of the experimental beams. The  load predicted for the initial 

crack  from the numerical method agrees with the hand calculation presented in Appendix 

A. 
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When strut and tie are overlapped on the corresponding numerical models for beams B1 

and B2, the angle between the inclined compression struts which coincides with strain 

contours -4.1×10-3 is 15◦ 28' for B1 with support plate of 200mm long. This is a smaller 

angle than for B2, where the corresponding angle between the inclined compression struts 

is 20◦ 8', Figure 7.19, with 100mm long support plate. This indicates smaller tension tie 

force between the compression struts for B1, therefore higher shear resistance. This is a 

smaller angle than for B2, with the corresponding angle between the inclined compression 

struts of 20◦ 8',  Figure 7.32.  

 

7.5 FE validation  of beam column joints  

The two FE models  BCJ-A and BCJ-B  had  beam and the column depths of 400 mm and 

300 mm respectively,  therefore their aspect ratio is = 
300

400
  =  1.33 

Aspect ratio is defined as the ratio of depth of beam to the depth of column, i.e. 

Aspect ratio = 
c

b

d

d

columnofdpeth

beamofdepth =  

This will be carried out in two stages as follows: 

1. to develop a correct FE model for BCJ based on laboratory tested structures for  

which  full data and their experimental results are available.  Two FE models  were 

developed to represent the BCJ specimens  tested. The models are BCJ-A without 

stirrups and BCJ- B with shear stirrups to conform with experiment specimens 

BCJ-1 and   BCJ-4. 

2. to verify and  validate the FE models BCJ-A and BCJ-B  by using the  experimental 

strain gauge recordings on column bars and stirrups of experimental specimens 

BCJ-1 and BCJ-4. 

 

Two experimentally tested specimens [7-1], BCJ1, Figure 7-46 and BCJ-4,  Figure 7-59 

with aspect ratio 1.33, are identical in all properties, geometry and set up except that BCJ-4 

has 3 additional shear links positioned at the centre of the joint and has 2 T16 in each of 

the column corners  compared with BCJ1 which has 1 T16 (Table 7-8). BCJ-1 was 

modelled as BCJ-A , Figure 7-48 to Figure 7-51 and BCJ-4 as BCJ-B, Figure 7-61 to 

Figure 7-64.  
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Experimental 
test 

 

No of 
beam bar 

& 
diameter 

(mm) 

Total 
area 

(mm2) 

Anchorage 
length (mm) 

No of column 
bar & diameter 

(mm) 

Total 
area 

(mm2) 

Beam 
load 
(kN) 

BCJ-1 4-T16 804 367 6-T16 1206 118 
BCJ-4 4-T16 804 492 10-T16 2010 130 

 
Table 7-8: Detailing of beam and column reinforcement for BCJ-1 and BCJ-2 
 

Having demonstrated that  the FE numerical  model reasonably predicts the correct 

behaviour of  experimental tests in the laboratory, FE modelling approach adopted is 

validated and verified. 

7.5.1      Geometry, material properties of FE models 
 

 

 

 

 

 

 

 

 

 

 

Figure 7-45:FE  BCJ model of aspect ratio 1.33 

 
Two BCJ with aspect ratio 1.33 Figure 7-45 have concrete cube strength for   NSC models 

as 42 MPa. The average values for the cube strength for experimental specimens BCJ-1 

and BCJ-4 with concrete properties are shown in Table 7-9.In the  FE  analysis for NSC  

the shear coefficient for closed cracks is assumed to be  1.0 or less, and the suggested 

range for open cracks is taken as  0.05 to 0.5 to prevent numerical difficulties [7-6],  [7-7] 

and [7-8]. In this thesis the coefficient for NSC is assumed to be  1.0 for closed cracks and 

0.3 for open cracks.   

 
Both beams and columns were reinforced with hot-rolled round deformed bars.  The details 

of BCJ reinforcement for the experimental tests used for validation and verification are 

shown in Table 7-8 and the reinforcement used in the FE models is shown in Table 7-10. 
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BCJ-1 42.3  
42 

34.0  
34 

2.77  
2.87 BCJ-4 42.0 34.0 2.98 

 
Table 7-9: Concrete properties used for NSC in the experiments on BCJ.  The 
averages of these properties were used in FE model analysis.   
 

For the analysis in part 1, FE model BCJ-A and BCJ-B were developed to idealize the 

experimental model BCJ-1 and  BCJ-4.  FE idealization considers similar geometrical and 

material properties to the experimental model.  However,  assumptions were made  in order 

to simplify the FE model  to obtain accurate results, which are as follows:  

i. The bent-bars linking the top main beam reinforcement to the rear column 

reinforcement were idealized as L-shape bars.  According to past research [7-

10] this will have a nominal affect on the behaviour of the BCJ, but  will 

significantly simplify the analysis of BCJ. 

ii.  The top reinforcements in the beam 4T16, Figure 7-47.  

The reinforcement in the column of BCJ-4 of 10T16 comprising of 4 double T16 in 

corners and 2-T16 at centre changed to the equivalent area of 4T22.6 in corners and 

2T16 at centre for BCJ-B, Figure 7-64. 

The anchorage of the beam bar for BCJ extended to the length of effective depth of beams, 

ie. 330mm  
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BCJ-A  1.33 4T16 804 
 

1.1 330 42 129.5 
BCJ-B  138 

 
Table 7-10: Failure loads, concrete property and beam reinforcement for numerically 
analysed BCJ. Yield strength for all beam reinforcement is fy= 720 MPa. Beams and 
columns were reinforced with hot-rolled round deformed bars 
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FE model 
Identity 

Number & Diameter  (mm) Area   As 
(mm2) 

% Steel   
As/bd Corner Centre CVB 

BCJ-A  4-T16 2-T16 
 
2-T16 

0 1206 2.01 
BCJ-B  4-T22.63 0 2010 3.35 

 
Table 7-11: Column reinforcement. The column corner bars have yield strength          
fy=  720 MPa.  
 
 

7.5.2 Loading of the specimen 
 
General information on the position of loading points for BCJ of aspect ratio 1.33 is shown 

in Figure 7-51.  

 

At the early stage of  modelling BCJ with aspect ratio of 1.33, the computer processing  

power was limited to Pentium (R)  4CPU, 2.66 GHz with496 MB of RAM, and the 

software was an older version of ANSYS which required certain provisions to be 

introduced in order to perform the FE analysis. The size and number of the  elements for 

the BCJ model was chosen according  to past research  recommendations [7-9], there were 

4900 elements and 5200 nodes. Displacement load was applied to the models to produce 

reactions equivalent to force loads at loading point.  
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BCJ-A  ---- 12 8 T8 571 
 BCJ-B  3 12 8 

 
Table 7-12: Shear reinforcement in FE models.   
 
 

7.5.3 Validation of FE model BCJ-A with the experimental test BCJ-1 
 

In this section FE model for BCJ-A is validated by comparing the strain gauge readings on 

column and beam reinforcement with those of strain gauge recordings for BCJ-1. 

 

Reinforcement  detailing of the experimental specimens and FE models are shown in 

Figure 7-47 to Figure 7-52.  
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The model BCJ-A   failed at beam load of 129 kN compared to 118 kN for BCJ-1, or 9.3% 

higher  load.  

 

 
 
Figure 7-46: Reinforcement detailing of experimentally tested  BCJ-1. 
  
An investigation was completed  to confirm that the displacement load applied   produces 

similar behaviour to force loads. It was then concluded that displacement load would be 

employed for the numerical analysis of BCJ of aspect ratio 1.33 to compensate for limited 

computation facilities.  

 

 
Section A-A 

 
                           Section B-B 

Figure 7-47: Reinforcement in the cross sections for beams and column for BCJ-1. 
 
 

A 

A 

B B 
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Figure 7-48:Main reinforcement in the column section of the FE  model for  BCJ-A 
showing 4 T20 beam bars with 6T16 for  column reinforcement 
 
 
In Chapter 7, for FE modelling a TBCJ with aspect ratio of  3.11, it was not possible to 

continue with the above  limitations because the number of elements had nearly tripled, 

therefore the software was upgraded to a higher version of ANSYS, and the hardware was 

upgraded to Pentium D CPU, 3.2 GHz with  0.99 GB of RAM. This made it possible to 

apply incremental monotonic force loading to TBCJ by the step loading approach. 

 

 

Figure 7-49: Side elevation for the concrete element and the reinforcement cage for 
the model of  BCJ-A 
 
 

 

Figure 7-50: Beam cross section showing  the concrete element and the reinforcement 
cage for column joint  BCJ-A 

4T16 beam bars  

4T16 column bars 

4T16 Beam bar 

6T16 column bars 

8T8-150 c-c Beam stirrups 

6T8 Column stirrups above BCJ 

6T16 column bars 

4T16 Beam bars 

6T8 Column stirrups below BCJ 
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7.5.4 Comparison of the strain recordings of BCJ-A with BCJ-1  
 

 
 
 
Figure 7-51: Elevation of the BCJ-A showing stirrups in beam and column. For 
sections refer to Figure 7-50 for beam and Figure 7-48 for column  
 

From these results it can be noted that predictions of the FE model are good and reasonably  

accurate. However, the FE model predicts cracks on the front  column bar  because of its 

ability to record strains linearly, but  the experimental strain gauges do not  record this 

crack, Figure 7-53.  Table 7-13 indicates reasonable accuracy of the FE analysis when 

compared with the test results. The large cracks at the opening corner at 40 mm above the 

beam in column front face represent a sudden change in strain as shown in the FE 

numerical analysis results.  

 

Figure 7-53 shows the change in strain of the front  column reinforcement on strain gauges 

A, B, C, D and E, and Figure 7-52 within the depth of the beam. Strain gauges readings on 

the front column reinforcement   for the model and experiment are within 14% tolerance of 

one another,  in spite of only 2.5% difference in loading, Table 7-13. 

Rear column bars Front column bars 

6T8-150 C-C  stirrups in 
column above the top of 
the beam 
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Figure 7-52: Typical arrangement for strain gauges on reinforcement of BCJ 1 

 

Similarly,  strains in the rear column bar were compared and the results are shown in 

Figure 7-54 and, in general, there is a good agreement between the two results, however, 

some cracks developed between the positions of the strain gauges which were not recorded 

in the experimental results as gauges only record strains at preset points. Strain gauge 

readings on the rear column reinforcement   for the model and experiment are within 13% 

tolerance of one another,  in spite of only 2.5% difference in loading, Table 7-13.  

The axial strains in the main column bars were measured and  plotted from  Table 7-13 for 

front column bar and Table 7-14 for rear column bar, Figure 7-57.   Maximum strains 

developed in the front and rear bars in the FE model of 0.0017 and 0.00035 compared to 

0.0015 and 0.0004in the experimental test, which is within 14% tolerance.  The position of 

these maxima is as shown and they are associated with development of cracks at these 

locations.  

 

The strains from FE analysis on the  horizontal part of the beam bar of BCJ-A at 73 kN 

loading  in comparison to strains in  beam reinforcement recorded by the strain gauges in 

the experimental test for specimen BCJ-1 at 75 kN show a negligible  2.6% difference in 

loading. 
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Strain gauge readings on the horizontal part of beam reinforcement for the model   BCJ-A 

and experiment BCJ-1,  are within 6% of one another in spite of there being only 2.5% 

difference in loading, Figure 7-56. The strain from FE analysis on the horizontal part of the 

beam bar of BCJ-A at 73 kN loading was transposed on the graph provided for beam 

reinforcement recorded by the strain gauges  for specimen BCJ-1.  

 

The strain readings of the front column reinforcement were obtained by  (1) experimentally  

using the strain gauges and (2) analytically using FE model.   Good agreement between the 

two results are shown in the circles where the strain gauges provide readings.  More details 

of the strain in the bar are shown by the FE results which indicate development of cracking 

in the concrete at those position (max strains).   

 

Strain gauge readings in  reinforcement recorded from  experimental model BCJ-1 and  

strain  results from FE model BCJ-A are plotted, and indicate a reasonable closeness to one 

another.   

 

Strain gauge A B C D E 
FE model 0.0011 0.0017 0.00065 -0.0004 -0.00035 
Experiment test 0.00095 0.0015 0.0007 -0.00045 -0.0004 
Difference % 14% 12% 8% 13% 14% 
 
Table 7-13: Results obtained experimentally from BCJ-1 and by FE analysis of BCJ-
A on the column front  reinforcement at 75 kN loading 
 

7.5.5 Conclusion on validation and verification of the numerical model  BCJ-A 
 
To validate and verify the structural behaviour of FE model BCJ-A developed to predict 

the behaviour of the experimental model structure BCJ-1 the strains in three critical  

reinforcement of the structure were considered and compared, ie. in front column bar, rear 

column bar and in the horizontal part of  beam reinforcement. 

 
Strain gauge K I H G F 
FE model -0.00028 -0.00010 0.00065 0.0004 0.00035 
Experimental test -0.00025 -0.00011 0.0007 0.00045 0.0004 
Tolerance 0.11 0.10 0.07 0.11 0.13 
 

Table 7-14: Strain readings of  rear  column reinforcement  for the model and 
experiment are within 13% tolerance, Figure 7-54. 
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Figure 7-53: The longitudinal strain in the front column  bars (Figure 8-9) from the 
numerical model BCJ-A at 73 kN (7mm displacement load) compared to 
experimental tests for BCJ-1 at 75 kN loading. 
 

The results obtained by FE analysis for BCJ-A with 75 kN at A1, B1 and C1               

Figure 7-51, are also shown.  These coincide with the mid-point strain between 

experimental results of BCJ-1 strains between 70 and 80 kN. 

 
 

Strain gauge A1 B1 C1  
FE Model 0.00085 0.00095 0.00090 

Experimental test 0.00090 0.0010 0.00085 
Tolerance 0.06 0.05 0.06 

 
Table 7-15: Strain gauge readings on the horizontal part of beam  reinforcement for 
the model   BCJ-A and experiment BCJ-1 are within 6% of one another, Figure 7-55 . 
 

The experimental specimen BCJ-1 was modelled into an FE model, BCJ-A,  which has 

been analysed for equivalent boundary and loading conditions, the strain recording  results 

differ by only 2.5% and as shown in the graph, Figure 7-56, indicate the following points:  

  

1. Generally the overall strains which developed in the front and rear column 

reinforcement for experimental  specimen BCJ1 and for FE model for BCJ-A are in 

Crack 

FE model 
results  

Experimental 
test results 
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agreement.  This indicates that the idealization of the BCJ is correctly and 

appropriately modelled and that the predicted behaviour represents an accurate 

behaviour of the real structure. 

2. The magnitude of the strains in the FE model and those measured by the strain  

gauges experimental model at the position of the strain gauges are in good 

agreement which indicates accurate FE modelling and analysis of BCJ-1.  

 

3. The FE model shows a number of peak results in the strains at various points along 

the length of the bars.  These represent cracking in the concrete which occur during 

the loading.  However, these sudden increases in strains and the crack development 

are not recorded by the experimental results in BCJ-1 because the cracks occurred 

in areas between the strain gauges, therefore they have failed to be recorded by the 

strain gauges, whereas FE results record linear changes in strain between these 

preset points.   

 

4. It has been shown that at 7mm displacement-load (equivalent to 73 kN force-load) 

the analysis of FE model of BCJ-A is a reasonable  comparison with experimental 

results for BCJ-1 with loading of 75 kN. 

 

 
 
Figure 7-54: The strain gauge reading for the rear column reinforcement bars.  

 
 
 

Cracking strain 
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Cracking 

Experimental results 

  FE numerical results 
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Figure 7-55: Strains in beam reinforcement recorded by the strain gauges 
(experimental test) for specimen BCJ-1 at incremental loads of 40 kN to 110 kN.  

 
 

 

 

 

Figure 7-56: Experimental Strain gauge readings on horizontal part of the beam 
reinforcement; model BCJ-A  is displaced 7mm at  73 loading kN. The strains are 
shown at locations  A1, B1 and C1 (Figure 7-52).  FE strains were also plotted for 
the same bar and good agreement at the point of gauge measurement (circled)  
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Figure 7-57: Axial strains in the main column bars along the length of the bars.  
Maximum axial strain developed in the front  and rear compare well between 
experimental test (EXP) and FE model (FE)  
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Figure 7-58: Model BCJ-A,  the graph shows displacement corresponding  to loads.  
 
 
7.6 Comparison of FE model BCJ-B with experimental test BCJ 4  

 

BCJ-B, Figure 7-61, is the FE model for experimental specimen BCJ-4, Figure 7-59, and  

9   has the same geometry, material properties and beam reinforcement as BCJ-A. 

However, BCJ-B has 3 additional stirrups in the joint,  

Figure 7-63, and has 4 external corner bars of T22.63, Figure 7-64, as compared to BCJ-A 

with  4-T16 mm.  

 

Details of reinforcement for BCJ-4 are shown in Figure 7-59  and Table 7-8. The beam 

reinforcements  are 4-T16 on top and 2-R8 at bottom, the distance between the centre of 

the beam’s corner top bars is 124mm to provide for distribution of 4-T16 bars with a cover 

of 30 mm, Figure 7-60, and column reinforcements are 10-T16. The column reinforcement 

for the model  BCJ-B is 4-T22.63 and 2-T16, Figure 7-61. The model failed at beam load 

of 138 kN compared to 130 kN for BCJ-4, ie. 6.1% higher.  

 

In  FE modelling, the concrete mesh sizes [7-9] are chosen to be around two or three times 

the size of the aggregate. Since 20mm aggregate is used, the size of mesh  chosen is 65mm.  
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.  

Figure 7-59: Reinforcement detailing of experimentally tested   BCJ-4.  
 

The column corner reinforcement in BCJ-4 of  2-T16 placed in the four corners, Figure 

7-60, are assumed to be replaced with a  single  bar of T22.63 with the same total area 

As=2010 m2  or percentage As / bd = 3.35% in the column,  Figure 7-61. All main 

reinforcements in BCJ-B have yield strength fy=720 MPa. All stirrups are T8 and bottom 

reinforcement of the beam are T8 and have yield strength of fy=571 MPa. 

 

 

 

 

 

 

Figure 7-60: Column and beam cross sections  for experimental test BCJ-4  
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Figure 7-61: Details of idealized FE model, BCJ-B, representing the experimental 
model BCJ-4.  The dimensions and  position of the four shear links investigated in the 
column are numbered as shown.  
 
 
 

 
 
 
Figure 7-62: Cross section B-B of the column for numerical model  of BCJ-B . Main 
beam bars (purple), column reinforcement (black), links and the 8mm bar to hold 
the links in the cage (red).  
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Figure 7-63: Elevation view of the numerical model of the experimental BCJ-B. 
Purple bars are the main beam reinforcement, black are column reinforcement, red 
bars are links and 8mm bar at the bottom which holds the links in place. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 
 
Figure 7-64: Section A-A of the numerical model of beam column connection 
showing the cross section of the beam at BCJ for BCJ-B 

 
The effect of  the radius of bend  for beam bars at beam column connection in BCJ-4  was 

not considered in the model BCJ-B since test data from monotonically loaded connections 

is inconclusive. For example, varying the radius of bend between  4 and 8 bar diameters  

and past research has suggested no significant effect on joint shear strength [7-10]. 

 

7.6.1 Cracks comparison of BCJ-4 to FE model BCJ-B 
 
The reported crack formation for experimental work, Figure 7-65, indicates  that BCJ1 

fails at opening corner with spalling of concrete cover on the column reinforcement  
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because yielding occurred above the opening corner. In comparison  to BCJ-1, the BCJ-4 

specimen beam bar has a smaller anchorage length at the beam end.  

 

Experimentally it was recorded that at 50 kN loading  the first  crack opened below the 

central stirrup. At 60 kN another crack ran parallel to the expected diagonal compression 

strut direction. From this stage onward the cracks formed diagonally parallel in the 

assumed direction. The crack below the central stirrup was only 0.10 mm wide up to 

failure. At 100 kN loading, the widest joint crack was 0.20 mm and at 120 kN it was 0.42 

mm wide. 

 

The failure is reported to have occurred by widening of diagonal crack and anchorage. 

However, on investigating the strain it was found that  the final yielding occurred at     

138.3 kN,  repeated crushing and failure occurs within the diagonal inclined compression 

strut of  the joint  (Figure 7-66). The numerical model crack formation  reasonably 

simulates  the experimental tests (Figure 7-65) .  

 

The failure occurred by wide opening of the diagonal cracks and cracks  parallel to  

column bars on the external (rear) side and above the joint. Two stirrups, one at the centre 

of the joint and another above the centre,  yielded. At failure, the concrete spalled off at the 

internal (beam) side of the joint, near the column bars at closing corner. 

 

The joint stirrup near the beam bars shared some of the stresses with the beam bars. The 

other joint stirrups had a rise in the strain gradient after cracking .  

 

In the FE model  of BCJ-B,  initial cracks formed at 36.9 kN  loading and flexural cracks  

started from the top of the beam towards the column at the opening corner and extended  

vertically downwards half the depth of beam at BCJ in a similar pattern to the experimental 

test BCJ-4 at 40 kN . Diagonal tensile cracks which appear in the model for  BCJ-B, Figure 

7-66,  resemble the diagonal cracks recorded at 40 kN in BCJ-4 as shown in Figure 7-65.  

 

Some crushing of the elements along the diagonal near the opening corner appear in the 

form of circles, Figure 7-66. As loading increases to 76.2 kN, the cracks appear in the 

lower exterior (rear) column face of the BCJ, these are tensile cracks but just below half 

the depth of beam they become diagonal tensile  cracks.  
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At 138.3 kN, repeated crushing and failure occur  at the closing corner of BCJ-B, Figure 

7-66. The numerical model crack formation  reasonably simulates  the experimental tests 

(Figure 7-65) .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-65: Sketch drawn from the photograph of the experimental cracks formed  
on  BCJ-4 just before failure at 130 kN.  
 

When the applied load  increased to 138 kN  nearing BCJ-B failure point, Figure 7-66, 

three areas of  major stress distribution can be noted  as follows: 

• Major bending crack path in the beam  starting close to the opening corner, 

continuing downwards parallel to the edge of the column.   

 

• Major compressive diagonal crack path in the centre of the joint starting 

from the top of the joint close to the rear face and expending downward 

toward the closing corner. 

 

• Significant bending cracking at lower part of  the rear column face at 

closing corner level. 
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Figure 7-66: At failure load of 138.3 kN, crushed elements (circles) develop in  
diagonal direction at BCJ  resulting in diagonal shear failure of BCJ-B. The lines of 
cracks are a duplicate of the crack lines from the experimental test at failure. 
 

Experimental results from BCJ-4  gave the following information: 

i. The width of the first diagonal crack reached 0.1 mm, however, other diagonal 

cracks reached 0.2 mm at 100kN and 0.42 mm at 120 kN loading.   

ii.  Failure occurred at 130 kN. 

iii.  From the strain gauge results, it has been noted that the upper and the central 

shear links yielded just before failure. 

iv. At failure, the concrete at the closing (compression) corner spalled off and the 

concrete crashed.   

7.6.2 Comparison of strain  in  reinforcement  for BCJ-B and BCJ-4 
 
Strain  in column reinforcement  and links for FE model BCJ-B and tested specimen BCJ-4 

will be compared in this section. 

 

In Figure 7-67, when cracks open, strains in reinforcement suddenly increase depending on 

the depth of the crack.  

 

The line passing through circles represents strain gauge readings in the experiment as 

compared to the numerical model recording. The large crack appears in the front column 

Load = 138.3 kN 
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bar  above the opening corner, Figure 7-65 compare with FE model, Figure 7-66 and 

strains recording shows the cracks along rear and front column bars Figure 7-67.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
a) Strain along the rear column bar from 
(0.0) 280mm above opening corner  

b) Strain along the front column bar 
from  (0.0) 280mm below closing corner  

Figure 7-67:Comparison of strain recordings from FE and tests along the front  and 
rear column bar at 55.6 kN. Position of the gauges are shown in Figure 8-9.  
 

 
Table 7-16: Strain recording for FE model prediction and experimental test.  
 

 
a) Middle link A - FE 0.0023 compared 
to experiment of 0.003  

b) Lower link B –FE 0.0014 compared to 
experiment of 0.0012 

 
Figure 7-68: The FE beam load of 138 kN compared to experimental beam load of 
130 kN.  
 

Maximum strain At failure at stirrup At 55.6 kN in column bars 
 Link A Link B Front  Rear 
BCJ-4 specimen 0.003 0.0012 0.0008 0.0004 
BCJ-B model 0.0023 0.0014 0.0011 0.00041 
Tolerance 30% 14% 37% 2% 
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7.6.3 Comparison of FE model BCJ-B experimental test BCJ-4 
 
In this section failure loads, crack propagation, deflection, strain in column reinforcement  

and links for FE model BCJ-B will be compared to tested specimen BCJ-4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7-69: Comparison of maximum strains in front and rear column bars for BCJ-
4 and BCJ-B at 55.6 kN. 
 

Failure beam load of 138 kN for the model BCJ-B compares well to 130 kN beam load for  

experiment BCJ-4, with a  6.4% difference.  

 

Table 7-16 indicates reasonable accuracy of the FE analysis when compared with the test 

results. The large cracks at 40 mm above the beam in column above opening corner 

represent a sudden change in strain. Figure 7-67 (b)  shows the change in strain of the front  

column reinforcement on strain gauges A, B, C, D and E within the depth of the beam. 

Strain gauge readings on the front column reinforcement   for both the model and 

experiment are within 37 % tolerance of one another at 57 kN loading, Table 7-16.  
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Figure 7-70: Load applied at the end of the beam, against deflection at loading point  
for  BCJ-B numerical  model  up to  failure at 138.3 kN loading 
 

Similarly, the strains in the rear column bar were compared and the results are shown in 

Figure 7-69 and, in general, there is a good agreement between the two results. However, 

some cracks which  developed between the positions of the strain gauges were not 

recorded in the experimental results as gauges only record strains at preset points and these 

are shown in FE results. Strain gauge readings on the rear column reinforcement   for the 

model and experiment are within 2% tolerance of one another at 57 kN loading, Table 

7-16. 

 

Maximum strains developed in the front and rear bar at 57 kN and in links A and B  , 

Figure 7-69. 
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7.6.4 Load-Deflection behaviour of BCJ-A compared to BCJ-B 
 
Investigation of the load-deflection behaviour of BCJ-4 with 3 additional shear links at the 

centre of the joint will be carried out in a similar way  to the study of   BCJ-1 with no shear 

links in model BCJ-A,  Figure 7-58 and Figure 7-70.  The aim of this section is to 

investigate the influence of shear links on the overall behaviour of BCJ. 

 

The vertical deflection under the point of the applied load was evaluated for various 

loading magnitudes and these were plotted against the applied load. In both joint types, the 

behaviour of load-deflection is similar in both BCJ type, ie. BCJ-A without shear link in 

the joint,  and BCJ-B with the addition of 3 shear links.  

 

However, the joint without shear links, BCJ-A, developed larger cracks than the model 

with the shear links.  This indicates that the shear links provide greater strength for the 

joint, but most importantly increases the joint ductility.  Maximum load carried  by BCJ-A 

is 129 kN  at 17 mm deflection, while the failure load of model BCJ-B is 138 kN at 23 mm 

deflection, which is only  a 7% increase in loading but an 29% increase in deflection. 

7.6.5 Comments on BCJ anchorage 
 

Theoretically, the design of  stirrups required in the  BCJ region should be provided 

between the beam tensile reinforcement and the top of  the flexural compression zone in 

the beam which can be assumed to equal  3/8ths of the beam depth. However, in practice, 

cold joints 50mm above and below the beam in the column can be venerable locations. In 

this writer’s FE parametric investigations, as the stirrup located 30mm above beam in 

specimen BCJ-B is removed, a reduction in BCJ shear resistance of 14% was recorded. 

Similarly as discussed the shear influence was due to compression membrane failure below 

the beam in section. It is recommendable to have stirrups 50mm above to 50mm below the 

beam at BCJ, bearing in mind that at weaker column concrete sections where the cold 

joints are located  and FE analysis and compression membrane theory confirm this 

recommendation.   

It is essential that a minimum area of  joint shear reinforcement be provided in all external 

BCJ as recommended in ACI 318-05 [7-11] . It is proposed that there should be minimum 

area of  shear reinforcement in beams as proposed by EC2 [7-12] as shown below be used: 

yk

ck

c

sw

f

f

sb

A 5.08.0
=                                                                                                  
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where Asw is cross sectional area of shear reinforcement, bc is overall width of the column, s 

is spacing between the links, fck is 28 days characteristic compressive cylinder strength, 

and fyk is characteristic yield strength. 

 

In practice, it could be difficult to position stirrups at the depth of the joint. A practical 

alternative for external  BCJ with transverse beams is to use U bars while ensuring that the 

legs of the U bars are perpendicular to the axis of the transverse beams encasing BCJ, 

however, for  corner columns U bars should be avoided and only stirrups with hooks 

similar to should be used in corner BCJ.  

 

The beam reinforcement should be bent down into the column with adequate radius  to 

avoid bearing failure and should be fully anchored in the column past the beginning of the 

bend with minimum length . 

 

It is often more convenient to anchor the beam reinforcement with U bars rather than L, 

however, it has been demonstrated that joint shear strength of specimen s with L bars are 

20% more than U bars which have insufficient lap with the column bars 

 

7.6.6 Conclusion on validation  of FE models of BCJ 
 

The structural behaviour of FE model BCJ-A was developed to predict the behaviour of the 

experimental model structure BCJ-1, and strains in the critical locations of front column 

bar,  rear column bar and beam bar were compared. 

 

The experimental model BCJ-4 was modelled into an FE model BCJ-B, which has been 

analysed for equivalent boundary and loading conditions, and the results shown in the 

graphs indicated the following points:   

 

1. Generally the overall strains which developed in the front and rear column 

reinforcement for FE model  BCJ-A are in agreement with the experiment results 

obtained for BCJ-1.  The magnitude of the strains in the FE model and those 

measured by the strain gauges from the experimental specimens at the critical 

locations  of the reinforcement are in agreement, which demonstrates accurate FE 

modelling and analysis of BCJ-1.   
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Figure 7-71: Comparison of deflection to corresponding load for models BCJ-A and 
BCJ-B 
 

 

2. The FE results show a number of peak results in the strains at various points 

along the length of the front and rear bars.  These represent cracking in the 

concrete which occurs during the loading.  However, these sudden increases in 

strains and  the crack development are not recorded by strain gauges for the 

experimental specimen BCJ-4 because the cracks occurred in areas between the 

strain gauges,  whereas FE results record linear changes in strain between these 

preset points.   

 

3. It has been shown that the results of 4 mm displacement-load (equivalent to 56.6 

kN force-load) used for the analysis of  the FE model of BCJ-B is the reasonable 

value to use for comparison with experimental results for BCJ-1 with loading of 

60 kN. 

 

Therefore,  this chapter which covers the validation and verification for the two FE models 

BCJ-A and BCJ-B of experimentally tested BCJ1 and BCJ4 is completed  successfully.  
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The results produced demonstrate that numerical and experimental results compare well,  

the software is validated and the  FE method of analysis is verified.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



___________________________________________________________________________
Motamed, J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’  
 

 

403

 
7.7 References for Chapter 7 

                                                 
7-1 Reys de Ortiz, I. ‘STM of reinforced concrete short beams and beam column joints’. 
PhD thesis, 1993, University of Westminster 
  
7-2 Kotsovos, M.D. ‘Compressive force path concept: basis for reinforced concrete 
ultimate limit state design.’ ACI Struct. Journal, 1988, 85, 68-75 
 
7-3 Kotsovos, M.D. ‘Mechanisms of ‘shear’ failure’. Magazine of Concrete. Research, 
1983,35, 99-106 
 
7-4 CEB-FIP Model Code 1990-CEB-FIP International Recommendations – Final draft, 
1992 
 
7-5 BS 8110: Structural use of concrete, Part 1.Code of practice for design and 
construction,  British Standards Institution, London, 1985 
 
7-6 Kachlakev, D.I., Miller, T., Yim, S., Chansawat, K., Potisuk, T., “Finite Element 
Modeling of Reinforced Concrete Structures Strengthened With FRP Laminates,” 
California Polytechnic State University, San Luis Obispo, CA and Oregon StateUniversity, 
Corvallis, OR for Oregon Department of Transportation, May 2001.  

7-7 Huyse, L., Hemmaty, Y., and Vandewalle, L., “Finite Element Modeling of Fiber 
Reinforced Concrete Beams,” Proceedings of the ANSYS Conference, Vol. 2, Pittsburgh, 
Pennsylvania, May 1994.  

7-8 Najjar, S., Pilakoutas, K., and Waldran, P., “Finite Element Analysis of GFRP 
Reinforced Concrete Beams.” Proceedings of the Third International Symposium, 
Sapporo, Japan, 2, 519-526, 1997.  

7-9 Bedard, C. “Non –linear finite element analysis of concrete structures”, University of 
London, 1983, PhD Thesis. 

7-10 Vollum, R.L., Newman J.B.,  “Discussion on paper published in Magazine of 
Concrete Research,” 1999,51,No. 6,415-425- Strut-and-tie models for analysis/design of 
external beam column joints. Magazine of Concrete Research, 2001, 53, No.01, February, 
63-66  
 
7-11 ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-
08) and commentary (ACI 318R-08), American Concrete Institute , Formington Hills, MI, 
2008, 465 pp 

7-12 Eurocode 2: Design of concrete structures, Part 1-1, General rules and rules for 
buildings, BS EN 1992-1-1:2004, British Standards Institution, London, Dec 2004 
 



____________________________________________________________ 
Motamed, J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’    
 
 

 

404

 
 
 

Chapter 8 
             High Strength Concrete Transfer Beam Column Joint  

              With Central Vertical Bar 
 
 

8.1 Introduction  

 
In this chapter the behaviour of HSC and NSC TBCJ with and without CVB  will be 

investigated numerically by using a nonlinear FE computer programme in order to develop 

accurate models to compare four FE models of  TBCJ specimen with analogous beams 

tested experimentally in the Construction Hall at the University of Westminster under the 

supervision of the advisor of this current research work.   

 

8.2 Aims and objectives  

 
The aim is to carry out parametric FE numerical investigations of factors affecting the 

behaviour of TBCJ of aspect ratio 3.11 in order to investigate the influence of the material 

property of HSC, in presence of CVB and column and beam bar reinforcement and shear 

links on TBCJ. 

 

A TBCJ for a one storey industrial building is designed to ACI 352 [8-1], Appendix B,  

and predictions from proposed empirical design rules for the  TBCJ designed to ACI 352 

[8-1]  will be compared with those obtained from the FE models. Both empirical and FE 

predictions are compared with the data from analogous beams tested experimentally. 

 

The simplified STM model for TBCJ is compared with FE models and the load path for its  

struts and tie is determined. 

 

8.3 FE analysis and parametric investigation of TBCJ 

The FE parametric investigation on four TBCJ with aspect ratios 3.11, with and without 

CVB made with HSC or NSC are completed and the results are compared with analogous 

beams NSC1, NSC3, HSC1 and HSC3 of a/d=3.02 as detailed in Table 3-4 of Chapter 3. 

The following FE models were developed: 
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• T-NSC1(Figure 8.2): TBCJ without CVB made of NSC with aspect ratio  similar to 

span depth ratio  of experimentally tested NSC1 beam which has no HWB. 

• T-HSC1(Figure 8.2): TBCJ without CVB made of HSC with aspect ratio  similar to 

span depth ratio  of experimentally tested HSC1 beam which has no HWB. 

• T-NSC3 (Figure 8.10): TBCJ with CVB made of NSC with aspect ratio  similar to 

span depth ratio  of experimentally tested NSC3 beam which has  HWB. 

• T-HSC3 (Figure 8.10): TBCJ with CVB made of HSC with aspect ratio  similar to 

span depth ratio  of experimentally tested HSC3 beam which has HWB.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1: Four FE  T BCJ models with aspect ratio 3.11 were modelled for  
parametric investigation    
 
 

8.4 Material properties and loading of FE models 

 
TBCJ with aspect ratio of 3.11 have a 930mm deep beam and 150mm width throughout.  

 

This particular depth of the beam was chosen because when moment distribution of 20% is  

considered, the distance from  the centre of compression stress block to beam bar is 

800mm which is equal to the shear span of the beams experimentally tested. 

The concrete cube strength for   NSC models is 42 MPa and for HSC is 110 MPa. The 

average values for the cube strength of tests BCJ-1 and BCJ-4 for NSC and beams HSC1, 

HSC2, HSC3 and HSC4 were considered, Table 8.1.  
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Both beams and columns were reinforced with hot-rolled round deformed bars.  The details 

of BCJ reinforcement for the experimental tests used for validation and verification are 

shown in Table 8.2. 
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BCJ 

BCJ-1  42.3  
42 

34.0  
34 

2.77  
2.87 BCJ-4  42.0 34.0 2.98 

 
Beams 

HSC1 106.0  
 

110 

84.8  
 

8.8 

4.21  
 

4.52 
HSC2 109.3 87.4 5.20 
HSC3 112.5 90.0 4.34 
HSC4 112.5 90.0 4.34 

 
Table 8.1: Concrete properties used for NSC in the experiments on BCJ [and for HSC 
on beams, Table 2-5.  The averages of these properties were used in FE model 
analysis.   
 

FE idealization considers similar geometrical and material properties to the experimental 

model.  However,  assumptions were made  in order to simplify the FE model  to obtain 

accurate results, which are as follows:  

 

The top main beam reinforcement to the rear column reinforcement were idealized as L-

shape bars. According to past research [2] this will have a nominal affect on the behaviour 

of the BCJ, but this will significantly simplify the analysis of BCJ. 

 

In the FE analysis, the reinforcement was chosen for TBCJ with minimum quantities of 

stirrups, beam and column reinforcement so that the strains in all reinforcement such as 

stirrups,  beam bar, front column bar and CVB could be fully developed . The 

reinforcement requirement for beam bars with aspect ratio for TBCJ of 3.11 predicted as 

ACI 352 [8-1] is  equivalent to the area of 4-T20  which are simplified  to the equivalent 

area of 3T23 for numerical modelling, , Figure 8.2. The column bars for TBCJ of aspect 

ratio 3.11 are 4-T20.  

 

Both beams and columns were reinforced with hot-rolled round deformed bars with the 

exception of shear stirrups in TBCJ which are mild steel reinforcement (Figure 8.2).  
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The anchorage for the beam bar of  TBCJ was 560mm. 
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3.11 
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1246 

 
0.67 

 
560 

42 220 Figure 
8.2 T-HSC1 110 260 

T-NSC3 42 260  
Figure 
8.17 

T-HSC3 110 340 

 
Table 8.2: Failure loads, concrete property and beam reinforcement for numerically 
analysed BCJ. Yield strength for all beam reinforcement is fy= 720 MPa.  
 
 

FE model 
Identity 

Number & Diameter  (mm) Area   As 
(mm2) 

% Steel   
As/bd Corner Centre CVB 

T-NSC1 4-T20  
 
0 

0 1257    3 
T-HSC1 4-T20 0 1257 3 
T-NSC3 4-T20 2-T20 1257    3 
T-HSC3 4-T20 2-T20 1257 3 

 
Table 8.3: Column reinforcement. The column corner bars have yield strength fy=  
720 MPa and CVB have  fy=   563 MPa. CVB are not included in the percentage of 
column reinforcement.  
 
 

8.5 Loading of the specimen 

 
With the anticipation that FE analysis of  TBCJ requires a much larger processor, 

arrangements for  obtaining higher processing power hardware and an improved version of 

the software were put in place at a later stage when analysis of TBCJ was about to take 

place. This allowed the application of incremental monotonic step force  loading to TBCJ.  

Four FE models of TBCJ with aspect ratio (beam depth /column depth) of 3.1 were 

developed. A general description of the geometry, stirrup detailing and size of the elements 

for TBCJ models  is shown in Figure 8.2.  
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T-NSC1  
8-T8-150cc 

 
6-T8-150cc 

 
6-T8-150cc 

 
6-R6-200cc 

Only 5 
stirrups 
in BCJ 
are mild 
R-6 steel 

T-HSC1 
T-NSC3 
T-HSC3 

 
Table 8.4: Shear reinforcement in FE models.  TBCJ have mild R-6 for stirrups in the 
joint.  All column and beam stirrups are T-8 of fy=571 MPa  
  
 

When applying step loading for the TBCJ models, initial loading of 60 kN with load steps  

of 20 kN was used until failure occurred. After failure the last load step was repeated with 

a smaller load increment of 10 kN in order to produce  more accurate results. 

 

8.6 FE model idealisation of TBCJ 

 
Types of element used and the characteristics of the elements needed are shown in Figure 

8.2 to Figure 8.6 with the following element dimensions: 

For Column:  Depth 300 mm = 6 elements,  

Width 200 mm = 6 elements,  

Height above the beam 1000 mm = 20 elements,   

Height beneath the beam 1000mm = 20 elements 

For Beam:  Depth 930 mm = 11 elements,  

Length 1600mm = 32 elements 

 

The total number of concrete elements , Figure 8.2, used for the column section above and 

below beam in TBCJ is 1440 elements (40x6x6),  and for the beam including the joint the 

total element is 3648 elements(32x6x19).  This means that a total of 5088 concrete 

elements of “Solid 65” material from the ANSYS programme were used in the analysis of 

each TBCJ considered above.  This excludes the elements used to idealise the 

reinforcement. 

 
TBCJ for NSC and  HSC have similar detailing as shown in Figure 8.2. T-NSC3 and T-

HSC3 have additional  2-T20 CVB at the centre of the depth of column, Figure 8.10, 

where the location of structural  loading and constraints for all TBCJ are also shown. 
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Figure 8.2: Side elevation of T-NSC1 & HSC1  with column width  of 200mm and beam 
depth of 930mm. Detailing and location of the column and  beam stirrups.  Column element 
sizes are shown.  (All dimensions are in mm).  
 
The number of elements along the length of beam and depth of column is 19 within depth, 

32 along the length of the beam and  6 within width of column including TBCJ, a total of 

3648 concrete elements. The column parts above and below the beam have 2 x 20 x 6 x 6 = 

1440 concrete  elements. Total number of concrete elements (Solid 65) is 5088. Each 

element has 6 degrees of freedom (DOF) therefore the total DOF is 244,200. 

 

Beam bar vertical anchorage after bend is 563mm for all specimens. 
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Figure 8.3: The total width of TBCJ is 200mm and is  divided into six elements . 
  

 

Figure 8.4: The beam length (1300mm) plus column depth (300mm) at TBCJ  total 
1600mm and depth of  the beam is  930 mm. The  division  of elements  between beam 
stirrups , e.g  3-50 means 3 elements of 50mm within 150mm spacing.  
 
The size and number of the reinforcement elements correspond to their surrounding 

concrete elements. 

 

  

 
Figure 8.5: Column section at T-NSC1 & T-HSC1 ( no CVB) just above the beam 
bar  showing 4T20 column reinforcements and 3 T23 beam bars in horizontal view. 
The beam is anchored to BCJ. 

 
 

930 

200 

 

4T20 column bars 

    3T23 beam bars 
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Figure 8.6: Specimens T-NSC3 and T-HSC3, in addition to the column and beam 
reinforcement, have 2T-20 placed at half the depth of the column as CVB. The strain 
in the above identified reinforcement is analysed in detail and graphs are produced 
for the variation of strain along the shown reinforcement in the following sections.   
 
The beam bars are 3-T23 which are equivalent to 4-T20 (design details in Appendix B). It 

was assumed that this reinforcement would be sufficient to yield at joint shear failure.  

 
A TBCJ was designed and details given in Appendix B.  It has been noted that the beam 

required 4-T20 reinforcement bars at the top.  However, this would have caused a complex 

FE meshing problem for the model, so these 4-T20 were changed to an equivalent total 

cross-sectional area of reinforcement which of 3-T23.3 diameter bars,  giving a  more 

appropriate FE element size and better FE meshing for more accurate analysis. Lower 

reinforcements are 2-T8 and beam shear reinforcements are 8T8 at 150 C-C.  

 

TBCJ shear reinforcements are 5 R6 at 200 C-C, chosen as being  the same shear 

reinforcement used in the analogous beams tested experimentally, Table 3-4.. 

 

 

 

 Link at centre R6                    

          Upper link R6 

   Lower link R6 

Rear column  
Bars 2T20 

Front column          
bars, 2T20 
  

Beam bars 3T23 

Central vertical 
bars 2 T20 

Beam stirrups 
8T8 @150 C-C 
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Figure 8.7: Beam cross section.  
 
 

 
 
Figure 8.8:  Column  with 4T20 and no 
CVB 

 
Figure 8.9: Column with 4T20 and 
2T20 CVB 

 
 

8.7 Influence of HSC and CVB on the load bearing capacity of TBCJ  

 
The TBCJ models were set up as shown in Figure 8.10 and loading was applied at 10 
kN increment starting from 60 kN.  The following results were obtained: 
 
1. T-NSC1  no CVB concrete strength is 42 MPa  failed at 220 kN 

2. T-HSC1 no CVB concrete strength is 110 MPa  failed at 260 kN 

3. T-NSC3 with CVB     failed at 260 kN 

4. T-HSC3 with CVB     failed at 340 kN 

 

Increase in strength of concrete from 42 MPa to 110 MPa, or  175%, resulted in 

improvement in load bearing capacity from 220 kN to 260 kN, or 18%.  

 

200 

3T23 

 8T8-150 c-c 

         2T8 

930 

 
300 

200 

300 

200 
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Figure 8.10: Position of the applied load, reactions and constraints of TBCJ with 
CVB. Figure 8.2 shows same elevation without CVB. 
 

 

When CVB is added, the load bearing capacity of  T-NSC1 increases from 220  to 260 kN 

in T-NSC3 or 18%. The greatest increase occurs when the concrete strength is increased to 

HSC and CVB is  present in  T-HSC3 when load bearing capacity increases from 260kN   

for T-HSC1 to 340 kN  for T-HSC3 or an improvement of 31% . 

 
8.8 Crack development  

 
The distribution of cracks is more widespread on the T-NSC3  specimen . This widespread 

distribution of cracks in NSC results in premature mobilisation of  dowel cracks along the 

CVB for NSC compared to HSC, therefore  less lateral strain on the CVB in HSC 

compared to NSC. 

 

930 

  200 

2930 

  200 

  200 

300 
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In the final section of this chapter the moments about z axis on CVB will be determined as 

these moments are higher in NSC which results in early formation of cracks in T-NSC3 as 

compared to T-HSC3. 

 

 
Figure 8.11: In T-NSC1  the first crack appears in the two elements in the  column 
just  above the opening corner. The circle indicates the crack and the octagon 
represents crash 
 
 

 

Figure 8.12: At 140 kN cracks appear near the opening corner and on the column rear of 
the closing corner. 

 

 

  
a) T-NSC3 : 200 kN b) T-HSC3 : 200 kN 

 
Figure 8.13: Comparing the amount cracks produced on T-NSC3 and  T-HSC3 at 200 
kN . 
 
 



____________________________________________________________ 
Motamed, J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’    
 
 

 

415

8.9 Deflection  of models  

 
Deflection is measured at the loading point level at the end of the beam and it was assumed  

relationship between load and deflection are approximately linear as shown in Figure 8.14. 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T-NSC1 T-NSC3 T-HSC1 T-HSC3
 

Figure 8.14: Displacement of  end beam Figure 8.15: Deflection Comparison 

 

Specimens T-NSC1 T-NSC3 T-HSC1 T-HSC3 
Load (kN) 210 250 250 330 
Deflection (mm) 9 11.5 10 13 

 
Table 8.5: Ultimate deflection at 10 kN before failure load 
 

 Loading  at 7.5 mm deflection  

Specimens T-NSC1  T-NSC3 T-HSC1 T-HSC3 
Load (kN) 178 188 208 241 
Specimen/ T-NSC1 1 1.06 1.17 1.35 

 
Table 8.6: Comparison of loading corresponding to 7.5mm deflection 
 
Table 8.6 shows the load required on each specimen to produce 7.5mm deflection. The 

table compares the increase in deflection due to concrete strength and presence of CVB. 

The following conclusion  for deformation of the specimen is concluded:  

 

• T-NSC3 has added CVB compared to T-NSC1 but material property is the same 

resulting in reduction of  deflection by  6%  

T-NSC1 

T-NSC3 
T-HSC1 

T-HSC3 
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• T-HSC1 has no added CVB compared to T-NSC1 but its material property is 

improved  from NSC to HSC resulting in reduction of  deflection by  17%  

• T-HSC3 has added CVB and has improved concrete strength compared to T-NSC1  

resulting in reduction of  deflection by  35% . 

8.10  Analysis of the strain development in the reinforcement 

 
In this section a rigorous investigation on the stain development along critical length of the 

reinforcement cage of the TBCJ is carried out at incremental loading up to failure in order 

to demonstrate the influence of  CVB and HSC in TBCJ.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 8.16: Key diagram for TBCJ showing critical locations of maximum strain on 
the  reinforcement  
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The investigation into strain development is focused on locations  shown along the 

reinforcements detailed in  Figure 8.16. The location and the length of each  reinforcement 

under investigation is shown in Figure 8.17 and Figure 8.18. 

 

 

 
Figure 8.17: TBCJ with positions of strains investigated.   The  strain of the  beam 
L shaped bar is measured at a point 400mm away from the face of column. TBCJ 
link strains investigated for 3 links as shown. 

 
 
 
 
 

 
 

Figure 8.18: Position of strain merged in Y direction along the critical part of the 
column bar starting at point 0.0 which is 200mm above the top of the beam in front 
column bar (beam side).  
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8.10.1  Strain along the  L shaped  beam bar   
 
The position of beam bar in TBCJ considered in the discussion is shown in  

Figure 8.17. The total length of this section is 766.6 mm which  is considered as the critical 

location of interest where strain in the beam bar develops to its maximum. 

 

The radius of bend is not included in the beam bar length as past research [8-2] has 

suggested that the radius of bend does not play a dominant role in determining the ultimate  

joint behaviour in BCJ. However, this is an assumption to simplify FE modelling, in 

practice the minimum radius of bend must be minimum as shown in Table 6-1.  

 

The maximum strain in the  beam bars of the four specimens are investigated from graphs  

starting from Table 8.7, comparing  strain  in NSC and HSC models,  T-NSC1 and T- 

HSC1, in a horizontal ( X ) direction for beam reinforcement. 

 

When the applied load is increased to 200 kN, the maximum strain in NSC is 0.0023 and 

occurs at  the opening corner, but in HSC the maximum strain is greater than 0.0028 and 

occurs at the bent corner of bar, Figure 8.19a, which is 22% greater than NSC.  

 

With T-NSC1 compared to T-HSC1at 200 kN,  strain on the beam bar for T-HSC1  at the 

point of  entering the column increases by 8%  and its bent reinforcement ( fy=720) reaches 

87% of  its yield. The strain on the tail part  part of anchorage  0.0014, Figure 8.19b.  

The strain at tail for T-NSC1 at 200 kN, just before failue is 61% of strain in lead. This 

compares well with BCJ1 which had 62% and BCJ4 57%, Table 5-4.  

 

At 210 kN load,  before failure at 220 kN T-NSC1 with 10 kN (5% increase in loading), 

the strain on the tail anchorage increases from 0.0014 to 0.0026 ( 86% increase),         

Figure 8.19a.   

 

At 210 kN, T-NSC1 fails as a result of the strain in the vertical tail anchorage part of  the  

beam bar, whereas  in T-HSC1 at 220 kN  strain concentration is as the bend yields,   

Figure 8.19d.  

 



____________________________________________________________ 
Motamed, J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’    
 
 

 

419

 
a) T-NSC1 strain  at 200 &210 kN  
 

b) T-NSC1& HSC1 strain at 200 kN  

 

c) T-NSC3  with CVB is strain at 200  kN  
 

d) T-HSC1 strain  at 220 kN & T-
NSC1 strain  at 210 kN.  
 

Figure 8.19:  Comparison of strain in beam  bar 
 

 

Figure 8.20: T-NSC3& HSC3 Strain at 
240 kN 

Figure 8.21: T-HSC3 up to  
330 kN.  
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A comparison of beam bar strain in T-NSC3  and T-HSC3 at  240 kN load, Figure 8.20, 

shows that the  position of maximum strain is the point at opening corner for both cases 

with HSC3 strained to 0.0021 and NSC3 to 0.0026, a reduction in strain of 24% due to the 

material property. At 240 kN, strain in tail for T-NSC3, and T-HSC3 are 63% and 75% of 

strain in lead, Figure 8.20.  

 

In beam reinforcement in T-HSC3, Figure 8.21,  up to 280 kN strain is the maximum at 

opening corner at 0.0025, which changes to 0.0028 as load increases to 330 kN.  The 

maximum strain is 0.0032 at the tail anchorage just before failure. 

 
For T-NSC3 at failure, the strain in the region near the  opening corner  reaches 0.0026 

whereas at the end of anchorage bar it reaches 0.0016, Figure 8.20. Therefore, the 

introduction of  CVB in NSC  results in increasing strain at the  opening corner by 13% 

and a reduction in strain at anchorage tail  of 42%, Figure 8.20. 

 

The presence of CVB in HSC results in a significant drop in strain at the bent corner of the 

bar. The concentrated strain in the bent reached 0.0033 in HSC specimens without CVB at 

220kN load, Figure 8.19d, however, the presence of CVB ensured that strain at bent corner 

does not increase more than  the very small and insignificant figure of 0.0005. Presence of 

CVB in HSC reverses the situation in the anchorage by by bringing the tail to yield of 

0.0032. 

 

  Beam bar strain without CVB (10-3) Beam bar strain with  CVB (10-3) 
Load 
(kN) 

Opening corner Anchorage Opening corner Anchorage 
HSC1  NSC1  HSC1  NSC1 HSC3  NSC3  HSC3  NSC3 

140 0.99 1.4 0.81 0.63 1.2 1.5 0.5 0.9 
168      1.9  1 
200 2.0 2.3 2.8 1.4 1.7  1  
210  2.3  2.6     
220 2.3  3.3      
240     2.1 2.6 1.5 1.65 
260     2.3  1.9  
280     2.5  2.5  
320     2.85  3.1  
330     2.85  3.2  

 
Table 8.7: The results from graphs for TBCJ.  Load against strain in the beam 
reinforcement indicates  maximum strain fluctuation at opening corner and 
anchorage. NB: Anchorage failure for HSC1 is at the bent corner as compared to 
HSC3 which occurs at the end of the anchorage bar and not the corner. 
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For  specimen without CVB, HSC has 40 kN or 18.2% higher load bearing capacity than 

NSC, but as Figure 8.22b shows, HSC specimens have  a higher  ratio of strain in bent at 

anchorage to strain in opening corner compared to NSC, Figure 8.22a,  which is not a 

desired characteristic as this shows  that the T-HSC1 failure occurs at the bend and  is less 

ductile  than T-NSC1. This situation reverses when CVB is present in HSC,  Figure 8.21, 

when the strain on the bend is reduced and the beam bar and the tail are strained at 0.0025 

and 0.0024 up to 280 kN, and just before failure at 330 kN the strain in tail reaches 0.0032 

when beam bar strain is 0.0028 and failure occurs due to slippage at the tail. 

 
For NSC at equal loading of 200 kN, comparing  Figure 8.19(a&c), at opening corner 

(OC),  CVB reduces the strain on the bar from 0.0023 to 0.0017 or by 29%, and reduces 

the strain on the tail of the anchorage from 0.0014 to 0.001 or by  40%.  

 

The influence of CVB in NSC significantly reduces the strain on the anchorage as loading 

passes 200 kN. T-NSC3 at 240 kN has beam bar strain of 0.0026 at opening corner, with 

strain at tail of 0.0006, Figure 8.20, whereas at 210 kN has beam bar strain 0.0022 at 

opening corner, with strain at tail of 0.0026, Figure 8.19a.  

 

For T-NSC1, the gradient for increase in strain with loading is a ratio of 1.6 micro strain to 

100 kN, whereas this is reduced to 1 micro strain  to 100 kN loading when CVB is present, 

demonstrating that the presence of CVB in NSC reduces the possibility of tail anchorage 

failure.   

 

When CVB is present in TBCJ- HSC3, the failure occurs at the end of the anchorage bar  

as compared to failure of T-HSC1  with no CVB which occurs at the bent corner of the 

anchorage which is more critical.  

 

The highest improvement in joint shear resistance occurs with T-HSC3 when HSC and 

CVB are present.  The  failure load of T-HSC3, with CVB reaches 340 kN as compared to 

T-HSC1, without  CVB, which failed at 250 kN. This improvement of 36% was achieved 

due to the contribution of CVB  to HSC.  
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The strain on the beam bar at failure for HSC specimen just before failure, 330kN, at the  

tail, yield at 0.0033 when CVB is present, and  at the opening corner it is 0.0028.        

Figure 8.21 
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a) Beam bar strain for T-NSC1 & HSC1    
without CVB   at  opening corner 

b) Beam bar strain for T-NSC1 & HSC1  
without CVB. NB:  HSC1 maximum at 
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c) Beam bar strain  for T-NSC3 & HSC3    
with added CVB at opening corner  

d) Beam bar strain for T-NSC3 & 
HSC3. NB: HSC3 fails at the  at tail of 
the anchorage bar and not at bent corner 

 
Figure 8.22: The graphs obtained from Table 8.7 on comparison of strain 
development on beam bar for TBCJ made with NSC and HSC with or without CVB 
at maximum strain locations  of opening corner and anchorage. 
 

When CVB is present in NSC, at 240 kN, before failure load of 260 kN, the strain in the 

beam bar is 0.0026 and the strain in anchorage is reduced to 0.00164. Again, the presence 

of CVB in NSC reduces strain on the anchorage and allows the beam bar to develop higher  
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strain.  

 

Similarly,  in  HSC models  without CVB, at 220 kN,  the  maximum strain in beam bar at 

the opening corner is 0.0023 and at the bent is  0.0033, Figure 8.19d. When CVB is present 

in HSC, at 240 kN, the strain in the beam bar at the opening corner is 0.0021 and the strain 

in the tail is 0.0015. As before, this indicates that  the presence of CVB in HSC 

significantly reduces strain on the anchorage bend  and allows the beam bar to  develop 

higher strain at the opening corner until failure at the tail of the anchorage.   

 

Observation of the strains  results of L beam bar  are as follow: 

 

A.  Comparison between NSC and HSC in TBCJ 

NSC:  

- Maximum strain develops at the opening corner at early stages of loading up to 200 kN, 

but at 210 kN it occurs at tail of anchorage, Figure 8.19a. 

- Strain reaches 0.0026 for NSC at tail of anchorage which is below yield ( 0.0036) at     

210 kN, Figure 8.19a. 

 

HSC: 

- Maximum strain  at opening corner is lower than in the NSC  model.  However, higher 

strain almost reaching yielding load occurs at bent corner of  anchorage, leading to brittle 

and sudden failure. The bent corner is strained  at 0.0033 at 220 kN, Figure 8.19b. This 

could also be due to delay in crack development at the opening corner. 

 

B. Comparison of  influence of CVB on the behaviour of NSC and HSC of TBCJ 

 

NSC + CVB (T-NSC3) 

- Loading capacity of the BCJ increases by 18%. 

- Maximum strain  develops at the opening corner  at 0.0026 (yielding occurs at 0.0038).  

- Pull out occurs at the anchorage end due to strain of 0.0016 which is 62.5% less 

compared to when there is no CVB. Presence of CVB results in  more ductile failure.   

 

 HSC + CVB (T-HSC3)  

- Increase in load bearing capacity from 260 to 340 kN. 
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- Prevents failure at the bent corner and delays pull out of lead anchorage until after 280 

kN loading. At 280 kN, strain in opening corner is higher than strain at the end of  

anchorage. The  failure from  pull out of anchorage occurs at 330 kN. 

- More ductility to the structural frame, higher possibility of  forming plastic hinge at beam  

near opening corner,  because at failure the beam bar at opening corner strain is 0.0028 

compared to 0.0023 when CVB is absent. 

 

8.10.2 Strain in the upper shear link in TBCJ 
 
The strain along the length of the upper link in horizontal (X) direction is investigated, see   

location of   upper link in Figure 8.17. The fluctuation of strains corresponding to 

incremental loading according to the development of strain along the length of the leg of  

stirrup  which is 225mm long, is also investigated. 

 
T-NSC 1 

i. Yielding develops in the link as early as 140 kN loading, Figure 8.23a. 

ii.  Position of maximum strain occurs initially at centre of the link for T-NSC1,  

iii.  Figure 8.23  c,  but by increasing the load to 200kN, the position will be at 50mm 

on the length of the link from the rear of the column bar.    

iv. Position of the maxima indicates that the centre of the link, where the experimental 

strain gauges are located, does not experience the greatest strain values at higher 

loads. 

v. Maximum strain at failure is 0.0027 and the load is 220 kN.  This value is 2.16 

times the yield strain. 

vi. Maximum strain increases from 0.0013 to 0.0027 due to increase of loading from 

140 kN to 220 kN.  This indicates 100% increase in strain as the result of the  57% 

increase in loading. 

 

T-HSC 1 

i. No yielding takes place until the loading is equal and greater than 200 kN. 

ii.  Maximum strain occurs at 50mm on the length of the link from the rear of the 

column bar from lower loading up to failure, Figure 8.23a. 

iii.  Maximum strain at failure is 0.0036 and the load is 250 kN, which is 2.88 times the 

yield strain, Figure 8.24b. 
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iv. Maximum strain increases from 0.001 at 140 kN to 0.0036 at 250 kN, 3 times the 

yield value just before failure. However, it does not reach its yield until 168 kN 

loading. 

v.  This indicates 260% increase in strain as a result of 79% increase in loading. 

 
 

 

a) T-NSC1 & T-HSC1 at 140 kN b) T-HSC1   at 140 kN 

  

c) T-NSC1& T-HSC1 at 168 kN d) T-HSC1 Upper link strain at 168 
kN 

 
 

e) T-NSC1 & T-HSC1 at 200 kN  f) T-HSC1   Upper link strain at 200 
kN 8  

9  
Figure 8.23: Upper link  strain T-NSC1& HSC1 just before failure of T-NSC1  at 
220kN. 
 

0.0013       0.001 
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Yield 
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 0.0012 
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 0.0012 
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From the above it can be concluded that, in the upper shear link, HSC1 experienced 160% 

more shear strain and 14% more loading capacity to failure compared to NSC1. 

 

Figure 8.24 shows that generally HSC reduces the magnitude of the strain at the centre by 

25%. 

 

NSC + CVB (T-NSC3) 

 

i. Yielding occurs as early as 140 kN loading. 

ii.  Maximum strain  occurs at 50mm on the length of the link from the rear of the 

column bar from lower loading, all the way up to the failure load.. 

iii.  Maximum strain at 240 kN (just before load failure of 250 kN) is 0.0027.  This is 

2.16 times the yield strain of the link and it is exactly the same as for the NSC1 

model, which indicates that CVB did not change the amount of the maximum 

strains in the link and resisted the additional shear load of 30 kN on its own 

iv. Maximum strain increases from 0.0014 to 0.0027 due to increase of loading from 

140 to 240 kN.  This is a 93% increase in strain due to 71% increase in loading. 

 
 

 Maximum 
strain 

 

Maximum strain 
from end (mm) 

Strain at 
ends 

Load 
(kN) 

NSC  
(10-3) 

HSC  
 (10-3) 

 
 

NSC   HSC 

 
HSC  
(10-3) 

 
NSC 
(103) 

140 1.3 0.94 112.5 169 0.3 0.4 

168 1.5 1.2 112.5 169 0.75 0.8 

200 2.3 1.6 169 169 0.95 0.55 

240  3.0  169 2.0  

250  3.6  169 2.6  

10  
Table 8.8: Maximum strain within the leg of the upper link for T-NSC1 and T-HSC1 
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a) At 240 kN,  T-HSC1 is compared to T-

HSC3  

b) Comparison of NSC1, 210kN  & 

HSC1, 250 kN before failure load 

11  
Figure 8.24: Development of strain in upper link of T-HSC1 up to failure load 260 kN. 
Position of maximum strain is point b, Figure 8.16 
 
 
HSC + CVB (T-HSC3)  

i. No yielding takes place until 200 kN loading. 

ii.  Maximum strain always occurs at 36mm on the length of the link from the rear 

of the column bar from lower loading,  

iii.  Maximum strain at 330 kN (just before failure of 340 kN) is 0.0034.  This value 

is 2.72 times the yield strain of the link. 

iv. Maximum strain increased from 0.0011 to 0.0034 due to increase in loading 

from 140 to 330 kN.  This 209% increase in strain is due to 136% increase in 

loading. 

 

Comparing the behaviour of the upper links in NSC3 and HSC3 it can be concluded that  

the maximum shear strain developed in the link of HSC3 model is 125% greater than that 

developed in NSC3.  Also maximum loading capacity of the model of HSC3 increased by 

93% compared to that of NSC3. 

 
 
 

0.0027 

Yield
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NSC1 at failure  
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HSC1 at failure 
250 kN  

HSC1 
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a) T-NSC3, T-HSC3 and  
T-NSC1 compared at 140 kN  

b) T-HSC3 and TBCJ-HSC compared at 
140 kN 

  
c) Strain in T-NSC3 and  T-HSC3 
compared at 200 kN 

d) Strain T-HSC3 and NSC3 compared at 
240 kN 

 
Figure 8.25: Comparison of  strain in upper link of T-NSC3 & T-HSC3 before failure of 
T-NSC3 at 250 kN. Position of maximum strain is shown as  point b in Figure 8.16. 
 

 

Summary of influence of HSC material on the behaviour of upper shear link 

i. Considering T-NSC3 and T-HSC3 indicates that HSC3 reduced the strain/unit load 

developed in the link by 22%  without CVB and 39.8% with CVB. 

ii.  Consideration of NSC1 & HSC1 indicates that HSC increases the strain per unit 

load in the link by +12% for model with no CVB. 
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Figure 8.26: Strain in the upper link for T-HSC3 up to  failure load of 340 kN. 
Position of maximum strain is point b, Figure 8.16 
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N
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Maximum 
 (10-3) 

Strain 
HSC  

Maximum 
(10-3) 

Strain 
 end of  
HSC  
(10-3) 

Strain 
end of 
NSC 
(103) 

Fig No 
 

N
S

C
 

 
H

S
C

 

140 1.4 1.1 0.6 0.22 Figure 
8.25 

a b 
200 2.3 1.6 0.95 0.55 c d 
240 2.7 2 1.15 0.6 e f 
260  2.3  0.8 Figure 

8.26 
a b 

280  2.7  1.1 c d 
300  2.9  1.4 Figure 

8.26 
 b 

320  3.2  1.45 c  
330  3.4  1.7  d 

 
Table 8.9: Maximum strains in upper link  and at the end  in T-NSC3 & T-HSC3 .  
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T-NSC1 .0013 210 50 .0027 108% 12.9 
T-HSC1 .0010 250 50 .0036 260% 14.4 
T-NSC3  .0014 240 50 .0027 93% 11.25 
T-HSC3  .0011 330 36 .0034 210% 10.3 

 
Table 8.10: Conclusive data  from strain recordings  at upper link 
 

 0.0016@200 kN 

0.0020@240 kN 

Yield
 

0.0023@260 kN 

0.0034@330 kN 

0.0032@320 kN 

0.0029@300 kN 

180 
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Summary of influences of CVB on the behaviour of upper shear link 

i. CVB does not significantly influence the magnitude of strains developed in the 

link, neither at the initial loading of 140 kN nor at failure load for both NSC and 

HSC models. 

ii.  CVB caused the reduction of strain per unit load: 16% for NSC and 40% for HSC.  

This indicates that CVB increased the confinement and shear resistance of the BCJ 

which resulted less strain per unit load on the link.  Therefore, it can be concluded 

that CVB is more effective in HSC structures. 

iii.  In HSC with CVB,  the position of maximum strain is at 36mm from the rear 

column bar as compared to 50mm for all other models.  

 

Summary of strain-load relationship for upper shear link 

For models without CVB it can be seen that the relationship of strain and applied load on 

the model is relatively linear for T-NSC1.  However, for T-HSC1 the relationship is 

slightly different as when the load reaches 240 kN there is sudden increase in the strain in 

the link due to the formation of a crack in the model after the yielding of steel which 

occurs at 240 kN, Figure 8.24. 

 

Discussion of strain behaviour in the upper shear link 
 

When comparing NSC1 with NSC3 the maximum strain developed in NSC1 in the upper 

link is 0.0027 at 210 kN, Figure 8.23e.  However, when analysing a model for a similar 

joint but with the addition of CVB, i.e. NSC3 model, the maximum strain is the same 

0.0027 but the load increases to 240 kN, Figure 8.25d. This is an appreciable 14% increase 

in loading capacity with constant strain in the link.  This additional 14% shear resistance in 

TBCJ is supported by the CVB.  

 

In Appendix C, strain gauge recordings from experimental tests for beams NSC2, NSC3 

and NSC4  with HWB of T12, T20 and T25, and strain gauge readings in stirrups (No 25 

& 27) are analogous to the  upper link yields when exceeding 200 kN loading .  Failure 

immediately occurs and the presence of HWB does not resist any additional shear forces 

and  shear failure immediately follows at 210 kN.  

 

Similarly,  comparing the results in  HSC1 and HSC3 it can be noted that the maximum  
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strain which develops in HSC1 in the upper link is 0.0036 at 250 kN, Figure 8.24b.  

However, when testing  a similar joint in HSC3 model but with the addition of CVB, the 

maximum strain remains relatively the same at 0.0034 but the load increases to 330 kN, 

Figure 8.26.  This is a 32% increase in loading capacity with relatively the same strain 

(only 5% difference) in the link.   
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Figure 8.27: Maximum strain fluctuation in the upper link for all TBCJ models 
 

It can be concluded that CVB has a limited influence on the confinement (14%) in TBCJ-

NSC models, however, it has a good influence on the confinement of the HSC  joint 

(32%), in T-HSC models. 
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This activation of strain within the region of development of the  diagonal compression 

strut in T-NSC3 is due to presence of CVB which improves the load bearing capacity for 

T-NSC3 to 260 kN, compared to 220 kN for T-NSC1. This increase of 18% in load bearing 

capacity in NSC is modest  compared to 55% for T-HSC3 of failure of 340 kN.  

 

As shown in Appendix C, from strain gauge recording of experimental tests on the 

analogous HSC beams with HWB (similar to CVB for TBCJ), as loading is increased, 

when the links exceed their  yield  cracks are formed, then HWB begins  to resist shear 

forces for the additional loading.  

 

Strain gauge readings in Appendix C show that for beam HSC4 which has HWB of T25, in 

stirrups (Links no. 25 & 27) analogous to upper link after 260 kN  yield beyond 0.01 when 

all other stirrups also exceed their yield value significantly, but presence of HWB resists 

shear forces up to failure load of 300 kN.  

 

Discussion on strain developments on the upper shear link 
 

The main cracking developed in NSC and HSC were at 168 kN and 200 kN respectively,  

Figure 8.23 (c& e), whereas, tensile strength of NSC and HSC are 2.9 and 4.5 MPa 

respectively, Table 8.1. This means 19% larger cracking  load  in spite  of 55% higher 

tensile strength for concrete. 

 

CVB resulted in reduction of maximum strain in upper shear link . For 140 kN, maximum 

strain reduced in NSC and HSC by 8% and 10% respectively, Figure 8.25(a&b) whereas 

for 200 kN maximum strain reduced in NSC by 17% while HSC strain behaviour does not 

change. Figure 8.23e and Figure 8.25c. 

 

HSC without CVB has a strain per unit load gradient of 0.014 kN-1 compared to with CVB 

of 0.01 kN-1  at loading of 140 kN to 240 kN. This gradient increase for HSC with CVB as 

load increases from 240 to 320 kN to 0.015 kN-1, from 320 to 330 kN to 0.02. This shows 

CVB comes to full action at final loading stage, Figure 8.25. 
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8.10.3 Behaviour of strain at lower link of TBCJ 
 

The strain along the length of the lower link in horizontal (X) direction is investigated.  

The location of lower link strain from  0.0 point  is   shown in Figure 8.17.  

 

The fluctuation of strains corresponds to incremental loading ( according to the 

development of strain) along the length of the  stirrup  which is 225mm long,  located 

700mm below the top of  the beam. 

 
Comparison of the strain in lower link for T-NSC1 and T-HSC1 
  
The strain distribution is concentrated at the centre of the links (112.5mm) for T-NSC1,  

and as the load increases this concentration is transferred to the quarter span point 

(56.3mm), Figure 8.28, but the strain is almost distributed to the inner half of the column in 

T-HSC1, for up to 220 kN loading. However, as the load exceeds 240 kN, the strain 

concentration is at quarter span point (56.3mm) up to failure load . This distribution of 

strain in the lower link of the TBCJ  demonstrates development of a diagonal  strut in the 

zone close to  the inner side of the lower link for T-NSC1 & HSC1. 

 

 

a) T-NSC1 Strain at 140& 210 kN b) T-HSC1 Strain at 140& 220  kN 
 
Figure 8.28: Comparison of strain  at lower link  for T-NSC1 and HSC1 
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Figure 8.29: T-HSC1 Strain  at 250, 240  and 220 kN in  lower link   
 
 
The total maximum strain for all specimens is  recorded for corresponding failure loading . 

This maximum strain is at quarter span of link at 56.3mm from the  inner end of the stirrup  

for both NSC and HSC. At the inner end of the stirrup just before failure of           T-NSC1, 

strain develops to 0.0015 for T-NSC1, Figure 8.28a,  and 0.0017 for T-HSC1, Figure 8.29, 

which indicates that presence of the diagonal  compression strut in the BCJ not only shifts 

the maximum strain to the quarter span of the column depth, it also from the outset initiates 

proportionally higher strain on the end (0.0 mm), whereas at the  other end (225.0mm) 

where there is no influence of diagonal compression strut the strain is very small. 

 

With T- NSC1 up to  loading of 140 kN, the maximum strain of 0.0013  develops at the 

centre (75mm) of the link, Figure 8.28a. However, by the time loading reaches 200 kN and 

strain develops to 0.0026 , the maximum strain occurs at a quarter of its length (56.3m) in 

the location where the diagonal compression strut develops at the lower part of the            

T-NSC1 and this continues until  failure  at 210 kN loading, Figure 8.28a. In T-NSC1 the 

stirrup starts its yield at 140 kN loading with a strain of 0.0013 ( fy=250 MPa), Figure 8.28,  

but in T- HSC1  this does not occur until after 168 kN loading when strain is 0.0012 , the 

maximum strain occurs at a quarter of its length (56.3mm) in the location where the 

diagonal compression strut develops, Figure 8.29,  at the lower part of the T-HSC1 until 

failure of the strut at 260 kN loading. 

 

0.0028@ 240 kN 

0.0016@220kN 

Yield
 

0.0038@ 250 kN 
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 Maximum 
strain 

Distance from 
end   (mm) 

Strain at ends 

Load 
(kN) 

NSC  
(10-3) 

HSC  
 (10-3) 

 
 

NSC  H SC 

HSC  
(10-3) 

NSC 
(103) 

140 1.3 1 112.5 112.5 0.75 0.3 
168 1.6 1.2 112.5 112.5 1.2 0.6 
200 2.1 1.6 56.3 112.5 1.5 1.45 
210 2.6 1.7 56.3 112.5 - 1.5 
220  1.8  112.5 1.7  
240  2.8  56.3   
250  3.8  56.3   

 
Table 8.11: Strain performance of lower link located in T-NSC1 and T-HSC1 
 

This change in location of the maximum strain in lower link at T-HSC1  to a quarter of the 

length within the region of diagonal compression strut is of special significance as in the 

experimental tests it is always assumed that the mid-length of stirrup would be exposed to 

the  maximum strain and therefore strain gauges are mistakenly placed at the centre of leg 

of links. Compared to  the reading at its centre of 0.0016 at 220 kN, Figure 8.37b as 

loading is increased to 250 kN the maximum strain  is 0.0038 compared to the reading at 

its centre of 0.0021, Figure 8.29, increasing by 81% in the zone where the diagonal 

compression strut is active. 

 

Similarly, in T-NSC1 the strain at quarter span at 200 kN is 0.002 compared to  the reading 

at the centre of 0.0014, Figure 8.28 , a 186% increase, and as loading is increased to 210 

kN it is 0.0026 compared with the reading at the centre of 0.0021, a 124% increase. 

 
 Maximum 

strain 
 

Distance from end 
(mm) 

Strain at ends 

Load 
(kN) 

HSC  
(10-3) 

NSC  
 (10-3) 

 
 

NSC  
                   
HSC  

NSC  
(10-3) 

HSC 
(103) 

140 0.81 1.2 56 56 0.3 0.07 
200 1.2 2.1 56 56 0.63 0.45 
240 1.5 2.4 56 56 0.7 0.58 
260 1.6   56  0.62 
280 1.9   56  0.75 
300 2   56  0.86 
330 2.3   56  1.05 

 
Table 8.12: Comparison of strains in horizontal direction in the lower link of T-
HSC3 and T-HSC3 up to failure of T-HSC3. Maximum strain occurs at 56mm from 
end,  close to the beam. 
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This maximum difference just before failure  of 81% for T-HSC1 at 250 kN and 24% for 

T-NSC1 is due to development of the compression diagonal  strut in that zone on the link. 

It is recommended that in future experimental research work positioning of the strain 

gauges on links be determined based on the direction of the diagonal compression strut 

above and below the centre of BCJ. 

 
Discussion of strain analysis in the lower link 
 

T-NSC1 has a  maximum strain of 0.0026 at 210 kN and failure load of 220 kN  in lower 

link, Figure 8.28 . T-NSC3 developed maximum strain of 0.0024 at 240 kN and its failure 

load is 260 kN, an increase in loading of 40 kN due to the presence of CVB, Figure 8.30.  

 

The strain for NSC at lower loading up to 220 kN  is the same for both with and without 

CVB, Figure 8.31d. This increase of 18% in load bearing capacity in NSC is modest  

compared to the 42% increase for HSC, Figure 8.31c. This demonstrates that the proposed 

Baumann’s modified design rule  which is based on dowel action being dependent on 

concrete strength for dowel or shear resistance is verified by this numerical model. 

 

 
 

Figure 8.30: T-NSC3 in the lower link until failure load of T-NSC3. Position of 
maximum strain is point d 
 

Contrary to the lack of influence of CVB on strain development in NSC up to 210 kN, in   

0.0021@200 kN 

Yield
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0.0012@140 kN 
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HSC the contribution  of CVB to strain development is significant when loading is above  

140 kN. Figure 8.31c. 

8.10.4 Comparison of strain in centre link for TBCJ 
 

The strain variation corresponds to  incremental loading along the length of 225mm of the 

central stirrup shown in Figure 8.32. 
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a) Maximum strain comparison for 
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b) Maximum strains in horizontal 
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c) HSC TBCJ with and without CVB 
in the lower link 

d) NSC TBCJ with and without CVB 
in the lower link 

 
Figure 8.31: Maximum strain comparison for lower stirrup  
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12 a) T-NSC1 Centre link at 140 kN b) T-HSC1 Centre link at 140 kN 

c) T-NSC1  at 168 kN d) T-HSC1  at 168 kN 

e) T-NSC1  at 210 kN f) T-HSC1  at 220 to 250 kN  
 
Figure 8.32: Comparison of strains for centre links for  T-NSC1 &HSC1 

 

Both NSC and HSC specimen without CVB pass their yield values at 168 kN, Figure 8.32 

(c &d). , T-HSC1. Figure 8.32 show  the strains in centre  link for T-NSC1 and T-HSC1 
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and  indicates the fluctuations in strain as loading increases to before failure up to  250 kN. 

Figure 8.32 (e) shows that at 210 kN for T-NSC1 strain is distributed  across the length of  

link as compared to T-HSC1, Figure 8.32, where strain is concentrated at the centre of link. 

This distribution of  strain  at 210 kN before failure causes the  development of a wider 

strut at centre part of TBCJ, where the link strain is 0.0025 compared to 0.002 in T-HSC1. 

 

Figure 8.34a shows that when no CVB is present in  NSC the centre link is strained at the  

steady and consistent rate of  2.14×10-3 per kN  all the way to failure,  whereas in HSC 

without CVB at an early stage  up to load of 160 kN the  rate of  2.14×10-3 per kN similar 

to NSC suddenly drops to a strain of 1.79×10-3 because higher  concrete strength 

demonstrates  its contribution up to 220 kN when cracks in the concrete make it 

ineffective,  and the abrupt and sudden jump of  rate of strain increase per kN is from 

1.79×10-3 to 6×10-3 for 40kN and then failure, demonstrating the brittle and sudden failure  

behaviour of HSC with no CVB, Figure 8.34a. 
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Figure 8.33: Distance where point of maximum strain develops for T-HSC1 and T-
NSC1 on the stirrup from the inner end to its outer end 
 

Notes on the slope gradients: 
 
θ1  is very high strain rate indicating rapid yielding and very little contribution from 

concrete strength. θ2  is high strain rate indicating rapid yielding and contribution from 

concrete strength  and reasonable confinement. θ3  is low strain rate indicating slow 

yielding and good contribution from concrete strength and good confinement,                 

Figure 8.34d. 

 

The mode of failure of T-HSC1 gives little warning of cracks which widen  up to 220kN and  

225 mm 
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then in the last 40 kN the cracks open suddenly with no warning. FE does not simulate element 

separation and demonstrates failure as if concrete was behaving like rubber to failure point. It 

is possible that if alternative methods such as Finite Difference or Applied Element methods 

were applied for this structural system, element seperation could  have been recorded for the 

centre link at 220 kN, instead of 6×10-3 strain increase per kN. 

 

Figure 8.34b shows that TBCJ of NSC both with and without  CVB have the same gradient  

or  rate of increase in strain of  2.14×10-3 per kN, but surprisingly the average  strain in NSC 

with CVB is around 14% higher from start up to failure load for  T-NSC1. Experimental tests 

on analogous beams NSC1 and NSC3, Figure 3-39, confirm  the same strain distribution as in 

Figure 8.34.  

 
Load 
(kN) 

T-NSC1 
(10-3) 

T-HSC1 
(10-3) 

T-NSC3 
(10-3) 

T-HSC3 
(10-3) 

140 0.15 1 1.5 1 
168 0.5 1.5   
200   2.8 1.2 
210 2.5    
220  2   
240  3.3 3.1 1.6 
250  3.8   
260    1.8 
280    1.9 
300    2.1 
320    2.2 
330    2.3 

 
Table 8.13: Comparing centre link maximum strain for T-NSC1 and HSC1 up to 
failure of T-HSC1 at 260 kN 
 

This 14% increase in strain is due to CVB straining straining the link  . This is contrary to 

the behaviour for HSC, Figure 8.34d, when the presence of CVB reduces the strain in the 

link. HSC surrounding CVB produces significant dowel resistance to the extent that from 

an early loading stage this dowel shear resistance takes a larger proportion of the applied 

shear load.  

 
Discussion on  the strain analysis in centre link 
 

The FE model shows that the strain in the centre  link, Figure 8.34,  for T-NSC1 at 210  
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kN  without CVB is  less than the strain for T-NSC3 which has  CVB, demonstrating that 

the centre bar for T-NSC3 is strained from 2.8×10-3 to 3.1×10-3 during the final 40 kN 

loading or 0.75×10-3 per kN, or 10% increase in  strain for 20% increase in loading,  

showing that  the dowel action in CVB is absorbing most of the  additional shear forces 

produced by the increased loading. 
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Figure 8.34: Comparison of  longitudinal strains on the centre link for  T-NSC1, T-
HSC1, T-NSC3, and T-HSC3. These graphs compares well with analogous beam shown 
in Figure 3-39 chapter 3. 
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Comparing FE model  strain recordings  for T-NSC1 and T-HSC1 in Figure 8.34, model 

HSC  has a strain gradient of 0.0179×10-3 per kN  up to 170 kN loading, after which  the 

high strength of concrete contributes to restricting a rapid increase in strain.  As a result, 

the strain gradient is reduced to 0.01×10-3 per kN from 170 kN to 220 kN. At 230 kN shear 

cracks developing close to centre link increase the strain gradient to 0.06×10-3 per kN  

from 220 kN to failure at  250 kN.  

 

The comparison of the behaviour of T-NSC3 with HSC3 in Figure 8.34 (c) can be 

compared to the behaviour of the analogous beams NSC3 and HSC3, (Figure 2-36c in 

Chapter 2), where the influence of HSC in reducing strain on the centre link is clearly 

apparent.  From Figure 2-36d in Chapter 2, it was  recorded experimentally that after 

HSC3 has passed its yield value of 1.3×10-3  several times over reaching 9.9×10-3  at 200 

kN, a significant shear crack has made the centre link obsolete, but the dowel action from 

HWB is the only means of resisting the  shear forces from 200 kN to 280 kN. This 

demonstrates that only dowel action from HWB was resisting the final 80kN (40%) 

loading. 

 

The presence of CVB increases the load bearing capacity of T-HSC3 to 340 kN  compared 

to 260 kN T-HSC1, Figure 8.34  (d).  Just before failure of T-HSC3 at 330 kN the strain is 

0.0023, Figure 8.35d,   which is less than 0.0038 for T-HSC1 at 250 kN, Figure 8.32f. The 

dowel action in the CVB takes up a significant proportion of the shear in such way that in 

spite of more than a 30% increase in load  the strain on the centre link is   reduced by 65%.  

 
The maximum strain in all TBCJ acts at the centre span (112.5 mm)  of  the leg  of the  

centre link which is close to the centre of the inclined diagonal compression strut in the 

joint. 

 

The presence of CVB in NSC specimens does not make a significant contribution to strain  

reduction on the centre link. The CVB makes a modest contribution of 0.0004 difference in 

strain reading in comparison with the specimens without CVB and this difference remains 

unchanged as the applied load increases, Figure 8.34 (b).   

 

For similar beams the presence of HWB in NSC specimens does not make much difference 

in strain on the centre link until 120 kN, (Figure 2-36d, Chapter 2). After this loading 
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NSC1 which has no HWB has a very high strain increase at 0.033×10-3  until its failure. 

The strain reaches 9.3×10-3 (more than 700% yield)  after 140 kN, and the dowel action 

from HWB resists shear until failure load of 170 kN. 

 

 

 
a) T-NSC3, up to  260 kN b) T-HSC3, up to 240 kN  

 

 

c) T-NSC3 and T-HSC3 at 240 kN d) T-HSC3 up to failure 

 
Figure 8.35: Comparison of strains in axial direction in the centre link for T-NSC3 
and T-HSC3. 
  
 

The presence of CVB in HSC specimens makes a significant contribution to strain 

reduction on the centre link and this increases exponentially as the applied loading 

increases, Figure 8.34 (d). At 250 kN loading, the maximum strain in centre link of HSC 

model without CVB is 0.0038, or 300% of  its yield value, compared to 0.0017, 42% above 

yield, when CVB is absent.  The maximum strain on centre link in HSC with CVB is 

0.0023, 92% above its yield,  at 330 kN loading. Failure load is 340 kN. 
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The experimental results for beams HSC3 and HSC1 show that after 120 kN as the strain 

in centre link of HSC1 reaches 1.8×10-3  or  %138 its yield value, the beam abruptly fails. 

However,  when HWB is present the strain in  the centre link remains as little as 0.17×10-3, 

13 % of  its yield value , up to 180 kN loading. However, due to formation of large shear 

cracks, the centre link reaches strain of 9.9×10-3 (760% of its yield) at 200 kN, but at this 

stage the HWB independent of any other material resists the shear forces for another 80kN 

or a further 40% increase in loading, Figure 2-36, Chapter 2. 
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13  
Figure 8.36: Strain in 3 links located at the centre of the TBCJ.. 
 

Conclusion on behaviour of all links 
 
T-NSC1, Figure 8.36a 

o Central link experiences much smaller deformations compared to the upper and 

lower links but it develops similar strain at failure.   

o Generally the strain in the links increases gradually when the rate of strain/load is 

constant which indicates normal concrete mode of failure.   

o Failure occurs at 210 kN when the strain is 2.0 times the yield strain. 
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Yield  
Yield  

Yield  



____________________________________________________________ 
Motamed, J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’    
 
 

 

445

T-HSC1, Figure 8.36b 

o All the three links experience similar strain behaviour, which indicates that there is 

better stress distribution when using HSC.  

o There is rapid strain increase in all the three links after 210 kN which indicates a 

brittle mode of failure. 

o Failure occurs at 250 kN when the average strain is 2.9 times the yield strain. 

 

T-NSC3 (T-NSC1+CVB), Figure 8.36c 

o Central link carried maximum strain behaviour compared to the upper and lower 

links.  This is the reverse behaviour of NSC1 (without CVB), which shows the 

influence of CVB on the behaviour of the joint. 

o Generally the strain in the links increases rapidly with the rate of strain/load 

maximum at initial loading and this reduces with further increase in loading.  This 

represents a more ductile mode of failure compared to NSC1. 

o Failure occurs at 240 kN when the maximum  strain is in centre link of 2.5 times 

the yield strain.  

 

T- HSC3 (T-HSC1+CVB), Figure 8.36d 

o A new location for maximum strain on the upper link compared to the other three 

models is due to presence of CVB in HSC. 

o Similar behaviour to T-HSC1 (without CVB) except the rate of strain/load is half  

that of HSC1 which indicates a more ductile mode of failure. 

o The upper link experienced greater strain behaviour compared to lower and centre 

links which probably due to the cracks which developed at back of the column 

near anchorage bar. 

o Just before failure at 350 kN when the maximum strain is in upper link with a value 

of 2.3 of the yield strain.  

 

Summarising the joint behaviour in these three links, three main points can be noted which 

are: 

1. The position of maximum strain in the upper link  from the  rear column 

reinforcement  is 50 mm for T-NSC1, T-NSC3 and T-HSC1. Presence of CVB in 

T-HSC3 deflects the position of maximum strain on the upper link  to 36 mm from 

the rear column bar. 
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2. By using HSC for BCJ, the ductile behaviour of the joint changes to brittle mode of 

failure.  Therefore it is not advisable to use HSC alone for TBCJ. 

3. By using CVB, the joint increased its confinement and become more ductile.  

However, the greatest improvement developed when CVB was used with HSC 

where the confinement of the joint increased and the ductility also improved 

compared to NSC,  concluding that it is strongly advisable to use CVB with HSC 

for TBCJ. 

 

8.10.5 Front column reinforcement 
 

Strain along the front column reinforcement  in vertical (Y) direction is analysed in this 

section. Location of maximum strain from the 0.0 point on the  front reinforcement is 

shown in Figure 8.18. 

 

The maximum strain in the front column bar occurs at the opening corner of the BCJ 

because the flexural tension is highest at this point.  

 

Strain development along the front column bar  in all four specimens is investigated and 

compared. Longitudinal strain in front column bars in  T-NSC1and T-HSC1 is a maximum 

distance of 200mm which coincides with the point of the opening corner shown in Figure 

8.10. This maximum  strain is due to the flexural behaviour of the column due to tensile 

force from the  main  beam bar. This flexural behaviour is such that the column behaves in 

bends at that particular point thereby producing tensile strain in the front column bar.  This 

tensile strain is reduced by 18% for corresponding load in T-HSC1, compared to T-NSC1 

at 140 kN, Figure 8.37a. 

 

When CVB is added to the specimen, the crack width at critical position is reduced, Figure 

8.37a. In NSC models under 140 kN loading the maximum  strain recorded  which occurs 

at  the opening corner is 0.0039. When CVB is added to this specimen the strain  at the 

same location is reduced to 0.0033.  This reduction indicates that when CVB is not present, 

the front column bar just passes yield and first  cracks appear, however, when CVB is 

present under the same loading the maximum strain at the same location is only 0.0033 

which is under the yield value therefore no cracks appear. 
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Similarly in HSC models under 140 kN loading, Figure 8.37b,  the maximum  strain 

recorded  which occurs at  the opening corner is 0.0033. When CVB is added to this 

specimen, the strain  at the same location at 200 kN  is also 0.0033.  This  indicates that 

when CVB is not present,  the front column bar  passes yield and  comparatively  large 

cracks appear at 180 kN, however when CVB is present under the loading of 200 kN  the 

maximum strain at the same location is only 0.0033,  which is under the yield value, 

therefore no cracks are formed, Figure 8.37d. 

 

  

a) T-NSC1 & T-NSC3 at 140 kN b) T-HSC1,  bar 140 & 180 kN 

  

c) T-NSC1,  210 & 180 kN d) T-HSC1 & T-HSC3, at 200 kN 

 
Figure 8.37: Longitudinal strain in front column bar in  T-NSC1and TBCJ- HSC1 up 
to failure of T-NSC1. NB:OC= Opening corner, CC= Closing corner 
 
Discussion on the investigation of  strain development in front column bars  
 
In the front column bars for  T-NSC1 at 210 kN  loading, the maximum longitudinal strain  
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at the level of the opening corner is 0.0057, Figure 8.37c, or 158% of the yield strain of 

0.0036. When concrete strength is improved to HSC in T-HSC1, the yield at 200 kN load 

at the same strain reduces to 0.0046 which is 28% higher than yield but  24% less than 

NSC due to the higher strength of the concrete, and is similar to the load bearing capacity 

of T-NSC1 at 180kN, Figure 8.37c. 

 
 
 

  
a) T-NSC3, 168 kN b) T-HSC3, at various loadings 

  
c)T-NSC3, T-HSC3, 200 kN d) T-NSC3& T-HSC3, 220 kN 

Figure 8.38: Longitudinal strain in front column bars, TBCJ- HSC3, up to 220 kN. 
Position of maximum strain is point e. NB:OC= Opening corner, CC= Closing corner 
 

The introduction of CVB to TBCJ causes a reduction of 21% in the  maximum  strain  

developed in the front bar in T-NSC3 at 200 kN, Figure 8.38c, compared to T-NSC1 at 210 

kN, Figure 8.37c.  The yield in the presence of CVB reaches 0.0047 for 200kN,         

Figure 8.38a, which is comparable to 180 kN loading for T-NSC1 without CVB, Figure 

8.37c.  When comparing maximum strains 0.0047 for T-NSC1,  and 0.0041 for T-HSC1, at  
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180 kN there is an   improvement of 15% due to material improvement from NSC to HSC, 

Figure 8.37b. 

 
Surprising results appear when CVB is present  in HSC for T-HSC3, demonstrating its 

significant contribution in increasing the  load bearing capacity to 300 kN when the front 

column bar is strained at 0.0057, Figure 8.39, which is the same strain  for T-NSC1 at 210 

kN loading, Figure 8.37c, or  an increase of 43% in loading at the same level of maximum 

strain on the front bar only due to the use of  HSC material rather than NSC, and the 

presence of CVB. 

 
Cracks develop at the same position in both T-NSC3 and T-HSC3, however, they are 

smaller in HSC by an average of 27%. At 220 kN loading  when CVB is present  the 

maximum cracking strain in NSC  is 0.0051 whereas in HSC it is only 0.004, Figure 8.38d. 

 
 
 
 

Load 
(kN) 

TBCJ Strain (10-3) 
T-NSC1 T-HSC1 T-NSC3 T-HSC3 

100   2.2 1.8 
140 3.9 3.3 3.3 2.1 
168   3.9 3 
180 4.7 4.1   
200   4.7 3.3 
210 5.7 4.6   
220    4 
240   5.1 4.4 
260    4.8 
280    5.2 
300    5.7 
320    7.2 
330    8.9 

 
Table 8.14: Comparison of strain in front column bars for all TBCJ specimens 

 
 
 
 
 
 
 
 



____________________________________________________________ 
Motamed, J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’    
 
 

 

450

 
 
 

 
 

Figure 8.39: T-HSC3- front column bar 240 kN to  330 kN. NB:OC= Opening corner, 
CC= Closing corner 
 

A.  Influence of HSC on the behaviour of TBCJ  
 
1. The influence of HSC on TBCJ joints without CVB is as follow: 

 

• Considering T-NSC1 & HSC1, at 210 kN  and 200 kN  when the concrete splitting 

strength increased from 2.87 N/mm2 (NSC) to 4.52 N/mm2 (HSC), Table 8.1, the 

tensile strain in the front column bar was reduced from 0.0057 to 0.0046.  This 

represents a 24% reduction which is relatively small compared to the 57% increase 

in material splitting strength, Figure 8.37ure 7.38 c &d.   

 

• The maximum failure load capacity of  TBCJ was increased by 18% after 

increasing the material strength of the concrete. 

 

2.  The Influence of HSC on TBCJ joints designed with CVB is as follows:.   

• The tensile strains which  developed in the front bars at 220 kN for T-NSC3 & 

HSC3 are 0.0051 and 0.0040 respectively, Figure 8.38d.  This again represents a 

relatively small reduction in strain in relation to a large increase in concrete 
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strength.   Also it can be noted that CVB did not significantly influence the amount 

of strain developed in the front bars, Figure 8.37c. 

 

• The maximum failure load capacity increased from 260 kN (NSC3) to 340 kN 

(HSC3), which represent 31% increase in maximum load capacity of TBCJ due to 

the increase of concrete materials. 
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Figure 8.40: Comparison of maximum strain in front column bars for all TBCJ 
specimens 
 
 

Maximum tensile strains in front bars of TBCJ NCS3 & HSC3 were 0.0051 and 0.0089 

respectively, Figure 8.40.  This represents a 75% increase which means the joint with 

higher strength develops a larger crack above opening corner level before failure.  This 

high yield in the column front bar is of concern when compared with strain at the same 
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loading  in the beam bar of 0.0029. Therefore, column failure is the mode of failure for all 

the TBCJ models. 

 

However, if  200 kN loading is considered, the strain in the front column bar for T-HSC3 

is 0.0033, and the strain in beam bar T-NSC3 is 0.0047, Figure 8.38. This demonstrates 

that the plastic hinge would occur in NSC3 column before HSC3.  

 

B.  Investigation into the effectiveness of CVB on the behaviour of TBCJ 

 

• The influence of CVB on the behaviour of TBCJ joints constructed with NSC is 

investigated. At 140 kN the maximum yield for NSC1 is 0.0039 compared to 

0.0033 in NSC3 or 18.2% increase in yield, Figure 8.28a, and at the  higher load of 

210 kN, NSC1 yields at 0.0057 compared to 0.0051 in NSC3, about 12%  increase, 

Figure 8.38d. 

 

• At 210 kN loading, NSC1 columns without CVB would form the plastic hinge 

before NSC3 and HSC3  as its front bar would yield at 0.0057, Figure 8.28c. 

 

• The tensile strains which in the front bars for TBCJ HSC1 & HSC3 at 220kN were 

0.0033  and 0.0021 is a 57% reduction which indicates that CVB increased the 

rigidity of the joint by 57%.  

 

8.10.6 Comparison of strain in rear column bars 
 
In this section strain along the rear column reinforcement  in the vertical (Y) direction is 

investigated. Location of maximum strain from the 0.0 point on the  rear reinforcement  is   

shown in Figure 8.18. 

 

Maximum tensile strain in the rear column bar occurs near  the  level of the closing corner 

of the T-BCJ, because the flexural tension is highest at this point. This maximum  strain is 

due to the  flexural behaviour of the column due to compressive force from the lower part 

of the beam. This flexural behaviour is such that the column bends at  that particular point, 

thereby producing tensile strain in the column bar.   
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It can be noted that the strain in T-HSC1 compared to T- NSC1 at 210 kN  is 47% less,      

Figure 8.42. 

 
 
 
 

 

a) T-NSC1, and  T-HSC1 
rear  bar  140 kN loading 

b) TBCJ- NSC1, rear bar at  210 kN  
loading and T-HSC1 at 200 kN  

 
Figure 8.41: Longitudinal strain in y direction in rear column b ar in  T-NSC1 and T-
HSC1 up to failure of T-NSC1 at 220 kN. Maximum strain is point f. Figure 8.17                  
__________ NSC and ---------- HSC 

 
 
 

 
 
Figure 8.42: Axial strain in the rear bar of the main column reinforcement 

__________ NSC1 and ---------- HSC1 
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Figure 8.43: Strain in the rear column bar T-HSC1  and T-HSC3.                         
__________ HSC1 and ---------- HSC3 
` 
 
 

 

Figure 8.44: Axial strain in the rear bar of the main column reinforcement 
__________ NSC1 and ---------- NSC3 
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In HSC, the presence of CVB  reduces the maximum  strain on the rear reinforcement at 

the critical location at the level of closing corner by 25% . A load application of 168kN 

produces strain of  0.0017 in T-HSC1, but when CVB is present 210kN produces the same 

strain of  0.0017 in T-HSC1, Figure 8.43. 

 

In NSC , the presence of CVB does not make much contribution to ultimate load bearing 

capacity.  At 210 kN loading  NSC1 is at strained 0.0025 which remains the same when 

CVB is present at 220 kN in T-NSC3, Figure 8.44. Similarly at 140 kN loading the strains 

in  T-NSC1 and NSC3 are 0.0015 or 0.0016  which is a negligible strain, Figure 8.42 and 

Figure 8.44. 

 

As the graphs for strain in the rear column reinforcement show, the maximum strain just 

before failure in all cases is 0.0025 for T-NSC1 and  T-NSC3 or 0.0024 for T-HSC3, 

Figure 8.43,   which are all  below the yield value and occur near closing corner level.  

 

Rear column bars are exposed to a small amount of compressive strain near  the level of 

the  opening corner but this  strain is comparatively small and the maximum value 0.0009 

occurs in T-NSC3 just before failure load at 220 kN, Figure 8.44. This is mainly due to 

eccentricity in loading on the external BCJ which results in high tensile  strains in the front 

column bar opening corner.  As shown in Figure 8.45c, when CVB  is added to   NSC  

there is small reduction of 6% in the strain in rear column bar.  However, when  the 

material is improved to HSC the rear column bar is strained 32% less than NSC, Figure 

8.45b, with CVB. The strains in NSC with and without   CVB  are very close, Figure 8.45. 

When CVB is present there is only 0.0003 less strain in the maximum strain location. The 

location of maximum strain remains almost the same and is shown as point f in Figure 

8.16. 

 

8.11 Strain behaviour in CVB at (Y) direction 

 
In this section, strains along the CVB column reinforcement in (Y) direction are investigated. 

Location of maximum strain from the 0.0 point on the  CVB reinforcement  is   shown in 

Figure 8.18. It can be noted that the behaviour of CVB in HSC beam-column models is 

such that : 
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• Maximum axial strain in CVB occurs at the level of the opening corner and the second 

maximum value occurs just above the axes of the closing corner which is similar to 

CVB behaviour in NSC models. 

 

• Minimum axial strain in CVB occurred approximately around the mid-depth of the 

beam. 

 
 

Specimen 
Load 
(kN) 

      Strain (10-3)   
    HSC           NSC 

Without 
CVB 

140 1.5 1.2 
210 2.5 1.7 

With CVB 

100 1.2 0.65 
140 1.6 0.93 
168 1.9 1.2 
220 2.5  
240  1.7 

 

260  1.8 
280  2 
300  2.2 
320  2.3 
330  2.4 

 
Table 8.15: Strain fluctuations  with incremental loads for the rear column bar 

 
 
The influence of HSC on the axial deformation of CVB is as follows: 

 

� Overall behaviour of CVB is similar in both NSC and HSC models  except that  

the HSC model with CVB develops 33% higher loading capacity. 

 

� The strain at failure of NSC is  0.0019  is similar to that in HSC,  whereas HSC 

failure load is 280 kN  and  NSC at 240 kN,  

 

� Maximum strain value  occurs at the level of the opening corner and the second 

maximum strain occurs at the level just above the closing corner. 

 

The strain development along the CVB indicates that this happens  at the same section as 

where the front column bar is strained. The action of  CVB is also  part of the double truss 

action.  

 

 



____________________________________________________________ 
Motamed, J. ‘Monolithic Beam to External Column Joints in Reinforced Concrete’    
 
 

 

457

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

130 150 170 190 210

Load (kN)

M
ic

ro
 s

tr
ai

n

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

50 100 150 200 250 300 350

Load (kN)

M
ic

ro
 s

tr
ai

n

 
a) HSC and NSC without CVB b) HSC and NSC with CVB 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

120 140 160 180 200 220

Load (kN)

M
ic

ro
 s

tr
ai

n

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350

Load (kN)

M
ic

ro
 s

tr
ai

n

 

c) NSC with CVB  and without  d) HSC with CVB  and without 
 

Figure 8.45: Strain fluctuations with incremental loads for the rear column bar 
 

 
Figure 8.46: Comparison of T-NSC3 and HSC3 at equal strains 
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8.12 Strain in X and Y direction on CVB 

 

Cracking behaviour was presented in the form of graphs of moment Mz against  length of 

CVB for TBCJ. The graphs  show overall characteristics for a TBCJ with links  and shows 

a detail for change in moment due to  the presence of  link, the post-cracking behaviour 

being given by the values of the dowel force corresponding to the dowel force on the CVB 

and the tensile force absorbed in the the stirrup.  

 

 
 

Figure 8.47: Horizontal ( x-direction ) strain in CVB for T-HSC3 
 

 

Load 
(kN)  

TBCJ 
NSC3, Y HSC3, Y NSC3, X HSC1 X 

168  1.1   
200 1.7 1.3 2.8 1.3 
220 1.8 1.5 3.3 1.4 
240 1.9 1.6 3.8 1.6 
260  1.7  1.7 
280  1.9  2 
300  2  2.2 
320  2.4  2.3 
330    2.5 

 
Table 8.16: Strain development in CVB in dowel,  horizontal (X) direction and in 
longitudinal, vertical (Y) direction. 
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Figure 8.48: Longitudinal strain on CVB  
for T-NSC3 and T-HSC3  

 

 
Figure 8.49: Strain in  horizontal 
direction on CVB, T-NSC3 and HSC3. 

 
 

 

8.13 Moment about Z axis acting on CVB 

 

The maximum dowel action on CVB occurs at the point of its intersection with the beam 

bar, which is the location where the end of the inclined diagonal compression strut is 

restrained just above Link 7,  the most critical location within the beam BCJ which causes 

the failure crack.  

 

In this section a diametrical presentation of the moments acting about z axis which produce 

the dowel actions and the corresponding dowel forces are investigated in detail on the 

elements of the CVB along its critical length of 1330mm, Figure 8.51.  

 
The moments  Mz  transfer between the two elements of  the CVB (the dowelaction) when 

no links are of equal magnitude and in  opposite direction. This would be the case for an  

element shown in Figure 8.53. However, when this element is adjacent to an element with  

astirrup positioned at its  node, Figure 8.53, the moments are distributed between the 

elements and the stirrup and the moments Mz is of different magnitude and their direction 

is determined by the moment  contribution from the link.  
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In all moment diagrams the largest positive moment is at opening corner where the upper 

node for diagonal compression strut forms.  In NSC model T-NSC3, the  largest negative  

dowel moment to develop  is at the  lower end of the inclined diagonal compression strut 

with the dowel action just above link 3, Figure 8.54. These two points coincide with the 

end of the diagonal compression strut in the TBCJ. The horizontal resultant of these large 

forces from the end of the diagonal compression strut on its top and bottom ends are 

mostly counter balanced by the dowel action on the CVB. 

 

 
 
Figure 8.50: Forces F1 and F2  which  produce moments Mz about z axis. 
 

In T-HSC3 at 168 kN loading the highest positive moment following the largest Mz 
 at 

intersection with the beam bar occurs at link 8, located just above the opening  corner 

which is 73,058 Nmm, Figure 8.54, this is repeated  at 240 kN loading with the moment 

106,110 Nmm and at 330kN with 171,490 Nmm, Figure 8.57. It is notable that the quantity 

of moments are very small. This is due to FE model assuming full bond interface between 

concrete and steel. In reality, full slippage occurs to develop moments on the steel. This 

issue is discussed in details in chapter 4. However, the object of this practice is to find the 

location where the maximum moment occur on the CVB. 

 

Figure 8.53,  represents the direction of the moments and interaction of the moments at 

nodes where a stirrup intersects the CVB. However, in the graphs produced for analysis 

such details are omitted and only changes in the moments Mz are presented 
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In T-NSC3 the  largest negative moment develop at the point above link 3,  which is the  

level of support for the lower end of the inclined diagonal compression strut which is 

35,786 Nmm at 168 kN and 57,009 Nmm at 240 kN just before failure load of 260 kN, 

Figure 8.57. 

Figure 8.54 to Figure 8.57 show the Moment Mz  on the CVB for various loading and 

material on node i with vertical dotted lines representing stirrups in Figure 8.51. acting on 

element top node end (i), Figure 8.52.  

 
 

Figure 8.51: The diagram  shows the position of CVB  in thick dotted line and 
stirrups  in thin dotted lines for which moment M about z axis are plotted in the 
following graphs. Dimensions are in mm. 
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Index No 1 6& 7 12& 13 20& 21 28& 29 36& 37 44& 45 48& 49 54 
Link No 9 8 7 6 5 4 3 2 1 

 
Table 8.17: Link position is numbered in Figure 8.51 in relation to Index (Node) 
shown on Table 8.18.  

 

At 240 kN, the loading dowel moment is 106,110 Nmm on T-HSC3 compared to 153,840 

Nmm for T-NSC3 which is its dowel moment just before its failure load of 260 kN as 

compared to 171,490 Nmm for T-HSC3 at 330 kN loading which is just before its failure 

load of 340 kN. Figure 8.55 to Figure 8.58. 

 

Figure 8.52: Node ends for elements are identified as  
node i for the top and node j for bottom. Moment and  
force diagrams represent moments at node i whereas  
tables show moments at top node i  and bottom node j 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7 
 
 
 
 
 
 
 
 
 
Figure 8.53: Diagrammatical presentation of the moments acting on the top 9 
elements.   
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8.14  Discussion on strain analysis of CVB in TBCJ 

 
From the numerical modelling of beam columns in this chapter  of the  thesis, it is 

demonstrated that the presence of CVB delays increase in the width of the cracks in TBCJ 

from. Figure 8.59, the difference in maximum and minimum moments which act along the 

primary bearing length exposed to dowel action is significantly less when  

HSC  is used.  

 

The quantity of moments recorded by FE are very small. This is due to FE model assuming 

full bond interface between concrete and steel, whereas full slippage occurs in reality to 

develop moments on the CVB. Chapter 4 deals with this issue  in details. The object  is to 

find the location where the maximum moment occur on the CVB in order to develop a 

STM for the TBCJ. 
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Mz 
Nmm 

T8 
9 1 1328 -3044.8 

 
19 878 15017 

R6 
4 37 428 -4723.3 

 2 1278 33988 R6 
6 

20 828 2479.7  38 378 20997 
 3 1278 -33988 21 828 -1991.5 39 378 -20997 
 4 1228 18726  22 778 -8321.8 40 328 10517 
 5 1228 -18726 23 778 8321.8 41 328 -10517 

T8 
8 

6 1178 -35120 24 728 10739 42 279 28323 
7 1178 44224 25 728 -10739 43 279 -28323 

 8 1128 -1912 26 678 -8159 R6 
3 

44 230 10261 
9 1128 1912 27 678 8159 45 230 -14018 

10 1091 -73058 R6 
5 

28 628 4370  46 200 17793 
11 1091 73058 29 628 -137.38 47 200 -17793 

R6 
7 

12 1028 -6089.5  30 578 12359 T8
2 

48 150 14514 
13 1028 4340.5 31 578 -12359 49 150 -16892 

 14 978 498.59 32 528 -1949.7  50 100 10067 
15 978 -498.59 33 528 -1949.7 51 100 -10067 
16 928 -18307 34 478 -3211.2 52 50 19465 
17 928 18307 35 478 3211.2 53 50 -19465 
18 878 -15017 4 36 428 5317.9 1 54 0 3084.5 

 
Table 8.18: T-HSC3 at 168 kN loading. The first column section lightly shaded 
represents the 18 nodes corresponding to 9 elements shown in Figure 8.53.  
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Element no Mz at node I 
of CVB 

Mz at node j 
of CVB 

Mz at node j 
of link 

Comment 

1 -3044 33988   
2 -33988 18726   
3 -18726 -35120   
   -9104 Link moment 
4 44224 -1912   
5 1912 -73058   
6 73058 -6,089   
   1749 Link moment 
7 4340 499   
8 - 499 -18307   
9 18307 -15017   

 
Table 8.19:  T-HSC3 at 168 kN loading, the table shown shows how much  moment 
about z axis acts at the nodes of the elements. The readings are then presented in 
Figure 8.54.     
 
 

-33988

-18726

1912

73058

4340.5

18307
15017

-8321.8

10739

-8159

12359

-20997

-28323

-14018
-10067

-19465

-3044.8 (9)

44224 (8)

-498.59 (7)

2479.7(6)

4370 (5)
5317.9 (3)

-17793

-16892 (2)

-10517
-1949.7

-3211.2

-40000

-20000

0

20000

40000

60000

80000

0 200 400 600 800 1000 1200 1400

Distance along CVB (mm)

M
om

en
t a

bo
ut

 z
 a

xi
s 

M
z 

(N
m

m
)

 
 
Figure 8.54: Moment Mz  on the CVB for T-HSC3 at 168 kN 
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Figure 8.55: Moment about z axis (Mz) on CVB for  T-HSC3 at 240 kN.  
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15  
Figure 8.56: Mz T-NSC3-240 kN loading 
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Figure 8.57: Moments about Z axis on CVB of  T-HSC3 at 330 kN 
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Figure 8.58: Comparison between the maximum moments for NSC3 & HSC3 
developed in tested length of CVB, 1300 mm at BCJ. 
 
It is noted that: 

i. NSC3 developed greater maximum moments compared to HSC3  

ii.  Increased loading increases the maximum moment 

 
Investigating the maximum moments acting on CVB at 240 kN, the moment produced on 

CVB is 45% more in NSC, Figure 8.56, compared to HSC, Figure 8.55. At the same 

loading the minimum moment for NSC is 77% less in NSC than HSC. Larger  difference 
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between maximum and minimum  moments means larger moment acts on CVB, making it 

produce wider cracks leading to failure. 
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Figure 8.59: Comparison between maxima and minima moments for NSC3, HSC3 of 
the investigated length of CVB, 1330 mm at the beam column join (see Figure 8.51) 
 
 
The minimum moment in TBCJ  occurs closer to link 4 in HSC than in NSC which has its 

minimum close to link 3, indicating that diagonal compression strut is deflected in T-HSC3 

at ultimate load. 

 

The difference between maximum and minimum moments in HSC just before  failure at a 

load of 330 kN  in TBCJ is 215.7 kNmm compared to 210.8 kNmm in NSC at 240 kN, 

demonstrating that the presence of HSC has resulted in increasing  load resisting capacity 

by 37.5%  while supporting CVB so that  the moment on CVB is almost the same.  

 

At 260 kN, T-NSC1 fails in the diagonal compression strut whereas T-HSC1 fails at 260 

kN. When CVB is added, T-NSC3’s load bearing capacity  improves  to 260 kN, an 

increase of 18% compared with that of T-NSC1. The greatest increase occurs when HSC is 

used which increases the  T-HSC3 load bearing capacity  to 340 kN,  an improvement of 

31% compared to T-HSC1 and T-NSC3. 

 

The TBCJ has the deep beam  covering  the front column bar. Therefore,  the material 

properties of HSC does not behave in the same way as in the analogous HSC beam of 

NSC  

NSC 

HSC 

HSC 
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shear span to depth ratio of 3.05 which had premature failure due to initiation of tensile 

shear cracks which developed in the cover at early loading stage. In TBCJ –HSC1 presence 

of the deep beam acts as a large cover preventing  early formation of initial shear crack in 

the joint. 

 

The results confirm the existing analogy between beams of span ratio 3.02 with analogous  

TBCJ of aspect ratio 3.11. In experimental tests on beams from chapter 2,  NSC3 and 

HSC3, presence of  2-T20  HWB resulted in increasing failure loads to 200 kN for NSC3 

and 280 kN for HSC3,  an increase in shear resistance of  25% for NSC and 90% for HSC. 

In TBCJ, the presence of  2-T20 CVB resulted in increasing failure load to 260 kN for 

NSC and 340 kN for HSC an increase in shear resistance of  18% for NSC and 31% for 

HSC. 55% increase in ultimate load bearing capacity for T-HSC3 compared to T-NSC1. 

 

TBCJ Failure  

Load (kN) 

Beams Failure 

Load (kN) 

T-NSC1=220 NSC1=160 

T-HSC1=260 HSC1=148 

T-NSC3=260 NSC3=200 

T-HSC3=340 HSC3=280 

16  
Table 8.20: Table of failure loads for the experimentally tested beams and 
numerically modelled TBCJ.  
 

8.14.1 Proposed empirical  design rule for TBCJ 
 

For HSC when     60≤fcu≤120 

 

V jd = Vc+1.64 (be-ndb) db fcu
1/3 (n)1/4 +(Asjefy – 0.1behcfc

2/3)           8.1 
where 0  ≤Asjefy / (fc)

2/3 be.hc- 0.1behcfc
2/3
≤0.1bchcfc

2/3             

0  ≤1.64 (be-ndb) db fcu
1/3 (n)1/4 ≤ ηbchcfc

2/3     where   η=0.12 for HSC and  η=0.04 for NSC      

 

V jd=γ(fc)
2/3 be.hc+1.64 hc db fcu

1/3(n)1/4 +(Asjefy – 0.1bchcfc
2/3)  < 0.7bchcfc

2/3   8.2 
 For L bar γ =0.13 or U bar γ =0.11      

hc is the section depth of the column (mm) 

fc' is the concrete cylinder strength (MPa);  
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be is the average of the beam and column widths (mm)  
 
For T-HSC3 
 
Taking moment about the bottom reinforcement of the beam.  

1150)3037930( ×=−−× PTb               P= 340 kN    

221
2

2601300 =×=colV  kN 

colbjdfe VTV −=       8.3            

 
Tb = 453 kN                      Vjd fe= 232 kN 
 
Similarly for T-NSC3 with P= 260 kN  
 
Tb = 346.5 kN                      Vjd fe= 177.5 kN 
 
 
 
Beam  HSC2 HSC3 HSC4 NSC2 NSC3 NSC4 
fCU  N/mm2 109.3 112.5 112.5 41 47.7 43.3 
VS   kN 18.7 18.7 18.7 18.72 18.72 18.72 
Vc kN 114.9 117.1 117.1 59.8 66.1 62.0 
Web Steel 12 20 25 12 20 25 
Vdow kN 14.1 20.7 23.5 10.2 15.6 17.1 
V jd Beam kN 129.0 137.8 140.6 59.8 66.1 62.0 
    VBeam test  kN 132.5 140 150 101.5 100 105 
V Beam test  /V jd Beam 1.03 1.02 1.07 1.45 1.22 1.33 
ρb% 0.5 1.4 2.2 0.5 1.4 2.2 

 
Figure 8.60: Prediction of proposed formulae compared to beam experiments  for 
HSC beams with HWB 
 
 

8.14.2 Strut and tie model for TBCJ 
 
From analysis of strain in the direction of shear force or in axial direction on the leg of 

stirrups, it was concluded that the maximum strain on upper link known as link 6 in Figure 

8.51 for T-HSC3 is at 36mm from the rear column reinforcement. This compares to this 

location being 50mm for other 3 models.  

 

Similarly at the centre or link 5 in Figure 8.51 the point of maximum strain is at 125mm 

from the front column reinforcement. 
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BCJ T-HSC3 T-NSC3 
fCU  N/mm2 110 42 
VS   kN 18.7 18.7 
Vc kN 117.1 66.1 
Web Steel 20 20 
Vdow kN 20.7 15.6 
V jd beam kN 137.8 66.1 
    Vfe   kN  232 177.5 
Vfe /Vjd T-HSC3 1.68 2.68 

 
Table 8.21: Prediction of proposed formulae compared to TBCJ experiment results  
for T-HSC3 beams with HWB 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.61: STM developed for T-HSC3 
 

The force on the tension bar is = 2)
2

23
(372078.0 ×××× π =699.6 kN 

V j= Tbb-Vct= Cbe-Vcb          8.4 
 

where 
 

Tbb is the total force in the beam bar 

Vct is the shear force above the column 

Cbe is the force in the beam’s compression chord 

Vcb is the shear force in the column below the joint 

Lever arm  
z =875 d=930 

56 

180 mm 
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)1501501300(340)4002930( +−×=−×ctV  

 
Vct= 174.7 kN 
 
V j= 699.6-174.7=524.9 kN 
 
Vct= Vcb 
 
Cbe= 524.9- 174.7=350.2 kN 
 
 

8.15  Conclusion on contribution of CVB to HSC in TBCJ 

 

� Influence of HSC materials with no CVB 

From the results of models. T-NSC1 and T-HSC1, it can be noted that an increase in 

concrete strength of 162% results in  an increase in maximum failure load of 18%.  This 

indicates that the significant  increase in concrete strength has  little influence on the 

increase in  load bearing capacity of TBCJ. 

 

� Influence of CVB in NSC TBCJ 

Considering models T-NSC1 and T-NSC3, it is noted that while the NSC remain the same 

the loading bearing capacity of the TBCJ increases by 18% due to the use of CVB.  Again 

this is a comparatively small increase when considering the increase in reinforcement . 

Therefore, the use of CVB in NSC TBCJ does not influence the load bearing capacity 

significantly.  

 

However, the analogous beams tested by the writer demonstrated that presence of HWB 

results in producing  numerous small cracks parallel to the main crack before failure load. 

This means the structure failed in a more ductile manner compared to when HWB was 

absent, the same principal may apply to TBCJ with CVB. 

 

� Influence of CVB in HSC TBCJ 

Considering models T-HSC1 and T-HSC3, it is worthy of attention  that while HSC 

remains the same, the loading capacity of the TBCJ increases by 31% due to the presence 

of CVB.  This is a significant increase as a result of using CVB in HSC TBCJ.  Therefore, 

the use CVB in HSC TBCJ is favourable. 
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The  analogous beams in chapter 3 demonstrated that presence of HWB results in 

producing  numerous small cracks parallel to the main crack before failure load. This 

means the structure failed in a more ductile manner compared to when HWB was absent. 

In HSC, absence of HWB resulted in sudden and brittle failure of  the beam at ultimate 

loading less than similar beam made of NSC.  The same principal may apply to HSC  

TBCJ with and without CVB. 

 

� Influence of CVB and HSC on behaviour of TBCJ 

Comparing T-NSC3 and T-HSC3, when the concrete strength has been increased and CVB  

was added to TBCJ,  it can be noted that the loading capacity of the TBCJ increases by 

31%.  This is the same percentage as obtained with the use of CVB only and without the 

effect of material properties of concrete.  Presence of CVB results in more ductile mode of 

failure for both NSC and HSC. 

 

Summing up these results it can be noted that the load bearing  capacity of TBCJ 

significantly increases  when CVB is used with HSC, and neither CVB nor HSC by 

themselves improve the load capacity of TBCJ.  

 
An empirical design equation was proposed for HSC TBCJ with HWB which was also 

applied to the analogous beams experimentally tested. The equation produced reasonable 

prediction compared to FE and experimental results. 

 

A detail investigation of strain within the critical location in the reinforcement cage was 

completed. Data obtained from strain development in the beam bar and links were used to 

identify the location of deflection of the diagonal compression strut n order to develop a 

STM. 

 

The beam  failure loads of TBCJ were compared with the predicted load from the proposed 

design equation for TBCJ. The equation was applied to analogous beams which had been  

experimentally tested.  
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9                                                Chapter 9 
                               Conclusion and Suggestions for Future Work 

 

9.1 Introduction 
 
HSC is widely used for many multi-storey commercial and residential buildings in the 

industrialised world.  There are numerous economical and technical advantages in using HSC, 

however, there are still many uncertainties about its structural behaviour, one of the most 

important of which is the shear performance of BCJ in multi-storey buildings.  This is because 

structural members were designed for shear according to codes developed for NSC.  

 

It has so far been proven that for beams with span/beam ratio of a/d=3.02, the shear resistance 

is equal to, and in some cases less than, NSC. For this reason, further research work and 

design recommendations regarding the shear behaviour of HSC were suggested in most of the 

reviewed literature.  

 

It was experimentally demonstrated, Table 2-5, that HSC beams with HWB when designed 

using this writer’s suggested design rule in addition to BS8110, Table 2-10, developed greater 

shear capacity in the beam with the following ratio 

26.12.1 to
eperformancshearsticcharacteri

forceshearultimate =  

This is greater than that of the test results for similar beams without HWB which only 

developed a ratio of 0.69, Table 2-1. 

 

In chapter 3,  HSC and NSC beams with and without HWB of  span to depth ratio of 3.02  

were experientially  tested, Chapter 4 verified and validated  the adopted FE numerical 

analysis approach by calibrating FE models to the experimental tests from Chapter 3, Chapter 

5, discussed STM for beams tested in chapter three and further discussed STM for BCJ and 

analogous TBCJ with HWB and gave a proposal for STM for BCJ. 

 

Chapter 6 investigated the empirical equation and code guidance for design of BCJ and TBCJ  

and gave proposed design rule for BCJ,  Chapter 7 combined the information in chapter 4 on  
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FE validation and verification of the tested beams with the calibration  of beams  and BCJ 

from Chapter 6 which verify and validate FE modelling  for BCJ in order to parametrically 

investigate the performance of CVB in TBCJ made of HSC  

 

In chapter 8, the behaviour of HSC and NSC TBCJ with and without CVB  was  investigated 

by using a nonlinear FE computer programme, the data obtained from the analysis was used to 

demonstrate the influence of CVB in TBCJ. Empirical design rule for designing HSC TBCJ 

with CVB was proposed. 

9.2 Reviews 
 

The literature on shear  behaviour of  beams, in particular influence of dowel action to resist 

shear was reviewed and experimental tests on HSC beams, beams with HWB and BCJ was  

studied.  

 

A review of FE analysis was carried out together with factors associated with  

numerical modeling HSC beams with HWB. 

 

Past research work on STM for beams and BCJ was discussed.  Various STM design 

proposals were compared and studied for their suitability for HSC BCJ. 

 

A review of FE analysis of BCJ was carried out for factors associated with  

numerical modelling of HSC TBCJ. 

 

Methods of improving the shear capacity of beams and BCJ as well as design code 

recommendations were studied.  

 

8.1  Proposed design rule for concrete indirect tensile strength (ft) 

 

From experimental tests on NSC and HSC, it is proposed that  ft  = 0.47√ fcu
 gives a more 

accurate prediction of indirect tensile strength (ft) for corresponding cube compression tests 

(fc) compared to design rules recommended by BS1881 Part 117 or  CEB’s recommendation 

(ft= 0.3 fc
2/3), Tables 2-3 and 2-4. 
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9.3 Horizontal Web Bars (HWB) and Central Vertical Bars (CVB) 
 

Past experimental work by this writer demonstrated that the shear capacity in HSC beams with 

span/depth ratio of a/d=3.02 is less or equal to the shear of NSC  beams of the same geometry 

and with the same reinforcement, Table 3-1.  

 

However, the situation reverses when HWB are placed at the centre of the depth of the beam.  

The shear which developed in this model was twice the shear resistance of the same HSC 

beam with no HWB. However, little difference was noted when HWB were used in NSC 

beams.  This is because, in NSC, the stirrups will yield and fail regardless of the presence of 

HWB.  Therefore HWB have limited influence on NSC, whereas it is a very effective 

influence when used in HSC beams, Table 2-5. 

 

It has been noted that, in general, HWB located towards the centre of the beam improves the 

shear resistance of the beams significantly. This supports the experimental results obtained 

previously by this writer.  The results in beams with HWB (beam HSC4) compared with those 

without (beam HSC1) indicate a significant increase in shear resistance in HSC beams of 

around 130%,.  

 

At failure stage, presence of HWB produces many scattered  cracks parallel  or near  to the 

main crack close to failure loading. This results in more ductile and gradual failure  compared 

to sudden failure due to formation of one main crack and sudden failure in the absence of 

HWB. When HWB is present, the energy from the increasing load is dispersed across the  

shear span in the form of numerous cracks, Figures 3-9 to 3-11 and Figures 3-13 to 3-15. The 

ductile failure due to presence of HWB is in contrast with the  sudden failure due to rapid 

transfer of energy from increased loading into a single large crack  producing a brittle and 

sudden  failure when no HWB is present, Figures 3-8 and 3-12. 

 

Development of shear strain on the reinforcement cage in HSC beams investigated shows that 

the influence of HWB is more effective at the final stage of loading.  It was noted that the final 

40% of the applied load is mainly resisted by the shear performance of HWB since the shear 

stirrups have yielded several times their yield value. In the initial 60% of the total applied load  
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the stirrups resisted shear forces.  However, HWB in NSC have little influence on shear 

improvement of the beam because as the  stirrups yield and become plastic, the beam fails 

regardless of the presence of HWB, Figure 2-36. 

 

HWB can also provide added ductility and resistance to accidental, blast and seismic loading 

on beams and BCJ. For design purposes, when considering fire exposure in particular, their 

location being protected by the surrounding concrete would be of some advantage.  

 

Dowel action from HWB did not make any contribution to shear resistance in NSC beams 

without transverse reinforcement and made only a small contribution when stirrups are present 

with HWB.  This is because the maximum shear performance from dowel action is dependent 

on support from the stirrups and the tensile strength of concrete.  Dowel action is not fully 

developed in NSC with stirrups because of the limited tensile strength of concrete. 

 

Comparing  tests of NSC beams with HWB without stirrups to the  similar beams but with 

stirrups, it is  shown, Table 2-19, that  Vtest / V Bau (Mot) is 14% larger than Vtest / V Bau  (Hej), 

indicating that this increase is due to the  presence of the stirrups used in this writer’s tests on 

NSC  where there were none used. Therefore, presence of stirrups improves dowel action and 

the shear resistance  by 14%, Table 2-19.   

 

HSC  beams with HWB of a/d=3  are analogous to HSC TBCJ of aspect ratio 3 with CVB. In 

such structural systems CVB has similar properties and advantages in TBCJ as HWB in beams, 

Figure 1-5.  

9.4  FE model 
 

FE models were developed for beams and BCJ  to investigate the influence of HWB and CVB 

as well as HSC on the shear behaviour of these structures and the results were compared with 

those of previous experimental work carried out by this writer as well as published 

experimental results by other researchers.   

 

The FE model usually predicts a greater failure load and a smaller deflection than 

experimental tests.  However, the differences are greater in NSC and smaller in HSC, because  
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HSC has lower shrinkage because the water cement ratio (W/C) was 0.25 for HSC beams as 

compared to 0.6 for NSC. This significant reduction in W/C for HSC means much smaller 

shrinkage or micro cracking for HSC, and higher tensile strength for HSC means less slippage 

at bond between concrete and reinforcement.  

 

The FE does not model material properties such as micro- cracking or bond slippage effect, it 

therefore  models NSC as a stiffer structure compared to the experiment, whereas in HSC 

because of lower micro-cracking and slippage,  the FE model gives a closer prediction to the 

experimental results. 

 

In the experimental work,  HWB comes into action resisting shear loads during the final 40% of the 

loading of the HSC3 beam. The experimental gauge recorded that after the initial 60% loading was 

applied,  all 3 centrally located stirrups in the shear span  had yielded more than three times  their yield 

value, demonstrating that significantly wide cracks had occurred in the shear span. This was 

demonstrated in the FE model by showing yielding of the same stirrups at around double the yield value 

The FE model shows deformation of the structural system as if it is made of a rubber  rather than brittle 

and non-homogenous HSC and after wider cracks develop element separation is not modeled by FE. 

 

The shrinkage of concrete experimental beams which results in micro cracking, bond slippage between 

reinforcement and concrete,  honey combing,  and element separation at final stages of loading when 

cracks are wide  are not included in the FE model, this results in making the structural system behave 

more rigid.   

 

FE models of beams with and without HWB as well as BCJ with and without CVB were 

carried out to idealize a number of past experimental model results accomplished by this 

researcher and others.  The results were compared and good agreements were achieved 

between the experimental and the numerical, FE, results. 

The FE method was used to develop numerical models which were verified and validated with 

the experimental works for beams of 3> 
b
a >1.5 and for BCJ with aspect ratio of 1.33 and was 

successfully applied for parametric investigation of TBCJ, 3.11= 
c

b

d

d
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9.5 Strut and tie (STM) 
 

HWB can deflect the inclined compression forces within the shear span of the HSC beam of 

a/d≈3, Figure 4.50,  producing a wider and stronger diagonal compression strut at the 

supporting plate resulting in yielding of the tension reinforcement, from the full aching action 

produced by the inclined strut, Figure 2-27, therefore full STM development, and in similar 

manner CVB deflect the inclined compression forces within the analogous TBCJ, Figure 4.48.  

 

When the concrete is of normal strength, this deflection is not much and as a result the 

inclined diagonal compression forces  is not a strong concrete and wide, and is not  deflected 

enough to bring the tension bar to yield, therefore the inclined diagonal strut is not  wide or 

strong   enough to produce sufficient arching action to strain the tension steel to yield.  As a 

result, full strut and tie action with yielding of tension steel does not occur, as demonstrated 

with beams NSC2, NSC3 and NSC4, Figures 2-16, 2-17 and 2-18.  

 

Higher strength of concrete contributes to improved arching action more than on shear 

cracking resistance. The  upper limit of a/d≤2 for STM can therefore be increased for HSC 

beams with HWB to a/d≈3. When beams are a/d=3, in the absence of HWB, the  weakness in  

shear cracking resistance  of HSC resulting from absence of aggregate interlock, in particular 

limestone, is apparent, Table 2-1. However, when HWB was introduced the shear cracking 

resistance was significantly  improved and  crack initiation was delayed and its widening was 

restrained,  allowing  the development of full arching capacity in beams or analogous  BCJ. 

Figure 2-36. 

 

When the ratio of web reinforcement was low,  a load greater than the shear cracking  load 

could be resisted by a combination of arch and truss actions. As long as a/d ≈3, the limit is not 

an exact one but tends to increase with increasing concrete strength, Figure 4.27, which has 

more effect on arch capacity than on shear cracking resistance. This is the same as with TBCJ.    

 

To propose a STM based on failure criteria is complex as STM is a lower-bound plastic theory 

and does not have any compatibility condition. However, it was attempted by FE modelling to 

find the angle of deflection of the diagonal compression strut at its intersection with HWB, 
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Figure 3-86 or with CVB, Figure 7-59, by calculating the moments produced on them by 

dowel action. This data ws used to develop a STM for TBCJ, Figure 7-63. 

 

It has been shown that the idealization of STM of HSC beams with HWB with a/d≈3 

developed in this investigation is analogous to STM model of HSC – TBCJ with CVB of . 

 

As STM was developed to represent the characteristics of the stress paths in HSC beam with 

HWB of shear span/depth ratio 3.02. Figure 4.47. This model was extended to represent the 

stress path behaviour in TBCJ with CVB of aspect ratio of 3.11. Figure 4.48. 

 

Strut and tie mechanical models were developed and analysed for beams with span/depth 

ratios of  
b
a = 3.02 and for TBCJ of aspect rations of 

c

b

d

d
= 3.11 with and without HWB and 

CVB. Figure 7-63. 

 

9.6 The coefficient of friction for FE model for open cracks in HSC 
 

Since the coefficient of friction for closed cracks in HSC is similar to that of NSC and past 

research has demonstrated its value to be equal to 1,  FE models for HSC1 beams tested by 

this writer were developed and the coefficients of friction for open cracks in HSC1 without 

HWB within the allowable range values for the friction of 0.1 to 0.3 were  calibrated these 

with the experimental results. This investigation was similarly extended to HSC beams with 

HWB in order to determine the coefficients of friction of open cracks when HWB is present. It 

was concluded that the coefficients of friction for open cracks can be taken for HSC made 

with limestone with HWB as 0.15 and  for NSC with HWB as 0.3 respectively. 

 

9.7 Design recommendation for  TBCJ  
 

Design recommendations of codes ACI 352 and EC8-NA  for HSC BCJ fail to show the 

dependence of the joint ‘shear strength’ on the joint ‘aspect ratio’, as well as the influence of 

HSC and detailing of the anchorage of beam bar on the behaviour of BCJ, and do not provide 
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any recommendation if the amount of stirrups is not adequate in order to provide sufficient 

shear strength at BCJ when the shear forces are high. Their specified minimum shear stirrup 

requirements, however, do not give provision for the joint strength to be increased by the 

stirrups. 

 

The  assumption that the stabilising arching effect in the HSC beam of a/d ≈ 3 with HWB 

makes the beam perform like a short beam of 1≤a/d≤2.5 and is analogous to HSC - TBCJ with 

aspect ratio of around 3 with CVB was found to be reasonable and provides good idealisation 

for the structural behaviour of HSC TBCJ.  

 

Baumann’s modified design rule for shear prediction including the dowel action of the web 

bar  is safe as the diameter of the web bar increases. Baumann's approach proposing that 

dowel action from the web bar is related to the strength of concrete is a rational one, therefore 

his design rule was modified by making provision for the number of dowel bars and to 

improve its reliability and is proposed for shear design. 

 

CVB contributed significantly to the shear capacity of HSC transfer BCJ.  It was also shown 

that if CVB is not used, then this results in a strain concentration at the anchorage corner bend 

of the L-shaped beam-bar in HSC TBCJ. This is undesirable in the design of BCJ.  Therefore, 

the use of CVB is beneficial to prevent strain concentration at the bend. 

 
 

9.8 Future research 
 

In the  light of FE numerical  results presented in this study, the following research topics are 

suggested: 

 

• Experimental tests on beams identical to  HSC beams  HSC2, HSC3 and HSC4 but 

without the stirrups are recommended, to demonstrate the contribution of stirrup support to 

HSC beams with HWB.  
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• Shear resistance  of HSC beams of span depth ratio 3.02 made of lime stone aggregate 

were less or equal to NSC, although FE modelling showed that this is not the case for TBCJ 

model T-HSC1.  It is recommended to investigate these findings by experimental tests. 

 

• In beams with shear reinforcement, if a simple truss model is used, there is a division 

and contradiction amongst all the codes regarding the limit to the  angle of the diagonal  

compression strut to the horizontal θlim (cot θlim=a/d). All codes give θlim≤3, however, this 

research demonstrates that if  in HSC beams with shear reinforcement and HWB  a simple 

truss model is used θlim can be increased to 3.02 which is larger than the upper limit all the 

codes have so far recommended. CEB-FIP90 gives the closest prediction, however, it could be 

amended to give provision for HSC beams with HWB and further research is required to 

confirm an increase of θlim≈3.   

 

 

• Extreme loadings such as blast, impact and  seismic produce significant gyrational 

forces, HSC has a economical potential for multi-storey RC frames as light frames made of 

HSC  reduce gyrational, in addition to the  economic benefits of using HSC. 

 

• HWB and CVB  improves the fire resistance of RC frame.   

 

• FE concrete models do not include the influence of micro-cracking due to shrinkage. 

There is a significant difference inthe water cement ratio applied to NSC (0.6) and HSC 

(0.25). Further research is proposed to include the influence of micro-cracking due to 

shrinkage in NSC and HSC, and to model bond slippage between reinforcement and various 

strengths of concrete. 

 

• It is suggested that finite difference and applied element methods to model element separation 

be applied  to the experimental tests on HSC2, HSC3 and HSC4 beams to compare strain developments 

in the centre links with those recorded in Figure 2-36. FE does not model element separation 

whereas the large strain in the central  links indicate element separation. 
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• Further experimental tests are required to investigate the effect of side cover on CVB 

in TBCJ of HSC with different cover thickness as cover plays an important part before and 

after spalling off. 

 

• The influence of gauge length and its location in confinement bars should  be 

investigated as it  was demonstrated in the FE models of  both beams and BCJ that  past 

experimental tests  failed to catch the strain localisation at peak strain. 

 

• The spacing between shear  links is proposed to be taken as  400(fcu)
-0.16  mm in order 

to allow for the change in the angle of shear crack which is dependent on strength of concrete. 

Although this proposed rule is an improvement to the exiting limit of 200mm proposed by 

BS8110. 

 

• Research to investigate the optimized spacing between stirrups when HWB or CVB is used in 

HSC beams or TBCJ could provide a solution for the maximum allowable spacing for which the 

support from stirrups is fully utilized to initiate the dowel action for HWB or CVB. When this 

maximum allowable  spacing is determined,  the data would be used to provide a design rule to give the  

minimum number of required stirrups and maximum amount of  HWB or CVB. An optimized design 

rule would  help reduce  congestion of stirrups at location of high shear in the HSC structural member. 

 

• Coefficients of friction of open and closed cracks for HSC beams or BCJ  with HWB 

or CVB need to be experimentally and numerically investigated and modelled by using 

fracture mechanics. Walraven has performed extensive experiments on shear transfer in cracks 

in concrete, however, to this writer’s knowledge crack propagation in HSC structural systems 

with dowel bars resisting shear has not been investigated. This can be an area for future 

research. 

 

• Future research is required to FE model the full slippage for the  bond at the concrete-

steel interface by introducing links as suggested in chapter 4 in order to obtain realistic value 

for the quantitative value of the  moments acting on the HWB in HSC beams of a/d=3 after 

crack formation. 
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Appendix  A 
 

 
Calculation of load at first tension crack 
 
 
 
Ortiz’ beam B1 

 
Figure A-1: Dimensions in Elevation and location of supports and loading points 
 
 
Maximum Moment 
The moment that occurs from the existing forces 
 
Mmax=(60000N)(550mm)=33×106 Nmm 

 
Material ProperTies 
The gross moment of inertia 
 
IG = (1/12)(bh3)= 8×108 
 
The modulus of elasticity of the concrete 
 Ec = 31,000 MPa 
Modulus of rupture 
  fr= 0.6√fcu =    4.68 MPa 
 
 
Stresses in Concrete and Steel 
The stresses at the extreme tension fiber are calculated using a transformed moment of 
inertia of the concrete and steel reinforcement 
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Figure A-2: Transformed Cross-Section for beam HSC1 
 
 
Transformed area of steel 
 
(As)t = 8.2As = 4021 mm2 

 
2119 mm2 distributed on each side of the concrete cross-section 

 
Calculate the distance from the top fiber to the neutral axis of the transformed moment of 
inertia 

 
 
 

      =221 mm 
 
 
The transformed moment of inertia 

 

= 9.9×108 mm4 
 
The stress at the extreme tension fiber is then calculated 



 489

 
       = 4.95 N/mm2 

The stress in the steel at this point is calculated 
 

 
        = 4.95×8.2= 40.64 N/mm2 
Strain in steel = 0.0002 
 
Loads 
The load at first cracking 
 
P=120,000 N 
 
 
 
 
This writer’s beam HSC1 

 
Figure A-3: Dimensions in Elevation and location of supports and loading points 
 
 
Maximum Moment 
The moment that occurs from the existing forces 
 
Mmax=(20000N)(800mm)=16×106 Nmm 

 
Material Properties 
 
The gross moment of inertia 
 
IG = (1/12)(bh3)= 
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The modulus of elasticity of the concrete 
 Ec = 33,400 MPa 
The modulus of rupture 
  fr= 5.2  MPa 
 
 
Stresses in Concrete and Steel 
The stresses at the extreme tension fiber are calculated using a transformed moment of 
inertia of the concrete and steel reinforcement 

 
 
 
 
 
 

 

 
Figure A-4: Transformed Cross-Section for beam HSC1 

 
 
Transformed area of steel 
 
(As)t = 4.13As = 3889 mm2 

 
2119 mm2 distributed on each side of the concrete cross-section 

 
Calculate the distance from the top fiber to the neutral axis of the transformed moment of 
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inertia 

 
 
 

      =159.1 mm 
 
 
The transformed moment of inertia 

 

= 369×106 mm4 
 
The stress at the extreme tension fiber is then calculated 

 
       = 6.1 N/mm2 

The stress in the steel at this point is calculated 
 

 
        = 6.1×4.13= 25.18 N/mm2 
 
Deflections 
The deflection at the centerline of the high strength  concrete beam HSC1 at load 40 kN. 

 
          = 0.65 mm 
 
Loads 
The load at first cracking 
 

 
6.1 N/mm2 = [P× 800mm × (300mm-159.1mm)]/ 369×106 mm4 
 
P=20,000 N 
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Appendix B 

Design of a transfer beam column joint to ACI 352 

 

 

Figure B-1: A commercial or industrial RC frame with open industrial space  at 
ground floor and office on the first floor. The frame is repeated at 4m spacing 
designed with spandrel beams in between frames. 

 

The structure represent a typical ground floor column free  show room or industrial space 

for fork lift manoeuvre with 2 columns at 5m spacing supported by a  900X130 mm 

transfer beam. 

 The perimeter columns have cross section of 300X150 mm. 

 

First live office loading is 3 kN/m2. 

Load on the transfer beam /m from ground floor 

The loads are not factored. 

 

W=  L.L (4 X 3) +D.L(4 X 1.5)+ Self wt of  beam ( 1 X.0.225) X2.8 = 18.6 kN 
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The loading on the roof is 0.75 kN/m2 . The load on each internal column is  

 

 P=P1= P2= L.L(5 X 4 X 0.75) + D.L(5 X 4 X 1.5)=45 kN 

 

Moment developing at the end of the  transfer beam  

 

= Pa2b/l2 + Pab2/l2+ W l2/12 

 

=[(45 X 10 X 25) / (15 X 15)] + [(45 X 100 X 5) / (15 X 15)]+[(18.6 X 15 X 15) / 12] 

 

=50+100+348= 498 kNm 

 

From Whitney's concrete stress block 

 

Mn= Asfy ( d - xw/2)  where xw = 0.54 d 

 

As = 498 X 106/[460 X (950 -256)]=1562mm2 or ≈ 3T26 or 1593 mm2 

 

For type 1 joint α=1 

 

Tn=As.α. fy = 1593 X 1 X 460= 733 kN 

 

Consider the free body diagram  with lpc= 4500mm 

 

Vcol= Mn / 4500 = 498700/4500= 110.8 kN 

 

Vu (joint) = 733- 110= 622 kN  
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Figure B-2: Exterior joint - Classification of join ts - ACI 352 (γ = 20 Value for type - 
1 joints) 
 

Check the shear strength of the joint:  

 

Using bj =(110+300)/2= 205 ≤ 130+150 . The thickness of the joint is, hcol, is equal to the 

column dimension parallel to the shear force in the joint. Use hcol = 400mm .  

 

For an exterior joint, all the beams are at least 75% as wide as the corresponding column 

face and the shallowest beam is at least 75% depth of the deepest beam. Therefore for an 

exterior joint γ=20 

fc' ≤42 MPa 

 

Vn=0.083 X 20 X 262 X 300 X √42 =845 kN  

 

must satisfy the normal strength requirement that  φVn ≥: Vu where φ= 0.75 and Vu 

=622kN 

 

φVn=633.75>622    OK 
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Design the column reinforcement, an initial design from Joint Institution Manual 

(IStructE & ICE), 'Manual for the design of reinforced concrete building structures'. 

section 3.7.4, table 5. 

 

The load from dead and live load is 1251 kN, multiply by a factor of 2 as code 

recommends. Therefore, each column has 1251 kN loading. Table 5 recommends 1% 

area of steel or 900mm2 for 300 X 300 column for 1213 kN loading. Therefore 4T20 in 

the corners. 
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LOAD (KN) & DEFLECTIONS CMIO OF BEAMS

I

I

I

I

LOAD BJI BJ2 IFISC2 HSCI NSC2 NSC3 HSC4 HSC3 NSC4-- --NSET-
o.ol o.ol o.0 0.0 0.0

20 0.4 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.1 0.4
40 t.0 t.0 1.0 1.0 t.t t.t 1.0 1.1 0.9 0.9
EO t.8 2,0 l.l 1.7 1.8 t.8 1.7 1.8 f.5 1.1
80 2.9 2.9 2.1 2.5 2.6 2,5 2.3 2.1 2.1 2.5

100 3.4 3.0 3.1 3.2 3.4 3.2 3.0 3.1 2.7 3.3
r20 4.5 3.9 4.6 4.3 4.1 3.6 3.8 3.4 1.1
140 5.5 FAJLURI 1.8 FAJLURT 5.3 5.0 1.2 1.5 1.1 5.8
150 0.0 5.5 E.l 5.4 4.0 4.8 5.0 0.9
160 0.5 6.0 6.6 5.9 4.9 5.2 5.7 FAJLURI
170 7.1 0.5 0.0 5.6 6.2 0,0
180 7.6 7.6 1.1 6.5 7.5 0.6
190 8.2 8.4 8.4 7.5 8.1 7.9
200 8.9 9.1 FAILURI FAILURI 8.0 9.0 8.5
210 9.5 9.9 8.7 9.6 FAILURE
220 | 0.1 9.2 10.4
230 12.0 FAILURE 9.9 11.0
210 12.7 | 0.5 11.7
250 FAILURE | 1.6 . 12.5
280 12.3
2t0 13.2
280 FAJLURE
290
300 FAILURE
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Lord (Fr) Grusc I Grugc 3 Gruoe 5 Gruoe 7 Gruoe t
0 0.0 0.0 0.0 0.0 0.0 0.0

20 e.5 E.1 7.2 t 2.1 1.7 12.1
40 11.7 9.0 7.8 16.1 8.t | 5.8
50 12.7 I t.3 12.0 2r.0 2t.l 35.6
00 | 6.'1 r 3.2 | 2.9 21.1 ll.3 52.9
80 20.4 23. t ?0.1 3r.9 t 06.0 t 39..|

t00 39.0 36.8 331.2 t E2.6 250.2 3E8.6
r20 01.3 05.4 9s3. t 396.3 467.0 e{t.7
r30 05.0 05.4 5085.1 2243.8 553.8 746.3
t40 | | 7.'t I 14.8 10727.0 86 11. I 6t 5.5 802.1
t50 | 37.2 117 12212.0 0843.1 678.1 857.9
r00 275.3 302.2 t 7033.0 11622.1 771.1 008.8

Et OYrt I O\rlld El OYYU | 2567.r 721C.8 0601.2

Lord (kn) Gruoe t Bruge l9 Gruoe 2t Bruqe 23
0 0.0 0.0 0.0 0.0

20 02.3 86.5 78.4 t 01.4
,10 | 74.9 2{0.8 212.1 28r.6
50 265.9 370.1 332.0 {39.5
60 319.3 182.2 135.0 573.9
80 509. I 698.0 638.2 829.9

r00 613.9 915.6 836. r | 090 .5
120 785.0 r 1 29.7 t 027.9 1v1.2
r30 853.3 1215.7 r | 30.5 t{8 r .8
t40 e27.7 I 351. I 1221.6 l6l r .2
t50 981.5 1106.3 t319.5 | 715.5
t60 r 021.6 r543.3 | 381 .0 I 838.8

0 01.6 217.1 200.3 256.0

Lord (kn) Gruqe 25 Gruge 27 Gruoe 33 Gruoe 35 Gruge 37 Gruoe 39
0 0.0 0.0 0.0 0.0 0.0 0.0

20 10.3 r 0.6 | 3.9 14.6 12.1 12.7
40 l5 .6 l7 .1 19.3 t.3 18. t t 7.9
50 27 .l 25.5 26.1 28.8 20.s 2t.5
00 33.4 25.r 35.2 36.2 2s.0 21.8
EO 58.{ 55.,t 73.5 1.0 30.8 3E.2

t00 161.E r6r 3 290.0 279.8 12.8 46. I
t20 216 7 263.2 t 708.0 1031 .9 70.5 86.8
r30 308.{ 295.5 1252.1 t il 85.4 1 1g.t l4l1.5
t{0 vl.1 336.8 3126.9 13826.4 522.6 535.6
r50 403.7 480.5 3203 | 17 35.4 750. I 738.3
r00 80 3.4 u2.2 2523.2 21732.1 I t0l | 082.'l

0 ?56.5 589.6 3703.3 I 8805.4 824 0.9 102s.2
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Load (kn) Gauoe t Gauqe 3 Gauoe 5 Gauoe 7 Gauqc 13 Gauce 15 Gauqe l7 Gauoe t9 23
0.c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

t0 10.4 ll.1 11.9 12.7 tl 6.7 ,18.1 40.1 v.2
20 I r.7 | 2.9 t4.l 14.9 | 2.0 0.3 102.1 82.2 73.4
30 I r.8 14.0 11.1 | 5.9 t4.8 1.1 203.8 13t.1 r 25.5
,10 | 3.3 17.2 16.5 t 8.5 t 5.8 1.6 337.2 2t t.0 | 95.8
50 18.0 22.2 22.2 21.5 20.2 ,1.5 403.4 207.8 279.2
00 20.3 21.1 22.5 25.2 65.9 33.2 593.3 382.0 3s0.6
70 23.8 21.3 27.7 29.1 | 28.5 72.9 712.6 458.E 431.8
80 21.5 30.3 v.2 30.4 225.9 81.8 838.0 537.6 50s.8
00 32.0 3+.4 ,13.5 36.6 339-r lt2J 968.1 625.6 59r.0

t00 37.5 37.3 55.8 48.5 14.5 til3.8 t086.1 708.5 .2
fi0 12.1 4t.0 70.t 57.5 565.0 220.0 1162.1 79S.7 7s5.8
r20 3E.S 38.0 88.9 7t.2 6e1.8 2S3.0 1217.1 875.9 828.0
130 | 05.3 01.8 148.1 122.3 8r ?.s 393.1 t309.2 970.0 920.0
140 111.7 85.8 173.1 11,1.5 001.2 132.5 t387.7 1037.2 98,+.4
150 534.0 303.5 381.8 351.7 t 032.8 488.2 1468.3 I | 15.7 1063.4
160 755.4 502.5 593.4 502.8 | 167.0 565.6 15a8.0 I t98.5 I r 50.9
t7! 93S.8 006.6 700.4 075.1 | 293.0 667.9 1625.2 t285.7 12v.1
180 r001.t 686.6 737.6 709.0 t434.7 756.0 1664.€ 1363.8 _ | 307.1
rs0 t I r9.7 705.9 | 133 t 1034.i 2048.S t 332.6 1627.1 1387.4 -13r 3.2
t95 | | 55.8 u7.7 5341.0 2543.8 109S5.0 8973.3 1739.5 t491. 1121.9
200 l2l/+.S 808.4 9678.0 81,18.0 t272t.O | 213E.3 r770.8 1527.6 1459.8

0 379.t 303.6 7966.? 7178.0 r 3474.0 r 2316.3 377.5 r 70.5 186.8

BeamNSC2
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Lord (KN) Gruge I Gruge 3 Gruoc 5 Gruqc 7 Gruqc I Gruse t I Gruoe l3 9auoe t5
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

t0 1.2 6.5 8.1 5.t 7.2 9.2 5.1 3.9
20 5.0 6.9 7.0 1.7 I t.6 tE.0 0.0 3.8
30 6.2 8.6 8.0 4.9 t7,2 27.9 8.8 7.0

'10
6.8 9.9 11.2 9.0 2t.r 39.5 t4.5 8.4

00 t 2.0 t5.9 t4.3 tt 37.3 75.r t 5.{ 4.0
80 I 3.S 19.0 2.0 t0.7 79.0 126.5 25.8 -7.0

100 I1.7 19.3 21.0 2t.3 t46.3 102.5 5E.t 40.3
r20 9.6 rs.2 00.8 62.9 245.8 208.2 80.1 12.1
140 r18.4 37.2 150.1 t8/1.8 333.0 232.€ t30.0 r 28.1

r60 085.5 507.2 22e.1 2!2.3 434.8 230.0 310.7 2S0.0
170 1000.1 757.2 370.6 4{'0.5 470.3 238.1 038.7 524.7
t80 108,1.5 859.4 552.0 556.7 530.8 271.3 ul.2 112.8
t90 I I r0.9 871.2 950.0 739.6 r r 20.8 137.2 | 008.3 931.3
200 r I 25.3 897.S 1E38.0 1t47.1 | 625.0 -225.8 r012.9 13r4.4

0 31 0.0 226.a 647.0 552.4 1001.8 -535.3 53.7 336.6

Loro (Rfi ('auqc ll lrrugc lt gruqc Zg U'UgC JI grugc J3 gauqe 35 g'UQC J' g.ulc 38
0 0.0 u.u 0.0 0.0 U,U 0.9 0.0 tJ.9

IU J.3 J.J r l.3 6.4 t.0 ?.1 |t.l 5.1
za 4.2 a.a t9. I | 2.5 a.u t.t 5.2 ,.2
JU 9.f J.0 tt.J JJ.U t u.l I t.! 1.+ {.8
aq J.U u.a JJ.I JJ. I f J,l la., , b.l
OU I J.4 l.J 0E.2 It.t aa.t .rt,J tlJ t 5.G
60 u.o tv.2 IOl.i I JV.0 9f .t 58.5 If.3 tt.l

IUU l+.t ou. t IJJ I aav.t il8.{ il 7.E l a., JIJ.I
tzg aa.J I ta.a tao.! Ja t., zJ., . t 25,1.8 tt.o a3.u
ltlu u.1 t00.t | 88.3 JUC.U aw. 320.2 IqI.Z 16J.3
160 lat.t aJo -z JUf,.8 a tv.a t4 t.t 1t2.8 /r | 3.J It tu_o
l rrJ l1 t.1 JZI.a OOJ.U 14t.6 83t.0 r9ru.o U4U.U t at.
tE0 at6 I aoa.! .UJ. I aJo., I UZU.IJ I luu. I , UJ.U t oa.o
IUU OTJ.U 660.! to/.., alu.J I r t5.6 I otr+.1 atu.f &4E.1
200 lulu.a 9r r.a bll.tt !c r.l | | olo.c I louu-a UUU.U I tJU.l

I I 10.4 )uJ {ru ,uJ.3 n/AUEI n/ALUts,I t9cJo. I 3/AUEI
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Beam NSC4

l
I

I

I

I

I

Lord (kn) Gruoe I Gruge 3 Bruqe 5 Oruqe I Gauge I Gruoe t t Oruse 13 Oruoc l5
0 0 0 0 0

m 2r.3 z.2.2 27.6 3E.3 11.1 28.2 21.1
40 25.i 27 2{.0 3t.t 57.1 c5.7 3r.5 27.6
60 29.1 28.0 28 35.7 79.4 98.t 23.E 22.3
80 33.2 34.5 31.5 a2.2 | 05.8 t43.7 28.1 23.5

t00 37.4 40.5 51.2 73 111.2 210.e 55.1 37.8
r20 38.S 12.2 | 05.7 |2-2 r 90.,| 309.3 E9.l 57.1
t40 00.3 5a. t | 91.5 20t.7 248.3 383.0 126.8 E2.9
r60 I t4.3 E0.7 507.5 558.1

't30.5 45r.7 287.0 t73
t70 175 | 29.6 | | 03.7 tr93.t 5t 6.4 023 57,1.8 4t3.7
rE0 236.8 183.7 1399.0 | 52E.1 5r E.8 t21.1 787.t 5t4.9
rs0 381 312.7 t 540.9 t 556.8 487.8 85S.8 9r 3.e 075.E
200 1431.3 | 087.,1 305r.3 1211 337.8 | 063.2 982.7 7t 8.7
2r0 t480.{ t I t6.2 t 7337.3 I E385.8 2A.l r 533.7 c85.7 741.8

0 t 75.8 -213.4 r4970.3 | 3477.8 -20E.1 872.8 532. I 356.1

Lord (br) Gruge l7 Gruoc l9 Gruge 2l Gaugc 23

0 0

20 07.5 u.7 03 t 00.2

'10
236 .1 217.1 237 258.5

EO
't 

10 u2 39r.5 u7.5
80 584.2 el0.7 551.8 639

r00 ?51.3 831.5 7r 6.6 81 7.6
t20 03 3.5 t 034.0 887.8 098.2
t40 t I 03.4 t 229. r | 044.{ t 160.'l
rE0 r 283.5 t41 t 208.8 1 331 .3

t70 t 383.9 t 519.6 r 295.5 | 399.5
180 r48E.6 1e4S.8 | 375.4 t406.7
ts0 | 577.5 I 746.4 tug.t 't 536.7
200 r 053.7 | 830.4 t 518.5 t 606.7

ll0 r 751 .9 | 937.5 r 595.5 t 687. I
0 | 95.1 208 t 72.3

'13.5

Load (h) Geuga 25 Gruoe 2 Gauqc 29 Gauoe 31 Gauoe 33 Gauqc 35 Gruoc 37 Oauge 390 0 0 0 020 2g 21.3 52 32.5 2r,s 26.9 26.2 32.?40 29.8 22.2 6l 50 21
60

32.1 30.5 42.3Jf .o 2/t.E 09 7S.5 29.5 38.0 33.6 18.780 53.? u.1 r38 | 36.5 33.7 tlrt.6 37.2 50.2r00 r 90.6 E3.2 210 198.3 50.8 60.r 16.2 58.€r20 128 2t 5.5 304 278.4 r67 120.1 55.4 01.3t40 661.r 389.8 399 334.3 3{5.3 213.1 76.9 65.0t60 t013.2 082.6 57 3a8.5 722 499.9 221.3 12f .Sr70 120S.7 885.2 804 333. I 1 096.1 853 4,f 6.0 75t.St80 | 209.3 1082.7 1 084 278.0 f 3{0.4 | 083.8 723.t t 101t90 r 259.3 | | 50.3 r 238 212.6 r480.5 | 3t 8.7 959.6 1539.1
rsim200 r 372.3 1308.7 I 251 299.3 t,lt 1.3

t18U 5
1172.9
loui

| 07E.2
I r7e2

2t0 2t0e.q
3780. r

| 852.5 60t t011.,1
| 602.5

JO I J.{ -35 r 650.6 El Owts Et Owld r 070.s t35r7.2
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Beam HSCI

Load (kr) Gauoe I Gaupe 3 Gruge 5 Grupe 7 aupc 9 Gause t t Gauge I -q!sr_i!
0.0
{.0

21.6

0 0.0 0.0 0.0 0.0 0.0 0.0av l.l 5.6 E.2 8 6.7 7.0 3.740 7.0 0.8 | 0.8 r l.g 8.9 8.9 20.5EO 27.2 28.2 11.7 51.8 37.4 50.0 33.080 12.5 45.6 70.6 E8.5 83.3 02.7 t.0 52. r

]EI
r483.8 i

rsorTl

r00 59.2 e,l.0 | 00.1 218.5 | 08.4 101.0
'183.9t20 | 56.9 t 53.8 2469.2 3 I 04.3 ?ol1 n 69!l.9

| 350.9
9r 3.3
ts8.o

t30 695.3 715.1 r31s7.sl
98C1 .91

833.0 r 7398.1
70t.7 | | lu.u I I IEg.'l 2293.8 322 I 356

Load (kn) Gauoe I Gauoe I Gauqe 2l Gause 2l
0 0 0 0

20 68.6 67.9 67.2 u.e
40 261 235.3 232.9 218
60 537.2 187 55r.7 s57.6
80 771.2 701.7 --To3t

875.9
100 987.2 ES3.1 | 027.8 1034.4
t20 r r86.5 r 074 .6 1226.1 1230.8
r30 t 305 .7 1127 .1 t 31,t. r l37t .3

0 317.2 28t.6 314.9 337.4
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Load (KN) Gauge I Gauoe 3 Oruoc 5 Gauqe 7 Gauge I Gauoc ll Oruoe t3 t5
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20 {.2 3.1 2.1 {.1 t 6.8 14.6 5.9 6.0
40 0.2 5.2 2.3 6.7 36.2 n.s 30.1 27.6
60 2.6 15.3 30.3 45.8 1s2.2 127.7

'18.4 89.1
80 t 3.1 21.f 00.3 7s.6 28S.7 179.9 74.9 il 3.6

t00 ?2.C 32.8 121.5 1 25.7 ,t I 7.0 215.5 117.0 r 2{.6
It0 1t .6 5r.9 162.3 178.0 .169.4 2t2.5 172.3 t 03.s
120 15.2 59.5 t 79.r 213.2 170.2 265.5 202.3 I E9.2
130 62.3 66.8 19r.7 226.2 ,167.7 259.4 239.0 220.3
t10 t8.t 95.0 0{.9 227.8 ,+8 | .8 26s.S 280.5 .3
r50 88.0 88.{ 211 .1 213.1

'183.9 273.7 320.6 3t5.3
t60 r 57.4 t2r.5 226.1 257.8 508.3 2U.1 383.6 357.0
I ,| 384.9 058.S 375.8 383.E 5r9.5 280.5 407.9 408.8
t80 r021.6 I 1 09.9 122.e 121.1 532.2 286.1 1v.1 462.8
t90 2070. I 1282.5 187.1 ,f 66. I 520.7 3S1.1 1519.'1 t 3
200 2538.4 | 335.7 517.0 5rs.7 575.3 473.5 r 68r .6 r 936.4
2r0 43S8.1 r 820.? 651.5 039.4 u2.1 563.6 | 755.5 1871.2
220 0535.3 2637.t 773.9 76.l 8 74 3.0 68 7.0 I 773.6 1822.5
230 79 | 6.4 3S36.5 r 065.4 1 030.2 r 090.1 r 285.1 r 796.1 | 860.3
210 7891.4 1018.7 1216.6 1180.0 1257.2 2380.2 21 86.1 2162.2
250 7950.4 41 95 .{ r 289.2 1 233.6 r 280.7 2580.2 5S{ 2.3 6399. I
200 8r07.{ u75.5 I 110 .5 1281 .7 13r2.0 27y.5 8830.9 {748.0

0 6017.0 2901 .s 288 2 27r.0 111.2 999.7 9599.9 37 | 2.4

Beam HSC2

I

I

Load (KH) Gauoe 'l 7 Gauge 19 Gauge 2'l Gauge 23

0 0.0 0.0 0.0 0.0
20 75.9 76.7 85.7 I1.5
40 237.8 252.8 265.5 231.1
60 520.5 502.8 581.6 178.0
80 725.8 704.3 8t 1.8 679.6

t00 s02.1 883.3 1012.0 80s.0
110 | 003.0 978.7 1 1 24.6 971.1
120 1 r 03.9 r 060.7 r 243. t 1072.3
t30 r 200. 1 1152.2 r 352.3 1169.2
140 r 298.5 r 238.1 1459.3 1 267.8
r50 l39t .5 | 330.1 | 588.7 | 368.6
t60 t488.4 r420.0 1671.1 t466. I
170 1 581 .3 t 5t'l.8 1783.3 1 570.7
180 r 878.0 1608.9 r 883.5 r 673.4
r90 1761.7 I E87.1 1985.5 1757.5
200 r 856.0 1777.3 2094.8 r 855.7
210 1912.9 r 85€.6 2t s3.5 1940.6
220 2035.5 1S41 .7 2256.5 2029.1
230 2r 16.0 201 3.9 2382.7 2102.2
210 2220.1 2106.0 21 95.1 2tu.1
250 231 5.3 21 89.0 2598.0 2275.2
260 2101.2 2262.1 2681.5 2355.0

0 170.6 416.'t 481 t 131 6
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Lord (kr) Gauoe I Gruge 3 Grusc 5 Gruqe I Gruse I I Grugc l3 Oruqc l5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20.0 E.0 E.5 c.8 r 2.0 19.2 0.9 0.9
40.0 5.3 8.8 7.0 26.2 17,7 40.3 12.2
00.0 8.1 11.2 | 5.9 88.9 t 53.7 91.2 85.{
80.0 9.4 t 5.5 t 2.r | 28.1 2r 7.3 128.1 120.7

| 00.c 2.5 9.S 1.7 I'10.3 285.7 t4l.t t,14.0
t 20.0 r5.7 25.2 0.4 r 88.7 115.7 183.6 207.5
t40.0 3r.7 36.9 31 .2 212.8 419.3 ?5r.8 3t 2.0
160.0 r07.8 96.2 68.5 227.A u8.7 369.8 5t E.0
t 80.0 t 26.8 t 52.6 98.3 289.6 48,1.3 569.5 870.0
200.0 t62.3 212.3 3t 8.1 1122.1 2t{.5 871.2 I r0t.3
2r 0.0 209.8 250.3 t43L5 r56t.l t86.8 912.1 t | 36.6
220.0 1t2.2 | 038.4 {250.0 901.0 t342.3 | 035.2 t326.1
230.0 702.? t 059.1 07 3.8 789.5 t539.0 t 088.7 t387.6
210.0 80,1.7 | 085.'3 t 1039.8 7U.7 r6r0.3 I r{3.9 t48 | .2
250.0 877 t r r 07.2 t t t43.8 097.9 tf 15.2 1220.0 t 592.7
260.0 t423.8 r r5{.1 r 2368.8 606.7 t 81 9.9 1321.0 r 752.1
270.0 1022.0 | 189.7 13072.8 579.9 t 879.8 t OrrH t 928.7
280.0 t 795.7 t 208.7 r 3678.8 953.3 t 058.4 El OrY! 2759.0

0.0 877.2 436.1 725C.7 358.6 | 0.1 El OYr! 2908.8

Lord (br) Gauge l7 9auoe l8 Gauqe 2t Gruge 23
0 0 0 0

20 08.3 75.2 7t.e 81.1
40 115.S 2U.1 351 .8 320.2
60 5r 0.3 431.1 556.4 532.8
80 687.1 708.8 739. t 162.1

t00 825.8 0r5.7 887.8 908
t20 98r 2 I t 31.5 1078.c 11E2.8
t40 t t15.1 | 335.3 t 249.5 t 385.8
160 | 296. I | 525 t1l{.5 | 578.4
t80 r450.6 1122.8 t 586.3 t 78t.0
200 r 601.8 1521.7 1757.1 t 085.1
210 t 079.7 2017.7 tu2 20u.7
220 I 7.9.0 2r 07.5 I | 8.1 2t 76.6
230 r 820.7 2200.1 r 9s9.2 2271
210 | 891.6 2256.1 2080.0 2367.5
250 I 968.6 2395. r 2 t 66.9 2,106.9
260 2033.2 2180 2210 2550.1
270 2r01.6 25 73.7 2320.8 2812.3
280 2171 266 | .3 239/..7 2721:G

0 321.1 102.1 372.5 3S3.3

Lo:d (kr) 0ruge 25 Grugc 27 lGruqe 29 9ruqe 3t 9ruge 33 Geuoe 35 9auge 37 l0ruse fg0 0.0 0.0 0.0 0.0 0.0
83

0.0 0.0 0.020 7.2
2n

8.4 80.0 r0.5
40

9.9 r 2.3 r 1.7
15.0 9S.0 33.9 8.5 E.7 12.8 11.560 49. I 8.1 I 17.0 66.2 t5 5 t 5.7

tt.e
t 7.3
iIr | 5.'3

m80 u.7 2E.0 | 70.0 t71.7 35. I
t00 55.0 37.5 ZgU.O 212.5 33.0 30.3 22.C t 8.9120 79.9 65.7 275.0 332.5 3s.0 45.3 31.3t40 96.0 s2.2 292.0 171.3 u.1 88.8 40.9 5t.lr60 | 13.4 r t0.8 ut.0 034.9 97.0 152.4 60.5 I t4.3t80 121.8 1 28.1 523.0 757.8 | 86.2 239.4 32t.5 102.6200 128.1 423.4 025.0 E3E.3 r4795.8 r45S9.2 ?005.1 t8t9.7210 157.7 {53.2 060.0 209t.0 | 6600.8 r6515.2 2093.? 2453.048S.5 486.5 843.0 2397.8 21128.8 20530.2 0,191.8 5768.4525.t 522.5 | 088.0 2019.5 2338.8 22875.2 9701 I 7547.3210 692. t 682.1 t t 88.0 2794.r 20999.8 31240.2 9162.5 7755.3250 80,1.,1 810.0 f 2t8.0 2931 27627.8 3384 t .2 10137.2 8552.3aou 927.7 968.0 t34t.0 3090.2 2&t70 L 3757r.2

101.tS:
El OwE
Et O'/rt

76 1 6.3
s8T7"8

270 | | 05.0 I t 02.5 140r.0
m8J

3240.7-33S05 29331.8
280 | 796.S

8Sfi
| 725.8 31 r ir.8 436 | 3.2 El OYrts 1115.1r+uf4.u rt67.0l r149.4 Et Owld 28{,16.2 El OwH 3201.0

Appendix
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I

I

I

I

Losd (ln) Brugc t Gauge 3 Gauqc 5 Gauge 7 Gruoe 9 Bruge ll Gauge 15
0 0 0 0 0 0 0m -23.4 -t 9.1 -23.2 -20.1 -t 8.0 12.5 -22.1{0 -22.3 -10. r -22.5 -16.3 -1.1 2.3 -a.4

60 -20.8 t3.4 €.t 0.1 21.6 68.S | 0.380 -t 8.6 -9.3 -28. I u.8 06.7 t47 t.3r00 -20.1 4.2 41.3 75.2 100.3 | 1.3 3.7
120 -9.8 -2.2 | 10.8 9t.7 148.{ 29'i.€ 5.7t40 0.8 t t.4 -108 t 00.5 200.8 363.6 33.'lr60 12.1 32.2 -?0.1 126.2 253.0 {30.2 60.8t80 32.7 n .3r.6 t't8.6 289.5 17t.1 87.7
200 03.8 183.{ r4.6 210.1 32t.9 519.3 t0t.7
210 r e7.e I 3r 3.8 123.1 416.? 310.5 637 | 15.52m | 979.21 1473.8 14783.5 f 4684.5 -3S1.7 | 652.5 321.2
230 2170.8 I 520 t0371.5 | 0114.5 -508 t tntt n 435,9210 31 37.2 r 73S.9 r71rs5l n827.5 416.9 | 981 .2 551.1
250 5007.8 | 888.2 22802.5 23358.5 421.2 2065.7 694.7ma 5087.2 1 S43.9 2302 3.5 2359 | .5 {6r.2 2151 .1 t12g.7270 0a az.6 2029.1 23258.5 23902.5 721.t 2215.7 231 6.6
280 TUo.1l

101?7 7l
2027.61

-ta8a-s1

23032.sT
25e2fiT

- 211$57
rFstsSf

---rrr.5t
----2507f

2328
22t]J

0147.5
ElEYdd-290

300 I tu/u.t 5955.8 28535.5 30156.5 70.7 2302.2 | 6397.4!uI{., { 196 23700.5 236 1 05 -12s.81 015.6 El OwH

Lord (kr) Grugc ?5 Gruge 27 Gruce 29 Gruoe 3l Geuoc 33 Gruoc 35 Gruse 37 Gaugc 39
0 0 0 0 0 0 0 0 0

20 | 2.3 il -25700 1.6 {.3 -t2.6 -t.2 -r4.3
40 -11.2 -14 -25680 2l {.3 -t0.4 0./t 12.2
60 -3.1 -t 0.5 -25800 145.6 13.4 2.2 t 0.4 4.5
80 2.3 -t5 -?5820 2t t.t | 0.3 | 8.5 4.1

t00 r5.e -t 0.8 -25700 277.1 I t2.s 37.2 -5.5
't20 56.1 10.5 -25640 312.6 3 14.5 ti8 -t1.l
r40 78.3 38.7 -25550 39r.6 40.9 81.2 f 1.1 -r1.0
t00 E7.2 56.r -255?0 456.8 77.8 138.2 t 23.4 {.tl
180 t 00.5 80.6 -26430 002.7 211.9 40t 530.7 203.1
200 tt4.8 149.3 -33780 71.{.8 s82.9 ttE0 1772.9 I OEE.E

210 5't5.3 70'1.5 -31020 | 553.{ | 068.,1 2W5.5 t 70E.9 | 368.6
220 039.0 t | 97.4 .31070 21 t t2t4.l lvzs.2 102t.8 Itt81.'l
230 t20t r 525.9 31e30 2J72.3 7995. t 22022.2 ZOEZ.i t 73S.1
2{0 r 332.2 t&49.7 -35110 25r1 l820t.l 22122.2 2215.1 t E5E. I
x0 t 266. t 2088.7 -3,5&1 2769.7 t85t9.t 22805.2 2553.7 201r.s
260 t 281 .'1 21'15.t 30500 2832.6 | 9261.1 2362t.2 3r 50.2 2159.8
210 106r6 t591t.t -38080 r73r.3 23681.t 2e450.2 't581 .5 2325.1
280 fi 173 t 7691 .1 -38230 1642 24851.1 268,t5.2 1002.3 s226
290 t 1618 r 9732. r -{0 140 1571.7 24658. t 27304.2 -1960.8 13518
300 r2r30 22815.1 -56570 t405.5 22152.1 28928.2 -775.8 t 5873

0 Et Owld El Owld 45860 710.0 r 3382. r El OvrE -1 31,1.5 23159

tord (br) auqe 17 Gruoe l9 Bsusc 2l Gru
0 0 0 0

20 51.8 59.2 48.3 t0.l
40 34r 301.5 270.3 355. r
EO 500.8 528.6 +40.5 509.2
80 615 73r.6 585.4 t88

t00 790.4 9r 0.7 732.3 979.3
t20 957.9 t 081 .7 890.8 tr22.s
t40 'trr8.9 r 260.6 | 049.6 1290.5
t60 1277 / r431.5 1204.1 r451.9
180 1436.6 t 007.4 | 357.5 r 624.8
200 1590.1 1175.2 | 506.€ 17s2.7
210 1646.2 t 835.8 1562.5 | 855. t
220 1717.7 l%1.9 1660.2 I 7
230 18r9.S 2021.1 r 729.5 2013.
210 r 8s5.5 2 r 03.s t 802.1 2121.1
250 r 869.9 t 86.7 | 875.9 2210.5
260 2040.2 2263 | 941 .0 2281.7
270 2t t0.E 2y1.1 2009.9 2304.8
280 2183.9 2123.3 2078.8 2U7.7
290 2256.7 2501.9 2115.6 2525.1
300 23 r 0.1 2565.2 2203.3 2592.5

0 315.8 382.3 31 6.9 352.4
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