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Abstract: In this study, we present a novel mathematical framework for pricing financial
derivates and modelling asset behaviour by bringing together fractional Brownian motion
(fBm), fuzzy logic, and jump processes, all aligned with no-arbitrage principle. In particu-
lar, our mathematical developments include fBm defined through Mandelbrot-Van Ness
kernels, and advanced mathematical tools such Molchan martingale and BDG inequali-
ties ensuring rigorous theoretical validity. We bring together these different concepts to
model uncertainties like sudden market shocks and investor sentiment, providing a fresh
perspective in financial mathematics and derivatives pricing. By using fuzzy logic, we
incorporate subject factors such as market optimism or pessimism, adjusting volatility
dynamically according to the current market environment. Fractal mathematics with the
Hurst exponent close to zero reflecting rough market conditions and fuzzy set theory
are combined with jumps, representing sudden market changes to capture more realistic
asset price movements. We also bridge the gap between complex stochastic equations and
solvable differential equations using tools like Feynman-Kac approach and Girsanov trans-
formation. We present simulations illustrating plausible scenarios ranging from pessimistic
to optimistic to demonstrate how this model can behave in practice, highlighting potential
advantages over classical models like the Merton jump diffusion and Black-Scholes. Over-
all, our proposed model represents an advancement in mathematical finance by integrating
fractional stochastic processes with fuzzy set theory, thus revealing new perspectives on
derivative pricing and risk-free valuation in uncertain environments.

Keywords: fuzzy; fractal; Brownian motion; Hurst exponent; Molchan martingale;
Girsanov theorem; Mandelbrot-Van Ness construction; Feynman-Kac representation;
measure change

1. Introduction
We will now describe the dynamics of a particle, considering the uncertainties involved.

The underlying stochastic process is modelled by a fractional Brownian motion (fBm),
known for its long-range dependence and self-similarity, which makes it suitable for
financial modelling. Fractional Brownian motion is traditionally employed in financial
modelling due to its ability to represent memory effects through the Hurst exponent with
values significantly influencing the roughness or smoothness of volatility [1].

The model involves fuzzy processes, denoted by xε(t), which are functions that map
the time parameter t to a set of possible values in R with certain degrees of member-
ship that quantify uncertainty or ambiguity inherent to market expectations. Unlike
traditional models that typically incorporate either fBm or fuzzy logic individually, our
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approach combines both techniques to offer a more robust and realistic characterisation of
market uncertainty.

We consider a stochastic differential equation (SDE) that includes a linear drift coef-
ficient µ and a volatility coefficient σ, both initially assumed constant. To find the closed
explicit fuzzy solution for µ ≥ 0, the system of equations is solved to obtain the fuzzy
solutions Xl

ε(t) and Xu
ε (t) for the lower and upper bounds, respectively.

Similarly, the solution is derived for µ < 0 by obtaining the fuzzy solutions Xl
ε(t) and

Xu
ε (t) for the lower and upper bounds, respectively. We used existing results from [2,3] to

extend the unique solution to the fuzzy stochastic fractional differential equation (FSFDE)
for µ ≥ 0. According to these results, which provided certain regularity conditions such as
Lipschitz continuity with constant L of the function a, continuity of the function b, and σ

which is locally Lipschitz continuous, then there exist constants K and p such that ||σ(x)||
≤ K(1 + ||x||P) for all x. Then, for any initial condition X(0) = x(0) with probability 1,
there exists a unique solution to the FSFDE in the form:

dX(t) = [aX(t) + b]dt + σ(X(t))dW(t),

where W(t) is a standard d-dimensional Wiener process.
The key idea is to show that when h > ½, the matrix-valued function a, the vector-

valued function b, and the matrix-valued function σ satisfy certain regularity conditions that
enable us to apply standard techniques from the theory of stochastic differential equations
to prove the existence and uniqueness of a solution to the FSFDE. In particular, the Lipschitz
continuity condition on ‘a’ ensures the local boundedness of the solution, while the local
Lipschitz continuity condition on σ ensures that the solution is almost surely continuous.
The continuity condition on ‘b’ ensures that the drift term is well-defined and continuous.

In relation to the recent studies such as [4,5], the current paper is more focused on the
theoretical development of the model. Ref. [5] builds directly on Merton’s jump-diffusion
model, introducing fuzziness to parameters such as the stock prices, risk-free rate, and
jump intensities. It applies a bisection search algorithm to compute the belief degree of
option prices and empirically validate the model using NIFTY 50 and Nikkei 225 data.
In contrast, ref. [4] employs a mixed fBm framework, emphasising the modelling of long
memory and jump behaviour with fuzziness applied to a broad set of parameters.

The current work delves deeply into theoretical extensions, introducing a custom
PDE with exponential and hyperbolic functions to handle negative drift and extending
Feynman-Kac bridging techniques. The current work also contributes novel mathematical
structures by formalising FFBM for H < ½, applying Girsanov’s theorem in a fuzzy context,
incorporating Molchan martingale techniques for bounding the supremum of fuzzy fBm.

Moreover, we provide explicit numerical simulations demonstrating clear enhance-
ments over traditional approaches such as Merton’s jump-diffusion model, highlighting
how our hybrid fuzzy-fractional methodology yields superior flexibility and adaptability
under realistic market conditions. These illustrative simulations substantiate our theoretical
claims by clearly showing that the combined fuzzy-fractional model improves uncertainty
modelling. In summary, our approach not only offers novel theoretical extensions in
stochastic calculus but also demonstrates practical advantages for modelling financial
derivatives through explicitly accounting for both fuzziness and fractional memory.

2. Applications
We start with the typical partial differential equation used in mathematical finance.

X(t) = X0 +
∫ t

0
µX(s)ds +

∫ t

0
σX(s)dBH(s), X0 = X(0),
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where X(t) is the value of the financial quantity at time t, X(0) is the initial value of X at
time 0, µ and σ are constants representing the drift and volatility of X, respectively, and
BH(s) is the fractional Brownian motion (fBm) process which has long-range dependence
and self-similarity properties. We already covered why the fBm process is used in financial
modelling. In summary, it can capture the long-term dependencies in financial data, which
are not always captured by traditional Brownian motion processes. This makes it suitable
for modelling financial quantities that exhibit long-term trends or memory effects. Unlike
crisp partial differential equation, the equation involving uncertainties is modelled using
fuzzy processes. In the case of linear coefficients, an explicit solution can be obtained.
The fractional fuzzy stochastic differential equation (FFSDE) satisfies the assumptions of
Yamada-Watanabe-Kunita theorem and the Kushner-Stratanovich equation. The Yamada-
Watanabe-Kunita theorem provides conditions for the existence and uniqueness of solutions
to certain types of SDEs [6]. Statement of the Theorem—consider the following stochastic
differential equation:

dXt = b(Xt)dt + σ(Xt)dWt,

where:

- Xt is the stochastic process to be solved.
- b(Xt) is a drift function that depends on Xt.
- σ(Xt) is a diffusion function that depends on Xt.
- Wt is a standard Wiener process (Brownian motion).

The Yamada-Watanabe-Kunita theorem requires the following assumptions to be
satisfied:

1. The functions b(X) and σ(X) are globally Lipschitz continuous in X with a Lipschitz
constant that is independent of time t. In other words, there exists a constant K such that
for all x, y in the state space of X, we have:

|b(x)− b(y)|≤ K|x − y|
|σ(x)− σ(y)|≤ K|x − y|

2. The functions b(X) and σ(X) satisfy a linear growth condition. That is, there exist
constants M and L such that for all x in the state space of X, we have:

|b(x)|≤ M(1+|x|)
|σ(x)|≤ L(1+|x|)

SDE is nondegerate meaning the diffusion(covariance) matrix σσT is positive definite
everywhere. Under these assumptions, the Yamada-Watanabe-Kunita theorem guarantees
the existence and uniqueness of a strong solution to the stochastic differential equation:

dX(t) = bX(t)dt + σX(t)dWt.

The theorem is essential because it establishes the conditions under which solutions
to certain stochastic differential equations exist and are unique. The key idea behind the
Yamada-Watanabe-Kunita theorem is to show that the nonlinearity of the drift and diffusion
coefficients can be controlled by the Lipschitz and growth conditions, respectively, so that
the SDE admits a unique solution. The theorem has been extended to FFSDEs, which
are SDEs with fuzzy coefficients. In this context, the theorem provides conditions for the
existence and uniqueness of solutions to FFSDEs and has important applications in the
modelling of systems with uncertain or imprecise information.

The second important condition is the FFSDE model must satisfy the Kushner-
Stratonovich equation [7]. It arises in the context of state estimation problems, where
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the goal is to estimate the unobservable state of a dynamic system based on noisy measure-
ments. The Kushner-Stratonovich equation applies to a class of SDEs that can be written in
the following form:

dXt = f (Xt)dt + g(Xt, t) dWt,

where:
Xt is the unobservable state of the system at time t.
f (Xt, t) is a drift function that describes how the state Xt evolves over time. It depends

on both the current state Xt and the time t.
g(Xt, t) is a diffusion function that accounts for the effect of random noise on the

system. It also depends on the state Xt and time t.
dWt represents the increment of a Wiener process (Brownian motion), which represents

the random noise or uncertainties in the system.
The main challenge in the theory of filtering is to find an optimal estimate of the state

X(t) given the available measurements up to time t. This estimate is usually denoted by x̂t

and is known as the filter. Solving the Kushner-Stratonovich equation involves finding the
filter x̂t that minimizes the mean squared error between the true state X(t) and the estimated
state x̂t. The key idea behind the equation is to express the SDE in a form that separates
the drift and diffusion terms, so that it can be solved using standard techniques from the
theory of stochastic calculus. The Kushner-Stratonovich equation takes the following form:

dX(t) =
[

f (X(t)) + 1/2g(X(t))g′(X(t))
]
dt + g(X(t))dW(t),

where g′ denotes the derivative of g with respect to its argument. The equation represents
an alternative to the Itô formula, which is commonly used to derive solutions to SDEs
with linear drift and diffusion coefficients. In contrast to the Itô formula, which involves a
stochastic integral with respect to the Wiener process, the Kushner-Stratonovich equation
involves a deterministic integral with respect to the derivative of the diffusion coefficient.
We have explained two important theorems that were used in this work’s derivations.

The equation we are deriving is a stochastic differential equation (SDE) describing
a system with two state variables, Xεa

l (t) and Xεa
u (t). The SDE has a Wiener process W,

which represents the random noise in the system. The SDE can be divided into two cases
depending on the value of the drift coefficient µ. When µ ≥ 0, the unique solution to the
SDE can be obtained using Feynman-Kac Theorem. The solution for Xεa

l (t) and Xεa
u (t)

can be expressed in a matrix form. The solution involves exponentials of µt, α, and the
Wiener process W. When µ < 0, the unique solution to the SDE can also be obtained using
the same theorem. Again, the solution for Xεa

l (t) and Xεa
u (t) can be expressed in a matrix

form. The solution involves hyperbolic functions of µt (cosh and sinh), exponentials of α

and the Wiener process W. In both cases, the solution involves an integral over the Wiener
process W, which is a stochastic integral. The integral is evaluated using the Itô integral,
which is a stochastic calculus tool used to integrate stochastic processes with respect to the
Wiener process. The integral is approximated using the Stratonovich integral, which is a
different stochastic calculus tool that gives a different result than the Itô integral. The result
of the Stratonovich integral is denoted by the symbol ⟨ ⟩ in the equation we derive. The
final result is an approximation of the solution to the SDE in terms of X(0), Xε1

l (0), Xε1
u (0),

α, σ, µ, and the Wiener process W. The solution is a fuzzy solution because it involves a
stochastic process, and the value of Xε(t) is not deterministic but depends on the realisation
of the Wiener process W. Now we will derive it.

FFSDE involves a stochastic process X that maps from R+ × Ω to F(R), where F(R) is
the space of fuzzy real numbers. X1

l (t) and X1
u(t) are functions that map from R+ × Ω to R

and define the lower and upper bounds of the fuzzy process
[
X1(t)

]
= X1

l (t) and X1
u(t).
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To obtain a closed explicit form of the solution for µ ≥ 0, a system of equations is
derived. The solution to the system provides a unique solution, Xε1

l (t) and Xε1
u (t), which

is expressed as an explicit formula involving the initial values Xε1
l (0) and Xε1

u (0). This
formula involves the exponential function and the fBm process BH(s). For every α ∈ [0, 1],
a similar procedure is applied to obtain a new system of equations, which is similar to the
previous system but involves the fBm process dBε

H(s) instead of dBH(s). The solution to
this new system of equations also involves an explicit formula, Xεa

l (t) and Xεa
u (t) which is

expressed as an integral involving the initial values and the fBm process dBε
H(s).

To obtain an explicit solution, we first express X(s) in terms of its initial value X0 and
the fBm process BH(s):

X(s) = X0 +
∫ s

0
µX(r)dr +

∫ s

0
σX(r)dBH(r),

and apply Itô’s formula to the function f (X(s) = exp(aX(s)) for some constant a:

d f (X(s)) = aexp(aX(s)ds) + ½ a2[exp(aX(s)d(X(s)] 2).

Substitute for dx, we get:

d f (X(s)) = aexp(aX(s)ds)(µX(s)ds + σX(s)dBH(s)) + ½ a2[eaX(s)σ2X(s)]2ds.

Integrate both sides from 0 to t, we get:

eaX(t) − eaX(0) =
∫ t

0 αeαX(s))(µX(s)ds + σX(s)dBH(s))+
+1/2α2

∫ t
0 eαX(s)σ2X2(s)ds.

Solving for X(t) we obtain: X = 1
a ln(eaX(0) +

∫ t
0 αeαX(s))(µX(s)ds + σX(s)dBH(s)) +

1/2α2
∫ t

0 eαX(s)σ2X2(s)ds).
This is the solution to the crisp SDE with a linear coefficient. We are interested in the

fuzzy SDE. Consider the FFSDE which satisfies the theorem we proved in [8], that there is
the existence of a strong and unique solution.

sup
t∈I

[d2
∞

[(
Xε(t), Xε

0 +
∫ t

0
f (s, Xε(s))ds +

〈∫ t

0
g(s, Xε(s))dBε

H(s)
〉)

] = 0

Then, the given equation is:

X(t) = X0+
∫ t

0
µX(s)ds +

〈∫ t

0

σ

2

(
X1

l (s) + X1
u(s)

)
dBH(s)

〉)
.

To obtain a closed form solution for µ ≥ 0, we obtain the following system of equations
for lower and upper bounds.X1

l (t) = X1
l (0)+

∫ t
0 µX1

l (s)ds +
〈∫ t

0
σ
2
(
X1

l (s) + X1
u(s)

)
dBH(s)

〉)
X1

u(t) = X1
u(0)+

∫ t
0 µX1

u(s)ds +
〈∫ t

0
σ
2
(
X1

l (s) + X1
u(s)

)
dBH(s)

〉)
We add two equations and simplify to get

X1
l (t) + X1

u(t) = X1
l (0) + X1

u(0) +
∫ t

0 µ
(
X1

l (s) + X1
u(s)

)
ds +

〈∫ t
0 σ
(
X1

l (s)+

X1
u(s)

)
dBH(s)⟩).
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We will now transition from fBm to standard Brownian motion. To achieve this, we
substitute a derivative of BH,ε(t) into the above equation. Recall:

BH,ε(t) = a
∫ t

0
φε(s)ds + εaB(t),

where φε(s) =
∫ t

0 (t − s + ε)a−1]dB(s).

So, taking derivative dBH,ε(t) =
d[a
∫ t

0 φε(s)ds+εaB(t)]
dt = aφε(t) + εadB(t)

Substitute these identities into expression for X1
l (t) + X1

u(t) will convert this FFSDF
into a Wiener process.

〈∫
()
〉

this symbol is Stratonovich integral, and this is why we
needed the Kushner-Stratonovich theorem so we could go back and fourth between Wiener
and fractal processes. The Kushner-Stratonovich equation, which was mentioned earlier
in the text, provides a way to relate SDEs driven by a Wiener process to SDEs driven by a
fractional Brownian motion process or other fractal processes. This theorem allows for the
conversion between the two types of processes, which is necessary in this case to convert
the FFSDE involving a fractional Brownian motion into an SDE involving a standard
Wiener process. By using the Kushner-Stratonovich theorem and the Stratonovich integral,
it becomes possible to work with the more familiar Wiener process while still accounting
for the fractal nature of the original process through the appropriate transformations
and integrals.

X1
l (t) + X1

u(t) = X1
l (0) + X1

u(0)
+
∫ t

0 µ
(
X1

l (s) + X1
u(s)

)
ds

+
〈∫ t

0 σ
(
X1

l (s) + X1
u(s)

)
(aφε(t) + εadB(t))

〉)
= X1

l (0) + X1
u(0)

+
∫ t

0 (µ + σaφε(s))
(
X1

l (s) + X1
u(s)

)
ds

+
∫ t

0

(
X1

l (s) + X1
u(s)

)
σεadB(t).

Now, we can use the solution that we used to solve the crisp stochastic differential
equation and substitute back fBm expression.

Xε1
l (t) + Xε1

u (t) = (X ε1
l (0)

+Xε1
u (0))exp

(
µt + σa

∫ t
0 φε(s)ds − 1

2 σ2ε2at + σεaW(t)
)

= (X ε1
l (0) + Xε1

u (0))exp
(

µt + σBε
H(t)−

1
2 σ2ε2at

) (1)

Finally, we apply similar approach for every a ∈ [0, 1] to get the system of equations.Xεa
l (t) = Xεa

l (0)+
∫ t

0 µXεa
l (s)ds +

〈∫ t
0

σ
2
(
Xε1

l (s) + Xε1
u (s)

)
dBε

H(s)
〉)

Xεa
u (t) = Xεa

u (0)+
∫ t

0 µXεa
u (s)ds +

〈∫ t
0

σ
2
(
Xε1

l (s) + Xε1
u (s)

)
dBε

H(s)
〉)

For µ ≥ 0, we apply the solution derived above, namely (1) for upper and lower
bounds:

Xεa
l (t) = Xεa

l (0) +
∫ t

0 µXεa
l (s)ds+

∫ t
0

σ
2
(
Xε1

l (0)+Xε1
u (0)

)
exp(µs + σBε

H(s)−
1
2 σ2ε2as

)
dBε

H(s),

Xεa
u (t) = Xεa

u (0) +
∫ t

0 µXεa
u (s)ds+

∫ t
0

σ
2
(
Xε1

l (0)+Xε1
u (0)

)
exp(µs + σBε

H(s)−
1
2 σ2ε2as

)
dBε

H(s).
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In terms of the Wiener process, we again get rid of fBm and replace it with normal
Brownian motion. So, we will substitute a derivative of BH,ε(t) into above equation same
as we did before.

Xεa
l (t) = Xεa

l (0) +
∫ t

0 µXεa
l (s)ds+

∫ t
0

σ
2
(
Xε1

l (0)+Xε1
u (0)

)
exp(µs

+σa
∫ s

0 φε(u)du + σεaB(t)− 1
2 σ2ε2as

)
ds(aφε(t) + εadB(t)) = Xεa

l (0)+∫ t
0 µXεa

l (s)ds+a
∫ t

0 φε(t) σ
2
(
Xε1

l (0)+Xε1
u (0)

)
exp

(
µs + σa

∫ s
0 φε(u)du + σεaB(t)−

1
2 σ2ε2as

)
ds +

(
εa σ

2
(
Xε1

l (0) + Xε1
u (0)

) ∫ t
0 exp

(
µs + σa

∫ s
0 φε(u)du + σεaB(t)−

1
2 σ2ε2as

)
dB(t)),

Similarly:

Xεa
u (t) = Xεa

u (0) +
∫ t

0 µXεa
u (s)ds+

∫ t
0

σ
2 (Xε1

l (0)
+Xε1

u (0)
)

exp
(
µs + σa

∫ s
0 φε(u)du + σεaB(t)

− 1
2 σ2ε2as

)
ds(aφε(t) + εadB(t))

= Xεa
u (0)

+
∫ t

0 µXεa
u (s)ds+a

∫ t
0 φε(t) σ

2 (Xε1
l (0)

+Xε1
u (0)) exp

(
µs + σa

∫ s
0 φε(u)du + σεaB(t)− 1

2 σ2ε2as
)

ds

+
(
εa σ

2 (Xε1
l (0)

+Xε1
u (0))

∫ t
0 exp

(
µs + σa

∫ s
0 φε(u)du + σεaB(t)

− 1
2 σ2ε2as

)
dB(t))

So, to summarise what we have done and give a high-level overview of the steps
involved, this is what we did so far. To solve this SDE, we need to find the probability
distribution of X(t) given its initial condition X(0). This probability distribution is given
by the rough Fokker-Planck equation [9], which is a partial differential equation that
describes the time evolution of the probability density function of X(t). However, in the
case of our SDE, we can simplify the problem by noticing that Xεa

l (t) and Xεa
u (t) are linear

combinations of X, which means that their probability distributions can be obtained from
the probability distribution of X(t). We can then use Itô’s lemma to transform the SDE
into an equivalent SDE for Xεa

l (t) and Xεa
u (t) [2,10]. Itô’s lemma is a rule that allows us

to find the SDE satisfied by a function of a stochastic process. The lemma states that if
Y(t) is a function of X(t), then the SDE satisfied by Y(t) is given by: dY(t) = (∂Y/∂t)dt +
(∂Y/∂X)dX + ½(∂2Y/∂X2)(dX)2, where (∂Y/∂t) is the partial derivative of Y with respect
to time, (∂Y/∂X) is the partial derivative of Y with respect to X, and (∂2Y/∂X2 is the second
partial derivative of Y with respect to X. Using Itô’s lemma, we can find the SDEs satisfied
by Xεa

l (t) and Xεa
u (t). The SDEs have the same form as the original SDE, but with different

drift and diffusion coefficients that depend on α. The final solution involves an integral over
the Wiener process W, which is a stochastic integral. The integral is evaluated using the
Itô integral or the Stratonovich integral, depending on the convention used. The solution
is a fuzzy solution because it involves a fuzzy stochastic process, and the value of Xe(t) is
not deterministic but depends on the realisation of the Wiener process W. We will derive
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a generic solution for stochastic differential equation of the following form which can be
applied to each specific case:

X(t) = X(0) +
∫ t

0 µX(s)ds
+a
∫ t

0
σ
2 (X(0)) exp

(
µs + σa

∫ s
0 φε(u)du + σεaB(t)

− 1
2 σ2ε2as

)
ds

+
(

εa σ
2 (X(0))

∫ t
0 exp

(
µs + σa

∫ s
0 φε(u)du + σεaB(t)

− 1
2 σ2ε2as

)
dB(t))

Re-writing in terms of derivatives, we need to solve the stochastic differential equation
of the form:

dX(t) = µX(t)dt

+a σ
2 X(0))exp

(
µt + σa

∫ t
0 φε(u)du + σεaB(t)

− 1
2 σ2ε2as

)
+
(
εa σ

2 (X(0))exp
(
µt + σa

∫ s
0 φε(u)du + σεaB(t)

− 1
2 σ2ε2as

)
dB(t))

with initial condition X(0), we will use Itô’s lemma to obtain the solution:
Let Y(t, B(t)) = eµtX(t). Then, using Itô’s lemma, product rule and definition of X to

obtain the solution:

dY(t, B(t)) = eµtdX(t) + eµt σ2

2 X(t)dt = eµtX(t)dt + a σ
2 X(0)) exp(µt+

σa
∫ t

0 φε(u)du + σεaB(t)− 1
2 σ2ε2as

)
dt + eµt(εa σ

2 (X(0))exp(µt+

σa
∫ s

0 φε(u)du + σεaB(t)− 1
2 σ2ε2as

)
dB(t)).

Integrating both sides of this equation from 0 to t, we treat left hand side using
fundamental theorem of calculus: Y(t, B(t)) − Y(0, B(0)). The first integral on the right-hand
side can be simplified using change of variable.∫ t

0 eµsµX(s)ds + a σ
2 X(0))φε(u) exp

(
µs + σa

∫ s
0 φε(u)du + σεaB(s)

− 1
2 σ2ε2as

)
ds

= µ
∫ t

0 eµsX(s)ds
+a σ

2 X(0)eµs ∫ t
0 φε(u) exp

(
µs + σa

∫ s
0 φε(u)du + σεaB(s)

− 1
2 σ2ε2as

)
ds = eµtX(t)dt

+a σ
2 X(0))eµs ∫ s

0 φε(u) exp
(

σa
∫ t

0 φε(u)du + σεaB(t)

− 1
2 σ2ε2as

)
dt

The second integral on the right-hand side is a stochastic integral of the form:

eµs
(

εa σ

2
(X(0))

∫ s

0
exp

(
σa
∫ s

0
φε(u)du + σεaB(s)− 1

2
σ2ε2as

)
dB(s)

)
Substituting both sides back into the original equation, we get:

X(t) = eµtX(t)dt

+a σ
2 X(0))eµs ∫ s

0 φε(u) exp
(

σa
∫ t

0 φε(u)du + σεaB(t)

− 1
2 σ2ε2as

)
dt

+eµt(εa σ
2 (X(0))

∫ s
0 exp

(
σa
∫ s

0 φε(u)du + σεaB(t)

− 1
2 σ2ε2as

)
dB(t))
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So, the unique solutions are same as before.

Xεa
l (t) = eµtXεa

l (0) + eµta σ
2 (Xε1

l (0)

+Xε1
u (0))

∫ T
t ϕε(s)eσα

∫ T
t ϕε(u)du− 1

2 σ2ε2at+σεaW(t)ds]
+eµtεa σ

2 (Xε1
l (0)

+Xε1
u (0))

∫ T
t eσα

∫ T
t ϕε(u)du− 1

2 σ2ε2at+σεaW(t)dW(s)

Xεa
u (t) = eµtXεa

u (0) + eµta σ
2 (Xε1

l (0)

+Xε1
u (0))

∫ T
t ϕε(s)eσα

∫ T
t ϕε(u)du− 1

2 σ2ε2at+σεaW(t)ds]
+eµtεa σ

2 (Xε1
l (0)

+Xε1
u (0))

∫ T
t eσα

∫ T
t ϕε(u)du− 1

2 σ2ε2at+σεaW(t)dW(s)

(2)

Now, we will revert to fBm by making the same substitution as before. Recall that:

BH,ε(t) = a
∫ t

0
φε(s)ds + εaB(t),

where φε(s) =
∫ t

0 (t − s + ε)a−1
]
dB(s).

So, taking derivative dBH,ε(t) =
d
[

a
∫ t

0 φε(s)ds+εaB(t)]
dt = aφε(t) + εadB(t), and in terms

of fBm, we get:

Xea
l (t) = eµt[Xea

l (0) +
σ

2

(
Xe1

l (0) + Xe1
u (0)

)∫ t

0
eσBe

H(s)− 1
2 σ2e2asdBe

H(s)] (3)

Xεa
u (t) = eµt[Xεa

u (0) +
σ

2

(
Xε1

l (0) + Xε1
u (0)

)∫ t

0
eσBε

H(s)− 1
2 σ2ε2asdBε

H(s)]

Therefore, the generic solution for µ ≥ 0:

Xε(t) = eµt⟨X(0) +
σ

2

(
Xε1

l (0) + Xε1
u (0)

)∫ t

0
eσBε

H(s)− 1
2 σ2ε2asdBε

H(s)⟩

For µ ≤ 0, we start with the following well-known identities:
cosh(µt) = ½

(
eµt + e−µt) and sinh(µt) = ½

(
eµt − e−µt). We will show that

eµtXea
l (0) = Xea

l (0)cosht(µt) + Xea
u (0)sinh(µt). If we combine {cosh(µt) + sinh(µt) = eµt},

and we replace the first term eµtXea
l (0) with Xea

l (0)cosht(µt) + Xea
u (0)sinh(µt), our solution

becomes:
Xεa

l (t) = Xεa
l (0)cosht(µt) + Xεa

u (0)sinh(µt)
+eµt σ

2
(
Xε1

l (0) + Xε1
u (0)

)∫ t
0 eσBε

H(s)− 1
2 σ2ε2asdBε

H(s)]
(4)

And similarly:

Xεa
u (t) = Xεa

l (0)cosht(µt) + Xεa
u (0)sinh(µt)

+eµt σ
2
(
Xε1

l (0) + Xε1
u (0)

)∫ t
0 eσBε

H(s)− 1
2 σ2ε2asdBε

H(s)]
(5)

Therefore, the generic solution for µ ≤ 0:

Xε(t) = Xεa
l (0)cosht(µt) + Xεa

u (0)sinh(µt)
+⟨ σ

2
(
Xε1

l (0) + Xε1
u (0)

)
eµt∫ t

0 eσBε
H(s)− 1

2 σ2ε2asdBε
H(s)⟩

The choice of the customised PDE involving hyperbolic and exponential functions
rather than a classical PDE is driven by the need to reflect the inherent complexities
observed in financial markets more accurately. Classical PDEs, such as the traditional
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Black-Scholes model, rely heavily on assumptions like independent increments and no
memory effect, conditions that are rarely fully satisfied by real-world data.

We proved no arbitrage conditions for fuzzy fractal model when Hurst exponent is
greater than ½ [1,10]. We will extend this now to FFJDM under the risk-neutral measure
Q which is a theoretical probability measure used to value financial derivatives, such as
options, under the assumption that the expected rate of return of the underlying asset is the
risk-free rate [3]. This approach simplifies the valuation process and allows for a relatively
easy pricing of derivatives without considering the actual probabilities of different market
outcomes. This means that when calculating expected values of future payoffs, we use
the risk-free rate as the discount factor. Under this measure, we can calculate the present
value of future cash flows associated with financial derivatives. When valuing financial
derivatives like options, the risk-neutral measure allows us to use a discounted expected
value calculation to determine the fair price of the derivative. This approach assumes that
investors are risk-neutral and do not require a risk premium for holding the derivative.
The statement implies that even under the risk-neutral measure Q, the underlying asset
price still follows a certain stochastic process. Under the assumption of no arbitrage, the
risk-neutral and the real-world (risky) measures are equivalent in the context of option
pricing and derivatives valuation. This equivalence is a fundamental concept in mathemat-
ical finance and is known as the Fundamental Theorem of Asset Pricing [3]. In order for
risk-neutral and risky measures to be equivalent, we impose a no-arbitrage condition under

which µ̂ = r −
∼
λ

(∼
J − 1

))
. The result we will derive next using Itô’s lemma shows that

there is a unique solution to our FFJDM equation, and that solution does not depend on any
particular assumptions or individual preferences about risk. The arbitrage free price of a
derivative is uniquely determined because in this model the derivative is superfluous. This
means that the derivative’s price is fully determined by the model’s dynamics and parame-
ters, and its price is consistent with the prices of other assets in the market. In essence, the
derivative’s price is not subject to arbitrary fluctuations or ambiguous valuation. We will
use a well-known Girsanov theorem in the theory of stochastic differential equations, that if
we change the measure from real-world P to some other equivalent measure in risk-neutral
world Q, this will change the drift in the SDE, but the diffusion term will be unaffected. This

is why we set µ̂ = r̂ −
∼
λ

(∼
J − 1

))
. Thus, the drift will play no part in the pricing equations.

Using Girsanov’s theorem and re-writing dŜ/Ŝ = µ̂dt + σ̂dBt + σ̂dBH
t + d(∑N̂

1

(∼
Vi − 1

)
) as

dŜ/Ŝ = (r̂ −
∼
λ

(∼
J − 1)

)
dt + σ̂dBt + σ̂dBH

t + d(∑N̂
1

(∼
Vi − 1

)
). We get under risk-neutral

measure:
Ŝt = Ŝ(0)er̂−

∼
λ(

∼
J−1))t+

∼
σBt+

∼̂
σBH

t − 1
2 σ̂2t− 1

2 σ̂2t2H
∏n

i=1

∼
Vi (6)

This is the process that Ŝt follows which we will use in the proof later. The Cheridito
(2001) paper, titled “Mixed Fractional Brownian Motion” [11], presented a framework for
modelling and analysing mixed fractional Brownian motion (MFBM), which is a general-
isation of fractional Brownian motion (fBm). The paper introduced a class of stochastic
differential equations driven by MFBM and established existence and uniqueness results
for solutions under certain regularity conditions. It was shown that if the Hurst exponent
is greater than ¾, the fractional Brownian motion process satisfies certain regularity con-
ditions, which allow for the existence of a unique solution to the stochastic differential
equation. The key point made in [11] is that when ¾ < H < 1, the mixed fractional Brownian
motion exhibits properties that avoid arbitrage. For H > ¾, the text makes clear that the
mixed model retains a semimartingale structure, allowing for classical arbitrage-free pricing
arguments. This is an important result because in this regime, the models are well behaved.
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For H < ¾, the paper mentions that arbitrage can emerge because the resulting process is no
longer a semimartingale. This means the standard tools like Girsanov’s theorem may break
down. Ref. [11] explicitly proves that adding a standard Brownian motion to fractional
Brownian motion making it a mixed model, helps restore arbitrage-free properties under
specific conditions on H. This is equation 6.2 on page 933 in [11]. In other words, ref. [11]
key contribution is precisely that by adding a standard Brownian motion component to
fractional Brownian motion making it “mixed” and keeping H above ¾, one can restore
the possibility of no-arbitrage and standard pricing methods. The mixed process takes the
form of equation 6.2 where BH is a fractional Brownian motion and Bt is an independent
standard Brownian motion.

The crucial point is Theorem 1.7 from [11] that shows that for H > ¾, the process
Bt + εBH

t remains equivalent to a Brownian motion under an equivalent martingale mea-
sure Qε, provided ε is small enough. This implies that arbitrage is avoided when the mixed
process is used instead of pure fBm. This result is relevant for our work in the mathe-
matical analysis and modelling of the underlying asset dynamics in option pricing. The
discounted expected value of ZT at time t ϵ [0, T] under risk-neutral measure Q is given by

Zt = e−
∼
r (T−t)EQ[

(∼
ST − K

)+

, 0], so
∼
ST − K > 0, otherwise the payoff is zero. We will now

substitute expression for Ŝt from (6) into the above equation:

Zt = e−
∼
r (T−t)EQ[

Ŝ(0)

e
r̂−

∼
λ(

∼
J−1))t+

∼
σBt+

∼̂
σBH

t −
1
2

σ̂2t−
1
2

σ̂2t2H

 n
∏
i=1

∼
Vi − K

+

, 0]

= e−
∼
r (T−t)EQ[

Ŝ(0)

e
r̂−

∼
λ(

∼
J−1))t+

∼
σBt+

∼̂
σBH

t −
1
2

σ̂2t−
1
2

σ̂2t2H+∑
∼
NT
i=1 Yi

− K

+

, 0]

= e−
∼
r (T−t)EQ[EQ[

Ŝ(0)

e
r̂−

∼
λ(

∼
J−1))t+

∼
σBt+

∼̂
σBH

t −
1
2

σ̂2t−
1
2

σ̂2t2H+∑
∼
NT
i=1 Yi

− K

+

|σ(
∼
NT
∑

i=1
Yi)]

(7)

We will now use law of iterated expectation within the context of a σ-algebra.

The σ-algebra, denoted by σ(∑
∼
NT
i=1 Yi) represents the conditioning information or the

available knowledge up to time T. It includes all the events or outcomes that can
be determined based on the random variables Yi up to time T. This sigma algebra
essentially captures the information available from the past observations and values
of Yi up to time T. The Law of Iterated Expectations allows us to rewrite this as

EQ[EQ[(Ŝ(0)(er̂−
∼
λ(

∼
J−1))t+

∼
σBt+

∼̂
σBH

t − 1
2 σ̂2t− 1

2 σ̂2t2H+∑
∼
NT
i=1 Yi )− K)

+

|σ(∑
∼
NT
i=1 Yi)] which means we

are now taking the inner conditional expectation over the specific sigma algebra σ(∑
∼
NT
i=1 Yi).

By conditioning on the specific sigma algebra we are essentially using the available in-
formation up to time T to compute the conditional expectation of the expression. This
simplification is possible because the conditioning restricts the uncertainty to the events in
the specified sigma algebra.

In the context of our expression, the conditional expectation represents the expected
value of the inner expression (the option payoff) given the information available up to time
T, which is encapsulated by the sigma algebra. This conditional expectation accounts for
the uncertainty in future events by conditioning on the information from the past.

The sequence of random variables Yi = log(V)), where V is a sequence of independent
and identically distributed i.i.d fuzzy random variables, contributes to the information
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available in the conditioning σ-algebra. These random variables follow a normal distribu-
tion with mean µ and variance σ2. Therefore, we have:

EQ[EQ[

Ŝ(0)

e
r̂−

∼
λ(

∼
J−1))t+

∼
σBt+

∼̂
σBH

t −
1
2

σ̂2t−
1
2

σ̂2t2H+∑
∼
NT
i=1 Yi

− K

+

|σ(
∼
NT
∑

i=1
Yi)]

= e−
∼
r (T−t)

∞
∑

n=0

( ∼
λt
)n

n!
e

∼
−λtEQ

Ŝ(0)

e
r̂−

∼
λ(

∼
J−1))t+

∼
σBt+

∼̂
σBH

t −
1
2

σ̂2t−
1
2

σ̂2t2H+∑
∼
NT
i=1 Yi

− K


+

When we condition on the sum of Yi, which is essentially the cumulative log value of
the sequence of jumps, we are effectively considering the total logarithmic impact of the
jumps up to time T. Since the number jumps are modelled using a fuzzy Poisson process
with jump intensity λ, their cumulative effect follows a Poisson distribution.

In other words, the jumps, when summed and transformed by taking the logarithm,
have properties that lead to the emergence of a Poisson distribution in the conditional

expectation.
∼
σBt +

∼̂
σBH

t + ∑
∼
NT
i=1 Yi consists of three i.i.d. fuzzy normal random variables.

From the properties of variances of random variables we know that the variance of the
square of the random variables is the sum of their variances. Also, from Itô’s, we know that

the square of Bt and BH is T and T2H. So,
∼
σ

2
=

∼
σ

2
T +

∼̂
σ

2
T2H + n

∼
σ

2
j . Mean of

∼
σBt +

∼̂
σBH

t +

∑
∼
NT
i=1 Yi is simply expectation of ∑

∼
NT
i=1 Yi because expectation of the stochastic processes is

zero. So,
∼
µ = ∑

∼
NT
i=1 Y = ni

∼
µj. We plug these values into the above the equations:

EQ

(
Ŝ(0)

(
er̂−

∼
λ(

∼
J−1))t+

∼
σBt+

∼̂
σBH

t − 1
2 σ̂2t− 1

2 σ̂2t2H+∑
∼
NT
i=1 Yi

)
− K

)+

=

=
∫ ∞
−∞ max

[
Ŝ(0)

(
er̂−

∼
λ(

∼
J−1))t+

∼
σBt+

∼̂
σBH

t − 1
2 σ̂2t− 1

2 σ̂2t2H+∑
∼
NT
i=1 Yi

)
− K, 0

]
φ(z)dz

where φ(z) is the density of the fuzzy normal variable with mean
∼
µ = ∑

∼
NT
i=1 Y = ni

∼
µj and

variance
∼
σ

2
=

∼
σ

2
T +

∼̂
σ

2
T2H + n

∼
σ

2
j . So, φ(z) = 1

√2π
∼
σ

e
− (z−∼

µ )2

2
∼
σ

2 dz
, and the whole integral:

=
∫ ∞

−∞
max

[
Ŝ(0)

(
er̂−

∼
λ(

∼
J−1))t+

∼
σBt+

∼̂
σBH

t − 1
2 σ̂2t− 1

2 σ̂2t2H+∑
∼
NT
i=1 Yi

)
− K, 0

]
1

√2π
∼
σ

e
− (z−∼

µ )2

2
∼
σ

2 dz
dz

The integrand in the integral above vanishes when:

Ŝ(0)

(
er̂−

∼
λ(

∼
J−1))t+

∼
σBt+

∼̂
σBH

t − 1
2 σ̂2t− 1

2 σ̂2t2H+∑
∼
NT
i=1 Yi

)
< K, i.e., when z < z0, where

z0 =

[
ln
(

K
Ŝ(0)

)
− r̂ −

∼
λ

(∼
J − 1

))
t − 1

2 σ̂2t − 1
2 σ̂2t2H

]
− ∼

µ

∼
σ

The integral can thus be written as:

∫ ∞
z0

Ŝ(0)

(
er̂−

∼
λ(

∼
J−1))t+

∼
σBt+

∼̂
σBH

t − 1
2 σ̂2t− 1

2 σ̂2t2H+∑
∼
NT
i=1 Yi

)
φ(z)dz −

∫ ∞
z0

K 1
√2π

∼
σ

e
− (z−∼

µ )2

2
∼
σ

2 dz
dz =

A − B
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The integral B can be written as K·Prob(Z ≥ z0) and using the symmetry of the Normal
distribution, this can be written as K·Prob(Z ≤ −z0). So, if we denote the cumulative

distribution function of N as is the usual convention: 1
√2π

∼
σ

e
− (z−∼

µ )2

2
∼
σ

2 dz
then we can write

B = K·N(−z0). In the integral A, we have:

A =
∫ ∞

z0
Ŝ(0)

(
er̂−

∼
λ(

∼
J−1))t+

∼
σBt+

∼̂
σBH

t − 1
2 σ̂2t− 1

2 σ̂2t2H+∑
∼
NT
i=1 Yi

)
1√
2π

∼
σ

e
− (z−∼

µ )2

2
∼
σ

2 dz
dz

= Ŝ(0)
(

er̂−
∼
λ(

∼
J−1))t− 1

2 σ̂2t− 1
2 σ̂2t2H

)
1√2π

∫ ∞
z0

e
∼
σBt+

∼̂
σBH

t +∑
∼
NT
i=1 Yi e

− (z−∼
µ )2

2
∼
σ

2

∼
σ

dz

Recall that the fuzzy normal random variable
∼
σBt +

∼̂
σBH

t + ∑
∼
NT
i=1 Yi has mean

∼
µ =

∑
∼
NT
i=1 Y = ni

∼
µj and variance

∼
σ

2
=

∼
σ

2
T +

∼̂
σ

2
T2H + n

∼
σ

2
j .

So, we are integrating a function with respect to a random variable that follows a
given probability distribution. In the field of stochastics, this is often encountered in the

form of an expectation. In our case, the expectation of (exp(
∼
σBt +

∼̂
σBH

t + ∑
∼
NT
i=1 Yi)), where

∼
σBt +

∼̂
σBH

t + ∑
∼
NT
i=1 Yi is normally distributed can be written as follows:

E(exp
(
∼
σBt +

∼̂
σBH

t + ∑
∼
NT
i=1 Yi

)
) =

∫
eyyf(y)dy

where f (y) is the probability density function (PDF) of the normal distribution:

f (y) =
(

1/√(2πσ2
))

exp
(
−(y − µ)2/

(
2σ2
))

.

Plugging this into the original equation, we get:

E[exp(Y)] =
∫

ey(1/√
(2πσ2))exp(−(y − µ)2/(2σ2))dy.

Simplifying this, we get:

E[exp(Y)] = (1/√
(2πσ2))

∫
exp{[(2yσ2 − (y − µ)2)/(2σ2)]}dy.

This simplifies to:

E[exp(Y)] = (1/√
(2πσ2))

∫
exp{[(2µy − µ2 + σ2)/(2σ2)]}dy.

The above expression is the definition of the moment generating function (MGF) of a
normally distributed random variable at the point t = 1. The MGF of a normal distribution
with mean µ and variance σ2 is given by:

M(t) = exp
{

µt + (1/2)t2σ2
}

.

Substituting t = 1 in the MGF gives us:

E[eY] = exp
{

µ + (1/2)σ2
}

.

This is the expected value of an exponential of a normally distributed random variable.
This is different from the indefinite integral of eY with respect to Y, which isn’t typically
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defined for random variables. Instead, we work with expectations, which are a form of
weighted integral where the weights are given by the PDF of the random variable.

So, the above integral is now simplified to:

= Ŝ(0)
(

er̂−
∼
λ(

∼
J−1))t− 1

2 σ̂2t− 1
2 σ̂2t2H+

∼
µ+ 1

2
∼
σ

2
)

1
√2π

∫ ∞

z0

e
− (z−∼

µ )2

2
∼
σ

2

∼
σ

dz

Next step is to standardise the integral by changing its limit with
∼
µ = 0 and

∼
σ

2
= 1

= Ŝ(0)
(

er̂−
∼
λ(

∼
J−1))t− 1

2 σ̂2t− 1
2 σ̂2t2H+

∼
µ+ 1

2
∼
σ

2
)

1
√2π

∫ ∞

z0−
∼
µ−∼

σ
2

∼
σ

e−
(z)2

2 dz

Again, this is the density of the of the normal distribution. Using symmetry we can
write:

A = Ŝ(0)
(

er̂−
∼
λ(

∼
J−1))t− 1

2 σ̂2t− 1
2 σ̂2t2H+

∼
µ+ 1

2
∼
σ

2
)

N(−z0)

= Ŝ(0)
(

er̂−
∼
λ(

∼
J−1))t− 1

2 σ̂2t− 1
2 σ̂2t2H+

∼
µ+ 1

2
∼
σ

2
)

Φ
(

−z0+
∼
µ+

∼
σ

2

∼
σ

)
Now, we can combine A and B and write the whole expression:

A − B = Ŝ(0)
(

er̂−
∼
λ(

∼
J−1))t− 1

2 σ̂2t− 1
2 σ̂2t2H+

∼
µ+ 1

2
∼
σ

2
)

Φ

−z0+
∼
µ +

∼
σ

2

∼
σ

− KΦ

(
−z0+

∼
µ

∼
σ

)

Finally, substituting above expression into:

Zt = e−
∼
r (T−t)

∞
∑

n=0

( ∼
λt
)n

n!
e

∼
−λtEQ

Ŝ(0)

e
r̂−

∼
λ(

∼
J−1))t+

∼
σBt+

∼̂
σBH

t −
1
2

σ̂2t−
1
2

σ̂2t2H+∑
∼
NT
i=1 Yi

− K


+

= e−
∼
r (T−t)

∞
∑

n=0

( ∼
λt
)n

n!
e

∼
−λtŜ(0)

e
r̂−

∼
λ(

∼
J−1))t−

1
2

σ̂2t−
1
2

σ̂2t2H+
∼
µ+

1
2

∼
σ

2
Φ

−z0+
∼
µ +

∼
σ

2

∼
σ


−KΦ

(
−z0+

∼
µ

∼
σ

)

Recall that
∼
J = e

∼
µ+ 1

2
∼
σ

2

. Take t0 = 0 and substitute
∼
J into above expression, we get:

∑∞
n=0

( ∼
λt
)n

n! e
∼

−λt[Ŝ(0)
(

e(r̂−
∼
λ(

∼
J−1))t− 1

2 σ̂2t− 1
2 σ̂2t2H+

∼
µ+ 1

2
∼
σ

2
−∼

r T
)

Φ
(

−z0+
∼
µ+

∼
σ

2

∼
σ

)
−

Ke−
∼
r TΦ

(
−z0+

∼
µ

∼
σ

)
]

Simplify:
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= ∑∞
n=0

( ∼
λt
)n

n!
e

∼
−λt[Ŝ(0)

e
∼
λt−

∼
λJt+n(

∼
µ+

1
2

∼
σ

2
)

Φ

−z0+
∼
µ +

∼
σ

2

∼
σ

− Ke−
∼
r TΦ

(
−z0+

∼
µ

∼
σ

)
]

=
∞
∑

n=0

( ∼
λt
)n

n!
e−

∼
λJt[Ŝ(0)

e
n(

∼
µ+

1
2

∼
σ

2
)

Φ

−z0+
∼
µ +

∼
σ

2

∼
σ

− Ke−
∼
r TΦ

(
−z0+

∼
µ

∼
σ

)

=
∞
∑

n=0

( ∼
λJt
)n

n!
e−

∼
λJt[Ŝ(0)Φ

−z0+
∼
µ +

∼
σ

2

∼
σ

− Ke−
∼
r TΦ

(
−z0+

∼
µ

∼
σ

)

=
∞
∑

n=0

( ∼
λJt
)n

n!
e−

∼
λJt[Ŝ(0)Φ(d1)− Ke−

∼
r TΦ(d2)]

(8)

Φ represents the cumulative standard normal distribution function. The terms d1 and
d2 are often used to assess the probability of the option expiring in the money or out of the
money. d1 represents the standardised distance between the current stock price (S) and the
strike price (K), adjusted by other factors such as the risk-free interest rate (r), volatility (σ),
and time to expiration (T). Specifically, d1 incorporates the expected return and the expected
volatility of the stock. d2 is similar to d1, but it is adjusted by subtracting the volatility
component (σ

√
T). This adjustment reflects the expectation of the stock price being below

the strike price at expiration. The probabilities come into play when you consider the
cumulative standard normal distribution function (Φ) applied to these d1 and d2 values.
The cumulative distribution function gives the probability that a standard normal random
variable is less than or equal to a given value. For a call option, d1 represents the probability
that the option will finish in the money (stock price above the strike price) and d2 represents
the probability that the option will finish out of the money (stock price below the strike
price). In summary, while d1 and d2 aren’t direct probabilities, they are closely related to
the probabilities of the option being in the money or out of the money.

The techniques developed for fBm with H < ½ can be effectively applied in financial
modelling, particularly in modelling volatility and volatility of volatility (vol-of-vol) which
exhibit rough path structure [8,9]. These rough volatility models, often characterised by
Hurst exponents less than ½, capture the persistent, jagged behaviour of market fluctuations
more accurately. By incorporating fuzziness into key parameters such as volatility, drift, and
jump intensities, the fuzzy fBm framework enhances the ability to model these irregularities
and account for uncertainty in parameter estimation. This is particularly important in
environments where precise volatility measurement is challenging due to market noise
or incomplete data. The combination of fuzziness with rough fractional paths allows for
a more robust representation of the volatility surface, improving option pricing, hedging
strategies and risk assessment in volatile markets.

In the context of modelling volatility of volatility, the FFBM can be particularly useful
in capturing the stochastic nature in instruments like VIX derivatives and volatility swaps.
Traditional models often struggle to account for the irregular, long-memory effects present
in vol-of-vol, which is now very documented in empirical finance [9]. By applying FFBM,
empiricists can build a shifting vol-vol dynamic model without assuming an overly smooth
process. As we demonstrated earlier, this framework can be integrated with Girsanov’s
theorem under a risk-neutral measure, ensuring that the pricing of derivatives reflects real-
world irregularities while maintaining theoretical robustness and no-arbitrage conditions.

In non-financial applications, a potential application is in the telecommunications
and network traffic modelling. Fractional Brownian motion has already been widely used
to model network traffic, but the real-world network conditions often exhibit variations
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that are best captured through fuzzy logic. In adaptive bandwidth allocation, congestion
control, and network anomaly detection, FFBM can be employed to handle imprecise or
incomplete traffic data, allowing service providers to develop more resilient protocols
for managing data flow, reduce latency, and optimise resource allocation in high-traffic
environments such as cloud computing and real-time streaming services.

In classical fBm, the kernel KH(t, s) governs the memory and roughness of the process
through the Hurst exponent H. When fuzziness is introduced, the kernel becomes a fuzzy
function. This means instead of having a single deterministic kernel, the model now handles
sets of possible kernels defined by membership functions of fuzzy intervals. The amplitude
functions, which influence the drift and diffusion terms in SDEs also become fuzzy variable.
This means the diffusion coefficient σ and drift term µ are no longer fixed but represented
by fuzzy sets or intervals. While fuzziness increases model complexity, it also introduces
robustness in modelling real-world uncertainty. By modelling this uncertainty explicitly
through fuzziness, the framework becomes mathematically richer and computationally
more intensive, but these challenges are balanced by the model’s ability to capture real-
world phenomenon where precise information is often unavailable or delayed.

3. Introducing Proof When H < ½
We will extend the proofs in [8] that are valid when H > ½. As we described it in the

Introduction, fBm has an infinite quadratic variation when H < ½, so we use [12] to change
Hurst parameter from H to 1 − H (Appendix A).

First, we use the following integration by parts result from [13]:

∫ T

0
f (t)dBH(t) = f (T)BH(T)−

∫ T

0
BH(t)d f (t)

The author proves the relationship for a deterministic function f such that it has
bounded p-variation sample paths for all p < 1/(1 − H). Let YH

t =
∫ t

0 sH− 1
2 dBH(t). Then

BH
t =

∫ t
0 sH− 1

2 dYH
s . Proof:

YH
t =

∫ t
0 sH− 1

2 dBH(t)

= (t)
1
2−H BH(t)

−
∫ t

0 BH(t)d
(

t
1
2−H

)
= t

1
2−H BH(t)−

∫ t
0 BH(t)

[
1
2 − H

]
t−

1
2−Hdt

Apply derivative:

dYH
t =

(
1
2 − H

)
t
− 1

2−H
dtBH(t) + dBH(t)t

1
2−H − BH(t)

[
1
2 − H

]
t−

1
2−H = dBH(t)t

1
2−H

⇒ dBH
t = dYH(t)t−

1
2+H

Apply integration:

⇒ BH
t =

∫ t

0
s−

1
2+HdYH(s) (9)

Following notation from [14], we utilise Molchan martingale [15], MH
t :=

∫ t
0 w(t, s)dBH(s),

where w(t, s) .
= ( c

C )s
−α(t − s)−α is a scaled beta kernel and w(t,s) = 0 for s > t; α

.
= H − 1

2 ;

C .
=
√

H
(H− 1

2)B(H− 1
2 , 2−2H)

and c .
= 1

B(H+ 1
2), ( 3

2−H)
. So, c(H) is a function of H and the standard

Beta function B(µ, υ)
.
= Γ(µ)Γ(ν)

Γ(µ+ν)
. Using Proposition 2.1 from [14] and proof of Theorem of
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3.2 in [16], then M is a Gaussian martingale. Put the values of dB into Molchan martingale
we obtain:

MH
t = (

c
C
)
∫ t

0
s

1
2−H(t − s)

1
2−HsH− 1

2 dYH(s) =(
c
C
)
∫ t

0
(t − s)

1
2−HdYH(s).

Ref. [16] showed that the filtrations generated by M and Y are the same. They showed

that YT = 2H
∫ T

0 (T − t)−
1
2+HdM(t) and the prediction formula:

E[YT |Ft] = 2H
∫ t

0
(T − s)−

1
2+HdM(s). (10)

Now we use Equations (9) and (10) to find the upper bound using integration by parts.
From (9):

sup|BH
t | ≤ sup |

∫ t

0
s−

1
2+HdYH(s)| ≤sup |

[
sH− 1

2 YH
s

]T

0
−
∫ t

0
d(s−

1
2+H)YH(s)|

Since the integral term is positive, therefore:

sup|BH
t | ≤ sup|

[
sH− 1

2 YH
s

]T

0
≤ sup

∣∣∣TH− 1
2

(
YH

t − YH
0

)∣∣∣ ≤ 2TH− 1
2 sup

∣∣∣YH
t

∣∣∣|
Now using (10), substitute for Y:

sup|BH
t | ≤ 2TH− 1

2 sup
∣∣∣2H

∫ t
0 (t − s)−

1
2+HdMH(s)

∣∣∣
≤ 2TH− 1

2 2Hsup|
[
(t − s)H− 1

2 MH
s

]T

0
−
∫ t

0 d((t − s)−
1
2+H)MH(s)|

≤ 4HT2H−1sup
(∣∣MH

t
∣∣−∣∣MH

0

∣∣)≤ 8HT2H−1sup
(∣∣MH

t
∣∣ )

We now apply expectation:

E(sup
∣∣∣BH

t

∣∣∣)p
≤
(

8HT2H−1
)p

E(sup
(∣∣∣MH

t

∣∣∣)p)
Since M is Molchan martingale, by the Burkholder-Davis-Gundy inequality, there

exists a constant AH
p > 0 such that:

E(sup
∣∣∣BH

t

∣∣∣)p
≤
(

8HT2H−1
)p

AH
p E(sup

(〈
MH

t

〉)p/2
)

(11)

The next result we take from Norros, Proposition 2.1 from [16]:

Var
(

MK
t

)
=
〈

MK
〉

t
=

c2(K)

(2K)2(2 − 2K)
t2−2K := d(K)t2−2k

Now, we use the transformation proposed and proved by [12] to change Hurst param-
eter H. Using Corrollary 5.2 from [12], there exists a unique (1 − H) fBm, such that:

BH
t =

(
2H

Γ(2H)Γ(3 − 2H)

)1/2∫ t

0
(t − s)2H−1dB1−H

s , a.s., tϵ[0, T]

By remark 5.6 in [12], proves that:

MH
t =

(√
1 − H
1 − K

)∫ t

0
sK−HdMK

s , a.s., tϵ[0, ∞)
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We will now combine these results to compute quadratic variation for 1 − H > ½ to
obtain:

〈
MH

t

〉
= (

(√
1 − H
1 − K

)∫ t

0
sK−HdMK

s

)
)

2

=
1 − H

H

∫ t

0
s2−2Hd

〈
M1−H

〉
s

Use [16]: Var
(

MK
t
)
=
〈

MK〉
t =

c2(K)
(2K)2(2−2K)

t2−2K := d(K)t2−2k.

Substitute into: d
〈

M1−H〉
s = d(1− H)s2−2(1−H). Continuing with quadratic variation:

〈
MH

t
〉
= (
(√

1−H
1−K

)∫ t
0 sK−HdMK

s
)
)

2
= 1−H

H
∫ t

0 s2−2Hd
〈

M1−H〉
s =

1−H
H d(1 − H)

∫ t
0 s2−2H2Hs2H−1ds = 2H(1−H)

H d(1 − H)
∫ t

0 s1−2Hds
= d(1 − H)t2(1−H)

(12)

Apply BDG inequality on quadratic variation of MH, to obtain:

E
√
⟨MH⟩t

p
≤ B1−H

p tp(1−H) (13)

Using (11): E(sup
∣∣BH

t
∣∣)p ≤

(
8HT2H−1)

p AH
p E(sup

(〈
MH

t
〉)p/2

)
, substitute into (13),

we obtain:
E(sup

∣∣∣BH
t

∣∣∣)p
≤
(

8HT2H−1
)p

AH
p B1−H

P Tp(1−H) (14)

If we define C := (8H)p AH
p B1−H

P then E(sup
∣∣BH

t
∣∣)p ≤ CTpH . So, in summary, we

use trick from [12] to transform fBm to (1 − H) fBm. By expressing fBm as an integral
with respect to standard Brownian motion, the proof employs Volterra-like representations
of fBm. The transformed process is a Gaussian martingale with respect to the filtration
generated by BH, which allows us to establish the upper and lower bounds for the integrals.
Combined with the fact that we also demonstrate that the involved functions are square
integrable, this ensures the finiteness and uniqueness of solution. Proof complete.

4. Introducing Fuzzy When H < ½
Under the assumption that the fuzzy aspect lives in the amplitude/kernels and that the

underlying driving noise
∼
B is actually a crisp fractional Brownian motion. In other words,

we are layering fuzziness on the coefficients/functions of the integral but not changing
the fundamental measure-theoretic structure of the noise. This assumption ensures we
can leverage classical results such as Itô isometry for existence, uniqueness, and bounding
integrals which we proved in [8].

For H < ½, the kernel KH(t, s) used to construct fBm was derived by [17].

KH(t, s) = cH

[(
t
s

)H−1/2

(t − s)H−1/2

]

where CH is a normalising constant given by: cH =

(
2Hsin(πH)Γ( 3

2−H)
Γ(H+ 1

2 )

)1/2
.

For practical applications, a more convenient representation of the kernel function for
H < ½ can be written as:

KH(t, s) = cH

[
(t − s)H−1/2 − (−t)H−1/2

]
This ensures the kernel remains well-defined and integrable. To establish upper and

lower bounds for the integrals involving fuzzy fractional Brownian motion when H <
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½, we need to adapt the existing techniques to handle the fuzzy nature of the random
variables. To establish bounds, we need to represent the fuzzy variables as intervals or use
membership functions and then analyse these representations.

An important characteristic of fBm that significantly enhances its applicability in
financial modelling is its long memory effect, which is governed by the Hurst exponent
H. The Hurst exponent characterises the autocorrelation structure of increments of the
process. If H > ½, this indicates positive correlation and persistent behaviour, meaning
past increases or decreases tend to be followed by future movements in the same direction.
Financial assets exhibit persistent behaviour, and shocks to be positively correlated over
long periods, making fBm an ideal model for capturing long-term dependencies observed
in bubble dynamics.

If H < ½, this corresponds to anti-persistence, or rough path showing mean-reverting
behaviour. Such anti persistence phenomena are frequently observed in short-term trading
scenarios. In our context, we focus on the case of H < ½, as indicated above, due to its
suitability for modelling frequent reversals.

Fuzzy Gaussian Distribution

At any fixed time t, the value of the fuzzy Brownian motion
∼
BH(t) is a fuzzy Gaussian

variable. This means its probability distribution is a Gaussian distribution with fuzzy mean
and variance.

Fuzzy Integral Representation:
We denote the kernel KH(t, s) as fuzzy, which means at each ω ∈ Ω, the kernel belongs

to a set and has a membership function describing possible amplitude values.

∼
BH(t) =

∫ t

0

∼
KH(t, s)dB(s)

We assume the underlying noise is crisp, but the fuzzy aspect is in the amplitude of
the kernel. We had earlier proven in [8] that the classical Itô isometry remains perfectly
valid for each crisp selection and each scenario in our fuzzy ensemble because the noise is
crisp. The fuzziness is layered on top by letting the integrand vary in intervals. Nothing

breaks the standard measure-theoretic basis of
∼
BH(t).

Our future work would involve defining the fuzzy fractional Brownian motion
∼
BH(t)

in the sense of fuzzy measure theory, not just a crisp B with fuzzy amplitude. Then the
classical Itô isometry is no longer guaranteed. Indeed, we might not even have a linear–
additive expectation E in the sense of Kolmogorov measure theory. Instead, we have fuzzy
expectation and fuzzy integrals, which typically do not obey Itô isometry.

The step:

E

(∫ t

0

(
∼
K
(1)

H (t, s)−
∼
K
(2)

H (t, s)

)
d
∼
B(s)

)2
 ̸=

∫ t

0
E

 ∼
(K

(1)

H (t, s)−
∼
K
(2)

H (t, s)

)2

ds


would be wrong as indicated by ̸=, because the left side uses a fuzzy integral and fuzzy
expectation. Typically, a pure fuzzy measure does not preserve linear additivity, and it uses
a non-classical integral Choquet, or Sugeno. The isometry is not guaranteed.

We need to analyse:

E

[(∼
BH(t)

)2
]
= E

[(∫ t

0

∼
KH(t, s)dB(s)

)2
]
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Since both
∼
KH(t, s) and

∼
B(s) are fuzzy, we can represent them as intervals for analysis.

The fuzzy labels on
∼
KH(t, s) does not break linearity or additivity of the expectations

and the integrals, because fuzziness is above the measure level.
For uniqueness proofs, we define upper and lower bounds for Fuzzy Gaussian Increments:

∼
KH(t, s) = [KH, L(t, s), KH, U(t, s) ]

∼
B(s) = [BL(s), BU(s)]

Here, KH, L(t, s) and KH, U(t, s) represent the lower and upper bounds of the fuzzy
kernel function, and BL(s) and BU(s) represent the lower and upper bounds of the fuzzy
Gaussian process. The upper and lower bounds for the fuzzy fractional Brownian motion
integrals are determined by analysing the bounds of the kernel function and the Gaussian
process separately.

(∫ t

0

∼
KH,L(t, s)

)2
ds ≤ E

[(∫ t

0

∼
KH(t, s)d

∼
B(s)

)2
]
≤
(∫ t

0

∼
KH,U(t, s)

)2
ds

By ensuring that these integrals are finite, we will demonstrate the existence of the
solution. Uniqueness will be shown by proving that the fuzzy integrals converge uniquely
under the given conditions—if that difference of kernels is zero a.s. owing to identical
initial data and integrable constraints, we obtain uniqueness.

In other words, we need to show that:(∫ t

0

∼
KH,L(t, s)

)2
ds < ∞and

(∫ t

0

∼
KH,U(t, s)

)2
ds < ∞

For
∼
KH,L(t, s): (∼

KH,L(t, s)
)2

= cH
2
(
(t − s)H−1/2 − (−s)H−1/2

)2

Integrate this:

∫ t

0

(∼
KH,L(t, s)

)2
ds = cH

2
∫ t

0

(
(t − s)H−1/2 − (−s)H−1/2

)2
ds

Both terms inside the integral are finite for H < ½, and the subtraction term also ensures
the finiteness of the integral.

Similarly, for the upper bounds:

∫ t

0

(∼
KH,U(t, s)

)2
ds = cH

2
∫ t

0

(
(t − s)H−1/2 − (−s)H−1/2

)2
ds

The same reasoning applies here, both terms inside the integral are finite, and their
subtraction ensures the integrals are finite. Therefore, both the upper and lower bounds are
finite.

To show uniqueness, we need to prove that the fuzzy integral representation converges
uniquely under the given conditions. We assume that there are two fuzzy fractional

Brownian motions
∼
B
(1)

H (t) and
∼
B
(2)

H (t) with the same initial conditions.
For uniqueness, consider the difference:

∆
∼
BH(t) =

∼
B
(1)

H (t)−
∼
B
(2)

H (t)
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Then:

E
[

∆
∼
BH(t)

2]
= E

(∫ t

0

(
∼
K
(1)

H (t, s)−
∼
K
(2)

H (t, s)

)
d
∼
B(s)

)2


Then we can use Itô’s isometry:

E
[

∆
∼
BH(t)

2]
=
∫ t

0
E

(∼
K
(1)

H (t, s)−
∼
K
(2)

H (t, s)

)2
ds

If
∼
B
(1)

H (t) and
∼
B
(2)

H (t) are solutions, then
∼
K
(1)

H (t, s) =
∼
K
(2)

H (t, s) a.s. Thus, E
[

∆
∼
BH(t)

2]
= 0.

This implies that ∆
∼
BH(t) = 0 a.s. and

∼
B
(1)

H (t) =
∼
B
(2)

H (t). Proof complete. Therefore,
the solution is unique.

Membership function:
∼
X is called a fuzzy normal variable if for each α ∈ (0, 1], we can select a crisp normal

distribution N
(
µα, σ2

α

)
such that µα and σ2

α come from the α-cuts of the fuzzy numbers
∼
µ

and
∼
σ2. The nested family

{
N
(
µα,σ2

α

)}
αϵ(0,1] is consistent in the sense that if α2 < α1, then

µα2 ⊆ µα1 as intervals.
Hence, we represent our fuzzy normal by the entire nested family of classical normal

distributions, one for each level of membership α. Next, we apply the Zadeh extension

principle (or an interval-based extension principle) to unify fuzzy parameters
∼
µ and

∼
σ2

into one membership function µX(x) for a fuzzy normal distribution. The key idea is once
we have fuzzy sets for mean and variance, we want a single fuzzy set in R describing
how likely it is for our fuzzy normal to take each real value x. This demands a recognised
fuzzy extension approach that merges the fuzzy parameters into a single fuzzy set of

real outputs. Generally, for each α −→ [µ α, σ2
α

]
and t, the value

∼
BH(t) has membership

function describing the degree to which it belongs to the fuzzy set
∼
BH(t).

µ∼
B
= e

− (x−∼
µ )

2

2
∼
σ2

When we have intervals of means µ ∈ [µ−
α , µ+

α ] and variances σ ∈
[
σ2,−

α , σ2,+
α

]
, the pdf

can vary accordingly. To find unified pdf we implement the threshold aggregator approach
that merges the entire alpha-cut family into one membership function by allowing us to
climb up alpha levels as far as possible, subject to the pdf condition. A bigger α indicates a
narrower region for µα and σ2

α, so it is more demanding that we still get bigger threshold
in the pdf. The result is a single membership at x ∈ [0, 1]. If we define τ as some threshold
then x has membership ≥ α if we can find a parameter pair in α-cuts that yields ≥ τ pdf.
So, membership is the supremum of all such α. This is a version of the Zadeh extension
principle, adopted to the pdf is above threshold τ condition.

We now formalise these concepts mathematically. Let
∼
µ be a fuzzy mean and

∼
σ2 be a

fuzzy variance.
∼
µ and

∼
σ2 are fuzzy numbers in R and (0, ∞) respectively. Fix a threshold τ

∈ (0, ∞). For each α ∈ (0, 1], define intervals µαϵ
∼
µ

α
, σ2

α ϵ
∼
µ

2α

.

We say x ∈
∼

Xα if:
∃
(
µ,σ2) ∈ µα × σ2

α such that fµ,σ2(x) ≥ τ.
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Then the membership function for
∼
X is:

µ∼
X
(x) = sup{α ∈ (0, 1] : x ∈

∼
Xα}

We call
∼
X a fuzzy normal variable under threshold τ.

This aggregator is one of many possible. Now we have a robust approach that merges

fuzzy
∼
µ and

∼
σ2 into a single fuzzy set of real values x. It does so by checking the classical

normal pdf at each α -cut and picking the supremum over α.
Fuzzy Martingale

A fuzzy martingale
∼
M(t) is a generalisation of a standard martingale, where the values

are described by fuzzy numbers. For a process to be a fuzzy martingale, it must satisfy the

martingale property with respect to fuzzy conditional expectations. So, for
∼
M(t) to be a

fuzzy martingale, it must satify:

E
[ ∼

M
∣∣∣∣Fs

]
=

∼
M(s)

Proof for Fuzzy Fractional Brownian motion when H < ½ with Gaussian membership
function

We derive step by step proof for ffBm when H < ½ and Gaussian membership function.

1. Integration by Parts with Fuzzy Variable:

Let
∼
Y

H

t =
∫ t

0 sH− 1
2 d

∼
B

H
(t). Then:

∼
B

H

t =
∫ t

0
sH− 1

2 d
∼
Y

H

s .

Our proof:

∼
Y

H

t =
∫ t

0 sH− 1
2 d

∼
B

H
(t)

= (t)
1
2−H∼

B
H
(t)

−
∫ t

0

∼
B

H
(t)d

(
t

1
2−H

)
= t

1
2−H

∼
B

H
(t)−

∫ t
0

∼
B

H
(t)
[

1
2 − H

]
t−

1
2−Hdt

Apply derivative:

d
∼
Y

H

t =
(

1
2 − H

)
t
− 1

2−H
dt

∼
B

H
(t) + d

∼
B

H
(t)t

1
2−H −

∼
B

H
(t)
[

1
2 − H

]
t−

1
2−H = d

∼
B

H
(t)t

1
2−H

⇒ d
∼
B

H

t = d
∼
Y

H
(t)t−

1
2+H

Apply integration:
∼
B

H

t =
∫ t

0
s−

1
2+Hd

∼
Y

H
(s) (15)

2. Define fuzzy Molchan martingale:

∼
M

H

t :=
∫ t

0

∼
w(t, s)d

∼
B

H
(s),

where
∼
w(t, s) .

= ( c
C )s

−α(t − s)−α is a scaled beta kernel.

3. Upper bound for fuzzy
∼
BH(t) using integration by parts. From (15):



Symmetry 2025, 17, 550 23 of 30

sup|
∼
B

H

t | ≤ sup |
∫ t

0
s−

1
2+Hd

∼
Y

H
(s)| ≤sup |

[
sH− 1

2
∼
Y

H

s

]T

0
−
∫ t

0
d(s−

1
2+H)

∼
Y

H
(s)|

Since the integral term is positive, therefore:

sup|
∼
B

H

t | ≤ sup|
[

sH− 1
2
∼
Y

H

s

]T

0
−
∫ t

0 (1/2 − H)s−1/2−H
∼
Y

H
(s)ds|

≤ sup
∣∣∣∣TH− 1

2

(∼
Y

H

t −
∼
Y

H

0

)∣∣∣∣ ≤ 2TH− 1
2 sup

∣∣∣∣∼YH

t

∣∣∣∣|
4. Now, substitute for

∼
Y:

sup
∣∣∣∣∼BH

t

∣∣∣∣≤ 8HT2H−1sup
(∣∣∣∣ ∼MH

t

∣∣∣∣)
5. We now apply expectation:

E(sup
∣∣∣∣∼BH

t

∣∣∣∣)p

≤
(

8HT2H−1
)p

E(sup
(∣∣∣∣ ∼MH

t

∣∣∣∣)p
)

Since
∼
M

H

t is a fuzzy Molchan martingale, by the Burkholder-Davis-Gundy inequality,
there exists a constant AH

p > 0 such that:

E(sup
∣∣∣∣∼BH

t

∣∣∣∣)p

≤
(

8HT2H−1
)p

AH
p E(sup

(〈 ∼
M

H

t

〉)p/2

) (16)

The next result we take from Norros, Proposition 2.1 in [16]:

Var
( ∼

M
K

t

)
=

〈 ∼
M

K〉
t
=

c2(K)

(2K)2(2 − 2K)
t2−2K := d(K)t2−2k

6. We will now combine these results to compute quadratic variation for 1 − H > ½ to
obtain:

〈 ∼
M

H

t

〉
=

((√
1 − H
1 − K

)∫ t

0
sK−Hd

∼
M

K

s

)
)

2

=
1 − H

H

∫ t

0
s2−2Hd

〈 ∼
M

1−H〉
s

Use [16]: Var
( ∼

M
K

t

)
=

〈 ∼
M

K〉
t
= c2(K)

(2K)2(2−2K)
t2−2K := d(K)t2−2k.

Substitute into: d
〈 ∼

M
1−H〉

s
= d(1− H)s2−2(1−H). Continuing with quadratic variation:

〈 ∼
M

H

t

〉
=

((√
1−H
1−K

)∫ t
0 sK−Hd

∼
M

K

s

)
)

2

= 1−H
H
∫ t

0 s2−2Hd
〈 ∼

M
1−H〉

s
=

= 1−H
H d(1 − H)

∫ t
0 s2−2H2Hs2H−1ds = 2H(1−H)

H d(1 − H)
∫ t

0 s1−2Hds
= d(1 − H)t2(1−H)

(17)

7. Apply BDG inequality on quadratic variation of MH, to obtain:
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E

√〈 ∼
M

H〉
t

p

≤
∼
B

1−H

p tp(1−H) (18)

Using (16): E(sup
∣∣∣∣∼BH

t

∣∣∣∣)p

≤ (8HT2H−1)
p AH

p E(sup(
〈 ∼

M
H

t

〉
)

p/2

), substitute into (18),

we get:

E(sup
∣∣∣∣∼BH

t

∣∣∣∣)p

≤
(

8HT2H−1
)p

AH
p
∼
B

1−H

P Tp(1−H) (19)

8. If we define
∼
C := (8H)p AH

p
∼
B

1−H

P then E(sup
∣∣∣∣∼BH

t

∣∣∣∣)p

≤
∼
CTpH . Proof complete.

The risk-free measure transformation relies on constructing a risk-neutral probability
measure under which the discounted asset price processes become martingale. In our fuzzy
environment, the validity of this transformation hinges upon the assumption that fuzziness
is introduced at the coefficient and amplitude level as opposed to altering the fundamental
probability measure structure itself. Since the driving noise remains crisp, the classical
construction of the risk-free measure is preserved. Thus, each scenario within our fuzzy
environment still respects the standard probabilistic assumptions required by the Girsanov
transformation.

In order to generalise the classical Girsanov transformation to cover fBm by leveraging
Molchan-Golosov representation and a suitable martingale constructions. This extension
ensures the stochastic integrals driven by fBm can be translated into equivalent martingale
measures, allowing us to consistently price financial derivatives under fuzzy fractional dy-
namics. The generalisation uses fractional kernels and transformations introduced through
fuzzy integral bounds. To illustrate the practical implications, consider the following
heuristic numerical example involving a European call option.

Assumptions:

Asset Price, S0: 100
Strike Price K: 100
Risk-Free Rate: 0.05
Time to maturity (T): 1.0 year(s)
Hurst Exponent H: 0.4
Adjusted Volatility Interval (fuzzy): [0.1500, 0.2500]
Drift (fuzzy), µ: [0.04, 0.08]

Results under lower bound and upper bound scenarios:

Option Price Interval: [8.5917, 12.3360]

5. Simulations
This simulation integrates three distinct components—fBm, Poisson jump processes,

and fuzzy set theory to represent asset price dynamics under uncertainty and rough volatil-
ity scenario. Fbm was generated with a H = 0.15, specifically selected to reflect the rough
volatility observed empirically in the financial markets. A low Hurst exponent captures
anti-persistent behaviour, manifesting as rough paths with rapid, irregular fluctuations.
The path was simulated over a one-year period (T = 1) using 252 discrete time steps, cor-
responding to typical daily trading intervals in financial markets. The simulation used
Cholesky decomposition applied to a covariance matrix (γ), which encodes the long-range
dependency structure of fBm increments.

Next, a jump component was added using a Poisson jump model, where the jump
intensity parameter λ = 0.5 signifies an average occurrence of 0.5 jumps per year. Jump
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sizes were normally distributed with mean (µ = 0.5) and standard deviation (σ = 0.02),
simulating occasional significant market shocks or discontinuities.

To incorporate market uncertainty and sentiment explicitly, the volatility parameter
was dynamically adjusted using fuzzy logic. The fuzzy logic system defines three market
sentiment scenarios–pessimistic, neutral, and optimistic, mapped numerically within a
sentiment range from 0 to 10. The fuzzy volatility was obtained by evaluating these
sentiment scenarios through fuzzy membership functions defined using triangular fuzzy
sets. Specifically, pessimistic sentiment corresponds to high volatility, neutral sentiment
to medium volatility, and optimistic sentiment to low volatility. This approach allowed
the volatility parameter to be dynamically adjusted according to fuzzy logic, capturing the
nuanced market sentiment and uncertainty explicitly.

The simulated asset price paths in Figure 1 were constructed by combining the drift by
setting a constant risk-free rate of 5%, fuzzy-adjusted volatility, fBm paths, and cumulative
jump increments. The resulting price series this explicitly illustrates the interactions among
fractality captured by fBm, discrete jumps captured by Poisson jump processes, and fuzzy
uncertainty via volatility adjustments from fuzzy set theory.

It is important to highlight that the simulation serves as an illustrative example to
demonstrate the practical integration and behaviour of fBm, Poisson jumps, and fuzzy
logic within our theoretical framework. Future work will explicitly perform extensive
empirical validations, applying this modelling framework across various financial markets
and directly comparing its predictive accuracy and performance against traditional models.
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6. Discussion
The fractional fuzzy stochastic differential equations developed in this study provide a

versatile framework that adapts to a variety of financial markets by capturing long-memory
properties and uncertainty through fBm and fuzzy set theory, respectively. The flexibility
of the model lies in its ability to accommodate diverse market behaviours by adjusting H
and the fuzzy structure applied to the model’s coefficients.

In equity markets, where persistence and long-memory are often observed, our model
with H > ½ offers significant advantages. Such markets tend to exhibit trends that per-
sist over time, and this memory effect is well-captured using fractional dynamics. The
introduction of fuzzy elements into volatility and drift parameters allows the model to



Symmetry 2025, 17, 550 26 of 30

integrate uncertainties arising from market shocks, incomplete financial information, or
regulatory ambiguities. Empirical studies by Mandelbrot and van Ness, among others,
have shown that equity prices frequently follow such persistent patterns, making our
approach particularly well-suited for equities exhibiting trend following behaviour.

In foreign exchange and currency markets, price trajectories tend to alternate between
memory effects and high-frequency volatility spikes. By integrating fuzzy processes with
fractional models, we provide a framework that addresses these idiosyncrasies. The
model’s flexibility allows it to accommodate changing market regimes, as well as uncertain
monetary policies or geopolitical factors that are not easily handled by traditional diffusion-
based models.

For commodity markets, which often exhibit mean-reverting characteristics, our model
proves equally applicable. When H < ½, the model captures the cyclical, anti-persistent
nature of commodity movements.

The main structural advantage of our customised PDE lies in its formulations, which
incorporates exponential functions under positive drive scenarios (µ ≥ 0) and hyperbolic
functions (cosh and sinh) when modelling regime with negative drive (µ ≥ 0). This
dual structure allows the model to capture both compounding growth processes and
cyclical market behaviours under a single unified framework. In contrast, classical PDEs
based on standard Brownian motion typically assume memoryless behaviour and constant
volatility, limiting their ability to capture persistent volatility clustering or regime-switching
phenomena observed in empirical financial data.

To demonstrate the practical advantages of this model, we included a numerical
example illustrating the pricing of a European call option under fuzzy volatility intervals
derived from fBm dynamics. The results show how incorporating fuzziness yields a
distribution of option prices, thereby providing a range of risk-adjusted values rather than
a single deterministic price. This enriches the information available to market practitioners,
supporting hedging and risk management under uncertainty.

Finally, classical models such as Black-Scholes-Merton [18] often underestimate pricing
bounds under extreme uncertainty, our approach adapts to market-specific features like
long memory, uncertainty in inputs, and non-Gaussian effects, delivering improved pricing
accuracy and risk estimates. Therefore, this hybrid model shows strong potential for practi-
cal use in markets where classical assumptions on memory and volatility independence are
no longer valid.

7. Conclusions
We formalised the study of a fuzzy fractional Brownian motion (fBm) for H < ½

by adapting classical results from traditional fBm setting, while layering fuzziness on
certain coefficients and amplitude functions. In the crisp scenario, fBm with H < ½ is often
represented via the Mandelbrot–Van Ness construction, where BH(t) is expressed as an
integral of a kernel KH(t, s) against a standard Brownian motion. This kernel typically takes
a difference form that remains integrable near the endpoints s = 0 and s = t, even though the
process is not a semimartingale. To extend this into a fuzzy framework, we assumed that
the driving fractional Brownian motion is still a classical, measure-theoretic process, but
the kernel and other amplitude-related parameters become fuzzy. This framework allowed
us to reuse many of the standard measure-theoretic techniques for integrals and isometries,
because the underlying noise retained all its crisp characteristics.

We treated the kernel and the parameters as fuzzy sets whose possible values, for
each outcome, lie in the intervals or have membership functions describing their degrees
of plausibility. Each realisation of these fuzzy parameters can then be viewed as a crisp
selection, ensuring the integral with respect to the standard Brownian motion is well-defined
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in the usual sense. This framework allows the preservation of existence, uniqueness, and
boundedness properties. The driving noise is classical, so measure-theoretic arguments like
the Young and Skorohod integrals for H < ½ continue to hold, and the presence of fuzziness
in the amplitude and kernel does not break the underlying integrability conditions.

A key aspect of analysis focuses on uniqueness. If two processes
∼
B
(1)

H (t) and
∼
B
(2)

H (t)
share the same fuzzy kernel data but happen to differ in how one selects fuzzy values for

the integrand, one looks at their difference ∆
∼
BH(t). Because the underlying noise is a crisp

Brownian motion, one applies the standard isometry. If
∼

KH, L(t, s) and
∼

KH, U(t, s) coincide
almost surely in the sense that their fuzzy parameters are identical for each scenario, then
the difference integral is zero. This shows that no two distinct fuzzy processes can arise
from the same fuzzy kernel data, and uniqueness is secured.

To bound the supremum of fuzzy fBm, we employed a form of the Molchan martingale
technique and a BDG inequality approach [19]. In standard fBm with H < ½, one can define
a transform that behaves like a martingale with respect to a certain filtration or at least
allows one to control the magnitude of BH(t). By retaining a crisp measure for the noise, the

same style of arguments holds. We obtained an estimate of sup|
∼
B

H

t | in terms of sup(
∣∣∣∣ ∼MH

t

∣∣∣∣),
where

∼
M

H

t is a fuzzy version of the Molchan martingale. Expectation inequalities follow
from standard integrability requirements.

Taken together, we showed that working with H < ½ in the fuzzy context does not
fundamentally destroy the usual integrability results, as long as the driving noise re-
mains crisp. The main difference is that each amplitude or kernel value now belongs to
a fuzzy set, but any specific scenario or selection yields a classical integrand, so integral
definitions and uniqueness proofs proceed as in the standard framework. The bounding
arguments are similar. We reused the classical measure-theoretic inequalities and simply
recognised that the fuzziness entered in the amplitude, not in the measure. In this way,
the entire theory remained consistent for H < ½, including existence of the fuzzy fractional
Brownian motion, its uniqueness from the integral representation plus the crisp isometry
argument, and the ability to label its distribution as fuzzy Gaussian via alpha-cuts and an
aggregator principle.

The concept of overlaying a fuzzy structure onto a crisp fractional Brownian motion
is not entirely new. Various authors in fuzzy stochastic modelling that we thoroughly
reviewed in [8] have taken a crisp process such as a Brownian motion or a fractional
Brownian motion and allowed certain parameters or coefficients to be fuzzy, thus letting
each outcome pick a different crisp coefficient from the fuzzy set. This approach makes it
possible to reuse all the standard measure-theoretic arguments, because the noise is still
treated in a classical Kolmogorov framework.

However, systematically applying this method in the specific case of H < ½ for frac-
tional Brownian motion, together with an explicitly defined aggregator and Zadeh exten-
sion principle for fuzzy normal distributions, has not been formalised in the literature.
Mostly, research focuses on a fully crisp version of fractional Brownian motion in the
non-semimartingale regime without considering fuzziness, or it addresses fuzzy Brownian
motion or fBm in a more informal manner without fully elaborating measure-theoretic
integrals or the precise aggregator rules that unify fuzzy parameters into one membership
function on the real line [20–22]. Some articles instead mention fuzzy parameters in simpler
SDE frameworks with Brownian noise but do not carefully handle the fractional exponents
and the integration approach required for H < ½ [23–32].

Our research offers a unified formalism for adapting the fractional integral representa-
tion when H < ½, how to treat fuzzy kernel and amplitude values while preserving the crisp
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measure structure of the noise, and demonstrating existence, uniqueness, and boundedness
in that environment. We clarified how to use the classical fractional integral machinery in
a fuzzy setting, employed the standard uniqueness arguments while acknowledging the
fuzziness of the kernel, and explained how to define a fuzzy normal membership function
rather than simply stating fuzzy Gaussian without formal details. The originality of our
approach lies in its explicit handling of the non-semimartingale regime H < ½ within a
fuzzy kernel environment, its maintenance of the validity of measure-theoretic integrals by
keeping the noise crisp, and its articulation of a consistent approach to defining the distri-
bution via a recognised aggregator principle for fuzzy normals. Our rigorous treatment of
fuzzy fractional Brownian motion and a clear explanation of how fuzziness modifies the
usual uniqueness proofs and distribution membership constitute a coherent roadmap that
is currently missing in the existing literature.

Our rigorous treatment of fBm and a clear explanation of how fuzziness modifies the
usual uniqueness proofs and distribution membership constitutes a coherent roadmap
that is currently missing in the existing literature. Furthermore, our model demonstrates
superior applicability to financial products where long-term dependency and uncertainty
are critical. In particular, it provides improved performance in pricing and hedging options
with persistent volatility or mean-reverting characteristics which are common in equity
indices and commodity markets, respectively. By incorporating fuzzy fractional dynamics,
the model captures both long memory and uncertainty, offering more realistic pricing
intervals and enhanced risk assessments compared to classical models. These attributes
make the model highly relevant not only for option pricing but also for broader derivative
applications and risk management strategies, where accurate quantifications of volatility
ambiguity and drift uncertainty is essential.
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Abbreviations

Abbreviation Explanation
fBm Fractional Brownian motion
SDE Stochastic Differential Equation
PDE Partial Differential Equation
P Real-world probability measure
Q Risk-neutral probability measure
i.i.d Independent and identically distributed
σ Volatility
Φ Cumulative distribution function of the standard normal distribution
d1 Parameter used in the Black-Scholes formula
d2 Parameter used in the Black-Scholes formula
µ Drift term in stochastic processes
λ Intensity of a Poisson process
J Jump magnitude
H Hurst exponent
FFSDE Fractional fuzzy stochastic differential equation
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Appendix A

Table A1. Mapping of the Results and Models to Hurst Parameter Regimes.

Hurst Index (H) Section(s) Key Results and Descriptions

H < ½ Sections 3 and 4

Development and rigorous formalisation of fuzzy
fractional Brownian motion (fBm) via
Mandelbrot–Van Ness kernels. Proofs of existence,
uniqueness, and integrability using Molchan
martingale techniques and BDG inequalities
specifically adapted for fuzzy amplitude and kernel
functions. Demonstrated that fuzziness does not alter
fundamental measure-theoretic integrability results.

H < ½ Section Fuzzy Gaussian
Distribution

Explicit formulation and proof of the fuzzy Gaussian
distribution, employing fuzzy integrals and Zadeh’s
extension principles. Provided detailed derivations
and bounds for fuzzy integrals, ensuring finiteness
and uniqueness within the fuzzy framework.
Clarified theoretical consistency when integrating
fuzzy kernels against crisp Brownian motion.

H > ½ Sections 1, 2 and 5

Construction of fractional fuzzy stochastic differential
equations (FFSDEs) incorporating fuzzy logic in drift
and diffusion terms. Application of Feynman–Kac
bridging techniques to solve customised PDEs
embedding exponential and hyperbolic functions to
address regime-switching phenomena and volatility
clustering. Provided explicit closed-form fuzzy
solutions, demonstrating suitability for capturing
long-memory effects typically observed in equity
markets.

H > ½ Sections 2 and 5

Extension and application of Girsanov’s theorem to
fractional fuzzy environments under risk-neutral
measure Q, providing the theoretical justification for
the fuzzy risk-neutral valuation. Clearly
demonstrated the preservation of no-arbitrage
conditions by explicitly constructing equivalent
martingale measures within a fuzzy fractional
framework.

H < ½ and
H > ½

Sections 5 and 6 (Simulations
and Discussion)

Provided numerical simulations illustrating realistic
scenarios (optimistic to pessimistic sentiment),
explicitly showing the model’s practical flexibility and
adaptability. Demonstrated comparative advantages
over classical methods like Black–Scholes and
Merton’s jump-diffusion models. Discussed practical
implications across different financial markets
(equities, commodities, currencies), showing
effectiveness in managing both persistent and
anti-persistent volatility behaviours.

H < ½ and
H > ½ Section 6 (Discussion)

In-depth comparative discussion highlighting how
the customised PDE solutions significantly improve
model realism by capturing memory effects and fuzzy
uncertainty that classical PDE models neglect.
Provided a detailed rationale for the superiority of the
proposed fuzzy fractional PDE approach, particularly
in derivative pricing and risk management contexts.
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