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Abstract: Redox mediators could be used to improve the efficiency of microbial fuel cells (MFCs) 

by enhancing electron transfer rates and decreasing charge transfer resistance at electrodes. 

However, many artificial redox mediators are expensive and/or toxic. In this study, laccase 

enzyme was employed as a biocathode of MFCs in the presence of two natural redox mediators 

(syringaldehyde (Syr) and acetosyringone (As)), and for comparison, a commonly-used artificial 

mediator 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was used to investigate their 

influence on azo dye decolorization and power production. The redox properties of the 

mediator-laccase systems were studied by cyclic voltammetry. The presence of ABTS and As 

increased power density from 54.7 ± 3.5 mW m−2 (control) to 77.2 ± 4.2 mW m−2 and 62.5 ± 3.7 mW 

m−2 respectively. The power decreased to 23.2 ± 2.1 mW m−2 for laccase with Syr. The cathodic 

decolorization of Acid orange 7 (AO7) by laccase indicated a 12–16% increase in decolorization 

efficiency with addition of mediators; and the Laccase-Acetosyringone system was the fastest, 

with 94% of original dye (100 mgL−1) decolorized within 24 h. Electrochemical analysis to 

determine the redox properties of the mediators revealed that syringaldehyde did not produce 

any redox peaks, inferring that it was oxidized by laccase to other products, making it unavailable 

as a mediator, while acetosyringone and ABTS revealed two redox couples demonstrating the 

redox mediator properties of these compounds. Thus, acetosyringone served as an efficient 

natural redox mediator for laccase, aiding in increasing the rate of dye decolorization and power 

production in MFCs. Taken together, the results suggest that natural laccase redox mediators 

could have the potential to improve dye decolorization and power density in microbial fuel cells. 

Keywords: acetosyringone; dye decolorization; laccase; natural redox mediators; power density; 

syringaldehyde 

 

1. Introduction 

Microbial fuel cells (MFCs) could have potential in treating dyeing effluents with simultaneous 

power production. At the cathode of MFCs, platinum and metal oxide catalysts are commonly used 

for the oxygen reduction reaction (ORR). In recent years oxidoreductase enzymes e.g., laccase, have 

been explored as cathode catalysts in MFCs as a possible alternative to platinum as a way of 

reducing the cost of materials needed to construct MFCs [1,2]. Laccase is a multi-copper containing 

enzyme that is capable of one electron oxidation of other substrates and four electron reduction of O2 
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to H2O [3,4]. The enzyme is widely utilised in the oxidation of phenolic and non-phenolic substrates 

such as dyes, pesticides, antibiotics etc. 

The redox potential of the substrate should be lower than that of laccase for oxidation to be 

thermodynamically feasible. The redox potential range for fungal laccase is between 0.4–0.8 V vs. 

standard hydrogen electrode (SHE), which is suitable for oxidation of phenolic substrates; for 

non-phenolic substrates that have a redox potential of >1.3 V vs. SHE, and cannot be oxidized 

directly by laccase, a redox mediator is required [5]. A redox mediator is a small molecular weight 

compound that is oxidized by the enzyme and reduced by the substrate continuously. They act as 

electron shuttles for large substrates that cannot access the active site of the enzyme, e.g., due to 

steric hindrance [6]. In laccase mediator systems (LMS), the enzyme oxidizes the mediators to form 

stable radicals with high redox potential that diffuse away from the enzyme active site and oxidize 

the substrates and get reduced in the process. In this way, laccase indirectly oxidises substrates that 

have high redox potentials or large molecular sizes [7] (Figure 1). 

 

Figure 1. Laccase indirect substrate oxidation through mediators with oxygen as the final electron 

acceptor (Modified from [5]). 

The first synthetic redox mediator reported was 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic 

acid) (ABTS) for laccase from Trametes versicolor for oxidation of non-phenolic lignin compounds 

[8]. Another mediator that is involved in laccase lignin degradation and bleaching of kraft pulps is 

1-Hydroxybenzotriazole (HBT) [9]. The LMS were initially used for delignification and 

bio-bleaching of wood pulps; nowadays, they are widely used for the degradation of xenobiotic 

compounds [10–12]. 

Although ABTS and HBT are the most widely used redox mediators for laccase, artificial 

mediators are not economically feasible, and they are toxic to the enzymes in the long run. In recent 

times, natural mediators have been explored for their environmental friendliness and low-cost. 

These natural mediators are phenolic compounds that exist in nature and mediate lignin oxidation 

in white rot fungi. Commonly-used phenolic mediators are syringaldehyde, acetosyringone, 

vanillin, methyl vanillate, p-coumaric acid, etc. [11]. The above mediators were compared with 

ABTS and HBT for the decolorization of different dyes with laccase from T. versicolor and 

Pycnoporous cinnabarinus. Syringaldehyde and acetosyringone showed 100% decolorization of Acid 

blue 74 with both laccases while there was >85% decolorization for Reactive Black 5 dye in less than 

1 h for both the dyes. There was less than 50% decolorization of Acid Blue 74 by ABTS and HBT in 

the same time period. The phenolic mediators were more rapid and efficient in the oxidation of 

dyes than their synthetic counterparts [13]. The decolorization efficiency of various LMS depends 

on the dye structure. The mechanism of laccase mediation varies between each mediator. It was, for 

example, observed for lignin oxidation that ABTS/Laccase carried out alpha carbon oxidation and 

coupling of the lignin subunits, whereas HBT/laccase polymerized them [14]. 

Laccase stability and activity was decreased when incubated with artificial redox mediators 

ABTS, HBT, TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl), and violuric acid (VA) at a 

concentration of 0.5 mM [14]. Even in the absence of any mediator, laccase activity decreased from 

1000 U L−1 to 290 U L−1 in 15 days [15]. It is probably for this reason that high enzyme loadings such 

as 500 U mL−1 to 2000 U mL−1 are used in various dye decolorizing experiments [16,17]. Therefore 
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methods to decrease the enzyme loading and reduce the cost of mediators should be further 

examined [18]. 

In this study natural mediators such as syringaldehyde and acetosyringone were studied with 

relatively low enzyme loadings (300 U L−1) with a view to developing a low cost and sustainable 

laccase-mediator system. The use of laccase with natural phenolic mediators such as 

syringaldehyde and acetosyringone in a microbial fuel cell for dye decolorization has not been 

reported so far. 

2. Materials and Methods 

2.1. Chemicals 

A crude commercial fungal laccase from Trametes versicolor with 10 U mg−1 of activity obtained 

from Enzyme India Pvt. Ltd., Chennai, India, was used. ABTS, syringaldehyde and acetosyringone 

were purchased from Sigma Aldrich, Cambridge, UK. 

2.2. Operation of the Microbial Fuel Cell 

An H-type MFC with a working volume of 200 mL in each chamber was used. Electrodes were 

made of non-woven carbon fiber, each with a surface area of 25 cm2. Cation exchange membrane 

CMI7000 ion exchange membrane (Membranes International, Ringwood, NJ, USA) was soaked in 

5% NaCl for 12 h before use. External resistance was 2000 Ω. This resistance was used because 

previous studies in our lab had found this to be the optimum for power production using the H-type 

reactor systems in our laboratory [19]. 

2.2.1. Anode Chamber Composition 

The composition in the anode chamber was the same for all reactors. The anolyte consisted of 

minimal salts medium containing (per liter): 0.46 g NH4Cl, 0.22 g (NH)2SO4, 0.117 g MgSO4, 7.7 g 

Na2HPO4.7H2O, 2.87 g NaH2PO4 along with 1% (v/v) trace minerals as described by Marsili et al. 

and 1% (v/v) vitamin mix as described by Wolin et al. [20,21]. The anolyte was supplemented with 

pyruvate as a carbon source at a concentration of 1 g L−1 and casein hydrolysate was also added at 

500 mg L−1. The pH of the anolyte was initially adjusted to 7. The anode was inoculated with 10% 

v/v Shewanella oneidensis MR-1 culture previously grown in Luria Bertani broth to an optical density 

of 0.4. The anode chamber was sparged for 10 min with nitrogen gas to remove any dissolved 

oxygen and to maintain an anaerobic environment. 

2.2.2. Cathode Chamber Composition 

The cathode chamber consisted of the commercial laccase from Trametes versicolor in 100 mM 

sodium acetate buffer solution (pH = 4.5) in the presence and absence of redox mediators. Laccase 

enzyme (300 U L−1) was freely suspended in 200 mL of 100 mM acetate buffer (pH = 4.5) and 100 mg 

L−1 of Acid Orange 7 dye was added. After subsequent trial experiments, the concentration of the 

mediators were set at 50 µM. The cathode chamber was supplied with air through an air stone at a 

rate of 200 mL min−1.  

2.3. Experimental Design 

Seven MFC systems were set up. System 1 was with S. oneidensis in the anode and laccase 

enzyme suspended in the cathode chamber in absence of mediators. This system is henceforth 

referred to as “Control Lac”. System 2 was with S. oneidensis in the anode and laccase in the 

presence of ABTS in the cathode, hereafter referred to as “ABTS-lac”. System 3 was with S. 

oneidensis in the anode and laccase in the presence of syringaldehyde in the cathode, hereafter 

referred to as “Syr-lac”. System 4 was with S. oneidensis in the anode and laccase in the presence of 

acetosyringone in the cathode, hereafter referred to as “As-lac”. System 5 was with S. oneidensis in 

the anode and syringaldehyde in the cathode without laccase, hereafter referred to as 
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“Syringaldehyde”. System 6 was with S. oneidensis in the anode and acetosyringone in cathode 

without laccase, hereafter to as “Acetosyringone”. System 7 was with S. oneidensis in the anode and 

ABTS in the cathode without laccase, hereafter to as “ABTS”. Experiments were conducted at a 

temperature of 30 °C. 

2.4. Analytical Procedures 

2.4.1. Acid Orange 7 Decolorization 

The decolorization of AO7 at the cathode was measured at various time intervals using a 

UV-visible spectrophotometer at a wavelength of 484 nm, which is the maximum absorption 

wavelength for the dye. The decolorization efficiency (DE) was calculated by 

DE (%) = Ao� At  

Ao
 × 100  

AO and At are the absorbance units at the initial and each time point respectively. A time series 

was plotted for the absorbance values measured. 

2.4.2. Electrochemical Analysis 

The voltage across each MFC system was recorded at 10-min intervals using a Picolog data 

acquisition system (Pico Technology, St Neots, UK). The current through each system was calculated 

using Ohm’s Law: 

������� (�) =  
������� (�)

���������� (Ω)
   

The power produced was calculated using the following formula: 

P = IV   

where P is power in Watts, I is current in amperes and V is the electric potential in volts. 

The power and current per surface area of anode electrode was used to calculate the power and 

current density. To carry out polarisation tests, each MFC unit was connected to various external 

resistances ranging from 10 Ω to 1 MΩ, and the steady state potential was measured using a 

multimeter. 

2.4.3. Cyclic Voltammetry (CV) of Redox Mediators 

The redox activity of the mediators ABTS, syringaldehyde, and acetosyringone in the presence 

and absence of laccase was analysed using cyclic voltammetry. A three-electrode system with the 

working electrode as glassy carbon, platinum as the counter, and Ag/AgCl as reference electrode 

was used. The three mediators were each added to 100 mM acetate buffer (pH 4.5) containing 0.3 U 

mL−1 laccase to give a final concentration of 50 µM. CV was carried out using a CH 660A potentiostat 

(CH Instruments) by cycling the potential between −1 V to 1 V at 50 mV s−1. 

2.4.4. Chronoamperometry (CA) of Laccase-Mediators 

The effect of redox activity on current output was measured by CA. The same three-electrode 

system as used in 2.4.3 above was used. The working electrode was poised at 0.7 V, and laccase at a 

concentration of 0.3 U mL−1 was added to the 50 µM mediator solution to observe the change in 

current. CA was carried out using a CH 660A potentiostat (CH Instruments, Austin, TX, USA). 

2.4.5. Statistical Analysis 

All experimental data indicated in the text and graphs are the means of triplicate experiments 

unless otherwise stated. The error bars in the graphs and error values in the text represent standard 

deviations of the mean (SD). Data was analyzed using Microsoft Excel. 
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3. Results and Discussion 

3.1. Power Generation 

The power density was highest for the ABTS-lac system (77.2 ± 4.2 mW m−2) compared to the 

control lac system (no mediators), which gave 54.7 ± 3.5 mW m−2 (Figure 2a). The power density of 

the ABTS-lac system is comparable to the performance of MFCs with platinum-coated cathodes (80 

mW m−2) obtained in a separate study in our laboratory [data submitted elsewhere for publication]. 

Similar trends were also obtained by Luo et al., when MFCs with laccase immobilized with 

Nafion-ABTS produced power (160 mW m−2) equivalent to platinum-coated electrodes [1]. The 

power density in our study was much higher than Schaetzle et al., who obtained 37 mW m−2 with 

laccase-ABTS at the cathode of a MFC [22]. 

ABTS is oxidised by laccase, and it can be regenerated (reduced) by receiving electrons from 

the electrode and/or the dye [23]. The redox potential of the intermediates, ABTS+ is 0.68 V and 

ABTS2+ is 1.09 V vs. SHE respectively [6]. The high redox potential of these ABTS radicals aids 

laccase in efficient reduction of oxygen which occurs at a potential of 1.2 V vs. SHE. 

The As-lac system produced a Pmax of 62.5 ± 3.7 mW m−2, and for the Syr-lac system, it was 23.2 

± 2.1 mW m−2 (Figure 2a). The power density was higher for the As-lac than the control Lac system 

and vice versa for the Syr-lac system. The low power produced by the Syr-lac system is probably 

due to syringaldehyde acting as a substrate for laccase rather than a mediator. Electron donating 

groups of the benzene ring in phenolic compounds lowers their redox potentials which enables 

laccase to readily oxidize these substrates, the electrons released being used to reduce oxygen to 

water [12]. Since phenols are natural substrates for laccase, they are likely to be the source of 

electrons for oxidation rather than the cathode. This would reduce the power output of MFCs. The 

higher power density in the control lac systems indicates that in the absence of substrate oxidation, 

electrons are accepted from the cathode. Although acetosyringone is also a phenolic compound, the 

power density from the As-Lac system was greater than the control lac system, suggesting that the 

mediator could have been more efficiently regenerated compared to syringaldehyde. The detailed 

mechanism for the mediation is discussed in Section 3.3. Thus, from the power density data alone, it 

can be suggested that acetosyringone is a lower affinity substrate for laccase compared to 

syringaldehyde. This study is the first use of phenolic mediators in a MFC for laccase oxidation. 

The internal resistance for the As-lac system was 1.5 kΩ compared to 1.8 kΩ for the control lac 

system; the ABTS-lac system had an internal resistance of 1.9 kΩ, while Syr-lac system had the 

highest resistance of 2.2 kΩ (Figure 2b). 

  

Figure 2. (a) Power density curves for mediator based laccase cathodes and control MFCs obtained 

by varying the external resistance from 10 Ω–1 MΩ; (b) Voltage vs. Current plot. 
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In the absence of laccase, the power density for cathodes containing syringaldehyde and 

acetosyringone was 8.6 mW m−2 and 7.5 mW m−2 respectively. 

3.2. Acid Orange 7 Decolorization 

The decolorization rate of AO7 was highest in case of the As-lac system, followed by the 

Syr-lac system, and finally, the unmediated laccase biocathode (Figure 3). There was 94% 

decolorization in the As-lac system within 24 h of addition of dye. Decolorization in the control lac 

system was slightly slower with less than 80% decolorization in 24 h (Figure 3). Overall there was 

>95% decolorization for all laccase-based systems after 4 days which was not statistically significant 

compared to the control. Similar observations were observed for acetosyringone with Reactive Blue 

dye where >80% decolorization was observed in 2 h under non-MFC conditions [13]. As the two 

mediators are phenolic compounds that are substrates for laccase they are rapidly oxidized by the 

enzyme to produce phenoxy radicals that aid in dye decolorization [13]. In the presence of AO7 

dye, the mediated laccase prefers the oxidation of dye for electrons rather than the anodic electron 

source with redox potentials of ca. −0.2 V vs. SHE [21]. The mediators are regenerated by 

abstraction of H+ from the dye and e- from the cathode. Syringaldehyde and acetosyringone have 

been reported to have redox potentials of 0.660 V and 0.580 V vs. SHE respectively [24,25]. In the 

absence of laccase, the mediators have lower redox potential than AO7 (0.693 V vs. SHE); therefore, 

no decolorization was observed (Figure 3). 

Decolorization using the ABTS-Laccase system was also attempted for comparison but due to 

heavy interference with the color of ABTS in the presence of laccase (blue), the decolorization could 

not be studied effectively.  

 

Figure 3. Decolorization of AO7 dye by laccase in the presence and absence of mediators over a 

period of 4 days. 

3.3. Electrochemical Activity of the Laccase Mediator Systems 

To understand the reaction mechanism of the laccase-mediator systems, cyclic voltammetry 

was performed. The CV of the Syr system revealed a very weak oxidation peak at 0.73 V without any 

quantifiable cathodic current (Figure 4). In presence of laccase the oxidation peak was further 

decreased indicating syringadehyde’s reduction reaction with the enzyme. There was absence of any 

redox peaks that are characteristic of redox mediators being regenerated. This might be due to 

laccase oxidizing syringaldehyde to syringic acid while producing phenoxy radicals and syringic 

acid further oxidizing to 2,6-dimethoxy-1,4-benzoquinone (DMBQ) [26,27] (Figure 5). Due to the 
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subsequent oxidation of syringaldehyde, it is not regenerated and available as a mediator. Laccase is 

capable of catalyzing oxidative polymerization of quinone compounds to form polyhydroquinones 

[28]. 

Therefore, the polymerization products of benzoquinone (DMBQ) formed could result in 

development of concentration gradients and mass transfer limitation at the electrode decreasing the 

power density. Another possible reason might be a result of the products inhibiting laccase enzyme 

activity. The CV of acetosyringone produced two redox couple peaks at 0.7 V/0.62 V and at 0.42 

V/0.34 V (Figure 6). Acetosyringone has two major sites for oxidation/reduction reactions: a 

hydroxyl group at para position, and a keto group attached to the ring (Figure 7). The redox 

reactions at these two functional groups contribute to the redox couples in the CV. The functional 

groups are oxidized to form either a phenoxy radical or an enolate ion. These ions are intermediates 

of the oxidation reduction reaction stabilized by the aromatic ring. In presence of laccase, the peak at 

0.7 V (close to laccase redox potential (0.780 V)) was reduced, whereas the cathodic current at the 

second redox peak was increased and shifted to 0.31 V. This indicates that one of the functional sites 

is preferably oxidized by laccase. 

 

Figure 4. Cyclic voltammetry of syringaldehyde in the presence and absence of laccase at a scan rate 

of 50 mV s−1. The potential indicated is vs. Ag/AgCl. 

 

Figure 5. Laccase oxidation of syringaldehyde to syringic acid and subsequent oxidation to 

benzoquinones [29]. 
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Figure 6. CV of acetosyringone indicating the oxidation/reduction peak in the presence and absence 

of laccase at a scan rate of 50 mV s−1. 

The two methods of mediation are the Electron transfer (ET) route and radical hydrogen atom 

transfer (HAT). In the ET route of mediation, only electrons are involved in the formation of free 

radicals and in the oxidation/reduction of the mediator. In the HAT mechanism, besides an electron, 

a H+ ion is abstracted from hydroxyl groups of the mediators resulting in O free radical that aids in 

the mediation. From previous studies, it has been suggested that electron/hydrogen atom 

abstraction proceeds through the hydroxyl group present on the aromatic ring in acetosyringone 

[30]. Due to the presence of two functional groups, the mechanism of redox mediation in 

acetosyringone is a combination of HAT and ET route [26] (Figure 7). The presence of a keto group 

(as opposed to only hydroxyl) prevents laccase from completely oxidizing the substrate to a different 

product as observed in syringaldehyde. The acetosyringone is regenerated at the electrode/dye and 

is available as a mediator, contributing to the higher current output. 

 

Figure 7. Electron transfer (ET) and Hydrogen atom transfer (HAT) oxidation mechanisms of 

acetosyringone mediated by laccase. 
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In case of ABTS, there were two redox couples: the first at 0.9 V/0.67 V, and the second at 0.63 

V/0.45 V (Figure 8). The regeneration (reduction) of ABTS by accepting electrons from the electrode 

can be observed through increased cathodic current at 0.45 V in the presence of laccase. ABTS 

oxidation is a two-step mechanism where first it is oxidized to generate a cationic radical (ABTS+) 

that is sequentially oxidized to a di-cation ABTS2+ (Figure 9) [31]. Hence, a clear decrease in both the 

oxidation peaks can be observed in the presence of laccase. ABTS is readily oxidized by laccase, and 

the mediator is constantly regenerated by accepting electrons from the electrode and the dye. The 

mechanism of ABTS mediation is through the electron transfer (ET) route between the enzyme and 

the substrate (Figure 9). 

 

Figure 8. CV of ABTS indicating the oxidation/reduction peak in the presence and absence of laccase 

at a scan rate of 50 mV s−1. 

 

Figure 9. Two step oxidation/reduction of ABTS by laccase and electrode/dye respectively. 
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The effect of a laccase-mediator reaction on the current output was further tested by 

chronoamperometry. It was observed that ABTS system gave the highest cathodic current of 600 µA, 

whereas the syringaldehyde and acetosyringone systems produced 150 and 125 µA respectively 

(Figure 10). 

 

Figure 10. Chronoamperometry depicting the reduction current for each mediator at a concentration 

of 50 µM. 

Although ABTS was the best mediator in terms of power production, acetosyringone 

performed comparably with an added advantage of dye decolorization. It is much cheaper and 

sustainable than ABTS. Syringaldehyde was the best substrate for laccase, and was completely 

oxidized; thus it did not act as a mediator to improve the performance of the MFC. Overall, the 

acetosyringone-lac system is preferred for dye decolorization and power production in a MFC. 

4. Conclusion 

Mediators could be used to improve the power density and efficiency of dye decolorization 

when used with laccase in the cathode of a MFC. For environmental and economic reasons, natural 

redox mediators such as syringaldehyde and acetosyringone are preferable, and in this study, their 

effectiveness was compared to those of a commonly used synthetic mediator ABTS. The presence of 

mediators increased the power density: the ABTS-lac system produced a Pmax of 77.2 ± 4.2 mW m−2 

while the As-lac system gave 62.5 ± 3.7 mW m−2. The control lac system produced 54.7 ± 3.5 mW m−2 

while the power density was the lowest for the Syr-lac system (23.2 ± 2.1 mW m−2.) There was a 16% 

increase in decolorization efficiency with addition of mediators as compared to laccase in absence of 

mediators with As-lac achieving 94% decolorization in 24 h. The color of ABTS interfered with 

attempts to quantify the decolorization efficiency of the dye due to ABTS mediation and this is a 

limitation of this study. Electrochemical analysis performed to determine the redox properties of 

the mediators, revealed syringaldehyde did not produce any redox peaks, suggesting that it was 

oxidized by laccase to other products, making it unavailable as a mediator, while acetosyringone 

and ABTS revealed two redox couples demonstrating the redox behavior of these compounds. 

Thus, acetosyringone served as an efficient mediator for laccase, aiding in increased rate of dye 

decolorization and power production in a MFC. 
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