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Abstract—A rapid non-invasive detection of meat spoilage 
microorganisms, using Fourier transform infrared spectroscopy 
(FTIR) and Extended Normalized Radial Basis Function neural 
networks has been proposed in this paper. The objective is to 
associate simultaneously spectral data with microbiological data 
(log counts), for Total Viable Counts, Pseudomonas spp., Lactic 
Acid Bacteria and Enterobacteriaceae by predicting their micro-
biological population directly from FTIR spectra. The 
dimensionality reduction of spectral data has been addressed by 
the implementation of a fuzzy principal component algorithm, 
while results confirmed the superiority of the adopted scheme 
compared to multilayer perceptron models used recently in food 
microbiology. 

Keywords-neural networks; expectation-maximization; fuzzy 
principal components analysis, meat spoilage, prediction. 

I. INTRODUCTION  

In the past few decades, meat industry has enormously 
flourished, due to the continuing growth of worldwide demand 
for improved food quality [1]. Beef, as one of the most 
commercially consumed muscle foods, although is a good food 
source for proteins and other vital nutrients it is also considered 
as an ideal substrate for the growth of pathogenic 
microorganisms and consequently spoilage. Currently, meat 
safety is mainly relied on regulatory inspection and sampling 
protocols and the majority of proposed chemical and 
microbiological detection methods are considered as time-
consuming processes [2]. Rapid and non-invasive methods 
based on analytical instrumental techniques, such as Fourier 
transform infrared spectroscopy (FTIR) [3], Raman spectro-
scopy [4], hyperspectral imaging [5] and electronic nose 
technology [6] have been considered for their potential in meat 
quality assessment.  

Over the last few years, FTIR has been considered as a very 
important tool in food analysis. The application of 
chemometric-based techniques to associate FTIR spectral data 
with meat spoilage is not new and it has been investigated in 
the past [7]. FTIR spectral data collected directly from the 
surface of meat were used as biochemical interpretable 
“signatures”, in an attempt to early microbial spoilage of 
chicken breast and rump steaks [8]. Partial least squares (PLS) 
and simple multilayer neural networks (MLP) models have 
been investigated to correlate FTIR spectral data with beef 

spoilage and its associated total viable bacteria counts (TVC) 
[9]. An advanced machine learning methodology based on 
adaptive fuzzy logic systems (AFLS) [10] has been proposed, 
utilizing the same dataset used earlier in [9].  

The main objective of this paper is to associate FTIR 
spectral data with beef spoilage during aerobic storage at 
various temperatures (0, 5, 10, 15, 20 °C) utilizing an advanced 
learning-based decision support system, entitled iMeatNet 
framework, based on Extended Normalized Radial Basis 
Function networks (ENRBF). Information related to FTIR 
spectra, as well as the correlated microbiological analysis from 
beef fillets (i.e. Total Viable Counts, Pseudomonas spp., Lactic 
Acid Bacteria and Enterobacteriaceae) was partly used in [9 & 
10]. Due to the nature of FTIR spectral data, it is necessary to 
consider the use of a dimensionality reduction algorithm to 
reduce the problem of dimensionality with the minimum 
information lost. As PCA is vulnerable to outliers, in this paper 
an improvement of PCA is proposed by the fuzzification of the 
matrix data, in order to reduce the influence of the outliers. In 
the current study, a neural network scheme based on the 
Extended Normalized Radial Basis Function network (ENRBF) 
has been developed to predict the microbial load on meat 
surface. The Bayesian Ying-Yang (BYY) Expectation 
Maximization (EM) algorithm has been used together with 
novel splitting operations to determine network’s size and 
parameter set. Results from ENRBF are compared against 
models based on MLP networks. 

II. FTIR SAMPLING AND ANALYSIS 

The FTIR experimental case was performed at the 
Agricultural University of Athens, Greece, and information 
related to FTIR spectra, as well as the correlated 
microbiological analysis (i.e. Total Viable Counts, 
Pseudomonas spp., Lactic Acid Bacteria and 
Enterobacteriaceae) from beef fillets, was provided to the first 
author for research purposes. A description of the experimental 
methodology as well as the related microbiological analysis of 
the meat samples is described in [9]. FTIR spectral information 
was used as a way to obtain metabolic “signatures” of beef 
fillet samples during storage in aerobic conditions at five 

different storage temperatures (0, 5, 10, 15, and 20 o C ). Typical 

FTIR spectral data in the range of 11800 1000cm−− collected 
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from fresh, semi-fresh and spoiled beef fillet samples stored at 

0, 10 and 20 o C respectively are shown in Fig. 1 

 
Figure 1.  FTIR spectra collected from beef samples  

Although the microbiological analysis for TVC prediction 
was performed on the entire group of 74 meat samples, such 
analysis for all specific microorganisms was accomplished only 
in 49 meat samples, as clearly shown from curves at Fig. 2. 
This inconsistency between the number of microbiological 
predictions of TVC and specific microorganisms represents a 
serious problem in applying learning-based systems in a 
homogeneous way. 

 
Figure 2.  Growth curves of TVC & Pseudomonas at various temperatures  

The level of data quantity is generally considered as a main 
issue, because usually insufficient data will not lead to a robust 
prediction performance. In this work, an efficient data 
expansion technique has been utilized for the obtained small 
dataset to form a new “virtual” sample set, improving thus the 
accuracy of the proposed decision support system. Inspired by 
the way the Radial Basis Function (RBF) network 
approximates a nonlinear function through Gaussian local-basis 
functions, we have employed such a network to each 
“microorganism curve” defined from the experimental data. 
The aim is to associate each local-basis-function to each 
sample, and therefore easy then to generate “continuous virtual 
curves” that satisfy correlated experimental “microorganism 
curves”. An RBF network using the regularized orthogonal 
least squares learning algorithm has been employed for this 
task [11]. Thus, for each microorganism case and for each 
temperature level, an individual RBF network has been 
constructed. As the real number of samples for each 
temperature level was limited, each RBF center was associated 
with a real sample. Then with a smaller sampling time, through 
a 2-inputs network, a “continuous growth curve” was obtained 
for each temperature level. The RBF inputs involved 

temperature level and sampling time-step, while the output was 
related to the specific microorganism predictions. Each 
“continuous growth curve” was verified against the real 
experimental samples. Based on these continuous “virtual” 
datasets, the missing microbiological information for the 
remaining 25 meat samples was retrieved.  

 
Figure 3.  Modelling of microorganisms’ growth curve via RBF networks  

Fig. 3 illustrates a sample of these “virtual” datasets for the 

temperature of 10 o C . The final dataset consisted of the 
“complete” microbiological predictions (i.e. 74 samples) as 
well as the sensory categorization was utilized for the 
development of the proposed prediction iMeatNet framework. 
The initial FTIR dataset was divided into a training subset with 
approx. 80% of the data, and a testing subset with the 
remaining 20% (i.e. 14 samples). All testing samples were real 
experimental cases, whereas the “virtual” samples, which have 
been generated in order to fill the missing information from the 
microbiological analysis, were incorporated into the training 
datasets. 

III. DATA ANALYSIS 

In this work, FTIR spectral information was utilized to 
obtain metabolic “signatures” of beef fillet samples during 
storage in aerobic conditions at five different storage 

temperatures (0, 5, 10, 15, and 20 o C ). Information from these 
spectra can be extracted in order to acquire metabolic 
fingerprints of beef fillets during storage at various 
temperatures. A principal component analysis (PCA) was then 
performed on this mean-centered spectral data. In this 
particular experimental case study, although the total variance 
(100%) of the dataset was explained by 37 principal 
components (PCs), only the first five PCs were associated with 
the 97.85% of the total variance, as shown in Table I. 

TABLE I.  RESULTS FOR PCA AND FPCA SCHEMES 
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An alternative solution to improve PCA appears to be the 
fuzzification of the matrix data [12]. One approach toward the 
fuzzification of the matrix data is to consider the points that are 
isolated with respect to the first principal component. Fuzzy 
membership degrees can be introduced according to the 
distance to the first principal component. The first fuzzy 
principal components and the related fuzzy membership 
degrees could be determined through the usage of a fuzzy 
clustering algorithm.  Elements with a high degree of   
membership in the ith cluster (i.e. close to the cluster’s center) 
contribute significantly to the weighted average, while 
elements with a low degree of membership contribute   
negligibly. The algorithm could be considered as an extension 
of the fuzzy regression algorithm [13]. PCA and FPCA 
schemes were implemented in MATLAB, with the additional 
usage of PLS_Toolbox. Concerning the FPCA, of the same 
data set we have to remark that the results obtained are quite 
different. We can see that, for example, the first principal 
component explains 57.4% of the total variance and the second 
one 39.66; a two component model thus accounts for 97.07% 
of the total variance (as compared to 67.84% for PCA) and a 
three components model accounts for 98.42% (as compared to 
82.25% for PCA) (Table I). Clearly, the first FPCA-derived 
components account for significantly more of the variance than 
the PCA counterparts. Thus, the first three principal 
components from the FPCA were extracted and utilized as 
inputs to the various simulation models applied on this 
particular dataset. 

IV. EXTENDED NORMALISED RADIAL BASIS FUNCTION 

NETWORKS 

Locally active networks, like Radial Basis Function (RBF) 
networks, are less prone to dimensionality problems as each 
single neuron-node defines a multi-dimensional hyper-sphere 
in the input domain. This hyper-sphere is often defined through 
the use of a Gaussian activation function placed on the neuron. 
More frequently, instead of a single value utilized as the 
deviation parameter, a diagonal or full variance matrix is used. 
This alternative way provides differing levels of deviation 
along each axis of the input domain. Networks utilizing these 
types of neurons are often called Normalized Radial Basis 
Function (NRBF) networks. The identification scheme utilized 
in this paper is the Extended Normalized Radial Basis Function 
Network (ENRBF), which is an improvement of NRBF 
network [14].  

 

Figure 4.  ENRBF scheme 

The ENRBF network replaces the linear combiner of the RBF 
with a series of local linear models as shown in Fig. 4. We 
propose a supervised training method for this scheme that is 
fully supervised as it incorporates the Bayesian Ying-Yang 
(BYY) method for parameter updating and uses a heuristic to 
determine the starting parameters of the network [15]. The 
BYY Expectation Maximization (EM) method treats the 
problem of optimization as one of maximizing the entropy 
between the original non-parametric data distribution based on 
Kernel estimates or user specified values and the parametric 
distributions represented by the network. This is achieved 
through the derivation of a series of EM update equations using 
a series of entropy functions as the Q function or log-likelihood 
function. The ENRBF network can be represented by the 
following set of equations.  
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where z is the output of the network z Z∈ , x is an input 
vector x X∈ , [ ], ,W c θΘ = are the network parameters and 

[ ],mθ = Σ are the parameters of the Gaussian activation 

functions given by 
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The BYY method attempts to maximize the degree of 
agreement between the expected value of z from the network 
and the true value of z from the training data. It is guaranteed to 
lead to a local optimum and unlike the original EM algorithm 
for learning the parameters of Gaussian functions this method 
encourages coordination between the input and output 
domains. Like the EM algorithm, this method is very fast in 
terms of the number of iterations needed for the parameters to 
converge. It is this speed of convergence that makes the 
proposed technique feasible. However, as BYY is an EM based 
technique it is still susceptible to locally maximal values. The 
Split and Merge EM (SMEM) concept for Gaussian Mixture 
Models (GMM) proposed initially by Ueda, has been applied to 
the ENRBF scheme [15]. The original SMEM algorithm is able 
to move neurons from over populated areas of the problem 
domain to underrepresented areas by merging the over 
populated neurons and splitting the under-populated. The use 
of Eigenvectors to split along the axis of maximum divergence 
instead of randomly as in original SMEM is an alternative 
methodology. The SMEM algorithm suffers from the fact that 
before terminating all possible combinations of Split and 
Merge operations must be examined. Although many options 
can be discounted, the training still increases exponentially 
with network size and again suffers from the problems inherent 
with k-means and basic EM. A splitting technique that 
overcomes these problems has been proposed by one of the 
authors [15]. 
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V. RESULTS & DISCUSSION 

The final FTIR dataset, consisted of 74 beef patterns, 
include information from the various storage temperatures, the 
sampling times and the first three PCs from the FPCA scheme. 
The ENRBF scheme has been implemented through MATLAB 
and its structure consists of an input layer which in this current 
research study contains five input nodes (i.e. storage 
temperature, sampling time, and the values of the first three 
PCs). The output node corresponds to the related 
microbiological attribute. As the related microbiological 
analysis involved four attributes (i.e. total viable counts (TVC), 
Pseudomonas app. Lactic acid bacteria (LAB) and 
Enterobacteriaceae), a decision support system, “iMeatNet”, 
has been designed in such way in order to accommodate all 
relevant information. Its overall schematic diagram which is 
illustrated at Fig. 5 shows a parallel system consisted of four 
ENRBF module units, which provide the individual 
microbiological predictions. 

 

Figure 5.  “iMeatNet” decision support framework     

The real challenge in this paper is to propose a new 
learning-based structure which could be considered as a 
benchmark method towards the development of efficient 
intelligent methods in food quality analysis. For this reason, 
ENRBF’s prediction results are compared with those obtained 
by an MLP identification model. Such scheme has become a 
popular modelling technique in food science and technology in 
recent years. 

A. Prediction of microbiological features 

Results revealed that the identification accuracy of the 
ENRBF model was very satisfactory in the prediction of TVCs, 
indicating the advantage of this approach in tackling complex, 
nonlinear problems, such as meat spoilage. The plot of 
predicted (via ENRBF) vs. observed TVCs is illustrated in Fig. 
6, and shows a very good distribution around the line of equity 
(y=x), with all the data included within the ±1 log unit area. A 
close inspection reveals more information regarding the 
“behavior” of specific beef samples. Two samples, as shown 
from Fig. 6a, are in the border line of the ±1 log unit area and 
they are associated to the semi-fresh “10F7” and the spoiled 
“5F9” samples. “10F7” corresponds to a beef fillet, stored at 
10oC and collected after 52 h of storage, while “5F9” was 
stored at 5oC and collected after 192 h of storage. Two fresh 
samples (i.e. “0F5” and “5F3”) are close to the border line at 

Fig. 6a. “0F5” corresponds to a beef fillet, stored at 0oC and 
collected after 96 h of storage, while “5F3” was stored at 5oC 
and collected after 48 h of storage. It seems that all these 
“suspicious” cases occur at low temperatures. TVC growth 
curves at Fig. 2, reveal that both 0oC and 5oC curves have an 
initial flat response, which could justify such “suspicious” 
behavior. A possible way to overcome this problem could be to 
broaden the training dataset, especially for low temperatures. 

 

Figure 6.  Performance of ENRBF prediction model for TVC 

In addition, an MLP was constructed with two hidden 
layers (with 12 and 6 nodes respectively) for the prediction of 
TVCs. The performance of the ENRBF and MLP models in 
predicting TVCs in beef samples in terms of statistical indices 
is presented in Table II.  

TABLE II.  PERFORMANCE OF IDENTIFICATION MODELS FOR TVC 
PREDICTION 

Bias factor ( fB ) is a multiplicative factor that compares model 

predictions and is used to determine whether the model over- 
or under-predicts the response time of bacterial growth. Based 
on the calculated values of fB , it can be concluded that the 

ENRBF model over-estimated total viable counts in fresh 
samples ( 1fB > ), whereas for spoiled samples, under-

estimation of microbial population was evident ( 1fB < ) and 

almost perfect for semi-fresh samples (1.0058). The accuracy 
factor fA is a simple multiplicative factor that indicates the 

spread of results about the prediction. In the case of ENRBF, 
the values of fA  indicated that the predicted total viable counts 

were 11.95%, 8.2%, and 3.09% different (either above or 
below) from the observed values for fresh, semi-fresh, and 
spoiled meat samples, respectively. The relevant overall figures 
indicate again a better performance for ENRBF compared to 
MLP model. Overall, with MAPE 7.94% for ENRBF against 

TVC Fresh Semi-
fresh 

Spoiled Overall
(ENRBF) 

Overall
(MLP) 

Stat. 
Indices 

ENRBF ENRBF ENRBF 

MSE 0.2287 0.3592 0.2214 0.2733 0.5757 
RMSE 0.4783 0.5994 0.4706 0.5227 0.7587 
MAPE 0.1213 0.0777 0.0293 0.0794 0.1075 
Bf 1.1195 1.0058 0.9798 1.0372 1.0343 
Af 1.1195 1.0820 1.0309 1.0802 1.1108 
SEP % 12.4714 9.2144 5.2620 8.3669 12.144 
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10.75% for MLP, the proposed “localized-learning” model 
managed to achieve a better performance. The value of 
standard error of prediction (SEP) was 8.367% for the overall 
samples, indicating good performance of the network for 
microbial count predictions.  

An additional ENRBF model has been utilized for the case 
of Pseudomonas spp. The related plot of predicted (via 
ENRBF) vs. observed microorganism is illustrated in Fig. 7, 
and shows a good distribution around the line of equity (y=x), 
with all the data (expect one) included within the ±1 log unit 
area.  

 

Figure 7.  Performance of ENRBF prediction model for Pseudomonas 

One fresh sample (“15F5”), as shown from Fig. 7, is clearly 
outside of the ±1 log unit area. “15F5” corresponds to a beef 
fillet, stored at 15oC and collected after 24 h of storage. 
Similarly to ENRBF case, an MLP model was implemented for 
the prediction of Pseudomonas, and both performances in 
terms of statistical indices, are presented in Table III. The 
relative high SEP index for both ENRBF and MLP indicate 
high-nonlinearity behavior for Pseudomonas, especially for the 
case of fresh samples.  

TABLE III.  PERFORMANCE OF IDENTIFICATION MODELS FOR 
PSEUDOMONAS PREDICTION 

Pseudomonas Fresh Semi-
fresh 

Spoiled Overall 
(ENRBF) 

Overall
(MLP) 

Stat. Indices ENRBF ENRBF ENRBF  

MSE 0.7512 0.3257 0.1104 0.4162 0.7691 
RMSE 0.8667 0.5707 0.3323 0.6451 0.8770 
MAPE 0.2836 0.0742 0.0354 0.1379 0.1422 
Bf 1.1749 0.9885 0.9899 1.0518 0.9924 
Af 1.2627 1.0771 1.0364 1.1276 1.1423 
SEP % 26.8755 9.6014 3.7544 11.1158 15.1113 

 

Lactic acid bacteria (LAB) utilize glucose at the meat 
surface. When the glucose is exhausted, they begin to 
metabolize amino acids in the meat, and start to produce the 
offensive odors associated with spoilage. The activity of 
organic acids produced by LAB is primarily associated with the 
chemical state of the acid, which is affected by the level of pH. 
In this particular case, pH had been set to 5.7. The plot of 
predicted (via ENRBF) vs. observed LAB is illustrated in Fig. 
8, and shows a good distribution around the line of equity 

(y=x), with all the data (expect one) included within the ±1 log 
unit area.  

 

Figure 8.  Performance of ENRBF prediction model for Lactic Acid Bacteria   

The plot of predicted (via ENRBF) vs. observed LAB is 
illustrated in Fig. 8, and shows a good distribution around the 
line of equity (y=x), with all the data (expect one) included 
within the ±1 log unit area. Model’s performance is confirmed 
by checking the statistical analysis, shown at Table IV. Both 
fresh and semi-fresh samples have high SEP, MAPE and 

fA indices compared to those associated to spoiled samples.  

However the overall SEP was kept at 14.76%. A similar, but 
inferior in terms of accuracy, performance was obtained with 
the use of a two-hidden MLP network. 

TABLE IV.  PERFORMANCE OF IDENTIFICATION MODELS FOR LACTIC 
ACID BACTERIA PREDICTION 

LAB Fresh Semi-fresh Spoiled Overall
(ENRBF) 

Overall
(MLP) 

Stat. Indices ENRBF ENRBF ENRBF 

MSE 0.1457 0.5329 0.1726 0.2916 0.4767 
RMSE 0.3817 0.7300 0.4154 0.5400 0.6904 
MAPE 0.2040 0.1478 0.0910 0.1517 0.1975 
Bf 1.1671 0.9552 1.0864 1.0645 1.0615 
Af 1.1950 1.1647 1.0864 1.1523 1.2001 
SEP % 20.2213 17.5205 7.9331 14.7621 18.8736 

 

Statistics at Table IV confirmed such similarity with ENRBF, 
although overall results reveal the deficiencies of global-
learning schemes such as MLPs.  

Enterobacteriaceae bacterium was the last experiment in 
this research study. The plot of predicted (via ENRBF) vs. this 
specific observed microorganism is illustrated in Fig. 9, and 
shows an excellent distribution around the line of equity (y=x), 
with all the data (expect one) included within the ±1 log unit 
area. The semi-fresh sample “15F10” which is placed outside 
the ±1 log unit area, is associated with a beef fillet, stored at 
15oC and collected after 54 h of storage. The performance of 
the ENRBF model in predicting Enterobacteriaceae in beef 
samples in terms of statistical indices is presented in Table V. 
These results are in agreement with Fig. 9, and reveal overall 

small RMSE and SEP, while the value of 
f

B is almost optimal. 

Statistics at Table V summarize also the prediction 
performance for MLP model developed for this particular case 
study.  
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In summary, ENRBF and MLP networks utilize a different 
“build philosophy” for their architectures. An MLP network, 
due to the use of sigmoid activation functions in its structure, 
utilizes a “global-learning strategy” compared to ENRBF’s 
“local-learning strategy” models that utilize Gaussian 
activation functions.  

 

Figure 9.  Performance of ENRBF prediction model for Enterobacteriaceae    

In MLP model, all normalized inputs are fed to the hidden 
layer, while in the case of ENRBF each input is decomposed 
through Gaussians functions. 

TABLE V.  PERFORMANCE OF IDENTIFICATION MODELS FOR 
ENTEROBACTERIACEAE PREDICTION 

Entero- 
bacteriaceae 

Fresh Semi-fresh Spoiled Overall 
(ENRBF) 

Overall
(MLP) 

Stat. Indices ENRBF ENRBF ENRBF  

MSE 0.0411 0.5027 0.0323 0.2034 0.4809 
RMSE 0.2027 0.7090 0.1796 0.4510 0.6934 
MAPE 0.2637 0.1070 0.0423 0.1445 0.2591 
Bf 1.1349 0.9082 0.9934 1.0089 1.0411 
Af 1.2377 1.1246 1.0430 1.1390 1.2614 
SEP % 16.4273 17.7592 4.1329 14.5097 22.3090 

 

This localization spread through these functions, is one 
advantage against the classic MLP structure. In addition, the 
usage of BYY-EM learning scheme contributed to a much 
faster training compared to the classic gradient descent method. 

VI. CONCLUSIONS 

In conclusion, this simulation study demonstrated the 
effectiveness of the detection approach based on FTIR 
spectroscopy which in combination with an appropriate 
machine learning strategy could become an effective tool for 
monitoring meat spoilage during aerobic storage at various 
temperatures. The system consists of four advanced neural 
network based identification units, which provide the 
individual microbiological predictions.  In the current study, a 
fuzzy PCA scheme has been implemented through the 
fuzzification of the matrix data, taking into consideration the 
first principal component. Results and comparison with MLP 
networks revealed an overall very satisfactory accuracy. There 
is need to explore further the use of advanced intelligent 
systems, and this paper has attempted for the first time to 
associate FTIR spectra with such systems. The ENRBF 

performance although very convincing, discloses however a 
second open problem, that is the need to have or “create” large 
training datasets, even with the presence of small amount of 
real experimental data.  
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